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and Florent Kirchner also proofread intermediate versions, while David R. Cok
helped me to improve the final version. Many thanks to each of you!

Remerciements
Je passe maintenant dans ma langue maternelle pour des remerciements plus

larges.
Cela fait maintenant douze années, depuis 2006, que je suis au LSL. Je voudrais

profiter de cet espace pour remercier ses membres de contribuer chaque jour à faire
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aux pauses cafés travailler.

Tout particulièrement, je voudrais remercier les contributeurs principaux à Frama-
C, à commencer par l’«équipe noyau» actuelle – Virgile Prévosto, François Bobot,
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1
Introduction

Fuseki (Opening)

Shusaku fuseki invented by Honinbo Shusaku (1829–1862).

I got a PhD in Computer Science from University Paris 11 in 2006 [Sig06].
This document presents my main research activities that have followed. It
should be readable by everyone who got a Masters in Computer Science
and followed at least one introductory course in software formal meth-

ods. Indeed it is my research area. In computer science, formal methods is 1 a set of
techniques based on logic, mathematics, and theoretical computer science which are
used for specifying, developing and verifying software and hardware systems. By
relying on solid theoretical foundations, formal methods is able to provide strong
guarantees, so it is of primary importance for critical systems whose a failure could
lead to dramatic consequences like deaths, as well as economical or environmental
collapses. Among formal methods, I am particularly interested in software verifica-
tion techniques that focus on verifying software code after it has been written and
even compiled. Sometimes one also names this set of techniques a posteriori veri-
fication, in opposition to a priori correct-by-construction techniques which aim to

1. I am not a native English speaker: my English writing is unfortunately certainly far from
being perfect, so there are certainly English mistakes in this document despite my efforts. At least
this agreement is fine according to NASA (http://shemesh.larc.nasa.gov/fm/fm-is-vs-are.
html).

1
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2 Chapter 1 Introduction

derive correct programs from specifications. They also do not include programming
language-based techniques, such as typing.

1.1 Applied Software Verification
Even if formal methods in general and software verification in particular is more

and more successfully used in critical industries all around the world [Bou12b,
Bou12a], their adoptions are still the exception rather than the rule for several
reasons, including their ignorance by engineers and managers, their difficulty of
use, the changes they often require in system life cycles and their costs. Being ex-
pensive is almost a consequence of the other reasons. Ignorance can be solved by
teaching even if it certainly takes decades. Simplifying their uses and making them
compliant to current system life cycle require to improve formal method based tools.

My research activities are tools oriented: I aim at developing cutting-edge tools
containing the most innovative software verification techniques implemented in the
most effective way to help industry verify and validate their software and systems
efficiently. Yet I have no pretension to develop such tools alone. In 2006, after
getting my PhD, I moved to the Software Reliability and Security Laboratory, LSL
for short, at CEA LIST. Since 2006, all my research activities have been done in this
research laboratory in close relationship with the other engineer-researchers of the
team 2, in accordance with CEA LIST and LSL strategy which can be synthesized
in a single sentence: take the best academic results, put them in efficient tools and
transfer them to the industry, first in France, then in Europe, later all around the
world. Coincidentally and luckily this strategy matches my personal scientific goal.

1.2 Developing a Code Analyses Framework
When joining LSL, a tool had been emerging there for about one year: Frama-

C [CKK+12, KKP+15, CCK+]. I have been continuously contributing to this tool
ever since. It aims at providing several analyzers of C code in a single collaborative
and extensible framework. Collaborative means that analyses can collaborate with
each others to solve together a particular task, while extensible means that everyone
can extend the framework with new analyses [SAC+]. Yet it was more a wish than
a reality in 2006. A few months after joining LSL, I began to modify and extend the
Frama-C kernel in order to transform this young promising tool into an industrial-
strength collaborative extensible code analysis framework [CSB+09]. I devoted most
of my time from 2007 to 2011 and several additional months from 2012 to 2015
to this foundational task. In particular I designed and implemented its software
architecture [Sig15], different ways of providing analyzer collaborations [CS12], and

2. Several of them will be explicitly named all along this document.



1.3 Runtime Verification 3

several kernel libraries [Sig09, Sig11, CDS11, Sig14], which implement extensively
used services all along the Frama-C codebase. Some of them require innovative
programming techniques. During that time, I have also developed a few small
plug-ins in order to demonstrate the extensibility of the framework. Chapter 2 is
dedicated to this part of my work.

1.3 Runtime Verification

In 2011, I began to be interested in runtime verification and more particularly
in online runtime verification. Online runtime verification is a lightweight software
verification technique that consists in checking formal properties at runtime, that
is when the analyzed program is being executed. It does not provide as strong
guarantees as formal static analyses because it does not check property validity
for every possible program execution but only for a few of them. However, it is
automatic and easily usable by any software engineer, so less expensive than other
formal methods, while still being able to check non-trivial program properties on
particular executions of interest. It is indeed a way to introduce formal techniques
and tools in traditionally reluctant applicative domains.

My work on runtime verification focuses on an online monitor generator named
E-ACSL and implemented as a Frama-C plug-in [KS13, SKV17, SV]. It converts a
C program p extended with annotations written in a formal specification language
also named E-ACSL [Siga] into a new program p′ which inlines an embedded mon-
itor mp: the program p′ functionally behaves as the original program p, but fails
at runtime whenever the inlined monitor mp detects that a property denoted by an
annotation does not hold [DKS13]. E-ACSL aims at being compliant with both the
Frama-C ecosystem and C intricacies. First, its specification language is a conserva-
tive subset of Frama-C’s ACSL formal specification language [BFM+] that includes
all the constructs that are translatable to C code. Second, it must deal with logical
constructs that are usually considered to be complicated to handle at runtime, like
mathematical integers [JKS15b], memory-related properties (e.g. validity of point-
ers and initialization of memory locations) [KPS13a, JKS15a, VSK17, VKSJ17], and
specifications that are undefined at runtime (e.g. division by zero, or out-of-bound
array index access). Chapter 3 is dedicated to E-ACSL.

1.4 Information Flow Analysis

I initially joined LSL in 2006 on a one-year postdoc position. My research
goal was to design and implement an information flow analysis for Frama-C. I first
planned to benefit from the abstract interpretation front-end of Frama-C by imple-
menting an abstract interpretation based taint analysis in order to mark (or “taint”)
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every memory location with a security label (e.g. public or secret). However, I was
quickly confronted with important Frama-C limitations. First, it was not possible
at that time to develop a new analyzer without modifying Frama-C itself. Second,
it was not possible to implement this taint analysis without duplicating most ef-
forts already done to develop the main abstract interpreter of Frama-C, namely
Value [CYL+]. Trying to fix the first issue has been the starting point of my ef-
forts to improve the Frama-C kernel. Circumventing the second issue eventually
led to the PhD of Mounir Assaf [Ass15] that I supervised in collaboration with
Éric Totel and Frédéric Tronel at CentraleSupélec Rennes. Mounir designed a
program transformation that weaves the information flows inside the source code in
a way that checking their validity is equivalent to checking a standard E-ACSL as-
sertion [ASTT13b, ASTT13a]. Consequently, every standard verification technique
can be used to check them, including runtime verification through E-ACSL or other
static ones provided through other Frama-C analyzers (e.g. Value). Mounir devel-
oped a prototype Frama-C plug-in named Secure Flow. After Mounir’s PhD, I pur-
sued this work through the supervision of the 18-month postdoc of Gergö Barany,
who contributed to maturing Secure Flow [Bar16, BS17]. I do not dedicate a full
chapter to this topic in this document, though Section 3.4.2 provides a few details
about this work.

1.5 Support
Financing more than ten years of Research and Development activities required

fundings in the current economical model of French research institutes in general
and CEA LIST in particular. During these years, I have participated in numerous
academic research projects supported by national or European funding and a few
industrial bilateral projects directly supported by industrial partners.

1.5.1 Academic Projects

Vessedia, Europe, H2020, 2017-2019, with Dassault Aviation, Fraunhofer
Fokus 3

Verification Engineering of Safety and Security Critical Dynamic Industrial
Applications: improving and proposing new analyses collaborations 4.

S3P, France, PIA, 2015-2018, with Thales, TrustInSoft
Smart and Secured Platform: improving E-ACSL.

ARVI , Europe, ICT Cost Action, 2015-2018, with most European academic re-
searchers in runtime verification

3. I only indicate the partners which I have personally collaborated with.
4. I indicate both the global goal of the project and the action(s) I have contributed to.
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Runtime Verification beyond Monitoring: participating in the European com-
munity of researchers in runtime verification.

AnaStaSec, France, ANR, 2015-2018, with Airbus, Inria
Static Analysis of Security Properties: improving Secure Flow.

Aurochs, France, DGA Rapid, 2015-2017, with TrustInSoft
Source Code Analyzers for Cyber-Security: improving Frama-C capabilities on
security-oriented libraries and improving E-ACSL.

Chekofv, United States, Darpa, 2012-2015, with SRI International, Univer-
sity of Santa Cruz
Crowd Sourced Formal Verification: developing dedicated plug-ins which help
to improve Frama-C capabilities on analyses collaborations.

Stance, Europe, FP, 2012-2015, with Dassault Aviation, Fraunhofer Fokus,
Thales
Source Code Analysis Toolbox for Software Security Assurance: developing
Secure Flow.

Hi-Lite, France, FUI, 2010-2013, with Adacore, Inria
High Integrity Lint Integrated with Testing and Execution: creating the E-
ACSL formal specification language and developing the E-ACSL plug-in.

ADS+ , France, FUI, 2010-2012, with Atos Worldline, Gemalto
Opened and Secured Architecture for POI: adapting Frama-C to banking security-
oriented applications.

U3CAT, France, ANR, 2008-2011, with Airbus, Dassault Aviation, Inria
Unification of Critical C Code Analysis Techniques: improving the Frama-C
kernel, in particular services related to combination of analyzers.

e-Confidential, Europe, ITEA, 2006-2009, with EADS, Gemalto, VTT
Trusted Security Platform to secure multiple kinds of application and to pro-
vide a trustworthy execution environment: designing Frama-C’s very first in-
formation flow analysis.

OpenTC, Europe, FP, 2006-2009
Open Trusted Computing: designing and developing the Security Slicing plug-in
of Frama-C.

PFC, France, DGE, 2006-2009, with EADS, Gemalto, Inria
Trustworthy Platform: designing and developing the Impact analysis plug-in
of Frama-C.

Cat, France, ANR, 2005-2008, with Airbus, Dassault Aviation, Inria
Toolbox for Analysis of C Programs: developing the Frama-C kernel, in par-
ticular its software architecture and several services.
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1.5.2 Industrial Projects
joint lab CEA LIST – Thales, 2015-2016 & 2018

2018 applying E-ACSL on numerical programs.
2015–2016 providing expertise in formal specifications and formal methods.

joint lab CEA LIST – TrustInSoft, 2014-2015
designing and developing two dedicated Frama-C plug-ins, one of them being
Cfp.



2
Frama-C

a Framework for Analyses of C Code

Chuban (Middle Game)

AlphaGo ’s extraordinary move 37 starts the chuban
(Game 2 of the match AlphaGo – Lee Sedol, 2016/3/10).

F rama-C, born in 2004, is a free open source scalable extensible collabora-
tive plug-in-based kernel-centred framework developed in OCaml, that
provides analyzers for C99 source code annotated with ACSL specifi-
cations. Every single word of this sentence is important. They are

explained in the subsequent sections of this chapter in order to give to the reader
a journey into the Frama-C world, from its past to its possible future through its
current main features, while highlighting my own contributions in the meantime.

2.1 Frama-C, a Framework Based on Software Verification History
Context This section is novel, but takes ideas from Chapter 1 of Jean-Christophe
Filliâtre’s habilitation thesis [Fil11] and from Claude Marché’s talk at Frama-C
Day 2015 about the history of Frama-C. 1

1. Most sections of this thesis are based on my own previous publications. A few are novel, but
usually take inspiration from existing sources. To make things crystal clear, each section starts by

7



8 Chapter 2 Frama-C, a Framework for Analyses of C Code

This section summarizes the main evolution of software verification up to the
birth of Frama-C in 2004 in order to explain the historical foundations Frama-C is
built upon.

2.1.1 Big Bang

A very long time ago, in the 1930s, there was nothing but Alonzo Church’s
lambda-calculus [Chu33], Alan M. Turing’s machine [Tur36, Goo60], and a pair of
negative results from Kurt Gödel [Gö31, vH76].

2.1.2 Invention of Writing

Then, right after a few years of chaos, from 1946 to 1948, Hermann H. Gold-
stine and John von Neumann wrote a report in two parts for the U.S. Army
Ordnance Department. It may be seen as foundations of both hardware and soft-
ware. Indeed the first part [BGvN46] is the first widely-circulated document about
computers built upon what is now known as the von Neumann’s machine [vN45],
while the second part [GvN47] introduces the foundations of programming tech-
niques [Knu70], refered as “methods of coding” by the report’s authors. In par-
ticular, they introduce the well-known notion of flowchart as a way to describe
programs. The vertices of flowcharts are named boxes. Interestingly they define
only three kinds of them: operation boxes that correspond to computational expres-
sions (e.g. x+ 1, x being a bound variable), substitution boxes that are now known
as variable assignments, and assertion boxes. Let me quote the authors about the
latter.

“It may be true, that whatever [the code] actually reaches a certain
point in the flow diagram, one or more bound variables will necessarily
possess some certain specified values, or possess certain properties, or
satisfy certain relations with each other. Furthermore, we may, at such
a point, indicate the validity of these limitations. For this reason we
will denote each area in which the validity of such limitations is being
asserted, by a special box, which we call an assertion box.”

It is amazing to have such historical evidence that coding cannot go without spec-
ifying in the minds of the inventors of coding methodologies. In particular, one of
their recommendations is to include such an assertion box after every loop: “At
the exit from an induction loop, the induction variable usually has a (final) value
which is known in advance, or for which a mathematical symbol has been intro-
duced. [...] Hence this is usually the place for an assertion box”. However, their
methods of coding do not include program verification. Actually they follow a

indicating where its contents comes from.



2.1 Frama-C, a Framework Based on Software Verification History 9

correct-by-construction approach which consists in deriving correct code from its
(mathematical) specification.

Nevertheless, program verification was clearly introduced as early as 1949 by
Alan M. Turing who tries to answer this question [Tur49, MJ84] 2:

“How can one check a routine in the sense of making sure that it is
right?”

As an example, he provides a rigorous mathematical proof of a program comput-
ing the factorial by repeated additions. The interested reader may refer to Jean-
Christophe Filliâtre’s habilitation thesis which contains nice and didactic expla-
nations of Alan M. Turing’s original proof [Fil11, Chapter 1, page 2].

However, at the time of these pioneering computer scientists, verifying a pro-
gram was a pure mathematical activity which was pen and paper, as well as brain,
consuming. It could be theoretically done for any program, but it suffers from the
same problems as any mathematical proof: it requires mathematical skills, may be
tedious, and may contain subtle hard-to-catch errors.

2.1.3 Birth of Monotheistic Religions

Removing these drawbacks requires more systematic approaches based on for-
mal representations of programs. In 1969, Tony Hoare understood this neces-
sity [Hoa69]: he built upon an earlier work of Robert W. Floyd [Flo67] to con-
struct what is now known as Hoare Logic (sometimes also called Floyd-Hoare Logic)
in order to “[evaluate] the possible benefits to be gained by adopting this approach
both for program proving and for formal language definition”.

However, Hugh G. Rice had already proved in 1953 that no automatic exact
static analysis can verify any non trivial program property [Ric53]. Therefore some
compromises are required in practice to prove programs. An idea is to relax (at
least) one of the important constraints of Hugh G. Rice’ statement. In the 1970s, it
eventually lead to three different formal verification methods —weakest precondition
calculus, abstract interpretation and model checking— in addition to program testing
which relaxes the constraint of being computed statically and is known from the
earliest days of programming.

Edsger W. Dijkstra’s weakest precondition calculus [Dij75] (also known as WP
calculus) may be seen as a computable version of Hoare Logic which computes the
least constrained (or weakest) predicate which is sufficient to ensure that a given
predicate is satisfied after executing a given program statement. Even if computable,
it is not a fully automatic method, since it requires in practice to manually write
loop invariants and loop variants of every loop of the program. Quoting Edsger W.

2. This work is only the oldest one than I am aware of and that refers to program verification.
That does not necessarily imply that there are no older ones.
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Dijkstra, “[the design] of a repetitive construct requires what [he] regard[s] as the
”invention” of an invariant relation and a variant function”. Such an ”invention”
is indeed challenging and arbitrarily hard, actually as hard as finding an induction
hypothesis strong enough to establish a proof by induction in mathematics.

Patrick Cousot’s abstract interpretation framework [CC77] relaxes the exact
nature of the analyzer by computing a correct over-approximation of the program
semantics. Therefore it is automatic but unconclusive whenever the approximation
contains both a potential execution state that satisfies the property to be verified
and a potential execution state that does not satisfy it. In this context, one challenge
is to remain precise enough to be able to check the properties of interest, while
relaxing precision enough to scale up.

Model checking, simultaneously introduced by E. Allen Emerson and Ed-
mund M. Clarke [EC80] and Jean-Pierre Queille and Joseph Sifakis [QS82],
substitutes the problem of verifying a program by the one of verifying a model,
typically an automaton represented by a Kripke structure [Kri63]. Therefore, an
important question is how to ensure code’s correctness with respect to the proven
model. Depending on the property and the code, the model is possibly automatically
extractable from the code, but the well known state explosion problem may make
this approach difficult to apply on large programs manipulating a large amount of
data because of scalability issues.

At the beginning of the eighties, thanks to these seminal works, the theoretical
foundations of software verification techniques were established. However, practical
tools were still missing.

2.1.4 Industrial (R)evolution

Two additional decades were necessary to create the first industrial applica-
tions of software formal methods in general, and software verification in particu-
lar. The first significant industrial applications of software formal methods was the
MéTéor project which was initiated in the beginning of the 1990s and terminated
in 1998 [BBFM99, Bou12b]. It used the B method [Abr96] in order to build the
automation system of the line 14 of the Paris’s métro. The B method ensures cor-
rectness of the system by deriving the code from a high level specification, while
guaranteeing its correctness. Nevertheless, it is not a program verification technique,
since it performs a priori proof of correctness and no a posteriori one.

Let us come back to the three above-mentioned techniques of program verifi-
cation. A hackneyed example of critical failure is the crash of the first Ariane 5
flight in 1996. I have no intention to explain this story one more time 3. How-
ever, it remains of particular importance for program verification in general and

3. It is still possible to read the full report of this failure at http://sunnyday.mit.edu/
accidents/Ariane5accidentreport.html.

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
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abstract interpretation in particular because the post-crash investigations allowed
Alain Deutsch to discover errors in the Ariane 5’s embedded code by means of
an abstract interpretation tool. This tool became PolySpace [Deu04] when Alain
Deutsch founded PolySpace Technologies in 1999. This company was acquired by
The Mathworks in 2006. PolySpace still exists today. It is specialized in runtime
error detection by over-approximating the possible behaviors of Ada programs (and
also, nowadays, C and C++ programs).

In 2001, Airbus also decided to operationally use abstract interpretation tech-
niques for its A380 program [SWDD09] in order to compute worst-case execution
times thanks to the tool aiT [FHL+01] and upper bounds of the stack memory
actually used by the program thanks to the tool Stackanalyzer 4. Airbus also inte-
grated two other abstract interpretation tools, namely Astrée [CCF+05] and Fluc-
tuat [DGP+09]. The former is similar to PolySpace but is particularly efficient on
(avionic) programs generated from Scade models. The latter verifies that the pro-
gram parts using floating-point arithmetic can only generate negligible rounding
errors. All these tools are still used at Airbus today.

Also in 2001, Airbus also decided to use WP calculus through the Caveat
tool [RSB+99] for its A380 program. The Caveat project emerged in 1993 at LSL,
CEA. The developpement of the tool really started in 1995. In 2001, Airbus trans-
ferred Caveat to the teams that developed A380 software in order to replace unit
testing by unit proof [SWDD09] on C code: within the development process of the
most safety-critical A380 program, unit proof was used for achieving most DO-178B
objectives related to the verification of the executable code with respect to the Low-
Level Requirements (LLR) which were written in the Caveat formal specification
language. Since the A380 program, Caveat has been used in the same way for the
A400M and A350 programs. It is currently being replaced by Frama-C [BDH+18].

Most industrial uses of model checking focus on hardware verification [GV08];
so they are outside of my topic. Here I present only one of the first and most
significant successful industrial applications of software model checking, namely
the SLAM project, that originated at Microsoft Research in early 2000 [BCLR04].
This project was used at Microsoft to automatically verify that Windows device
drivers properly interact with the Windows kernel at the heart of the Windows
operating system. It relies on the model checker Bebop [BR00] in order to detect
whether or not a Boolean program reaches an error state. It is worth remembering
that the success of this project does not rely on model checking only but also on
other techniques, notably predicate abstractions, symbolic executions, and theorem
proving, so it examplifies collaboration of analysis techniques.

But let us come back from Redmond, United States, to the plateau de Saclay
near Paris, France. Indeed the LSL team is located here and so is the Caveat tool.

4. http://www.absint.com/stackanalyzer/

http://www.absint.com/stackanalyzer/
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In 2001, at two kilometers from the LSL team, Jean-Christophe Filliâtre and
Claude Marché from Inria also begin to develop a verification tool for C programs,
named Caduceus 5. It was based on Why which was a multi-language multi-prover
verification platform [FM07]. Both Caveat and Caduceus implemented the same
techniques for solving the same kind of problems, but had different advantages and
drawbacks: the former benefited from its industrial usage but was hard to maintain
and became outdated, while the latter was a cutting-edge tool but remained a
prototype suffering from lack of manpower. In 2004, both teams decided to learn
from the past experiences and joined their strengths in order to develop a new tool
from scratch: Frama-C. Here we are. Figure 2.1 resumes the main periods and dates
outlined in this section.
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Figure 2.1: Software Verification Timeline up to Frama-C’s Birth.

2.2 Frama-C, a Free Open Source Framework
Context This section is novel.

Frama-C is released under the GNU Lesser General Public License (LGPL),
version 2.1. This license was carefully chosen before its first public release in 2008:

5. Maybe it is worth stating that I did my PhD under the supervision of Jean-Christophe
Filliâtre in this team from 2002 to 2006, even if my PhD research was not related to C program
verification.
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this choice is of particular importance because it allows Frama-C to match CEA’s
dissemination objectives. Indeed being freely available under an open source license
overcomes a few of the Caveat’s limitations. Caveat is actually a non free closed
source tool. That, combined with too few academic publications, prevents potential
users to try it easily (a trial license is required), while its closed internal technology
is almost unknown in academia.

After 10 years of free open sourcing of Frama-C, I think that this choice is a great
success: today Frama-C has a wide community all over the world. Open sourcing
really allows Frama-C to be easily tried by potential partners, while it makes easier
to disseminate it in academia through publications and tutorials. It is worth noting
that Frama-C was a CEA pioneer since it was the very first major free open source
tool to be released by CEA. Its success has encouraged other tools from CEA LIST
to be also open sourced, for instance Papyrus 6. The choice of LGPL among the
numerous open source licenses will be justified in Section 2.6.

2.3 Frama-C, a Scalable Framework
Context This section takes a few ideas from a few of my publications [CSB+09,
CKK+12, KKP+15], but is also inspired by an article about CompCert’s seman-
tics [KLW14].

Frama-C analyzes C programs from their source code. The C programming
language was created in 1972 by Denis Ritchie and Ken Thompson. It is defined
by a norm that has had several evolutions since its first version ratified as ANSI
X3.159-1989 and known as C89. The latest version of the standard is ISO/IEC
9899:2011 and is known as C11. Frama-C aims at being compliant with ISO/IEC
9899:1999, known as C99 because this standard is still the most widely adopted in
the software industry. In the rest of this document, I always consider C99 programs,
unless otherwise specified.

C is a general-purpose programming language that allows for close control over
the machine and for high runtime efficiency. This made C among the most popu-
lar programming languages in the world 7. In particular, for the above-mentioned
reasons, most operating and embedded systems are still written in C and could
hardly be written as efficiently in another language, including the most safety- and
security-critical ones.

However, C is almost one of the most dangerous programming language because
of unsafe constructs like casts and its absence of runtime checks: it is extremely easy
for C programs to have bugs that make the program crash or behave badly in other

6. https://eclipse.org/papyrus/
7. C is the second most popular programming language in August 2017 according to TIOBE

index (https://www.tiobe.com/tiobe-index/).

https://eclipse.org/papyrus/
https://www.tiobe.com/tiobe-index/
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ways. Its semantics is particularly tricky. Several impressive efforts have been made
to formalize it, either with pen and paper through abstract state machines [GH93]
or monadic denotational semantics [Pap98], or in a mechanized way in HOL [Nor98],
Coq [BL09], or K [ER12, Ell12].

Nevertheless, in program analysis, the semantics of the underlying programming
language usually remains implicit. Indeed it is expressed in accordance with the pro-
gram properties to be verified. For instance, abstract interpreters over-approximate
the program semantics in their abstract domains, while weakest precondition calculi
encode it in their models (e.g. arithmetic and memory models). Frama-C follows
this approach and must respect the C99 semantics when implementing analyzers.
Frama-C also aims at being usable on large industrial systems: it must handle the
largest possible part of the standard while scaling up. In that respect, Frama-C also
supports some non-standard extensions which are used by lots of pieces of code, or
by a particular customer.

2.4 Frama-C, a Specification Framework

Context This section is inspired by the introduction of the ACSL manual [BFM+]
and the introduction about ACSL in the Frama-C tutorial paper that I gave with
Nikolai Kosmatov in 2016 [KS16]. It is also based on some of my recent teaching
material.

The primary goal of Frama-C is to verify programs with respect to their speci-
fications. These specifications are expressed either implicitly or explicity. Implicit
specifications are directly encoded in the analyzer together with the program se-
mantics. Absence of undefined behaviors 8 is certainly the most common implicit
specification.

Explicit specifications must be provided as input to Frama-C. For this purpose,
Frama-C analyzes not only C programs, but C programs annotated with ACSL spec-
ifications. ACSL [BFM+] is a formal specification language for C programs de-
signed by LSL together with Inria. It is a behavioral interface specification lan-
guage [Win87, HLL+12] that allows developpers to write code contracts, a concept
originally introduced in Eiffel [Mey92b]: each function f may be annotated with pre-
conditions and postconditions that enforce a contract between the callee f and its
callers. If a caller g satisfies the preconditions when calling the function f , then the
callee f must guarantee that the postconditions hold when leaving f for returning
into g.

8. C99 standard defines an undefined behavior as “a behavior, upon use of nonportable or
erroneous program construct or erroneous data, for which [C99] imposes no requirements” (p.16,
§3.4.3).
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ACSL is inspired by the specification languages of Caduceus and Caveat which
both rely on contracts. The former was inspired itself by JML [LBR99]. Conse-
quently, users who know both C and JML should be able to easily understand ACSL
specifications. ACSL logic is a typed polymorphic first-order logic whose terms are
pure (i.e. side-effect free) C expressions extended with specific keywords and built-
ins to handle language specificities. For instance, \result denotes the result of a
function (in a postcondition). Predicates may be (possibly inductive) user-defined
ones, or built-ins. For instance \valid is a built-in predicate that holds if and only
if its argument is a valid pointer, i.e. a non-null pointer that points to an address
that the program is allowed to access.

Additional technical details about ACSL will be provided in Section 3.2, but
let us introduce here an illustrative example based on the C function provided in
Figure 2.2. It will be our companion for the rest of this chapter. This function im-
plements Kadane’s algorithm which solves the maximum subarray problem with an
optimal linear complexity [Ben84]. In 2016, Claude Marché and Andrei Paske-
vich made me discover this algorithm that had been proven 9 in Why3 [FP13], the
successor of the Why tool. I translated it in C and proposed it as an exercice to
master students during a deductive verification training session.

int max_subarray(int *a, int len) {
int max = 0, cur = 0;
for(int i = 0; i < len; i++) {

cur += a[i];
if (cur < 0) cur = 0;
if (cur > max) max = cur;

}
return max;

}

Figure 2.2: A C Implementation of Kadane’s Algorithm.

Here is the specification of this function in natural language that I gave to my
students. It is one possible definition for the maximum subarray problem.

Definition 2.1 (Maximum Subarray Problem) A sub-array b of an array a
is a subsequence of contiguous elements of a. For instance, if a = { 0, 3, -1, 4 },
some possible sub-arrays of a are ∅, { 0 }, { 3, -1 }, { 0, 3, -1, 4 }.

A sub-array of a is maximum if the sum of its elements is at least as big as the
sum of any other sub-array of a. The unique maximum sub-array of the previous

9. http://toccata.lri.fr/gallery/maximum_subarray.en.html

http://toccata.lri.fr/gallery/maximum_subarray.en.html
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example is { 3, -1, 4 }. Since 0-length sub-arrays are allowed, arrays that only
contain negative values have a maximum subarray of sum 0.

The function call max subarray(a, len) returns the sum of one maximum sub-
array of the array a of length len.

From this informal definition (and two additional meaningful hints in order to
help them but omited here), the students must first specify the function in ACSL,
and then prove it. I will prove it later on, but Figure 2.3 provides a solution for the
specification.

#include <limits.h>

/*@ axiomatic Sum {
logic integer sum(int *a, integer low, integer high, integer len)

reads a[low..high];

axiom base: \forall integer low, high, len; \forall int *a;
low > high ==> sum(a, low, high, len) == 0;

axiom ind: \forall integer low, high, len; \forall int *a;
0 <= low <= high < len ==>
sum(a, low, high, len) == a[high] + sum(a, low, high-1, len);

} */

/*@ requires len >= 0;
@ requires \valid(a+(0..len-1));
@ requires \forall integer l, h;
@ 0 <= l <= h-1 <= len ==> sum(a,l,h,len) <= INT MAX;
@ ensures \forall integer l, h;
@ 0 <= l <= h <= len ==> sum(a,l,h-1,len) <= \result;
@ ensures \exists integer l, h;
@ 0 <= l <= h <= len && sum(a,l,h-1,len) == \result;
@ assigns \nothing;
@ */

int max_subarray(int *a, int len);

Figure 2.3: ACSL Specification of Kadane’s Algorithm.

ACSL annotations are formatted as special comments with a leading @ charac-
ter. This way, they do not interfere with the C implementation; and they are not
interpreted by standard tools for C programs, notably compilers.
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The specification is constituted of two parts enclosed in separated comments: an
axiomatic introduced by the keyword axiomatic and a function contract on top of
the function declaration. The axiomatic describes the behavior of a logic function
sum that computes the sum of the elements of the array a (represented by a pointer)
of length len, between its indices low and high, by reading the contents of the array
between these bounds. They are declared as integer which means mathematical
integer. Indeed ACSL types includes C types but also boolean, integer and real
as well as user defined types. Implicit coercion rules automatically promote C types
to integer when necessary while explicit casts may be used to convert mathematical
types to C types. I am going to discuss this design choice in Section 3.2.4. The
logic function is inductively defined through an axiomatic: the axiom base defines
the sum of 0-length arrays while the axiom ind defines the sum from low to high
from the sum from low to high-1. Both logic functions and predicates may be
defined either in an axiomatic way (like here), or by providing a (possibly recursive)
definition. The former are better understood by some logic-based tools (e.g. Wp, see
page 29), while the latters are better handled by tools that execute specifications,
even just symbolically, as soon as they are able to deal with recursive definitions
(e.g. StaDy, see page 27).

The function contract of this example contains three kind of clauses: requires,
ensures and assigns. The first one introduces the function preconditions that the
function callers must satisfy, the second one are the function postconditions that
this function ensures if the preconditions are satisfied, while the third one indicates
the memory locations that the function may modify: here \nothing means that
the function is pure. Let me explain now the preconditions and postconditions.
The two first preconditions indicate that the length len of the array must be non
negative and that the pointer a (actually an array) must be valid between the indices
0 and len-1. The last precondition specifies that no sum of sub-arrays overflows.
That is a necessary condition to guarantee the absence of integer overflows in this
function 10. The postconditions state that the result is greater or equal than the
sum of any sub-array, and is necessarily the sum of one sub-array.

Even if introduced only through a single still-unproved example, I hope that this
section has provided enough evidence that ACSL is a powerful formal specification
language. In practice, it has proved powerful enough to specify the functional
properties of interest of safety-critical code of our industrial partners.

2.5 Frama-C, an OCaml Framework

Context This section is an updated summary of the ICFP experience report that

10. Proving the absence of integer overflows is actually optional for the students because this
condition is actually hard to infer from their limited experience.
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I wrote with Pascal Cuoq in 2009 [CSB+09].

