Data-based modeling of early-age concrete mechanical behavior for structural calculation
Résumé
When considering the early-age behavior of massive concrete structures, it is important to accurately reproduce the evolutions of the mechanical properties and their evolutions as a function of the hydration state. In this paper, we propose a method based on data gathered in an extensive experimental campaign to estimate the mechanical properties of concrete depending on its degree of hydration. Once the constitutive equations of elastic, creep, and early age strain properties are clearly defined, these properties are successively calibrated as functions of the degree of hydration. They are next integrated into a mechanical structural calculation for validation. Numerical results are compared to experimental data obtained on a realistic massive structure built especially for this study. First simulations have provided a mechanical response close to experimental data, thereby validating the consistency of both an overall modeling procedure and input dataset.