

La fission dans tous ses états

Abdelaziz Chebboubi

▶ To cite this version:

Abdelaziz Chebboubi. La fission dans tous ses états. Physique [physics]. Université Aix Marseille, 2024. tel-04591668

HAL Id: tel-04591668 https://cea.hal.science/tel-04591668

Submitted on 29 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Aix*Marseille Université Socialement engagée

La fission dans tous ses états

Soutenance HDR, 27/05/2024, Aix-en-Provence

A. Chebboubi

CEA, DES, IRESNE, DER, SPRC, LEPh, Cadarache, 13108 Saint-Paul-lès-Durance

Discovery of the nuclear fission process

- Discovery of nuclear fission in 1938 by Fritz Straßmann, Lise Meitner et Otto Hahn.
- Chemistry Nobel prize 1944 : Otto Hahn.
- Principle : splitting of heavy nucleus, in general an actinide, into smaller nuclei.
- Secondary particles (neutrons, γ -rays, electrons ...) are emitted.

© S. Umar et al., Density-constrained TDDFT with application to fission, Quantitative large amplitude shape dynamics: fission and heavy ion fusion, International workshop (2013)

The nuclear fission process

Part

Nucl. Ö

clear fission theory, J. Phys.

Looking for fission yields

Fission yields = **production rate** of fission fragment for a given mass A, nuclear charge Z, excitation energy E^* , kinetic energy E_k , angular momentum J, parity π , and isomeric state m

 $Y(A, Z, E_k, E^*, J^{\pi}) = Y(A) \times P(Z|A) \times P(E_k|A, Z) \times IR(m|A, Z, E^*, E_k)$

©Orano, La Hague

Focus on angular momentum generation

Cez Soutenance HDR, Aix-en-Provence

Isomeric ratio measurements with the LOHENGRIN spectrometer

J. Nicholson thesis

Institut Laue-Langevin

- ILL : founded and govern by France, Germany and United Kingdom
 - Build in 1967
 - 40 instruments (mainly neutron spectroscopy for biology, materials ...)
 - 540 member staff + 1400 users per year
 - 105 M€ per year
 - High Flux Reactor : 58.3 MW thermal. New vessel in 1995.

7

LOHENGRIN spectrometer of ILL

LOHENGRIN : number of days per year

LOHENGRIN working principle

Lohengrin : selection with the mass over ionic charge $\frac{A}{q}$ and Kinetic energy over lonic charge $\frac{E_k}{q}$ ratios

$$(A_1, E_1, q_1) \equiv (A_2, E_2, q_2) \equiv (A_3, E_3, q_3)$$

Review of different techniques to assess Isomeric Ratio on LOHENGRIN

ms to min Isomers

By product of isotopic yield analysis

Difficulty : Some Isomeric states have the same γ lines as ground state

Solution : Measurement of increasing and decreasing count rates of both states

µs Isomers

Difficulty : Isomeric states can be filled by the β decay of the father nuclei

Solution : Coïncidence between ionization chamber and γ detectors

ns Isomers

Difficulty : Isomeric states have a period

 $T_{1/2} \ll tof \ (\sim 2\mu s)$

 \rightarrow no direct measurement

Solution : Statistical analysis of the ionic charge distribution

µs isomer experimental setup

Analysis of µs isomers

Cez

132Sn case : results

FIFRELIN : a bridge between experimental and theoretical worlds

FIFRELIN (FIssion Fragments Evaporation modeLINg)

• Goal : characterize fission fragment since its creation (~ scission) until β decay (not included)

Cez

Soutenance HDR, Aix-en-Provence

Comparison with classic FIFRELIN calculation

- Level density model : CGCM
- Model of γ strength function (EGLO)
- The impact of f_{σ_L} is more important than f_{σ_H}
- Can be explained by nucleons exchange at scission (TDHFB) → role of deformation energy?
- Thermal excitation ?

•

- Role of the rotational energy in the total energy excitation sharing ?
- Correlation between both fragment arise naturally !

Direct determination of angular momentum with FIFRELIN decay

In this work, FIFRELIN (developed by CEA Cadarache) is used only as a nuclear deexcitation code (step 2)

What is required for FIFRELIN :

- experimental level scheme (RIPL-3)
- Model of nuclear density to complete the level scheme (CGCM)
- Model of γ strength function (EGLO)
- Electron conversion coefficients (Brlcc)

For comparison with experimental results standard spin distribution:

•
$$IR_{FIF}(E^*, J_{RMS}) = \sum_{E} \sum_{\pi} P(\pi) P(J) IR_{FIF}(E^*, J^{\pi})$$

•
$$P(J) \propto (2J+1) \exp\left(-\frac{(J+\frac{1}{2})}{J_{cutof}^2}\right)$$

• $P(\pi) = \frac{1}{2}$

Synthesis on ¹³²Sn work

IRs are compared with FIFRELIN calculations starting from arbitrary initial nuclear state

90

- The derived average angular momentum is dependent on the fission fragment kinetic energy
- HFB (from P. Marevic et al.) predicts 2.5 \hbar (with ²³⁹Pu)

- Isomeric ratios : probe for fission fragment angular momentum
- Dependency of the derived average angular momentum with the fission fragment kinetic energy
- Next step : measurement in the light fragment region (part of a thesis 2025-2028)

Some applications

- Needs from industrial partners to improve knowledge (central value and uncertainty) for some nuclides for radioprotection (human and environment) purposes
- IR can be directly useful for such requests !

