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Abstract

This is a summary of what we think we know, thought we knew and despair of ever knowing
about the Higgs boson mass mh. Understanding its value is one of the most fascinating open
problem in particle physics. It has kept many of us awake at night for the past 30 years.

The problem is reviewed in detail in the first two Chapters of this work. Its proposed
solutions in the third Chapter. The last Chapter is the fruit of my sleepless nights of the last 5
years or so. There I discuss a new class of explanations for mh that trace its origin to early times
in the history of the Universe. This is a definite change of perspective compared to traditional
explanations, with completely different experimental consequences.
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Chapter 1

Introduction

Let us raise a standard to which
the wise and honest can repair;
the rest is in the hands of God.

George Washington

1.1 Summary and Outline

The Standard Model (SM) is the reference theory of particle interactions. It has been exten-
sively tested from atomic energies to the highest energies that we can currently probe. Its
continuos predictive successes have made it the unavoidable starting point of any experimental
or theoretical investigation of higher energies.

The Higgs boson plays a special role in the SM. Its mass squared is the second most relevant
parameter in the theory, after the cosmological constant. Therefore these two parameters are
crucial to describe low energy measurements. The Higgs boson mass determines the vacuum
expectation value of the Higgs field which enters the mass of most known particles and deter-
mines the scale of weak interactions. The stability of nuclei, and thus complex chemistry and
ultimately life as we know it, are strongly tied to its value. The Higgs boson was discovered,
and its mass measured, by the ATLAS and CMS experiments at the Large Hadron Collider
(LHC) [1, 2].

A second important property of the Higgs mass mh is that the corresponding operator in
the SM Lagrangian is not protected by any symmetry, so if we try to estimate mh we are
forced to consider the highest energy scales in the theory. This high/low energy “duality”
makes the problem of understanding its value quite fascinating. The pragmatist wants to
compute any parameter that is so important in the description of low energy observations. The
dreamer hopes to learn precious information on energies much higher than those that we can
currently probe. The challenge inherent in these attempts is that we do not know how the SM
is modified at high energies, in particular we do not know how to describe gravity at the Planck
scale MPl ' 1019 GeV. We are trying to compute a parameter in a theory that does not yet
exist.

In the SM taken in isolation mh can not be computed at all, precisely because of this high-
energy sensitivity. We can only take it as an input parameter from experiment. There is still
something that we can do, however, and it is something that has never failed us once in the
long history of physics: we can estimate mh using symmetry.

The selection rules of spacetime dilations tell us that m2
h must be proportional to the largest

mass scale in the theory, so m2
h ∝ M2

Pl. The infinite symmetries that protect the free scalar
Lagrangian [3], allow us to estimate the coefficient of proportionality m2

h ∼ y2
tM

2
Pl + ..., where
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the ellipses stand for subleading contributions from smaller mass scales. yt is an O(1) coefficient
that we have measured from properties of other SM particles. The measured value of the Higgs
mass is mh ' 125 GeV and this estimate is wrong by 34 orders of magnitude. In Sections 3.5,
3.3 and 3.1 we comment on the use of MPl as a mass scale in our estimate.

This is not yet a problem of our description of Nature, in the sense that the SM is not
inconsistent. As we stated above, mh can only be measured and never computed in the SM.
However, something quite dramatic has happened. The symmetry arguments that led to our
wrong estimate are used every day by thousands of people in hundreds of different disciplines,
including high energy physics, and they always work. To obtain our estimate we have only used
the most basic principle underlying most of our understanding of physics: the selection rules
of broken symmetries.

We are forced to take the failure of these symmetry arguments seriously and ask what is
happening at high energies that is making them wrong. The simplest option is that we have
missed an extra symmetry that is realized in Nature well below MPl and shields mh from higher
energy corrections. Two possibilities in this sense are supersymmetry and scale invariance, both
would predict m2

h ∼ y2
tM

2
S + ..., where MS is the scale at which the new symmetry is broken.

We have been looking for these new symmetries for more than 40 years and we have not yet
found a trace that they are realized in Nature. We can either accept some amount of accidental
cancellations1 as a fundamental aspect of Nature or look for alternatives.

In this work we advocate for a change of perspective on the problem. The apparently small
value of mh compared to other fundamental scales of Nature might be explained by an event
taking place early in the history of the Universe, without any trace of new symmetries close to
mh. This general idea can be declined in a number of different ways that have been developed
in the last few years. In the following we review the status of the field with special attention to
experimental predictions that are common across different theoretical realizations of the idea.

This document is organized as follows, in the rest of this Chapter we introduce the Standard
Model of particle physics, initially making the effort of “forgetting” quantum field theory and
using only symmetry arguments. In Chapter 2 we discuss in greater detail the issues surrounding
the computation of mh, highlighting common misconceptions and giving a short historical
summary of the significance of similar problems in the development of particle physics. In
Chapter 3 we review the main ideas put forward to explain the value of mh, with the exception
of mechanisms that select mh via a cosmological event, which are discussed in Chapter 4.

1.2 The Standard Model in a Nutshell

The SM is a relativistic quantum field theory described by a Lagrangian. It includes three
interactions (strong, electromagnetic and weak) between twelve fermionic fields. The fermions
can be divided into two subsets of six particles each: quarks and leptons. Quarks feel the
strong force while leptons do not. Each of the two groups can be organized into three families
as shown in Fig. 1.1. In particle physics jargon the different families are said to have different
flavor. The upper components of all the families share the same quantum numbers and so
do the lower ones, so we can further subdivide the matter fields into up-quarks, down-quarks,
charged leptons and neutrinos. Ordinary matter is composed only of u and d quarks, that form
protons and neutrons, and of electrons.

The three interactions mentioned above are mediated by bosonic fields. The strong force
is mediated by gluons, the photon carries the electromagnetic interactions, while the W and
Z bosons are responsible for the weak one, Fig. 1.1 contains a summary table. The three

1The quantity y2tM
2
S in a realistic theory is the sum of multiple contributions of the same order that in

general have different signs and might conspire to give a final result smaller than M2
S .

2



Figure 1.1: Standard Model particle content [License: CC0].

interactions do not have all the same intensity, as their names suggest. At energies close to
the W mass electromagnetic and weak interactions are comparable while the intensity of the
strong interaction is roughly larger by a factor of 3. The situation changes dramatically at
lower energies where the strong interaction is confining and the mass of the heavy mediators of
the weak force suppress its effects. For instance in the few MeV range

strong

electromagnetic
' 100 ,

electromagnetic

weak
' 109 . (1.1)

So far we have neglected gravity. The reason is that at the energies that we can currently probe
its effects are not measurable.

It is useful to notice that not only forces, but also fermion masses are strongly hierarchical.
This can be seen from Fig. 1.1. As we will see at the end of this Section, these masses originate
from couplings to the Higgs boson, so the top quark is the particle with the largest coupling to
the Higgs in the SM.

In the following Section we derive most of these statements and make them more precise
using only symmetry and experimental observations, without assuming prior knowledge of
quantum field theory.

1.3 The Standard Model from Symmetry Alone

It is instructive to see how much we can reconstruct of the SM using only symmetry, assuming
for the moment that we do not know quantum field theory. The experienced reader can skip
this Section. I find useful to include it for two reasons: 1) In the following I will try to argue
that the hierarchy problem, in some precise sense, is a failure of symmetry and it is interesting

3



to see just how far one can go in understanding the laws of particle physics using symmetry
alone. 2) This Section follows a lecture that I have given at SNS Pisa to explain the SM to
undergraduates and it will serve as a future reference that I am hoping might be useful also to
others.

Modern experiments require describing particle interactions in a regime where quantum
effects are relevant and particles are relativistic. It is therefore convenient to work in natural
units where the speed of light and Planck’s constant are set to one, c = } = 1. The existence
of these fundamental constants is telling us something useful. The speed of light c in special
relativity is telling us that we need to treat space and time on equal footing xµ = (t, ~x) and
also energy and momentum pµ = (E, ~p). Quantum mechanics is teaching us that spacetime
coordinates in natural units have dimensions of E−1. In the following we characterize quantities
in natural units by their dimensions in units of energy.

After these basic preliminaries, we can identify the three main symmetries that will provide
the basis to construct the SM:

1. Spacetime dilations are broken in the SM, but their selection rules play a central role
in understanding the SM as an effective theory (EFT).

2. Lorentz Symmetry is respected by the SM and particles have to fall into definite
representations of the Lorentz group.

3. Global Symmetries. In the decades leading to the establishment of the SM we have
observed a host of additional symmetries that do not involve spacetime coordinates. They
are related to the forces listed above.

1.3.1 Spacetime dilations

We start with a generic action written as the time integral of a Lagrangian

S =

∫
dtL . (1.2)

Since we set } = 1, S in natural units is dimensionless S ∼ E0. In the following we use the
shorthand notation [S] = 0.

In a Lorentz-invariant theory it is convenient to define a Lagrangian density L as

S =

∫
dtL =

∫
dtd3xL . (1.3)

It follows from [S] = 0 that [L] = 4. The volume element d4x ≡ dtd3x is Lorentz-invariant.
Under a Lorentz transformation xµ′ = Λµ

νx
ν , we have d4x→ | det Λ|d4x′ and | det Λ| = 1. So if

we construct L to be Lorentz-invariant we have a Lorentz-invariant action.
Even if we did not know anything about the fundamental theory of particle interactions we

could still expand the Lagrangian density as

L =
∑

i

ciOi , (1.4)

where ci are numerical coefficients and Oi operators describing kinetic terms and interactions.
We can then use the selection rules of dilations (i.e. dimensional analysis) to conclude that if
[Oi] = ∆i then [ci] = 4 − ∆i. If we take Λ to be the largest mass scale in the theory, we can
write

ci = aiΛ
4−∆i , (1.5)

4



in absence of extra symmetries (that can for instance set to zero individual ai’s), the same
selection rules of dilations suggest that the coefficients ai should be O(1). This can be seen in
the following way: we can use these selection rules to write

ci = a1
iΛ

4−∆i + a2
iΛ

4−∆i
2 + a3

iΛ
4−∆i
3 + ... = Λ4−∆i

[
a1
i + a2

i

(
Λ2

Λ

)4−∆i

+ a3
i

(
Λ3

Λ

)4−∆i

+ ...

]
,(1.6)

where Λ > Λn > Λn+1. Barring accidental cancellations that can make a1
i small, spacetime

dilations predict ci = O(Λ4−∆i), so finally we have

L =
∑

i

aiΛ
4−∆iOi . (1.7)

We can now ask how much each term in this sum contributes to a given observable. Imagine
for instance that we are measuring the action at energies E < Λ. We can use again dimensional
analysis to conclude that

S '
∑

i

aiE
−4Λ4−∆iE∆

i =
∑

i

ai

(
Λ

E

)4(
E

Λ

)∆i

. (1.8)

Operators of dimension ∆i < 4, the so-called relevant operators, give an enhanced contribution
at low energy. A finite experimental precision implies that we can neglect all the infinitely
many irrelevant operators with ∆i > ∆∗, where ∆∗ is determined by the accuracy of our
measurement. This explains why the SM Lagrangian contains only operators up to ∆i = 4
and as a consequence it is so compact. We have not yet reached high enough energies and
resolutions to detect operators of higher dimension. This is the modern perspective on the
theory of fundamental interactions. We do not think of it as something perfect and forever set
in stone, but rather as the low energy limit of a more complex theory that will reveal itself
in the future. We did not rely on any detailed property of quantum field theory to reach this
conclusion, but just on a single, broken symmetry.

Aside on Effective Field Theories

In what follows we extensively use the language, intuition and tools of effective field theories.
Before proceeding in our construction of the SM it is useful to introduce some of these concepts.
For excellent reviews, that we partially follow, we refer the reader to [4, 5].

The idea of an effective theory is implicit in the human description of reality that brings
order by neglecting effects that are far removed from our perception. In this case by neglecting
what is “far” in energy.

The common intuition that the dynamics at low energies does not depend on the details
of the theory at high energies (small distances) can be turned into a quantitative statement.
To this end we can consider the example of the Hydrogen atom. We can calculate its energy
levels to a certain degree of accuracy through the Schrodinger equation, knowing just the mass
and the charge of the proton and the electron. If we want to refine our analysis, including the
hyperfine splitting, we need additional information, such as their spins and magnetic moments.
Moving towards higher precision demands the knowledge of QCD and the underlying structure
of the proton. To better quantify this progression and the level of accuracy achieved at each
step, it is necessary to introduce the typical momentum scale of the problem. Through the
Bohr radius r0 = 1/αme, it is easy to give an estimate

p0 '
1

r0

= αme . (1.9)
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Neglecting an interaction at p ∼ Λ� p0 will give us an error of O(p0/Λ)n, n > 0, coming from
the lowest dimensional operator among the irrelevant ones discussed in the previous Section.
Since the Hydrogen atom is a non-relativistic system the typical energy is different than p0,
E0 ' α2me, so we must be careful when estimating the error on different observables and
technically the relativistic expansion in the previous Section does not apply directly. However
the intuition that we developed on different classes of operators remains valid.

One might wonder how a large scale Λ can leave such a subdominant effect at much lower
energies. This is of course not entirely true, but the effect of Λ is hidden by the fact that the
low energy theory has a series of free parameter that we can measure directly.

In the previous example α depends crucially on the top quark mass (mt � αme)

d(1/α)

d logmt

= − 1

3π
(1.10)

and so does the proton mass

mp ∝ m
2/27
t . (1.11)

However we can describe the Hydrogen atom without knowing that the top quark exists. The
reason is that we can directly measure α and mp from low energy observations. In this sense
mt is irrelevant as far as atomic properties are concerned, but in the higher energy theory it
relates two parameters that are free in the effective one.

In the language of the previous Section, all the coefficients ci of the operators in the effec-
tive theory can be directly measured at low energy. Irrelevant operators that are sufficiently
suppressed by their large scaling dimension ∆i can further be neglected in any calculation done
with finite precision.

A more complete high-energy theory can leave also some non-trivial constraints at lower
energies, a beautiful example is the spin-statistics theorem. In non-relativistic quantum me-
chanics the quantization of integer and non-integer spin degrees of freedom can proceed in
exactly the same way without undermining the consistency of the theory. Nonetheless the full
relativistic theory demands the respect of causality, which enforces the Fermi and Bose pictures
also in low-energy observables.

In summary we can always find low-energy degrees of freedom that describe physics to
a finite, but calculable precision. The only effect of the high-energy dynamics is to impose
symmetry relations between them. In the process we do not need to know anything about the
ultraviolet (UV) theory, but we loose some predictive power, in the sense that some parameters
that are calculable in the complete theory might be free in our low-energy description.

1.3.2 Lorentz Symmetry and Causality

The existence of a limiting velocity c implies that forces can not act instantly at a distance.
To respect causality we need interactions that can not propagate outside of the lightcone of an
observer. The most natural way to implement this requirement is to consider local interactions.
If we take electromagnetism as an example, we need to introduce a new particle γ that exchanges
energy and momentum with other particles, for instance electrons, when they meet in the same
spacetime point. This exchange is the equivalent to the classical action of the electromagnetic
force.

Since we are constructing a Lorentz-invariant theory we have to assign a representation to γ
under the Lorentz group. From classical electromagnetism we can already deduce the properties
of γ that are needed to determine its representation:

6



1. We can prepare coherent electromagnetic fields in the laboratory much larger than their
fundamental quantum. This means that γ must be a bosonic field, otherwise causality
(i.e. the Pauli exclusion principle in non-relativistic quantum mechanics) would forbid
the existence of these large coherent fields.

2. Electromagnetic radiation propagates at the speed of light, hence the mass of γ must be
zero: mγ = 0.

3. Electromagnetic fields have two polarizations: γ is in a Lorentz representation with two
degrees of freedom.

In summary we have a massless bosonic field of integer spin. A scalar (s = 0) does not have
enough degrees of freedom to parametrize our two polarizations. We need to consider at least
a s = 1 representation that we can describe by a Lorentz vector Aµ. However, we have too
many degrees of freedom in Aµ.

This is a difficulty that we have already encountered in classical electromagnetism. If we
want to describe electromagnetic fields in terms of a vector potential, with definite transforma-
tion properties under the Lorentz group, we have a redundancy. The vector potential is defined
only up to a gauge transformation

Aµ → Aµ + ∂µα . (1.12)

Configurations that differ by the derivative of an arbitrary C2 function α describe the same
electromagnetic fields and as a consequence the same physics. In this Section we are imagining
that the reader does not know QFT. However in QFT one can prove that the only way to
describe a massless spin-1 (or spin-2) field with nontrivial interactions is by introducing gauge
invariance [6, 7]. This is a consequence of the definite transformation properties of Aµ under
the Lorentz group and the little group acting on massless four-momenta (so again just Lorentz
symmetry!).

If we identify the Aµ representing our new particle γ with the vector potential, this gauge
redundancy reduces the total number of degrees of freedom to the two physical polarizations
that we want to describe. This is the path that we take in the following. Causality and the
Lorentz symmetry of special relativity led us to conclude that electromagnetic interactions must
be described by a spin-1 particle Aµ defined only modulo the gauge redundancy in Eq. (1.12).
Using only the Lorentz symmetry we can further deduce that electromagnetic interactions must
be in the form

L = eAµJ
µ , (1.13)

with Jµ transforming as a covariant vector and where e is a numerical coefficient. We can move
forward in our understanding of Nature by noticing that the action shifted by Aµ → Aµ + ∂µα
must describe the same physics, so

δS =

∫
d4x e(∂µα)Jµ = 0 . (1.14)

Without introducing quantum field theory, we can not attach a precise meaning to Eq. (1.13)
or Jµ, but we introduced Jµ to represent particles interacting with electromagnetism and our
considerations on causality and locality suggest that these particles must be localized to some
extent. So if we take Jµ to vanish sufficiently rapidly at infinity we can integrate Eq. (1.14) by
parts and conclude that

δS =

∫
d4x eα∂µJ

µ = 0→ ∂µJ
µ = 0 . (1.15)

7



The last equality descends from the fact that α is an arbitrary function. We can now start to
appreciate the relation between forces and symmetries that we alluded to at the beginning of
this Section. Noether’s theorem allows us to associate each conserved current (i.e. divergence-
less four-vector ∂µJ

µ = 0) to the generator of a symmetry of the action. So what are the
symmetries associated to electromagnetism and the other forces of Nature?

Our straightforward application of the Lorentz symmetry and of causality has led us to ask
a new question that we can still answer using symmetry, without introducing quantum field
theory. To answer it, it is useful to recall another elementary property of the Lorentz group.
Its algebra in terms of boosts Ki and rotations Ji (i = 1, .., 3) is

[Ji, Jj] = iεijkJk , [Ki, Kj] = iεijkJk , [Ki, Jj] = iεijkKk , (1.16)

where i is the imaginary unit, when not used as an index, and εijk is the completely antisym-
metric symbol. We can define a linear combination of the generators

Ai =
Ji + iKi

2
, Bi =

Ji − iKi

2
(1.17)

and notice that the algebra factorizes into two independent SU(2)’s

[Ai, Aj] = iεijkAk , [Ai, Bj] = 0 , [Bi, Bj] = iεijkBk . (1.18)

This means that we can have two different s = 1/2 representations of the Lorentz group,
depending on the SU(2) under which the particle transforms non-trivially. Particles belonging
to different representations of the group can have different transformation properties under the
other symmetries of the theory and hence interact differently with the SM forces. Traditionally,
the two different s = 1/2 representations are called left- and right-handed because parity
exchanges them P : A↔ B.

1.3.3 Global Symmetries

We now have all the ingredients to understand the symmetries of the SM associated to the
forces of Nature. In the previous Section we have taken Lorentz invariance as a given. Here
we would like to build up our knowledge of particle interactions from observations, but we still
need a theoretical starting point.

In quantum mechanics a symmetry is a linear operation on the states (or more precisely the
rays) of the Hilbert space U : |ψ〉 → |ψ′〉 that preserves the results of our measurements

|〈ψ′|φ′〉|2 = |〈ψ|φ〉|2 . (1.19)

The above condition implies that U be unitary and linear or antiunitary and antilinear (Wigner’s
theorem [8]). In most cases of interest in physics the symmetry contains also the trivial element
U = 1, which is of course unitary and linear and often all the other members of the symmetry
group are continuously connected to the identity. Symmetries represented by antiunitary, an-
tilinear operators are less prominent in physics. They all imply a reversal in the direction of
time. This makes compact Lie groups a good place to start, since all their finite-dimensional
representations are unitary (see for instance proposition 4.27 and theorem 4.28 in [9]) and the
particles we know have a finite number of degrees of freedom. For this reason in the rest of this
Section we will primarily consider compact Lie groups.

To move forward, first of all, we note that according to Noether’s theorem each current
corresponds to a generator of the symmetry group, so in general

L =
∑

a

gaA
a
µJ

µ
a , (1.20)
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with a spanning the number of generators of the group. To understand if this quantity is
invariant we need to know the representations that Aaµ and Jµa are in. We already know that
there are as many currents as generators and still from Noether’s theorem we know that Jµa is in
the adjoint representation, so Aaµ must be as well for Eq. (1.20) to have a chance to be invariant.
This means that Eq. (1.20) is invariant under the action of the group only if ga = g,∀a.

We know from observation that different particles interact with electromagnetism with dif-
ferent strength, so we need a different prefactor g for each of them. This leaves open a single
possibility, the abelian group U(1). This choice makes the adjoint representation trivial and
allows us to write

L ⊃ Aµ (QeJ
µ
e +QuJ

µ
u + ...) , (1.21)

where, for example, Je describes electrons, Ju up quarks and Qe,u their respective charges.
We can now turn to strong interactions. Their symmetry group is SU(3), which is tradi-

tionally called the color group. The selection of the group is unique, in view of [10]:

(a) The group must admit complex representations to account for both quarks and anti-
quarks and distinguish them. There are mesons which can be conveniently described as
qq bound states, but there is not any qq bound state.

(b) There must be a color singlet completely antisymmetric representation made up of qqq in
order to solve the statistics puzzle of the low-lying baryons of spin 1/2 and 3/2.

(c) Given the number of quark flavors, the number of colors must be in agreement with the
data on the total e+e− hadronic cross section and the π0 → γγ decay rate.

Within simple groups, (a) restricts the choice to SU(N) with N ≥ 3, SO(4N + 2) with N > 1
(SO(6) is homomorphic to SU(4)) and E(6). The remaining prescriptions lead unambiguously
to SU(3) with each flavor of quarks in a fundamental representation.

We can now turn to weak interactions. It is useful to outline their history following [11].
In 1898 when Rutherford discovered that the so-called Becquerel ray consisted of two distinct
types of radiation that he called α and β. To pin down the symmetry group of weak interactions
we can fast-forward to 1914, glossing over a number of important discoveries, to the observation
by Chadwick of continuous (in energy) β emission from nuclei. Lise Meitner in 1922 pointed
out the tension between this observation and quantum theory. Among competing hypothesis
(for instance Bohr postulated energy non-conservation), Pauli formulated the correct one, the
neutrino hypothesis. Fermi then followed with his theory of beta decay. M. Rosenbluth, C. N.
Yang and T.D. Lee later found that muon decay and capture resembled beta decay. They then
speculated that, in analogy with electromagnetism, the weak interaction could be carried an
intermediate heavy boson and have a universal coupling.

This program was delayed by the so-called θ-τ puzzle. In the early 50s, θ was the name of a
meson decaying into two pions, whereas τ referred one decaying into three pions. Experiments
showed that these mesons had different intrinsic parities, but had the same lifetime and the
same mass. Researchers initially resisted the idea that weak interactions might violate parity.
Until 1956 when Chien-Shiung Wu proved unambigously partity non-conservation in the β-
decay of Cobalt 60. Theorists T.D. Lee and C.N. Yang were awarded the Nobel prize for
proposing the experiment. At this stage, the significance of the results at the end of the
previous Section appears clear. Either only left-handed or only right-handed fermions couple
to weak interactions. Further investigation along the lines of Wu’s experiment led to conclude
that left-handed fermions are the ones coupling to them.

In all these experiments (and many more that we had not the space to review) it was
observed that: 1) electron number was conserved 2) charge was conserved. Electron number is
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the sum of the number of left-handed and right-handed electrons EL,R and neutrinos (taken with
the opposite sign for positrons and anti-neutrinos). We know that a massless boson associated
to charge conservation exists, it is the photon which mediates the U(1) interaction responsible
for electromagnetism. However no equivalent particle is observed for electron number. This
might be a symmetry of the theory not associated to any force at low energy. If this is the case
the symmetry group of weak interactions has to commute with it. This means that electron
and neutrino are in the same representation of the symmetry group of weak interactions. They
form the doublet

L =

(
νe
e

)
. (1.22)

The only Lie group with a two dimensional representation is SU(2). This together with the
observations of parity violation leaves only SU(2)L. We can further notice that charge Q can
be written as

Q = T3 − ER −
EL
2
≡ T3 − Y . (1.23)

Here T3 is one of the generators of SU(2)L. Since T3 is part of the symmetry group of weak
interactions and Q is conserved, Y must be conserved as well. This quantity is called hyper-
charge.

