Large Non-Gaussianity in Slow-Roll Inflation
Abstract
Canonical models of single-field, slow-roll inflation do not lead to appreciable non-Gaussianity, unless derivative interactions of the inflaton become uncontrollably large. We propose a novel slow-roll scenario where scalar perturbations propagate at a subluminal speed, leading to sizeable equilateral non-Gaussianity, $f^{\rm equil}_{\rm NL}\propto 1/c_s^4$, largely insensitive to the ultraviolet physics. The model is based on a low-energy effective theory characterized by weakly broken invariance under internal galileon transformations, $\phi\to\phi+b_\mu x^\mu$, which protects the properties of perturbations from large quantum corrections. This provides the unique alternative to models such as DBI inflation in generating strongly subluminal/non-Gaussian scalar perturbations.
Origin : Files produced by the author(s)
Loading...