Nuclide	Nuclear data	Uncertainty	Part (%) on total uncertainty
134 	239 Pu $\rightarrow ^{134}$ Te	14.1	52
	$^{239}\text{Pu} \rightarrow ^{134}\text{I}$	24.2	15
	$^{239}Pu \rightarrow ^{134m}I$	24.2	8
	$^{241}Pu \rightarrow ^{134}Te$	11.0	16

©V. Vallet

Measurement of prompt γ-rays characteristics with the VESPA setup

V. Piau thesis

Soutenance HDR, Aix-en-Provence

VESPA setup

- Twin ionization chamber with Frisch Grid with 252Cf in the middle (Ni support)
- 8 LaBr3 for γ detections
- 7 organic scintillators for neutron detections

Correlation with mass

- Use of Doppler effect to associate γ -rays to one fragment !
- Only 3 detectors can be used. Here, the time windows is ± 3 ns and $0.8 \le E_{\gamma} \le 8$ MeV
- Two detectors are normalized to the total multiplicity derived from A11218.

Interpretation using FIFRELIN

Combination	Model of initial angular momentum	Model of level density	[RT _{min} ; RT _{min}]	[k _L ; k _H]
F1	Constant	CGCM	[0.45;1.40]	[10.5;8.0]
F2	Energy dependent	CGCM	[0.5;1.40]	[1.7;1.5]
F3	Energy dependent	HFB14	[0.5;1.45]	[1.4;1.3]

- F3 is the best combination of models
- Sawtooth behavior seems to raise from energy dependent model

 $\overline{\nu_L} = 2.07; \ \overline{\nu_H} = 1.70$

The scaling is better using HFB14 instead of CGCM level density

To go further : angular correlation !

Simulated γ ,FF angular correlation from E2 transition and different wriggling/bending/twisting feeding !

© R. Vogt and J. Randrup, The role of angular momentum in fission, EPJ Web of Conf. 292,08006 (2024)

B Next programs

New measurement incoming with FIPPS

Artificial Intelligence with FIFRELIN

Generation Generation FIFRELIN FIFRELIN Made Cocy Cocy

How to determine these 4 parameters ?

- If we consider each of them as independent, and at least 10 steps to find their best values, we need $10^4 = 10000$ simulations
- One way to reduce the number of simulations (time consuming) : Machine Learning
- In this work (of G. Bazelaire), we started with Kriging algorithm

Gaussian process regression on a noisy dataset

- Can be seen as a more complex way to make interpolation
- Suitable for linear problems!

Kriging

- Based on prior covariance between data : hyper-parameters are fitted and control the smoothness of the interpolated function
- Not the best option for really high dimensions !

Some results

• Target : $[\overline{\nu_L}, \overline{\nu_H}, \overline{M_{\gamma_L}}, \overline{M_{\gamma_H}}] = [2.06, 1.70, 4.56, 3.82]$

• In 2h, from scratch, we found an optimum : $[RT_{min}, RT_{max}, f_L, f_H] = [0.18, 1.58, 1.38, 1.37]$ thanks to 100 simulations

Isomeric ratios in the light fragment mass region

e	239Pu (Nov 2023)	241Pu (March 2024)
	90	82/86/90/94/98/102
	72/78/84/90/96/102/108	78/84/90/93/96/100/104
	72/78/84/90/96/102/108	74/78/82/86/90/102/106/110
	72/78/84/90/96/102/108	74/80/84/90/96/102/106
)	72/78/84/90/96/102/108	78/82/86/90/94/98/102/106
)	60/66/72/80/86/90	
	66/72/80/86	
		82/90/102
		239Pu (Nov 2023) 90 72/78/84/90/96/102/108 72/78/84/90/96/102/108 72/78/84/90/96/102/108 72/78/84/90/96/102/108 60/66/72/80/86/90 66/72/80/86

- Quite successful campaigns
- Will be part of a thesis for 2025 2028
- Next : ²⁴¹Am/²⁴³Cm/²³⁵U

Estimation of neutron emission through accurate kinetic energy distribution measurements

- New experiment planned in July 2024
- Part of a thesis in 2025 -2028

High precision mass yield measurements

- Context : new fission mass yield evaluation provide uncertainty around 2% by taking into account ~ 20 experiments
- Aim : provide new independent data set in order to test such new evaluation
- Next : Symmetry mass region with new setup !

32

Conclusions

Conclusions

Nuclear structure drives the fission process

- Impact of level densities (γ multiplicity)
- Competition between Spherical/Quadrupole/Octupole deformation (structures in mass yields)

The generation of fission fragment angular momentum is a combination of several mechanisms

- Collective modes due to deformation
- Thermal excitation
- Nucleons exchange at scission
- Coulomb repulsion
- Strong connection with excitation energy (intrinsic?)

Use of machine learning to go further into the use of FIFRELIN (link between theoretical and experimental fields)

The research of precision, permit to feed both application and fundamental research !

Ces

Thank you for your attention

A. Chebboubi, G. Kessedjian, O. Serot, D. Bernard, V. Vallet, O. Litaize, S. Julien-Laferrière, J. Nicholson, V. Piau, M. Houdouin-Quenault, S. M. Cheikh, F. Géhin, G. Bazelaire CEA, DES, IRESNE, DER, SPRC, LEPh, Cadarache, F-13108 Saint-Paul-lès-Durance

C. Sage, O. Méplan, M. Ramdhane, A. Vieville

LPSC, Université Grenoble-Alpes, CNRS/IN2P3, F-38026 Grenoble, France U. Köster, A. Blanc, Y. H. Kim, J-M. Daugas, P. Mutti, C. Michelagnoli

Institut Laue-Langevin, F-38042 Grenoble, France

M. Diakaki

National Technical University of Athens, Athens, Greece S. Oberstedt, A. Göök European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium