The role of regularization in classification of high-dimensional noisy Gaussian mixture - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Communication Dans Un Congrès Année : 2020

The role of regularization in classification of high-dimensional noisy Gaussian mixture

Florent Krzakala
Yue M. Lu
  • Fonction : Auteur
  • PersonId : 866660

Résumé

We consider a high-dimensional mixture of two Gaussians in the noisy regime where even an oracle knowing the centers of the clusters misclassifies a small but finite fraction of the points. We provide a rigorous analysis of the generalization error of regularized convex classifiers, including ridge, hinge and logistic regression, in the high-dimensional limit where the number n of samples and their dimension d go to infinity while their ratio is fixed to $\alpha$ = $n/d$. We discuss surprising effects of the regularization that in some cases allows to reach the Bayes-optimal performances. We also illustrate the interpolation peak at low regularization, and analyze the role of the respective sizes of the two clusters.
Fichier principal
Vignette du fichier
2002.11544.pdf (752.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

cea-02529853 , version 1 (02-04-2020)

Identifiants

Citer

Francesca Mignacco, Florent Krzakala, Yue M. Lu, Lenka Zdeborová. The role of regularization in classification of high-dimensional noisy Gaussian mixture. International Conference on Machine Learning, Jun 2020, Virtual event, France. pp.6874-6883. ⟨cea-02529853⟩
145 Consultations
146 Téléchargements

Altmetric

Partager

More