Frama-C is developed in OCaml. The choice of the programming language(s)
for developing a tool which is expected to be maintained during decades should
never be made lightly. For instance, one of the issues of Caveat is the difficulty to
maintain it and make it evolve, because it was developed in C++ complemented by
other additional languages (namely Awk, OCaml, Shell and Smalltalk). This choice
has both human and technical impacts.

In 2004, OCaml was pushed as the implementation language to choose for Frama-
C by the latest hires of the Caveat team. But the actual reason it was accepted is
that OCaml was not completely unheard of to Caveat’s senior researchers since it
was already used in this tool as the scripting language that allows an interactive
validation process to be automatically re-played in batch mode. OCaml was also
the development language of both Caduceus and Why at Inria. Another important
human factor is that our team mostly hires PhD candidates in formal methods.
Most such candidates already know OCaml (at least in France where OCaml is
taught to most students in mathematics and computer science) or another functional
language. Even better, some of them are already expert programmers at the end of
their PhD and our team is lucky enough to attract a few of them from time to time,
despite the attractive power of GAFAM 11 and the existence of excellent academic
research teams. I am fully persuaded that our daily use of OCaml is actually one of
our main convincing arguments in that regard and could partially explain why our
team is so lucky.

Switching from human factors to technical reasons, OCaml was also chosen be-
cause it is particularly suited to writing programs with lots of symbolic manipula-
tions like compilers or program analyzers. But maybe the most important reason
was the existence of Cil [NMRW02], an OCaml library that provides a parser and
Abstract Syntax Tree (AST)-level linker for C code. Cil APIs are (mostly) well
documented and provide ready-made generic analyses that are very useful to get a
prototype analyzer started. It would have been a significant counter-argument to
the choice of OCaml if such a library had not existed. The existence of LablGtk2, an
OCaml binding for Gtk2, was also helpful for designing a Graphical User Interface
(GUI) for Frama-C. Once again, it could have been an important counter-argument
if no good graphical library had been available. However, it is worth noting that
the absence of upgrade of this library to Gtk3 has now become more and more prob-
lematic for Frama-C and we are currently investigating solutions to replace the old
LablGtk2 GUI by a new one.

Frama-C also benefits from almost every OCaml programming feature, including
those which were not present when choosing Frama-C but were introduced in recent
years. I do not provide additional details here, but technical arguments may be

11. Google, Apple, Facebook, Amazon and Microsoft.
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found in a related paper [CSB+09], while some interesting features will be high-
lighted later on in this document. In short, I am sure that no researcher of the
Frama-C team regrets the 13-year old choice of OCaml for developing Frama-C. In
my opinion, it is largely enough to conclude that this was an excellent choice.

2.6 Frama-C, a Plug-in Based Framework
Context This section is based on the Frama-C tutorial paper written with Niko-
lai Kosmatov [KS16] and several introductary talks I gave about Frama-C. It is
however more complete than these related materials.

Frama-C is not a single tool, but a framework which groups together several
tools, most of which are code analyzers. Each tool is provided as a plug-in. The
official open source distribution of Frama-C currently comes with 24 plug-ins 12. A
few other source plug-ins are also open source but distributed independently. One
strength of Frama-C’s LGPL license is to allow everyone to develop additional plug-
ins under different licenses, even not necessarily open source. Indeed the license of
each plug-in is carefully chosen according to our dissemination strategy. Usually
they remain close source as long as we consider they are not mature enough for
industrial experimentation. Then, we open source as many plug-ins as possible, in
particular if they are not specific to a particular industrial usage. Figure 2.4 shows
the gallery of LSL’s Frama-C plug-ins.

To our knowledge, it is the most comprehensive snapshot of these plug-ins ever
presented 13. It highlights open source plug-ins (the circled ones) and their current
maturity on a scale from 1 (used by at least one industrial partner) to 4 (still a
research prototype) 14. The figure also emphasizes my own contribution. A major
contribution means that either I have developed most of the plug-in, or I have

12. The provided information about Frama-C is based on Frama-C Silicon-20161101.
13. Nevertheless, I voluntarly omit plug-ins which are now almost unmaintained, or which have

currently no practical interest. Also I could have missed some interesting plug-ins that were devel-
oped very recently and on which no communications have been done yet.

14. The current most common tool for measuring maturity level is Technology Readiness Level
(TRL) which defines a scale from 1 to 9 (see for instance http://www.nasa.gov/pdf/458490main_
TRL_Definitions.pdf). But, I think that such a scale is far too precise, while it does not fit how
R&D software is actually developed (at least in my working context). Anyway, in case of need,
here is a possible correlation table (overlappings emphasize that there is actually no easy direct
correlation):

local scale TRL
1 6-9
2 4-6
3 3-5
4 1-3

http://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf
http://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf
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Figure 2.4: LSL’s Frama-C Plug-in Gallery.
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supervised the related R&D effort and reviewed the code. A minor contribution
means that I have modified or extended a part of the plug-in, or provided expertise
to its developer and reviewed some pieces of code. The plug-ins are organized in
five main categories:
verification plug-ins verify program properties. The sub-category dedicated con-

tain verification plug-ins which verify a specific kind of (non functional) prop-
erty.

expressiveness plug-ins extend the variety of programs or properties that can
be handled by the framework.

simplification plug-ins are program transformations that simplify the input code
according to some criteria.

understanding plug-ins are plug-ins that help the verification engineer to un-
derstand a program.

support plug-ins are plug-ins that ease the use of verification plug-ins. They
are split to pre and post support plug-ins. The former are used before a
verification task, while the latter are used after a verification task in order to
better understand the provided results.

I briefly introduce below each plug-in, in alphabetical order. This ordering
has the drawback of introducing short forward references, but allows the reader
to quickly search for the description of a particular plug-in. Indeed this plug-in
enumeration should be seen as a dictionary in which pick up information about
particular plug-ins. It could be a bit tedious to read it from the beginnning to the
end. I also indicate the sizes of the plug-ins in number of lines of code. 15 All in
all, they constitute a codebase of about 180 kloc and 110 kwloc in other languages
(mainly C++ and Coq). That provides a numerical evidence of the LSL investment
in the Frama-C ecosystem. My major contributions are about 20 kloc plus 5 kwloc
of C, while my minor contributions concern about 22 kloc.

ACSL Importer (2.3 kloc) allows the user to add ACSL annotations in external files
in order to not modify the original C source code. A dedicated mechanism
links these annotations to program points. This plug-in is used by industrial
customers whose the normalized development process forbids any modification
of source files (even for just inserting comments) at verification time.

Aoräı (8 kloc)[GS09, KKP+15, SP] takes as inputs a C program together with a
Büchi automaton which specifies acceptable sequences of function calls. It
generates a C program annotated with ACSL specifications that encodes the

15. The measurements are based on a Frama-C Silicon-20161101 compatible version and are in
OCaml unless otherwise specified. 1 kloc is one thousand non empty lines of code (computed with
the tool ocamlwc), while 1 kwloc is one thousand (possibly blank) lines of code (computed with
the tool wc).
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automaton in the input code. This way, any Frama-C verification tool may
verify such temporal properties over function calls.

CaFE (6 kloc) [dOPB15] verifies temporal logic properties over C programs by model
checking. They are expressed in the CaRet language [AEM04] (an extension
of LTL [Pnu77]).

Callgraph and Users (0.6+0.3 kloc and 0.1 kloc respectively) respectively compute the
callgraph of a C program and the function callees inside its functions. If
Value has already been computed, function pointers are taken into account
when computing the callgraph, while Users automatically runs Value if not
already computed. I developed this later plug-in with Pascal Cuoq in 2009
in order to illustrate how easy reusing Value’s results was (and still is). An
interesting feature of the Frama-C callgraph (implemented in an additional
0.3 kloc outside the core plug-in) is its so-called services that group together
functions that contribute to the very same functionality (a.k.a. service). Ser-
vices are displayed in the Frama-C GUI. For instance, Figure 2.5 indicates
the callgraph with its services for the program gzip (version 1.2.4). The de-
tail is not important here but, displaying four large services as boxes (named
zip, unzip, treat file, and unlzh) helps the user to understand that they
respectively contain functions for compressing, uncompressing, file manipula-
tions and bit-level manipulations (even if the last name is not really helpful,
the names of the functions inside the service — that the user can then inspect
— are explicit).
This notion of service originates from Caveat. In this tool, its implementation
was cubic in the number of vertices and its specification was unclear —to say
the least— in particular in the presence of mutually recursive functions (cycles
in the callgraph). In 2009, I formalized the specification and implemented a
O(n logn× e) algorithm, n being the number of C functions or, equivalently,
the number of graph vertices, and e being the maximal number of callers for
a C function.
I have never tried to publish this work because I would like to formally prove
it first. Indeed several bugs have been found in the past, not directly in
the implementation of the algorithm (only one bug found in a corner case as
far as I remember) but in the OCamlGraph [CFS07] implementation of the
topological traversal it relies on. Actually topological graph ordering usu-
ally assumes directed acyclic graphs (DAG) while cycles are possible in our
case. Jean-Christophe Filliâtre and I eventually rewrote the OCamlGraph
implementation from scratch to correctly deal with cycles. We also wrote its
invariants to convince ourselves of its correctness. However, a formal proof
of the topological traversal and of the Frama-C implementation of the service
algorithm is still a challenge in the domain of the verification of higher-order
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Figure 2.5: Callgraph and services for program gzip version 1.2.4. By default, the
services only present their root function. The large service on the top is zip and
has been unrolled: the internal vertices are functions that are actually functions
only useful for function zip.
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not-purely-functional programs. For the sake of completeness, the algorithm
is presented in Appendix A.

Caveat2fc (4.6 kloc + 0.6 C-kwloc + 0.4 Coq-kwloc + 0.1 Why3-kwlocls) replaces annotations
written in the Caveat specification language by equivalent ACSL annotations.
It is particularly useful for industrial customers who used Caveat extensively
and have switched to Frama-C.

Cfp (3.5 kloc)[AS17] automatically generates a function main from an ACSL function
precondition. This function initializes the context of Value with respect to the
precondition expressed in ACSL, while expressing it in the most understand-
able way both from Value and from a human point of view. It may be seen as
solving a dual problem of functional synthesis [KMPS10], which aims at gen-
erating function bodies from postconditions. However, even if the formulation
of both problems is dual, the desired properties and the proposed solutions
are truly different. In particular, functional synthesis aims at generating exe-
cutable function bodies, while Cfp’s generated context aims at being executed
symbolically and may contain non-deterministic inputs. This plug-in has been
implemented in the context of the joint lab with TrustInSoft which has in-
tegrated it in its verification methodology. This work is not presented in this
document.

Clang (7 kloc + 45 C++-kwloc) takes as input a C++ program and generates an equiv-
alent C program. This way, every Frama-C plug-in may analyze C++ code.
The majority of the development is actually a LLVM plug-in implemented in
C++, not a Frama-C plug-in. The LLVM plug-in generates an Abstract Syn-
tax Tree (AST) in an intermediate representation in a dedicated format which
is then parsed and converted to the Frama-C internal AST from the OCaml
side. The necessary information is kept in order to convert results and user
messages emitted from Frama-C back to the original C++ code.

Conc2Seq (1.4 kloc + 0.1 C-kwloc) [BKLL16] transforms concurrent C programs into
sequential ones in which concurrency is simulated by interleavings. This way,
it allows other analyzers to handle concurrency for free.

Constfold (0.4 kloc) is a program transformation that replaces each constant ex-
pression — that is, expressions that evaluate to the very same value for every
program execution — by that constant value.

Counter-Examples (1.8 kloc) tries to generate counter-examples from SMT solvers’
counter-models. More precisely, when a prover fails to prove a proof obliga-
tion generated by Wp, this plug-in generates a function main that expresses
the prover’s internal candidate counter-example in term of program’s global
variables.

E-ACSL (6 kloc + 8 C-kwloc) [KS13, SKV17, SV] generates an instrumented program
p′ from an annotated program p. This program p′ fails at runtime whenever
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an annotation is violated, while it is functionally equivalent to p if every anno-
tation is satisfied (for the given program execution). This runtime verification
tool is one of my main contributions to Frama-C and is covered in depth in
Chapter 3.

From and InOut (1 kloc and 1.2 kloc respectively) [CYL+, Section 6] computes different
kinds of dependencies between function inputs and outputs by relying on
Value’s results.

GenAssigns (1.9 kloc) automatically generates candidate ACSL assigns clauses from
a program in order to ease the task of the verification engineer. Such clauses
indicate memory locations that may be modified by a function (more generally,
a piece of code) and must be provided when proving code by Wp. Consequently
this plug-in especially helps increase automation when using Wp in industrial
settings.

Impact (1.4 kloc) computes statements whose semantics may depend on the seman-
tics of a given statement. It relies on both Pdg (Program Dependence Graph)’s
and Value’s results. I initially designed and implemented this plug-in from my
postdoc’s plug-in Security Slicing in the context of the project Cat. Later on,
at LSL, Boris Yakobowski improved its scalability and proved its usefulness
in the context of the verification of structural properties on memory separation
and cyclic behaviors of an industrial critical system.

Inspect (0.4 kloc) is a debugging tool that outputs the internal Frama-C representa-
tion of C constructs.

JCard (6 kloc) takes as input JavaCard bytecode and generates an equivalent C
program. This way, every Frama-C plug-in may analyze JavaCard code. This
prototype was developed by Philippe Hermann, with my support, in the
context of the project ADS+. It is now being used again in the context of the
European project H2O 16.

Loop (1 kloc) aims at approximating the number of loop iterations in order to au-
tomatically infer Value’s slevel parameters. They are numerical values (pos-
sibly different for every loop or every function of the program) which are the
most important Value’s parameters. Indeed they tune Value’s ad-hoc trace
partitioning [MR05] by indicating the maximum number of states kept by the
analyzer at a given moment.

LTest (4.6 kloc) [BCDK14] provides three basic services for test automation: cover-
age estimation, automatic test generation and detection of uncoverable test
objectives. It also proposes several standard coverage criteria, while adding
new ones aimed at being straightforward.

16. I do not directly participate to this project, but LSL does and I was slightly involved in the
project proposal.
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Metrics (2.6 kloc) [BY] computes several purely syntactic metrics and a few metrics
related to the coverage ratio of Value.

Mthread (6 kloc + 0.3 C-kwloc) is a Value-based verification tool for multithreaded
programs. It detects invalid concurrent access to shared ressources by abstract
interpretation techniques.

Nonterm (0.3 kloc) warns when definitively non-terminating pieces of code are de-
tected.

Obfuscator (0.4 kloc) obfuscates a program by replacing any name (variable name,
type name, etc) by a meaningless name while preserving program semantics.
This kind of transformation is sometimes required by industrial partners be-
fore disclosing their code.

Occurrence (0.4 kloc) displays the occurrences of left values in the GUI. It takes
aliasing into account by taking advantage of Value’s results. I initially devel-
oped this plug-in in the context of the project Cat in order to demonstrate
how easy the development of a Frama-C plug-in was (and still is). Later on,
it has been proved particularly useful when investigating analysis results of
large pieces of source code in the Frama-C GUI.

PathCrawler (10 kloc + 36 Prolog-kwloc + 1.4 C-kwloc) [WMMR05, BDHTH+09] is a
white-box test case generation tool based on several coverage criteria includ-
ing MCDC. A limited online version of this tool is freely available online at
http://pathcrawler-online.com [KWB+12].

Pdg (3.5 kloc) computes an over-approximation of the program dependence graph
(PDG) by relying on From’s and Value’s results. This plug-in is usually not
directly useful for the end-user, but it provides a convenient graph represen-
tation for plug-ins that make use of program dependencies (e.g. Impact).

Pilat (3.4 kloc) [dOBP16] automatically generates polynomial loop invariants by re-
lying on linear algebra techniques. Loop invariants are of particular interest
for Wp and other verification tools that benefit from summaries of loop se-
mantics.

Postdominators (0.3 kloc) computes the postdominator set S of a statement s: a
statement s′ belongs to S if all execution paths through s also go through s′.
Similarly to PDG, while being of no interest for the end user, this notion is
sometimes useful when implementing static analyzers.

Report (0.5 kloc) outputs in various textual formats a synthesis of analysis results in
term of validity statuses of ACSL properties: which ones are valid, invalid, or
have currently no complete proof of (in)validity. The different validity statuses
and how Frama-C computes them is explained in Section 2.9.

Rpp (10 kloc) [BKGP17] extends ACSL with relational properties that involve several
functions or several calls to the same functions. These extra properties are

http://pathcrawler-online.com
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then translated into additional code and axiomatics in order to be verified by
other means, e.g. Wp.

Rte (1.5 kloc) [HS] generates ACSL annotations for different kinds of undefined be-
haviors including validity of pointers before dereferencing them, array accesses,
and arithmetic overflows. It is in particular proved useful in Section 3.3.2.

Sante (1.9 kloc) [Che11, CCK+14] implements a verification technique that combines
Value, Slicing and PathCrawler in order to refine Value’s results. The method
consists of several steps. First, it automatically runs Value. Next, it slices the
program once for every potential undefined behavior found by Value. Finally,
for every slice, it performs concrete executions on PathCrawler’s generated test
cases in order to determine whether each potential defect arises.

Scope (1.3 kloc) displays in the Frama-C GUI different left-value scoping information
(e.g the potential definition points of a left value from a particular use).

Secure Flow (4.1 kloc) [ASTT13b, Ass15, BS17] generates an instrumented program
that encodes the information flows of the original program inside its source
code. This way, it becomes possible to verify (termination insensitive) non-
interference [GM82] of the input program with standard verification tools like
E-ACSL, Value or Wp run on the generated code. Section 3.4.2 provides some
details about this tool.

Security Slicing (0.5 kloc) [MS08] is a specific slicing algorithm whose criterion
is to preserve confidentiality of data. I implemented it in the project e-
Confidential. Indeed, one of the contributions of my postdoc demonstrated
that the standard (backward) slicing algorithms cannot preserve confidential-
ity of information because it may require to keep forward statements (that is,
statements that are forward to the considered program point in the control
flow graph). I proposed an alternative algorithm implemented in this small
plug-in. This work is not presented in this document.

Slicing (5 kloc) is a program transformation technique that removes program con-
structs that do not impact a given semantic criterion (e.g. preserving the
semantics of some statements): the generated program is equivalent to the
original one with respect to this criterion, but is shorter. Consequently it
helps the verification engineer or other analysis tools to focus on the desired
properties of interest.

Sparecode (0.6 kloc) is a specific slicing whose criterion is to preserve statement
reachability. Said otherwise, this plug-in removes pieces of dead code.

StaDy (3.4 kloc) [Pet15, PKB+16] explains proof failures of Wp by means of testing
through PathCrawler. Indeed, when an automatic theorem prover is not able
to discharge a proof obligation emitted by Wp, it may be because the code and
its specification are inconsistent (at least one of them is wrong), or because a
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required annotation is missing (e.g. a loop invariant), or because the property
is out-of-scope of prover capabilities. StaDy helps the user to understand which
reason is the cause of the failure. It relies on a translation from annotations
to C code similar to E-ACSL but guided by test case generation [PBJ+14].

Synthesis (4 kloc) automatically generates a function body from ACSL postcondi-
tions by applying Viktor Kunčak’s functional synthesis principle [KMPS10].
This research work was done through the postdoc of Michele Alberti that
I supervise. It is not presented in this document, although if I discuss its
potential applications for runtime verification in Section 3.5.2.

Value (18 kloc) [KKP+15, CYL+] computes over-approximations of the possible val-
ues of each program variable at each program point by abstract interpretation
à la Cousot. A major side-effect of this analyis is to raise an alarm for any
potential undefined behavior of the program and any ACSL annotation when-
ever it is not able to conclude that such a behavior can never occur (or that
such an annotation can never be invalid). For instance, assuming we provide
a suitable analysis context, Value is usually able to demonstrate the first two
preconditions of function max subarray in Figure 2.3, while it could prove
the absence of runtime errors (including arithmetic overflows) of its imple-
mentation of Figure 2.2. However, it cannot verify the last precondition and
the postconditions since it currently always topifies quantified predicates 17.
Value has hard-coded abstract domains that cannot be easily changed. Even
if not as specific as the domains of Astrée for avionic programs generated from
Scade, they have been chosen for their good compromise between precision and
efficiency and rely on heavily optimized datastructures and algorithms [BC11].
Since the Frama-C release Aluminium released in May 2016, an evolved version
of Value, called Eva (shares 10 kloc with Value + 8 kloc) [BBY17], is out. It improves
the legacy Value in term of expressivity, genericity, precision and performance.
Indeed Eva transforms Value from a monolithic analyzer with hard-coded do-
mains to a generic extensible analysis parameterized by cooperating abstract
domains. Case studies also demonstrate that Eva gets comparable analysis
time for better results in term of precision, while being fully backward com-
patible with Value.
It is worth noting that Value has been removed from Frama-C Phosphorus-
20170501 released in May 2017.

Variadic (1.7 kloc) replaces variadic function calls by non-variadic function calls by
means of a monomorphisation technique [TO98] 18. This way, the other plug-
ins do not need to take care of variadic function calls.

17. “Topify” means that it associates the abstract value > (the least precise element of the
abstract domain) to a concrete element (here, predicates).

18. The authors of the referenced paper named this technique “code specialization” or “polymor-
phism removal”. It appears that the name “monomorphisation” becomes popular a bit later when



2.6 Frama-C, a Plug-in Based Framework 29

Volatile (0.6 kloc) replaces accesses to volatile memory locations by deterministic
function calls. This way, the other plug-ins do not need to take care of volatiles
when analyzing the code. While volatiles are rather rare in academic examples,
they are frequent in embedded applications and need to be handled specifically.

Wp (29 kloc + 26 Coq-kwloc + 3 Why3-kwloc) [KKP+15, BBCD] verifies function bodies
with respect to ACSL annotations through weakest precondition calculus à la
Edsger W. Dijkstra. The WP engine is parameterized by integer and real
models as well as memory models. It includes a library called Qed, dedicated
to the manipulation and simplification of proof obligations [Cor14] which even-
tually may be discharged by any prover supported by Why3. While Value is the
Frama-C plug-in that automatically proves the largest number of properties,
Wp is the Frama-C plug-in that is able to prove the most complex functional
properties as soon as the user provides enough code annotations, including the
necessary loop invariants, loop assigns and loop variants. Loop invariants are
properties that are true before entering the loop and remain true at the end
of each loop iteration 19, loop assigns are the memory locations that may be
modified by the loop, while a loop variant is a measure that strictly decreases
at each loop iteration, guaranteeing loop termination.
For instance, Figure 2.6 shows the code annotations that are necessary 20 to
automatically discharge, with Wp and the Alt-Ergo prover 21, Kadane’s algo-
rithm of Figure 2.2 with respect to its specification of Figure 2.3. It is worth
noting that the loop assigns clause cannot be omitted in order to prove this
program with Wp, even if most deductive verification tools do not usually re-
quire this information. It can nevertheless be automatically generated by the
GenAssigns plug-in. The proof also demonstrates the absence of undefined be-
haviors, including arithmetic overflows. Interestingly, this example illustrates
the need for ghost variables and ghost code to encode the necessary pieces of
information that are required to explain why the algorithm is correct but are
useless to implement it. Here the ghost variables low and high respectively
store the lower and the upper bounds of the maximum subarray found so
far, while cur low stores the lower bound of the currently visited subarray.
The ghost statements in the loop body update these variables whenever re-
quired. Thanks to these extra variables, in addition to expressing boundaries
in a standard way (the first four invariants), the loop invariants express that
cur and max store the sum of the current subarray and the sum of the sub-

introduced in the SML optimizing compiler MLton (http://mlton.org).
19. In practice, they should be informative enough to prove the desired properties, so true is

pretty rarely a satisfactory loop invariant.
20. Arguably alternative versions are certainly possible, but the proposed solution is minimal in

the sense that you cannot remove an annotation without breaking the proof.
21. http://alt-ergo.lri.fr

http://mlton.org
http://alt-ergo.lri.fr
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array from low to high − 1, respectively (fifth and sixth invariants). They
also indicate that cur is the maximum sum ending at the last visited index
(seventh invariant), while max is the maximum sum ever found up to now
(eight invariant). Actually the beauty of Kadane’s algorithm is that it only
requires maintaining the intermediate sums cur and max without exhibiting
the subarrays per se. These subarrays are nevertheless required to explain its
correctness; thus the use of ghost variables to exhibit them.

This description demonstrates that we have developed over the years plenty of
tiny (< 1 kloc) or small (< 5 kloc) plug-ins, several medium-size plug-ins and a
few large (> 20 kloc) plug-ins. If we assume that there are lots of features easy
to implement, while only a few complicated ones, I think that this is an empirical
evidence that Frama-C succeeds in fulfilling Alan C. Kay’s maxim [Dav93] that is
displayed on the Frama-C website:

“Simple things should be simple, complex things should be possible”.

2.7 Frama-C, an Extensible Framework
Context This section is inspired from the conclusion of the Frama-C reference
paper [KKP+15] with an updated related work.

In the introduction of the previous section, I wrote that the LGPL license allows
anyone to release additional plug-ins with the license of their choice. Maybe I did
not insist that much on the word anyone. Indeed, in addition to allow LSL to
distribute plug-ins through different licenses, another positive consequence of the
Frama-C LGPL license is that several Frama-C plug-ins have been developed outside
LSL by both academic and industrial partners. Some of them are freely available,
while some others are not (and often used for industrial purposes).

Academia usually develops open source Frama-C plug-ins in order to experi-
ment new ideas. Using Frama-C to develop their research prototypes allows re-
searchers to rapidly obtain a usable tool that works for an important subset of
C without too much effort. Claude Marché and Yannick Moy have developed
Jessie [Moy09, MM], which is another plug-in based on weakest precondition cal-
culus. Shubash Shankar [SP16] integrated the model checker Cegar in Frama-C
to verify statement contracts. Antoine Ferlin et al. [FBCDW15] develop a Value-
based plug-in to set observation points necessary for generating traces dedicated to
offline monitoring of temporal properties. Several prototypes aim at verifying secu-
rity properties. Jonathan-Christofer Demay et al. generate security monitors based
on fine-grained feedback from Value [DTT09]. Dumitru Ceara et al. implemented
a taint analysis [CMP10], producing explicit dependency chains with accompanying
risk quantifiers. Xavier Kauffmann-Tourkestansky et al. [BHKL10] propose a
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int max_subarray(int *a, int len) {
int max = 0, cur = 0;
/*@ ghost int cur_low = 0, low = 0, high = 0; */

/*@ loop invariant 0 <= i <= len;
@ loop invariant 0 <= low <= high <= i;
@ loop invariant 0 <= cur_low <= i;
@ loop invariant 0 <= cur;
@
@ loop invariant cur == sum(a,cur_low,i-1,len);
@ loop invariant max == sum(a,low,high-1,len);
@
@ loop invariant \forall integer l;
@ 0 <= l <= i ==> sum(a,l,i-1,len) <= cur;
@
@ loop invariant \forall integer l, h;
@ 0 <= l <= h <= i ==> sum(a,l,h-1,len) <= max;
@
@ loop assigns i, cur, max, cur_low, low, high;
@ loop variant len - i; */

for(int i = 0; i < len; i++) {
cur += a[i];
if (cur < 0) {

cur = 0;
/*@ ghost cur low = i+1; */

}
if (cur > max) {

max = cur;
/*@ ghost low = cur low; */
/*@ ghost high = i+1; */

}
}
return max;

}

Figure 2.6: Required Code Annotations to Prove the Implementation of Figure 2.2
w.r.t. the Specification of Figure 2.3.
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source-code model for verifying physical attacks on smart cards, and use Value to
verify it. Finally, Maria Christofi [Chr13] automatically injects faults into the
code to formally verify implementations of cryptographic protocols. Some other
prototypes focus on generating annotations: Ahmed Bouajjani et al. [BDES11]
automatically synthesize invariants of sequential programs with singly-linked lists,
while Nicolas Ayache et al. [AARG12] automatically infer trustworthy ACSL as-
sertions about the concrete worst-case execution cost of programs from so-called
“cost annotations” generated by a custom C compiler. Also, Rigel Gjomemo et
al. [GNP+15] automatically insert assertions in LLVM to improve the effectiveness
of several optimizations.

On the industrial side, some companies also develop Frama-C plug-ins. At
Airbus, David Delmas et al. verify compliance to domain-specific coding stan-
dards [DDMLS10] and to expected control and data flows [CDDM12] through home-
made plug-ins. At Dassault Aviation, Dillon Pariente develops two security-
related plug-ins Gena-Taint and Gena-CWE. The former is a taint analysis plug-in
based on Value’s results. The latter is an extension of Value that detects more
CWEs (Common Weakness Enumerations) 22 than Value alone [PS17]. Adelard,
a UK company that performs safety and security audit for the nuclear industry, also
develops a plug-in to analyze concurrent programs in a complementary manner to
Mthread: it trades off soundness for simplicity 23. SafeRiver is another SME that
develops Frama-C extensions, e.g. Carto-C for cartography of C source code 24. Also,
TrustInSoft develops two industrial versions of Frama-C pre-installed with pro-
prietary extensions designed to facilitate the analysis of complex programs, namely
TIS-Analyzer [CRH17] and TIS-Interpreter 25.

It is possible that I have omited some external Frama-C plug-ins. Indeed it
becomes more and more complicated to be aware of the projects that use Frama-
C throughout the world, even for developing plug-ins that arguably require often
more effort than just using parts of the framework. That is particularly the case
in industrial settings where the users and developers have no particular need to
communicate on their business practices.

2.8 Frama-C, a Kernel-Centred Framework

Context This section summarizes a few papers [Sig09, Sig11, CDS11, Sig14, Sig15]
that I wrote about the Frama-C kernel.

22. http://cwe.mitre.org/
23. https://bitbucket.org/adelard/simple-concurrency
24. http://www.safe-river.com/index.php?id=carto-c&setlang=en
25. http://trust-in-soft.com/tis-interpreter/

http://cwe.mitre.org/
https://bitbucket.org/adelard/simple-concurrency
http://www.safe-river.com/index.php?id=carto-c&setlang=en
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As explained in Section 2.6, Frama-C consists of a set of plug-ins that may be seen
as independent tools. Indeed using a runtime verification tool based on program
transformation technique like E-ACSL is not the same as using a program proof
tool like Wp and both are different from an abstract interpreter like Value in many
respects. This heterogeneity of usage means that Frama-C must be customizable
enough to fit the analyzer needs. However, Frama-C is not only a collection of
independent tools but aims at being easily identifiable as a single tool. That means
primarily homogeneity. For instance, user interactions (e.g. inputs/outputs) should
be as uniform as possible in order to make the tool easier and faster to learn. Being
both heterogeneous and homogeneous while being user friendly implies that the user
should identify quickly what is common to all analyzers and what is specific to each
of them. For instance, a code analysis tool usually has many parameters that allow
the users to tweak the tool according to their current use case: they must be able
to quickly understand which parameters are common to all analyzers (e.g. system-
dependent information like the size of C types) and which ones are relevant only
for specific analyzer(s) (e.g. the slicing criteria for the Slicing plug-in). One way
to provide homogeneity is inversion of control which gives the control of any tool t
that uses a framework f to f and not to t. For instance, the framework often plays
the role of the main program in coordinating and sequencing application activity.
Interestingly, inversion of control is usually considered as a defining characteristic
of frameworks [JF88].

To reach this goal, the Frama-C software architecture [Sig15] is based on a kernel
that plug-ins are connected to. This fundational design was defined when Frama-C
was created and has never been changed. It was not new however. For instance,
Eclipse 26 and Gimp 27 are based on a similar architecture usually refered to as plug-in
based architecture. The Frama-C kernel has several fundamental objectives. First, it
really controls the execution of Frama-C from its beginning to its end, notably when
plug-ins are loaded, parameterized and executed. Second, it parses C programs into
a normalized representation shared by all plug-ins. Third, it provides several general
services for helping plug-in development [SAC+] and providing convenient features
to Frama-C’s end-user in a homogeneous and consistent way.

Figure 2.7 details Frama-C’s software architecture and emphasizes the central
role of the kernel. It also indicates my own contribution to its development. I do not
indicate a maturity level because (almost) all the kernel is mature enough to be used
— and is currently used — in industrial settings. All in all the size of the kernel is
about 88 kloc. The size of my major contributions are about 23 kloc. That is about
the same than the size of my minor contributions. In addition to plug-ins, the kernel
is split into three main parts which correspond to directories in the source and shown
with different colors on Figure 2.7 (blue, orange and green). They contain several

26. http://eclipse.org
27. http://www.gimp.org/

http://eclipse.org
http://www.gimp.org/
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Figure 2.7: Frama-C Software Architecture.
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services which correspond to subdirectories in the source and group together several
compilation units. This organization aims at helping a developer, particularly a
plug-in developer, to find what (s)he is looking for more easily. The edges between
services indicate dependencies: one edge from a (group of) service(s) A to a (group
of) service(s) B means that A uses B.