We have gone a very long way in the description of the SM. However to take the last step
we need quantum field theory. In reality electromagnetic and weak interactions are unified
at high energies and described by the symmetry group SU(2)L × U(1)Y . The Lagrangian is
invariant under this symmetry, but the vacuum is invariant only under the U(1)Q subgroup
describing electromagnetism. This is the reason why the bosons that mediate the weak force
are massive, while the photon is massless and at low energy the full SU(2)L×U(1)Y invariance
is not manifest. We will describe these phenomena in more detail in the next Section, where
we go back to assuming that the reader posses a modern knowledge of quantum field theory.

1.4 The Standard Model Lagrangian

We have reached the end of our symmetry-based exercise and from now on we will assume that
the reader has a modern knowledge of quantum field theory. In this Section we introduce the
SM Lagrangian and the role played by the Higgs boson.

We have seen in the previous Sections that strong and electroweak interactions are de-
scribed by the symmetry groups SU(3) × SU(2)L × U(1)Y . The fermions representations can
be summarized as follows

Ψ =
(
Q(3, 2)1/6, L(1, 2)−1/2, u

c(3̄, 1)−2/3, d
c(3̄, 1)1/3, e

c(1, 1)1

)
, (1.24)

where the first number in parenthesis indicates the SU(3) representation, the second one the
SU(2)L one and the subscript the hypercharge. We have suppressed the flavor indexes that
label different fermion families for simplicity, but we will restore them below. In most of this
work we use the notation in Eq. (1.24) where the SM fermions are described by left-handed Weyl
spinors. We occasionally use also a Dirac notation related to the previous one by Q = (uL dL)
and uc = ūR.

The three forces described by the Standard Model are included in the Lagrangian as gauge
interactions

LSMg = −1

4
BµνB

µν − 1

4
W i
µνW

µνi − 1

4
Ga
µνG

µνa + iΨγµDµΨ . (1.25)
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The first three operators are the kinetic terms of the gauge bosons that mediate the interaction

Bµν = ∂µBν − ∂νBµ ,

W i
µν = ∂µW

i
ν − ∂νW i

µ − gW εijkW j
µW

k
ν ,

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGa
µG

b
ν , (1.26)

where Bµ,W
i
µ, G

a
µ are the quantum fields describing the gauge bosons, gW and gs are the weak

and strong gauge couplings and ε and f are the structure constants of SU(2)L and SU(3),
respectively. The last operator in the Lagrangian contains the kinetic term of the fermions and
their gauge interactions

iΨγµDµΨ = iΨγµ

(
∂µ + igs

8∑

a=1

λaGa
µ + igW

3∑

i=1

T iW i
µ + igY Y Bµ

)
Ψ . (1.27)

In the previous expression λa are the generators of SU(3), T i those of SU(2)L and Y is the
hypercharge. They act in block-diagonal form on Ψ, which is a vector of irreducible represen-
tations.

To complete this picture we need to introduce mass terms for fermions and weak gauge
bosons. The difficulty resides in the fact that a mass term for the fermions clashes with SU(2)L
invariance, since it couples left-handed fields with right-handed ones

mψψ = m(ψLψR + ψRψL) . (1.28)

The problem with a mass term for W i
µ is that it is not invariant under the gauge shift W →

W +∂α that preserves the right counting of degrees of freedom, i.e. a massive gauge boson has
one extra degree of freedom compared to the massless gauge boson described by LSMg. The
introduction of a single SU(2)L spin zero doublet

H(1, 2)1/2 (1.29)

solves both problems. In the following we will call this field the Higgs boson. H couples to
gauge bosons

LH ⊃ |DµH|2 (1.30)

and can have the following Yukawa couplings with SM fermions

LY = −YuQHuc − YdQH†dc − YeLH†ec + h.c. (1.31)

Yu,d,e are matrices in flavor space, Lorentz and gauge indexes are left implied. If we further
imagine a non-trivial form for its potential

LH = |DµH|2 +m2
h|H|2 −

λ

2
|H|2 , (1.32)

where m2
h > 0, the ground state of the theory is at a non-zero value of the field

〈H〉 =

(
0
v

)
, v =

mh√
λ
. (1.33)

In the following we will often use 〈h〉 to denote the vacuum expectation value of the Higgs
boson. h is the spin-0 degree of freedom that remains in the H doublet in unitary gauge.
Choosing new field variables we can write H as

H = ei
σiπi

2

(
0
h

)
. (1.34)
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A SU(2)L gauge transformation allows to get rid of the πi’s, giving

Hunitary =

(
0
h

)
. (1.35)

This is the scalar that was produced at CMS and ATLAS and was observed to have mh '
125 GeV. The degrees of freedom described by πi of course do not disappear from the theory,
they make up the extra degrees of freedom that allows three of the SU(2)L × U(1)Y gauge
bosons to become massive. If we expand the SM Lagrangian, including H,

LSM = LSMg + LY + LH , (1.36)

around its true ground state, we find a mass term for the gauge bosons

|DµH|2 = m2
WW

+
µ W

µ− +m2
ZZµZ

µ + ... , (1.37)

where

W±
µ =

W 1
µ ± iW 2

µ√
2

, mW =
gWv√

2
, (1.38)

and

Zµ = cos θWW
3
µ − sin θWBµ , mZ =

√
g2
W + g2

Y v√
2

. (1.39)

The same happens for the fermions through the Yukawa couplings to H. We can first write
them using singular value decomposition

Ya = Ua
L Y

D
a Ua†

R , (1.40)

then we can use the large flavor symmetry of the gauge Lagrangian SU(3)5 × U(1)4 to rotate
away Ua†

R . We can do the same for Ua
L and be left with flavor-diagonal Yuakwas that give mass

to the fermions

LY = −Y D
u QHu

c − Y D
d QH

†dc − Y D
e LH

†ec + h.c.

= −Y D
u vQu

c − Y D
d vQd

c − Y D
e vLe

c + ... (1.41)

However a single unitary matrix, known as the Cabbibo-Kobayashi-Maskawa (CKM) matrix [12,
13]

V ≡ Uu
LU

d†
L , (1.42)

remains in the Lagrangian and mixes different mass eigenstates through weak interactions

LSMg ⊃ gWW
+
µ (uLV γ

µdL) + h.c. (1.43)

The reason being that weak interactions couple the quark doublet Q with itself, so they respect
a single SU(3) flavor symmetry in the left-handed quark sector. To fully rotate away the Ua

L,R

we need a separate SU(3) for each quark (i.e. uL, dL, uR and dR), but the Lagrangian is
symmetric only under SU(3)5 = SU(3)Q × SU(3)uR × SU(3)dR × SU(3)L × SU(3)eR .

As shown in Fig. 1.1 the quark and lepton masses are strongly hierarchical. The heaviest
particle is the top quark. Its Yukawa coupling is yt = O(1). The lightest SM fermions (electron,
u and d quarks) have couplings to the Higgs of O(10−5). At scales comparable to mh the
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particles that are most strongly coupled to the Higgs after the top quark are W and Z bosons,
since their gauge couplings are O(0.5).

To conclude this Section we note that there is an operator allowed by all the symmetries
introduced above that we have not yet discussed:

αsθ

8π
Ga
µνG̃

µνa , (1.44)

where G̃µνa = (1/2)εµνρσGa
ρσ and εµνρσ is the completely antisymmetric symbol. This operator

is a total derivative and perturbatively it does not have a measurable effect. However, at scales
where QCD confines, the interference between instatons (i.e. classical solutions for the gluon
field that fall off sufficiently slowly at infinity) and quark masses induces observable effects that
depend on θ. From measurements of the neutron electric dipole moment we can conclude that
θ . 10−10 [14]. In what follows we will return to this operator for two reasons: 1) The smallness
of θ is puzzling from the point of view of dimensional analysis (this is the so-called strong CP
problem) 2) This is the only operator in the SM whose vacuum expectation value is sensitive
to 〈H〉 and this will play an important role in the explanations that we propose for the value
of mh.

A last aspect of the SM Lagrangian that is worth mentioning, but will not play an equally
important role in what follows, are neutrino masses. The Lagrangian that we have written so
far preserves a U(1)4 symmetry even after Yukawa couplings are included. We have a U(1)B,
i.e. a phase rotation of all the quarks that are therefore said to carry baryon number and a
U(1)Le × U(1)Lµ × U(1)Lτ , i.e. the phase of each lepton family can be chosen arbitrarily. This
latter symmetry is not observed in Nature, only the total lepton number (i.e. the diagonal
subgroup of U(1)Le × U(1)Lµ × U(1)Lτ ) is conserved in current experiments. Observing the
violation of individual lepton numbers has lead to experimentally establish the existence of
neutrino masses [15].

We have two possibilities to include them in the SM. We can add a neutral singlet N(1, 1)0.
N , together with the neutral component of L, forms a Dirac fermion with mass given by the
Yukawa interaction

LY ν = −yNLHN + h.c. (1.45)

Alternatively we can include a small Majorana mass for the neutral component of L that would
break also the total lepton number. The simplest SU(2)L invariant operator that can generate
this mass term is

LMν =
(HL)2

ΛN

+ h.c. (1.46)

where ΛN is an unknown scale such that mν ∼ v2/ΛN . These two options can be distinguished
experimentally, given that they preserve different symmetry groups, but we do not yet have the
required sensitivity [15].

1.4.1 Aside on Renormalization

In this work we often use scaling arguments akin to those in Section 1.3.1 to enforce the selection
rules of dilations.

It is therefore useful to recall some technical aspects of operator dimensions that make our
arguments more precise. Consider first a free, shift-symmetric, real scalar field

S =

∫
dDx

(∂µφ)2

2
. (1.47)
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The scaling dimensions of the field can be inferred from [S] = 0 that implies [φ] = D−2
2

. This
exercise of deducing the scaling dimension of a field from its kinetic term can be done in any
theory, including strongly interacting ones. Care must be taken when there is more than one
kinetic term. An example is 2 + 1 dimensional gauge theory where both a single derivative
Chern-Simons term and a Maxwell term with two derivatives are present. A similar occurrence
arises in the statistical mechanics of membranes, where there are a second derivative tension
and fourth derivative rigidity. However, in general, at any given momentum a single kinetic
term dominates and determines the scaling dimension.

This already shows that the scaling dimensions of the fields are not set in stone, but can
depend on the energy at which we evaluate them. This is important for our arguments because
we can deduce the scaling dimensions of parameters, including mh, from that of the fields. For
instance, if we consider the interacting theory

S =

∫
dDx

[
(∂µφ)2

2
− m2

2
φ2 − λ

4
φ4

]
. (1.48)

we have [m] = 2, [λ] = 4−D. From this simple example one might conclude that only rational
dimensions are relevant and that, in theories with a single kinetic term, scaling dimensions are
fixed. This is not true; consider the change of variables

x′ = sx , φ(x) = s
2−D

2 φ′(x′) . (1.49)

This turns the action to

S =

∫
dDx′

[
(∂µφ

′)2

2
− s2m2

2
φ′2 − s4−Dλ

4
φ′4
]
. (1.50)

Since this is just a change of variables correlation functions defined as

Gn(x1, ..., xn;m,λ,M) ≡ 〈φ(x1)...φ(xn)〉M . (1.51)

must remain unaltered. The subscript M indicates that the parameters of the theory, such as
m and λ are measured at the scale M . From the invariance of Gn we have

Gn(sx;m,λ,M) = snγφGn(x; s2m, sD−4λ, sM) , (1.52)

where in a free theory γφ = (2−D)/2. From the previous equality we can obtain the so called
renormalization group equation

[
M

∂

∂M
+ βm2

∂

∂m2
+ βλ

∂

∂λ
+ nγφ

]
Gn = 0 , (1.53)

where

M
∂

∂M
g(M) = βg(g(M)) , g = m,λ, γφ . (1.54)

We have found that couplings and scaling dimensions depend on the scale M at which they
are measured. In general, before using the scaling arguments anticipated at the very beginning
of the chapter, we have to compute the scaling dimensions of SM fields in the full interacting
theory. However in weakly coupled theories the so-called anomalous dimensions (i.e. γφ minus
its value in the free theory) are small, of O(g2/16π2) where g is a generic coupling in the
theory. In the SM, where the largest coupling is O(1), the anomalous dimensions of fields can
be neglected without changing qualitatively our arguments. So we will always take [H] ' 1
and [mh] ' 2.
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1.5 Beyond the Standard Model

The theory that we summarized in the previous Sections was built on Earth from observations
of cosmic rays and particle collisions. Remarkably it can also describe most experimental
observations of the Universe at early times. There are, however, some notable exceptions. The
particles and forces in the SM can not account for the observed dark matter abundance and
can not explain the observed asymmetry between matter and anti-matter.

Dark Matter (DM) makes up about 80% of the matter in the Universe i.e. of the en-
ergy density component that is diluted as a−3 as the Universe expands. a is a scale factor
parametrizing the spatial size of the Universe. We can clearly distinguish it from baryons,
which are the main matter component coming from the SM, mainly because it interacts very
weakly with light σ(DM γ → DM γ) . 10−33 cm2(mDM/GeV). It was discovered through its
gravitational interactions [16], and to the best of our knowledge these are the only interactions
that it is guaranteed to have with SM. Given that we observe it today in our galaxy and also
at redshift z ' 1100 in the CMB power spectrum, it has a lifetime at least comparable to
the age of the Universe τ ' 14 Gy. This leaves as a candidate DM particle in the SM only
proton, electron and neutrinos. Proton and electrons are excluded from the stringent bounds
on the DM interactions with light and from the fact that most of the DM is observed to fall
into approximately spherical halos [17], while hydrogen atoms can radiate photons and at late
times fall approximately onto a thin disc which defines the galactic plane. The SM neutrinos
have masses around mν ' meV and interact only through the weak force. These two properties
allow to predict their abundance today and their impact on the matter power spectrum in
the Universe (roughly speaking the Fourier transform of the two point function of galaxies on
the celestial sphere), neither of which matches what we observe for DM. In summary, physics
beyond the Standard Model is needed to explain the existence of DM. Even if we postulate
the existence of primordial black holes made of SM particles, the theory needs to include new
ingredients to produce them with the right abundance and in certain mass windows that are
still experimentally viable. DM is not the main character in the rest of this work, but we will
see how many of the ideas that we discuss here predict specific DM candidates. We elaborate
on these aspect of the models and where needed we discuss experimental properties of DM that
we did not include in this Section.

A second observational aspect of the Universe that the SM does not fully capture is the
dominance of matter over anti-matter that we observe. In terms of particles it is a small
number η ≡ (nB − nB̄)/nγ ' 10−11 if compared to the number of photons, but it makes a big
difference for our existence. To make this possible we clearly have to break the CP symmetry
that relates particles to anti-particles. This breaking is already present in the SM, both in
the CKM matrix V in Eq.s (1.42) and (1.43) and in the θ-angle Eq. (1.44), if non-zero. We
also need baryon number violation, charge conjugation violation and a departure from thermal
equilibrium during the history of the Universe (together with CP-violation these are known
as Sakharov’s conditions [18]). The SM alone does not have all the necessary ingredients, the
parameters violating C and CP are too small and baryon number is preserved.

From this brief discussion it is clear that the SM must be extended to fully describe the
observable Universe. It is useful to recall that both DM and baryogenesis are not tied to a
definite energy scale or type of interaction. DM could be as light at 10−22 eV and as heavy as
1048 GeV. It could be charged under SU(2)L or coupled to us only gravitationally. It could have
self-interactions as large as σ/mDM ' cm2/g or none at all. It could be produced at MPl as well
as me ' 0.5 MeV or below. Similarly, baryogenesis could take place at the electroweak phase
transition, at temperatures around mh, or close to MPl, via a variety of different mechanisms.
Clearly a vast amount of experimental and theoretical work is still ahead of us if we want to
pin down the precise nature of these two phenomena. There are, however, other clues on how

15



to extend the SM that could shed light also on these two observations.
Aside from these two unexplained observations, the SM leaves open a number of theoretical

mysteries. These are not failures of the theory to describe observed phenomena, but rather
peculiarities of the model that contain precious clues on what particle interactions might look
like at much higher energies.

The most striking at first sight is the equality between proton and electron charge. A
priori proton and electron have nothing to do with each other. They have different quantum
numbers and the proton is not even an elementary particle. However their charge is the same
at least in a few parts in 1019 [19]. Stated differently, the question might be: why are all the
electromagnetic charges in the SM rational multiples of a single number? The simplest and
most elegant explanation is that the symmetry groups that describe SM forces are unified into
a larger group at high energies. We discussed in Section 1.3.3 how this implies a single coupling
constant for all fermion fields. As was often the case in particle physics in the last decades, the
simplest implementation of this idea was excluded, in this case by lower bounds on the proton
lifetime [20]. However this general possibility remains open and appealing.

The second peculiarity that a casual observer would notice is the structure of the fermion
mass matrices. Why are the quantum numbers of the first family reproduced in two more
copies with different masses? Where are the hierarchies in the Yukawa matrices coming from?
While we have several answers to the second question, for instance in terms of Froggart-Nielsen
constructions [21–23], the first one remains open.

The last aspect of the SM that remains mysterious is the central theme of this work. Among
the parameters in the SM Lagrangian that can not be computed there are three that keep most
particle physicists awake at night: the cosmological constant ΛCC, the Higgs boson mass m2

h

and the QCD θ-angle.
The cosmological constant is the most relevant parameter in the Lagrangian (i.e. the one

with the largest scaling dimension under spacetime dilations). It determines the maximal size of
the observable universe. We can estimate it in a similar way as m2

h, as discussed in Section 1.1.
Its natural value ΛCC ∼ M4

Pl is about 10120 larger than what we observed from the expansion
of the Universe ΛCC ' (0.1 meV)4 [24, 25].

The Higgs mass squared is the second most relevant parameter in the Lagrangian and it
determines 〈H〉, which, as we have seen in this Chapter, is responsible for many of the observed
properties of the SM, including the masses of all massive particles. Its natural value m2

h ∼M2
Pl

is 1034 larger than its observed one m2
h ' (125 GeV)2.

The QCD θ-angle parametrizes the size of the irrelevant operator in Eq. (1.44). Also in this
case we expect it to be ∼ 1010 times larger than what we observed.

These three observations are broadly called “naturalness problems” or “fine-tuning prob-
lems”. If we extend the SM into theories where we can compute these three parameters, the
small values that we observe can only be explained by an accidental cancellation between un-
related contributions. Different terms in the calculation appear to be unnaturally fine-tuned
to give the observed result. However it is useful to remember that purely within the SM there
is no fine-tuning, these are measured parameters of the effective theory. The only potential
problem from this low energy perspective is, in some sense, a failure of symmetry. To estimate
the natural value of these parameters (that is so much larger than observations) we used only
symmetry. This is a common procedure in every branch of science and it always gives the cor-
rect result. The fact that in these instances it did not work means that the underlying theory
of Nature is quite different from what we can naively infer at low energy. In the next Chapter
we return on this issue and on what it could mean in much greater detail.
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Chapter 2

The Hierarchy Problem

And if thou gaze long into an
abyss, the abyss will also gaze
into thee.

Friedrich Nietzsche

The questions surrounding electroweak symmetry breaking and the Higgs boson mass have
driven particle physics for decades. The efforts of thousands of researchers have led to the
discovery of the Higgs boson about ten years ago at the LHC. Thanks to this research program
we now have an understanding of the laws of Nature at energies never reached before with an
unprecedented precision.

The most interesting consequence of this gargantuan effort is that the value of the Higgs
boson mass remains mysterious. The problem is more concrete today than it ever was because
we have finally discovered the Higgs boson, measured its mass and established that it is a
fundamental scalar (at least up to a factor of ten in energy above its mass).

The problem is also more fascinating because its most elegant solutions can not be realized
in their simplest form and it is unclear whether we should abandon them entirely and radically
change our outlook on the weak scale or accept some amount of tuning as a fundamental aspect
of physics. Either way we will learn something new about Nature.

In this Chapter we give a precise statement of the problem and the assumptions needed to
formulate it. We then review its traditional symmetry-based solutions. Before turning to the
more technical aspects of this question, we give a historical account of similar problems that
we encountered in fundamental physics and their resolutions.

2.1 Historical Background

In Section 1.1 we have given a brief, but correct statement of what is puzzling about the value
of the Higgs boson mass. An estimate based on symmetry is many orders of magnitude larger
than its measured value. This does not make the SM effective theory inconsistent since the
Higgs boson mass is given by the sum of multiple contributions and we can compute only some
of them (which, incidentally, are of the right order). Within the SM the best that we can do is
measure mh.

However, there is a somewhat imprecise, but historically useful way to highlight a tension
already in the SM EFT. If we regularize loops with a hard cutoff Λ, using it as a proxy for
new particles or interactions at that scale, we find that mh in the SM is given by m2

h '
m2
h,0 + y2

tΛ
2/16π2, with mh,0 a bare Lagrangian parameter, so a mh � Λ can only be explained

by an accidental cancellation between the two terms.
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This of course is not a calculation. If we renormalize correctly the effective theory (maybe
using an MS scheme) no trace of Λ and of cancellations is left and we return to the conclusion
that mh is just a measured parameter of the EFT.

The previous discussion can only be made precise in a theory where mh can be calculated.
When we write m2

h ' m2
h,0 + y2

tΛ
2/16π2 we are using Λ as a placeholder for the masses of new

particles (or the threshold of a CFT) in a theory that we do not yet know. In practice we are
making assumptions on high energies that we will state precisely in the next Sections.

For the moment it is useful to set aside these caveats and examine similar instances of
apparent cancellations in past EFTs of Nature. This will show how this kind of tensions often
signals paradigmatic changes in our understanding of physics. It will also give us an overview
of their possible resolutions which often map faithfully to modern candidate explanations for
the value of mh.

Often, accidental cancellations between unrelated parameters signal that our description
of Nature is incomplete. A well-known example is the rest energy of the electron in classical
electrodynamics. In natural units we have

me = me,0 +
e2

4πre
. (2.1)

The first term on the right-hand side is the bare electron mass in the Lagrangian. The second
accounts for the energy stored in the electric field generated by the electron in a sphere of radius
re, as computed in classical electrodynamics.

Experimentally we know that me ' 0.5 MeV. Cheating a little for illustrative purposes we
can use our modern knowledge of the electron radius re . TeV−1 to cut-off the divergence of
the Coulomb self-energy. This corresponds to not having observed deviations from a point-
like behavior at the LHC. Putting together these two measurements we conclude that only an
accidental cancellation between the two terms on the right-hand side of Eq. (2.1) can explain
the observed value of the electron mass.

This apparent fine-tuning is hiding something deep. At the length scales in our calculation
classical electrodynamics breaks down and we need to include quantum effects to obtain the
correct result. Restoring units, we can not ignore quantum mechanics below

c∆t . }c
∆E
' }
mec

, (2.2)

or in natural units for re . 1/me. So the result of our classical calculation is not correct. If we
include the contribution of photons and positrons from vacuum fluctuations [?], the term that
diverges as 1/re is cancelled by virtue of a new symmetry. The chiral symmetry that emerges in
quantum electrodynamics as me goes to zero. Only a term logarithmic in 1/re and proportional
to me,0 survives, as dictated by the selection rules of this new symmetry,

me = me,0

[
1 +

3α

4π
log

1

mere

]
. (2.3)

Now we have a correction of less than 10% even for an electron that stays point-like up to the
Planck scale. Incidentally, pushing classical electrodynamics beyond its limits of validity has
other surprising consequences, including the emergence of an acausal behavior for the electron
on time scales of O(e2/me) [?].

Setting violations of causality aside, we have just seen that what appeared as an accidental
cancellation was pointing to a more fundamental description of our physical system in terms of
quantum mechanics.

This is not the only case in which apparent coincidences is signaling the emergence of a
new paradigm. A second classic example that has a completely different resolution is that
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of planetary orbits in the solar system. In 1596 Johannes Kepler published the Mysterium
Cosmographicum, where he showed that each of the five Platonic solids can be uniquely inscribed
into and circumscribed by a sphere. If ordered in a specific pattern (octahedron, icosahedron,
dodecahedron, tetrahedron, cube) the spheres reproduced, within the experimental accuracy of
the time, the orbits of the six known planets, from Mercury to Saturn. This seems a striking
coincidence that requires finely tuned values of unrelated parameters. Alternatively, as Kepler
did, one could see it as an example of God’s refined aesthetic sense.

