Out- versus in-plane magnetic anisotropy of free Fe and Co nanocrystals: Tight-binding and first-principles studies
Abstract
We report tight-binding (TB) and Density Function Theory (DFT) calculations of magnetocrystalline anisotropy energy (MAE) of free Fe (body centerd cubic) and Co (face centered cubic) slabs and nanocrystals. The nanocrystals are truncated square pyramids which can be obtained experimentally by deposition of metal on a SrTiO3(001) substrate. For both elements our local analysis shows that the total MAE of the nanocrystals is largely dominated by the contribution of (001) facets. However, while the easy axis of Fe(001) is out-of-plane, it is in-plane for Co(001). This has direct consequences on the magnetic reversal mechanism of the nanocrys-tals. Indeed, the very high uniaxial anisotropy of Fe nanocrystals makes them a much better potential candidate for magnetic storage devices.
Domains
Physics [physics]Origin | Files produced by the author(s) |
---|
Loading...