The three main parts of the kernel are the following:
libraries groups together libraries that are not related to the interpretation of C

programs: theoretically, they could have been put outside Frama-C.
kernel internals are the compilation units that are only necessary inside the ker-

nel. Plug-in developers should not use them.
kernel services really correspond to the kernel API and propose several kinds

of services which can be useful to plug-in developers. The most important
kind of services is the operations related to the AST (Abstract Syntax Tree),
which is the internal representation of a C program annotated with ACSL.
We also propose several ways to traverse it. The kernel API includes several
possibilities of interactions with plug-ins and a toolkit dedicated to abstract
interpretation.

Each service is described below.
libraries/stdlib (1.9 kloc) contains a few extensions to the OCaml standard libraries

like additional operations over sets and maps.
libraries/utils (5 kloc) contains general-purpose libraries (different kinds of maps,

vectors, bit vectors, floats, system commands, filepath managements, pretty
printing, etc).

libraries/project (2.3 kloc) contains the project library of Frama-C [Sig09] 28. It is the
very first large service that I developed in Frama-C (in 2007-2008) and it is one
of the most used and stable parts of the tool (only three small extensions and
one minor modification in the last 2 years). The initial requirement expressed
by Benjamin Monate, who was leading the development of Frama-C at that
time, was to be able to analyze several programs (or the same program with
different parameter sets) in the same Frama-C run (called a session). For
instance, it should be possible to generate a new AST a′ from an input AST
a and let the user choose to work with a or a′. A naive solution would have
been to parameterize almost everything that contributes to an analysis by the
analyzed AST. That would have been not tractable. In fact the second and
third requirements were that the solution should remain light for the developer
(at least the plug-in developer), while having no visible cost at runtime.
The implemented solution consists in grouping together all the internal states
related to one AST: the AST itself and its associated states inside the kernel

28. This paper [Sig09] was the very first article about Frama-C ever published.
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as well as the parameters and the results of the analyzers. An internal state
(or, shortly, a state) is usually provided as an OCaml global imperative value
such as a (global) hashtable or a (global) reference. Such a group of all states
is called a project. Several projects can co-exist at the same time, but one
and only one is active: the current project. This way, the developer and
the end-user only works with one AST and a single set of parameters and
results. They can also switch from one project to another instantaneously.
The project library stores all the existing projects: that is the centralized
global state of Frama-C. Indeed the relationship between the library and a
single state is a client-server model as shown in Figure 2.8. Each single state
must be registered in the project library through an OCaml functor called
State builder.Register. It only knows its current value (that is, its value
in the current project), while the library stores its values in the different
project. When needed, the library can broadcast a query to the states (e.g.
to get or set its current local values).

current

project ...

...

...

...

project 1

project p

client 1 =

local version of state 1

local version of state n

answer 1

answer n client n =

request

broadcast

server = project library

state 1

state n

state 1

state n

Figure 2.8: Client-Server Model of the Project Library.

Two key properties of the library ensure non-interference between projects:
when modifying a state of a project, it is not possible to modify any state of
another project. They can be informally expressed as follows. More precise
formulations and their associated proofs can be found in the above-mentioned
paper [Sig09].
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Theorem 2.1 (Project Isolation) The state of a project p is not shared
with any state of another project p′ (p 6= p′).

Theorem 2.2 (Local Isolation) The local version of a state is not shared
with any state of any non-current project.

These theorems actually rely on hypotheses which must be satisfied when
applying State builder.Register. One of these hypotheses is a non-aliasing
property which is unfortunately tricky to implement safely because it usually
requires one extra level of indirection. For instance, creating a state of type
int ref requires to handle a value of type int ref ref and to modify one
reference or the other when necessary. To prevent correctness issues, the
library provides high-level functors which ensure the expected properties for
standard mutable types and prevent the developer from applying directly the
default (low-level) functor: the current open source distribution of Frama-
C contains 1543 registered states, but there are only 4 direct applications
of State builder.Register (only 1 in a plug-in). By the way, those 1543
registered states also demonstrate the importance of this library in Frama-C.
Another important feature of this library is state dependency. The developer
may (and must) declare that a state depends on another one (for instance,
an analysis result usually depends on the AST). This way, when modifying
a state, it is possible to clear its dependencies in order to force them to be
recomputed (in combination with memoisation [Mic68]). It also provides a
simple way to consistently apply an operation to a set of states (e.g. copying
the state s and all its dependencies). This mechanism allows Frama-C to
remain consistent almost for free when modifying one of its numerous states.
Last but not least, since the project library contains the Frama-C global state,
it is also responsible for saving and loading a session. This is actually not as
trivial as one might think at a first glance because of the heavy use of hash
consing [Ers58, Got74] by Frama-C [CD08]. Even projects are themselves
hashconsed. However, if nothing is done, unmarshalling (the underlying op-
eration when loading) breaks the fundamental maximal sharing invariant of
hashconsing: the saved hashconsed values need to be re-hashconsed when
loading them. To do so, I worked with Damien Doligez from Inria, who
implemented in C the unmarshalling algorithm of the OCaml standard library,
and Pascal Cuoq, the main developer of Value at that time. We implemented
in OCaml a custom efficient algorithm that allows the developer to apply safe
transformers when unmarshalling values [CDS11]. Safety is ensured by the
datatype library.

libraries/datatype (4.4 kloc) contains the datatype library of Frama-C [Sig11]. This
library implements dynamic types that lift OCaml monomorphic types toward
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first-class expression. It also provides heterogeneous hash tables, which are
hash tables containing values of different types. Even if the library internally
uses the unsafe module Obj, its API relies on phantom types [Rhi03] to ensure
its correctness, informally expressed as follows:

Theorem 2.3 (Strong Correctness of the Datatype Library) If no un-
safe value is used outside the datatype library, well-typed expressions do not
go wrong.

The proof of this property as well as other proved properties of the library
can be found in the above-mentioned paper [Sig11].
This library was primarily developed to provide safe APIs to plug-ins dynam-
ically linked against the kernel. It is not used anymore for this purpose since
the Frama-C compilation toolchain has been improved. Still it would be the
only way to implement mutually recursive plug-ins but there are currently
none. Rapidly, the library was also used to provide two other features to
Frama-C. The first one is safe unmarshalling as already discussed. The second
one is safe journalisation [Sig14] which is a way to automatically generate an
OCaml script from the user actions for later replay: if loaded by Frama-C, this
script provides the exact same output as the initial user session. The journal-
isation algorithm also uses introspection primitives provided by the datatype
library.
Last but not least, this library also provides types together with standard
operations (comparisons, hash function, pretty printers, etc) through mod-
ules implemented in a compilation unit called Datatype. Such types with
their default operations are called datatypes. They are used throughout the
framework (1845 occurrences of Datatype) and implemented for newly defined
types. For instance, an extension called Cil datatype provides datatypes for
the types of the Frama-C AST (1266 occurrences, even though it is one of the
two modules — with the module Cil types containing the types of the AST
— that good Frama-C programming practice recommends opening).
Features introduced in OCaml in the last few years could possibly be used to
replace most usage of this library. However, a one-to-one replacement would
be a lot of work. In particular, some custom functionality could be hard to
replace, like pretty printing OCaml values as valid OCaml code. For instance,
they are usually not provided as such by existing alternative implementations
(e.g the dyntype library 29 or Alain Frisch’s implementation at Lexifi 30).

29. https://github.com/mirage/dyntype
30. https://www.lexifi.com/blog/dynamic-types

https://github.com/mirage/dyntype
https://www.lexifi.com/blog/dynamic-types
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A more realistic improvement would be to automatically generate datatypes
from type definitions through ppx rewriters 31.

kernel internals/parsing (4.8 kloc) contains the parser of C files annotated with ACSL
annotations. It generates an untyped AST, called Cabs, per C file.

kernel internals/typing (12 kloc) types and links Cabs AST in order to generate a
single Frama-C AST.

kernel internals/runtime (0.6 kloc) contains pieces of code that are executed when
starting Frama-C.

kernel services/parsetree (0.5 kloc) contains the untyped AST Cabs.
kernel services/ast data (7 kloc) contains the typed Frama-C AST as well as asso-

ciated tables which must be kept synchronized altogether, such as tables of
globals, functions, annotations and property statuses. I will introduce prop-
erty statuses in more details in Section 2.9.

kernel services/ast queries (19 kloc) contains standard operations over the AST.
For instance, the module Cil datatype belongs to this service.

kernel services/ast printing (4.7 kloc) contains the pretty printers of the AST.
kernel services/cmdline parameters (2.9 kloc) implements the parsing and the in-

terpretation of the Frama-C command line, which is extraordinarily tricky.
Indeed initializing Frama-C is composed of four stages, each of them being
decomposed into several steps and substeps, for a total of 19 (see plug-in
development guide [SAC+, Section Initialization Steps]). Such a complexity
comes from plug-ins. For instance, a few Frama-C options allow the user to
load a plug-in, while loading plug-ins often leads to registering new options
which must be detected on the command line. Furthermore, loading a pre-
viously saved Frama-C session requires loading the plug-ins which have saved
states, but additional options on the command line should be able to mod-
ify the loaded states. This complexity also partly comes from the fact that
Frama-C allows the user to put (most) command line arguments in any order.
It offers more flexibility to the user but it has a cost in term of complexity
which was certainly underestimated at the very beginning when almost no
features were present. Being stricter would certainly make the parsing and
the interpretation of the command line simpler. However, it could complicate
a bit the interpretation of such parameters in the GUI. Indeed, it is not always
appropriate to apply immediately the effect of modifying a parameter there,
but then it would require to save the modification sequence to apply them
in the correct order. As often, there is no perfect solution but, still, I would
probably choose another command line semantics for a new similar tool.

31. https://caml.inria.fr/pub/docs/manual-ocaml/extn.html

https://caml.inria.fr/pub/docs/manual-ocaml/extn.html
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kernel services/plugin entry points (6 kloc) contains the most important registra-
tion points for plug-ins. For instance, plug-in developers should register their
plug-ins into the kernel and be provided operations allowing user feedback, er-
ror messages and new (automatically projectified and journalized) parameters
as command line options.

kernel services/visitor (1.4 kloc) implements the object-oriented pattern known as
visitor [GHJV95]. It allows the developers to “visit” only a few nodes of the
AST instead of writing themselves a complete recursive traversal of the AST.
This way, when the operation of interest only focuses on some constructs
of the AST (of which there are plenty in the case of an ACSL-annotated C
program), it is possible to implement it in a few lines of code. The drawback
is that, unlike a standard recursive traversal, the type checker does not warn
the developer when some cases are missing.
Importantly, the visitor is the tool of choice in Frama-C for implementing
program transformations. It has two flavors: the in-place visitor, which visits
the AST in place, is dedicated to get information from the AST 32, while the
copy visitor generates a new project that contains by default a deep copy of
the original AST and lets the developer modify the AST. The visitor takes
care of preserving the kernel internal invariants between the AST and its
associated tables. It would be almost impossible for a developer to preserve
them correctly because they are many, almost undocumented, and not always
easy to preserve.

kernel services/analysis (4.5 kloc) implements a few static analyses directly provided
by the kernel. The most important ones are certainly generic backward and
forward dataflow functors.

kernel services/ast transformations (0.8 kloc) implements a few program transfor-
mations provided by the kernel.

kernel services/abstract interp (11 kloc) implements a generic toolbox for abstract
interpretation, in particular generic lattices.

This presentation of the Frama-C kernel is almost complete but still not fully
done. Even without mentioning its LablGtk2 graphical user interface (9 kloc) which
is as extensible as the rest of the framework, another important element for exten-
sibility is often ignored but is worth highlighting: the compilation toolchain.
Actually the effort spent on this obscure part of the tool is impressive even if I have
little evidence to prove that claim. In addition to the Git activities on this part of
the code, perhaps the only quantifiable evidence is the number of lines, which is

32. The Plug-in Development Guide [SAC+, Section Project Management System] actually in-
dicates that one should never modify the AST in place because the kernel cannot guarantee that
all its invariants are preserved. To be accurate, the only standard case where it is always safe to
modify an AST in-place is just after being inserted in a newly created project.
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about 1.8 kwloc of m4 for both configure of the Frama-C kernel and about 4.8 kwloc
for all its Makefiles (a few of them being automatically generated). Indeed this
part of Frama-C has been the most buggy part of the whole framework for sure. I
think that make is a powerful language with no current equivalent, but it has poor
genericity mechanisms and some important parts of this language have a compli-
cated unintuitive semantics. Consequently it is difficult to provide to the Frama-C
developers an easy way to implement their own plug-in Makefile, assuming that
(s)he has only basic knowledge of make. However, I currently see no other build
system for OCaml programs mature enough to be used.

Other difficulties of the compilation toolchain arise from the fact that it must
support several complicated features (parallel compilation, static or dynamic link-
ing, compilation of a plug-in inside or outside Frama-C, deactivation of some plug-
ins, verbose and silent compilation mode, etc) 33. The Frama-C Makefile is a pro-
gram of its own with a dedicated architecture shown in Figure 2.9. Despite the diffi-
culties of maintaining this large piece of code, I would like to highlight that it almost
succeeds in its original goal: it is easy to implement a Makefile for a simple plug-in
by setting a few variables and including a Makefile called Makefile.dynamic. I
will nevertheless not detail it deeper. The interested reader may refer to the Plug-in
Development Guide [SAC+, Section Makefiles] for additional details.

2.9 Frama-C, a Collaborative Framework

Context This section is mainly based on the Frama-C reference paper [KKP+15,
Section 3.4] and my publication with Löıc Correnson [CS12]. The last subsection
about the project Chekofv is novel.

Because of the Hugh G. Rice theorem, which roughly states that program anal-
ysis aims at solving undecidable problems (see Section 2.1), no program analysis
technique is perfect by nature. Consequently, even if it is really important to con-
tinuously improve particular analysis technique in order to successfully solve more
and more problems, no technique can ever claim to be the universal solution to
program analysis in general and to program verification in particular. To mitigate
this issue, the key Frama-C feature is analyzer collaboration. It allows the user to
combine several analyzers altogether to solve one particular problem that none of
them is able to solve alone. Analyzer collaboration comes in two different flavors
in Frama-C: either sequentially, by chaining analysis results to perform complex op-
erations; or in parallel, by combining partial analysis results into a full program
verification.

33. In an effort to reduce the maintenance effort of the compilation toolchain, the less used
features have been discarded in the latest releases.
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Figure 2.9: Relationship between the Frama-C Makefiles.

2.9.1 Sequential Collaboration

Sequential collaboration consists in using the results of an analyzer as input to
another one thanks to the plug-in APIs. For instance, it is easy to use the Eva
results through its API in order to handle at least function pointers and aliasing in
a safe and easy way. Actually all the abstract interpretation based plug-ins of the
open source distribution of Frama-C proceed that way: Callgraph, Constfold, From,
Impact, InOut, Nonterm, Occurrence, Scope, Security Slicing, Slicing, Sparecode and
Users.

Sequential collaboration can also consist in generating annotated C code, which
encodes a verification problem in such a way that it can be understood by the next
analyzers in the chain. It is actually why ACSL is often refered to as the lingua franca
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of Frama-C analyzers. For instance, the plug-in Aoräı generates ACSL annotations
which encode a Büchi automaton denoting a LTL formula. These annotations can
in turn be verified by, let’s say, Wp.

More generally, sequential collaboration is the raison d’être of all the plug-ins
classified in categories “support” and “expressiveness” in the LSL’s Frama-C plug-
in Gallery of Figure 2.4. Indeed support plug-ins aim at either computing data
to simplify the job of verification tools (“pre-support”), or simplifying their re-
sults (“post-support”), while expressiveness plug-ins aim at handling more complex
programs or properties by encoding them in simpler C code extended with ACSL
annotations. A more complex example of sequential collaboration will be provided
at the end of this section.

2.9.2 Parallel Collaboration

Parallel collaboration consists in using several analyzers to verify program prop-
erties, each analyzer verifying a strict subset of the whole goal. For instance, some
ACSL properties can be proved by Eva while most of the others are discharged by
Wp and the few remaining goals are validated by E-ACSL. This kind of collaboration
fully relies on an algorithm, named consolidation of property statuses [CS12], that I
have designed and implemented in the Frama-C kernel. It ensures the consistency of
several partial results. The algorithm is independent of any verification techniques
and particular programming and specification languages. Its correctness requires a
blocking semantics [GGJK08, HMM12] which expresses that, if an execution trace
leads to an invalid property, then the program stops. In particular, it does not
evaluate the next properties of the execution flow.

Overview of the Consolidation Algorithm

The consolidation algorithm takes as inputs property statuses emitted by the
analyzers after trying to prove a property (i.e. a subpart of an ACSL clause for
Frama-C): true, false, or don’t know. These statuses are called local statuses. A
local status may depend on the validity of some other properties — called its hy-
potheses — which are indicated by the analyzer when emitting it 34. For instance,
Wp may indicate that its proof of the postcondition of a function f depends on the
validity of the loop invariants of f . The algorithm first builds a consolidation graph
whose nodes denote properties and edges represent dependencies towards their hy-
potheses. Analyzers are represented by another kind of nodes with edges towards
the properties they established. A partial view of such a graph is represented in

34. Hypotheses over false properties are restricted to reachability of the associated program point
of the property, otherwise the algorithm is unsound. Details are omited here but may be found
in [CS12].
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Figure 2.10. It will be detailed later in this section. Yet one can see two analyzers
(Value and Wp, at the bottom) which try to prove several properties, those proofs
relying on (mutually dependent) hypotheses.

From this graph, the second step of the algorithm computes the consolidation
status of each property. It notably indicates if the property is fully proved, or not
proved at all, or only only locally valid (the consolidation status is then called valid
under hypotheses). In that latter case, the algorithm also computes what hypotheses
remain to be proven to conclude the proof. It also reports the invalid properties and
which analyzers prove which properties with which set of parameters, if several have
been tried (for example, in the case of plug-in Eva, different slevel values, slevel
being the parameter controlling the maximum number of states that Eva keeps at
the same time). Frama-C has actually additional statuses which refine either the
status valid or unknown (valid under hypotheses being one of them) in order to
improve user feedback.

Correctness and Completeness

Altogether this algorithm is both correct and complete in the following sense.

Theorem 2.4 (Correctness of the Consolidation Algorithm)
Assume that analyzers emit true (resp. false) for valid ( resp. invalid) properties.
Then, if the consolidation algorithm returns valid (resp. invalid) for a property π,
then π is valid (resp. invalid) in the underlying logic model.

Theorem 2.5 (Completeness of the Consolidation Algorithm)
Assume that analyzers emit true (resp. false) for valid (resp. invalid) properties
and also indicate all the hypotheses the proofs rely on. Then, if a property π is valid
(resp. invalid) in the underlying logic model and an analyzer emits a local status
different from don’t know under recursively valid hypotheses, then the consolidation
algorithm computes the consolidation status valid (resp. invalid) for π.

Both theorems rely on two distinct notions of correctness of the analyzers that
emit local statuses. The one for the correctness of the algorithm corresponds to the
standard notion of analyzer correctness: analyzers must emit correct verdicts. The
notion of correctness for the completeness of the algorithm is stronger: they must
emit correct verdicts but also specify all their hypotheses. It is in fact not true
in practice. For instance, Eva currently indicates almost no hypotheses because it
would take too much computing time for too small benefit. However, informally, the
more complete the hypotheses indicated by the analyzers are, the more complete the
results of the algorithm are (even if there is no proof of such a relationship). The for-
mal statements of these theorems as well as their proofs are in the above-mentioned
article [CS12]. Surprisingly the proofs are not trivial and proceed by induction on a
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Figure 2.10: Consolidation Graph for the assigns Clause of an Unprovable Version
of Kadane’s Algorihm.



46 Chapter 2 Frama-C, a Framework for Analyses of C Code

dedicated well-founded relation over properties that express a topological ordering
over vertices of the (possibly cyclic) consolidation graph 35.

Handling Inconsistency

Interestingly, the consolidation algorithm is able to detect inconsistency. Indeed
it is able to compute a special status named inconsistent. Actually, an extended
statement of the correctness theorem 2.4 handles this status as follows (the addition
to theorem 2.4 is the last sentence).

Theorem 2.6 (Extended Correctness of the Consolidation Algorithm)
Assume that analyzers emit true (resp. false) for valid ( resp. invalid) properties.
Then, if the consolidation algorithm returns valid (resp. invalid) for a property π,
then π is valid (resp. invalid) in the underlying logic model. If it returns inconsis-
tent, then π is both valid and invalid.

If we assume that the underlying logic model is consistent 36 and so a property
π cannot be both valid and invalid, then the last sentence means that computing a
status inconsistent implies that the assumption of the theorem, that is correctness
of analyzers, is wrong. Consequently, the consolidation algorithm may detect incor-
rectness of analyzers. That is a very nice feature because correctness of Frama-C
analyzers is by far the most important property of the framework: incorrectness
should never ever happen. However, it already happened in a very rare circum-
stances that the status inconsistent was emitted. Everytime, the reason was the
same: incompatible implicit hypotheses. Indeed analyzers usually rely on hypothe-
ses that guarantee correctness of their results but are not explicit. For instance,
depending on its memory model, Wp may rely on non-aliasing of the arguments of
the proved function while Value and Eva make some assumptions about their ini-
tial state. It is the responsability of the users to enforce these hypotheses through
the verification methodology. When combining analyzers, it is usually tricky and
error prone since the user must also combine hypotheses. That is why it is so im-
portant to make explicit such analyzer hypotheses, usually called explicit assump-
tions [CMW12, KCC+14]. However, even though Frama-C provides a (arguably

35. Beside this paper proof of the core of the algorithm, there is rigorous unit testing of its
OCaml implementation which covers all the 234 different cases of the consolidation algorithm when
an analyzer has emitted a status with 0, 1 or 2 hypotheses. Considering the criticality and the
non-triviality of this algorithm, I think that a formal proof would be a valuable effort even if no
bugs have been found for a while. Actually, as far as I remember, only one bug in a corner case
was found since unit testing has been done (as usual, the implementation did not exactly match
the paper algorithm). Yet it is the case that a paper proof combined with rigorous unit testing is
not enough.

36. That is unprovable in a provably consistent logic model from Kurt Gödel’s second theo-
rem [Gö31, vH76].
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primitive) way to express such properties and associate validity statuses to them,
plug-ins unfortunately do not emit them. Providing a simpler way to make such
explicit assumptions would be a nice improvement for Frama-C global correctness.

Example

In order to make this algorithm more concrete, let us go back to our running
example, that is the annotated function max subarray presented in Figure 2.2.
Assume that one wrongly modifies the loop assigns clause, then tries to prove
the program with Value and Wp in that order. Then the proof of the loop assigns
clause fails. Otherwise said, Wp reports the local status don’t know, while Value
does not even try to prove any loop assigns and so emits no local status. Then
all the properties are proved by Wp (so they have a local status true) while relying
on the validity of the loop assigns: they get a consolidation status valid under
hypotheses and are displayed with a specific bullet containing both colors green
and orange in the GUI 37 as shown in Figure 2.11. That is for example the case
for the assigns clause in the function contract of max subarray. The Frama-C
GUI is able to display the consolidation graph of a particular property p, which is
the transitive closure of the nodes reachable from p in the (global) consolidation
graph. Figure 2.10 shows this graph for the assigns clause 38. It indicates that
all properties are proved either by Value or Wp, but the loop assigns clause is
orange. Consequently the user knows that (s)he must concentrate his (her) effort
on this particular property. The watchful reader might notice that all properties
but the assigns clause are mutually dependent. That is because they belong to
the same loop and so both are goals to be proven and are induction hypotheses.

Related Work

It is worth noting that Frama-C is not the only tool which provides parallel
collaboration but, as far as I know, it provides the most fine-grained collaboration
taking care of correctness. For instance, the Eve verification environment [TFNM11]
for Eiffel programs combines a deductive verification tool and a testing tool. In con-
trast to Frama-C analyzers, these tools are not supposed to be correct. Consequently,
Eve computes a so-called correctness score for each property. Spark2014, the tool
suite dedicated to the verification of a formal subset of Ada, also integrates both a
verification tool and a testing tool but the collaboration is more coarse because it
is made at function level, not at property level [CKM12]: for each function f , the

37. Since PolySpace, the meaning of colors green and orange in code analyzers is respectively
valid and don’t know, while the color red means invalid. Frama-C extends this panel of colors with
additional bullets for its extra statuses.

38. For the sake of clarity, the properties guaranteeing the absence of undefined behaviors are
omited in this figure.
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Figure 2.11: Incomplete Proof of the Kadane’s Algorithm in the Frama-C GUI.
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user can choose whether its properties must be proved or tested, but (s)he cannot
decide to prove some of the properties of f and test the others. I limit myself to
these two large-scale maintained tools but a few other (arguably not up-to-date)
related works may be found in the related paper [CS12].

2.9.3 The Example of Project Chekofv

DARPA project Chekofv, in which I participated from 2012 to 2015, examplifies
the advanced collaboration capabilities of Frama-C. Indeed, it is one of the exam-
ples, if not the example, that directly uses the largest number of different plug-ins
to solve a common goal. The goal of Chekofv was to crowdsource the inference
of loop invariants by means of computer games (and their gamers) [FSL+15]. In
this context, I developed three Frama-C plug-ins named Fusy, Invmerger and Hard-
check which contribute to either produce game input data or to verify the solutions
provided by the gamers. They exchange data and are also directly built upon the
plug-ins Slicing, Value, Wp and Counter-Examples.

Fusy first slices the program according to each target loop. Then, for each slice
(so for each loop), it runs Value in a precise way (similarly to a symbolic execution).
During this run, it intercepts the precise computed values for each loop variable at
each loop iteration through hooking facilities provided by the Value API. Finally,
it converts collected data to game inputs. From these inputs, a game is built (this
part was done by University of Santa Cruz). The solution provided by a gamer
is then a candidate loop invariant expressed by a logic formula. Invmerger inserts
such a formula as an ACSL loop invariant into the slice previously computed by
Fusy. Finally Hardcheck tries to verify them. For this purpose, after a few program
transformations like function inlining to automate the process, it runs Wp to verify
the candidate invariant. In case of failure, Counter-Examples is run in order to
propose a candidate counter-example, which in turn, Value attempts to verify. If
not verified (meaning that it might be a real counter-example), Hardcheck converts
it back in terms of Fusy’s game input data in order to produce feedback to the
gamer who has proposed a wrong answer. All in all, Hardcheck directly needs to
use the API of six plug-ins (both Fusy and Invmerger as well as of Slicing, Value, Wp
and Counter-Examples) in order to validate the answer from the gamer and giving
it some feedback.

Even if the results of the project were unconclusive because the initial target
application (the bind program) was arguably too ambitious, these three plug-ins
helped to improve and demonstrate Frama-C collaboration capabilities: a powerful
tool was developed which only relies on three small plug-ins (about 0.7 kloc for Hardcheck
for a total of about 3.1 kloc).
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2.10 Frama-C, an Evolving Framework

Context This section is novel.

Most of my contributions to the Frama-C kernel were done from 2007 to 2011,
even if I continued more and more sparsely to add new features up to 2015. I
think they have helped Frama-C to evolve from a young promising prototype to a
mature industrial-strength tool. Nowadays my contributions to the Frama-C kernel
in terms of new lines of code is small, mainly consisting of small patches. I focus
more on code reviews and disseminating my knowledge of the platform internals to
newcomers. However, the platform is still evolving. This section summarizes what
could be learnt from the past twelve years and what could still be done in Frama-C
and beyond.

2.10.1 Lessons Learnt

Frama-C is now 13 years old. I worked on this tool since 2006, about 11 years ago.
At the origin, in 2004–2005, Frama-C was mainly developed by two intrepid OCaml
programmers, namely Pascal Cuoq and Benjamin Monate. When I arrived, only a
handful of engineer-researchers at LSL worked on the tool. Nowadays at LSL, fifteen
engineer-researchers contribute to the platform as well as several PhD students and
postdocs constituting a team with size varying from twenty-five to thirty persons.
During these years, I think that all the lab including myself have learnt a lot about
software development. It is almost impossible to report all of these lessons here,
but I will summarize here the most important ones that I have personally learnt.
I would like to emphasize that this section contains claims that are built upon my
personal experience, but are not supported by formal proofs: they are debatable.

Lesson 1: A piece of code is rewritten at least twice before being mature.

I wrote several libraries for Frama-C and a development scheme has emerged:
after the original development of a new library, its users require new features that
are often added in a rush. At the time it becomes necessary to clean up the API:
that is the first rewriting. Then, after a new period of uses including bug fixes and
small extensions, another rewriting is usually necessary to design a better library
architecture based on better data structures. That is the second rewriting. Then
either the library becomes stable, or a new cycle of features and bug fixes come
depending on the context.

One could claim that the proper library architecture, data structures and API
could have been done in a proper way from the start. However, I do not think
so: in a research project, the final needs rarely match the initial needs, while the
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implementation regularly relies on original solutions for which it is hard to elaborate
from scratch without a bit of experimentation.

This statement is actually in line with Frederick P. Brooks which explains in a
wonderful way that one should “plan to throw one [system] away; you will, anyhow”
because “for most projects, the first system built is barely usable: too slow, too big,
too hard to use, or all three.” [Bro75].

Lesson 2: Major central evolution is a pain.

Modifying an API that is used everywhere requires propagating the changes all
along the codebase, including in parts that you do not maintain yourself. Even if
the API remains stable, a major evolution takes months, literally (particularly when
you do it part-time). During that time, conflicts usually arise. They can be hard to
fix and certainly consume lots of time. They do not necessarily occur because two
commits modify the same part of the code, but because side-effect modifications
impact common parts like Makefiles (see Figure 2.9) and oracles of non-regression
tests which must be kept up-to-date.

For instance, it was possible to introduce rather smoothly the project library
(see Section 2.8) in 2007-2008, because the codebase was relatively small at that
time. It would not be possible anymore on the current codebase (which now has
thousands of uses of this library as already explained in Section 2.8).

Lesson 3: Historical mistakes are hard to overcome.

This is a corollary of the previous lesson. Indeed wrong design choices are
sometimes made, in particular when developing a research tool for which you have
no clear idea of what you really want to do. However, modifying such bad choices
with large impacts is really hard.

For instance, a module named CilE was introduced in the first days as a dedi-
cated extension of Cil for Frama-C. This file grew regularly in the beginning. It was
a mistake because Frama-C became so large and so different from Cil that it was not
possible to put all the extensions in this single file. Even if the file has been almost
cleared out since 2009, it still exists today as part of Eva, and newcomers do not
even know what its filename means.

Lesson 4: Knowledge of the code must be shared.

In small teams, a piece of code is often developed by a single developer who is
then in charge of maintaining it. However, during the project lifetime, this person
may leave for a while or permanently. He/she may also be overworked, while mod-
ifications have to be done. Then someone else has to maintain the code. To do
so efficiently, (s)he must understand it well. It includes the understanding of both
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the technical details with the help of the code comments, and of the overall code
organization together with why it is designed as it is. The latest changes are often
not documented directly in the code because code comments do not fit that need.
So they must be documented elsewhere. Generally it is only in the head of the
developer because writing a global code design document is a time-consuming task.
That is why such code knowledge should always be shared between at least two per-
sons for every piece of code. Unfortunately that is not the case in Frama-C, where
many pieces of code are known by either no or one developer. Actually one of the
main raison d’être of several of my publications [Sig09, Sig11, Sig14, JKS15b, AS17]
is to share the core design of some important pieces of code.

Lesson 5: Code review does increase the quality of the code.

Up to the end of 2014, Frama-C developers directly committed in the master
branch of the revision control system whenever they think the development was
ready. Even if everyone did his (her) best, mistakes occur including bugs, compati-
bility issues and misfeatures.

At the end of 2014, the Frama-C development version was migrated to Git and
Gitlab together with a major evolution of the Frama-C development process. It
includes peer code review. Every single commit which modifies more than a few
bits is reviewed by at least one engineer-researcher, the choice of the person being
made according to which part(s) of the code is (are) being modified 39.

It has lots of benefits:
1. the code is less buggy because the reviewer is often able to detect bugs not

caught by testing;
2. the code is much more commented because the reviewer really needs to un-

derstand it;
3. the code knowledge is shared, fulfilling the previous lesson;
4. reviewing includes recorded discussions on Gitlab about design and feature

choices. Recording is particularly important to save the tool history and
remember why particular choices were made.

All in all, the quality of the recent pieces of code is much higher than the older
ones. It is definitively worth the many hours spent in reviewing.

Lesson 6: Single code review fails to build expertise.

Another goal of code reviewing was to build double expertise for the pieces of
code with no or only one expert. Unfortunately that has not worked up to now.