Today we know that the explanation is different, but still paradigm-shifting. Not only we
are not unique in any way, but we are just a tiny speck of dust in an unimaginably vast universe.
This kind of approximate accidents become likely if we think about the staggering number of
other stars, planets and solar systems over which we have to integrate small probabilities.

These two examples are exemplary of two broad answers that Nature has given us when
we encountered apparent fine-tunings in the past. We either have seen new symmetries, as
was the case for the electron, or a landscape, i.e. multiple realizations of the observable that
we thought to be unique, as in Kepler’s solar system. Each in its own way these were drastic
changes in our understanding of Nature.

Importantly, these are not the only two examples. Apparent fine-tunings could have ap-
peared also in quantum field theory, but Nature has always resolved them before they occurred.
Using our modern knowledge of particle interactions we can find many of these instances. We
can estimate UV-sensitive parameters in the effective theories that pre-dated the SM using the
symmetries of the effective theory and find that these effective theories were completed by new
symmetries before any fine-tuning occurred.

For instance, the mass difference between neutral and charged pions in the chiral Lagrangian
is not protected by any symmetry. From the interaction of the charged pion with electromag-
netism

LChPT ⊃ Λ2
QCDf

2
π

π†
←→
∂ µπ

f 2
πΛQCD

eAµ

ΛQCD

= eAµπ†
←→
∂ µπ , (2.4)

we can estimate

m2
π+ −m2

π0 ' 3αΛ2

4π
≈ (35.5 MeV)2 (2.5)

where Λ is the largest energy scale where this theory is valid. As we mentioned for the Higgs
boson this is not a real calculation, but just an estimate based on hidden assumptions on the
UV. In this effective theory m2

π+ ,m2
π0 are two measured parameters of the chiral Lagrangian.

Our estimates and the measured mass difference m2
π+−m2

π0 point to Λ . 850 MeV. Indeed,
a new particle appears at mρ = 770 MeV to complete this picture. In the full theory of strong
interactions, given by QCD, the model that we used to obtain Eq. (2.5) is valid only up to
' mρ, at much higher energies there are no pions. The fundamental degrees of freedom are the
SM quarks described in the previous Chapter, whose masses are protected by chiral symmetries.

A similar phenomenon occurs in the Fermi theory of weak interactions. Using our modern
knowledge of particle physics we can write the original vertex introduced by Fermi as an effective
theory of quark and lepton interactions

LFermi ⊃
GF√

2
(ūLγ

µdL) (ēLγµνL) + h.c. (2.6)

If we imagine that also neutral current interactions exist, such as

LFermi ⊃
GF√

2
cos2 θc

(
d̄Lγ

µdL
)2

+
GF√

2
sin2 θc (s̄Lγ

µdL)
(
d̄Lγ

µsL
)

+ ... (2.7)
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We can use this theory to compute the K0 and K
0

mesons mass mixing

(
K

0
K0
)( m2

K δm2
K

δm2
K m2

K

)(
K

0

K0

)
, (2.8)

and we can again estimate the splitting δm2
K using a cutoff Λ. The two mass eigenstates K0

L

and K0
S are split roughly by

mK0
L
−mK0

S

mK0
L

' G2
Ff

2
K cos2 θc sin2 θcΛ

2, fK ≈ 114 MeV , (2.9)

where fK parametrizes the matrix element of the quark currents between two mesonic states
and Λ is again the largest scale of validity of the theory. The Lagrangian LFermi can be obtained
from the SM,

LSMg ⊃ −
g√
2
W µ

[
ūγµ

(1− γ5)

2
(d cos θc + s sin θc) + c̄γµ

(1− γ5)

2
(−d sin θc + s cos θc)

]
,(2.10)

after integrating out up and charm quarks. The observed Kaon mass difference allows to predict
the charm quark mass. From the same naturalness arguments introduced above, we conclude
that Λ . 2 GeV and indeed we find mc = 1.2 GeV.

Historically the examples that we discussed in this Section were all post-dictions of nat-
uralness. The estimates of Λ and re were made after the new symmetries explaining them
were discovered. However they still show that conceptual puzzles identical to the one that we
have encountered for the Higgs boson, have hidden real paradigm changes in our description
of Nature. Perhaps more importantly they also sharpen our uneasiness with accepting an ac-
cidental cancellation for the Higgs boson mass. All examples of similar issues in fundamental
physics were resolved way before any fine-tuning was manifest. The only counterexample that
I am aware of is that of Love numbers of rotating black holes. However also this example was
recently shown to be explained by a symmetry [26,27].

2.2 The Unbearable Lightness of the Higgs

In the previous Chapter we have have seen that the Higgs boson mass plays a privileged role
in the SM. It determines the Higgs vacuum expectation value

〈H〉 =

(
0
v

)
, v =

mh√
λ
. (2.11)

〈H〉 enters the fermion masses through their Yukawa couplings yi

me = yev , mu = yu , .... (2.12)

and the W and Z masses

|DµH|2 = m2
WW

+
µ W

µ− +m2
ZZµZ

µ + ... ,

mW =
gWv√

2
,

mZ =

√
g2
W + g2

Y v√
2

, (2.13)

that set the range of weak interactions. These quantities determine much of the low energy
phenomena that make chemistry and life possible. It is only natural to try to understand the
value of this parameter.

In this Section we show why measuring mh ' 125 GeV, although expected from LEP
electroweak precision constraints, is theoretically quite puzzling.
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2.2.1 A Precise Statement in the Standard Model

There is no real problem associated to mh in the SM, as we already recalled in the previous
Sections. However, the mere fact of discovering what looks like a fundamental scalar at energies
much smaller than MPl should give us pause. In this Section we make this statement more
precise, following the very nice exposition in [28].

If we follow ’t Hooft naturalness criterion [29] mh is puzzling, because as mh → 0 no new
symmetry appears in the SM Lagrangian, but we observe mh �MPl, at odds with the selection
rules of dilations. We can be more precise on this point by starting from the Lagrangian of a
free massive scalar

L =
(∂φ)2

2
− m2φ2

2
. (2.14)

This theory respects an infinite set of symmetries, as can be readily seen in momentum space

L = φ̃(−k)
(k2 −m2)

2
φ̃(k) . (2.15)

The phase shift

φ̃(k)→ eiα(k)φ̃(k) , (2.16)

is a symmetry of the action for any odd function α

α(−k) = −α(k) . (2.17)

The first generator of this symmetry corresponds to translations

α(k) = aµk
µ + aµνρk

µkνkρ + .... (2.18)

and the conserved current is the stress-energy tensor T µν . The higher order terms are generated
by higher powers of derivatives and are associated with higher-spin currents. The algebra is
trivial (for example [∂, ∂3] = 0) and does not contain dilations or special conformal transfor-
mations. This symmetry is broken by higher-point interactions

L =
∑

n

δ(n)(k1 + ...+ kn)Γ(n)(k1, ..., kn)φ̃(k1)...φ̃(kn) . (2.19)

Under the phase shift in Eq. (2.16) we have

Γ(n)(k1, ..., kn)→ Γ(n)(k1, ..., kn)ei
∑
j α(kj) (2.20)

if n = 2 momentum conservation gives k1 = −k2 and the vertex is invariant. All higher point
interactions break the symmetry.

The selection rules of this symmetry together with those of spacetime dilations

xµ → sxµ ,

mh → s−1mh , (2.21)

allow us to estimate the expected value of the Higgs mass. Spacetime dilations tell us that

m2
h ∼ m2

t + ... (2.22)

where the ellipses represent smaller mass scales in the theory. The selection rules of the higher-
spin symmetry that we just discussed further allow us to conclude that

m2
h ∼

y2
t

16π2
m2
t + ... (2.23)
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So purely within the SM there is no tension at all, given that mt ' 174 GeV. There is, however,
a much larger mass scale associated with gravity1, so naively we expect

m2
h ∼

y2
t

16π2
M2

Pl + ... (2.24)

So why is this expectation not realized in Nature? We give possible answers to this question
in the next Section. At this stage it is perhaps more pertinent to ask: what does this estimate
really mean? We have stated multiple times that there is neither a problem in the SM, nor
a way to compute mh. This estimate is actually telling us what happens in a higher energy
theory where mh can be computed. This type of theory is particularly relevant because string
theory, our current best shot at describing quantum gravity, falls in this category if it requires
supersymmetry. Let us see explicitly what happens in such a theory.

2.2.2 A Sharp Problem in Supersymmetry

We can consider the Minimal Supersymmetric Standard Model (MSSM) which extends the
SM with the minimal field content needed to realize supersymmetry. The algebra of N = 1
supersymmetry (i.e. the simplest version with two spinorial generators) is

{Qα, Q
†
α̇} = 2σµαα̇Pµ ,

{Qα, Qβ} = {Q†α̇, Q†β̇} = 0 ,

[Qα, P
µ] =

[
Q†α̇, P

µ
]

= 0

[Mµν , Qα] =
(σµν)βα

2
Qβ . (2.25)

with the addition of the usual Poincaré algebra that we left implicit. Supersymmetry is not the
main focus of this work and we refer the reader to [30–32] for the derivation and significance
of this result. For our purposes it is sufficient to notice that the existence of two spinorial
generators implies that particles of different spin belong to the same supersymmetric multiplet.
In practice to make the SM supersymmetric we need a new s = 0 scalar for each fermion, and
a new s = 1/2 fermion for each boson.

Furthermore, supersymmetry does not allow us to write both up-type and down-type
Yukawa couplings with a single Higgs boson. We have two introduce two new doublets Hu,d.
The extra doublet is also needed to cancel gauge anomalies induced by the supersymmetric
partner of the Higgs, the Higgsino.

The last ingredient that we need to take into account is supersymmetry breaking. We have
not observed this plethora of new particles realizing the symmetry, so in Nature the symmetry
must be broken at some scale. For this reason we will include also soft (i.e. dimensionful)
supersymmetry breaking in what follows.

In this theory the tree-level potential of the two Higgs doublets reads

LSH = −(m2
Hu + |µ|2)|Hu|2 − (m2

Hd
+ |µ|2)|Hd|2 − (BµHuHd + h.c.)

− g2
W + g2

Y

8
(|Hu|2 − |Hd|2)2 − g2

W

2
|H†dHu|2 . (2.26)

In addition to the three degrees of freedom that make W and Z massive, these theory contains
four mass eigenstates: a charged scalar H+, a CP-odd scalar A and two CP-even scalars H, h.
One of the two CP-even mass eigenstates can have properties very similar to those of a SM

1In Section 3.5 we comment on the use of MPl as a mass scale in our estimate.
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Higgs boson. Given the results from the LHC that has observed an approximately SM-like
Higgs boson, we can consider a model where h is approximately decoupled from the rest of the
Higgs sector and compute its mass.

First of all we can wonder why in this theory we can compute the mass of an elementary
scalar. Supersymmetry extends the Poincaré algebra and PµP

µ is one of its Casimir operators,
so the masses of members of the same supersymmetric multiplet must be the same. This relates
mh to the mass of a fermion. As we have seen in the previous Chapter, fermion masses break
chiral symmetries. If the mass itself is the only source of breaking, the selection rules of these
symmetries tell us that the result of any calculation of the mass must be in the form

m = mtree [...] . (2.27)

There cannot be power law sensitivity to high scales as in the SM. This is of course not the
whole story, because the sensitivity to high scales could still be logarithmic

m = mtree [log Λ + ...] . (2.28)

In addition to that, supersymmetry is broken. However the Higgs mass might still be calculable,
even taking these two extra subtleties into account. If supersymmetry is only softly broken, by
a dimensionful parameter MS, we must include also contributions of the type

m = MS +mtree [log ΛS + ...] . (2.29)

The supersymmetry breaking parameters that we paramterized with MS can in principle be
measured independently of m, as we show below. The unknown high scale Λ in Eq. (2.28) is
replaced by ΛS, the scale of supersymmetry breaking, that in principle we can also measure
independently of m. At higher scales there are no contributions to the Higgs mass, since it is
a parameter of the superpotential which is not renormalized [33]. Summarizing, in a theory
with softly broken supersymmetry the Higgs mass receives contributions only up to a finite
scale ΛS and we can compute it as a function of supersymmetric and supersymmetry breaking
parameters that we can measure independently of mh.

After this explanation we can turn to the actual computation. At tree-level we have for the
value of the weak scale

m2
h,tree =

1

2

(
m2
A +m2

Z −
√

(m2
A +m2

Z)2 − 4m2
Am

2
Z

(v2
u − v2

d)
2

v4

)
, (2.30)

where mA is the mass of the CP-odd Higgs, while vu,d are the vacuum expectation values of
the two neutral components of Hu,d that satisfy v2

u + v2
d = v2.

To complete the calculation we can also include the most important loop contribution that
is generated by diagrams containing the supersymmetric partner of the top quark, the stop. We
indicate with t̃1,2 the two mass eigenstates in the stop sector that are mixtures of the partners
of the left-handed and right-handed top quarks.

The result is

m2
h = m2

h,tree +
3GF√

2π2

[
m4
t (Q1) log

M2
s

m2
t

+m4
t (Q2)

X2
t

M2
s

(
1− X2

t

12M2
s

)]
+ ... (2.31)

where the ellipses represent subleading contributions. Here, M2
s = mt̃1mt̃2 , Q1 =

√
mtMs,

Q2 = Ms, Xt = At − µ(vd/vu) and mt(Q) is the running top mass. At is a supersymmetry-
breaking parameter that enters the stop mass matrix [30].

The important point is that all the parameters in the previous expression can be measured
independently of mh. If supersymmetry breaking occurs at scales much higher than mh the
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parameters entering its calculation (mA, Xt and Ms) can give the observed result only if they
are precisely tuned to give an approximate cancellation in Eq. (2.31). The larger they are, the
larger is the cancellation.

This is not immediately manifest from Eq.s (2.30) and (2.31), because in those equations
we have already tuned! We have expressed mh as a function of mt and mZ which in turn are
proportional to the weak scale v =

√
v2
u + v2

d. However, in the MSSM we can compute the
weak scale as a function of parameters that can be measured independently of v. For instance
at tree-level

v2
tree =

2

g2
W + g2

Y

(
|m2

Hu
−m2

Hd
|√

1− 4(vuvd/v2)2
−m2

Hu −m2
Hd
− 2|µ|2

)
. (2.32)

If we found m2
Hu,d

, µ2 � v2, we would have explain the cancellation needed to get v ' 174 GeV.

We found useful to present first Eq.s (2.30) and (2.31) because they show another tension
typical of weakly coupled extensions of the SM. The tree level value for mh, given by Eq. (2.30)
is mh ≤ mZ (or mh ≤ gweakv in a different theory with a different weak coupling). If we
want mh ' 125 GeV we need to make mt̃1,2 large, to enhance the logarithmic contribution in
Eq. (2.31). This in turns requires a tuning that grows as m2

t̃1,2
, due to the loop corrections to

v2 described in Section 3.2.2.
An intuitive measure of this fine-tuning is often taken to be [34,35]

∆ ≡ 2
δm2

h

m2
h,exp

, (2.33)

where m2
h,exp ' (125 GeV)2 and δm2

h is any individual contribution to the calculation.
A tuning exists in every theory where the Higgs mass can be calculated. If the new symmetry

that makes it calculable is realized only at scales much higher than mh we need a fine-tuning
to explain its value.

If we apply our EFT intuition, we expect the parameters entering the mh calculation to
have a roughly uniform (or power-law [36]) distribution in an O(1) interval around the typical
supersymmetry breaking mass. Observing a tuning is thus a real problem, in the sense that
it is signalling that we are making wrong assumptions in our description of Nature. The EFT
intuition that has been tremendously successful so far can be wrong in two ways: 1) either
Nature accepts some amount of tuning 2) or the “natural” values for supersymmetry breaking
parameters have a very different distribution compared to what we naively expect.

Both options leave us with more open questions: in the first case, why do only mh and the
CC appear to be tuned while all other parameters of Nature follow our EFT intuition? In the
second one, how does a UV theory that tunes supersymmetry breaking parameters to the right
value look like? The answer to the first question is unknown, but we will answer the second
one in the next Chapter.

2.2.3 Common Misconceptions and an Alternative Formulation

We have now seen why it is interesting to think about the Higgs boson mass. In the next Section
we go further by discussing what this implies about physics at high energies. Before turning to
the UV, I find useful, especially as a resource for students, to review some of the most common
ways to present the hierarchy problem and the confusion that they might generate.

The reader, especially if from my generation or older, will have noticed that I have never
referred to quadratic divergences or loop diagrams. The reason is implicit in the previous
Section. Since the hierarchy problem is really a question of why our symmetry intuition is
failing, there is no reason to consider loop corrections or regularization schemes. The problem
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might very well manifest itself at tree-level and has nothing to do with renormalization per se.
It can be reformulated as a question about the RGE flow of a UV theory as in [37], but it does
not need to be. Before discussing this RGE formulation it is useful, for pedagogical reasons, to
review the traditional argument through which the problem is presented.

Take the SM and compute loop corrections to the Higgs boson mass with Pauli-Villars
regulator. You will find at one loop

δm2
h =

3Λ2

16π2v2
(4m2

t − 2m2
W −m2

Z −m2
h) + ... (2.34)

Now the devil is in how you interpret Λ. If you are imagining that at some energy above the
SM a theory where m2

h can be computed exists, then this Λ stands for the mass of new particles
in that theory. In general the different terms are cut-off by different uncorrelated physical mass
scales instead of a single scale Λ. In the MSSM the first term represents the loop correction
to mh in Eq. (2.31), the others were slightly subleading and we did not list them. With this
in mind Eq. (2.34) makes perfect sense and can be used to roughly estimate a scale were we
expect new physics to kick in

ΛNP =
2π

3

mt

v
mh

√
∆ ' 400 GeV

mh

125 GeV

√
∆ , (2.35)

if we want to avoid an accidental cancellation of O(∆−1) in the full theory (for instance the
MSSM). With this UV picture in mind, it is perfectly legitimate to discuss the problem in this
way.

However, we find useful to stress a few elementary aspects of this estimate that might lead
to confusion. Purely within the SM the presence of a quadratic divergence cutoff by Λ is
signalling that you are doing something dishonest. You are trying to compute a loop diagram
up to energies much higher than those where you know the theory. In practice there is no
quadratic divergence and no sensitivity to the cutoff if one does the calculation correctly. This
should be intuitive from the discussion of EFTs in the previous Chapter.

Let us assume that the SM is valid up to a scale Λ. All that we are allowed to do is measure
parameters at Λ, then measure them again at energies E lower than Λ and check if the SM
is predicting the right relation. There is no quadratic sensitivity to infinitely high energies if
we do not try to calculate quantities beyond the limits of validity of the theory. If we were to
perform the calculation that we are allowed to do, we would find

m2
h(E) = m2

h(Λ) +
3Λ2

16π2v2
(4m2

t − 2m2
W −m2

Z −m2
h) +O

(
E

Λ

)2

+ ... (2.36)

In this case the second term on the right-hand side is the result of integrating out momentum
scales E < k < Λ. This calculation is just telling us how m2

h RGE evolves between different
energies. There are no divergences and no fine-tunings.

The situation would be different if, for instance, we discovered a new fermion with mass
mh(E)�MΨ < Λ and a Yukawa coupling to the Higgs boson

L ⊃ −yΨLΨHΨ−MΨ (LΨL
c
Ψ + ΨΨc) . (2.37)

Here we have imagined the presence of a left-handed doublet LΨ and a singlet Ψ, both accom-
panied by a partner with the right quantum numbers to write a vector-like mass term. For
simplicity we assume MΨ � yΨv.

If we repeated the previous calculation, i.e. measure m2
h at the scale Λ and then integrate

out momentum shells between Λ and E, this time we would find, in addition to the Λ2 term
and a term logarithmically sensitive to Λ, also the following contribution

δm2
h = c

y2
ΨM

2
Ψ

16π2
. (2.38)
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If y2
ΨM

2
Ψ � m2

h(E) we would be left to wonder why this term is precisely cancelled by m2
h(Λ).

This example is analogous to what we already see in the SM for the cosmological constant.
The parameter is still not calculable (this is true both for ΛCC and m2

h in the SM and this
example model), but we can compute some low energy contributions that are already much
larger than its measured value. In the case of the Higgs, δm2

h in Eq. (2.38), in the case of the
CC any contribution from SM particles, ΛCC ∼ m4

e, ...,m
4
t .

Some have argued that this is not the right way to compute radiative contributions to
m2
h and ΛCC, while I disagree with them, it should be stressed that this is irrelevant to the

problem. The symmetry arguments in Section 2.2.1 and the problem in the MSSM described
in Section 2.2.2 make clear that a priori the questions surrounding mh have nothing to do with
loop corrections. Indeed, the problem can arise already at tree-level, as we have shown in the
previous Section. Consider again the tree-level expression for the Higgs vev in the MSSM

v2
tree =

2

g2
W + g2

Y

(
|m2

Hu
−m2

Hd
|√

1− 4(vuvd/v2)2
−m2

Hu −m2
Hd
− 2|µ|2

)
. (2.39)

If we found experimentally m2
Hu,d

, µ2 � v2, we would have to wonder why these parameters are
tuned to give a small weak scale.

To conclude this Section we give an alternative view on the problem from [37]. This for-
mulation is equivalent to our symmetry arguments in Section 2.2.1. Consider two widely sep-
arated scales, ΛUV � ΛIR. For definiteness ΛUV ' 1016 GeV could be the scale where a
non-supersymmetric Grand Unified Theory (GUT) is realized, while ΛIR the Fermi scale. If
there are no other intermediate scales, the energy dependence of physical quantities at scales
ΛIR � E � ΛUV is weak and we can approximate this intermediate regime with a CFT. This
approximate CFT is nothing but the free SM. From the CFT viewpoint, the stability of the hi-
erarchy between ΛIR and ΛUV depends on the dimensionality of the scalar operators describing
the perturbations of the CFT Lagrangian around the fixed point.

If the theory contains an operator O∆ with dimension ∆ < 4, we expect, from the same
symmetry considerations in Section 2.2.1, that UV physics generates

Lp = cΛ4−∆
UV O∆ , (2.40)

with c = O(1). This gives the IR scale

ΛIR = c
1

4−∆ ΛUV . (2.41)

If 4−∆ = ε ' 0, we can have an exponential hierarchy

ΛIR

ΛUV

= c
1
ε , (2.42)

also for c = O(1). This is the case, for instance, for the QCD scale. The corresponding
deformation, the glueball field Ga

µνG
µνa is marginally relevant. Its scaling dimension deviates

from 4 only from small loop corrections ∆g ' 4 − ag2
s and becomes 4 at the gaussian fixed

point.
However, if the perturbation is relevant, as is the case for the Higgs mass, 4−∆ ' 2, then

ΛIR

ΛUV

' √c , (2.43)

and ΛIR/ΛUV � 1, requires a tiny c, at odds with our expectations from dimensional analysis
stated around Eq. (2.40).
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2.3 The Little Hierarchy Problem

The discussion in this Chapter shows that the most natural expectation is for something (pre-
sumably a new symmetry) to appear well below MPl to explain the value of mh that we observe.
What is the scale where this symmetry should appear?

Let us call this scale MS. If the UV completion of the SM is perturbative, we have seen
that new particles give the leading contribution to the Higgs mass at one loop

δm2
h '

g2
S

16π2
M2

S , (2.44)

where gS stands for a coupling in this theory. For an effective symmetry solution to the
problem, SM particles must be part of the symmetric multiplets of the new theory, otherwise
we would still expect contributions of O(g2

SMM
2
Pl) from high scales. This means that the largest

gS in our new theory is at least of the size of yt = O(1). In principle we can further imagine
that to preserve color there are three partners of the top quark in the new theory, giving

δm2
h ' 3

g2
S

16π2M
2
S. In the end we arrive at the same estimate as Eq. (2.35) with MS = ΛNP.

Similar estimates hold also for non-perturbative completions of the SM. In this case, how-
ever, we lose the loop suppression in δm2

h and we are led to predict MS ' mh. An explicit
discussion of the corrections to mh for the SM flowing into a CFT can be found in [38].

At this point it is natural to ask a second question: What is the scale where this symmetry
can appear? We have probed particle physics well above scales of order ΛNP ' 400 GeV.

The largest scales that we have access to are related to symmetries (or approximate sym-
metries) of the SM Lagrangian, since these signatures make for zero background searches. If
we violate baryon number via the operators

L ⊃ ucucdcec

M2
+
QQQL

M2
+ ... (2.45)

we can induce proton decay

Γ ∼ m5
p

M4
. (2.46)

Current searches at SuperKamiokande [39] and SNO [20] give

τp
Br(p→ e+π0)

& 2.4× 1034 years ,
τp

Br(p→ invisible)
& 2× 1029 years , (2.47)

corresponding to

M & 3× 1016 GeV , M & 1.5× 1015 GeV . (2.48)

A different form of baryon number violation can induce neutron oscillations

L ⊃ (ucdcdc)2

M5
, τn→n̄ = δm ∼ m6

n

M5
(2.49)

Also in this case we can probe scales well above 400 GeV [40],

τn→n̄ > 0.86× 108 s M & 3× 106 GeV . (2.50)

Similar considerations hold for tests of the approximate flavor symmetries of the SM. In the
lepton sector the largest scale that we can probe is in the decay µ → eγ induced for instance
by

L ⊃ mµ

M2
µ̄LσµνeRF

µν , Γ ∼ m5
µ

M4
. (2.51)
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Current bounds from MEG [41], give

Br(µ→ eγ) < 4× 10−13 M & 3× 106 GeV . (2.52)

In the quark sector the largest scales can be probed via tests of CP violation in K0−K0
mixing,

where we can get to scales of about M & 108 GeV [42].

Other tests along these lines include searches for CP violation in EDM searches and a host
of other flavor measurements in the lepton and quark sectors.

These results are telling us that if we want to extend the SM at ΛNP ' 400 GeV the
new theory better respect all the symmetries and approximate symmetries of the SM. This
requires quite a bit of model building, since in general these new theories have many more free
parameters with respect to the SM, which do not necessarily have to respect these symmetries.
We will see an explicit example in the Section devoted to supersymmetry in the next Chapter.

A sharper tension arises from direct searches for new particles at LEP, the Tevatron and the
LHC. By now we have explored a vast number of signatures that cover most options for new
particles with gauge couplings to the SM. The null results at these particle colliders point to
ΛNP & few TeV. The application of these results to the hierarchy problem is model dependent
and different theories might be affected by slightly different bounds. However the general point
that we have not found new physics below a few TeV remains valid. Furthermore, the LHC
has explored many of the Higgs couplings to SM particles finding a good consistency with an
elementary Higgs as described by the Lagrangian in the previous Chapter, leaving room for
deviations of order [43–45]

δghSM

ghSM

. 5%÷ 20% (2.53)

This complicates embedding the Higgs in a larger symmetry structure. In light of all these null
experimental searches, even if we completely forget about MPl, there is still a tension between
direct and indirect searches for new physics and the simplest explanations for the value of the
Higgs mass. This has been known since the times of LEP’ [46] and today we call it the “little
hierarchy problem’.

2.4 What We Learned about High Energies

At this point we have discussed in great detail what is puzzling about the Higgs boson mass. In
the SM we cannot point to a real problem, both because we cannot compute mh and because
it is not clear how to treat MPl, the only other scale of Nature that we know about.

If we extend the SM with new symmetries that make mh calculable we encounter a fine-
tuning if these symmetries are realized at scales much higher than mh.

These two considerations still leave us to wonder what we learned from all the work done
so far. To answer this question we are forced to think about the UV and speculate about new
regimes that we do not have access to experimentally. This is the beauty and the curse of the
hierarchy problem, whether we want it or not, we have to set foot in uncharted territory. Even
without experimental guidance, we can still use logic alone to write down a comprehensive set
of possible explanations for mh:

1. The Higgs mass is never calculable. At every scale we have a theory similar to the SM
where mh is just an input parameter. Although seemingly harmless this possibility puts
strong constraints on the UV theory realizing it and we don’t know a theory of quantum
gravity that implements.
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2. There is no mass scale beyond the Standard Model sufficiently strongly coupled to
the Higgs to generate a fine-tuning problem. Quantum gravity either does not have a
scale [47–51] or incorporates MPl non-trivially in the S matrix, leaving no power-law
corrections to dimensionful parameters [52].

3. The consistency of quantum gravity leaves non-trivial imprints at low energy either in
the form of UV/IR mixing or inconsistent low-energy Lagrangians that look acceptable
to the low-energy observer (i.e. large mh is in the swampland [53]).

4. A symmetry that makes mh calculable exists below MPl and fine-tuning is a fundamental
aspect of Nature.

5. A landscape of values of mh is realized in Nature. The value that we observe is selected
by an early Universe event that we can not yet observe directly.

6. The fundamental scale of quantum gravity is much smaller than MPl and close to mh.
Also in this case some amount of fine-tuning is a fundamental aspect of Nature.

In the next Chapter we review the first four possibilities. We can anticipate that we do not any
consistent theory of quantum gravity that realizes the first two options. At the time of writing
the third option is mostly conjectural, while possibly compatible with string theory, it is far
from being implemented in a concrete model.

The only two possibilities for which we can write a complete theory and propose experi-
mental tests are 4. and 5. These are also the simplest possibilities conceptually in the sense
that they build upon our knowledge of quantum field theory. The first three options require a
radical modification of particle physics at the scale of quantum gravity.

Regardless of what is your favorite option, thinking about the Higgs mass inevitably leads
to learning something new (and in my opinion deep) about Nature. All the options listed above
require a decisive extension of our current description of physical phenomena. The two most
conservative options require adding either a new symmetry, realized by a host of new particles,
or accepting the existence of a vast landscape for mh. This landscape can be realized either
by changing the history of the Universe or accepting the existence of a Multiverse of which we
occupy a tiny spec.

The three most speculative possibilities require revising completely quantum field theory
and our EFT intuition when it comes to quantum gravity, in case 1. and 2. well beyond what
is suggested by string theory. In the next Chapter we discuss all these options in greater detail.
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Chapter 3

Most Existing Solutions to the
Hierarchy Problem

Standards are always out of
date. That’s what makes them
standards.

Alan Bennett

In this Chapter we very briefly review classical (and not so classical) solutions to the hier-
archy problem. We will not be able to do justice to all the work on supersymmetry, composite
Higgs, extra-dimensions and their very clever twists (little Higgs, twin Higgs, folded supersym-
metry, ...) that has appeared in the literature. Our main focus is on the core mechanisms that
explains the value of mh and we group together all the ideas that share one. We also comment
on their current tension with experiment or, in the case of more adventurous options, their
theoretical shortcomings. This should not be taken as a sign that the author has a negative
opinion of these ideas. On the contrary, each one of them is beautiful and unique. Together
they represent some of the most interesting research in particle physics of the last 30 years. My
only regret is not having the space(time) to write more about them.

3.1 Lowering the Scale of Gravity

In the previous Sections we have taken MPl to be the dimensionful scale associated to gravity,
i.e. the energy scale where we expect it to become important for particle interactions.

This general intuition can be made more precise by looking at the Einstein-Hilbert action

S =

∫
d4x
√−g

(
M2

Pl

16π
R− 2ΛCC + Lmatter

)
. (3.1)

If we consider this as an EFT, possibly complemented by higher dimensional operators in the
form

S =
1

16πGN

∫
d4x
√−g (R− 32πGNΛCC + 16πGNLmatter

+ c1R
2 + c2RµνR

µν + c3RµνρσR
µνρσ + ...

)
, (3.2)

we can expand the metric in the regime of validity of the EFT (i.e. low energy and low
curvature)

gµν = ηµν + hµν , |h| � 1 . (3.3)
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Then the action becomes schematically

S ∼ M2
Pl

∫
d4x

[
∂h∂h+ h∂h∂h+ aTµνh

µν ...+
1

M2

(
∂2h∂2h+ h∂2h∂2h+ ...

)]
(3.4)

Tµν =
−2√−g

δLmatter

√−g
δgµν

, (3.5)

where in some terms we have suppressed the indexes of hµν for convenience. The higher dimen-
sional terms odd in h come from higher curvature corrections R ∼ const + ∂2h. Canonically
normalizing the kinetic term we have

S ∼
∫
d4x

[
∂h∂h+

1

MPl

h∂h∂h+
a

MPl

Tµνh
µν + ...+

1

M2

(
∂2h∂2h+

1

MPl

h∂2h∂2h+ ...

)]
.(3.6)

It’s hard to define a running coupling in the EFT of gravity for reasons that I’m not going to
discuss here. Heuristically you can just notice from the previous action that you are starting
with a dimension 6 operator. From loop diagrams you are going to get multiple dimension 8
operators with different numerical coefficients (and possibly signs) R2, RµνR

µν . Which one are
you going to pick? Ref. [54] contains an interesting discussion on this point.

For our purposes it is sufficient to notice that at one loop scattering processes receive
corrections of order δA2→2 ∼ (NGNE

2)/(16π2), from the action in Eq. (3.6) (after gauge
fixing) where N is the number of particles in the loop (coming from Tµν in (3.6)). So it is
natural to expect something to happen at

E ∼ 4πMPl√
N

, (3.7)

where the one loop corrections becomes comparable to the tree level result. In some sense
we are lowering the fundamental scale of gravity, i.e. gravity becomes important for particle
interactions atMPl/

√
N . Therefore, the easiest way to solve the hierarchy problem is to imagine:

N ∼ M2
Pl

v2
≈ 1032 . (3.8)

The idea of lowering the fundamental scale of gravity by adding new degrees of freedom was
first discussed in relation to the hierarchy problem in [55–58]. An explicit way of implementing
this idea is to introduce extra dimensions compactified at a scale near mh.

Let us take R to be the typical size of the extra dimensions. If we consider D = 4 + n then
Newton’s law is modified to

F (r) ∼
{

m1m2

Mn+2rn+2 , r � R
m1m2

Mn+2Rnr2 , r � R
(3.9)

where M is the fundamental scale of gravity in the theory with D > 4. This result is just an
application of Gauss’ theorem and it shows that

M2
Pl = Mn+2Rn , R = 10

30
n
−17 cm

(
TeV

M

)1+ 2
n

. (3.10)

This means that gravity might appear weak in 4D, where it has a coupling GN ∼ 1/M2
Pl, because

it is diluted by multiple extra dimensions where it can propagate. In reality the fundamental
scale of gravity might be M and much lower than MPl.

Particle interactions are known up to energy scales E ∼ TeV, corresponding to R ∼
10−17 cm, so if we want M ' TeV, the SM fields must be stuck on a 4D brane. On the
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contrary we don’t know gravity that well below a millimiter and there is no problem if gravity
propagates in the extra dimension, realizing the “dilution” of MPl that we would like to invoke
to explain the value of mh.

If M ∼ TeV we have solved the hierarchy problem, but to do so we need R to be large
compared to M−1

Pl . Before seeing this in more detail let’s see where the connection with large
N comes from. It is already manifest that N in the previous theories is playing the role of the
volume in this case. Consider one extra dimension compactified on a circle (here I follow [59]).
The metric can be split to

gMN =

(
ηµν + hµν hµ5

hµ5 h55

)
. (3.11)

The action of diffeomorphisms is

hMN → hMN + ∂MεN + ∂NεM . (3.12)

Since the extra dimension is compact p5 ∼ n/R, so δh55 = 2∂5ε5 ∝
∑

n nε
(n)
5 . We can eliminate

all n 6= 0 components of h55 and hµ5 using diff. invariance. We are left with a scalar φ ≡ h
(0)
55 ,

a four-vector Aµ ≡ h
(0)
5µ and a tower of Kaluza-Klein (KK) gravitons h

(n)
µν .

To see this explicitly we use the periodicity of the spatial coordinate in the extra dimension
to write

hµν(x, x5) =
n=+∞∑

n=−∞

h(n)
µν (x)e

inx5
R , (3.13)

then we integrate the Einstein-Hilbert action over x5 and we are left with

S = 2πRM3

∫
d4x

(
hµν�hµν − hµµ�hνν + 2hµν∂

µ∂νhρρ − 2hµν∂
µ∂ρhνρ +

n2

4R2

[
hµµh

ν
ν − hµνhµν

])
+ ...

(3.14)

From the above action we can conclude that

M2
Pl = 2πRM3 ,

(
�+

n2

R2

)
h(n)
µν = 0 . (3.15)

So how many gravitons do we have? When we hit the scale M we have to UV complete gravity
also in the extra dimension therefore we can have at most

N2

R2
∼M2 N ∼

(
MPl

M

) 2
n

(3.16)

gravitons in our EFT. For n = 1 and M ∼ TeV1, we recover our large N estimate from Eq. (3.8).
How about the new hierarchy problem R�M−1

Pl ? A potential for R arises from the (4+n)D
cosmological constant Λn in the Einstein-Hilbert Lagrangian

∫
d4+nx

√−gΛn ∼
∫
d4x
√−ḡΛnR

n . (3.17)

In the presence of curvature κ in the extra dimensions we have also

M2+n

∫
d4+nx

√−gR ∼ −
∫
d4x
√−ḡκM2+nRn−2 . (3.18)

1Phenomenologically excluded because of modifications of gravity on solar system scales.
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Summing these two terms we can find a stable potential with a minimum R∗ ∼
√
M2+n/Λn.

This means that the radius of curvature is roughly

L ∼
√
Mn+2

Λn

. (3.19)

If we don’t want our space to split in separate inflating patches of size L or collapse into black
holes we need

L & R→ Λn .M4+n

(
M

MPl

)4/n

(3.20)

Smaller than its natural value M4+n. So we need to tune Λn and possibly keep it stable with
supersymmetry. Furthermore, to reproduce our observed 4D universe, we need the effective
(long distance) 4D CC to approximately vanish

∑

i

f 4
i +RnΛn ≈ 0 , (3.21)

where f are brane tensions. They are nothing mysterious, just the equivalent of a CC on the
4D brane. Their natural value is f 4 ≈M4. If there are Nw branes

Λn . NwM
4+n

(
M

MPl

)4/n

, (3.22)

so the extra dimension can be large for the same reason that people are large (they carry large
baryon number). However we are still tuning, once to get R large (Eq. (3.20)) and a second
time to get the observed 4D CC (Eq. (3.21)).

The metric in the extra dimensions that we are considering here is flat. We will discuss a
dynamical way of stabilizing the radius at the desired value in the context of warped extra-
dimensions, where the metric is AdS-like. Not surprisingly this will correspond to introducing
a symmetry in our theory that stabilizes the hierarchy between R and M−1

Pl . The symmetry is
scale invariance and we discuss this possibility in Section 3.2.1.

Before concluding this Section and turning to symmetry explanations for mh, it is useful to
point out what is currently the biggest problem with these constructions. If we want to lower
the scale of gravity down to a TeV, we are predicting a plethora of new particles at that scale
and we have not observed any. We can of course take N . 1032 or M & TeV and accept some
amount of accidental cancellation between different contributions to mh.

3.2 New Symmetries

3.2.1 Scale Invariance

We do not worry about the stability of the QCD scale ΛQCD ∼ 100 MeV with respect to
some larger UV scale ΛUV. The reason is that the QCD Lagrangian without quark masses is
approximately scale invariant

SQCD =

∫
dx
(
−1

4
Ga
µνG

µνa + iqγµDµq −
αsθ

8π
Ga
µνG̃

µνa

)
. (3.23)

It does not contain operators with scaling dimension much smaller than 4. Under a scale
transformation

xµ → sxµ , (3.24)
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at the classical level the operators in Eq. (3.23) all get a factor of s−4 which compensates the
s4 factor in the integration measure d4x. Therefore a scale transformation leaves S invariant

S → S . (3.25)

If we include quantum corrections, scale invariance is broken by effects of O(αs). If we imagine
that at ΛUV we are close to a conformal fixed point, i.e. the theory is almost scale invariant
also at the quantum level: αs(ΛUV) � 1, then all physical quantities depend on the energy
scale at most logarithmically at high energy and it takes many decades of running before QCD
confines αs(ΛQCD) ' 1,

log
ΛUV

ΛQCD

=
1

18

4π

αs(ΛUV)
. (3.26)

The running is slow because there are no relevant deformations in the theory, i.e. no opera-
tors with dimension much smaller than ∆ ' 4. As a consequence there are no dimensionful
coefficients of dimension ∆ − 4 much bigger than zero that can affect the running of physical
quantities. The scale ΛQCD is generated through running, without any dimensionful couplings in
the theory. This phenomenon is known as “dimensional transmutation” in the QCD literature.

Quark masses do not change this picture. The selection rules of the chiral symmetries that
they break, enforce that their running is also logarithmic

dmq

d logE2
∼ mq , (3.27)

so even if the quark mass operators

Lq = mq q̄q , (3.28)

have dimension ∆q̄q = 3 they run as marginal operators of dimension ∆ = 4.
This general idea can be applied also to explain the hierarchy mh � ΛUV. Imagine that at

some scale m∗ a new strongly interacting sector exists and the Higgs boson is a composite state
of this sector. Above m∗ there is no Higgs boson and no ∆|H|2 = 2 operator associated to its
mass, so we expect m2

h ∼ m2
∗. Above this scale m2

h does not receive any quantum correction.
The scale m∗ can be generated from ΛUV from dimensional transmutation.

To make this picture compatible with current data we need a second “elementary” sector
that contains all other SM particles. The elementary sector is a weakly-coupled gauge theory,
essentially the SM minus the Higgs. In principle the right-handed top quark could also be
composite. All other field can at most weakly mix with operators of the new strongly interacting
sector (a possibility that is referred to as partial compositness [60]).

To make this picture consistent, the composite sector must respect a symmetry group G
that contains the SM gauge group, or at least the subset of the SM gauge group under which
the Higgs is charged, i.e. G ⊃ SU(2)L × U(1)Y . In analogy with QCD, the global group G is
generically broken to a subgroup H at the confinement scale m∗.

G is also explicitly broken by the gauging of SU(2)L × U(1)Y , since the elementary SM
particles do not respect G and interact with the composite ones through electroweak gauge
bosons. This is analogous to QCD, where G = SU(3)L × SU(3)R which is explicitly broken by
gauging its subgroup U(1)Q.

In principle extra explicit breaking terms, analogous to quark masses in QCD, are possible
also for our new composite sector. However, we note that the interaction between composite
and elementary sectors must not contain any strongly relevant deformation, otherwise the
mechanism that stabilizes the m∗ � ΛUV hierarchy would be invalidated.
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At the scale m∗ we have massless Nambu–Goldstone Bosons (NGB) in the G/H coset. Some
of them get a mass from the explicit breaking coming from the SM. At this point we have to
make a choice: the Higgs boson can either be a generic state of the composite sector or one of
the Goldstone bosons.

The first option was first presented in [61–64] and is known under the name of technicolor.
The latest results from particle colliders show a strong tension with experiment. If m∗ ' mh we
would have already observed some particles from the composite sector, the analogue of QCD
hadrons, but we have not observed any of them.

The second option [65–68] is still alive if we accept some amount of tuning. The first
question that we should ask if we follow this route, is why the Higgs boson observed at the
LHC is consistent with the elementary H in the SM Lagrangian. If H is really part of a
composite sector we would expect significant deviations in its couplings compared to the SM
expectations [69].

However in these models there is a free parameter that controls how “elementary” the Higgs
looks like. To see this we can split the generators of G, TA into unbroken generators T a that
form the algebra of H and broken generators T̃ ã. The vacuum ~F thus satisfies

T a ~F = 0 , T̃ ã ~F 6= 0 . (3.29)

A priori we can choose any embedding of H in G. If we act with the elements of G on the
generators {T a, T̃ ã} reshuffling them between broken and unbroken the theory that we obtain is
equivalent to the one that we started with, unless H can be embedded in multiple inequivalent
ways in G, namely when different choices of the Halgebra generators are not all related by inner
automorphisms. In this case dynamics selects the right embedding. Barring this complication,
we can choose the T a to contain SU(2)L × U(1)Y .

If we introduce the Goldstone bosons of G/H in the usual way

~Φ(x) = eiθ
ã(x)T̃ ã ~F , (3.30)

it is the vev of θ, 〈θ〉, which controls the amount of breaking of the EW gauge group

v = |~F | sin〈θ〉 ≡ f sin〈θ〉 . (3.31)

Geometrically this can be understood as follows: ~F is orthogonal to H (T a ~F = 0). The

Goldstone bosons are given by tilting ~F by an angle θãT̃ ã whose sine gives the projection to
the orthogonal plane where H lives.

Therefore we have a tunable parameter

ξ ≡ v2

f 2
, (3.32)

that allows us to decouple an approximately SM-like Higgs with vev v from the rest of the
Goldstone bosons that live at f . This mechanism is known as vacuum misalignment [65–
68]. ξ can be made small by tuning or through a clever use of symmetry as in little Higgs
constructions [70–72]. The latter, however, require a large Higgs quartic at odds with Higgs
mass measurements and complex model building.

Much more could be said on these models and for a more comprehensive overview we refer
the reader to [73]. Since this is not the main focus of this thesis we will not further elaborate.
Nonetheless, it is useful to consider two more points.

First of all, it is clear from the previous discussion that these models are in tension with
current experimental observations. We have already explored scales about a factor of ten above
v, without finding the new particles expected at f . This translate in about a ξ ' 1% tuning.
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Secondly, it is not hard to embed this construction in UV complete models [65, 66, 68]
that deliver a suitable Nambu-Goldstone Higgs, with the SM gauge groups contained in H.
However, not many attempts have been made to extend these constructions to the fermionic
sector [74–78]. The best examples that we have, which successfully account for searches of
flavor violation beyond the SM, are are five-dimensional gauge theories on truncated AdS
space [79–81].

Models with extra space dimensions have had a considerable impact on the field. By the
AdS-CFT correspondence they can be shown to be equivalent to the 4D constructions that we
just discussed. However it is instructive to spend some time discussing explicit 5D models.

Warped Extra Dimensions

Some of the most interesting explicit realizations of scale invariance protecting the Higgs mass
have been presented in the form of 5D theories, with the additional dimension described by
truncated AdS space. The first examples were presented in [82,83].

Consider adding one extra dimension with metric,

ds2 = e−2krc|φ|dxµdx
µ + r2

cdφ
2, (3.33)

where φ ∼ −φ, φ ∼ 2πφ. The fluctuations around this classical solution are

rc → rc + T (x) ηµν → ηµν + hµν(x) ≡ ḡµν(x) . (3.34)

As in the case of large extra dimensions discussed in the previous Section, gravity can propagate
in the bulk, but the SM is on the brane at φ = π

∫
d4xdφδ(φ− π)LSM . (3.35)

In the 4D effective theory the Planck mass is

M3

∫
d4x

∫ π

−π
dφe−2krc|φ|rc

√−ḡR4 →M2
Pl =

M3

k

(
1− e−2krcπ

)
≈ M3

k
. (3.36)

On the SM brane we have
∫
d4x
√−ḡe−4krcπ

[
ē4krcπgµν (DµH)†DνH +m2

h,0|H|2 + ...
]

(3.37)

After rescaling the kinetic term

m2
h = e−2krcπm2

h,0 . (3.38)

We can describe the mechanism as having a large fundamental scale for gravity, which is
redshifted to ' TeV on the SM brane (the so-called IR brane). However a description equivalent
to large extra dimensions (ED) is also possible. A covariant action satisfies

S(φ,m) = S
(
φ′,

m

w

)
, (3.39)

where φ′ is Weyl rescaled g → w−2g, H → wH, ψ → w3/2ψ, ...
We can in fact see that this is the same as large ED by assuming that the fundamental mass

scale of gravity is at a TeV and by rescaling everything by e−krcπ and getting a blue-shifted
Planck mass. Here the volume of the ED is made large by the exponential factor. So, as in the
previous case, now you should wonder about stabilizing rc, this is the new hierarchy problem!
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Before discussing this, note that the exponential is just a convenient artifact, but we might
have chosen different coordinates

z =
e−2krcy

k
, ds2 =

1

k2z2

(
dxµdx

µ + dz2
)
, (3.40)

in this frame it is clear that we need a large ED in some sense.
To stabilize it we can use the symmetries of AdS, or equivalently of the boundary CFT.

If we consider the metric in the previous equation, the UV brane is at zUV = 1/k = R and
the IR brane, whose position is parametrized by the dilaton χ of the associated CFT, is at
χ = 1/zIR � k. For a more comprehensive discussion of the mapping between CFT and AdS
description we refer to [84].

