Experimental study of post-crack vibrations in dynamic fracture
Résumé
Vibrations induced by crack propagation in a strip of bonded silicon wafers are studied. A new optical setup enables the fast recording of crack-originated acoustic waves, emitted both ahead and behind the crack front, in bonded and separated wafers, respectively. Three types of crack-induced vibrations are identified, corresponding to different excitations and responses of the system: (1) “pneumatic” vibrations involving inertia and gas expansion/compression, (2) standard flexural waves involving inertia and bending rigidity, and (3) post-crack vibrations involving inertia, bending rigidity, and coupling to gas pressure. We show that a standard “beam on elastic foundation” model can explain these latter vibrations that occur along crack edges and is consistent with the observed frequencies.