A high throughput method to determine selectivity of ion phase transfer in multi- component chemical systems: towards predictive modelling of extraction - CEA - Commissariat à l’énergie atomique et aux énergies alternatives
Communication Dans Un Congrès Année : 2015

A high throughput method to determine selectivity of ion phase transfer in multi- component chemical systems: towards predictive modelling of extraction

Olivier Diat
Daniel Meyer

Résumé

Liquid-liquid extraction is a crucial process for recycling chemistry. In order to reuse and to avoid mining of rare earths, recycling has often to be performed by separating and purifying the rare earths from iron. This known technology relies on ion equilibria in coexisting phases located between binodal tie-lines in the Winsor II regime of a microemulsion with excess brine. Since the systems contain ten components, the phase diagram in seven dimensions must be projected in tetrahedron. The selectivity and differences of free energy of transfer can be determined with good reliability and with reasonable time: days instead of months needed by batch methods. Availability of data with variable composition allows to challenge the very few predictive models based on first principles and evaluating the free energy of transfer terms.
Fichier principal
Vignette du fichier
Abstract_pacifichemRECYCLE_JT (1).pdf (114.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

cea-01555685 , version 1 (04-07-2017)

Identifiants

  • HAL Id : cea-01555685 , version 1

Citer

Johannes Theisen, Julien Rey, Christophe Penisson, Jean Duhamet, Véronique Dubois, et al.. A high throughput method to determine selectivity of ion phase transfer in multi- component chemical systems: towards predictive modelling of extraction. PACIFICHEM, Nov 2015, Honolulu, Hawai, United States. ⟨cea-01555685⟩
300 Consultations
88 Téléchargements

Partager

More