Dynamic fracture of tantalum under extreme tensile stress
Bruno Albertazzi
(1, 2)
,
Norimasa Ozaki
(1, 3)
,
Vasily Zhakhovsky
(4)
,
Anatoly Faenov
(3)
,
Hideaki Habara
(1)
,
Marion Harmand
(5)
,
Nicholas Hartley
(1)
,
Denis Ilnitsky
(4)
,
Nail Inogamov
(4)
,
Yuichi Inubushi
(6)
,
Tetsuya Ishikawa
(7)
,
Tetsuo Katayama
(7, 6)
,
Takahisa Koyama
(6)
,
Michel Koenig
(2, 8)
,
Andrew Krygier
(5)
,
Takeshi Matsuoka
(8)
,
Satoshi Matsuyama
(1)
,
Emma Mcbride
(9, 10)
,
Kirill Petrovich Migdal
(4)
,
Guillaume Morard
(5)
,
Haruhiko Ohashi
(6)
,
Takuo Okuchi
(11)
,
Tatiana Pikuz
(12)
,
Narangoo Purevjav
(11)
,
Osami Sakata
(13)
,
Yasuhisa Sano
(1)
,
Tomoko Sato
(14)
,
Toshimori Sekine
(14)
,
Yusuke Seto
(15)
,
Kenjiro Takahashi
(3)
,
Kazuo Tanaka
(1)
,
Yoshinori Tange
(6)
,
Tadashi Togashi
(6, 7)
,
Kensuke Tono
(7, 6)
,
Yuhei Umeda
(14)
,
Tommaso Vinci
(2)
,
Makina Yabashi
(7)
,
Toshinori Yabuuchi
(7, 1)
,
Kazuto Yamauchi
(1)
,
Hirokatsu Yumoto
(6)
,
Ryosuke Kodama
(12, 1, 16)
1
Graduate School of Engineering Science [Toyonaka, Osaka]
2 LULI - Laboratoire pour l'utilisation des lasers intenses
3 Photon Pioneers Center, Osaka University
4 VNIIA - Dukhov All-Russian Scientific Research Institute of Automation
5 IMPMC - Institut de minéralogie, de physique des matériaux et de cosmochimie
6 JASRI - Japan Synchrotron Radiation Research Institute [Hyogo]
7 RIKEN - RIKEN - Institute of Physical and Chemical Research [Japon]
8 Osaka University [Osaka]
9 SLAC - SLAC National Accelerator Laboratory
10 XFEL - European XFEL GmbH
11 Okayama University
12 Institute for Academic Initiatives, Osaka University
13 NIMS - National Institute for Materials Science
14 Hiroshima University
15 Kobe University
16 Institute of laser Engineering
2 LULI - Laboratoire pour l'utilisation des lasers intenses
3 Photon Pioneers Center, Osaka University
4 VNIIA - Dukhov All-Russian Scientific Research Institute of Automation
5 IMPMC - Institut de minéralogie, de physique des matériaux et de cosmochimie
6 JASRI - Japan Synchrotron Radiation Research Institute [Hyogo]
7 RIKEN - RIKEN - Institute of Physical and Chemical Research [Japon]
8 Osaka University [Osaka]
9 SLAC - SLAC National Accelerator Laboratory
10 XFEL - European XFEL GmbH
11 Okayama University
12 Institute for Academic Initiatives, Osaka University
13 NIMS - National Institute for Materials Science
14 Hiroshima University
15 Kobe University
16 Institute of laser Engineering
Bruno Albertazzi
Connectez-vous pour contacter l'auteur
- Fonction : Auteur correspondant
- PersonId : 1037210
Connectez-vous pour contacter l'auteur
Norimasa Ozaki
Connectez-vous pour contacter l'auteur
- Fonction : Auteur correspondant
- PersonId : 1037211
Connectez-vous pour contacter l'auteur
Marion Harmand
- Fonction : Auteur
- PersonId : 10385
- IdHAL : marion-harmand
- ORCID : 0000-0003-0713-5824
- IdRef : 142941018
Michel Koenig
- Fonction : Auteur
- PersonId : 739633
- IdHAL : michel-koenig
- ORCID : 0000-0002-2430-7328
- IdRef : 073737607
Guillaume Morard
- Fonction : Auteur
- PersonId : 185055
- IdHAL : guillaume-morard
- ORCID : 0000-0002-4225-0767
- IdRef : 114491100
Kensuke Tono
- Fonction : Auteur
- PersonId : 780426
- ORCID : 0000-0003-1218-3759
Tommaso Vinci
- Fonction : Auteur
- PersonId : 759878
- ORCID : 0000-0002-1595-1752
Makina Yabashi
- Fonction : Auteur
- PersonId : 763945
- ORCID : 0000-0002-2472-1684
Résumé
The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of Embedded Image $\dot \varepsilon$~2 × 10$^8$ to 3.5 × 10$^8$ s$^{−1}$. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions