Planar maps, circle patterns and 2d gravity - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions Year : 2014

Planar maps, circle patterns and 2d gravity

Abstract

Via circle pattern techniques, random planar triangulations (with angle variables) are mapped onto Delaunay triangulations in the complex plane. The uniform measure on triangulations is mapped onto a conformally invariant spatial point process. We show that this measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the Delaunay triangulations; (2) the volume form of a Kähler metric over the space of Delaunay triangulations, whose prepotential has a simple formulation in term of ideal tessellations of the 3d hyperbolic space $\mathbb{H}_3$; (3) a discretized version (involving finite difference complex derivative operators $\nabla,\bar\nabla$) of Polyakov's conformal Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.
Fichier principal
Vignette du fichier
1307.3123.pdf (1019.22 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

cea-01509872 , version 1 (18-04-2017)

Identifiers

Cite

François David, Bertrand Eynard. Planar maps, circle patterns and 2d gravity. Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, 2014, 1, pp.139 - 183. ⟨10.4171/AIHPD/5⟩. ⟨cea-01509872⟩
57 View
162 Download

Altmetric

Share

Gmail Facebook X LinkedIn More