To stabilize the dilaton (i.e. fix the position of the IR brane) we add a bulk scalar, as first
proposed in [85],

S =

∫
d4xdz

√
g
(
gMN∂Mφ∂Nφ+ Λ5

bulk −m2
bφ

2
)
. (3.41)

φ is often called a Goldberger-Wise (GW) scalar. This addition to the action is equivalent to
explicitly breaking conformal invariance in 4D, with an operator with dimension related to m2

b .
We imagine that some unspecified dynamics fixes the vev of φ in the IR and in the UV and we
define the dimensionless ratios v1,0 by dividing the vevs by their natural value

v1 ≡
〈φ(zIR)〉
z

3/2
IR

, v0 ≡
〈φ(zUV)〉
z

3/2
UV

. (3.42)

From Eq. (4.71) we can obtain the equations of motion for φ in the bulk

3

z
∂zφ− ∂2

zφ = −m2
b

φ

k2z2
, (3.43)

whose solution is

φ(z) = C1z
2+

√
4+

m2
b

k2 + C2z
2−

√
4+

m2
b

k2 . (3.44)

Note that even if the scalar vev grows from the UV to the IR zIR � zUV, this warped ED can
still solve the hierarchy problem. If we have a Higgs on the UV brane, its measured vev in the
IR is suppressed by

√
gIR = 1/(kzIR)4 which overcomes the z2 growth.

C1,2 can be fixed using our boundary conditions Eq. (3.42). If we plug Eq. (3.44) back into
the action and integrate over z, we can obtain a 4D potential for the dilaton. In the region
where χ � χ0, where χ parametrizes the position of the IR brane, while χ0 that of the UV
brane, we have

V = −εv2
0χ

4
0 +

[
(4 + 2ε)χ4(v1 − v0(χ/χ0)ε)2 − εv2

1χ
4
]

+O(χ8/χ4
0) , (3.45)

where for simplicity we tookm2
b = 4ε/z2

UV. This shows explicitly thatmb breaks scale invariance,
had we only included the kinetic term for φ, we would have generated only scale-invariant χ4

terms. The trick that allows to stabilize the hierarchy is to assume that scale invariance is
broken by a small amount ε. The minimum of this potential is at χ = χ0(v1/v0)1/ε. So
even a mild hierarchy between fundamental parameters: ε ' 1/20 and v1/v0 ' 1/10 can give
χ/χ0 ' mW/MPl.

A small hierarchy of vevs can thus generate a big hierarchy of scales. This is equivalent to
the discussion of dimensional transmutation in QCD, where the logs from quantum corrections
play the role of χ4+ε.
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3.2.2 Supersymmetry

Much of the ideas presented in this Section were already discussed in the first Chapter of the
thesis and in Section 2.2.2. We repeat some of those statements here to make the discussion
self-contained.

Supersymmetry protects the Higgs mass by tying it to the mass of its fermionic partner,
the Higgsino. The latter is protected by chiral symmetry, which can be described as follows.
The two Weyl components of a Dirac fermion ψL and ψR,

Ψiγµ∂µΨ−MΨΨΨ = ψLiγ
µ∂µψL + ψRiγ

µ∂µψR −MΨ

(
ψ̄LψR + h.c.

)
, (3.46)

in absence of a mass term are decoupled. Their phase can be changed independently without
affecting the dynamics. The selection rules of this symmetry insure that all contributions to
the fermion mass are proportional to MΨ. This can be seen by promoting MΨ to a field and
by assigning it transformation properties that preserve the chiral symmetry even when the
mass term in (3.46) is present in the Lagrangian. This is a useful technique that allows us to
keep track of the powers of MΨ (or any other parameter breaking a symmetry) entering our
observables.

After this short description of chiral symmetry we can go back to the status of supersym-
metric solutions. Adding a fermionic partner for the Higgs is not enough. For supersymmetry
to be a honest symmetry we have to double the SM particle content promoting every particle
to a supermultiplet with the same mass. If we failed to do it the O(1) couplings of the Higgs
to other SM particles (in particular the top quark and the gauge bosons) would break super-
symmetry, restoring the problem. To see this we consider the effect on the Higgs mass of the
supersymmetric partners of the top quark and we let their masses mt̃1,t̃2 be free parameters.
Then if mt̃1,t̃2 � mt we are going to introduce tuning from terms of the form δm2

H ∝ (m2
t̃1
−m2

t ).

In the Minimal Supersymmetric Standard Model (MSSM) we have two complex scalars
(stops) with mass matrix2

(
m2
Q3

+m2
t +m2

Z

(
1
2
− 2

3
s2
W

)
cos 2β v (ytAt sin β − µyt cos β)

v (ytAt sin β − µyt cos β) m2
u3

+m2
t +m2

Z
2
3
s2
W cos 2β

)
, (3.47)

where mQ3 ,mu3 , At are parameters that softly break supersymmetry and allow the stop masses
to be different from the top mass. sW is the usual sine of the Weinberg angle, while µ and
tan β characterize the Higgs sector of the theory. In the MSSM we need two Higgs doublets,
Hu and Hd, in order to write Yukawa couplings in the superpotential. Their supersymmetric
interactions are given by

WMSSM = µHuHd + yuQHuu
c + ydQHdd

c + yeQHde
c , (3.48)

this defines µ. tan β = vu/vd is given by the ratio of the vacuum expectation values of the two
doublets. All these definitions are just instrumental to get to the calculation of the Higgs mass.
The interactions

LMSSM ⊃ −|yt|2|Hu|2
(
|Q̃t|2 + |t̃c|2

)
−
(
ytAtQ̃tH

0
u t̃
c + µ∗ytQ̃tH

0∗
d t̃

c + h.c.
)
, (3.49)

at one-loop contribute to the supersymmetry breaking Hu mass parameter in the Lagrangian

LMSSM ⊃ −m2
Hu|Hu|2 . (3.50)

2For simplicity we assume all parameters to be real, their phases are in any case strongly constrained by
EDM measurements [?].
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For mQ3 ,mu3 , At � mt we have

δm2
Hu = −3y2

t

8π2

(
|mQ3|2 + |mu3|2 + |At|2

)
log

ΛS

TeV
, (3.51)

where ΛS is the scale at which supersymmetry breaking effects are mediated to the MSSM. If
mQ3 ,mu3 or At are larger than mh we have reintroduced a fine-tuning problem.

From this discussion the tension described in Section 2.3, called “little hierarchy problem”
is already clear. We expect new particles charged under SM gauge groups near the weak scale
and we do not observe them neither directly nor indirectly. Compared to the composite Higgs
case, the issue is mitigated by the perturbative couplings of the new particles to the SM, but
it is not completely absent. Besides, having only weak couplings introduces another problem.
At tree-level in the MSSM

mh < mZ | cos 2β| . (3.52)

This means that we need one-loop corrections to raise mh to its observed value. The leading
ones come from the correction to the Higgs quartic coupling given by stop loops3. Including
the leading two-loop effects we have [86]

δm2
h ≈

3GF√
2π2

[
m4
t (Q1) log

M2
s

m2
t

+m4
t (Q2)

X2
t

M2
s

(
1− X2

t

12M2
s

)]
. (3.53)

Here, M2
s = mt̃1mt̃2 , Q1 =

√
mtMs, Q2 = Ms, Xt = At − µ cot β and mt(Q) is the running

top mass. In the limit mQ3 ,mu3 , At � mt,mZ , µ, the physical stop masses in terms of the
parameters in (3.47) read

m2
t̃1,2
≈ 1

2

(
m2
Q3

+m2
u3
∓
√(

m2
Q3
−m2

u3

)2
+ 2|At|2v2(1− cos 2β)

)
. (3.54)

As we expected from dimensional analysis the contributions of the stops to the Higgs quartic
grow logarithmically with their mass. Raising this contribution is in direct tension with the
desire of minimizing fine tuning from δm2

Hu
∼ m2

t̃1,2
. The same is true for the term proportional

to At and µ. The latter is the Higgsino mass and would introduce tuning already at tree-level.
Of course, as you might have guessed, there are ways around this problem, but require adding
more structure to the theory, for example changing the Higgs potential by the addition of a
gauge-singlet scalar [87].

In summary lack of positive experimental evidence is forcing us to add extra layers to the
simplest supersymmetric models and/or to accept some amount of fine-tuning. This of course
does not make them experimentally excluded and the community looks forward to new LHC
studies for more information. For additional details on supersymmetry phenomenology and
current collider bounds we refer to [30,88,89].

Obviously the above discussion is quite general. We can keep pushing up the scale of new
physics and still consider symmetry solutions to the hierarchy problem acceptable, if we are
willing to tolerate growing amounts of fine-tuning (∼ E2/m2

h where E is the energy scale that
we can probe without finding new physics). The question of how much tuning is reasonable to
expect in a physical theory can not be answered quantitatively. However borrowing Riccardo
Barbieri’s words, every honest physicist should set in their heart a tuning threshold past which
they stop working on this kind of model building. The important implicit part of the statement
is that this threshold should not vary with time.

3Recall that the physical Higgs mass is ∝
√
λ.
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3.3 Scaleless Theories of Gravity

What if gravity did not have a scale? In that case, our estimate m2
h ∼ y2

tM
2
Pl would not hold.

Consider the action

S =

∫
d4x
√−g

[
R2

6f 2
0

+
1
3
R2 −R2

µν

f 2
2

− ξS|S|2R + Lmatter

]
, ξS〈S〉2 =

M2
Pl

16π
. (3.55)

Other terms of dimension greater than 4 are pure derivatives or can be redefined away. The
second term is the square of the Weyl (or conformal) tensor obtained by subtracting all traces
from the Riemann tensor. We have imagined that Lmatter contains a potential for S giving it
the vev in the above equation.

Schematically this action gives an EOM for the graviton of the type

�h+
1

M2
�2h = 0→ 1

M2p2 − p4
=

1

M2

(
1

p2
− 1

p2 −M2

)
. (3.56)

Therefore this theory contains a ghost. It is not yet clear that we can make sense of it [90–93].
However, there is at least another way to make gravity scale-less from the point of view of the
Higgs boson. This second option does not pose problems of consistency of the theory, but the
only known example of this behavior is in 2D where gravity is non-dynamical and very different
than 4D.

In gravity local diffeomorphisms are a gauge symmetry and correlation functions are not
good observables (but note that this is only a non-perturbative problem). We can only measure
the S matrix or at correlation functions along a worldline xµ(τ). Although the number xµ(τ)
is arbitrary, it unambigously identifies a point on the spacetime manifold and we can measure

〈0|O(xµ(τ1))...O(xµ(τn))|0〉 . (3.57)

The S matrix is defined at infinity where gauge symmetries are not redundancies anymore,
they change states in the Hilbert space to different states, so the large gauge symmetry of
gravity does not pose problems in the definition of S it only imposes honest (global) symmetry
contraints on its matrix elements.

How can we see the hierarchy problem in terms of these observables? Nobody really knows,
so it is possible that our estimate m2

h ∼ y2
tM

2
Pl rooted in QFT intuition was too quick. There

is one example in 2D [52], where M2
Pl enters the S matrix only through a phase, not affecting

the pole structure of S. The gravitational S matrix is obtained from the flat space one by
multiplication by the phase factor

Ŝn(pi) = e
i 1

M2
Pl

∑
i<j εαβp

α
i p
β
j
. (3.58)

The most attractive feature of these very special theories is that they implement explicit the
idea that in absence of local off-shell observables the hierarchy problem might not be a problem.
Its most unattractive feature is that gravity in 2D does not have a propagating massless spin-2
degree of freedom and this result looks very much like just eikonal scattering, i.e. scattering
at high energies and large impact parameter b = J/

√
s. Here J is the angular momentum in

a partial wave expansion of the amplitude and s the usual Mandelstam variable. By large we
mean

b� E

M2
Pl

, E > MPl . (3.59)

In this regime also in 4D the effect of gravity is encoded in terms of a phase

e
−i s

4M2
Pl

log(b/RIR)
, (3.60)
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where RIR is a IR cutoff that regulates infrared divergences. This type of scattering is indeed
the only remnant of gravity in 2D.

If we ignore the problems with the previous examples (i.e. the ghost and the difficulty of
extending the second idea to 4D), and power through, we still have two problems to solve. First
of all, these theories still have a large scale (larger than MPl) given by the Landau pole from
the running of hypercharge in the SM. To avoid it we need new particles charged under U(1)Y .
Secondly, all BSM questions raised in Section 1.5 have to be answered without introducing new
scales that are too strongly coupled to the Higgs. Rather than a problem, this is a feature of
this class of ideas, which in principle can be falsified by discovering new scales coupled to H.
Some of the phenomenological implications of this scenario were worked out in [94–96].

3.4 The Multiverse

In Section 2.1 we have seen that historical fine-tunings were resolved in two ways: 1) by the
presence of a new symmetry 2) by multiple realizations of the same observable, some of which
could be accidentally tuned.

We have not yet encountered anything resembling the second option for the Higgs boson
mass. However proposals along these lines exist and we discuss them in this Section. The basic
idea is that the observable Universe is just one patch of a vast Multiverse. Each patch has
different values of fundamental parameters, in particular of ΛCC and m2

h. In this context, we
have to explain why we live in a patch with a value of ΛCC and m2

h that appears unnaturally
small. The traditional explanation is that only these tuned patches can support observers.
These are known as anthropic arguments. We review them for m2

h in the following subsection.
First, it is instructive to see how a Multiverse can be populated.

We start with a special kind of Multiverse, first proposed by Brown and Teitelboim [97,98],
that allows us to naturally build up to what is today considered the most “standard” Multiverse
coming from string theory.

It is important to stress that we are still far from formulating a complete theory of the
Multiverse. Such a theory would allow us to compute exactly what is the underlying distribution
of metastable vacua in Nature and how they are populated. We would then be able to predict
how frequent a patch is in the Multiverse, given the observed values of fundamental parameters.
Nobody is currently able to do this. The most convincing examples of Multiverses come from
string theory. Compactifying its extra dimensions leaves us with a multitude of moduli with
10500 possible vacua (or more), most of them have lifetimes longer than that of the observable
Universe. If the Universe is eternally inflating all these vacua can be populated by tunneling
and live a long and healthy life before decaying to the true ground state.

Starting from this broad picture, concrete toy models of the landscape were proposed,
showing that a Multiverse explanation of ΛCC and m2

h is possible. However we are not able
to calculate the distribution of ΛCC and m2

h in the Multiverse and predict what is likely or
unlikely for their observed value. Anthropic arguments allow us to bypass this difficulty, since
they identify a small viable range for these parameters. If only a few values, compatible with
observations, allow to have observers, we do not really need to compute how likely different
patches are. We will not have a precise prediction for ΛCC and m2

h, but at least we have a
reason to expect them to be much smaller than their natural value.

We can now turn to constructing and populating the Multiverse. Imagine having a 3-form
field Aµνρ, totally antisymmetric in its indexes. We can construct its kinetic term starting from
the 4-form

Fµνρσ = ∂µAνρσ − ∂σAµνρ + ∂ρAσµν − ∂νAρσµ . (3.61)
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Its most general action, including also gravity, reads

S = − 1

48

∫
d4x
√−gFµνρσF µνρσ + Sboundary + SG , (3.62)

where the boundary action

Sboundary =
1

3!

∫
d4x∂µ

(√−gF µνρσAνρσ
)

+ 2M2
Pl

∫

Σ

d3x
√
−hK (3.63)

does not have any effect on-shell, but is needed to make the theory consistent. The second term
must be included in spacetimes where the manifold is not closed (i.e. it has a boundary). Σ is
the boundary of the manifold, h is the induced metric and K the extrinsic curvature. This is
the Gibbons-Hawking-York boundary term [99].

The last term in S is the usual Einstein-Hilbert action with a cosmological constant

SG =

∫
d4x
√−g

(
M2

Pl

16π
R− Λ0

)
. (3.64)

The equations of motion for A are

∂µ
(√−gF µνρσ

)
= 0 (3.65)

and the only solution

F µνρσ = cεµνρσ , (3.66)

where c is a constant of dimension 2. This shows that A is non-dynamical. This is a consequence
of the large gauge symmetry of the action, which is invariant under

Aµνρ → Aµνρ + ∂[µBνρ] (3.67)

with Bµν any antisymmetric (Bµν = −Bνµ) tensor.
Therefore in this theory the cosmological constant is not only Λ0, but also has a contribution

from F 2 in the action

ΛCC = Λ0 −
c2

2
. (3.68)

We do not yet have a landscape, but we are close. You might have noticed the analogy between
our 3-form and the vector potential in electromagnetism (equivalently between F and the EM
field). The only missing ingredient in this analogy is some form of charged matter like the
electron. If such an object existed its pair production could discharge the primordial electric
field c and change the cosmological constant.

To introduce this object in the theory it is useful to go deeper into the analogy with elec-
tromagnetism. Take a particle of unit charge moving along the worldline xµp(τ). Its current
density is

Jµ = euµδ(3)(~x− ~xp(τ)) , uµ =
dxp(τ)µ

dτ
, (3.69)

and we can write its coupling to electromagnetism as

∫
d4x
√−gJµAµ = e

∫
d4x
√−gδ(3)(~x− ~xp(τ))

dxµp(τ)

dτ
Aµ = e

∫
dxµpAµ , (3.70)
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where the last integral is taken along the worldine of the particle. We can now scale this example
to one more dimension. A 2-form Aµν = −Aνµ will couple to a one dimensional object (rather

than a point particle), spanning a worldsheet xµ(τ, σ) ≡ xµ(~ξ). Instead of a single four-velocity
uµ in this case we have two possible derivatives ∂xµ/∂τ , ∂xν/∂σ. Due to the antisymmetry of
Aµν there is only one possible Lorentz-invariant coupling

Aµνε
ab∂x

µ

∂ξa
∂xν

∂ξb
. (3.71)

To complete the analogy with electromagnetism we can integrate over the worldsheet to obtain
the action

Sint =
e

2

∫
d2ξAµνε

ab∂x
µ

∂ξa
∂xν

∂ξb
. (3.72)

It is now straightforward to apply the same reasoning to our 3-form and obtain the action of
the brane coupling to it

Sbrane ⊃
e

3!

∫
d3ξAµνρε

abc∂x
µ

∂ξa
∂xν

∂ξb
∂xρ

∂ξc
. (3.73)

To complete the action we need only to generalize the free Lagrangian of a point particle to a
brane

Sfree = −m
∫
dτ = −m

∫ √
g(1)dt . (3.74)

In the last equality we have noted that γdτ = dt and introduced the one dimensional metric
induced on the worldline. It is now easy to generalize the previous expression to

Sbrane ⊃ −T
∫
d3ξ
√
g(3) , (3.75)

the only difference to keep in mind is that T is now a tension of dimension mass/volume.
Putting together the two terms in Sbrane with the action in Eq. (3.62) we can obtain the new
equations of motion

∂µc(y)εµνρσ = −e
∫
d3ξδ(4)(y − x(~ξ))εabc

∂xµ

∂ξa
∂xν

∂ξb
∂xρ

∂ξc
. (3.76)

On both sides of the brane c is constant and it jumps through it by a unit of brane charge e

∆c = e . (3.77)

If we have initially a large electric field c2 > e2, membranes of opposite charge can be sponta-
neously nucleated. The electric field inside the bubble formed by the brane and the ani-brane is
now smaller than that outside. This configuration has lower energy than the outside vacuum,
so the bubble walls will expand.

This is the same process as Schwinger pair production in QED. It is a tunneling process
akin to a phase transition, governed by the same equations as that of a scalar jumping from a
metastable minimum to a deeper minimum.

If we add to the mix eternal inflation we have created a Multiverse where each patch has
a different CC. The bubble walls will expand at most at the speed of light, but the volume of
the universe grows faster, so configurations with different values of c can coexist.
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The smallest splitting between CCs in this Multiverse is

∆Λ = e2 . (3.78)

Eternal inflation is useful for two reasons. Since it gives an exponentially expanding volume,
bubble walls, even if they move at the speed of light, never manage to meet, so instead of
having a single universe in the ground state, we have multiple bubbles constantly expanding
under the effect of inflation. Secondly, but maybe less critically, eternal inflation provides a
large volume and a long time for the bubbles to form. The tunneling process is slow

tnucleation ' eSE ' e
M4

Pl
e2 , (3.79)

even extremely slow if we want ∆Λ ' ΛCC ' (0.1meV)4, so we need a long enough period
of inflation to populate all the values of the CC. This discussion can be straightforwardly
generalized to scanning the Higgs mass if we add a coupling to the 4-form, for instance

S ⊃
∫
d4x
√−gFµνρσF

µνρσ

48
|H|2 . (3.80)

This gives at least a proof-of-principle that a Multiverse for ΛCC and m2
h can exist in Nature.

What makes this construction more interesting is that string theory possess the ingredients that
we have described in our toy model. It is very likely that if it is the right theory of quantum
gravity a landscape actually exists. For instance in M-theory there is a 7-form F7 in 11D that
upon compactification gives rise to several lower-order forms, including two F4 of the type that
we have described [100].

The only extra subtlety to take into account is that c in string theory is quantized [101],
c = en with n ∈ Z, because both electric and magnetic sources are present for all gauge fields.

In this picture, if we have J 4-forms from compactifying higher form fields, the cosmological
constant is

ΛCC = Λ0 −
1

2

J∑

i=1

e2
in

2
i . (3.81)

If we now imagine that bubbles with different ci’s are nucleated and expand during eternal
inflation we can ask what it takes to get at least one patch where ΛCC = Λobs ' (0.1 meV)4. If
we had a single 4-form we would need

e2 ' Λobs �M4
Pl , (3.82)

to scan the CC finely enough, as in the previous example. This is technically natural, since if
we send e → 0 the 3-form and the brane decouple and we have two free theories with extra
symmetries. However it is nice to notice that if we have J fields then we can get away with
much smaller couplings [101]

2πJ/2

Γ(J/2)
Λ
J/2
0

Λobs

Λ0

&
J∏

i=1

ei . (3.83)

For instance Λ0 ' M4
Pl and J = 100 gives ei ' 0.01MPl and indeed string theory predicts a

large number of such fields.
One can get Eq. (3.83) by noticing that the possible CCs given by the 4-forms are in a

multidimensional grid. To find our universe in this grid, we have to cancel Λ0 against the
4-forms contributions with a precision Λobs, so we are asking if there is any point in this grid
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contained within the surfaces of two spheres, one of radius Λ0 − Λobs and another of radius
Λ0 + Λobs. Calculating the volume of this region gives us Eq. (3.83). What we have just
summarized is the celebrated Bousso-Polchinski explanation [101] for the value of the CC. The
only missing ingredient is the argument that explains why we are in a patch with such a tiny
CC. This argument is due to Weinberg [102] and even if this work is mainly about the Higgs
boson we find useful to review it here.

If we reduce it to its most basic ingredients the argument runs as follows [103]. If the energy
density from the CC, ρΛ, dominates, the Universe can have one of two fates: 1) If the CC is
negative it takes the Universe a time ∼ Λ1/2/M2

Pl to collapse into an object of size ∼ Λ1/2/M2
Pl

and comparable curvature radius 2) If it is positive the Universe expands exponentially with a

scale factor e(Λ1/2/M2
Pl)t. All other forms of energy are diluted, leaving an empty Universe.

Therefore if we want to form galaxies we need the matter energy density ρm to dominated
over ρΛ for a long enough time. More precisely, density perturbations grow linearly with the
scale factor

δρ

ρ
∼ a (3.84)

if ρm > ρΛ, ρr, where ρr is the energy density in radiation. We can roughly call a galaxy a
density perturbation of order one, i.e δρ/ρ ' 1. Therefore, to form galaxies we need

ρΛ . ρMR

(
δρMR

ρMR

)3

, (3.85)

where ρMR is the matter energy density at matter-radiation equality and
(
δρMR

ρMR

)3

is the amount

that this energy density has redshifted before density perturbations growing linearly with a
become O(1). From CMB measurements we know that ρMR ' eV4, δρMR/ρMR ' 10−5, so we
get

ρΛ . (0.1meV)4 , (3.86)

remarkably close to the observed value. If we were more precise, we would find an upper bound
about 100 to 1000 times larger than the actual measurement, but it is remarkable how close
this simple argument gets to the actual value of the CC.

This argument is quite robust, in the sense that it doesn’t rely on a precise definition of
observers, we just don’t want the universe to be empty or tiny and with a large curvature.
However, it must be taken with a grain of salt. As stated above we don’t know what the
Multiverse really looks like and other parameters, including ρMR and δρMR can vary between
patches. This is nonetheless a pretty striking proof-of-principle that a Multiverse explanation
for the CC might work.

3.4.1 Anthropic Selection

We have seen how to populate a vast landscape of values for the Higgs boson mass. However,
we still need to explain why we happen to be in a patch with such an improbably small value
of mh.

Nature is full of interesting coincidences. There are a number of parameters that are just
at the edge of what is needed to make a certain phenomenon possible. It was argued [104] that
the Higgs boson mass might be one of these parameters. If it deviated more than a factor of
a few from its observed value, complex chemistry would not be possible. This is traditionally
taken as a sign that complex observers like us would not exist in most other patches of the
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Multiverse. In this sense the selection of the Higgs boson mass might be “anthropic”, i.e. we
don’t see a more likely universe because there we don’t exist.