39. Code review does not concern prototype plug-ins written by interns and PhD students, except
if it is considered general purpose and good enough to be integrated in the mainstream version.
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Indeed the developers tend to assign merge requests to be reviewed to an expert of
the corresponding piece of code, not to a newcomer who would need to learn it. It
is certainly better for the quality of the review but it does not help at all to reach
the double expertise goal. To solve this issue, it would be necessary to assign merge
requests to two reviewers, one expert and one newcomer. However, code review is
costly and we decide not to spend additional manpower for such a task for the time
being. The most visible drawback is that code review is almost always done by the
very same group of Frama-C experts: without double reviewing, it takes very long
to build expertise upon a large codebase.

Lesson 7: Non-regression testing takes both CPU and human time, but it is worth it.

From its earliest days, Frama-C has a larger and larger non-regression test suite
(organized by plug-in). The golden rule is:

Never ever commit (or merge) as long as at least one oracle of the non-
regression test suite is broken.

We develop tools to support this rule: ptests.opt allows running the tests in parallel,
to check the differences between the current results and the saved oracles and to up-
date the oracles when necessary [SAC+, Sections Testing and Ptests]. Another tool
has been used for years to run the tests and additional checks on different systems
each night with a morning report. It has been replaced by another Gitlab-based tool
which performs many checks before allowing the reviewer to merge commits.

It really helps the developers not to reintroduce old bugs, or not to introduce
new ones in the tool. However, running them take a lot of time (several minutes
per run) and so make servers busy and force the developers and reviewers to learn
patience. To reduce this drawback while keeping its benefits, a strong test manage-
ment strategy must be defined to add meaningful minimal test cases for bug fixes
and new features without compulsively integrating useless computations. We — the
Frama-C development team — certainly has room for improvement in that respect.

Lesson 8: Industrial quality for research development platforms is nearly impossible.

A mature industrial-strength tool requires stability, notably backward compat-
ibility. When the tool aims to be used as a development platform, that includes
stability of its API. However, a tool developed from research results requires major
evolution to breakthrough. It means whole re-implementations of some pieces of
code with API rewritten from time to time (see Lesson 1). Clearly both objectives
are not compatible. It also (partly) explains why a research lab should never
try to do what a company does: put and maintain a product on market.
As soon as a product has many users with high expectations (particularly in terms
of stability), it is hard to make it strongly evolve and, consequently, it may slow
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down research-guided development drastically. For several years now, Frama-C has
been really caught in the middle: sometimes major necessary evolutions are not
done or reported for a while because of the expected backward incompatibilities,
while incompatibilities are introduced without paying attention enough to possible
consequences some other times.

A solution could be to clearly indicate the maturity level of the different (parts
of) APIs in a way that users could expect stability or evolution in future releases 40.
Of course that is easier written than done, since evolution is difficult to predict by
nature. However, it would provide useful indications anyway and it is still roughly
doable: if an API is used, well documented and remains unchanged during two
releases, we might expect it will not be broken in the next ones, while a newly
introduced API might be modified in an incompatible way in the next release.

Lesson 9: Keep small groups of contributors for a task, or let it die.

Put lots of people in a room with a decision to be taken, close the door and
wait for a consensus. Almost always either no final decision is finally taken, or a
bad compromise is made 41. If you want that things to proceed, just select at most
five or six persons. Only then, you have a chance to see strong not-too-bad actions
initiated. The main difficulty of this process is certainly to convince possibly strong-
minded persons to not participate in a decision process without offending them.
Keeping groups small is also beneficial for global productivity because people who
do not participate in one particular decision save time for something else, possibly
even more important.

Lesson 10: A 10+-developer team is hard to keep on track of.

As explained in the beginning of this section, the Frama-C team grew from a
handful of persons in the beginning to nearly thirty persons. That is really not the
same in terms of management. At the beginning, everyone developed more or less
what (s)he would like even if (s)he should let the others know of major upcoming
changes. It is not possible anymore because of the large impact of such changes (see
Lesson 2) and because of the many concrete objectives that must be fulfilled for
industrial contracts and project deadlines. Planning is required. However, even if
the team goals are the same, no individual has exactly the same, neither in terms of
development nor research. Also both the team objectives and the individual goals
may move quickly. It makes planning difficult.

40. There is almost no issue with end-user features: either they remain backward compatible, or
they are almost useless and eventually die.

41. Another possibility is that some participants are actually irrelevant and are not involved in
the decission process, but then they just waste time.
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Since a minimum of global planning is nevertheless necessary in a large team
to reach its most important goals, it is not possible anymore to let everyone fully
decide his (her) own priorities. However, I do not think that a unique leader is a
good solution because everyone should keep a certain amount of liberty of action
in order to fulfill individual objectives as long as they are in line with the global
project. Since about three years ago, consistent with Lesson 9, we are trying a
new light organization with small groups of persons working on important parts of
the framework: the kernel, Eva, Wp, and E-ACSL. Each group is led by one senior
researcher but they are organized in different ways (as far as I understand how each
of them works, particularly those which I am not involved in). Groups help us to
set priorities for the most important parts of the framework without disturbing too
many individuals. For instance, the kernel group has improved the Frama-C release
process with a 6-month agenda for each release. Even if this organization works
rather well for the time being, I think that this experiment is a bit too recent to
draw definitive conclusions. Slight modifications might be required. However, one
should not forget that planning is mandatory to reach milestones in time,
but freedom is the mother of high-quality research.

2.10.2 Frama-C Perspectives and Beyond

Frama-C is a more mature tool today than ten years ago, but it is still far from
being perfect. Even without talking about specific plug-ins and limiting myself to
the kernel, a lot remains to do from both an engineering point of view and research
perspective.

Software Engineering

From an engineering point of view, Frama-C’s architecture and API still suffer
from several major drawbacks despite many improvements over the years. They
both show the burden of history and a few bad compromises in desperate attempts
to satisfy everyone and eventually make everyone frustrated. In particular, the cum-
bersome heritage of Cil is still present. Even if its existence was of primary impor-
tance at the beginning, its monolithic API in the middle of other badly-structured
files is a daily pain for any Frama-C developer: if you search for a particular function
related to the AST, it could belong to about ten large files and their “organizations”
just let you feel very alone. Even worse, this large API does not consistently provide
the most important feature for writing program transformations: smart construc-
tors, that is small functions enforcing the necessary invariants while building pieces
of AST 42. Unfortunately, because of the difficulty of central evolution (see previous

42. There are many smart constructors, but several are missing, while others are not really smart.
Also they are randomly disseminated in several files and so may be hard to find.
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section, lesson 2), this architectural defect is really hard to overcome. That explains
why it is still here.

Not only did Frama-C evolve over the years. OCaml did too. We regularly
upgraded the minimal OCaml supported version to take benefit from its latest im-
provements (and bug fixes), but still one major recent feature remains unused: ppx
extensions which provide a way to write powerful syntax extensions understood by
the OCaml compilers. They could possibly allow Frama-C to automatically generate
standard sets of functions. For instance, datatypes could rely on Deriving 43 while
visitors could be based on François Pottier’s Visitors library 44. Once again, it
would lead to a difficult major evolution of the framework.

Analyzer Collaboration

At the boundary between engineering and research, there is analyzer collabora-
tion, the most important feature of Frama-C as a whole (see Section 2.9). Currently,
Frama-C analyzer collaboration is a reality but it remains difficult to apply at a wide
scale because of several deficiencies. First, invalid properties are hard to deal with
because of the consolidation algorithm: they cannot depend on another property
(except the reachability of its own program point) because it would open the door
to incorrectness [CS12]. Reachability is usually proved by exhibiting an execution
trace through dynamic or symbolic computation. However, there is no such no-
tion of trace in Frama-C. Also, combined with the semantics of ACSL, the notion
of (property) reachability is surprisingly tricky because properties are not only at-
tached to program points as usual, but could also be attached to ACSL behaviors 45.
The semantics of property reachability needs to be clarified before hard-coding it
in Frama-C. Nevertheless being able to handle traces directly inside Frama-C would
probably help dynamic and symbolic analyzers report invalid properties in a more
precise way.

At the architectural level, it seems that a new form of collaboration is emerging:
basic blocks implementing generic static analysis to be used in larger analyzers, but
not directly interesting for the end-users (e.g. light alias analysis or postdominator
calculus). In the current Frama-C architectural design, the status of such generic
analyzers is not clear. At a first glance, the kernel service directories analysis and
ast transformations seem dedicated to them, but it is not the spirit of the framework
to integrate such extensions directly in the kernel. Furthermore, a few others are
either provided through plug-ins like Postdominators, or are directly part of a larger
plug-in like E-ACSL or Wp (and often not as generic as possible in this last case).

43. https://github.com/whitequark/ppx_deriving
44. https://gitlab.inria.fr/fpottier/visitors
45. The private issue # 1256 on that topic is opened on the Frama-C BTS since August 2012.

https://github.com/whitequark/ppx_deriving
https://gitlab.inria.fr/fpottier/visitors
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However, even if it is now possible to export a nice API for these plug-ins 46, a
smoother way to integrate them in the Frama-C ecosystem remains necessary to
make such plug-ins popular.

Interestingly the new Eva extension mechanism [BBY17] is also a new promising
way to provide collaboration through abstract domains: developing specific Eva
abstract domains, which take benefit from other Eva domains is currently a hot
topic which seems to be not limited to LSL. The best trade-off between hard-
coded information and possibility of customization (at the price of more code to
be written) is not yet known and will certainly evolve in the next years. It is not
just limited to abstract interpretation since, for instance, it opens the door to new
direct collaborations between Eva and Wp (beyond the mutual exchange of proved
properties) [BBYS18].

At system level, analysis collaboration also raises interesting questions. Sec-
tion 2.9 already introduced how important, but hard to deal with, are implicit
hypotheses. More generally, issues arise when trying to combine different tech-
niques to validate a system, particularly when they do not provide the same level
of confidence (e.g. when mixing tests and proofs) because it is not clear what is
really guaranteed by such a combination of techniques. The basis of a background
theory has been defined during the master internship of Antonin Butant [But16]
that I supervised in 2016, together with Benôıt Boyer and David Mentré from
Mitsubishi Electric, Catherine Dubois from ENSIIE, and Virgile Prevosto
at LSL. However, this promising work is not yet complete. Another research di-
rection consists in defining coverage criteria that could be applied to determinate
which parts of the code and of the specification is covered by a verification process
involving both dynamic and static techniques. Such criteria would be particularly
useful when combining verification techniques in normative domains like avionics
with the standard DO-178C. That is the purpose of the ongoing PhD of Viet Hoang
Le that I currently supervise with Löıc Correnson at LSL and Virginie Wiels at
Onera [LCSW18].

Systemwide Verification

Remaining at the system level, how to link properties verified on a model and
proved ACSL specifications on C code is still an open question. Refinement-based
approaches that automatically generate annotated code from a verified model is
one possibility but it is not always doable. Research in that direction could unify
Frama-C and Papyrus 47, the Eclipse-based modeling environment for model-driven
engineering also developed at CEA. It could also involve other tools, such as Easy-
Crypt and ProVerif when interested in security protocol verification. The former has

46. It was not possible before Frama-C Neon, released in March 2014.
47. https://eclipse.org/papyrus/

https://eclipse.org/papyrus/
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already been tried [ABBD15] (even if the link between the EasyCrypt model and the
ACSL properties is unfortunately not detailed in the reference), while the latter is
ongoing work in the context of the French ANR project AnaStaSec.

On the practical side, applying Frama-C analyzers to new applicative domains
(e.g. robotics or medical devices) is usually necessary to improve Frama-C because
it becomes exposed to unexpected pieces of code or properties possibly difficult to
handle. Among these domains is learning: with the recent achievements of deep
learning (e.g. the recent advents of AlphaGo in the game of go [SHM+16, SSS+17]
to take a single example outside the traditional applicative domains of formal meth-
ods), neural networks are more and more used in critical systems to improve their
level of automation. This raises the question of verifying such Artificial Intelligence
based systems [SSS16]. That is a difficult challenge particularly because neural
networks are hard to specify. For instance, their specifications may require prob-
abilistic models. We could also consider the other way around: how these new
achievements in machine learning could increase the automation level of program
verification tools like Frama-C and so help their dissemination. Together with three
European partners and colleagues at LSL, I submitted a European project proposal
on that topic in January 2017.

On the other end of the spectrum, Frama-C analyzers and proved ACSL anno-
tations could also be used in optimizing compilers. This idea is not new and has
even been already explored using ACSL annotations [GNP+15]. However, the static
analysis currently embedded in compilers is either light or incorrect: when they are
too aggressive, they do not necessarily preserve the semantics of the input program.
I think that there is room for additional research in that direction in order to pro-
pose safe aggressive optimizations based on both analysis results and proved formal
properties.

Last but not least, C is not the only programming language used in critical
systems. Frama-C plug-ins JCard and Clang already deal with (large subsets of)
JavaCard and C++ respectively. Another (rather unconclusive) try was also made
with Python. In each case, the approach consists in generating a Frama-C AST
from an internal representation of the input programming language, so as to com-
pile a program from a given language L to C. It has the huge benefit to prevent
the development of new analyzers for each programming language: “just” analyze
the generated code and trace back the results to the original code and that’s it.
Unfortunately, it also has three main drawbacks. First, the Frama-C analyzers usu-
ally have a hard time understanding the generated code, for instance the encoding
of a virtual method table through a table of function pointers. Next ACSL does
not usually fit all the needs of the input language and so needs to be adapted. It
is planned work for C++ with the design of ACSL++, but it is not an easy task.
Finally dealing with the runtime of the language and its standard library is also dif-
ficult and requires extra effort. To solve these issues (at least the first two ones), a
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better approach might be to develop a new AST able to natively express constructs
of mainstream programming languages. However, it would increase significantly the
number of constructs to be supported by analyzers. To circumvent this issue, ded-
icated transformations could be developed to remove particular constructs. This is
actually what plug-ins Variadic and Volatile already do for C programs. Interestingly,
when developing the Clang plug-in, exceptions were added to the Frama-C AST to
simplify the translation from the C++ AST. They are automatically removed by
the Frama-C kernel when building the AST. It may be seen as a proof that this
approach is fully doable. If generalized to other difficult language constructs, it
would allow every analyzer to decide to support them natively for better results, or
let the front-end replace them by simpler constructs. The effort to develop such a
generic AST and the associated transformations is however so large that it might
require starting a new project to replace Frama-C by a new tool. Developing such
a new tool would also have the benefit to set up a clean architecture.





3
E-ACSL

a Runtime Verification Tool

Tesuji (Skillful Finesse)

Lee Sedol’s winning tesuji against AlphaGo
(Game 4 of the match AlphaGo – Lee Sedol, 2016/3/16).

E acsl was born on 21 February 2011. It is the runtime verification plug-
in of Frama-C and certainly one of my most important contributions to
this framework. It is currently my main research topic. This chapter
details this tool, from its research context (Section 3.1) to its perspec-

tives (Section 3.5) through its specification language (Section 3.2), its main current
features (Section 3.3), and its usages (Section 3.4).

3.1 E-ACSL, a Tool on a Young Research Domain
Context This section is novel, but takes inspiration from existing surveys on run-
time verification [HG05, FHR13], runtime assertion checking [CR06] and dynamic
memory analysis [LCH+06].

I present here a short overview of runtime verification, runtime assertion check-
ing and dynamic memory analysis, as well as the relationship between these topics.
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It does not aim at being complete, but at introducing the context in which E-ACSL
evolves.

3.1.1 Runtime Verification

As a research domain, runtime verification is the study of rigorous techniques
that analyze the behavior of programs or systems during their executions. The over-
all goal of this research domain is to improve the confidence in such programs and
systems by discovering defects with respect to their intended behaviors expressed
as formal specifications. Runtime verification may be seen as lightweight formal
verification. Indeed runtime verification techniques are usually based on formal
reasoning, but they are often lighter (so less expensive) than static formal program
analysis techniques because they only focus on executing some program traces with-
out checking all of them. They are also able to find more defects than standard
testing techniques — at similar costs — because the extra properties checked at
runtime are often invisible from test oracles.

According to Klaus Havelund and Allen Goldberg [HG05], the terminology
runtime verification was introduced in 2001 through the first workshop on Runtime
Verification 1. This workshop may be seen as the starting point of runtime verifica-
tion as an independent research domain with its own community of researchers and
practitioners. The workshop series on Runtime Verification was converted into an
international conference series in 2010. This attests to the development of the field
which is still ongoing: since 2014, the European ICT Cost Action ARVI 2 — which I
am involved in — aims at developing the European expertise in the field by grouping
together its active European researchers. Notably, this project already contributes
to the International Runtime Verification Competition (CRV) [BFB+17] since 2014,
and initiates the first Summer School on Runtime Verification in 2016 [CF16]. Ergo
Runtime Verification is still a young growing research domain.

3.1.2 Runtime Assertion Checking

Despite runtime verification being a young scientific discipline, verifying prop-
erties at runtime is definitively not a recent idea with its origin in the seventies,
at the time of the birth of the monotheistic religions of static program analysis.
Indeed, as explained in Section 2.1, assertions are as old as programs [GvN47]. At
that pioneering time, assertions were just Boolean expressions. They were later
extended to first-order logic by Robert W. Floyd [Flo67]. Since infinitely many
terms of first-order logic cannot be evaluated in finite time by a computer, that is
an indication that the primary goal of assertions was not runtime evaluation, but

1. http://runtime-verification.org/
2. https://www.cost-arvi.eu/

http://runtime-verification.org/
https://www.cost-arvi.eu/
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program documentation and formal reasoning for establishing program correctness
as stated by Lori A. Clarke and David S. Rosemblum [CR06]. The wonderful
historical survey of Cliff B. Jones [Jon03] provides additional evidences about the
initial need of assertions for mathematical reasoning instead of runtime verification.

Lori A. Clarke and David S. Rosemblum explain that the idea of monitoring
properties at runtime emerged in the mid seventies in the programming language
and compiler communities as a simpler and more practical alternative than formal
proofs of correctness [CR06]. Since runtime checks were usually introduced through
a dedicated assert language construct or a specific assert preprocessor macro, the
wording runtime assertion checking became popular even if the expression self-
checking programs was also used for a while [YC75]. Such runtime assertions were
regularly introduced in academic programming languages and systems in the late
seventies and during the eighties, notably through extensions of Fortran [SF75] and
Ada [LVH85, Luc90]. They were eventually added to the C programming language
through the macro assert and were popularized to support defensive program-
ming by the commercial programming language Eiffel [Mey88, Mey92b]. Eiffel was
also one of the first language to propose Bertrand Meyer’s design by contract
approach [Mey92a], which lifts assertions from statements to functions and larger
components like objects and modules. At the turn of the millennium, this ap-
proach was adopted by dedicated specification languages for mainstream program-
ming languages like JML [LBR99] for Java, Spec# [BLS04] for C# and, of course,
ACSL [BFM+] for C. For the latter, it is worth noting that it goes back to sources
of assertions by using them for formal reasoning only. The implications of this
fundamental design choice will be discussed in Section 3.2.

3.1.3 Dynamic Memory Analysis

While checking monitoring properties at runtime concerns both the compiler and
the programming language communities, the former is not that much involved in
runtime assertion checking, which is more related to the design of specification lan-
guages as explained above. It is more concerned with monitoring properties induced
by the programming language semantics that do not involve a manual process such
as writing assertions. In low level programming languages such as C, these are often
memory-related properties. Indeed, in such languages, most programmer mistakes
come from trying to access an invalid memory location, e.g. when dereferencing the
null pointer. This important concern led to the development of dynamic memory
analyzers, also known as memory debuggers, which are tools specialized to find de-
fects when accessing memory at runtime by instrumenting the program code either
at source code level or at binary level.

In the seventies, Jung-Chang Huang provided one of the first methods (if
not the first method) to detect memory errors through source code instrumenta-
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tion [Hua79]. Since that time, lots of tools have been released [LCH+06], almost all
of them for debugging C and C++ programs. There are about as many commercial
tools as free software. It may be seen as an evidence of the need for such tools in
the software industry. Today the commercial tools Purify [HJ92] and Insure++ 3, as
well as the free software MemCheck [SN05] embedded in Valgrind [NS07], Dr. Mem-
ory [BZ11], and AddressSanitizer [SBPV12] are certainly among the most famous
dynamic memory analyzers. The latest one, provided by Google, is currently con-
sidered to be the most efficient one and is integrated within Clang and, recently,
Gcc.

3.1.4 Runtime Verification vs Runtime Assertion Checking vs Dynamic Memory
Analysis

From the above definitions of runtime verification, runtime assertion checking
and dynamic memory analysis, it should be clear that the latter two are sub-fields
of the former. However, there are currently major differences between them which
has led to three almost separate communities.

First, there is no intersection between runtime assertion checking and dynamic
memory analysis: as far as I know, no general-purpose formal specification language
for runtime assertion checking (except E-ACSL, see Section 3.2.9) provides support
for verifying memory properties, while dynamic memory analyzers do not require
their users to write annotations. Beyond this, researchers on runtime assertion
checking are mainly concerned with expressiveness and semantics of specification
languages, while researchers on dynamic memory analysis are more concerned with
time and memory efficiency in terms of overhead with respect to the original (unin-
strumented) program. Runtime verification stands in the middle, being concerned
with finding the right balance between efficiency and expressiveness [FHR13].

Next, researchers of these fields are usually not concerned with the same prop-
erties: runtime assertion checking is concerned with functional (safety) properties,
dynamic memory analysis is concerned with memory properties (several of them
leading to common security vulnerabilities), while the runtime verification commu-
nity leans towards temporal properties because lots of its researchers come from the
model checking community. To support my latest claim, I could rely one more time
upon Lori A. Clarke and David S. Rosemblum who write that “assertions [...]
are an important element of model checking in which [...] a program’s execution is
checked against logical assertions expressing temporal safety and liveness proper-
ties” [CR06], but also upon Martin Leucker and Christian Schallhart in their
brief account of runtime verification [LS09b]:

As runtime verification has its roots in model checking, often some vari-
ant of linear temporal logic, such as LTL [Pnu77], is employed.

3. https://www.parasoft.com/product/insure/

https://www.parasoft.com/product/insure/
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Finally, runtime verification relies on notions of events and traces in addition
to properties to be checked. Indeed, the general goal of a runtime verifier may be
expressed by its capability to check that a runtime trace τ of a program, τ being rep-
resented by a finite sequence of (possibly parametric) events, satisfies a specification
φ which denotes a set of correct behaviours of the program. One current challenge
of the runtime verification community in this respect is to provide definitions of
events and traces that would be general enough to capture most usages [RH16].
However, these notions usually remain totally implicit in runtime assertion checkers
and dynamic memory analyzers for which an event is a program state associating
a value to every program variable (or, more generally, memory location) and the
trace of interest is the sequence of states from the entry point of the program up to
the current execution point.

However, the above-mentioned differences between the three communities tend
to keep them relatively separated and make exchanges and discussions sometimes
more complicated than they should be. Nevertheless the ongoing effort of the run-
time verification community for uniformizing languages and definitions, in particular
through the ICT action ARVI , is definitively a step in the right direction. Since
E-ACSL is both a runtime assertion checker and a dynamic memory analyzer, while
also being able to deal with temporal properties and even more (as the following
sections will hopefully demonstrate), I hope that the ongoing research effort on this
tool might contribute to making collaborations between these communities easier
and fruitful.

3.2 E-ACSL, an Executable Formal Specification Language
Context This section is not as formal as the ACSL and E-ACSL reference manu-
als [BFM+, Siga] and does not provide as many examples as the excellent Fraun-
hofer Fokus’ reference tutorial ACSL by Example [BCGP]. However, as far as I
know, there is no overview of ACSL and E-ACSL that provides as many explana-
tions about the design of these languages than this section. It is inspired by existing
shorter presentations of the E-ACSL language that I contributed to [DKS13, KS13,
KMSM16].

The E-ACSL tool [KS13, SV] is a Frama-C plug-in that translates annotations
written in a dedicated formal specification language to C code in order to check
them at runtime. This section presents this specification language, also named E-
ACSL [DKS13, Siga]. In the rest of this chapter, I will simply write E-ACSL to
denote either the E-ACSL tool or the E-ACSL specification language and let the
context discriminate the former from the latter.

In 2011, I designed the E-ACSL specification language as an executable sub-
set of ACSL. Indeed, unlike JML, ACSL was primarily designed for program proof
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and thus contains logical constructs that cannot be executed in finite time (e.g.
unbounded quantification over mathematical integers or reals). Therefore, such
constructs should be removed from the executable subset that aims to be trans-
lated to C code to be evaluated (in finite time) at runtime. Consequently, E-ACSL
is a specification language for dynamic verification which comes from a specification
language for static verification. It is worth noting that it was designed in the context
of the Hi-Lite project in which Adacore also designed the Spark2014 specification
language by extending its former 2005 version, in order to prove formal properties
of Spark2014 programs and also test them by runtime assertion checking. Indeed
both E-ACSL and Spark2014 share the common goal of filling the gap between static
analysis and runtime verification tools. For both, the first step in that direction
was to design a specification language that could be used for both program proof
and runtime assertion checking [KMSM16]. It also worth noting that E-ACSL seems
also to be a reasonable ACSL subset to be analyzed by abstract interpretation (e.g.
via Eva).

3.2.1 Semantics

As already explained, E-ACSL aims at being a subset of ACSL in which each
construct should be executable in finite time. In particular, one could expect both
languages to share a common semantics for their common subset. However, this is
not quite the case because their interpretations of partial functions differ.

Indeed, ACSL is based on standard (two-valued) mathematical logic in which
partial functions are modeled by underspecified total functions. For instance, in-
teger division is a total function that returns some unspecified value when the
denominator is 0. This interpretation was introduced by David Gries and Fred B.
Schneider [GS95] and is the most standard approach for specification languages
dedicated to static verification like ACSL. Its nicest property is to preserve standard
mathematical properties, notably reflexivity of equality. For instance, the predicate
1/0 ≡ 1/0 holds with such an interpretation. It helps deductive verifiers like Wp
and their associated theorem provers to soundly deal with partial functions: nothing
wrong can be proved. At worst, underspecified terms lead to unprovable properties,
or tautologies. For instance, no interesting properties containing 1/0 can be proved
because the semantic value of this term is unspecified.

However, the term 1/0 and consequently the predicate 1/0 ≡ 1/0 would result
into runtime failures if one tries to evaluate them dynamically. This problem is well
known and named the undefinedness problem by Yoonsik Cheon who developed
the first 4 JML runtime assertion checker in 2003 [Che03, Section 3.2]. To solve
this foundational issue, E-ACSL relies on Patrice Chalin’s strong validity [Cha07]:
instead of representing partial functions by underspecified total functions, E-ACSL

4. As far as I am aware of.
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relies on a three-valued logic that introduces undefinedness as truth value. When
a partial function is applied outside its definition domain, the result is undefined.
Consequently the semantics of 1/0 is undefined. By extension, any term or predicate
that contains an undefined term is also undefined. For instance, the predicate
1/0 ≡ 1/0 is not valid anymore but undefined. More generally, a predicate is
(strongly) valid if and only if (1) it is well defined and (2) it holds. This semantics
is actually consistent with the ACSL one as stated below.

Conjecture 3.1 (Mutual consistency of ACSL and E-ACSL) For any E-ACSL
predicate p, if p is valid (resp. invalid) in ACSL then p is either valid (resp. invalid)
or undefined in E-ACSL. Conversely, if p is valid (resp. invalid) in E-ACSL then p
is also valid (resp. invalid) in ACSL.

A proof of this claim would require formalizing ACSL and E-ACSL in the same
setting. This is not done yet, although Paolo Herms provided a formalization of
a subset of ACSL in Coq [HMM12, Her13] and Guillaume Petiot formalized a
language very close to E-ACSL [Pet15]. In its own context, Patrice Chalin formally
proved a similar claim in HOL (only for the implication corresponding to E-ACSL
to ACSL in Conjecture 3.1) [Cha09] 5. This fundamental property ensures tool
compatibility between ACSL and E-ACSL since any well-defined term has the same
meaning in both languages.

An indirect consequence of strong validity is laziness of most binary and ternary
logical operators (namely, conjunction &&, disjunction ||, exclusive disjunction ˆˆ,
conditional ? : and implication ==>). Indeed, laziness introduces fewer unde-
fined terms since the dynamic semantics of these operators relies on fewer (possibly
undefined) subterms. For instance, the E-ACSL predicate \true || 1/0 != 1/0
is (strongly) valid thanks to laziness. This semantics is also consistent with the C
semantics of binary logical operators. Thus, it makes the translation from annota-
tion to C easier. Another advantage of this semantics is that it is more natural for
practitioners as pointed out by Patrice Chalin [Cha05].

The rest of this section presents the most important E-ACSL constructs with
illustrative examples. Some of these examples aim at explaning a few pitfalls of the
E-ACSL semantics, in addition to making it more concrete. Also, the last subsec-
tion compares E-ACSL with other formal specification languages for programming
languages.

5. More precisely, this 2009 paper refers to a HOL proof that should have been accessible at
that time at a given URL. Unfortunately, I was unable to freely access to it eight years later in
order to check what was precisely proved. I can only trust what is written in the paper.
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3.2.2 Assertions

Assertions, introduced through the keyword assert right before C statements,
are the simplest way to express E-ACSL properties as shown in the two code snippets
of Figure 3.1. They just ensure that a given predicate holds at a particular program
point.

int x = gcd(y, z);
/*@ assert x != 0; */

/*@ assert y % x == 0; */
prime = y / x;

int x = gcd(y, z);
/*@ assert x != 0; */
; /* skip */
/*@ assert y % x == 0; */
prime = y / x;

Figure 3.1: Annotation Evaluation Orderings.

Here, the two annotated pieces of code look equivalent but they are not. Indeed,
in the first snippet, both annotations are attached to the program point right before
the very same statement. It means that their order of evaluation is left unspecified;
so there is no guarantee that x is different from 0 when evaluating it as the divisor
of the modulo operator. To ensure that an annotation is evaluated before another
one, it must be attached to an earlier program point in the program’s execution
flow as in the second code snippet thanks to the extra semi-column that introduces
a C skip statement between both annotations. Thanks to laziness, another solution
is to write a single annotation with a conjunctive predicate x != 0 && y % x ==
0. This behavior is consistent with the C notion of sequence point that precisely
defines where C side effects are applied 6.

3.2.3 Contracts

E-ACSL being a behavioral interface specification language, one of its most im-
portant features is the notion of contract between a service provider and its clients:
whenever a client guarantees some preconditions to be true before using the ser-
vice, the provider ensures some postconditions to hold when leaving it. E-ACSL
contracts are available at function level and at statement level. In the first case,
contracts bind function callees to their callers. In the second case, they bind C state-
ments (usually blocks) to their surrounding blocks. E-ACSL logical preconditions
are introduced through keyword requires, while E-ACSL logical postconditions are
introduced through keyword ensures. Clause assigns is another kind of postcon-
dition that is known as a framing specification [HLL+12]. It specifies the memory
locations that a function (or a statement) may modify. It is particularly convenient
to describe in this manner changes in the program state, since most parts of the

6. See C99 standard, §5.1.2.3, p.13 and Annex C, p.438.
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memory remain unchanged when calling a function [BMR95] (or, more generally,
when executing a small piece of code). It may be extended with a from subclause
that specifies the memory locations that may be involved in the computation. For
instance, assigns x,*p from y,*p,p specifies that (1) x and *p are the only pos-
sibly modified memory locations and (2) their new values may only be computed
from the values of y, *p and p. Function contracts have already been exemplified in
Figure 2.3: if one ignores its axiomatized function for the moment (discussed later),
this ACSL contract is also an E-ACSL contract.

E-ACSL also provides the notion of behaviors. It is a convenient way to split a
contract into several cases. In addition to increasing the readability of postcondi-
tions, using behaviors allows the user to specify completeness and disjointness of
behaviors which are most of the time desired properties over behaviors. Complete-
ness indicates that no possible behavior is missed, while disjointness expresses that
the behaviors are pairwise disjoint: if the behaviors are both complete and disjoint,
the specification of the given function or statement for a particular input is defined
by exactly one behavior.

Figure 3.2 shows an example of a function contract containing three behaviors.
An informal specification of this function is as follows:

swap(a, len, idx, value) takes as inputs an array a of length len,
an index idx and a given value. If value belongs to a at some index i,
then the function swaps the values at indices idx and i and returns i.
Otherwise, this function just returns -1.

