A Quantum Electrodynamics Kondo Circuit with Orbital and Spin Entanglement
Résumé
Recent progress in nanotechnology allows to engineer hybrid mesoscopic devices comprising on chip an artificial atom or quantum dot, capacitively coupled to a microwave (superconducting) resonator. These systems can then contribute to explore non-equilibrium quantum impurity physics with light and matter, by increasing the input power on the cavity and the bias voltage across the mesoscopic system. Here, we build such a prototype system where the artificial atom is a graphene double quantum dot (DQD). Controlling the coupling of the photon field and the charge states of the DQD, we measure the microwave reflection spectrum of the resonator. When the DQD is at the charge degeneracy points, experimental results are consistent with a Kondo impurity model entangling charge, spin and orbital degrees of freedom. The light reveals the formation of the Kondo or Abrikosov-Suhl resonance at low temperatures. We then study the complete phase diagram as a function of gate voltages, bias voltage and microwave input power.