On the geometry of K3 surfaces with finite automorphism group: the compact case - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles International Journal Of Mathematics (IJM) Year : 2022

On the geometry of K3 surfaces with finite automorphism group: the compact case

Xavier Roulleau
  • Function : Author
  • PersonId : 1046268

Abstract

Nikulin and Vinberg proved that there are only a finite number of lattices of rank $\geq 3$ that are the N\'eron-Severi group of projective K3 surfaces with a finite automorphism group. The aim of this paper is to provide a more geometric description of such K3 surfaces $X$, when the fundamental domain $\mathcal{F}_{X}$ of their Weyl group in $\mathbb{P}(NS X)\otimes\mathbb{R})$ is compact. In that case we show that such K3 surface is either a quartic with special hyperplane sections or a double cover of the plane branched over a smooth sextic curve which has special tangencies properties with some lines, conics or cuspidal cubic curves. We then study the converse i.e. if the geometric description we obtained characterizes these surfaces. In $4$ cases the description is sufficient, in the $4$ other cases there is exactly another one possibility which we study.

Dates and versions

cea-02479800 , version 1 (14-02-2020)

Identifiers

Cite

Xavier Roulleau. On the geometry of K3 surfaces with finite automorphism group: the compact case. International Journal Of Mathematics (IJM), In press. ⟨cea-02479800⟩

Collections

CEA UNIV-AMU
45 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More