The two preconditions introduced by the clause requires are common to all behav-
iors and express that the cells of the array a must be valid up to len (excluded) and
the index idx must be in bounds. Next, two different cases can be directly derived
from the informal specification: either the given value belongs to a, or not. The
latter case is formalized by the behavior not found activated whenever its clause
assumes is valid (that is, when no cell of array a contains the given value). The
former case is split into two different subcases that are not explicit in the informal
description: either the searched index i is equal to idx, or not. The former subcase
is the behavior found same index in which nothing happens but returning idx.
The latter subcase is the behavior found and replace which corresponds to the
standard case in which a swap occurs. Its third postcondition uses the E-ACSL key-
word \old that refers to the value of its argument (here a[idx]) in the pre-state
of the function. This construct is usual in behavioral specification language and is
necessary in this particular example since a[idx] is a memory location modified
by the function: one must distinguish its value before entering the function (i.e. in
the pre-state) and when leaving it (i.e. in the post-state). In E-ACSL, \old(t) is
just a syntactic sugar for \at(t, Pre): in the general case, the term \at(t, L)
denotes the value of t at label L, L being either a standard C label, or a logical label.
Here, Pre is the logical label denoting the pre-state. Finally, the clauses complete
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/*@ predicate exists val(int *a, integer len, integer value) =
@ \exists integer i; 0 <= i < len && a[i] == value;
@*/

/*@ requires \valid(a+(0..len-1));
@ requires 0 <= idx < len;
@
@ behavior not_found:
@ assumes ! exists val(a, len, value);
@ assigns \nothing;
@ ensures \result == -1;
@
@ behavior found same index:
@ assumes exists val(a, len, value);
@ assumes a[idx] == value;
@ assigns \nothing;
@ ensures \result == idx;
@
@ behavior found and replace:
@ assumes exists val(a, len, value);
@ assumes a[idx] != value;
@ assigns a[idx], a[\result];
@ ensures a[idx] == value;
@ ensures 0 <= \result < len;
@ ensures a[\result] == \old(a[idx]);
@
@ complete behaviors;
@ disjoint behaviors;
@*/

int swap(int* a, int len, int idx, int value);

Figure 3.2: Example of E-ACSL behaviors.



3.2 E-ACSL, an Executable Formal Specification Language 71

behaviors and disjoint behaviors of the function contract specify that the three
behaviors must be both complete and pairwise disjoint as previously explained.

3.2.4 Integer Arithmetic

E-ACSL is based on mathematical numbers and operators. It means that each E-
ACSL integer constant represents a Z mathematical integer constant, while E-ACSL
integer operations are computed over Z and do not rely on any (bounded) machine
arithmetic. The E-ACSL type of mathematical integer is integer. A subtyping
system automatically coerces C integral types to integer whenever necessary. For
instance, if x is a C variable of type unsigned short and y is another C variable
of type char in the E-ACSL term t defined by (x + 1) / y, x and y are both
automatically coerced to integer in order to compute the addition and the division
over Z. They would be promoted to int if t would be a C expression instead of
an E-ACSL term 7. In particular, neither the addition nor the division can overflow
in t (but dividing by zero is still undefined according to the E-ACSL’s three-valued
semantics). Also, the constant 1 is of type integer, while it would be of type int
in a C expression.

This important design choice is inherited from ACSL and has several advan-
tages. First, automatic theorem provers usually work better with mathematical
arithmetic than with bounded arithmetic because the latter requires additional hy-
potheses for the bounds. That is the main raison d’être of using mathematical
arithmetic in ACSL. Arguably, this feature is not as important for a specification
language dedicated to runtime verification such as E-ACSL, but it is important for
consistency between ACSL and E-ACSL as stated by Conjecture 3.1. This argument
is not only theoretical since it comes into play when combining static analysis (e.g.,
with plug-in Wp) and dynamic analysis (e.g., with plug-in E-ACSL). Second, it is
usually considered good engineering practice to write specifications without any im-
plementation detail in mind, but dealing with potential overflows in specification
can be seen as an implementation detail. Third, it is still possible to use bounded
arithmetic if necessary by using explicit casts. For instance, rewriting the term t of
the previous paragraph to (int)((int)(x + 1) / y) would enforce coercing the
mathematical results of the addition and of the division to int values. If there is
no overflow, the result is equivalent to computing the operation over int as a C
compiler does. Last but not least, the choice of relying on mathematical operators
simplifies specifying overflows. For instance, the assertion /*@ assert INT MIN
<= x + y <= INT MAX; * / specifies in the easiest way that the C operation x +
y over int will not overflow by computing it over Z and checking that the result
is in the bounds of the C type int. Also, Patrice Chalin introduced several con-
crete examples motivating the use of mathematical integers in a formal specification

7. See C99 standard, §6.3.1.1, p.43.
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language [Cha04]. There is however one major drawback to using mathematical op-
erators instead of (bounded) machine operators: they are more complicated and
less efficient to compute at runtime. This issue is discussed in Section 3.3.3.

In addition to integer, E-ACSL also includes the type boolean with its con-
stants \true and \false. Integers are automatically coerced to Booleans whenever
required, while an explicit cast is required to convert boolean to a C integral type
or integer (\true [resp. \false] being converted to 1 [resp. 0]). For instance,
assuming x and y of type int, the predicate 1 <= (char) (x && y) + 1 <= 2 is
a tautology, equivalent to 1 <= (char)(x != 0 && y != 0) + 1 <= 2.

3.2.5 Real Numbers and Floating-Point Numbers

Similarly to integers, E-ACSL includes the type real to denote the set R of math-
ematical reals. The C floating-point types float and double, as well as integer
and its subtypes, are subtypes of real with implicit casts from these types to real
when necessary. The C floating-point constants and operations used in E-ACSL are
interpreted over R. For instance, the E-ACSL term 2 * 0.1 is interpreted as the
real 0.2 and not to any of its floating-point approximations.

The casts from reals to floating-point types depend on the rounding mode which
is one of \Up, \Down, \ToZero, \NearestAway and \NearestEven (the latter by
default). These E-ACSL constants correspond to the floating-point rounding modes
defined by the IEEE 754 standard. In case of large reals, the casts could also lead
to +infinity or -infinity.

This design choice comes from ACSL with similar benefits and drawbacks as using
mathematical integers. It is even worse to verify them at runtime (see Section 3.3.3
for a discussion). E-ACSL also introduces built-in predicates for comparing floating-
point numbers such as \eq float and for checking whether an argument is a finite
number or NaN such as \is finite.

3.2.6 Quantifications

ACSL and E-ACSL are based on first-order logic: their predicates may include
universal and existential quantifications. Such quantifications have already been
illustrated in Figures 2.3, 2.6 and 3.2. There is yet anothere difference between the
two languages: while an ACSL predicate may contain unbounded quantifications,
E-ACSL quantifications are restricted to bounded quantifications. For instance, the
ACSL predicate \forall integer x, \exists integer y, y == x + 1 does not
belong to E-ACSL because the quantified variables x and y range over the infinite set
of mathematical integers. This restriction is necessary to evaluate quantifications
at runtime in finite time.
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More precisely, in E-ACSL, quantified variables must be of type integer or one
of its subtypes and must be syntactically guarded: the general form of an universal
quantification is

\forall τ x1, ..., xn;
a1 <= x1 <= b1 ... && an <= xn <= bn
==> p

while the general form of an existential quantification is

\exists τ x1, ..., xn;
a1 <= x1 <= b1 ... && an <= xn <= bn
&& p

In these formulæ, τ denotes a subtype of integer and p is a predicate that may
use the quantified variables x1, . . . , xn. Each variable xi must be syntactically
bounded by a guard ai <= xi <= bi 8 in which ai and bi are E-ACSL terms. It is
worth noting that these terms are not necessarily constants and may contain other
variables, in particular other quantified variables already guarded. This syntactic
restriction is not an issue in practice: almost all quantifications over integers in C
programs are naturally bounded (for instance, when ranging over the index of an
array). It might be not the case for a few mathematical properties, but artificial
bounds can usually be added rather easily in practice, by taking into account the
global context of the application.

As an exception to this syntactic restriction, E-ACSL actually accepts unguarded
quantifications over Booleans and characters, since these types do not contain many
values and may be efficiently enumerated on any computer.

Since quantifying over non-integer types is often useful, E-ACSL introduces a
notion of iterators. Iterators can only serve as guards for (typically non-integer)
quantified variables. An iterator over a type τ is defined by a prototype of a pred-
icate that takes two arguments of type τ . This prototype is associated with two
fields nexts and guards. The former is a set of terms of type τ representing the
successors of the second parameter. The latter is a set of predicates over τ . This
set must have the same cardinal as nexts: the iteration continues over the i-th
successor if and only if the i-th predicate of guards holds. Consider for instance
the iterator access over binary trees shown in Figure 3.3: its field nexts contains
two terms in order to access the left and right subtrees when iterating, while its
field guards specifies that the iteration shall continue as long as the next subtree is
valid (so in particular when it is not the NULL pointer).

The first parameter of the iterator is useless when defining it (so it is replaced
by a wildcard in our example), but, when using an iterator π in a quantification, it

8. Actually each relational operator <= may be replaced by < or ==.
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struct btree {
int val;
struct btree *left, *right;

};

/*@ iterator access(_, struct btree *t):
@ nexts t->left, t->right;
@ guards \valid(t->left), \valid(t->right); */

Figure 3.3: E-ACSL iterator over binary trees.

binds the quantified variable to π. For instance, assuming that t is an existing valid
binary tree, the following predicate holds if and only if every value of t is even.

\forall struct btree *subtree;
access(subtree, t) ==> subtree->val % 2 == 0;

It is worth noting that this definition does not prevent infinitely iterate over
cyclic trees (so, graphs, stricly speaking). It is left to future work to add either
syntactic restrictions, or dynamic checks to prevent infinite recursions at runtime
when using such iterators.

These iterators are actually the only extension of E-ACSL to ACSL since they do
not exist in this language. However, nothing prevents extending ACSL with them.

Quantifications are not only useful when writing contracts, but also when writing
loop invariants, in particular when the loop iterates over a collection such as an array
or a linked list. Notably, Bertrand Meyer “feels that the lack of quantification has
meant that Eiffel programmers rarely use Eiffel’s loop invariant” [CR06].

3.2.7 Loop Invariants
Loop invariants are necessary properties when proving program properties whose

(partial) correctness relies on a loop computation. They are properties that must
hold before entering the loop and remain true at the end of each loop iteration. For
program proving, they make explicit the induction hypotheses that are necessary
for proving the global properties of interest. In particular, ACSL loop invariants are
inductive properties: in order to establish their preservation at the end of the loop
body, one may assume that they hold at the beginning of the loop body. Their
usage for program proving has already been illustrated in Figure 2.6.

In E-ACSL, loop invariants lose their inductive nature (useless at runtime) in the
nominal case: they are strictly equivalent to two assertions; one written just before
entering the loop condition, and one written at the end of the loop body.
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3.2.8 Sets of Terms

Quantifications are often required but may be quite verbose to write. They
can actually be avoided many times thanks to ranges. Ranges have already been
illustrated in Figures 2.3 and 3.2. For instance, in the latter example, the first
precondition \valid(a+(0..len-1)) uses a range 0..len-1 to express that all the
cells of the array a between 0 and len-1 are valid. It is equivalent to the predicate
\forall integer i; 0 <= i < len ==> \valid(a+i), but shorter.

More generally, E-ACSL allows the user to write a set of terms (called a tset)
instead of a term t whenever t denotes a memory location. That is for instance
the case in assigns clauses and in built-in memory logic functions and predicates
such as \valid. A tset may be the \empty set, a simple term denoting a singleton,
ranges as previously shown, a union (resp. intersection) of sets through the built-in
logic functions \union and \inter with a finite list of tsets as arguments. It can
also be defined by comprehension. For instance the tset { 2 * n | integer n;
0 <= n < 128 && n % 3 == 0 } denotes the set of even natural numbers divisible
by 6 and smaller than 2× 128, that is 256. It is worth noting that the local binder
of the comprehension (here n) is properly guarded to be sure to define a finite set.
Tsets may also be defined by extension of terms. For instance the tset a[0..n-1].b
denotes the set of fields b of every array cell of a between 0 and n-1, or equivalently
{ a[i].b | integer i; 0 <= i <= n-1 }.

E-ACSL also provides constructs to support finite sequences of elements (also
known as lists) over some type A (through parametric polymorphism). Since this
part of the language is currently almost not used, I do not cover this part in more
details here. The interested reader can refer to the ACSL and E-ACSL reference
manuals [BFM+, Siga, Section 2.8.2].

3.2.9 Memory Properties

Verifying memory properties in a programming language such as C is of the ut-
most importance since incorrectly accessing a memory location is one of the primary
causes of bugs in C programs. Many of them are also considered security vulnerabil-
ities. For instance, looking for pattern “C memory” on the Mitre’s CVE 9 search
engine 10 returns 20,400 results 11. This pattern is arguably imprecise and I have
not verified each result individually but, at least, the first page of results 12 seems
to refer to invalid memory accesses in C programs in tools ImageMagic 13, Graphic-

9. Common Vulnerabilities and Exposures.
10. https://cve.mitre.org/find/
11. Search done the 1st of December 2017, at 19:08, UTC+1.
12. CVE-2016-8862, CVE-2016-8866, CVE-2016-9830, CVE-2017-14042, CVE-2016-8684, CVE-

2016-5114, CVE-2017-5505, CVE-2017-5503, and CVE-2009-2626.
13. http://www.imagemagick.org/

https://cve.mitre.org/find/
http://www.imagemagick.org/
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smagick 14, PHP 15, and JasPer 16. Consequently E-ACSL needs to be able to easily
express memory properties preventing such vulnerabilities.

I already introduced several constructs dedicated to memory properties, such as
assigns and loop assigns clauses, \at and \old, as well as the built-in predicate
\valid expressing that its argument must be a valid pointer (that is, a non-null
pointer that refers to a memory location that the program can safely read or write).
Most memory properties are described through built-in predicates and logic func-
tions (or constants) in practice. They are presented in Figure 3.4 (by order of
importance to my eyes). As explained in the previous subsection, these built-ins
are often used with sets of pointers as arguments instead of single memory loca-
tions. Also, each of them is parameterized by an optional label L (but \null takes
none, while \fresh takes two labels as explained below). For instance, in a con-
tract, \valid{Pre}(p) refers to the validity of pointer p in the pre-state, so it is
equivalent to \old(\valid(p)).

predicates logic functions and constant
\valid \null

\valid read \block length
\initialized \base addr
\separated \offset
\freeable \allocation
\allocable
\dangling

\fresh

Figure 3.4: E-ACSL memory built-in logic functions and predicates.

Predicate \valid read is similar to \valid but only checks that the given
pointer argument is readable, so that the pointed value is not modifiable. Lit-
eral strings (of type char *) are the typical example of read-only memory loca-
tions. For instance, a function that takes a literal string as argument is not al-
lowed to modify it but may safely read it. Predicate \initialized indicates that
its pointer argument points to a fully initialized memory location. For instance,
\initialized(&a[0]) holds if and only if the first cell of the C array a has been
initialized. It is worth noting that it is not equivalent to \initialized(a) which
would be incorrect. Indeed, a is a C array implicitly coerced to a logic array when
used as a term, while there is no implicit coercion from logic arrays to C pointers.

14. http://www.graphicsmagick.org/
15. http://php.net/
16. https://jasperproject.github.io/

http://www.graphicsmagick.org/
http://php.net/
https://jasperproject.github.io/
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Predicate \separated holds if and only if its two arguments, which are memore lo-
cations, are different. It is particularly interesting when its arguments are memory
regions defined by sets of memory locations in order to express memory separation.
For instance, memcpy assumes that its source src and its destination dest (both
of type void *) do not overlap before copying n bytes from src to dest. It can
be specified by the precondition \separated(((char *)src)+(0..n-1), ((char
*)dest)+(0..n-1)) 17. Predicate \freeable holds if and only if its pointer argu-
ment may be successfully released by calling the C function free: it is actually used
as a precondition of this function. Similarly, predicate \allocable holds if and only
if its pointer as argument points to a memory location that is a base address of an
unallocated memory block (in the program memory). It is actually a postcondi-
tion of the very same function free: after releasing a freeable pointer p through a
call to free, \allocable(p) holds since p may be safely allocated again. Predicate
\dangling indicates that its argument is a pointer that points to a dangling pointer
(note the extra level of indirection). A dangling pointer is a pointer that was valid
at the program point in the past but now points to a memory location that is not
accessible anymore. For instance, it could point to a local variable that is now out
of scope or to a dynamically-allocated memory block that has been deallocated in
the meantime. Figure 3.5 exemplifies both cases with a small C program containing
two valid assertions that use \dangling. Finally, predicate \fresh takes two labels
L1 and L2 (in a contract, they are optional and respectively denote the pre- and the
post-states by default), a pointer p and a size n. It indicates that p was allocable
at L1, is freeable at L2, and that the length of the memory block pointed to by p
at L2 is equals to n. Such a behavior maps most actual behaviors of C allocation
functions such as malloc when they succeed (that is, when they do not return the
NULL pointer).

Let us now explain the built-in logic constant and functions. Logic constant
\null is equivalent to the C constant NULL. Now, assume some pointer p that can
be safely read and points to some memory block m. Then \block length(p)
denotes the length of m, \base addr(p) denotes the base address of m, that is the
very first memory location of m, and \offset(p) denotes the difference between
p and its base address. Finally, \allocation(p) returns the allocation status of
m, that is one constant in the set { \static, \register, \automatic, \dynamic,
\unallocated }. They refer to all the possible ways to (un)allocate a memory block
in C programs.

Verifying at runtime predicates using such memory built-ins is hard. This will
be covered in Section 3.3.4.

17. In this example, both casts to char * ensure that the size of each memory cell is exactly one
byte.
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#include <stdlib.h>

int main(void) {
int *p;

{
int a = 0;
p = &a;

} /* p becomes dangling when exiting this scope */
/*@ assert \dangling(&p); */

int *q = (int *)malloc(sizeof(int) * 10);
p = q + 2;
free(q); /* p becomes dangling when releasing q */
/*@ assert \dangling(&p); */

return 0;
}

Figure 3.5: Examples of C dangling pointers.

3.2.10 Data Invariants

Data invariants allow the user to specify predicates over a particular set of
memory locations, in particular those of a common datatype, that must hold during
the whole program execution. They come in 2 × 2 = 4 flavors in E-ACSL: strong
versus weak invariants on one hand, and global versus type invariants on the other
hand.

Strong and weak invariants indicate the program points where the invariant must
hold: a strong invariant must hold at any sequence point, while a weak invariant
must only hold at function boundaries, that is when entering and leaving a function,
but may be temporary broken inside function bodies.

A global invariant is an invariant over particular global variables, while a type
invariant is an invariant that applies over all the variables of some specified static
types.

Figure 3.6 illustrates a weak global invariant and a strong type invariant. The
former specifies that global variable cash must stay nonnegative and below a given
MAX AMOUNT, while the latter indicates that the field age of every person p must be
nonnegative.
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#define MAX AMOUNT 1000
long cash;
/*@ weak global invariant always has cash: 0 <= cash <= MAX AMOUNT; */

typedef struct { char *name; short age; } person;
/*@ strong type invariant is born(person p) = p.age >= 0; */

Figure 3.6: Examples of E-ACSL data invariants.

3.2.11 Termination Properties

It is not possible to verify in finite time whether a program terminates (or not)
at runtime. Consequently, the ACSL clause terminates in a contract, that specifies
a sufficient condition guaranteeing the function (or statement) termination, does
not exist in E-ACSL.

However, it is still possible to specify a loop variant in order to verify that
each loop iteration makes the variant strictly decrease. Most of the time, the variant
is a positive integer as illustrated in Figure 2.6 (page 31). It may also be more gen-
eral through the syntax loop variant t for R; that allows specifying a general
measure R for t of type τ . For instance, the default variant for integers assumes
that R is defined by R(x, y) ≡ x >= 0 && x > y. For recursive functions, it is also
possible to specify a clause decreases in their contract similarly to loop variants
for loops.

3.2.12 Logic Specifications

E-ACSL also provides several constructs to enrich specifications with high-level
features. For instance, E-ACSL includes many functional features à la OCaml: lists
and parametric polymorphism (already mentioned), lambda terms and built-in high-
order functions \sum, \product, \min, \max and \numof, pattern matching, local
bindings, tuples and functional updates of structures and arrays. They help write
more readable and expressive specifications.

E-ACSL also provides user-defined, possibly-recursive logic functions and pred-
icates. They can be parameterized by labels similarly to built-ins such as \valid.
For instance, Figure 3.7 shows a recursive logic function rec sum that is similar
to the axiomatized function sum of Figure 2.3, which computes the sum of the ele-
ments of an array between two of its indices. It is worth noting that rec sum does
not require an extra integer for the number len of elements of the array a (unlike
its axiomatized version), but its behavior is undefined if high is negative or too
large (since a[high] would be undefined according to the E-ACSL’s three-valued
semantics). Figure 3.7 also introduces a predicate diff sum positive that holds
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if and only if the sum of the elements of an array between two of its indices is
strictly greater at a given label L1 than at another given label L2. Note that there
is also no way to ensure that recursive definitions are well defined, so that their calls
terminate in finite time. This is a current design issue of ACSL (and so E-ACSL).

/*@ logic integer rec sum(int *a, integer low, integer high) =
@ high < low ? 0 : a[high] + rec sum(a, low, high-1);
@
@ predicate diff sum positive{L1, L2}
@ (int *a, integer low, integer high) =
@ rec sum{L1}(a, low, high) > rec sum{L2}(a, low, high);
@ */

Figure 3.7: Example of E-ACSL logic functions and predicates.

ACSL axiomatized logic functions and predicates, as well as inductive predicates,
are not part of E-ACSL since, when defining the language in 2011, there was a priori
no way to execute the axioms (or the inductive formulæ for inductive predicates)
that define them. However, during his PhD, Pierre-Nicolas Tollitte was able to
soundly translate some Coq inductive definitions into recursive functions (written
in OCaml or Coq) under well-defined hypotheses [TDD12, Tol13]. In collaboration
with Catherine Dubois from ENSIIE who supervised this PhD, I am currently
considering adapting this work to E-ACSL in order to add an executable subset of
axiomatized logic functions and predicates and inductive predicates to this language.
For instance, the axiomatized logic function sum of Figure 2.3 (page 16) should be
part of this subset. Preliminary work has already been done by Kharam Youness
Kharraz during his master internship [Kha17] but it needs to be continued.

3.2.13 Ghost Code

Ghost code is similar to C code but is only visible in annotations. It is introduced
by the ghost keyword when entering an E-ACSL comment. It must not interfere with
the program: the program behavior must be the same with or without executing
its ghost code [FGP16]. For instance, it must not modify the program memory. An
example was already introduced in Figure 2.6 in which ghost variables are used to
model pieces of information that are not directly computed by the program but are
necessary to explain why the algorithm is correct. More generally, ghost code offers
a very convenient way to compute extra information about the program that helps
reasoning.

Ghost code is often a key feature when transforming non-functional properties
to a set of functional properties in E-ACSL. In such a context, E-ACSL may be seen
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as a low-level specification language in which high-level properties are encoded.
For instance, Frama-C plug-ins Aoräı and Secure Flow use ghost code to respectively
convert LTL properties expressed as Büchi automata and information flow properties
as E-ACSL properties 18.

3.2.14 Comparison with Other Specification Languages

I voluntarily restrict this comparison to general-purpose specification languages
for mainstream languages comparable to C. For instance, I do not include specifica-
tion languages for separation logic [Rey02], dynamic logic [HTK00], or programming
languages such as Praspel [EDGBO11] for PHP.

First, as already explained in this section, E-ACSL is directly derived from
ACSL [BFM+] and both languages are consistent (see Conjecture 3.1), even if they
have a few differences. The most important one is semantical: E-ACSL is based on
a three-valued logic, while ACSL is based on a logic of underspecified total func-
tions (see Section 3.2.1). Also, ACSL includes a few additional constructs that do
not belong to E-ACSL, either because they are not executable in finite time (e.g.
lemmas, model variables and fields, and terminates clauses), or they are still ex-
perimental in ACSL and I prefer to not include them in E-ACSL for the time being
(e.g. specification modules, or well-typed pointers).

The specification language of VCC [CDH+09] is another specification language
for C. VCC is a Microsoft’s deductive verifier and the semantics of its specification
language is similar to ACSL. These languages also share a lot of constructs, including
assertions, function and block contracts, framing specifications, loop invariants and
variants, object invariants, and ghost code. Actually these constructs are now rather
standard and most languages cited in this section include them in one form or
another: I will not discuss them for the other languages. It is worth noting that
VCC targets verification of concurrent programs (such as Microsoft’s Hyper-V
hypervisor) [LS09a], and so its specification language also includes several functions
and predicates related to concurrent accesses to program memory. That is not
the case in E-ACSL (neither in ACSL). However, there is no construct dedicated to
low-level memory properties such as block length, base addr, initialized or
valid read. More generally, this kind of construct is very specific to ACSL and
E-ACSL.

ACSL and so E-ACSL are directly inspired from JML [LBR99] for Java, and both
the authors of JML and E-ACSL have runtime assertion checking in mind. Even
if it was not the case in its first versions [Che03], JML has eventually been based
on Patrice Chalin’s strong validity principle itself based on three-value seman-

18. Actually their current implementation uses standard C code instead of ghost code, because
of a limited support of ghost code by the Frama-C kernel but, in an ideal world, ghost code would
be used.
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tics [Cha07] as is E-ACSL (see Section 3.2.1). For mathematical numbers, JML pro-
vides several modes [Cha04]. One of them consists in using mathematical integers
(and reals) similarly to E-ACSL. The differences in their respective core language
mainly come from the differences of their respective underlying programming lan-
guage. I might however point out that JML allows the user to call pure methods
(i.e. terminating Java methods without side effects), while it is not the case in
E-ACSL (with functions instead of methods) since they cannot be used in ACSL.
Indeed, ACSL chooses to strictly separate the logic from the program, because en-
forcing consistency of specifications including pure functions is not trivial [LM09],
while it is critical to introduce no inconsistency in the underlying proof system.
However, the recent versions of the E-ACSL tool allow the user to explicitly declare
pure C functions usable in specifications. It has already been proved useful in a few
E-ACSL case studies, while there is no inconsistency issue with runtime assertion
checking of annotations containing pure methods (even if the verification that these
pure methods terminate cannot be done at runtime, but is still required to ensure
runtime check termination).

Spec# [BLS04] for C# is very similar to JML for the subset where E-ACSL, JML
and Spec# are comparable. However, I have surprisingly found no reference about
Spec#’s underlying logical and mathematical model. From a few experiments done
from Spec#’s online version 19, it looks like it is based on a three-valued logic à la
Chalin and bounded machine integers.

Code Contract [FBL10] is another Microsoft’s formal specification language,
but for .NET. It has been designed to support the Clousot abstract interpreter [FL10],
even if a runtime verifier is also proposed to test the specifications before verifying
them by abstract interpretation. Compared to E-ACSL and the other specification
languages mentioned in this section, Code Contract is rather limited for, I think,
three reasons. First, it must only contain predicates that can be verified by ab-
stract interpretation. Second, it is independent of any programming language that
can be compiled to .NET (for example, C# or VB.NET). Finally, it also aims at
staying very close to the underlying programming language. In particular, predi-
cates are just Boolean expressions and, for instance, (bounded) quantifications are
just helper methods that make use of lambda expressions to express the bounded
predicate.

Last but not least, Spark2014 also embeds a contract-based specification lan-
guage 20. As already explained, it was designed at the same time as E-ACSL, during
the Hi-Lite project led by Adacore (from 2010 to 2013). It also relies on strong
validity to solve the undefinedness problem. Bounded integer arithmetic semantics
is the default but may be switched to unbounded. Pure methods are also supported.
Also dedicated effort has been apported to developing a library of verified containers

19. https://rise4fun.com/specsharp/
20. http://docs.adacore.com/spark2014-docs/html/lrm/

https://rise4fun.com/specsharp/
http://docs.adacore.com/spark2014-docs/html/lrm/
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easily usable in specifications [DFM11]. Such a library is currently missing in E-
ACSL (and ACSL). For the interested reader, a deeper comparison between E-ACSL
and Spark2014, as well as Why3, is provided in [KMSM16].

All these langagues are inspired by Eiffel [Mey88, Mey92b]. This language is
still evolving 21. Its specification language is based on preconditions, postconditions,
assigns-like clauses, assertions, class invariants (corresponding to E-ACSL’s strong
type invariants) and loop annotations. Terms are Boolean expressions extended
with \result- and \old-like terms. There is in particular no quantification. Eiffel
annotations raise exceptions when evaluating undefined terms at runtime.

3.3 E-ACSL, a Tool for Generating Monitors
Context This section is based on several technical papers that I contributed to
about the E-ACSL tool [DKS13, JKS15b, JKS16, VSK17, VKSJ17]. However, it
aims at being less technical in order to provide a detailed global overview of the
most interesting parts of the tool.

Writing a runtime assertion checker for a formal specification language such as
E-ACSL may be considered as an easy task: just directly translate each term and
predicate from the specification language to the corresponding expression of the
underlying programming language and that’s it. For instance, the E-ACSL assertion
/*@ assert x == 0; */ may be easily translated to the C assertion assert(x ==
0);. Nothing complicated. The authors of Spec# seem to be in line with that
idea since one of their papers [BFL+11] contains about one double-column page of
explanations about enforcing Spec# contracts but, within it, only a short paragraph
is dedicated to the Spec# runtime checker (all the others being dedicated to static
verifications). Here it is in extenso:

The run-time checker is straightforward: each contract indicates some
particular program points at which it must hold. A run-time assertion
is generated for each, and any failure causes an exception to be thrown.

But, if so straightforward, how can one explain that Yoonsik Cheon dedicated
his whole PhD thesis to runtime assertion checking of JML [Che03], a language
of similar complexity as Spec#? A first explanation might be that enough good
research has been done in the meantime between 2003 and 2011. For instance,
the undefinedness problem pointed out by Yoonsik Cheon is now well understood,
particularly thanks to the works of Patrice Chalin [Cha04, Cha05, Cha07, Cha09]
that I already mentioned several times. Another reason is perhaps a need for effi-
ciency: it is rather easy to implement a quite naive runtime verifier, but it is harder

21. The lattest revision of the Eiffel standard was in 2006 and is freely available at http://www.
ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf.

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-367.pdf
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to efficiently generate efficient code. It could explain why the authors of Spec#
pointed out that “the runtime overhead [of dynamically checking Spec# contracts]
is prohibitive” [BFL+11].

This section aims at supporting this claim, while (informally) explaining how E-
ACSL deals with this efficiency issue for the most interesting parts of the translation.

3.3.1 Overview

According to the taxonomy of Yliès Falcone et al [FHR13], and in common
with all the runtime assertion checkers for Eiffel-like languages that I know, E-ACSL
is an (online) inline runtime verification tool. It means that the monitor checks the
annotations during the program execution (online monitoring) and is deeply em-
bedded in the input program to do so (inline monitoring). Other possibilities could
be to verify the annotations after the program execution on some traces (offline
monitoring), or to run the monitor in parallel to the program under verification
during its execution (online outline monitoring).

Fundamental Principles

More precisely, E-ACSL is a Frama-C plug-in that takes as input an E-ACSL-
annotated C program and aims at generating another C program that has the fol-
lowing two fundamental properties.

Conjecture 3.2 (Preservation of Program Behaviors) If all the annotations
of the input program p are valid for a particular execution trace σ, then the generated
program behaves in the same way than program p: its execution trace includes σ and,
for each program point of σ, the value associated to each C variable from p remains
the same.

Conjecture 3.3 (Detection of Invalid Annotations) If (at least) one annota-
tion of the input program is invalid for a particular execution trace, then the gener-
ated program detects it and enters a special mode.

The first property means that the generated monitor should have no (function-
ally observable) effects on the monitored program as long as the checked annotations
are valid 22. It is worth remarking that the generated trace is usually larger than
the original trace since it notably includes additional checks of annotations. It also
involves bigger memory states since the monitor may have its own memory locations

22. However, it might have non-functional undesirable effects. For instance, since the instru-
mented program consumes additional memory, it might lead to out of memory, while the original
program would not.
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to store intermediate results. Both explain why the generated program is usually
slower and consumes more memory than the input one.

The second property means that the generated monitor is able to detect any
invalid annotation. According to the blocking semantics of the annotation language
(see Section 2.9.2, page 43), the monitor should abort when detecting the very first
invalid annotation. This is actually the default “special mode” of E-ACSL. It is
however customizable in practice (see Section 3.4.1).

In other words, both properties state that the generated monitor has neither
false positives nor false negatives for a particular execution. One should also ob-
serve that both properties are actually only conjectures: they are currently —and
unfortunately— unproved, and not even formalized. Dara Ly has just begun in
November 2017 a PhD on that topic under my supervision in collaboration with
Nikolai Kosmatov from my lab and Frédéric Loulergue from Northern Ari-
zona University. This work should lead in three years to a formalization and a
Coq proof of these properties for a subset of C and E-ACSL.