The key observation is that nuclear parameters depend on m2
h. Let us first consider universes

with m2
h < 0. For the neutron-proton mass difference we have

mn −mp = (md −mu) + ∆mem ≈ 3 MeV
v

vus

+ ∆mem (3.87)

For v . few hundred×vus, then md,u < ΛQCD and we can leave ∆mem = −1.7 MeV fixed at the
value that it has in our universe. Also the QCD scale and the mass difference between isospin
1/2 and an isospin 3/2 baryons depend on v,

ΛQCD ' ΛQCD,us
vξ

vξus

(3.88)

m3/2 −m1/2 ' 300 MeV
vξ

vξus

, (3.89)

ξ ' 0.3 for 10−2 <
v

vus

< 104 . (3.90)

There are main more hadronic properties that depend on v. The last one that we need to
formulate our anthropic arguments is that the long range nucleon potential is well approximated
by single pion exchange. The pion mass is also sensitive to v: m2

π ∼ fπ(mu + md). mπ ∼
mπ,us

√
v/vus.

If v decreases, at some point Hydrogen becomes unstable, but other nuclei still exist since
mp − mn never gets above 1.7 MeV. So this kind of universes might support life. On the
contrary if v becomes too big, the nuclear binding energy decreases (from mπ increasing).
Besides mn − mp increases indefinitely. At some point (v/vus & 5) no complex elements,
beyond hydrogen, form. The reason is the following: in our universe the nuclear binding energy
is negative, i.e. the mass of a nucleus is less than the mass of its constituents by an amount
given by the nuclear force minus the EM repulsion, so it is energetically convient for baryons
to form nuclei.

When mn − mp exceeds the binding energy, the nucleus decays rapidly (if it ever forms).
Consider the decay of a nucleus A

ZX of mass m(A
Z),

A
ZX→ A

Z+1X + e− + ν̄e , m(A
ZX) = mN(A

ZX) + Zme −
Z∑

i=1

Bi,e . (3.91)

The decay rate is given by

Γ ∼ G2
FQ

5

Q ≈ m(A
ZX)−m( A

Z+1X)−me ≈ mN(A
ZX)−mN( A

Z+1X) = (mn −mp)−BN . (3.92)

The difference in electron binding energy is very small for high Z atoms and we have neglected
it. BN is the difference of the nuclear binding energies. Note that −BN is always negative
because replacing a neutron with a proton increases the electrostatic repulsion. When Q > 0
the decay is allowed and the rate grows rapidly with Q. This sets an upper bound on the
magnitude of m2

h in universes where m2
h < 0, exactly what we need to explain the smallness of

m2
h. How about m2

h > 0 universes?
In m2

h > 0 universes baryons are washed-out through electroweak sphalerons that convert
them to neutrinos unless an asymmetry is produced after the EW phase transition. Molecules
do not form until much later times compared to our universe. We need the cosmic microwave

background to cool below εα2me ∼ εα2ye
Λ3
QCD

m2
H

, ε ≈ 10−3.
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This “biochemical energy” characteristic of molecules, can be estimated from the quantum
mechanical model of the hydrogen atom

V (r) =
p2
e

2me

− α

r
=

1

2mer2
− α

r
. (3.93)

The minimum of this potential is at

r =
1

αme

, (3.94)

and the typical kinetic energy of the electron p2
e/2me ∼ α2me. We can roughly understand

the ε suppression factor from the fact that molecules are bigger and more loosely bound than
atoms. These arguments more or less rule out also m2

h > 0 universes as hospitable hamlets for
observers relying on complex chemistry.

These arguments rely on the fact that dimensionless SM parameters, in particular Yukawa
couplings, do not vary appreciably between different patches of the Multiverse. This is not
an unlikely occurrence, as can be seen from the explicit construction in [105]. A perhaps less
debated, but more important point to keep in mind is that m2

h = 0 or ΛCC = 0 are not
special points in theories without supersymmetry or scale invariance. Therefore a generic, non-
symmetric, landscape will scan m2

h and the cosmological constant around their natural value
(m2

h 'M2
∗ or ΛCC 'M4

∗ if M∗ is the fundamental high scale of our theory) with very few vacua
around zero, in general not enough to explain their value.

To illustrate this point, consider the QFT toy model of a landscape in [105]. We imagine
a theory with N scalars φi. Each scalar has a potential Vφi with two minima at 〈φi〉 = φ1,2

and vacuum energies V1,2. We take V1 ≥ V2. The full theory has 2N vacua described by the
potential

V =
N∑

i=1

Vφi . (3.95)

We can label the vacua using a set of integers ηi = ±1. Every choice of {η} = {η1, ..., ηN}
corresponds to a different CC

Λ{η} = NV̄ +
N∑

i=1

ηi∆V ,

V̄ =
V1 + V2

2
, ∆V =

V1 − V2

2
. (3.96)

For simplicity we have taken the same values of V1,2 for all the scalars, since it does not affect
our conclusions.

The distribution of CCs in the landscape at large N is well approximated by a Gaussian
(as expected from the central limit theorem)

p(Λ)→ 2N√
2πN∆V

e−
(Λ−NV̄ )2

N∆V 2 . (3.97)

If we have enough minima to populate only the central region of the Gaussian, the CC is finely
scanned in a region Λ = Λ̄± δΛ = NV̄ ±

√
N∆V . If V̄ ' ∆V , as we expect from dimensional

analysis, then

δΛ

Λ̄
' 1√

N
. (3.98)
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In particular we are not scanning around zero in the central region of the Gaussian. In this
landscape the number of vacua with nearly vanishing vacuum energy is ' 2Ne−NV̄

2/∆V 2
. To

finely scan the CC around zero we need both V̄ /∆V .
√

log 2 and sufficiently large N . A
generic landscape is finely scanning the CC only around NV̄ .

The situation is different in supersymmetry. Take for instance the odd superpotential

W = λφ3 − µ2φ . (3.99)

In this case at the two minima W1 = −W2 so that W̄ = 0. Then the landscape generated by
N of these superpotentials is scanning the CC in the range

−3
|
√
N∆W |2
M2

Pl

. Λ . 0 . (3.100)

In this case supersymmetry is keeping Λ ≤ 0 and a Z4 R-symmetry that protects the odd
structure of the superpotential is ensuring that the distribution of negative CCs has a central
value comparable to its standard deviation: |

√
N∆W |2/M2

Pl [105]. After SUSY breaking, this
landscape scans the CC efficiently around zero, because of its symmetries. The situation is
analogous for m2

h.
In summary, even a landscape solution is probably relying on one of the symmetries that

we presented in the previous Sections. Maybe they are realized only at very high energies,
but this is still an interesting information about Nature. In the next Chapter we will see that
the presence of these symmetries (in disguise) is often true also for solutions that explain m2

h

through some early Universe event. However, this is just a simple toy example and we don’t
know the actual measure of ΛCC and m2

h in the landscape, but it is generic enough that it is
useful to keep it in mind.

A second (less quantitative) aspect of this story that is not always appropriately emphasized,
is that the arguments on chemistry outlined above are very detailed. By “detailed” I mean
that they rely on a very specific definition of observers. If one starts searching, there are a lot
of similar coincidences without which either complex chemistry would not exist or observers
similar to us would not exist. The role of the Higgs is not that unique. Personally, I interpret
this as a sign that maybe we are not using a good definition of observers, in the sense that it
is possible that a much larger class of observers not based on complex chemistry might exist.
This would make Higgs anthropic arguments contentless. Of course, until we further progress
in the study of life, this discussion will remain at the philosophical level. It is nonetheless
interesting to notice that Weinberg’s argument for the CC, described at the beginning of this
Section, is not at all detailed in this sense. It essentially only requires some amount of entropy
in a causally connected patch.

To substantiate my earlier point on Nature being riddled with these coincidences, let me
give two examples. I refer the reader to [106] for more fun coincidences.

When four nucleons make 4
2He, 0.7% of their mass is converted to energy. If this number

was smaller we would have only hydrogen otherwise there would be no hydrogen.
When a star runs out of Hydrogen it collapses until its core temperature reaches 10 keV.

Then

4
2He + 4

2He→ 8
4Be (3.101)

4
2He + 8

4Be→ 12
6C + 2γ (3.102)

4
2He + 12

6C→ 16
8O + γ (3.103)

We need the excited state of Carbon on the right hand side to be between 7.3 and 7.9 MeV to
produce sufficient carbon for life to exist, and must be further “fine-tuned” to between 7.596
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MeV and 7.716 MeV to produce the amount observed in nature. There is an excited state of
oxygen which, if it were slightly higher, would provide a resonance and speed up the reaction.
In that case insufficient carbon would exist in nature; it would almost all have converted to
oxygen. Hoyle used these facts to predict the existence of the 12

6C excited state. The ground
state of Carbon is at 7.3367 MeV, below the 4

2He + 8
4Be energy.

3.5 Comments on UV/IR Mixing and Quantum Gravity

In addition to the attempts at formulating a scaleless theory of gravity, there are two more
ways in which gravity might behave differently compared to what discussed in the previous
Sections, where it was simply providing a new dimensionful scale to deal with in QFT.

The first one is quite direct and violates our EFT intuition on the Higgs mass. The Higgs
boson mass squared is given by an integral over multiple energy scales

m2
h(ΛIR) = m2

h(ΛUV) +

∫ ΛUV

ΛIR

dΛ δm2
h(Λ) . (3.104)

It is possible that high energy effects are not independent of low energy ones and what appears
as an accidental cancellation, is explained by the full theory of quantum gravity.

This brief discussion might have appeared vague. This is not an accident. To the best of
my knowledge there is no concrete proposal to implement the previous idea. The closest we got
are examples in quantum field theory on non-commutative spacetimes [107]. In this proposal
IR and UV effects are related in a precise way, but the Lorentz non-invariance inherent in the
theory obstructs incorporating the mechanism in the SM, given current experimental results.
Still we find interesting to review the basics of this idea here. Consider

[x̂µ, x̂ν ] = iθµν , (3.105)

where θµν = −θνµ. This is relating long-distance and short-distance effects

∆x̂µ∆x̂ν ≥
|θµν |

2
, (3.106)

but is also breaking Lorentz invariance. The tensor θµν is breaking Lorentz invariance as
a uniform magnetic field breaks rotational invariance, by defining a preferred direction in
space(time).

It is possible to show that a quantum field theory on these spacetimes can be written in
terms of commuting coordinates, if we additionally introduce the product [108,109]

f(x) ? g(x) = exp

(
i

2
θµν∂

µ
y ∂

ν
z

)
f(y)g(z)

∣∣∣∣
y=z=x

. (3.107)

This trick allows to show that noncommutative quantization does not affect the free part of the
tree-level action due to momentum conservation and the antisymmetry of θµν that make the
new exponential factor = 1 for the quadratic terms in the Lagrangian.

Interactions are modified to

LNC
int =

λn
n!
φ(x) ? φ(x) ? ... ? φ(x) . (3.108)

The corresponding action in momentum space looks like

SNC
int =

λn
n!

∫ n∏

i=1

d4kiφ(k1)...φ(kn)δ(4)(k1 + ...+ kn) exp

(
i

2

n∑

j<i

θµνk
µ
i k

ν
j

)
. (3.109)
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If we expand for θ � 1 this looks a like a perfectly normal EFT with a set of irrelevant
operators. If instead we keep the full exponential, an interesting UV/IR duality emerges.

The antisymmetry of θµν together with the momentum-conserving δ-function in each vertex,
allow to considerably simplify calculations in these theories. If the graph is planar, including any
tree-level graph, all exponential factors from loops can be eliminated. The only contributions
to the new phase factor containing θ come from external lines and their ordering. In non-planar
graphs, internal lines that cross can also contribute. A proof can be found in [110]. In practice
at tree-level these theories are identical to commutative QFTs. At loop level, it is easy to
evaluate integrands, but integrations can give surprising results.

Consider the scalar φ4 theory studied in [111], in Euclidean signature4

S4 =

∫
d4x

(
∂µφ∂

µφ

2
+
m2

2
φ2 +

g2

24
φ ? φ ? φ ? φ

)
. (3.110)

At one loop the two-point function of a scalar with external momentum pµ receives two contri-
butions

Γ(2)
p =

g2

3(2π)4

∫
d4k

k2 +m2
,

Γ(2)
np =

g2

3(2π)4

∫
d4k

k2 +m2
eik

µθµνpν . (3.111)

The first integral can be evaluated by standard techniques using a momentum cutoff to give

Γ(2)
p =

g2

48π2

(
Λ2 −m2 log

Λ2

m2
+O(1)

)
. (3.112)

For the second integral we introduce the Schwinger parameter α

1

k2 +m2
=

∫ ∞

0

dαe−α(k2+m2) , (3.113)

complete the square at the exponent and add the regulator e−1/(Λ2α)

Γ(2)
np =

g2

96π2

∫
dα

α2
e−αm

2+
pµθµρθ

ρ
νp
ν

4α
− 1

Λ2α . (3.114)

Evaluating the integral gives

Γ(2)
np =

g2

48π2

(
Λ2

eff −m2 log
Λ2

eff

m2
+O(1)

)
,

Λ2
eff =

1
1

Λ2 − 4
pµθµρθ

ρ
νpν

. (3.115)

Intriguingly Γ
(2)
np is finite for Λ → ∞. Have we really regulated UV divergences using the

fuzziness of spacetime? Not exactly, since the UV pole has not entirely disappeared. It just
does not commute with a new IR pole that did not exist in the tree-level theory. If we take
Λ → ∞ first, we have a new pole when p ◦ p ≡ −pµθµρθρνpν → 0. Similarly, taking p ◦ p → 0
leaves us with a UV divergence. This remains true in different regularization schemes [107].

4There are subtleties related to unitarity in non-commutative Lorentzian theories that do not affect our main
point. We refer the reader to [107] for a more complete discussion with relevant references.
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A Wilsonian effective theorist would write a low energy Lagrangian that is finite in the
Λ → ∞ limit. This Lagrangian must contain a new field that accounts for the IR pole that
appears in this limit. This means adding to S4 the terms

∆S4(Λ) =

∫
d4x

(
1

2
∂χ ◦ ∂χ+

Λ2

8
(∂ ◦ ∂χ)2 +

i√
24π2

gχφ

)
. (3.116)

It is not clear at all to me (or to anyone, as far as I know) that this is the right perspective.
Sure, this Lagrangian respects the Wilsonian tenet that the correlations functions computed
from the action converge smoothly to their Λ→∞ limits5. However, χ does not look at all like
a normal low-energy field. For instance, we can’t simply write an effective Lagrangian for χ by
integrating out φ, since its non-standard kinetic term prevents diagonalization of the quadratic
terms in the Lagrangian. Furthermore, the new pole breaks unitarity in this theory [112] and
finally the only interaction of χ is linear mixing, which means that its action is not renormalized
(any divergences are absorbed by φ counterterms).

The Wilsonian point of view might indeed by inadequate to understand these theories, since
it is based on a “UV first” logic, which is the right point of view is still source of debate [107].

We can content ourselves to note an intriguing fact. Given any finite UV scale Λ we have
generated a new stable IR scale in the form of an IR cutoff∼ Λ2

θ/Λ (if 1/Λ2
θ is the only eigenvalue

of θ). Even more intriguingly, for Λ→∞, the theory is finite but we have a new IR pole in a
two-point function at p2 ∼ g2Λ4

θ/m
2, which can be naturally much smaller than m2.

This is exactly what we need to solve the hierarchy problem. However, to have a real
solution we still have to deal with Lorentz violation (in the Wilsonian picture χ propagates
only in non-commuting directions) and better understand unitarity in this theory. For a more
complete discussion we refer the reader to [107].

The second way in which gravity might surprise us, is possibly even more speculative, but
not completely unfamiliar from an EFT perspective. It is well-known that a UV theory might
leave non-trivial constraints at low energy, which the low energy physicists can only accept as
facts of life. The prime example is the Spin-Statics theorem in quantum mechanics that in
QFT is seen as a consequence of Lorentz invariance and causality.

String theory might offer a more dramatic realization of this idea. It is possible that many
perfectly sensible, local, Lorentz-invariant EFTs are in the so-called “swampland”, i.e. they are
incompatible with quantum gravity. A number of string theory examples make this intuition
precise. For example the same modulus usually controls the mass of multiple towers of new
states. A classic example are KK and winding modes in string theory, whose masses scale as

MKK ∼ eαφ , Mwinding ∼ e−αφ (3.117)

where φ is a modulus. The two towers are related by T -duality. Given the pervasive nature of
dualities in string theory this has led to the so-called Swampland Distance Conjecture [53]

• Consider a theory, coupled to gravity, with a moduli space M which is parametrized by
the expectation values of some field φi which have no potential. Starting from any point
P ∈M there exists another point Q ∈M such that the geodesic distance between P and
Q, denoted d(P,Q), is infinite.

• There exists an infinite tower of states, with an associated mass scale m, such that

m(Q) ∼ m(P )e−αd(P,Q) , (3.118)

where α is some positive constant.

5This can be verified by integrating out χ at tree-level, since the action is quadratic in χ.
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This means that considering large field excursion might break our EFT, even if at low energy
we would not suspect that.

Another example is the Weak Gravity Conjecture. When we compactify string theory we
might obtain gauge fields at low energy that arise either from the high-dimensional components
of the gravitational field, or from higher form fields (for instance Bµν). In both cases the low
dimensional gauge coupling is a function of the moduli that determine the size and geometry of
the compactified dimensions. There is therefore a relation between the mass of charged states
(KK and winding modes), coming from this compactification and their charge under the gauge
group. Explicit examples corroborate the following Weak Gravity Conjecture [113,114]:

• Consider a theory, coupled to gravity, with a U(1) gauge symmetry with gauge coupling
g

S =

∫
ddx
√−g

[
Md−2R

d

2
− 1

4g2
F 2

]
. (3.119)

Then

• Electric: There exists a particle in the theory with mass m and charge q such that

m ≤
√
d− 2

d− 3
gqM

d−2
2 . (3.120)

• Magnetic: The cutoff of this EFT is bounded from above by

Λ . gM
d−2

2 . (3.121)

A third interesting example is the Refined de Sitter Conjecture [115,116]

• The scalar potential of a theory coupled to gravity must satisfy either

|∇V | ≥ c

MPl

V , (3.122)

or

min (∇i∇jV ) ≤ − c′

M2
Pl

V (3.123)

For c, c′ = O(1). This conjecture comes from the calculation of the de Sitter entropy plus
the distance conjecture. If a scalar rolls too far down its potential, the tower of states that
becomes light changes the entropy, making it incompatible with what we know about de Sitter
space [115–117].

All these examples have a few features in common: 1) They describe highly non-trivial
constraints on the EFT that the low energy physicist could not have imagined 2) They are
(conjectures)2. They arise from string theory (which we do not know for sure to be the right
theory of quantum gravity), within string theory they come from a handful of examples that
correspond to limits where we have the theory under control. If we want to apply them to
phenomenology they become (conjectures)3 in the sense that we typically have to take an extra
step. For instance, by adding to the distance conjecture the statement that all low energy
scalars are moduli 3) We have no idea how something similar could apply to the Higgs boson.

Having said this, the fact that m2
h = 0 is special from the point of view of quantum gravity

is not impossible, and we can keep it in mind as an intriguing possibility for future work and
speculation.
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Chapter 4

A New Class of Solutions to the
Hierarchy Problem

Every man is an abyss, one feels
dizzy when one looks within.

Georg Büchner

In this Chapter we explore the possibility that an early Universe event selects the value
of mh that we observe today. We need a landscape of values for m2

h from which to select the
observed one, but not all landscapes are Multiverses (as shown in Section 4.1). We need a
mechanism to select m2

h out of the landscape. The selection mechanism has two ingredients:
a trigger and a symmetry. The trigger can be any quantity sensitive to m2

h. The symmetry
is needed to naturally explain the small number v2/Λ2

H , and, as we have seen in the previous
Chapter, it could also be replaced by a large discrete number N ∼ Λ2

H/v
2.

Symmetries or large N in this Chapter could be completely hidden from a SM observer
and only manifest in a sector of the theory which is extremely weakly coupled to us. In most
cases we are outsourcing the hierarchy problem to new particles that can be approximately
shift-symmetric or superymmetric or scale invariant.

Therefore, unlike in the previous Chapter, symmetries are not our best shot at discovering
the naturalness of the Higgs mass. Triggers are our best shot. They generically require light
physics coupled at O(1) with the Higgs and we will spend a good deal of ink talking about
them. One lesson that I have learned is that there is a single operator in the SM whose vev is
sensitive to the Higgs vev. It is Tr[GG̃]. Its vev is also sensitive to the θ-angle that determines
the CP properties of the strong force. We will see in Section 4.2.1 that these are non-trivial
facts and I am starting to think that they cannot be a coincidence.

Before diving in this new class of ideas, it is useful to stress three points. First of all, from
the point of view of quantum field theory they are rather conservative. I would argue the
natural next step beyond supersymmetry or dimensional transmutation. After all, they are
just hiding these symmetries in a new weakly coupled sector. They do not challenge any of the
principles that have guided us in building quantum field theory, unlike some more speculative
options briefly reviewed in the previous Chapter. Nonetheless their experimental predictions
are dramatically different from those of traditional solutions to the hierarchy problem.

The second point is that albeit conservative from a low energy QFT perspective they might
not be equally conservative from the point of view of quantum gravity. Often special structures
in the landscape and/or large field excursions are constructed, which might be at odds with the
ultimate description of quantum gravity. Given our current ignorance on quantum gravity (and
even on string theory) I take a rather humble perspective on the issue. I think that as long as

55



we can’t exclude these ideas from the UV, it is worth to test them directly with experiment.
Our vague intuition about what is beautiful or allowed in physics have already failed us many
times in the past, especially with regards to this problem.

The last point to stress is that even if most of these ideas appear quite unrelated, they fall
into three broad categories: anthropic selection, dynamical selection and statistical selection.
The difference between the first two is often blurred. The last category instead is quite distinct
and, importantly, suffers from a problem of measure in the landscape. Rather than explaining
this division in detail here, we first review explicit examples and then return on it in Section 4.8.
The most interesting aspect of this division is that the most conceptually solid options (dy-
namical and anthropic selection), i.e. those that do not suffer from a measure problem, also
have the most interesting phenomenology which is dominated by trigger operators. This leads
to common experimental predictions also for completely unrelated selection mechanisms for
mh. Trigger operators are discussed in Section 4.2. Note, however, that the presence of trigger
operators in theories that select the Higgs mass in a non-statistical way is not a theorem. We
begin this Chapter with the only exception that I know of: Nnaturalness. However triggers
can be relevant to explaining mh also beyond these ideas of cosmological selection. After all,
they are just the answer to a very general question: what changes in the SM (and beyond) if
we vary m2

h?
Finally, let me remark that in this Chapter, given the ultimate goal of this thesis, I will

devote most space to my own published work.

4.1 Dynamical Selection in the Multiverse and Beyond

In this Section we describe two mechanisms that started the wave of renewed interest in cos-
mological explanations for the Higgs mass. They have almost nothing to do with each other,
except for one common feature that distinguishes them from earlier and later attempts.

In both cases the landscape of Higgs masses is not in the form of a Multiverse. In the
Relaxion [118] it is populated in time by a scalar with trilinear coupling φ|H|2 that is rolling
down its potential during inflation. In Nnaturalness [119] it is given by multiple copies of the
SM that all exist in our Universe and in principle might be directly observed.

A second unique feature of Nnaturalness is that it completely escapes the logic of trigger
operators outlined above, even if it selects the Higgs mass dynamically. The interaction selecting
the Higgs mass is not protected by any symmetry. The vev, of the operators that describe it,
is sensitive to the cutoff of the theory. However the selection is operated through their on-shell
effects and not through their vevs. This is an important point that does not feature prominently
in any description of Nnaturlness and to the best of my knowledge has not been utilized since.

4.1.1 Nnaturalness

In this Section we follow [119]. The first step is to introduce N sectors which are mutually non-
interacting. The detailed particle content of these sectors is unimportant, with the exception
that the Standard Model (SM) should not be atypical; many sectors should contain scalars,
chiral fermions, unbroken gauge groups, etc. For simplicity, we imagine that they are exact
copies of the SM, with the same gauge and Yukawa structure.

It is crucial that the Higgs mass parameters are allowed to take values distributed between
−Λ2

H and Λ2
H , where ΛH is the (common) scale that cuts off the quadratic divergences. Then for

a wide range of distributions, the generic expectation is that some sectors are accidentally tuned
at the 1/N level, |m2

H |min ∼ Λ2
H/N . We identify the sector with the smallest non-zero Higgs

vacuum expectation value (vev), 〈h〉 = v, as “our” SM. This picture is illustrated schematically
in Fig. 4.1.
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Figure 4.1: A sketch of the Nnaturalness setup. The sectors have been ordered so that they
range from m2

H ∼ Λ2
H to −Λ2

H . The sector with the smallest vacuum expectation value contains
our copy of the SM.

