Classification of Proteomic MS Data as Bayesian Solution of an Inverse Problem - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Article Dans Une Revue IEEE Access Année : 2014

Classification of Proteomic MS Data as Bayesian Solution of an Inverse Problem

Résumé

The cells in an organism emit different amounts of proteins according to their clinical state (healthy/pathological, for instance). The resulting proteomic profile can be used for early detection, diagnosis, and therapy planning. In this paper, we study the classification of a proteomic sample from the point of view of an inverse problem with a joint Bayesian solution, called inversion-classification. We propose a hierarchical physical forward model and present encouraging results from both simulation and clinical data.
Fichier principal
Vignette du fichier
Szacherski-proteomic-classification-bayesian inverse problem.pdf (16.78 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

cea-01615512 , version 1 (12-10-2017)

Identifiants

Citer

Pascal Szacherski, Jean-François Giovannelli, Laurent Gerfault, Pierre Mahé, Jean-Philippe Charrier, et al.. Classification of Proteomic MS Data as Bayesian Solution of an Inverse Problem. IEEE Access, 2014, 2, pp.1248 - 1262. ⟨10.1109/ACCESS.2014.2359979⟩. ⟨cea-01615512⟩
389 Consultations
128 Téléchargements

Altmetric

Partager

More