First Example

To make more concrete what E-ACSL is, let us illustrate what it does on the
following tiny example:

int main(void) {
/*@ assert 0 == 0; */
;
/*@ assert 0 == 1; */
return 0;

}

This program does nothing, but contains one valid assertion and one invalid one.
Let say that this code is written in a file foo.c. It is possible to generate a monitored
version of this code in file monitored foo.c through the following command:

$ frama-c -e-acsl foo.c -then-last -print -ocode monitored_foo.c

This command first runs E-ACSL on the input file. By its own, E-ACSL only gener-
ates a new AST in a new Frama-C project 23. The Frama-C kernel itself handles the
second part of the command line. It switches to the project generated by E-ACSL
through option -then-last, then pretty prints the generated AST as C code in file
monitored foo.c. Figure 3.8 presents a simplified version of the generated code.

In this code, after each assertion, a call to function e acsl assert has been
introduced to be checked at runtime. This function is provided by the E-ACSL C run-
time library (RTL for short) and is similar to function assert from the C standard

23. The notion of Frama-C project is explained in Section 2.8, page 35.
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void __e_acsl_assert(int pred, char *kind, char *fct,
char *pred_txt, int line);

int main(void) {
int __retres;
/*@ assert 0 == 0; */
__e_acsl_assert(0 == 0,(char *)"Assertion",(char *)"main",

(char *)"0 == 0", 2);
/*@ assert 0 == 1; */
__e_acsl_assert(0 == 1,(char *)"Assertion",(char *)"main",

(char *)"0 == 1", 3);
__retres = 0;
return __retres;

}

Figure 3.8: Simplified version of the code generated by E-ACSL from a simple pro-
gram. A few unused generated declarations have been removed for clarity.

library: it aborts the execution if the value of its first argument is 0. The func-
tion does nothing otherwise. The other arguments are only necessary to produce a
nice localized error message when it occurs. Here, in each call, the first argument
corresponds to the E-ACSL predicate of the translated assertion. The translation is
straightforward in this trivial example. In order to be able to execute the generated
file, it must be linked to the E-ACSL RTL. It is not very easy for the end-user to
write the necessary command line in the right way. Consequently, to ease the whole
process (invoking Frama-C, then compiling the generated code with a C compiler),
E-ACSL provides a shell script named e-acsl-gcc.sh. It is thus possible to replace
the above invokation of Frama-C by the following command:

$ e-acsl-gcc.sh -c foo.c

It creates three files:
— a.out is the binary without instrumentation compiled from foo.c by Gcc 24;
— a.out.frama-c is the instrumented C file called monitored foo.c above;
— a.out.e-acsl is the instrumented binary generated by the compilation of

monitored foo.c by Gcc 25.
Running a.out just does nothing but exit with exit code 0 as expected, while

running a.out.e-acsl aborts with the following error message, demonstrating that
the monitor generated by E-ACSL is able to detect the violated assertion:

24. Gcc is the default compiler for e-acsl-gcc.sh. It is however customizable.
25. All these filenames are customizable.
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Assertion failed at line 3 in function main.
The failing predicate is:
0 == 1.
Abandon

Architectural Design

As explained, E-ACSL only transforms a program into another one, so it is a
program transformation tool. It may also be seen as a compiler from C+E-ACSL
to C. Its architectural design, presented in Figure 3.9 reinforces this idea since it is
rather close to the one of a standard compiler.

E-ACSL is a Frama-C plug-in and so works on the AST generated by the Frama-C
kernel. Since the generated code relies on the E-ACSL RTL, and also the E-ACSL
memory model (see Section 3.3.4), the headers of these libraries are automatically
added to the Frama-C compilation process from the very beginning in order to easily
generate self-contained code. The most important and the largest part of the plug-
in is the instrumentation engine which concretely generates the monitor. It relies
on several static analyses in order to ensure its correctness and to soundly improve
its efficiency. For instance, the exit point computation deals with statements like
goto, break and continue which are statements modifying the normal control flow
of the program: these jumps may enter or leave a block that should initialize or
free E-ACSL local variables and/or contain pre- or post-conditions to be verified.
The other analyses will be explained later. All of them are done on demand, once.
Furthermore, before generating the monitor, several intermediate transformations
are also required.

First, a few modications are done to ease the monitor generation. For instance,
the local variables declared in the bodies of switch statements are moved out. Also,
this step computes necessary information to preserve the property status 26 of each
annotation up to the end of the transformation. That is particularly important
since, by default, E-ACSL does not generate any code for proved properties in order
to improve the monitor efficiency (see Section 3.4.1 for a concrete example).

Second, during the function duplication step, a wrapper is generated for each
function with an E-ACSL contract. The wrapper calls the original function and
will contain the monitor in charge of verifying the function contract. Clearly sep-
arating the pieces of code verifying the contract from the original code is a useful
feature which was originally demanded during the very first E-ACSL case study in
2012. It actually partially implements the “wrapper approach” described by Yoon-
sik Cheon [Che03, Section 4.1.3] in which the pre- and post-conditions are put in
separate methods.

26. The notion of property status in Frama-C is explained in Section 2.9.2, page 43.
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Figure 3.9: E-ACSL Architectural Overview.
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I do not detail precisely here what each step does. It would be far too technical
compared to the rest of this document. I prefer to highlight the most interesting
parts of the transformation in the next subsections: handling undefinedness (Sec-
tion 3.3.2), mathematical numbers (Section 3.3.3), and memory-related properties
(Section 3.3.4).

3.3.2 Preventing Additional Undefined Behaviors
As explained in Section 3.2.1, the semantics of the E-ACSL specification language

is three-valued: the semantics of some terms and predicates may be undefined.
However, it is the responsibility of the tools implementing this language to take
care of not evaluating such undefined entities.

To do so, the E-ACSL tool generates a runtime error each time an undefined term
or predicate would be evaluated. It is one of the possible approaches described by
John Hatcliff et al [HLL+12, Section 2.1.3], while Patrice Chalin argues that it
is the one that practionners want [Cha05].

For implementing such a feature, E-ACSL relies on the Rte plug-in of Frama-C,
shortly introduced in Section 2.6 page 27. This plug-in generates ACSL assertions
—that are fully compatible with E-ACSL— for a large variety of possible undefined
behaviors: for each C expression e, if the generated assertions are valid, then e does
not contain any undefined behavior of the considered kinds. This property is ensured
for C statements as well. For instance, this plug-in generates the following assertions
for the expression (int)(*(*p) + 1) / r <= 2147483647; */ (assuming a 64-bit
architecture 27, a global variable p of type int **, and another global variable r of
type int):

1. /*@ assert rte: mem access: \valid read(p); */

2. /*@ assert rte: initialization: \initialized(p); */

3. /*@ assert rte: mem access: \valid read(*p); */

4. /*@ assert rte: initialization: \initialized(*p); */

5. /*@ assert rte: signed overflow: -2147483648 <= *(*p) + 1; */

6. /*@ assert rte: signed overflow: *(*p) + 1 <= 2147483647; */

7. /*@ assert rte: division by zero: r != 0; */

8. /*@ assert rte: signed overflow:
(int)(*(*p) + 1) / r <= 2147483647; */

These assertions notably cover pointer validity (assertions 1 and 3), memory location
initialization (assertions 2 and 4) 28, arithmetic overflow (assertions 5, 6, and 8) and

27. Each code fragment assumes a 64-bit architecture from now on, unless otherwise specified.
28. The initialization assertions are not generated by default, but it is optionally possible to get

them through the Rte option -rte-initialized, available since Frama-C Sulfur-20171101.
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division by zero (assertion 7). The Rte plug-in also may perform quick syntactic
checks on demand in order to not generate assertions that are trivially valid. On
the above example, annotation 5 always holds and is not generated on demand.

In addition to providing such services to end-users, the Rte plug-in also offers
an API to be used by other Frama-C plug-ins. Continuing our above example, it
is possible to get the list of predicates corresponding to the above assertions (or-
dered in the very same way). Consequently, when generating the new C expression
corresponding to a predicate to be verified at runtime, E-ACSL also generates the
E-ACSL predicates corresponding to its possible undefined behaviors through the
Rte plug-in and translates them in turn to C code. That corresponds to trapezium
“preventing RTE” in Figure 3.9. There is even no need to compute a fixpoint, since
Rte presents the predicates in the right order such that the n first generated pred-
icates guarantee that, if every of them holds, the (n + 1)-th generated predicate
contains no undefined terms or predicates (with respect to the E-ACSL semantics).
For instance, on the above example, the well-definedness of term *p in assertions 3,
4, 5, 6, and 8 is guaranteed by the first two assertions which state that p is valid
(assertion 1) and its contents *p is properly initialized (assertion 2). Such a usage
of Rte by E-ACSL is an example of sequential collaboration in Frama-C, presented
in Section 2.9.1.

As a final illustration of handling undefinedness by E-ACSL, here is the block of
C code generated by E-ACSL for the assertion assert x / y >= 0; in which x and
y are two global variables of type int:

/*@ assert x / y >= 0; */
{

e acsl assert(y != 0L,(char *)"RTE",(char *)"main",
(char *)"division by zero: (long)y != 0",20);

e acsl assert(x / y >= 0U,(char *)"Assertion",(char *)"main",
(char *)"x / y >= 0",20);

}

The first function call prevents any division by zero when runtime checking the
assertion in the second call. It comes from the predicate y != 0L computed by
Rte from the C expression x / y >= 0L generated by E-ACSL from the original
assertion 29. This Rte intermediate predicate is not exposed to the end-user but the
error message generated at runtime when the value of y is 0 should be crystal clear:

RTE failed at line 20 in function main.
The failing predicate is:
division_by_zero: y != 0L.

29. The constant 0L instead of 0 is infered by E-ACSL in order to evaluate soundly integer
operations as explained in Section 3.3.3.



3.3 E-ACSL, a Tool for Generating Monitors 91

Abort

In this example, the watchful reader might have noticed that an unsigned zero 0U
was generated from the original assertion in which it was a signed zero 0. It comes
from the way that E-ACSL translates mathematical numbers and operations such
as 0 in the above assertion.

3.3.3 Executing Mathematical Numbers and Operations

The E-ACSL specification language relies on mathematical numbers and oper-
ations (Z for integers, and R for reals) as explained in Sections 3.2.4 and 3.2.5.
However, translating mathematical integers to C integral types would be incorrect,
as well as translating reals to floating point numbers. This section presents the
E-ACSL solution to the integer problem. Reals are not yet handled by the tool and
is left to future work.

Illustrative Example

Let us first illustrate the issue of translating mathematical integers soundly and
efficiently on the two following simple assertions.

/*@ assert x + 1 <= 127; */

/*@ assert c + 1 == 0; */

Let us also assume that they are evaluated on a rather limited 8-bit architecture
for which the values of x of type int belong to the interval [−128; 127] and values
of c of type char belong to [−32; 31] 30. Also assume that there is no other types
that int and char.

Consequently, the first assertion is invalid if and only if the value of x is 127.
However, a direct translation of its predicate to the C expression x + 1 <= 127 (so
of type int) would be unsound since an overflow would occur whenever x would be
127. To solve this issue, the E-ACSL translation relies on the GNU Multiple Precision
Arithmetic Library, also known as Gmp 31, which offers arbitrary precision integer
arithmetic. Figure 3.10 shows how E-ACSL translates the first assertion above using
Gmp. In this figure, the C comments have been manually added to make the gen-
erated code almost self-explaining, while a few (unmandatory) casts as well as the
extra arguments to e acsl assert have been removed for clarity. The transla-
tion consists in declaring, allocating, and, if necessary, initializing one Gmp variable

30. The only goal of this assumption is simplicity, but one gets the same results with a more
realistic 64-bit architecture and standard intervals for int and char, as soon as one replaces the
constant 127 in the first assertion by 2147483647 (i.e. INT MAX).

31. https://gmplib.org/

https://gmplib.org/
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for each mathematical integer (here, the values of x, 1, the result of the addition,
and 127), computing the mathematical operations through specific Gmp functions
(here gmpz add and gmpz cmp) before checking the predicate. At the end, the
allocated memory should be cleared through calls to function gmpz clear (Gmp
values are pointers).

/*@ assert x + 1 <= 127; */
{

/* declaration of necessary temporary Gmp variables */
__e_acsl_mpz_t __gen_e_acsl_x;
__e_acsl_mpz_t __gen_e_acsl;
__e_acsl_mpz_t __gen_e_acsl_add;
__e_acsl_mpz_t __gen_e_acsl_2;
int __gen__e_acsl_le;
/* computing x+1 */
__gmpz_init_set_si(__gen_e_acsl_x, x);
__gmpz_init_set_si(__gen_e_acsl, 1);
__gmpz_init(__gen_e_acsl_add);
__gmpz_add(__gen_e_acsl_add, __gen_e_acsl_x, __gen_e_acsl);
/* comparing x+1 to 127 */
__gmpz_init_set_si(__gen_e_acsl_2, 127);
__gen_e_acsl_le = __gmpz_cmp(__gen_e_acsl_add, __gen_e_acsl_2);
__e_acsl_assert(__gen_e_acsl_le <= 0);
/* freeing the previously allocated memory */
__gmpz_clear(__gen_e_acsl_x);
__gmpz_clear(__gen_e_acsl);
__gmpz_clear(__gen_e_acsl_add);
__gmpz_clear(__gen_e_acsl_2);

}

Figure 3.10: Example of Gmp-based translation by E-ACSL.

It is worth noting that a similar translation scheme could be adopted for com-
puting correct approximations of operations over reals (for instance, by using the
MPFR library 32). It is even possible to be exact for a few arithmetic operators over
rationals. Such a support is also provided in Gmp.

Let us come back to integers. While sound, this translation scheme is neverthe-
less much more complex and expensive (in terms of time and memory consumption)
than directly (but unsoundly) using C integral types such as int. Executing a sim-

32. https://www.mpfr.org/

https://www.mpfr.org/
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ilar block of code for each E-ACSL mathematical operation is actually prohibitive.
However, most of the time, it is fortunately possible to be sound without using
Gmp. Let us consider for instance the second assertion /*@ assert c + 1 == 0;
*/. Here, integer constants 0 and 1 can safely be represented with machine inte-
gers, as well as c + 1 whose values vary between −31 and 32, so can be represented
by an int (but not by a char in our ad-hoc setting). Consequently, it would be
perfectly sound to directly translate the predicate to the C expression c + 1 == 0
of type int. However, how to distinguish the first example that requires the sound
yet inefficient Gmp encoding from the second one that can soundly rely on efficient
C integral types?

Type System

E-ACSL answers this question using a type system [JKS15b] that corresponds to
the trapezium “typing” in Figure 3.9. Before translating terms and predicates, each
of them is fully typed on the fly. If the type system is able to infer Γ ` t : τ1  τ2,
it means that, in an environment Γ, the C expression resulting from the translation
of term t may soundly be encoded in type τ1 while the head operator of the term
(if any) may be translated to an operator over type τ2. There is a similar type
judgment for predicates.

It is a bit unusual to compute two types instead of only one, but the second
one helps to recover precision when typing antimonotonic operators such as integer
divisions. Also, this type system relies on interval arithmetic [MY59, MKC09] to
infer an interval that a given term belongs to. In this context, types are just inter-
vals defined by their bounds. For instance, type int may be seen as the interval
[−128; 127] on our 8-bit architecture used in our examples. Thanks to these in-
tervals, the type system comes with two subtyping rules: one of them is the very
standard subsumption rule [Pie02] which allows the type system to lose precision
by converting a type to a bigger one, while the other one (called the coercion rule)
allows recovering precision by coercing a type to a smaller type τ when the interval
infered for the given term fits into type τ .

Let us illustrate all of this by typing the term 1 + (x + 1) / (y - 64) in
which x and y are respectively of types int and char in our 8-bit architecture.
Figure 3.11 33 presents its derivation tree in which rules right-tagged with 4 are
instances of the subsumption rule, and the rule with [−3; 3] 4 int as hypothesis
is an instance of the coercion rule. Also, computing a single type τ means τ  τ .
This derivation safely allows us to assign a type for each C expression and operation

33. In this figure, it might look erroneous that variable y gets type int, while its C type is char.
It is not a bug but a featureTMof the type system because it is actually not necessary to compute
a type more precise than int thanks to the C99 promotion rule (see C99 standard, §6.3.1.1, p.43).
Therefore, whenever all the possible values of any variable v fit in an int, v gets type int. Details
about the typing rules are omitted here but can be found in the original paper (in French) [JKS15b].
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generated from this term. For instance, the generated addition from term x + 1
must be a Gmp one since its type is Z (third line of the derivation). Indeed this
operation might overflow if computed with a 8-bit C type. However, the generated
substraction from y - 64 may be safely computed in type int. Indeed, its result
may only range from −32− 64 = −96 to 31− 64 = −33. However, its results must
be converted to Gmp in order to compute the division through a Gmp operation,
since the dividend x + 1 must be translated to a Gmp value anyway. Nevertheless,
the result of this division ranges between 128/−33 = −3 and −127/−33 = 3 which
fits into int. Consequently it can safely be coerced to this type in order to compute
the first increment also in int.

Γ ` 1 : int

Γ ` x : int
Γ ` x : Z

4
Γ ` 1 : int
Γ ` 1 : Z

4

Γ ` x+ 1 : Z

Γ ` y : int Γ ` 64 : int
Γ ` y − 64 : int
Γ ` y − 64 : Z

4

Γ ` (x+ 1)/(y − 64) : Z Z [−3; 3] 4 int
Γ ` (x+ 1)/(y − 64) : int Z

Γ ` 1 + (x+ 1)/(y − 64) : int

Figure 3.11: Example of derivation tree from the E-ACSL type system.

On this small example, it is clear that the type system helps us to safely replace
several Gmp operations and values by C integral counterparts. This type system
is actually very effective since it removes almost all Gmp in practice, except for
monotonic operations over large types such as long long. Last but not least, it
is worth noting that Adacore has adapted to Spark2014 the idea of such a type
system in order to allow its users to specify mathematical properties while soundly
minimizing the runtime overhead. From my point of view, it is an excellent illustra-
tion of what I try to do in E-ACSL: adapt standard static analysis and compilation
techniques (here, a type system) in order to soundly optimize the generated code
(see the original paper [JKS15b] for the correctness theorem).

3.3.4 Monitoring Memory Properties

Between 2012 and 2017, the most active E-ACSL research area was related to
supporting the memory built-in logic functions and predicates of the E-ACSL spec-
ification language exposed in Figure 3.4. As a numerical evidence of this research
effort, two patents [VKS16a, VKS16b] and five research papers [KPS13a, JKS15a,
JKS16, VSK17, VKSJ17] were entirely dedicated to this topic in that period of
time. It is joint work with Nikolai Kosmatov at LSL, with major contributions
from Guillaume Petiot, Arvid Jakobsson, and Dara Ly during their master in-
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ternships in 2012 [Pet12], 2014 [Jak14], and 2017 [Ly17] respectively, and from
Kostyantyn Vorobyov during his 2-year postdoc from 2015 to 2017.

Short State of the Art

First, it is worth noting that the memory-related properties described in Fig-
ure 3.4 are very specific to the E-ACSL specification language: no other Eiffel-like
specification languages support similar constructs as explained in Section 3.2.14.

In order to verify them at runtime, E-ACSL must have a deep knowledge of the
structure of the program memory. For instance, it may need to know if some memory
address pointed to by some pointer p is writable by the program (otherwise, the
predicate \valid(p) would not hold), or if it has been initialized at some moment
during the execution in order to check \initialized(p).

Such dynamic verifications are actually performed by a category of tools named
dynamic memory analyzers (or memory debuggers, or memory error detectors).
These tools are specialized in detecting memory errors such as buffer and heap
overflows, and accesses to uninitialized data in the program memory before they
really occur. In order to perform the required verifications, they instrument the
program code either at source code level (like E-ACSL), or at binary level.

Most of them rely on an efficient technique called memory shadowing to keep
track of pieces of information about the program memory in order to detect mem-
ory issues. Memory shadowing usually associates addresses from program memory
to values stored in a disjoint memory space called shadow memory. Accessing the
shadow memory from the program memory is performed in constant time, just
by adding some fixed offset from the program memory. The way of structuring
these shadow values is refered to as shadow state encoding and may vary from one
tool to another. However, they almost always store bit-level information about
individual bits or bytes of the monitored program memory. For instance, Dr. Mem-
ory [BZ11] and Purify [HJ92] shadow every byte from the program memory by two
bits representing its allocation and initialization statuses, while Valgrind [NS07]’s
MemCheck [SN05] and MemorySanitizer [SS15] use bit-to-bit shadowing to track
the initialization status of every single bit. For its part, Google’s AddressSani-
tizer [SBPV12] (probably the most famous memory debugger currently since it is
embedded in Clang and Gcc) ensures that memory blocks are allocated at 8-byte
boundaries by customizing memory allocation, and tracks aligned 8-byte sequences
by one shadow byte in order to store which bytes of such sequences are addressable.

However, even if efficient enough to be of practical interest, tools based on
memory shadowing that focus on byte-level (or bit-level) information fail to detect
block-level properties 34. Such properties are related to the bounds of memory blocks.

34. This name was introduced during Arvid Jakobsson’s internship [Jak14, JKS15a].



96 Chapter 3 E-ACSL, a Runtime Verification Tool

Consider for instance the following code snippet that contains a buffer overflow at
its second line:

char a[1], b[4];
a[1] = ’0’; /* buffer overflow */

Variables a and b are local variables, usually allocated on the stack one after the
other. Consequently, at line 2, trying to modify the memory block ma corresponding
to variable a may actually modify the memory block mb corresponding to variable
b. Traditional memory shadowing techniques as described above do not detect any
error, since memory block mb has been properly allocated. To detect this error, it
is necessary to detect that accessing a[1] crosses the boundaries of memory block
ma. A similar detection is also required by E-ACSL, for example for detecting that
property \valid(a+1) does not hold right before line 2. More generally, some
E-ACSL predicates and logic functions such as \offset and \block length are
block-level memory properties that cannot be computed by traditional memory
shadowing techniques for the very same reason.

To overcome this issue, it is possible to cleverly use the space left between
aligned allocated blocks, as pioneered by Richard W. M. Jones and Paul H. J.
Kelly [JK97]. For instance, AddressSanitizer [SBPV12] uses this alignment prop-
erty through a technique named red zoning that creates poisoned red zones around
allocated memory blocks: if a buffer overflow is small enough to go to the red zone,
it is detected. Typically, it is able to detect off-by-one errors such as the one of
the above example, but it is not able to detect the error if line 2 is replaced by the
assignment a[3] = ’0’; since the 3-offset goes outside the redzone of a but still
in the allocated area mb. This example also illustrates that this technique, even if
highly practical, is unable to detect all possible overflows.

Another issue with memory shadowing comes from the fact that they usually
miss temporal memory errors [SB10, VKSJ17], which are errors when trying to
access a pointed-to object that is not the same as when the pointer was created.
Consider for instance the following code snippet where p and q are two pointers to
type int:

p = malloc(sizeof(int));
*p = 1;
free(p);
q = malloc(sizeof(int)); /* may reuse the freed memory block */
*p = 2; /* illegal access */

Once pointer p is freed, it cannot be dereferenced anymore. However, allocating
a new memory block may reuse the very same freed memory block (depending on
the system’s allocation strategy): traditional shadow memory techniques would then



3.3 E-ACSL, a Tool for Generating Monitors 97

miss an illegal access to *p since the pointed-to memory block is properly allocated
(yet unallowed to be accessed through p).

To fully deal with the limitations of shadow memory techniques, one could rely
on fat pointers [ABS94], as done for instance by Yutaka Oiwa [Oiw04, Oiw09] in
order to extend the pointer representation with bounds information. While offering
a way to check all the desired properties about pointers, the main drawback of this
technique is the modification of the size of pointed data: preserving the original
program behavior with such a modification of the program memory structure is
tricky, to say the least. It is also not possible to verify properties about non-
pointer values, for instance checking that an integer local variable has been properly
initialized before being used.

Yet another approach solves the fat pointer issue by associating to each allocated
memory address the necessary pieces of information and storing them in separated
dictionaries, usually implemented through splay trees [ST85]. This approach was
pionnered by Richard W. M. Jones and Paul H. J. Kelly at the same time as using
alignment of allocated blocks [JK97]. This approach is however slower than the other
ones, despite many efforts to improve it, such as those of Dinakar Dhurjati [DA06].

In the following, whatever the way used to store at runtime the necessary pieces
of information about program memory, I will call it a runtime memory model by
analogy to the notion of memory model used in compilation [LB08] or static program
verification as “the way that the analysis tool models the storage of the underlying
machine on which the code runs” [XKZ10].

Patricia-Trie Memory Model

The very first E-ACSL memory model [Pet12, KPS13a] was created in 2012
by Guillaume Petiot, during his master internship mainly supervised by Nikolai
Kosmatov with my help. Next he has continued to improve it during his PhD up to
2015 [Pet15]. My main contributions were some advice and the proper integration
of the memory model within E-ACSL.

In 2012, the focus was put more in expressiveness of the memory model than
its efficiency, in order to support the desired constructs of the E-ACSL specification
language. Consequently, the choice was made to rely on a dictionary-based memory
model. The most usual dictionary datastructure is hashtable, but it does not fit
here because one needs to access to the closest base address of some address a
smaller than a (and to check its bounds afterwards): such an operation would be of
linear complexity with hashtables. We choose to implement it through a Patricia
trie [Mor68, Szp90], also known as radix tree or compact prefix tree. As far as I
know, this is the only memory model implemented with such a data structure. Its
efficiency seems comparable to splay trees (see the last part of this section).

Each leaf of the trie contains a block metadatum. Each metadatum includes a
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base address a of thirty two or sixty four bits which is the key of the dictionary, the
size (in bytes) of the memory block b starting from a, its validity status (whether
reading or writing block b is safe) and the initialization status for each byte of
block b.

Each internal node of the trie contains the greatest common prefix of all base
addresses stored in its subtrees. This way, it is easy and fast, through a few bit-
level operations, to go from the root of the trie to a base address and its associated
information stored in a leaf.

The block metadata contain enough information to compute the E-ACSL memory-
related constructs, including all the block-level properties. More precisely, Fig-
ure 3.12, based on Figure 3.4, shows which E-ACSL memory-related constructs are
actually supported by the tool and which ones are not yet implemented. It is worth
noting that the support of \null is independent from the memory model, while the
support of the missing constructs is doable without any extension of the memory
model: it only requires additional code in the instrumentation engine. Consequently,
the expressive power of the memory model is strong enough.

predicates logic functions and constant
\valid \null

\valid read \block length
\initialized \base addr
\separated \offset
\freeable 35 \allocation
\allocable
\dangling

\fresh

Figure 3.12: Memory built-in logic functions and predicates implemented in E-ACSL.

This memory model has been implemented in C and corresponds to the box “C
memory model” of Figure 3.9. Its API provides the necessary functions to evalu-
ate the E-ACSL memory-related logic functions and predicates and to register and
modify metadata in the trie. These functions are called by the monitor generated
by the E-ACSL instrumentation engine. For instance, Figure 3.13 shows a slightly
simplified version of the code generated by E-ACSL for the following function main:

int main(void) {
int p[10];
/*@ assert \block length(&p[0]) == 10 * sizeof(int); */

35. The predicate \freeable was not implemented in the very first versions of E-ACSL. Its
support was added in 2015.



3.3 E-ACSL, a Tool for Generating Monitors 99

p[2] = 0;
/*@ assert \initialized(p+2); */
return 0;

}

int main(void) {
int p[10];

e acsl store block((void *)(p),40);
/*@ assert \block length(&p[0]) == 10 * sizeof(int); */
{

unsigned long __gen_e_acsl_block_length;
gen e acsl block length = e acsl block length((void *)(p));
e acsl assert( gen e acsl block length == 10 * 4);

}
e acsl initialize((void *)(& p[2]),sizeof(int));

p[2] = 0;
/*@ assert \initialized(p+2); */
{

int gen e acsl_initialized;
gen e acsl initialized =

e acsl initialized((void *)(& p[2]),sizeof(int));
e acsl assert( gen e acsl initialized);

}
e acsl delete block((void *)(p));
e acsl memory clean();

return 0;
}

Figure 3.13: Example of E-ACSL instrumentation based on its runtime memory
model.

This function first checks the length of array p, before initializing its third cell
(at index 2) to 0 and verifying that this initialization has been correctly performed.
The generated code first stores, through a call to function e acsl store block
provided by the runtime memory model, that a memory block started at address p
and containing 40 bytes has been allocated (assuming that the size of int is 4, 40 is
the size of an array of int of length 10). The block of code following the first asser-
tion checks the length of p by calling function e acsl block length exported
by the memory model. Next, the generated code stores that sizeof(int) bytes
have been initialized from address &p[2] (which is equivalent to p+2), through a
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call to e acsl initialize. Eventually, it allows the generated code to success-
fully check that the last assertion holds through a call to e acsl initialized.
Before leaving function main, the generated code removes its local variable p from
the memory model through a call to e acsl delete block. Finally, before leav-
ing the program (since this code monitored function main), the memory model frees
what it may have internally allocated for its own purpose through a call to function

e acsl memory clean.
It is worth noting that the calls to the memory model functions usually cast the

address to type void *. Indeed, the E-ACSL runtime memory model is a byte-level
untyped model. When required, the size in bytes of the considered memory chunk
is provided as an extra argument.

Hybrid Memory Model

The Patricia trie model is expressive enough, but it is too inefficient and does
not scale well on large-size programs. A first step towards solving the efficiency issue
has been made in 2014 by Arvid Jakobsson during his master internship [Jak14],
supervised by Nikolai Kosmatov and myself. Arvid designed a hybrid memory
model that mixes the Patricia trie model with a shadow memory model [JKS15a,
JKS16]. As far as I know, it is the only attempt to combine a dictionary-based
model and a shadow model: only hybrid approaches combining dictionary-based
models and fat pointers have been studied [SB10, YJ12].

The underlying idea of Arvid Jakobsson’s hybrid model is to use an efficient
shadow store whenever possible and to rely on the less efficient Patricia trie store
whenever the shadow model is not expressive enough, in particular when verifying
block-level properties. The hybrid model comes with seven principles explaining in
which store the monitor should register, delete or look for metadata. For instance,
principle P1 indicates that metadata associated with memory locations that require
block-level properties must be stored in the trie, while (conversely) principle P5
explains that evaluation of block-level predicates should always query the trie. Ap-
plying principle P1 requires to statically know, at the time of the instrumentation,
whether a block-level property of a particular memory location may eventually be
computed. This issue will be addressed a bit later in this section.

Last but not least, the hybrid model is fully compatible with the Patricia trie
model since both share the same API: when changing the memory model, it is not
necessary to change the E-ACSL instrumentation engine that generates the monitor.

Shadow Memory Model

The hybrid memory model was a step towards improving efficiency but it does
not solve this issue for block-level properties. Also, it was quite heavy since it
embeds two different stores, increasing in particular the risk of implementation
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bugs: if only one of the store implementations is buggy, then so is the hybrid model
implementation.

In 2016, Kostyantyn Vorobyov, during his postdoc supervised by Nikolai Kos-
matov and myself, found a way to express the desired block-level properties in
a shadow memory model [VSK17]. I should better write that he found two dif-
ferent ways since the encodings of metadata in the heap [VKS16a] and in the
stack [VKS16b] actually differ, the former being simpler than the latter.

The key idea of this block-level shadow memory model consists in splitting
memory blocks and their shadow representations in memory segments of a fixed
size of s bytes, the first segment being distinguished from the other and named the
meta-segment. I voluntarily simplify the presentation here to keep things simple,
but the technical details may be found in the above-mentioned papers. For instance,
I assume here that program segments and shadow segments have the same size s,
but this is actually not mandatory since different segment sizes only impact memory
overhead.

The heap shadow encoding assumes that memory blocks are aligned at a bound-
ary divisible by s in order to guarantee that memory segments do not overlap and
their base addresses may be found through a single modulo operation: for some
address a, the base address of its segment is a − amod s. The encoding also as-
sumes that every memory block is padded with (at least) s bytes in order to reserve
enough space for the meta-segment. Last, it also assumes that the minimal size
of s is twice the number of bytes necessary to represent a physical address (i.e
s ≥ 64/8 × 2 = 16 for 64-bit addressing). It is worth noting that all these as-
sumptions have no practical issue. For instance, it is easy to wrap the C allocation
functions to fit them.

Let us now explain the heap encoding through an example shown in Figure 3.14.
It consists in shadowing a memory block B of 40 bytes starting at physical address
0x100 36. We assume here a size of segments of 16: address 0x100 is thus properly
aligned. We need three 16-byte segments to fully cover the 40-byte block B. Their
base addresses are 0x100, 0x110 and 0x120. The 8 trailing bytes of the last segment
are unallocated, as well as the meta-segment right before the first segment.