In order for small values of m2
H to be populated, the distribution of the mass parameters

must pass through zero. For concreteness, we take a simple uniform distribution of mass squared
parameters, indexed by an integer label i such that

(
m2
H

)
i

= −Λ2
H

N

(
2 i+ r

)
, −N

2
≤ i ≤ N

2
, (4.1)

where i = 0 = “us” is the lightest sector with a non-zero vev: (m2
H)us = −r × Λ2

H/N '
−(88 GeV)2 is the Higgs mass parameter inferred from observations. The parameter r can be
seen as a proxy for fine-tuning,1 since it provides a way to explore how well the naive relation
between the cutoff and the mass scale of our sector works in a detailed analysis. Specifically,
r = 1 corresponds to uniform spacing, while r < 1 models to an accidentally larger splitting
between our sector and the next one. A simple physical picture for this setup is that the new
sectors are localized to branes which are displaced from one another in an extra dimension.
In this scenario, the lack of direct coupling is clear, and the variation of the mass parameters
can be explained geometrically: the m2

H parameters may be controlled by the profile of a
quasi-localized field shining into the bulk.

As a consequence of the existence of a large number of degrees of freedom, the hierarchy
between ΛH and the scale ΛG where gravity becomes strongly coupled is reduced. The renormal-
ization of the Newton constant implies Λ2

G ∼M2
pl/N . If perturbative gauge coupling unification

is to be preserved ΛG & MGUT, implying that N . 104. This gives a cutoff no greater than
ΛH ∼ 10 TeV, thus predicting a little hierarchy that mirrors the GUT-Planck splitting in the
UV. At the scale ΛH , new dynamics (e.g., SUSY) must appear to keep the Higgs from experi-
encing sensitivity to even higher scales. Alternatively, the full hierarchy problem can be solved
with N ∼ 1016, so that ΛH ∼ ΛG ∼ 1010 GeV. Note that this number of copies, while sufficient,
is unnecessary for a complete solution. There may be two classes of new degrees of freedom: the
N copies that participate directly in the Nnaturalness picture, and another completely sterile
set of degrees of freedom that still impact the renormalization of ΛG.

So far we have described a theory with a SN permutation symmetry, broken softly by the
m2
H parameters, such that each of the sectors is SM-like. Sectors for which m2

H < 0 are similar
to our own, with the exception that particle masses scale with the Higgs vev, vi ∼ v

√
i. In

addition, once i & 108 the quarks are all heavier than their respective QCD scales. Those
sectors do not exhibit chiral symmetry breaking, nor do they contain baryons. Sectors with
m2
H > 0 are dramatically different from ours. In these sectors, electroweak symmetry is broken

1There are a variety of other ways one might choose to implement a measure of fine-tuning in this model. For
example, one could assume the distribution of Higgs mass squared parameters is random with some (arbitrary)
prior, and then ask statistical questions regarding how often the resulting theory is compatible with observations.
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at low scales due to the QCD condensate ΛQCD. Fermion masses are generated by the four-
fermion interactions that are induced by integrating out the complete SU(2) Higgs multiplet.
Thus, mf ∼ yf yt Λ3

QCD/ (m2
H)i . 100 eV, where yt is the top Yukawa coupling. All fermionic

and gauge degrees of freedom are extremely light relative to the ones in our sector.

With so many additional degrees of freedom, the naive cosmological history is dramatically
excluded. In particular, if all sectors have comparable temperatures in the early Universe, then
one expects ∆Neff ∼ N (see Eq. (4.9)). Thus, the hierarchy problem gets transmuted into the
question of how to predominantly reheat only those sectors with a tuned Higgs mass.

To accomplish this, we need to introduce a last ingredient into the story, the “reheaton”
field, so named because it is responsible for reheating the Universe via its decays. We call this
field Sc for models where the reheaton is a fermion, and φ if the reheaton is a scalar. The
cosmological history of the model begins in a post-inflationary phase where the energy density
of the Universe is dominated by the reheaton. As stated multiple times we can not be unique,
therefore we assume that the reheaton couples universally to all sectors. Note that the scalars
must be near their true minimum when reheating occurs. This can be accomplished by having
either low scale inflation, or else a coupling of the Higgses to the Ricci scalar.

In the next section, we present a set of models in which the reheaton dynamically selects
and populates only the lightest sectors, despite preserving the aforementioned softly broken SN
symmetry.

Models

We have argued that the hierarchy problem can be solved by invoking a large number of copies
of the SM, along with some dynamical mechanism which dominantly populates the lightest
sector with a non-zero Higgs vev. This section details some simple explicit models that realize
a viable cosmological history.

As anticipated in the previous section, we imagine that at a post-inflationary stage the
energy density of the Universe is dominated by a reheaton that couples universally to all the
new sectors. Its decays populate the SM and its copies. The goal is to deposit as much
energy as possible into the sector with the smallest Higgs vev. This may be accomplished by
arranging the decays of the reheaton such that the branching fraction into the ith sector scales
as BRi ∼ (mH)−αi for some positive exponent α. To this end, we construct models that share
three features:

1. The reheaton is a gauge singlet;

2. It is parametrically lighter than the naturalness cutoff, mreheaton . ΛH/
√
N ;

3. Its couplings are the most relevant ones possible that involve the Higgs boson of each
sector.

While the requirement of a light reheaton field may appear to require an additional coin-
cidence, it can be easily accommodated in an extra-dimensional picture. In order to couple to
all the sectors, the reheaton must be a bulk field. Then, before canonical normalization, its
kinetic term carries a factor of N . If the reheaton enjoys a shift symmetry that is respected
in the bulk, it will receive a ΛH-sized mass from each brane on which the shift symmetry is
violated. Here we assume that the dynamics above ΛH respect the shift symmetry. As long as
the shift symmetry is only violated on the boundaries, the reheaton mass will be parametrically
the same as the weak scale after canonical normalization. In the case of a fermionic reheaton,
this simple picture corresponds to the brane-localization of its Dirac partner.
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The two simplest models, which we denote ` and φ, are

L` ⊃ −λSc
∑

i

`iHi −mS S S
c , (4.2)

if the reheaton is a fermion Sc, and

Lφ ⊃ −a φ
∑

i

|Hi|2 −
1

2
m2
φ φ

2, (4.3)

if the reheaton is a scalar φ. For the theory to be perturbative, we need the coupling λ to obey
a ‘t Hooft-like scaling λ ∼ 1/

√
N . Naively we would expect the same scaling for a, but we

find that a stronger condition needs to be imposed (a ∼ 1/N) to insure that the loop induced
mass for φ is not much larger than ΛH/

√
N . Even with this scaling, the loop-induced tadpole

for φ will be too large unless the sign of a is taken to be arbitrary for each sector. Note that
a breaks a Z2 symmetry on φ, so that this choice is consistent with technical naturalness.
Including the arbitrary sign, the sum over tadpole contributions only grows as

√
N , and so the

natural range of φ is restricted to ΛH

√
N . The Higgses will then receive a contribution to their

m2
H parameters of order a〈φ〉 ∼ Λ2

H/
√
N . While these contributions may be large compared

to our weak scale, as long as they are smaller than O(Λ2
H), they can be safely absorbed into

the quadratically-divergent contributions to m2
H . Of course, these are upper bounds on the

couplings; as we will discuss later in the section, they can be consistently taken smaller, so long
as the reheat temperature is sufficiently high.

Before moving on to discuss the details of reheating, we remark on the existence of cross-
quartics of the form κ |Hi|2 |Hj|2. Even if these are absent in the UV theory, they will be induced
radiatively. After electroweak symmetry breaking in the various sectors, these can potentially
affect the spectrum, and so it is critical to the Nnaturalness mechanism that they be sufficiently
suppressed. Given an arbitrary, SN symmetric cross-quartic, κ, the m2

H parameters will shift
by approximately −κΛ2

H N/8 +O(κ2N), while the mixing effects are subdominant. Thus, the
general picture of hierarchical weak scales remains intact so long as κ . 1/N .

At a minimum, cross-quartics of this form will be induced gravitationally, regardless of the
reheaton dynamics. These quartically-divergent gravitational couplings arise at three loops,
giving (16π2)3κg ∼ λ2

h(ΛH/Mpl)
4 ∼ (λh/N)2(ΛH/ΛG)4, where λH is the SM-like Higgs self

quartic. Here we have taken the scale that cuts off these divergences to be ΛH , as would be
appropriate for a supersymmetric UV completion (for which these quartics are absent). In
either case, these gravitational couplings are parametrically safe, since they scale as (1/N)2.

In addition, potentially dangerous cross-quartics can be generated by reheaton exchange. In
the ` model, the cross-quartic is generated at one loop: κ` ∼ λ4/16π2 . 1/N2, after enforcing
the large-N scaling of λ. In the φ model, these quartics are generated at tree-level, κφ ∼ a2/m2

φ.
Naively this appears borderline problematic, since κφ scales as 1/N . However, the arbitrary
sign of a, which was necessary to mitigate the tadpole of φ, will once again soften the sum over
sectors, so that

∑
ai v

2
i ∼ aΛ2

H

√
N . Combined with the large-N scaling of a, these quartics

are rendered safely negligible.

Reheating If the reheaton is sufficiently light, then we may analyze the leading reheaton de-
cay operators using an effective Lagrangian computed by integrating out Hi. This immediately
makes it clear why we we want the reheaton to be coupled with the most relevant coupling
possible, since these will suffer the fastest suppression as |mH | → ∞. Integrating out the Higgs
and gauge bosons in the ` model, the leading decays of Sc are given by, e.g.

L〈h〉6=0
` ⊃ C`1 λ v

m2
Z mS

ν†σ̄µSc f †σ̄µf ;

L〈h〉=0
` ⊃ C`2 λ yt

m2
H
S `Q†3 u

c†
3 ,

(4.4)
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Figure 4.2: Feynman diagrams for the most important decays in the φ model. The left (right)
column is for 〈h〉 6= 0

(
〈h〉 = 0

)
. The top (bottom) row is for mφ � |mH |
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mφ � |mH |

)
.

where mZ is the relevant Z0-boson mass and the C`i are numerical coefficients. We have omitted
decays through W and Higgs bosons in sectors with 〈h〉 6= 0 as they scale in the same way. We
include them in all numerical computations.

From this low energy Lagrangian we can easily infer that a light reheaton dominantly
populates the lightest negative Higgs mass sector. Denoting with mhi the physical Higgs mass
in sectors with 〈h〉 6= 0, the reheaton decay widths scale as Γm2

H<0 ∼ 1/m2
hi

and Γm2
H>0 ∼ 1/m4

Hi

in sectors with and without electroweak symmetry breaking, respectively. Thus the reheaton
preferentially decays into sectors with light Higgs bosons and non-zero vevs. If, instead, the
reheaton were heavy enough to decay directly to on-shell Higgs or gauge bosons, the branching
fractions would be democratic into those sectors, and the energy density in our sector would
not come to dominate the energy budget of the Universe.

In the scalar case the decays are different, but the scaling of the decay widths is exactly the
same. This can be seen once more by integrating out the Higgs and gauge bosons in all the
sectors:

L〈h〉6=0
φ ⊃ Cφ1 a yq v

m2
h
φ q qc ;

L〈h〉=0
φ ⊃ Cφ3 a g2

16π2
1
m2
H
φWµνW

µν ,
(4.5)

where again the Cφi are numerical coefficients, and Wµν is the SU(2) field strength. As in
the fermionic case, this Lagrangian leads to decay widths that scale as Γm2

H<0 ∼ 1/m2
hi

and

Γm2
H>0 ∼ 1/m4

Hi
in sectors with and without electroweak symmetry breaking, respectively,

through the diagrams shown in Fig. 4.2. We have not included the one-loop decay φ→ γ γ in
Eq. (4.5) for sectors with 〈h〉 6= 0. This operator scales as 1/m2

h and is important for sectors
with N & 108; we find that this is never the leading decay once the bounds on N discussed in
Sec. 4.1.1 are taken into account.

Before moving to a more detailed discussion of signals and constraints it is worth pointing
out two important differences between the φ and ` models that will lead us to modify the latter.
Given the scaling of the widths we can approximately neglect the contributions to cosmological
observables from the 〈h〉 = 0 sectors. In the simple case that the vevs squared are equally
spaced, v2

i ∼ 2 i × v2
us, as in Eq. (4.1) with r = 1, we find that the branching ratio into the

other sectors is
∑

1/i ∼ logN .
In the φ model, this logarithmic sensitivity to N is not realized. Since the reheaton decays

into sectors with non-zero vevs via mixing with the Higgs, the decays become suppressed by
smaller and smaller Yukawa couplings as hi becomes heavy. After the charm threshold is crossed
mφ < 2mci we can neglect the contribution of the new sectors to cosmological observables (with
one exception that we discuss in the next section). This behavior is displayed in the left panel
of Fig. 4.3, where we show the fraction of energy density deposited in each sector.
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Figure 4.3: Energy density deposited in each sector as a function of sector number, normalized
to the energy density in our sector. The left panel is for the φ model with a = 1 MeV. The
right panel is for the L4 model with λ × µE = 1 MeV, ML = 400 GeV, ME,N = 500 GeV,
YE = YN = 0.2, and Y c

E = Y c
N = −0.5. The solid lines are the result of a full numerical

calculation. The dashed lines show the expected scalings. As discussed in the text, the steps
in the φ model are proportional to Yukawa couplings due to the fact that φ decays via mixing
with the Higgs. When i & 109 in the L4 model, the process Sc → 2 e + ν cannot proceed
on-shell, which results in the deviation from the naive scaling as denoted by mS = 2me +mν .
Both figures were made using the zero temperature branching ratios of the reheaton; thermal
corrections are under control so long as TRH is smaller than the weak scale in our sector, as
discussed at the end of Sec. 4.1.1.

The second important difference is that in the ` model the reheaton couples directly to
neutrinos and, in the sectors with electroweak symmetry breaking, it mixes with them. This
leads to two effects. First, the physical reheaton mass grows with N , implying that the structure
of the ` model forces the reheaton to be heavy at large N , and can be inconsistent depending on
the value of λ. Additionally, this mixing can generate a freeze-in abundance [120] of neutrinos
in the other sectors from the process νus νus → νus νi via an off-shell Z0. Tension with neutrino
overclosure and overproduction of hot dark matter leads to an upper bound on the maximum
number of sectors. In practice, it is hard to go beyond N ' 103.

However, there is a simple extension of the ` model that at once mitigates its UV, i.e.,
large N , sensitivity and solves the problems arising from a direct coupling to neutrinos. If the
reheaton couples to each sector only through a massive portal (whose mass grows with vi),
then the branching ratios will scale with a higher power of the Higgs vev after integrating out
the portal states. As an example, consider introducing a 4th generation of vector-like leptons
(L4, L

c
4), (E4, E

c
4), and (N4, N

c
4) to each sector. Then relying on softly broken U(1) symmetries,

we can couple the reheaton to L4 only via the Lagrangian

LL4 ⊃ Lmix + LY + LM , (4.6)

Lmix = −λSc
∑

i

(
L4H

)
i
− µE

∑

i

(
ecE4

)
i
,

LY = −
∑

i

[
YE
(
H† L4E

c
4

)
i
+ Y c

E

(
H Lc4E4

)
i

+ YN
(
H L4N

c
4

)
i
+ Y c

N

(
H† Lc4N4

)
i

]
,

LM = −
∑

i

[
ME

(
Ec

4 E4

)
i
+ML

(
Lc4 L4

)
i
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Figure 4.4: Feynman diagrams for the most important decays in the L4 model. The left (right)
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+MN

(
N c

4 N4

)
i

]
−mS S S

c ,

where we have assumed universal masses and couplings across all the sectors for simplicity.
We again need λ ∼ 1/

√
N for perturbativity. Note that we are assuming that the bilinear

µE e
cE only couples a single flavor of right handed lepton to the new 4th generation fields, in

order to avoid flavor violation bounds in the charged lepton sector. The predictions relevant to
cosmology (see Fig. 4.5) are insensitive to the choice of flavor; we choose couplings involving
the τ for the additional constraints discussed in Sec. 4.1.1 below since this choice yields the
strongest bounds.

To explore the differences between the L4 and ` models let us again consider the limit in
which the reheaton is light. If we integrate out the Higgs and gauge bosons along with the new
vector-like leptons, the leading operators for the decays of Sc are given by

L〈h〉6=0
L4

⊃ CL4
1 λ′ g2

m2
W

(
ec†σ̄µSc

)(
f †σ̄µf

′
)

;

L〈h〉=0
L4

⊃ CL4
2 λ yt yb

16π2
YEME µE

m4
H

(
ec†σ̄µSc

)(
uc†3 σ̄µd

c
3

)
,

(4.7)

where once more the CL4
i are numerical coefficients, M4 is used to represent the physical mass

of the relevant heavy lepton, and for convenience we have defined λ′i ≡ (λ v2
i µE/M

4
4i) f(Y,M).

Here f is a function of dimension one that depends on the Yukawa couplings and vector-like
masses in Eq. (4.7), but not on the Higgs vev. The M4i masses receive a contribution from vi
that eventually dominates. When this happens Sc decays become suppressed by large powers
of the Higgs vev. From the effective Lagrangian above, it is easy to conclude that the widths
scale as Γm2

H<0 ∼ const for the first few sectors, since M4i is approximately independent of
vi. When the Yukawa contribution to the masses begins to dominate, such that M4i ∼ vi, the
scaling becomes Γm2

H<0 ∼ 1/v8
i . Contributions to observables from the sectors with positive

Higgs mass squared are negligible: the decay is both three-body and loop-suppressed, and the
width scales as 1/v8

i in all the sectors.
The diagrams that lead to these decays are shown in Fig. 4.4, and the energy density

deposited in each sector is depicted in the right panel of Fig. 4.3. It is obvious that in this
model cosmological observables are sensitive only to the few sectors for which the vector-like
masses dominate over the Higgs vev, making it insensitive to the UV. This comes at the price
of introducing new degrees of freedom near the weak scale. As we will discuss in the following
section, the vector-like masses cannot be arbitrarily decoupled, but they must be large enough
to avoid tension with direct searches and the measured properties of our Higgs.

Finally, we end this section by briefly commenting on the presence of an upper bound for
the reheating temperature TRH such that the mechanism is preserved. Specifically, TRH should
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be at most of order of the weak scale. If the temperature were larger, our Higgs mass would be
dominated by thermal corrections resulting in a change in the scalings of the branching ratios.
Our Higgs would obtain a large positive thermal mass and no longer be preferentially reheated
over the other sectors. Noting that

TRH ' 100 GeV

√
〈h〉ΓreheatonT

10−14 GeV
, (4.8)

where 〈h〉ΓreheatonT denotes a thermal average of the reheaton width that incorporates the effect
of time dilation. Then Eq. (4.8) places an upper bound on the couplings of the reheaton. In the

φ model, the φ− h mixing angle is bounded to be θφh ∼ (a v/m2
h)us . 10−6 (100 GeV/mφ)1/2.

In the L4 model, most of the viable region of parameter space predicts on-shell decays to our
W boson (see Fig. 4.5 below). Therefore, the width of Sc is dominated by this two-body decay
and the constraint on TRH translates into a rough bound of λ′us . 10−7 when mS ' 100 GeV.
For the benchmark values used for the figures below, this in turn translates into a bound
λ× µE . 10−2 GeV.

Finally, we note that at large N there is a more stringent upper bound on the reheating tem-
perature determined by the perturbativity of λ. Requiring λ . 4π/

√
N and mS ∼ 100 GeV,

we find that it is still possible to reheat to a few GeV even with N ∼ 1016, where this estimate
has been done using the complete numerical implementation of the mixings.

In principle, we must also ensure that other sectors are not overly heated by scattering
from our own plasma after reheating. However, the aforementioned constraints on the reheaton
couplings sufficiently suppress this contribution to their energy density.

Baryogenesis A viable mechanism for baryogenesis is an even more crucial part of our mech-
anism for solving the hierarchy problem than in typical natural theories for new physics, where
it can be treated in a modular way. One challenge is that our reheating temperature should be
near or below the electroweak phase transition. Additionally, baryogenesis cannot occur in all
of the copies of the SM, or there would be too much matter in the Universe.

One simple approach, which makes use of features intrinsic to the model, is to imagine
that the reheaton Sc carries a lepton number asymmetry. This asymmetry is distributed to
the various sectors through the decays of Sc. Only in the sectors nearest ours is this lepton
asymmetry converted into a baryon asymmetry. The small number abundance of baryons
results from the low reheat temperature. At temperatures just below the electroweak phase
transition, the sphaleron rate is exponentially suppressed, and only a small fraction of the
lepton asymmetry is converted into a baryon asymmetry. The baryon asymmetry in sectors
with m2

H > 0 is even further suppressed; since mW . ΛQCD, the sphalerons remain active at
temperatures below the baryon masses. Any asymmetry in these sectors will eventually be
redistributed back into the leptons. We have now laid out the necessary ingredients of our
mechanism and we are ready to explore their phenomenology in more detail.

Signals and Constraints

The signals and experimental constraints for Nnaturalness come from two sources: mixing
between the sectors and energy density deposited in the new sectors by the reheaton decays.
The cosmological observables sensitive to the energy density in each sector can be further
divided into two categories.

First we discuss measurements that can detect new light particles. These signatures are
dominated by the sectors closest to us and can not be avoided by changing the UV scalings
of the model. They provide the most characteristic signatures of the theory. Then we study
the impact of stable massive particles from the new sectors. This last set of constraints is

63



dominated by sectors with the largest Higgs masses and can be ignored in the L4 model, where
the large i physics is decoupled. In the last two subsections we discuss the bounds arising from
mixing between the sectors, followed by possible collider signatures.

Massless degrees of freedom As discussed previously, our models have a large number
of massless or nearly massless degrees of freedom. For example, all additional sectors contain
photons and neutrinos. There are several kinds of cosmological observations that are sensitive
to new relativistic particles. For instance the measurement of the Hubble parameter during
either Big Bang Nucleosynthesis or at the epoch of photon decoupling, and bounds on hot dark
matter from the matter power spectrum.

The sensitivity of the expansion of the Universe to new relativistic degrees of freedom is
usually phrased in terms of the number of effective neutrinos

∆Neff =
1

ρus
ν

∑

i 6=us

ρi . (4.9)

Current bounds are ∆Neff . 1 during BBN [121] and ∆Neff . 0.6 at photon decoupling [122].
In both cases we quote an approximate 95% C.L. constraint. The CMB bound applies to
free-streaming radiation [123]. However, the photons in some of the new sectors are still in
equilibrium with or have just decoupled from electrons at that time and might be more similar
to a perfect fluid. Until recently it was impossible to distinguish between the two types of
radiation, as they affect the CMB damping tail in the same way [124]. The detection of a phase
shift in the CMB anisotropies [125] has broken this degeneracy, and it is now possible to set a
95% C.L. bound: Nfluid . 1 for ∆Neff = 0 [126]. Here we have defined Nfluid in the same way
as ∆Neff , normalizing the energy density of non-free-streaming radiation to that of a neutrino
in our sector.

In the following, we do not distinguish between the two types of radiation. We use ∆Neff

to denote the sum of the two components. Given the bounds discussed above and the two
dimensional exclusions in [126], this is sufficient to show that the model has large areas of
parameter space consistent with current data. In the future, it would be interesting to explore
CMB observations in more detail, as it is a generic prediction of this type of theories to have
roughly comparable amounts of free-streaming and non-free-streaming extra radiation.

