Transfer matrices for the totally asymmetric simple exclusion process - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Journal of Physics A: Mathematical and Theoretical Year : 2010

Transfer matrices for the totally asymmetric simple exclusion process

Abstract

We consider the totally asymmetric simple exclusion process (TASEP) on a finite lattice with open boundaries. We show, using the recursive structure of the Markov matrix that encodes the dynamics, that there exist two transfer matrices $T_{L−1,L}$ and $\tilde T_{L−1,L}$ that intertwine the Markov matrices of consecutive system sizes:$\tilde T_{L−1,L}$$M_{L−1} = M_LT_{L−1,L}$. This semi-conjugation property of the dynamics provides an algebraic counterpart for the matrix-product representation of the steady state of the process.
Fichier principal
Vignette du fichier
Woe1.pdf (146.32 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

cea-02924648 , version 1 (28-08-2020)

Identifiers

Cite

Marko Woelki, Kirone Mallick. Transfer matrices for the totally asymmetric simple exclusion process. Journal of Physics A: Mathematical and Theoretical, 2010, 43 (18), pp.185003. ⟨10.1088/1751-8113/43/18/185003⟩. ⟨cea-02924648⟩
24 View
50 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More