The shadow model of this block follows the same segment partitioning, while we
assume that it starts at 0x200 (i.e. the offset of the shadow region from the program
memory is 0x100). The first 8 bytes of the shadow meta-segment are unused and
nullify, while the last 8 bytes encode the block length of the memory block B, here
40. For the other segments, the first 8 bytes encode the offset from the base address
of the segment to the base address of the block incremented by one. This non-zero
value guaranteed by this final increment indicates that at least the first byte of the
corresponding segment of B has been allocated. Then, the 16 following bits (i.e. 2

36. Hexadecimal notation is used for denoting physical addresses and large offsets.
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Figure 3.14: Example of E-ACSL heap shadow representation.

bytes) encode the per-byte initialization status of the corresponding segment of B:
the ith bit is set to 1 as soon as the ith byte of the corresponding segment of B is
initialized. The following bits (here 48 bits, i.e. 6 bytes) are left unused and may
be used for other purposes (see Section 3.5.1).

Through this encoding, it is easy to retrieve the useful information for a par-
ticular byte. For instance, consider the address 0x126, its base segment starts at
address 0x126 − 0x126 mod 16 = 0x120. Consequently, its initialization bit is the
sixth bit from 0x228 (so 0 here). The base address of the memory block that it
belongs to (i.e. B) is 0x120 − 33 + 1 = 0x100, 33 being the number stored in the
eight first bytes from 0x220. Also, the size of this block is 40, the number stored on
8 bytes at address 0x200− 16 + 8 = 0x198.

The encoding is a bit more complicated for the program stack. Indeed, blocks on
the stack are usually unaligned and often small: introducing a sufficient alignment
to apply the above encoding is likely to introduce significant memory overhead.
Instead, the stack encoding uses two shadow stores called the primary and the
secondary shadows. The key idea here is to store metadata of small blocks (of size
8 bytes or smaller) in the primary shadow, and large metadata (that is, the block
length and the byte offset) of large blocks (of size greater than 8 bytes) in the
secondary shadow. In the latter case, the primary shadow is also used to retrieve
the location in the secondary shadow where the block length and the byte offset of
the monitored address are stored. The primary shadow uses a byte-to-byte shadow
encoding, while the secondary shadow relies on a segment-based encoding.

Let us consider the encoding of one small 4-byte block, starting at address 0x100,
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shown in Figure 3.15. One byte of the stack is directly shadowed by one byte of
the primary shadow. A 0-value in the primary shadow indicates an unallocated
byte, while a value between 1 and 36 stored in the first 6 bits of the shadow byte
encodes both the size of the memory block that the byte belongs to and the offset
of this byte from the base address of its block. For instance, a value of 8 indicates
a memory block of 4 bytes and an offset of 1. These 36 possible values allow us
to encode any possible sizes and offsets between a 1-byte block (and necessarily a
0-offset byte) and a 8-byte block and a 7-byte offset in this block. The seventh bit
of the shadow byte encodes the initialization status of the monitored byte, while
the last bit is left unused.

Stack

Shadow status code 
(6 bits)

Initialization
(1bit)

Unused
(1bit)

Primary Shadow0xFF

0x100

0x101

0x102

0x103

7 1 0Size:     4
Offset:  0

8 1 0Size:    4
Offset: 1

9 1 0Size:    4
Offset: 2

10 1 0Size:    4
Offset: 3

 0 Unallocated 0 0

Figure 3.15: Example of E-ACSL stack shadow representation for a small block.

Now consider a larger block B of 18 bytes still starting at address 0x100. The
encoding is shown in Figure 3.16. We assume here that offsets of 0x100 and 0x200
allow accessing to the primary shadow store and to the secondary shadow store,
respectively. Thus, the primary shadow block tracking block B starts at address
0x200, while its secondary shadow block starts at address 0x300. Let us now re-
member that, for small blocks, the first six bits of the primary shadow byte are
used to encode values between 1 and 36 representing the block length and the byte
offset, while a 0-value indicates an unallocated byte. However, sixty-four values
may be encoded within six bits. Our encoding does not need this much, but still
uses the values between 48 and 63 for large blocks: these values, decremented by
48, indicate the offsets from the corresponding shadow segment base addresses in
the secondary shadow. For instance, the first six bits of the primary shadow byte
of address 0x10F contains the value 55, so an offset of 55− 48 = 7 in the secondary
shadow: the segment storing the block length and the offset of address 0x10F starts
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at address 0x30F−7 = 0x308. In this segment, the first four bytes encode the length
of the memory block that the original address belongs to (here, 18) and the last 4
bytes encode the offset from the start of the secondary shadow block to the start
of this segment (here, 8). From it, it is possible to recover the base address of the
memory block that an address such as 0x10F belongs to (here, 0x108− 8 = 0x100),
and its offset in that block (here, 0x0F − 0x100 = 15). Still, the seventh bit of the
primary shadow bytes represents the initialization status of the corresponding bytes
of a large block.
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Figure 3.16: Example of E-ACSL stack shadow representation for a large block.

This block-level shadow memory model, with its two versions for the heap and
the stack, has the very same expressive power as Guillaume Petiot’s Patricia trie
model, while being of comparable efficiency as (but more expressive than) tradi-
tional shadow models. It is also more efficient and lighter than Arvid Jakobsson’s
hybrid model. It is now the default E-ACSL runtime memory model since Frama-C
Phosphorus-20170501. Its API is fully compatible with the Patricia trie and the
hybrid models; thus it is easy to swap from one model to another without changing
the E-ACSL instrumentation engine.

As far as I know, the only other work that could express block-level properties
with a shadow-like technique is METAlloc [HvdKGB16] but it relies on modern
heap [Ghe07] and stack [KSP+14] organizations and a non-trivial alignement of
objects sharing a memory page whose implementation is tricky.

Even if the above-presented block-level shadow memory model is more expressive
than the traditional shadow models, it is only able to detect spatial memory errors,
not temporal ones. In 2017, it has been extended to also detect this additional
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kind of error, using an idea that emerged at the end of Arvid Jakobsson’s intern-
ship [VKSJ17]. While effective in detecting temporal errors, the time overhead is
still rather high (see the last part of this section). Consequently, such detections
are deactivated by default in E-ACSL, but may be performed on user request. I do
not detail the extended shadow model here. The interested reader may refer to the
above-mentionned paper [VKSJ17].

Reducing Instrumentation

Even if the E-ACSL block-level shadow memory model is efficient, it is also
possible to improve the efficiency of the monitored program by limiting its usage
by the monitored code. Consider for instance the function f below.

int f(void) {
int x, y, z, *p;
p = &x;
x = 0;
y = 1;
z = 2;
/*@ assert \valid(p); */
*p = 3;
return x;

}

It does nothing very interesting, but declares four local variables, makes a few
assignments, and contains one single E-ACSL annotation in order to verify that
pointer p is valid before dereferencing it.

A complete instrumentation as in Figure 3.13 would generate the monitored
function of Figure 3.17. First, it stores in the runtime memory model the 4-byte
memory blocks corresponding to the four local variables. Then, before each assign-
ment, it set the initialization status of every byte of the assignee in the runtime
memory model through calls to function e acsl full init. Next, it queries
the runtime memory model to verify the validity status of pointer p through a call
to function e acsl valid. Finally, it removes from the runtime memory model
the local variables (by zeroing out the corresponding memory block for the shadow
model). Even if the runtime model is efficient, the execution time of all these func-
tion calls is not negligeable compared to the execution time of the original program
(even if it is still instantaneous for this small function).

However, if one closely looks at the generated code, one may observe that several
generated function calls are actually useless, as indicated on Figure 3.17. Indeed,
the only goal of the generated monitor is to verify the E-ACSL assertion about
the validity of pointer p. For this purpose, there is absolutely no need to register
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int f(void) {
int x, y, z, *p;

e acsl store block((void *)(&p),4);
e acsl store block((void *)(&z),4); /* useless */
e acsl store block((void *)(&y),4); /* useless */
e acsl store block((void *)(&x),4);
e acsl full init((void *)(&p));

p = &x;
e acsl full init((void *)(&x)); /* useless */

x = 0;
e acsl full init((void *)(&y)); /* useless */

y = 1;
e acsl full init((void *)(&z)); /* useless */

z = 2;
/*@ assert \valid(p); */
{

int gen e acsl valid;
gen e acsl valid = e acsl valid((void *)p,sizeof(int));
e acsl assert( gen e acsl valid);

}
*p = 3;

e acsl delete block((void *)(&p));
e acsl delete block((void *)(&z)); /* useless */
e acsl delete block((void *)(&y)); /* useless */
e acsl delete block((void *)(&x));

return x;
}

Figure 3.17: Example of monitoring reduction through static analysis.
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in the runtime memory model pieces of information that are not related to the
memory block corresponding to this pointer. In particular, one could safely remove
everything instrumenting variables y and z. However, one should be cautious while
doing so. For instance, one cannot remove the instrumentation code about variable
x since pointer p and &x are aliased by the very first assignment: their memory
blocks are actually the same. Consequently, adding &x in the store is still required
to get a correct result at runtime. Nevertheless, one could safely remove the call

e acsl full init((void *)(&x)); when assigning a value to x. Indeed, the
monitor only needs to check the validity status of p, i.e. &x, not the initialisation
status of its contents x. One in the other, one could remove about half of the
instrumentation on this small example: that is not negligeable at all.

In order to do such an optimization automatically, E-ACSL runs a dataflow anal-
ysis before generating code that would call the memory model for the first time.
This analysis corresponds to the box “memory model analysis” in Figure 3.9. It
computes a sound over-approximation of memory locations that must be monitored
at a particular program point in order to be sure that the runtime memory model
contains the required information when evaluating E-ACSL memory-related anno-
tations. This analysis does not necessarily need to be very precise since it is only
in charge of optimizing the generated code, but should be sound, fully automatic,
and pretty fast to be executed. I first implemented this analysis in 2012 [KPS13a].
It relies on an alias analysis which was done at the same time. During his in-
ternship, Arvid Jakobsson implemented a new version parameterized with such
an alias analysis [Jak14] which was Bjarne Steensgaard’s algorithm [Ste96] in
practice. Nikolai Kosmatov and I formalized this version in 2015 for a subset
of C and E-ACSL [JKS15b, JKS16]. During his postdoc under my supervision,
Gergö Barany continued to improve it in 2016. Dara Ly eventually made a more
precise formalization and proved it in 2017 during his master internship under my
supervision [Ly17, LKLS18].

Despite a large amount of work already dedicated to this analysis, none of the
existing implementations is fully satisfactory to my eyes. Indeed, they are pretty
slow to run on large programs, while hardly dealing with the most complicated
features of the C language. Consequently, this analysis must sometimes be deacti-
vated when generating monitors for large and complex programs. Yet, this analysis
is important for reducing E-ACSL’s runtime and memory overhead in many, if not
most, use cases. In order to improve this situation, one could first try to work
on the latest implementation of this analysis, which has been only lightly tested,
debugged and profiled. If not sufficient, these additional experiments will certainly
help to understand what the issue is. One possible global problem might be that
this analysis is currently inter-procedural and so performs a whole-program analy-
sis. If these experiments show that it is problematic for its efficiency, it could lead
to the design of a new intra-procedural analysis. Such a study is future work.
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Benchmarking

I just concluded the previous paragraph by explaining that additional exper-
iments about the dataflow analysis are necessary. Indeed, a runtime verifier like
E-ACSL needs a lot of empirical evaluations in order to determine its expressiveness
and its efficiency, usually measured through runtime and memory overheads with
respect to the uninstrumented original program. It also needs to be compared to
similar tools.

Consequently, a huge amount of time since 2012 has been dedicated to this
work. First, Guillaume Petiot compared his Patricia-trie model to models relying
on other data structures, including splay trees (the most standard data structure
for dictionary-based runtime memory model), and to Valgrind (based on shadow
memory encoding). Its evaluation also included the first implementation of the
dataflow analysis. Even if the evaluation was only performed on small-size C pro-
grams like sorting algorithms, he shows that his runtime memory model was at least
as competitive as the other dictionary-based ones but slower than Valgrind (with-
out surprise), and that the static analysis always reduces the runtime overhead,
sometimes drastically [KPS13a].

Second, Arvid Jakobsson compared his hybrid model to the Patricia-trie model
and to his shadow model on the same benchmark used by Guillaume Petiot [JKS16].
It demonstrated that the hybrid model was hugely faster than the Patricia-trie
model and comparable to his shadow model. It also confirmed that the dataflow
analysis was very useful for reducing the runtime overhead (by more than 70% on
average). The runtime overhead of the hybrid model is almost incomparable to
Valgrind: it was faster on some examples and slower on some others. However, in
addition to Guillaume Petiot’s evaluation, this one also compared memory over-
head and concluded that the hybrid model consumed less memory than Valgrind.

In parallel, in 2014, the Competition on Runtime Verification (CRV) was also
created in order to “foster the process of comparison and evaluation of software run-
time verification tools” [BFB+17]. It was split into three tracks: offline monitoring,
monitoring of Java programs, and monitoring of C programs. Arvid Jakobsson,
Nikolai Kosmatov and I participated with E-ACSL in the latter one and E-ACSL
took the second place with a score slightly behind RiTHM [NJW+13]. I also partic-
ipated alone with E-ACSL in the next edition in 2015 [FNRT15] and, this time, won
the C track 37 with a score about twice that of RV-Monitor [LZL+14], developed by
startup Runtime Verification Inc. 38, which took the second place. However,
these two editions of the competition, particularly the C track, suffered from many
weaknesses, one of the most important being that it was hard to estimate what was
actually evaluated (e.g. tool expressiveness or efficiency?) [Sig17]. Also, and proba-

37. https://www.rv-competition.org/2015-2/
38. https://runtimeverification.com/

https://www.rv-competition.org/2015-2/
https://runtimeverification.com/
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bly related, only a few tools competed in the C track during these two editions and
no tool but E-ACSL registered to participate in the C track during the 2016 edition,
which was thus cancelled. As a consequence, the competition organizers decided
not to organize it in 2017 and to replace it by the workshop RV-CuBES [RH17]
in parallel to the RV conference. However, I think that the two organized editions
were at least beneficial for E-ACSL since they helped it to be better known in the
academic runtime verification community and so achieved one of the competition
goals, which was “to enhance the visibility of presented tools” [BFB+17].

The most important benchmarking efforts on E-ACSL were done by Kostyan-
tyn Vorobyov in 2016 and 2017, during his postdoc, in order to evaluate the
E-ACSL shadow model. First, 17 C programs ranging from 74 to 36,037 (on aver-
age, 9,345) lines of code from SPEC CPU benchmarks 39 were used to evaluate the
runtime and memory overhead of E-ACSL with respect to E-ACSL using the Patri-
cia trie model and tools such as AddressSanitizer [SBPV12], MemCheck [SN05] and
Dr. Memory [BZ11] (32- and 64-bit). All these tools use a shadow memory model as
explained in the state of the art at the beginning of this section. For E-ACSL, the
annotations were automatically generated through the plug-in Rte in order to check
the properties shown in Figure 3.18. Runtime overheads are shown in Figure 3.19,
while memory overheads are presented in Figure 3.20.

E-ACSL AddressSanitizer MemCheck Dr. Memory 32/64
Heap Tracking + + + + +
Stack Tracking + + − + +
Global Tracking + + − + +
Allocation + + + + +
Initialization ± − + + −
Pointer Init + − − − −
Bounds Check + ± ± ± ±
Arith. Overflow + − − − −
Read-only + − − − −
Block Properties + − − − −
Heap Leak ± + + + +

Figure 3.18: Properties tracked during experimentation.

I let the reader refer to the original paper [VSK17] for detailed explanations,
particularly with respect to the exact experimental setup and threats to validity, but
I summarize here the results. The E-ACSL shadow model has a runtime overhead
of about 19 times on average (ranging from 8 times to 55 times) with respect to

39. https://www.spec.org/cpu/

https://www.spec.org/cpu/
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Figure 3.19: Runtime overhead of E-ACSL, AddressSanitizer, MemCheck and
Dr. Memory on SPEC CPU programs.
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Figure 3.20: Memory overhead of E-ACSL, AddressSanitizer, MemCheck and
Dr. Memory on SPEC CPU programs.
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the normal execution time without any instrumentation. It has a memory overhead
of 2.48 on average (ranging from 1.01 to 4.74) with respect to an uninstrumented
execution. The results confirm that it is significantly faster than the Patricia trie
model which has an average overhead of 77.5, ranging from 2 to 662. However, it
is often slower on small programs because of the constant time initialization of the
shadow space which becomes visible in such a context. The memory overhead of
the Patricia trie model is slightly higher too, with an average of 2.85, ranging from
1.01 to 9.7. The runtime overhead of E-ACSL (with the shadow model) is slightly
higher but in the same order of magnitude as MemCheck (average overhead of 15.49
times) and Dr. Memory 32-bit (average overhead of 18 times), while AddressSanitizer
and Dr. Memory 64-bit are significantly faster (average overheads of 1.58 and 3.59,
respectively). The difference between Dr. Memory 32-bit and 64-bit comes probably
from the fact that the former checks the initialization statuses, while the latter do
not. The memory overheads of AddressSanitizer, Dr. Memory 32- and 64-bit and
MemCheck are on average 4.22, 3.37, 7.74 and 5.95 respectively, so higher than E-
ACSL. To be fair, AddressSanitizer memory overhead comes from a maximum on a
particular program. Without taking it into account, its average is 2.44 times, so
similar to E-ACSL. All of these tools check fewer properties than E-ACSL, particu-
larly because they do not track block-level properties. Consequently, E-ACSL may
be seen as a good replacement for these tools, adding the advantage of tracking
more properties at the cost of a higher, yet affordable, runtime overhead.

Last, Kostyantyn Vorobyov also evaluated the detection power of E-ACSL
with respect to standard security defects of C programs [VKS18]. This time, the
focus was not put on tool efficiency, but on tool expressivity. E-ACSL was com-
pared to Google’s sanitizers (AddressSanitizer [SBPV12], MemorySanitizer [SS15],
ThreadSanitizer [SPIV11] and UndefinedBehaviorSanitizer 40) seen as a single tool and
RV-Match [GHSR16], the automatic debbuger provided by Runtime Verification
Inc. and based on the K framework [ER12, Ell12]. This debugger is a tool of choice
for such an evaluation since it aims at finding as many C undefined behaviors as
possible. The evaluation was done on the NIST’s SARD-100 test suite 41 and Toyota
ITC benchmark [SMM15] 42. The results are respectively presented in Figures 3.21
and 3.22.

Considered altogether, they show that all tools cannot detect some kinds of
security defects that are out of their scopes (e.g. SQL injection). This is not sur-
prising since none of them pretends to detect any security defects: they are not
at all equipped to detect several of them. Also E-ACSL has currently no support
for multi-threaded programs and concurrency defects. Its other current weaknesses
pointed out by these benchmarks are the lack of support for detecting incorrect func-

40. https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
41. https://samate.nist.gov/SRD/view.php?tsID=100
42. https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://samate.nist.gov/SRD/view.php?tsID=100
https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark
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E-ACSL Google’s Sanitizers RV-Match
Non-memory Defects
CWE-078: Command Injection – (0/6) – (0/6) – (0/6)
CWE-080: Basic XSS – (0/5) – (0/5) – (0/5)
CWE-089: SQL Injection – (0/4) – (0/4) – (0/4)
CWE-099: Resource Injection – (0/4) – (0/4) – (0/4)
CWE-259: Hard-coded Password – (0/5) – (0/5) – (0/5)
CWE-489: Leftover Debug Code – (0/1) – (0/1) – (0/1)
Memory Defects
CWE-121: Stack Buffer Overflow X(11/11) 91% (10/11) 91% (10/11)
CWE-122: Heap Buffer Overflow X(6/6) X(6/6) X(6/6)
CWE-416: Use After Free X(9/9) X(9/9) X(9/9)
CWE-244: Heap Inspection – (0/1) – (0/1) – (0/1)
CWE-401: Memory Leak X(5/5) 80% (4/5) 60% (3/5)
CWE-468: Pointer Scaling 50% (1/2) 50% (1/2) 50% (1/2)
CWE-476: Null Dereference X(7/7) X(7/7) X(7/7)
CWE-457: Uninitialized Variable X(4/4) 75% (3/4) X(4/4)
CWE-415: Double Free X(6/6) X(6/6) 67% (4/6)
CWE-134: Format String X(8/8) – (0/8) – (0/8)
CWE-170: String Termination X(5/5) X(5/5) X(5/5)
CWE-251: String Management X(5/5) X(5/5) X(5/5)
CWE-391: Unchecked Error – (0/1) – (0/1) – (0/1)
Concurrency Defects
CWE-367: Race Condition – (0/4) – (0/4) – (0/4)
CWE-412: Unrestricted Lock – (0/1) – (0/1) – (0/1)
Overall 67% (67/100) 56% (56/100) 54% (54/100)

Figure 3.21: Detection results of E-ACSL, Google’s sanitizers and RV-Match over
SARD-100 test suite.

Defect Type E-ACSL Google’s Sanitizers RV-Match
Dynamic Memory 94% (81/86) 78% (67/86) 94% (81/86)
Static Memory X(67/67) 96% (64/67) X(67/67)
Pointer-related 56% (47/84) 32% (27/84) 99% (83/84)
Stack-related 35% (7/20) 70% (14/20) X(20/20)
Resource 99% (95/96) 60% (58/96) 98% (94/96)
Numeric 93% (100/108) 59% (64/108) 98% (106/108)
Miscellaneous 94% (33/35) 49% (17/35) 71% (25/35)
Inappropriate Code – (0/64) – (0/64) – (0/64)
Concurrency – (0/44) 73% (32/44) 66% (29/44)
Overall 71% (430/604) 57% (343/604) 84% (505/604)

Figure 3.22: Detection results of E-ACSL, Google’s sanitizers and RV-Match over
Toyota ITC benchmark.
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tion pointers (notably involved in Toyota ITC’s “pointer-related” category), stack
overflows (notably involved in Toyota ITC’s “stack-related” category) and overflows
through bitfield values (notably involved in the Toyota ITC’s “numeric” category).
Without taking these limitations into account, E-ACSL has better results than the
other tools, in particular Google’s sanitizers (as expected because of its more
expressive memory model). Also it is worth noting that RV-Match detection ca-
pabilities are quite good, but the issue with this tool (at least with the academic
version that is freely available) is efficiency: trying RV-Match on large programs
from SPEC CPU just fails almost always. To be fair, this tool is based on sym-
bolic execution and not on concrete execution, so is necessarily less efficient than
standard runtime verifiers.

These evaluations of E-ACSL on several large benchmarks and its comparison
with other state-of-the-art tools demonstrate that it is able to handle complex con-
structs from its specification language with a pretty decent runtime overhead and a
good memory overhead. Thus, it is able to detect many security defects that may
appear in C programs. Even if much opportunities for improvement are possible as
explained in Section 3.5, it emphasizes that E-ACSL may already be considered as
a tool of choice for debugging C programs at any step during its development.

3.4 E-ACSL, a Tool with Multiple Usages

Context This section takes ideas from the E-ACSL tool paper [SKV17]. Sub-
section 3.4.1 is also based on a paper co-published with Dillon Pariente from
Dassault Aviation [PS17], while subsection 3.4.2 presents some results from the
latest paper about Secure Flow [BS17].

Besides debugging C programs and checking formal annotations, E-ACSL has
several other uses introduced in this section.

3.4.1 Finding Undefined Behaviors

As illustrated with the experimentation presented at the end of the previous
section, the most important usage of E-ACSL today is certainly debugging C pro-
grams by finding their undefined behaviors at runtime. This usage is very similar
to AddressSanitizer’s and Valgrind’s, in particular regarding memory safety. Besides
removing bugs, this usage of E-ACSL is of the utmost importance from a secu-
rity point-of-view since it points out bugs such as memory errors (as illustrated
by benchmark SARD-100 in Figure 3.21). In 2012, such memory errors were still
among the top 3 most dangerous software errors and account for about half of the
reported security vulnerabilities [vdVdSCB12].
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In this context, E-ACSL works in sequential collaboration with plug-in Rte which
generates E-ACSL annotations for a large class of C undefined behaviors. This
way, the process is fully automatic since no user-defined annotations are required.
Also, E-ACSL may work in collaboration with plug-in Eva which generates Rte-like
annotations each time it cannot soundly statically ensure that an undefined behavior
never happens at runtime. This idea is close to Hasan Sözer’s proposal to use
runtime verification techniques to discharge alerts raised by static analyzers [Sö15,
KS17]. This approach has been automatated in method Cursor proposed by Dillon
Pariente from Dassault Aviation [PS17] and summarized in Figure 3.23. I
contributed to this work through support and expertise in the context of European
projects Stance 43 (finished in 2016) and Vessedia 44 (started in 2017).

Figure 3.23: Cursor method process proposed by Dassault Aviation.

The main goal of this method consists in limiting as much as possible the amount
of work to be done by the engineer, in particular when setting the right Eva parame-
ters. This way, it reduces the global verification cost. Indeed, instead of taking time
to set the best Eva parameters to get the fewest possible numbers of Eva’s alarms, it
is more efficient to spend almost no time on this task, even if it means having many
statically-unverified alarms. These alarms are then verified at runtime by E-ACSL.
In this method, Eva static verification is also extended with two plug-ins developed
by Dassault Aviation, namely Gena-Taint and Gena-CWE. The former is a taint
analysis plug-in based on Eva’s results. The latter is an Eva extension that detects

43. http://www.stance-project.eu/
44. https://vessedia.eu/

http://www.stance-project.eu/
https://vessedia.eu/
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more CWEs than Eva alone. Last but not least, this method also deploys secu-
rity counter-measures at runtime by modifying the default behavior of the E-ACSL
function e acsl assert. For instance, when detecting an undefined behavior, it
could log what happened, halt a service or the whole system, or apply a dedicated
defensive measure.

This method was successfully evaluated on a few modules of Apache and OpenSSL.
Interestingly, the runtime overhead of E-ACSL on these pieces of code (×19) was
about the same as those obtained on benchmark SPEC CPU. But, when Eva was
run first in order to statically remove potential alarms (even without any precise pa-
rameterization), the runtime overhead was only about 3 times the uninstrumented
version. This overhead is similar to tools such as AddressSanitizer, at the price of a
longer static analysis time. Consequently, even if it still needs additional evaluation,
this method is very promising.

3.4.2 Detecting Information Leakage

Another way to use E-ACSL automatically (i.e. without writing annotations
manually) consists in detecting information flow leakage in combination with plug-
in Secure Flow. This plug-in was originally developed by Mounir Assaf during
his PhD at LSL under my supervision, in collaboration with Éric Totel and
Frédéric Tronel at CentraleSupélec [Ass15, ASTT13a, ASTT13b]. Next, it
was extended by Gergö Barany during his postdoc at LSL, still under my super-
vision [Bar16, BS17].

Secure Flow Overview

Secure Flow is also a program transformation. It converts the original C code
extended with a few dedicated security annotations into a new C code containing
E-ACSL annotations. This new code encodes the security statuses of data as la-
bels public or private stored in new C variables. The information flows (how these
statuses propagate through the program control flow) are encoded in new C state-
ments. This way, the plug-in detects leakage of private data into public channels.
More precisely, the encoded property is Termination Insensitive Non Interference
(TINI) [BR16]. The original security annotations are also translated into standard
E-ACSL annotations that refer to the newly introduced variables corresponding to
the security statuses. A small ACSL extension allows the user to check properties
about security statuses by using a dedicated logic function security status and
dedicated constants private and public.

Consider for instance the following code snippet.

if (user input == secret) x = 1; else y = 1;
/*@ assert security status(x) == private; */
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It checks that variable x does leak a secret at the point of the assertion. Indeed,
there is a so-called implicit information flow from variable secret to variable x,
because the latter is modified in a conditional whose the guard depends on the
former. Plug-in Secure Flow generates the code snippet of Figure 3.24 for this piece
of code.

pc label 1 = pc label 0 | user input label | secret label;
if (user input == secret) {

x label = 0 | pc label 1;
x = 1;
y label |= pc label 1;

} else {
y label = 0 | pc label 1;
y = 1;
x label |= pc label 1;

}
/*@ assert x label == 1; */

Figure 3.24: Secure Flow Encoding for a simple conditional.

Here, the security status of a variable v is encoded in the variable v label with
values in {0, 1} 45. Value 0 means public while value 1 denotes private. Bitwise
disjunctions propagate the information flow from label to label in order to convert
public data to private as soon as the former depends on the latter. From a mathe-
matical point of view, the set of security labels (of cardinal 2) is a lattice whose the
join operator is bitwise disjunction. The special labels pc label i encode the secu-
rity label of the control flow itself. Here, it propagates the security label of secret
involved in the conditional to variables x and y updated in both branches. Prefix
pc stands for program counter. Such program counter labels are quite standard in
information flow tracking (see for instance Daniel Hedin and Andrei Sabelfeld’s
survey [HS12]).

The reader may have noticed that labels for variables x and y are updated
in both branches of the conditional, while each variable is modified only in one
branch. Indeed, this is a necessary condition for this kind of analysis to be sound,
as demonstrated by Alejandro Russo and Andrei Sabelfeld [RS10]. In practice,
Secure Flow relies on Eva to compute an over-approximation of such sets of mod-
ified variables. Such a tool that depends on a static analysis while encoding the

45. The encoding is actually more complex for variables of compound types and for pointers and
arrays, but I do not provide this level of technical details here. The interested reader may refer to
the Secure Flow papers for details (in particular, [ASTT13b, BS17]).
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information flows in the original program is usually called a hybrid information flow
monitor [BR16].

In this context, the main contribution of Mounir Assaf’s PhD is to have pro-
posed the first correct hybrid information flow monitor in presence of pointers
and aliasing [ASTT13b, Ass15]. Gergö Barany extended the proof to arrays
and pointer arithmetic [Bar16], and the approach to most C constructs (without
proof) [BS17].

Secure Flow Usage

Similarly to E-ACSL, which is useless without a C compiler, Secure Flow is useless
without a verification tool since it only generates code. In order to verify the absence
of leakage with Secure Flow, the user must use a code analysis tool on the generated
program. However, Secure Flow does not require any particular tool: the user may
use his/her tool of choice, even if (s)he must rely on Eva when generating the code
with Secure Flow. This approach is schematized in Figure 3.25. In particular, this
figure emphasizes that either static analysis (e.g. through Eva or Wp), or runtime
verification (e.g. through E-ACSL) may be used in practice.

program P program T (P )

Eva’s points-to analysis

runtime verificationstatic analysis

Secure Flow

analyzed
byan

aly
ze

d
by

Figure 3.25: Secure Flow Operational Principle.

At the end of his postdoc, Gergö Barany experimented with this approach on
the library LibTomCrypt and its dependency LibTomMath 46. LibTomCrypt provides
many cryptographic routines. Secure Flow was in particular used to detect a certain
class of timing attacks (or their absence) over all the fourteen symmetric crypto-
functions provided by LibTomCrypt (e.g., including AES) [BS17]. More precisely,
the chosen security policy was to enforce that no conditional branch depends on
the secret key. Indeed, if the executions of the two branches take different amounts
of time, an attacker able to measure this time may deduce information about the

46. http://www.libtom.net

http://www.libtom.net
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secret key. Such attacks are known against implementations of several cryptosys-
tems in common use, including RSA and elliptic curve cryptography [GPP+16].
Actually, even if timing differences cannot be measured directly, attackers on the
same machine may be able to detect cache misses that allow them to deduce the
same kind of information [Per05].

A command line option has been added to Secure Flow to automatically add
the necessary assertions to enforce this security policy. Next, on every symmetric
cryptosystem, Secure Flow was run in combination to Eva. It was enough to conclude
that these implementations are secure with respect to the checked security policy,
but Eva was not used to check all the safety properties. In other words, after
running Eva, there remained no alarm corresponding to Secure Flow assertions, but
several ones corresponding to potential undefined behaviors. Finally, Secure Flow
was also tested in combination with E-ACSL on concrete executions in order to
validate both the security assertions and the absence of undefined behaviors (of the
class supported by plug-in Rte, see Section 3.4.1). Figure 3.26 presents the overhead
introduced by Secure Flow alone, and by Secure Flow and E-ACSL together. The
former are about twice the execution time of the original program, while the latter
varies from 14.0× to 22.2× and so are consistent with the results observed on the
SPEC CPU benchmark. The Secure Flow memory overhead is 1.6× the original
program in average. E-ACSL adds an additional factor of 3.7 on average.

