Multi-parametric modeling of solid sample heating by nanosecond laser pulses in application for nano-ablation - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Spectrochimica Acta Part B: Atomic Spectroscopy Year : 2017

Multi-parametric modeling of solid sample heating by nanosecond laser pulses in application for nano-ablation

Abstract

Multi-parametric theoretical studies to analyze the effect of both the matter properties (absorption coefficient, thermal conductivity and diffusivity) and the heating field parameters (spatial distribution and pulse duration) on the resulted temperature distribution are presented. For heating in sub-micrometric range (< 1 $\mu$m), a low dependence of heating temperature distribution on the sample thermal properties and,heating source duration was observed. Nano-ablation thresholds are found to be increasing inversely with heating source dimensions. The simulation results demonstrated a good agreement with the nanometer-size craters (100 nm diameters, 10 nm depth) obtained experimentally with a tip-enhanced near-field ablation (4 ns laser pulse duration, 266 nm wavelength) of Si- and Au-samples.
No file

Dates and versions

cea-01808250 , version 1 (05-06-2018)

Identifiers

Cite

A. Semerok, S.V. Fomichev, C. Jabbour, J.-L. Lacour, M. Tabarant, et al.. Multi-parametric modeling of solid sample heating by nanosecond laser pulses in application for nano-ablation. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 136, pp.51 - 55. ⟨10.1016/j.sab.2017.08.004⟩. ⟨cea-01808250⟩
20 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More