Program Secure Flow Overhead +E-ACSL Overhead
aes 3.0× 20.8×
anubis 2.8× 19.0×
blowfish 2.3× 15.9×
cast5 1.9× 16.9×
kasumi 1.8× 14.8×
khazad 2.2× 22.0×
kseed 1.8× 14.3×
noekeon 1.9× 16.3×
rc2 1.5× 12.2×
rc5 2.3× 22.2×
rc6 2.0× 20.6×
saferp 7.0× 14.0×
twofish 2.4× 19.4×
xtea 1.6× 15.0×

Figure 3.26: Runtime overhead of Secure Flow instrumentation and Secure Flow
+E-ACSL instrumentation on LibTomCrypt’s symmetric cryptofunctions.
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3.4.3 Checking Functional Properties

Being a runtime assertion checker for the E-ACSL specification language, the E-
ACSL tool is of course able to check functional properties at runtime. The process
is usually not fully automatic, since the user must manually write specifications.
However, the necessary effort is not as important as verifying the same properties
statically. Indeed, such a static verification is usually done through deductive meth-
ods (e.g. with plug-in Wp in the Frama-C world) which require adding annotations
to help the verification process, such as loop annotations, extra assertions and/or
lemmas. On the other hand, runtime verification requires an execution context and
does not provide a guarantee for all possible executions but only for the tested ones.
In that respect, using E-ACSL or Wp for checking functional properties is a matter
of choice.

Nevertheless, I think that both tools and techniques may be complementary in
several ways. First, runtime verification may help to debug specifications before
proving them. Indeed, writing specifications is error-prone, so it is worth testing
them by running E-ACSL on unit test cases before trying to prove them. This
approach could be particularly interesting when teaching a formal specification lan-
guage such as ACSL. It is even more fruitful when students also learn program
testing and program proving in addition to formal specification, since they may
practice all these activities within the same framework. It would advance existing
teaching practices [KPS13b] another step forward.

Second, runtime verification with E-ACSL could also help program proving with
Wp during the proof stage. Indeed, writing correct specifications is difficult, but
it is certainly even harder to write the required annotations (in particular, loop
invariants) to prove them. When the proof fails (i.e. no automatic theorem prover is
able to prove a particular proof obligation), it is not always clear why the proof fails.
It usually comes from several reasons, in particular the code or the specifications
(or both) may be wrong, a proof annotation such as a loop invariant may be wrong
or missing, or the used automatic theorem prover(s) may be not powerful enough.
Actually, this use case is exactly the raison d’être of plug-in StaDy which builds
a bridge between the test case generation plug-in PathCrawler and Wp in order to
help understand proof failure [PKB+16]. E-ACSL could be used for this activity too.
Indeed, StaDy transforms ACSL annotations (actually E-ACSL ones) into C code in
a way very similar to that of E-ACSL [PBJ+14].

Finally, runtime verification with E-ACSL and program proving with Wp may
be complementary, in the same way that E-ACSL and Eva are complementary when
verifying the absence of undefined behaviors: some properties may be proven by
Wp, while some others may be checked at runtime with E-ACSL. This approach of-
fers more guarantees than runtime verification alone, while being more cost-effective
than program proof alone, since the user has no obligation to write the necessary ad-



3.5 E-ACSL, an Evolving Tool 121

ditional proof annotations for all his/her specifications. In this context, particularly
in order to use this approach for verifying critical software such as DO-178C level-A
avionic software, one difficulty is to know when enough verification effort has been
spent. Indeed, when using program proof alone, this task is easy: the verification
step is complete when all proof obligations are verified. Also, for testing, many
structural and functional coverage criteria exist to solve this problem [AO16]. How-
ever, there is currently no satisfactory way to detect whether enough verification
effort has been spent when combining both techniques. Viet Hoang Le is currently
solving this issue during his PhD that I supervise together with Löıc Correnson
at LSL and Virginie Wiels at Onera. He proposes a new coverage criterion to
combine test and proof. He is assessing it on examples for which some specifica-
tions are proved with Wp, while some others are verified by E-ACSL on concrete
executions [LCSW18].

3.4.4 Additional Compilation-Based Usages

I already described several usages of E-ACSL in which the tool verifies annota-
tions generated by other plug-ins, such as Rte, Eva or Secure Flow. More generally,
the E-ACSL specification language and the C programming language may be seen as
low-level languages that a higher-level language is compiled to. This compilation-
based approach may be applied to any Frama-C plug-in or external tool that gen-
erates E-ACSL annotations. That is for instance the case of Aoräı, the Frama-C
plug-in generating annotations from Büchi automata (see Section 2.6, page 21). I
already tried such a combination of Aoräı and E-ACSL on toy examples. It works
fine. It should now be evaluated on larger examples. I think that this usage par-
tially fills the gap between E-ACSL and runtime verifiers for temporal logics such
as LTL [BLS11]. However, the latter usually tackles more complex logics than LTL,
such as the recent Metric Dynamic Logic (MDL) [BKT17]. I also think that a ded-
icated runtime verifier for LTL is certainly more efficient than E-ACSL, which may
suffer from the double encoding issue discussed in Section 3.5.1.

Arnaud Dieumegard et al [DGK+15] also rely on such a compilation-based
approach in order to check that a Simulink model is consistent with synchronous
observers. They first compile a Simulink model to Lustre code with a home-made
tool. Then, they express properties as synchronous observers at Lustre level. Next,
the Lustre code and their observers are compiled to C code annotated with E-ACSL
annotations. They finally rely on either Wp, or E-ACSL to verify it.

3.5 E-ACSL, an Evolving Tool

Context This section is novel.
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Even if its development started in 2011, I consider that E-ACSL is still a young
tool. Indeed, since the beginning, only small effort has been put on its development
(less than one person by year). Also, developing a full code analyzer is always a
long-term effort in order to improve it from an academic prototype to a tool usable
in different industrial contexts. I consider that the development of E-ACSL is now
in midstream. It has been successfully applied on its first use cases. However, many
research and development activities are still to be done, in particular to extend its
usages and its expressiveness, while better understanding what E-ACSL really is.

This section is dedicated to these perspectives. First, Section 3.5.1 investigates
what could be new usages for E-ACSL and what are the associated required devel-
opments. Next, Section 3.5.2 explains how E-ACSL could be improved. Finally,
Section 3.5.3 discusses the possible research actions that would contribute to better
understand E-ACSL from a theoretical point of view.

3.5.1 Adding New Usages

First, as already explained, E-ACSL may be used in combination with other plug-
ins, notably Rte, Eva, Secure Flow, and Aoräı, that generate E-ACSL annotations
or compile high-level specifications to E-ACSL-annotated C source code. Arnaud
Dieumegard et al also demonstrated that the same approach can be adopted for
models and their synchronous specifications [DGK+15]. I think it would be worth
studying this approach.

Currently, the Rte plug-in only addresses a (large) class of undefined behaviors,
but some of them are not yet handled for different reasons. Furthermore, detecting
implementation-defined behaviors is also interesting in some particular industrial
contexts. A systematic approach could be adopted to explore what is not yet
supported, by exploring the C99 norm from the start to the end. Extending plug-
in Rte by generating annotations for new kinds of undefined or implementation
defined behaviors will extend the E-ACSL automatic detection power, as soon as the
generated annotations are supported by E-ACSL. For instance, using an uninitialized
left-value was not detected by Rte up to Frama-C release Sulfur-20171101, because
it introduced a too large number of (trivial) assertions that annoy analyzers like
Eva. It was eventually implemented — even if deactivated by default — in order
to be able to automatically check this kind of property with E-ACSL, increasing de
facto its automatic detection power.

Another possible usage of E-ACSL is handling C++ programs. Indeed, it would
be worth trying E-ACSL on the code generated from plugin Clang that converts
C++ code to the Frama-C AST. In particular, since the C generated code is quite
complicated, it is hard to use static analysis in combination with plug-in Clang.
However, E-ACSL is more concerned by the complexity of the annotations than that
of C code, so it should work even on complicated C encoding of C++ constructs.
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Yet, in order to express specific properties of C++ programs (in particular, related
to objects), extensions of ACSL and E-ACSL for C++ must be designed. The just-
started 18-month researcher position of David R. Cok — one of the main JML
contributors [BCC+05] in particular through OpenJML [Cok11] — at LSL could
help to reach this goal.

In this compilation-based setting, it would be interesting to design a plug-in
that would ensure that ghost code (see Section 3.2.13) does not interfere with the
original C code. This feature is the key property of ghost code. Why3, for instance,
ensures it through a dedicated type system with effects [FGP16]. There is no such
verification in Frama-C today. The intricacies of C code (in particular, pointers)
make any solution more difficult to design than the one for Why3. It would cer-
tainly be possible to restrict usage of ghost code by design in a way that verifying
this property statically becomes decidable. However, since it is a non-interference
property, another solution would consist in adapting a non-interference analysis
to this particular case, such as the Secure Flow program transformation (see Sec-
tion 3.4.2). If such a program transformation would be designed and implemented,
E-ACSL would be a tool of choice to verify the generated code at runtime.

However compilation-based approaches potentially suffer from (what I call) the
double encoding issue. Indeed, such approaches consist in encoding a problem P1
into another one P2 (possibly in another language) before converting it into a third
one P3, suitable for verification. Since each compilation step possibly adds a large
amount of new complicated code, the final code becomes huge and difficult to verify.
For instance, Secure Flow information flow encoding generates a large amount of new
annotated C code. All these pieces of code are in turn compiled to a larger C code
by E-ACSL. All in all, the size of the final code is one or two order(s) of magnitude
bigger than the original code. If the initial code is already large, the result is just too
large. Handling C++ code may lead to the very same problem, since the amount of
code generated by plug-in Clang is large. A partial solution consists in implementing
optimization techniques in the program transformation steps (see Section 3.5.2 for
E-ACSL), but it will not completely fix this double encoding issue.

A better choice could consist in designing a dedicated solution for each analyzer
(or verification technique, at least). For instance, it could lead to the design of
new dedicated abstract domains for Eva, such as one for security labels to replace
using Secure Flow in combination to Eva. Regarding E-ACSL, a possible solution
would consist in using the useless bits of its memory model to store dedicated
pieces of information, such as security labels. This way, it would generate much
more efficient code. The drawback of this approach is the need to design several
dedicated solutions (one per analysis), while a compilation-based approach provides
a general solution and allows the user to choose his/her verification tool of choice
for each particular problem.

More generally, the E-ACSL instrumentation engine and the useless bits of its
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memory model could be used to compute and store different pieces of information
about a program run, its traces and/or its data. They could be useful either later
during the same execution, or during a post-processing stage. An example of the
former usage would be a runtime concurrency analysis in which the memory model
would store resource owners in order to detect incorrect accesses to shared resources.
An example of the latter usage could consist in storing pieces of information in a
database in order to train a neural network after millions of executions. Then,
based on this large sampling, a machine learning algorithm could perform offline
monitoring or property synthesis, such as invariant synthesis.

Instead of offline monitoring, another research direction consists in transforming
E-ACSL from an inline runtime verification tool to an outline runtime verification
tool. Indeed, in some industrial settings such as constrained embedded systems,
inline monitoring is unusable because the generated monitor modifies the program
environment. For instance, E-ACSL keeps for its own use a large part of the program
memory. It also introduces new variables stored in the stack and/or the heap,
as well as new statements. Outline monitoring may solve this issue by cleanly
separating the monitor from the monitored program. A first step in this direction
was performed by Quentin Bouillaguet during his master internship [Bou16]
in 2016, that I supervised at LSL with Nikolai Kosmatov, Yves Lhuillier, and
Gilles Mouchard. He designed a Frama-C plugin that generates an outline monitor
that collaborates with Unisim-VP, the framework for virtual platforms developed at
LSL 47: when the simulator runs the monitored program, a communication channel
between the monitor and Unisim-VP allowed the former to verify (simple) E-ACSL
properties by asking Unisim-VP on the fly for the concrete values of the variables
used in the properties while evaluating them. This approach could be adapted by
replacing Unisim-VP with any C debugger, such as gdb.

Many more usages of E-ACSL certainly remain to be invented. They often come
from industrial needs, and also from academics who invent new ways of using and
combining existing tools for their specific needs. This is why industrial partnerships
on one hand and academic collaborations on the other hand are often fruitful.

3.5.2 Improving E-ACSL

Another way to extend the application domains of E-ACSL consists in improv-
ing the tool itself. Currently, several features of the E-ACSL specification language
are not yet implemented [Sigb], though some of them would be very useful. For
instance, support of user logic functions and predicates (Section 3.2.12) is still miss-
ing, while being required in many use cases, for instance from Dassault Avia-
tion, Fraunhofer Fokus, and Thales. Similarly, ranges (Section 3.2.8) would
be useful for Dassault Aviation and Fraunhofer Fokus, while local binding

47. http://unisim-vp.org/

http://unisim-vp.org/
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(Section 3.2.12) and rational numbers are required to handle a Thales use case.
They will therefore be implemented soon. Some other constructs are necessary to
handle standard Wp examples, such as assigns and loop assigns clauses, as well
as loop variant, complete behaviors, and disjoint behaviors. Once they
are implemented, checking functional properties with E-ACSL will be much easier
(see Section 3.4.3). These developments have different levels of complexity. For
instance, implementing local binding should be quite easy, while supporting the
assigns clause is much more complex (for this latter clause, more than half of Her-
mann Lehner’s PhD is dedicated to runtime checking of a comparable construct in
JML [Leh11]). Indeed, since such a clause lists all the memory locations that may
be modified by a function (or a statement), possible solutions would consist in either
collecting all the memory locations whose values change and comparing this set to
the list from the clause afterwards, or monitoring all the memory locations that do
not appear in the clause (possibly many), in order to verify that they are never mod-
ified in the considered piece of code. Both solutions are quite expensive. Therefore,
implementing a sound-yet-fast static analysis is certainly necessary to reduce what
memory locations are collected and compared (first solution) or monitored (second
solution). Another current issue is the support of the \at construct. Its current
support in the E-ACSL tool is efficient but partial. For \at(t, L), it consists in
storing in an extra variable the value of term t at the program point corresponding
to label L. This is efficient, but it does not work as soon as the term t contains vari-
ables with no values at label L. The typical example is \forall integer i; 0 <=
i < 10 ==> \old(t[i]) == 0 for some array t of length 10: if used in a postcon-
dition, the binder i has no meaning in the precondition in which the \old construct
must be evaluated. Workarounds usually consist in cloning large parts of (if not
all) the relevant datastructures [Kos10, PBJ+14]. Here it would soundly clone the
whole array. However, this approach is expensive in the general case. Mixing up
the current E-ACSL implementation with such a workaround could be a potential
solution to an efficient-yet-sound runtime checking of the \at construct. Many of
these unsupported (or partially supported) features should be implemented by Fo-
nenantsoa Maurica who started in February 2018 a 2-year postdoc on E-ACSL
under my supervision.

Another research direction consists in optimizing the generated code. Indeed, a
large amount of time has already been spent to optimize the E-ACSL RTL thanks
to the postdoc of Kostyantyn Vorobyov (see Section 3.3.4), while I have already
implemented a type system to prevent generating Gmp code (Section 3.3.3), as well
as a static analysis to prevent monitoring useless memory locations (Section 3.3.4).
However, much more could be done in that direction. First, as already pointed
out, this static analysis is currently not perfect and needs to be improved. Second,
the E-ACSL compilation scheme is currently rather naive for most constructs. In
particular, it does nothing special to prevent generating plenty of C variables, or to
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remove code redundancy. It leads to extra time overhead and memory consumption.
The most representative example is perhaps the code generated to prevent unde-
fined behavior through plug-in Rte (see Section 3.3.2): currently, if the original code
uses a left-value ∗kp (that is, p dereferenced k times), the generated code performs
a quadratic number of verifications with respect to k, while a linear number of veri-
fications is enough (to verify the proper access to each level of pointer). Kostyantyn
Vorobyov did an experiment: he manually removed all the useless verifications
on a use case of a few thousands lines of code. It led to a runtime overhead di-
vided by about two (that is, instead of a 19× overhead, the overhead was below
10×). It is only one possible optimization among several. In particular, I think
that E-ACSL could adapt to its own context several standard (and sound) compiler
optimizations, such as constant propagation, common sub-expression elimination,
branch optimization, and code motion [App04]. Some of these optimizations should
also be implemented by Fonenantsoa Maurica within the next two years.

Today, the most promising industrial perspective of E-ACSL is to use it as an au-
tomatic debugger, such as AddressSanitizer or Valgrind. For this purpose, it currently
relies on the E-ACSL specification language and automatic annotation generation
through plug-in Rte. However, the absence of some common C programming er-
rors cannot be (easily) specified, such as absence of format string vulnerabilities
when using printf-like functions. E-ACSL was already extended by Kostyantyn
Vorobyov to (optionally) detect this kind of errors, but it is not complete for all
functions (e.g. scanf). Perhaps, a similar approach could also be adopted for other
kinds of errors that are traditionally out-of-scope of runtime assertion checkers, such
as e.g. SQL injection.

Verifying at runtime complex contracts of low-level functions (e.g. memcpy) is
also not very efficient, in particular when they are heavily used by the monitored
program. A more efficient approach consists in providing built-ins for such functions.
A built-in is a C function that behaves like the function that it monitors, but also
checks its precondition efficiently, while assuming that the low-level system function
is correct and so no postconditions are verified 48. This approach has been recently
adopted by E-ACSL for a few libc functions, but it is still possible to extend it
to other useful low-level functions. It is worth noting that using built-ins is not
E-ACSL-specific. For instance, a LSL closed source extension of plug-in Eva also
implements native OCaml built-ins for a few libc functions in order to analyze them
faster and more precisely: they are almost mandatory for large industrial use cases
to get practical results.

Some current E-ACSL limitations prevent the tool from being used in some
contexts. First, the current implementation of its memory model prevents analyzing
multi-threaded programs because concurrent accesses to the shadow model may

48. It is still possible to prove them by other means, such as plug-in Wp.
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lead to unsoundness. It must be fixed, but it requires major modifications of this
implementation. Second, E-ACSL, as any runtime verification tool, requires the
whole program to be executed. It may be an issue in some operational contexts, for
instance if some third-party libraries are not (yet) available. A potential solution to
this problem is function synthesis [KMPS10]. Plug-in Synthesis (Section 2.6, page
28), developed by Michele Alberti during his postdoc under my supervision, has
been implemented with this use case in mind, but it is still a research prototype
and needs to be improved for practical use.

Last but not least, it is also possible to improve the specification language in
some directions. First, as already mentioned, a C++ extension will be necessary in
order to tackle C++ programs. Next, it is based on ACSL which is updated regularly,
so E-ACSL should be updated accordingly to remain compatible. Finally, research
progress may help to add ACSL constructs to the E-ACSL language because new
techniques make them monitorable, such as axiomatic definitions of logic functions
and predicates; as explained in Section 3.2.12, the work of Pierre-Nicolas Tollitte
for compiling Coq inductive definitions to recursive functions [TDD12, Tol13] led
to preliminary work in E-ACSL [Kha17] to compile a subset of them to C recursive
functions. Yet, this work needs to be continued.

3.5.3 Theoretical Foundation

Up to now, the E-ACSL perspectives were mostly engineering tasks, even if
interesting research questions arise for some of them. Also, most of the effort already
spent on E-ACSL since its birth were of this nature in order to get a usable tool
as fast as possible. However, more theoretical research could — and should — be
performed.

First, while the type system has been proved sound [JKS15b], and the soundness
proof of the memory model analysis is also almost complete thanks to the internship
of Dara Ly [Ly17, LKLS18], no soundness proof — and, even worse, no formalization
— of the instrumentation engine currently exists. That is pretty annoying for a
tool that aims to check safety and security properties of critical systems. Such a
formalization and soundness proof is precisely the topic of Dara Ly’s PhD started in
November 2017 under my supervision together with Nikolai Kosmatov at LSL and
Frédéric Loulergue at Northern Arizona University. However, this effort
certainly requires more than one PhD to be complete.

Also, there were already several formalization efforts of subsets of C and ACSL,
in order to prove different Frama-C-based analyses in a proof assistant, either in
Coq [Bla16, BLK17, LKG18], or in Isabelle [Bar16]. Each of them defines its own
subset with slightly different semantics corresponding to its specific need. It is
also worth noting the impressive effort already spent on the CompCert certified
compiler [Ler09] and the Verasco certified abstract interpreter [JLB+15, Jou16]. I
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think that it is maybe the right moment to not reinvent the wheel one more time.
Consequently, I would like to develop a formal framework based on the CompCert
semantics [KLW14] and extended with ACSL, in which anyone could define a subset
of interest in order to formally study his/her favorite analysis. That is the sense of
a French ANR project that I am currently submitting together with several French
academic partners (including the Verasco team) and Mitsubishi Electric: build-
ing a certified code analyzer framework including at least an abstract interpreter,
a program prover and a runtime verifier, all of them being based on CompCert’s
semantics.

I hope that this effort will lead in particular to a better understanding of E-ACSL
and, notably, what property is exactly checked at runtime. First, when running Rte
before E-ACSL to generate annotations, it would be worth studying which unde-
fined behaviors are really caught and, most importantly, which ones are not (yet)
covered. Second, memory safety is a quite complex property [dAHP17] and it is not
yet clear what safety property is precisely checked by the E-ACSL memory model
when verifying a memory property such as a \valid predicate (at least, it depends
whether it tries to detect temporal memory properties [VKSJ17]). This formaliza-
tion effort could also help to formally compare E-ACSL to other formal tools, such
as RV-Match [GHSR16] based on K [ER12, Ell12].

Beyond what properties the E-ACSL memory model ensures, its C implemen-
tation is also quite complicated and would be worth being formally verified (at
least for its core part). However, it relies on low-level C programming, such as
pointer arithmetic and bitwise operations: its formal proof is very challenging and,
for sure, cannot be done with automatic theorem provers only. Nevertheless, sev-
eral recent works show that verifying complicated low-level pieces of C code is
doable [BKLL15, MDK16, RHMM17, BLK18]. Perhaps, the time has come to face
this challenge.

I am also interested in expressing E-ACSL in a standard runtime verification
formalism. In this context, E-ACSL would become a monitor generator checking
properties over events and traces, instead of monitoring properties about program
states. However, while the relationship between events and traces on one hand and
program states on the other hand seems rather intuitive (see Section 3.1.4), the
underlying logic able to express the properties of the E-ACSL specification language
remains unclear to my eyes. For instance, despite its merits, I am not yet con-
vinced that the Adrian Francalanza et al’s praiseworthy foundational theory of
monitors [FAA+17, AAFI18] fits our need.



4
Conclusion

Yose (Endgame)

End of the Game of the Century between Go Seigen and Honinbo Shusai
(1933/10/16 – 1934/1/29).

It is now time to conclude this journey into the Frama-C and E-ACSL worlds.
Its objective was to present a large overview of both tools, while highlighting my
personal contributions.

I joined the Frama-C team in 2006 when Frama-C was still a baby framework. I
spent most of my time up to 2011 improving its kernel. I developed several libraries
that are now at the heart of this framework. This development raises some nice pro-
gramming challenges (e.g. dynamic typing in OCaml) and research questions (e.g.
how to soundly combine analysis results). Then I started the development of its
runtime verification plug-in E-ACSL. It led to several very interesting research ques-
tions about efficient and sound online monitoring of state properties, in particular
related to memory safety.

Frama-C is now used worldwide by academia and by industrial partners, in par-
ticular in (but not limited to) the avionic domain and more generally transporta-
tion, as well as the defense and the nuclear domains. Its development also led to the
creation of TrustInSoft, which commercializes two custom versions of Frama-C,
namely TIS-Analyzer and TIS-Interpreter.
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E-ACSL is not yet as mature as Frama-C and its most advanced plug-ins such
as Eva and Wp. However, the large benchmarking effort and the first industrial use
cases recently completed are promising: they show that E-ACSL is now comparable
to the best commercial tools of the field, such as AddressSanitizer or Valgrind.

Yet many research actions are still to be pursued. For Frama-C, its kernel is still
evolving. Analyzer collaborations, its most important feature, could be improved,
while new usages are emerging such as integrating new Eva domains, or creating
collaborations between Frama-C as a whole and other tools, in order to build bridges
between C code and model, or between C code and lower-level code such as assem-
bly or binary code. New domains of application constantly arise, such as robotics,
machine learning or quantum computing. Each time, Frama-C must be adapted to
new domain specific needs. Finally, targeting new programming languages, such as
the ongoing effort on C++ is also a challenge. It may eventually lead to the devel-
opment of a new framework, powerful enough to natively support most mainstream
programming languages.

The engineering effort on E-ACSL is still continuing in order to improve its
efficiency and its expressiveness, while adding new usages. It includes adding con-
structs from its specification language that are not yet supported. The efficient
implementation of some of them is actually a challenge. For instance, some of them
may require developing dedicated static analyses. Also, optimizing the generated
code is required. It would notably require adapting existing compilation techniques
to the E-ACSL setting. The E-ACSL memory model contains a few unused bits for
each monitored block. It would be worth using them for specific tasks such as taint
analysis or machine learning. In addition, using E-ACSL in some industrial set-
tings is not possible because it heavily modifies the program environment. Such a
drawback is inherent to inline monitoring tools such as E-ACSL. For these contexts,
developing an outline version of E-ACSL would be worthwhile.

I am also interested in exploring the theoretical foundation of E-ACSL. This
includes formalizing and proving its instrumentation engine and its memory model,
as well as defining precisely the verified properties. I would like to include this effort
in a bigger one, in order to develop a Coq framework of certified analyzers including
Verasco and based on CompCert’s semantics. Besides, I would like to study how to
express E-ACSL in a standard runtime verification formalism based on traces and
events.

Some of the above-mentioned perspectives are already being explored. In par-
ticular, Dara Ly started a PhD about formalizing E-ACSL last November, while
Fonenantsoa Maurica is just starting a 2-year postdoc for improving expressive-
ness and efficiency of E-ACSL.

Beyond these scientific considerations, funding is nowadays of the utmost im-
portance for research in general and applied research in particular: without them,
no significant effort can be put on a project. Today, Frama-C is funded by many
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academic and industrial projects. Renewing them is a constant effort. E-ACSL, on
its side, is much smaller and does not require as many sources of funding. It is
currently funded by the French ANR project AnaStaSec, the French PIA project
S3P, the European H2020 project Vessedia, and our joint lab with Thales. New
academic and industrial research proposals that include R&D actions on E-ACSL
are currently being submitted. Together with several industrial interests, it makes
me confident in the future of E-ACSL.
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noles.
Designing a generic graph library using ML functors.
In Trends in Functional Programming (TFP’07), April 2007.

http://frama-c.com/download/user-manual.pdf


142 BIBLIOGRAPHY

[Cha04] Patrice Chalin.
JML Support for Primitive Arbitrary Precision Numeric Types:
Definition and Semantics.
Journal of Object Technology, 3(6):57–79, June 2004.

[Cha05] Patrice Chalin.
Logical foundations of program assertions: What do practitioners
want?
In International Conference on Software Engineering and Formal
Methods (SEFM’05), pages 383–393, September 2005.

[Cha07] Patrice Chalin.
A sound assertion semantics for the dependable systems evolution
verifying compiler.
In International Conference on Software Engineering (ICSE’07),
pages 23–33, May 2007.

[Cha09] Patrice Chalin.
Engineering a sound assertion semantics for the verifying compiler.
Transactions on Software Engineering, 36:275–287, September
2009.

[Che03] Yoonsik Cheon.
A runtime assertion checker for the Java Modeling Language.
PhD Thesis, Iowa State University, 2003.

[Che11] Omar Chebaro.
Classification de menaces d’erreurs par analyse statique, simplifi-
cation syntaxique et test structurel de programmes.
PhD Thesis, University of Franche-Comté, December 2011.
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Result graphs for an abstract interpretation-based static analyzer.
In Journés Francophones des Langages Applicatifs (JFLA’17), Jan-
uary 2017.
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[Gö31] Kurt Gödel.
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générateur de code.
Master’s thesis, CEA LIST, October 2017.
In French.

[LZL+14] Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin,
Patrick O’Neil Meredith, Traian Florin Serbanuta, and Grigore
Roşu.
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A
Callgraph Services

This appendix presents the so-called service algorithm of the Frama-C callgraph
introduced in Section 2.6. Informally, a service groups together functions that
contribute to a common functionality. In order to work properly, it is computed
not only from the callgraph but also from a set of functions called initial roots that
define a first set of (unfilled) services. In Frama-C, by default, these roots are the
main function and its callees.

More precisely, the service algorithm computes a minimal cluster of the call-
graph, that is one of its smallest decompositions into services. Let us now define
these notions of services, (initial) roots and (minimal) clusters.

A.1 Definitions

We denote |S|, the cardinal of a set S. We also define a directed graphG = (V,E)
by its set V of vertices and its set E of edges. First we define the notion of a service
S from a root vertex r as a set of vertices that only transitively depend on r.

Definition A.1 (Graph Service) A service S of a directed graph G = (V,E)
with a root rS ∈ V is a subset of vertices V such that:

rS ∈ S (a root is in its own service)
∀s ∈ S \ {rS}, ∀s′ ∈ V, (s′, s) ∈ E =⇒ s′ ∈ S

(no root vertex of a service depends on outside vertices)

The above definition captures what a service is. However it remains imprecise
in organizing different services of a graph in a convenient way. That is what the
notion of cluster does. It relies on an initial set of roots.
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Definition A.2 (Graph Cluster) A cluster C of a directed graph G = (V,E) of
initial roots R ⊆ V is a set of services such that:

∀r ∈ R,∃S ∈ C, r = rS (all initial roots are cluster roots)
∀(S, S′) ∈ C2, S 6= S′ =⇒ S ∩ S′ = ∅ (cluster services are pairwise disjoint)⋃

S∈C
S = V (cluster services are complete)

Minimizing the number of services (and so getting biggest ones) provides better
results in practice. Here is its definition.

Definition A.3 (Minimal Graph Cluster) A minimal cluster of a directed graph
G = (V,E) of initial roots R ⊆ V is a cluster C such that its cardinality is the small-
est among all the clusters of G:

∀C′ cluster of G, |C| ≤ |C′|.

A.2 Algorithm
The service algorithm computes a minimal cluster of a directed graph G = (V,E)

of initial roots R ⊆ V . Figure 1 presents its pseudo-code. It proceeds in three
steps. First, it initializes the status of each vertex to unknown. Then, it traverses
the graph in topological ordering in order to visit the predecessors of a vertex
v before v. This way, it is possible to discover roots of services and associate
services to vertex through the status service s where s is the root of the service a
vertex belongs to. Unfortunately, in case of cycles, it cannot always conclude with
certainty because, when visiting a vertex v, all its predecessors have not necessarily
been visited. Therefore it may compute a weaker status maybe s which means that
either v belongs to the service of root s, or must be the root of a new service. The
final step of the algorithm performs another topological traversal of the graph to
precisely handle the status maybe.

If we assume that the time complexity of a topological iteration of G is

O(|V | × log |V |),

then the time complexity of our algorithm is

O(|V | × log |V | ×maxv∈V |pred(v,G))|.

The algorithm is yet unproved. As explained in Section 2.6, I consider the
formal proof of its Frama-C implementation (based on OcamlGraph’s datastructures
and higher-order iterators [CFS07]) as a challenge for verification of higher-order
not-purely-functional programs.
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Let G = (V,E) be a callgraph, R ⊆ V be the sets of initial nodes and pred(v,g)
be the set of predecessors of node v in G. In the pseudo-code below, comments are
enclosed in (* ... *) like in OCaml.

(* first step: initialize status to unknown *)
for each v ∈ V , status(v) ← unknown
(* second step: discover roots and associate services to vertices *)
for each v ∈ V following a topological ordering

if v ∈ R ∨ ∀v′ ∈ pred(v, g), status(v′) = unknown
then v ← service v (* new service of root v *)
else if ∃s ∈ V,∀v′ ∈ pred(v, g), status(v′) = service s
then v ← service s (* v belongs to the same service than all its predecessors *)
else if ∃s ∈ V,∀v′ ∈ pred(v, g), status(v′) = (service s ∨maybe s ∨ unknown)
then v ← maybe s (* depend on the non-visited vertices *)
else if v ← service v (* new connected component *)
end if

done
(* third step: resolve uncertainty from cycles *)
for each v ∈ V following a topological ordering

if ∃s ∈ V, status(v) = maybe s
then

if ∀v′ ∈ pred(v, g), status(v′) = (service s ∨maybe s)
(* predecessors are either in the same service or in the same cycle *)
then v ← service s
else v ← service v
end if

end if
done

Figure 1: Graph Service Algorithm.
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W2 Löıc Correnson and Julien Signoles.
Combining Analyses for C Program Verification.
Formal Methods for Industrial Case Studies (FMICS), 2012. Bibliography
entry [CS12].

W1 Pascal Cuoq, Damien Doligez and Julien Signoles.
Lightweight Typed Customizable Unmarshaling.
ML Workshop, 2011.
Bibliography entry [CDS11]

B.6 Peer-Reviewed French Journals
N2 Julien Signoles.
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