Having set Nfluid to zero, it is straightforward to estimate the contribution to ∆Neff from
our new sectors, since the ratio of energy densities ρi/ρus is determined by the decay widths
of the reheaton: ρi/ρus ' Γi/Γus. For example, assume that the reheaton is lighter than the
lightest Higgs across all the sectors; then we have

∆Nφ
eff ∼

Nb∑

i=1

1

2 i+ 1
+
y2
c

y2
b

Nc∑

i=Nb+1

1

2 i+ 1
' 1

2

(
log 2Nb +

y2
c

y2
b

log
Nc

Nb

)
, Nb,c =

(
m2
φ

8m2
b,c

− 1

2

)
,

∆NL4
eff ∼

NV∑

i=1

i0 +

N/2∑

i=NV +1

1

(2 i+ 1)4
' NV , NV '

(
M2

Y 2 v2
− 1

2

)
, (4.10)

where M represents one of the vector-like masses in the L4 model and Y one of the new
Yukawas. In this estimate we have neglected the contribution from m2

H > 0 sectors and the
effect of g∗ in each sector, to highlight the scaling of ∆Neff . From this simple exercise we see
that ∆Neff is dominated by the bottom of the spectrum. The sectors past i = Nb,c or i = NV

receive a negligible fraction of the total energy density and do not contribute to ∆Neff . Using
Eq. (4.10) to go beyond a simple parametric estimate gives results that are in tension with
current bounds. For example mφ ' 50 GeV implies Nb ' 17 and ∆Neff ' 2. However, these
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Figure 4.5: ∆Neff contours as a function of reheaton mass and the r parameter defined in
Eq. (4.1). ∆Neff ' 0.03 corresponds to the sensitivity of CMB stage 4 experiments. The
current upper bound at the CMB epoch is around 0.6. The left panel is for the φ model with
a = 1 MeV. The right panel is for the L4 model with λ × µE = 1 MeV, ML = 400 GeV,
ME,N = 500 GeV, YE = YN = 0.2, and Y c

E = Y c
N = −0.5. As discussed in the text, the L4

result is valid for a large range of N , namely 30 . N . 109. Both figures were made using the
zero temperature branching ratios of the reheaton; see the end of Sec. 4.1.1 for a discussion.

estimates are only qualitative, and break down in a large fraction of the parameter space of the
models. The results from a full numerical computation are shown in Fig. 4.5.

There are two main messages that can be extracted from this calculation. First, we can
satisfy current constraints for a range of reheaton masses up to a few hundred GeV. Second,
the models predict values of ∆Neff within the range of sensitivity relevant for CMB stage 4
experiments [127]. These next generation detectors, which should start taking data within the
next five years, will probe ∆Neff & 0.03. If no beyond the SM discovery is made, then the
only way to suppress this signal is to introduce “fine tuning,” which in the context of these
models is the limit r . 0.1. Alternatively, we could imagine alleviating this tension by taking
the vector-like masses in the L4 model far below the weak scale, in potential conflict with
electroweak/Higgs measurements.

A few additional features of the ∆Neff calculation are worth discussing. In the L4 case the
plot is valid for a large range of N , namely 30 . N . 109. The upper bound is determined by
requiring λ . 4π/

√
N and mixing between ec and the vector-like leptons less than 1%. It is

trivial to go beyond N = 109, and even possible to reach N = 1016, by lowering the reheaton
coupling – this comes at the expense of an overall decrease in reheating temperature, even
though the result for ∆Neff would not change. For N < 30, ∆Neff is smaller than shown in
the figure. In the φ case, the results are more sensitive to N , as shown in Eq. (4.10). We
chose the largest N that is both compatible with overclosure (see the next subsection) and also
interesting from a model building perspective, given the relation to the Planck/GUT hierarchy
(N = 104).

The shapes of the ∆Neff contours are easy to explain in terms of kinematics. In L4 the
allowed region corresponds to the reheaton decaying to our sector via a two-body channel,
versus a three-body decay into all the other m2

H < 0 sectors. This is highlighted by the
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mS = mW2 line in the plot. In the φ model the situation is different. The mixing with the
Higgs naturally introduces a number of mass thresholds that reduce ∆Neff . At very low φ
masses, decays to a pair of b-quarks are kinematically allowed only in our sector. As the φ mass
increases, the reheaton can mix resonantly with our Higgs and subsequently decay to a pair of
W or Z bosons. The last aspect of these results that is not captured by the simple estimate in
Eq. (4.10) is the fact that (∆Neff)CMB > (∆Neff)BBN. It is easy to show that this must be the
case by appealing to conservation of entropy in each of the sectors. If we compute the ratio of
∆Neff in sector i at the two different epochs, we obtain

(∆N i
eff)CMB

(∆N i
eff)BBN

=
gi∗ (T iCMB)

gi∗ (T iBBN)

(
gus
∗S (T us

BBN)

gus
∗S (T us

CMB)

)4/3(
gi∗S (T iBBN)

gi∗S (T iCMB)

gus
∗S (T us

CMB)

gus
∗S (T us

BBN)

)4/3

'
(
gi∗S (T iBBN)

gi∗S (T iCMB)

)1/3

≥ 1 . (4.11)

The first term in the first equality counts the number of relativistic degrees of freedom in sector
i at the two different temperatures. The second factor accounts for the fact that neutrinos in
our sector are decoupled after BBN, so their temperature during the CMB epoch is lower than
that of photons. The last term comes from entropy conservation in our sector and sector i. In
the last equality we have used g∗ ' g∗S.

To conclude the discussion of ∆Neff , recall that the result depends almost exclusively on the
reheaton branching ratios and that it is largely insensitive to the value of its overall coupling. A
single choice of λ and a is sufficient to understand the complete parameter space. In contrast,
the precise value of the vector masses and Yukawa couplings in the L4 model can change the
results considerably, as it is already clear from Eq. (4.10). When the vector-like masses are
around the TeV scale or above, the models are excluded, while M ' 500 GeV yields predictions
that are consistent with current data, as shown in Fig. 4.5. We leave a more detailed exploration
of the parameter space and a discussion of possible collider signatures to future work.

The second class of light particles that can impact our cosmological history are those that are
non-relativistic at matter radiation equality, but might have free-streamed enough to suppress
the matter power spectrum. Particles that become non-relativistic at a time tNR < tEQ suppress
structure up to scales λFS = c

√
tEQ tNR(2 + log tEQ/tNR)/a(tEQ). The neutrinos from many of

the new sectors would have λFS larger than one Mpc. At these scales the matter power spectrum
can be computed reliably in the linear regime and can be used to infer another upper bound on
their energy density. To roughly estimate current constraints we compute the energy density
in particles that can suppress structure at one Mpc or above. We find that for Dirac neutrinos
the energy density is well below 1% of the total dark matter energy density in all the plane
of Fig. 4.5 for both the φ and L4 models, while for Majorana neutrinos this is true within the
(∆Neff)CMB = 0.5 contours.

The hot dark matter population may provide another signal. The tower of sterile neutrinos
results in a characteristic impact on the matter power spectrum. Furthermore, the hot dark
matter signal is primarily determined by the reheaton branching ratios (and hence the spacing
between the lightest sectors), so once a value of ∆Neff 6= 0 is measured it is possible to make
predictions for the distortion of the matter power spectrum and vice versa. In general our
theories produce non-trivially related modifications in several CMB observables and we leave
to future work a more detailed study. Our generic expectation is that neutrino cosmology is
modified at the O(1) level due to slightly heavier albeit less abundant neutrinos in the closest
sectors with electroweak symmetry breaking.

Massive stable particles Relic neutrinos account for a fraction Ωus
ν h

2 '∑mν(eV)/91.5 &
10−3 of the energy density in the Universe. It is natural to ask if the heavier neutrinos in the
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sectors with 〈h〉 6= 0 can lead to overclosure problems. Furthermore, electrons and protons
can be similarly problematic. This is perhaps surprising, since in the standard picture their
symmetric component is completely negligible today. However, in the other sectors their masses
are
√
i larger and subsequently their annihilation cross-sections decrease as 1/i.2

In all cases, the relic density of the new stable particles comes from two different sources.
There is a contribution that grows with i from the sectors where the stable particles reach
thermal equilibrium (including a possible freeze-in abundance from our sector) and a second
contribution that decreases with i from sectors where the particles never thermalize. Let us
focus on this first contribution (for the moment we will neglect the freeze-in abundance from
our sector):

Ωh2 =
s0

ρ0
c

−Nd∑

i=−1

mi Y
fo
i + ... = a (Nd)

p + ... . (4.12)

Here we use Ωh2 to indicate the relic density of either neutrinos, electrons or protons; ρ0
c is the

critical energy density today; s0 is the entropy density; mi is the mass of the stable particle;
Y fo
i is its yield at freeze-out; Nd is the sector after which the stable particles are not ever in

thermal equilibrium with the other particles in their sector; and a and p are positive numbers.
In general a ∼ Ωush2 and p > 1. The reason for p > 1 is that mi ∼

√
i (or ∼ i for Majorana

neutrinos) and up to a certain sector number Y fo
i also grows with i, since neutrinos, electrons

and protons all freeze-out earlier and earlier.
In the φ model this thermal abundance turns out to be the only relevant one. Specifically,

electrons and positrons provide the dominant constraint. Once the bound on the reheating tem-
perature is taken into account, the freeze-in abundance from our sector is negligible. Further-
more the overclosure bound on N kicks in before including heavy enough sectors where electrons
would not thermalize. Therefore the bound arises only from thermal freeze-out (nie ∼ 1/〈σev〉i)
and it is straightforward to estimate:

Ωφ
e h

2 =

Nth∑

i=1

mi
e n

i
e

ρ0
c

'
(
mus
e T

us
0

)3

ρ0
c

N
5/2
th

Mpl vus α2

. 0.1× ΩDM h2 =⇒ Nφ . 105 , (4.13)

where the sum runs up to the heaviest sector where the electrons have thermalized as denoted
by Nth, T us

0 is the photon temperature in our sector today, mus
e is our electron mass, Mpl

is the Planck mass, and all other quantities were defined previously. For this estimate we
have assumed that our sector dominates the energy density of the Universe when electron-
positron annihilations freeze-out, i.e., the ∆Neff constraint is satisfied. Furthermore we have
conservatively assumed freeze-out happens just after reheating (at T us

RH ' vus) in all the sectors.
Finally, note that we have required that electrons and positrons make up only 10% of dark
matter, the rough bound for particles that behave very differently from cold, collisionless dark
matter. To be more conservative we could require them to make up only 1% of dark matter,
which would reduce the maximum allowed value of Nφ by 60%, still leaving open Nφ = 104.

To conclude this section we note that the rapid scaling of the energy density with sector
number in L4 protects the model from overclosure. This implies that N can be taken all the
way to 1016 and still be consistent with data, at the expense of a low reheat temperature.

Mixing Between Sectors Upon integrating out the reheaton, the low energy theory will
contain cross-couplings between the sectors. Stringent bounds from stellar and supernova cool-
ing place limits on the size of these mixings.

2For protons, this scaling is only valid once the quark masses exceed ΛQCD; the scaling is slower for the
nearer sectors.
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• εi Fµν F
µν
i

In the presence of kinetic mixing, the electrically charged particles of other sectors will
have milli-charge couplings to our photon. The most stringent bound on this coupling is
derived from energy loss in stars [128,129]. In sectors with m2

H > 0, the charged particles
are all extremely light – much lighter than stellar temperatures – so that democratic
kinetic mixing leads to O(N) accessible final states for plasmon decay. Thus we require√∑

i ε
2
i . 10−14, in which εi is the coefficient of kinetic mixing between our photon and

that of sector i, and i runs over all sectors with m2
H > 0.

Accordingly, there must be no bi-fundamental matter in the UV, the inclusion of which
would generate kinetic mixing at one loop. Even in the absence of those states, kinetic
mixing may be generated in the IR through the coupling to the reheaton.3 In this case the
bounds may be easily avoided by the smallness of the coupling. As described in Sec. II,
the portal couplings must decrease with increasing N in order to have a consistent large-N
limit.

For example, in the L4 model, we must have λ ∼ λ0/
√
N . The kinetic mixing parameter

is generated only at three loops with four powers of the portal coupling:

εi ∼
α

4 π

(
λ0

4π

)4
1

N2 i
. (4.14)

Note that εi decreases with i due to the scaling of
(
m2
H

)
i
, and so kinetic mixing is

dominated by the sectors nearest to our own. Then the stellar bounds may be avoided as
long as λ0/4π . 10−3

√
N , and no suppression is required for N & 106 beyond the natural

large-N scaling.

• εni ν
†
i σ̄

µDµ ν

At one loop in the L4 model, the reheaton mass-mixes with neutrinos. After integrat-
ing out the reheaton, this induces kinetic mixing between neutrinos of different sectors.
However, because the vector-like leptons only couple to the charged leptons, the effective
coupling to the neutrinos is Yukawa-suppressed:

εni ∼ (m`)us (m`)i

(
λY c

E µE
16π2 (M4)imS

)2

. (4.15)

For sectors with (M4)i ∼ML, εi ∼
√
i. Once YE vi &ML, the kinetic mixing decreases as

εi ∼ 1/
√
i.

Energy loss in SN1987a [130] limits the size of the kinetic mixing. The neutrino production
rate from neutral-current bremsstrahlung requires

√∑
i(ε

n
i )2 . 10−4. Due to the growth

of εni with i for small values of i, the sum is dominated by those sectors for which the
vector-like lepton masses are larger than their chiral masses. For typical parameters, such
as those shown in Fig. 4.5, this is the case for only O(10) sectors. Taking into account the
bound on TRH from Sec. 4.1.1, this gives

√∑
i(ε

n
i )2 . 10−13 (ML/4π v)4, so that there

is no constraint as long as the vector-like masses are taken to be sufficiently close to the
weak scale.

• εci GF (ν†
i σ̄

µ ec)
(
p† σ̄µ n

)

3Kinetic mixing is not generated at any order if the coupling between sectors is mediated by a single, real
scalar field, since there can be no effective coupling of such a field to the electromagnetic field-strength tensor.
Therefore, this effect can be safely neglected in the φ model.
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There is a somewhat more powerful constraint from SN1987a due to charge-current neu-
trino production. The mass-mixing of the reheaton with neutrinos leads to an effective
four-Fermi operator, with

εci ∼ (mτ mν)i

(
λY c

E vus µEML

4 πmS (M2
4 )us (M4)i

)2

. (4.16)

In the case of Majorana neutrino masses, εci grows like
√
i, so that

√∑
i(ε

c
i)

2 ∼ N . Once

again taking into account the limit on TRH, we have
√∑

i(ε
c
i)

2 . 10−24 N
(
ML/
√

4 π YE v
)4

.
The supernova bound is only ∼ 10−5, so that even for N ∼ 1016, the coupling is uncon-
strained for ML near the weak scale.

Finally, limits on active-sterile neutrino oscillations can also bound εci , both from cosmo-
logical measurements as well as active neutrino disappearance [131]. However, due to the
Yukawa suppression of the neutrino mixing, the most relevant limits are those involving
the tau neutrino, which are comparatively weak. Absent resonant mixing due to acciden-
tal degeneracies, which we expect to be atypical in our parameter space, the bounds from
neutrino oscillations are negligible.

Colliders Models of Nnaturalness can provide collider signatures through both direct pro-
duction of the reheaton as well as rare decays of SM particles. However, the smallness of the
reheaton couplings, due to both large-N suppression and TRH constraints, precludes these sig-
natures from being a generic feature of our models. In the φ model, for example, rare Higgs
decays proceed through φ − h mixing. The dominant signature in this case is are invisible
decays of the SM-like Higgs boson, with BRinv ∼ θ2

φh ∆Neff/(1 + ∆Neff) . 10−12 after requir-
ing sufficiently low TRH. Even using optimistic estimates, future colliders such as TLEP or a
100 TeV machine (with 10 ab−1 of luminosity) will only produce ∼ 106 [132] or 1010 [133, 134]
Higgses, respectively, rendering such decays unobservable.

Direct production of φ is similarly suppressed, since it must proceed through the same
mixing angle. Even for mφ < mh, in which case the production cross sections are somewhat
larger, direct production of φ will be unobservable. For example, a SM-like Higgs with a mass
of 10 GeV gives a cross section only 2.5 times larger at TLEP and approximately 14 times
larger at a 100 TeV p − p machine than a Higgs at 125 GeV. Nevertheless, if φ is sufficiently
light, there may be a variety of interesting signatures; see, e.g., [135] for a study of current
constraints which probe mixing angles down to θφh ∼ 10−5. We leave a detailed study of
detection prospects for mφ . 10 GeV to future work, see e.g., [136] for an analysis of a similar
scenario.

In the L4 model, the new sectors and the reheaton are similarly difficult to observe; however,
the vector-like leptons of our own sector may be accessible. As discussed above, the vector-
like mass parameters should all be of order the weak scale. This implies they would likely be
observable, both directly and through h→ γ γ and precision electroweak measurements. For a
recent study of these bounds, see [137]. In particular, attempting to evade these constraints by
raising the mass of the vector-like leptons will re-introduce tension with ∆Neff, as described in
the Section 4.1.1.

A Heavy Axion An outstanding puzzle within the SM is the strong CP problem. If we
have N copies of the SM, then naively they all have their own theta angles θi. However, if
the SN symmetry is only softly broken by Higgs mass terms, then all of these angles would be
equal. A shared axion would be able to set to zero all the θi’s at the same time. The only
difference between the version proposed here and the single sector story is that here there are N
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contributions to its mass from each ΛQCD. The potential for the axion has three contributions

V (a) 3





Λ6
QCD,i

m2
H,i

(
a
fa
− θi

)2

for i < 0

m2
π,i f

2
π,i

(
a
fa
− θi

)2

for 0 ≤ i < Nu

Λ4
QCD,i

(
a
fa
− θi

)2

for i ≥ Nu

, (4.17)

where ΛQCD,i is the QCD scale for the ith sector, i < 0 corresponds to sectors with 〈h〉Hi = 0,
and Nu ∼ 105 is the sector with the smallest vev for which mu > ΛQCD. The contribution
from the sectors with 〈h〉Hi = 0 are due to higher dimensional operators from integrating out
the Higgs doublet, the sectors with mu < ΛQCD yield the familiar contribution to the axion
potential, and the final term is the result for pure QCD with no light quarks. Numerically, the
first term can always be neglected, the second term dominates as long as N < Nu, and only
the third term is relevant for N � Nu.

In order to estimate how much heavier this state will be as compared to the standard case,
we have calculated Eq. (4.17) numerically including the one-loop running of ΛQCD. For the first
two sums in Eq. (4.17), we used chiral perturbation theory to calculate the contribution to the
axion mass. For the last sum, we normalized it such that it is equal to the chiral perturbation
theory result when mu = ΛQCD. A numerical fit to the axion mass gives approximately

ma(N)

ma(1)
'
{

4× 103
(
N

104

)1
for N < Nu

2× 1014
(
N

1016

)0.9
for N � Nu

. (4.18)

It is critical that the soft-breaking of the SN symmetry by the different Higgs vevs does not
lead to any issues via higher dimensional operators. For example, one class of operators that
leads to a change in θi between the sectors are

O∆θQCD
∼ YuHiQi u

c
i

|H i|2
Λ2
G

. (4.19)

Because the different sectors have different Higgs vevs, a chiral rotation shows that the theta
angles all differ by ∼ |Hi|2/Λ2

G. Plugging this into Eq. (4.17), solving for the axion vev, and
requiring that our theta angle is smaller than 10−10, we find that N < 1010 if a shared axion
is the solution to the strong CP problem. This approach requires the important assumption
that whatever resolves the hierarchy problem between ΛH and ΛG does not introduce these
operators or any other Higgs dependent phases.

Discussion

It is interesting to compare Nnaturalness with other approaches. It bears a superficial re-
semblance to large extra dimensions, which add 1032 degrees of freedom in the form of KK
gravitons, as well as the scenario of Dvali [55] which invokes 1032 copies of the SM. We dis-
cussed them in Section 3.1. In each of these cases, Mpl is renormalized down to the TeV scale.
Of course this predicts (as yet unseen) new particles accessible to the LHC [58]. By contrast,
Nnaturalness solves the hierarchy problem with cosmological dynamics; the weak scale is para-
metrically removed from the cutoff, and so it does not demand new physics to be accessible
at colliders. Nnaturalness has some features in common with low-energy SUSY as well. Both
models invoke a softly broken symmetry: SUSY is broken by soft terms, and the SN symme-
try is broken by varying Higgs masses. Also in both cases, the most obvious implementations
of the idea are experimentally excluded. If SUSY is directly broken in the MSSM sector, we
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have the famous difficulties with charge and color breaking; in the case of Nnaturalness, direct
reheating of all N sectors is grossly excluded by Neff. Thus in both cases we need to have
“mediators.” SUSY must be dominantly broken in another sector and have its effects medi-
ated to the MSSM. Similarly, reheating must be dominantly communicated to the reheaton,
which subsequently dumps its energy density into the other sectors. Finally, both models have
additional scales that are not, on the face of it, tied to the physics responsible for naturalness.
In SUSY there is a “µ problem” in that the vector-like Higgsino mass must be comparable to
the soft scalar masses, while in Nnaturalness the reheaton mass must be close to the bottom
of the spectrum of Higgs masses. While in both cases there are simple pictures for how this
can come about, these coincidences do not emerge automatically. Moving beyond purely field
theoretic mechanisms, there is the proposal of the relaxion [118], discussed in the next Section,
which invokes an extremely long period of inflation coupled with axionic dynamics to relax to
a low weak scale. While both the relaxion and Nnaturalness mechanisms are cosmological, the
physical mechanism of the relaxation, associated with the huge number of e-foldings of infla-
tion, is in principle unobservable given our current accelerating Universe, much like the vast
regions of the multiverse outside our cosmological horizon are imperceptible. By contrast, the
cosmological dynamics associated with reheaton decay in Nnaturalness are sharply imprinted
on the particle number abundance in all the sectors. They are not only in principle observable
but, as we have stressed (at least for a small number of sectors “close” to ours), are detectable
in practice within our Universe. We note that there is no obstacle to augmenting Nnaturalness
with an anthropic solution to the cosmological constant problem (discussed in Section 3.4). The
presence of extra sectors exponentially increases the number of available vacua. For example
we could add to the SM a sector with m vacua and end up with mN . Already N ' 104 with
two vacua per sector is more than enough to scan the cosmological constant without relying on
string theory landscapes. When solving the entire hierarchy problem with N ' 1016, the vacua
utilized to scan the cosmological constant can even be the two minima of the Higgs potential;
this requires a high cutoff so that the second minimum is below ΛH and the difference in the
potential energy of the two minima is O

(
ΛG

)
. To conclude, we would like to comment on the

nature of the signals of Nnaturalness. For concreteness, three models that make Nnaturalness
cosmologically viable were presented. However, it is easy to imagine a broader class of theories
that realizes the same mechanism. We can relax the assumption that the Higgs masses are
uniformly spaced (or even pulled from a uniformly distribution) or that all the new sectors
are exact copies of the SM. It is also possible to construct different models of reheating, with
new physics near the weak scale to modify the UV behavior of the theory. Nonetheless our
sector can not be special in any way. There will always be a large number of other sectors with
massless particles and with matter and gauge contents similar to ours, leading to the following
signatures:

• We expect extra radiation to be observable at future CMB experiments.

• The neutrinos in the closest m2
H < 0 sectors are slightly heavier and slightly less abundant

than ours. This implies O(1) changes in neutrino cosmology, which will start to be probed
at this level in the next generation of CMB experiments [138].

• If the strong CP problem is solved by an axion, its mass will be much larger than the
standard prediction.

• If N . 104 as motivated by grand unification, supersymmetry or new natural dynamics
should appear beneath 10 TeV.
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The natural parameter space is being probed now, and soon we may know if the Nnaturalness
paradigm explains how the hierarchy problem has been solved by nature.

4.1.2 The Relaxion

The original relaxion solution [118] can be summarized by this potential valid up to a cut-off
M

V =
(
−M2 + gφ

)
|H|2 + Vφ(gφ) +

φ

f
G̃a
µνG

µνa , (4.20)

Vφ(gφ) = g2φ2 + gM2φ+ ... , (4.21)

accompanied by an exponentially large number of e-folds of low scale inflation (HI ∼ ΛQCD,
where HI is the Hubble parameter during inflation). All terms in the potential proportional to
g break the shift symmetry φ→ φ+ c, so it is technically natural to take g �M , since in the
limit g → 0 this symmetry is restored.

If we imagine that the relaxion field φ starts from φ &M2/g, during inflation it is going to
slowly roll down its potential until it arrives at a field value where the Higgs mass crosses zero.
When φ > M2/g, m2

h > 0, 〈h〉 = 0 and the potential is just a tadpole gφ.
If we are at T ∼ HI . ΛQCD this point is special from the relaxion point of view. It is where

the barriers of size f 2
πm

2
π generated by φ

f
G̃a
µνG

µνa, start to appear, since they are proportional
to the Higgs vev, mπ ∝ mu +md ∝ v.

If inflation is still ongoing (i.e. the relaxion kinetic energy is negligible), the rolling of φ is
going to stop when the slope of

φ

f
G̃a
µνG

µνa ∼ f 2
πm

2
π cos

φ

f
(4.22)

equals the slope of the other part of the potential gM2φ. This happens at

g ≈ f 2
πm

2
π

fM2
≈ 10−21 GeV

(
109 GeV

f

)(
10 TeV

M

)2

. (4.23)

The value of f is chosen to respect current bounds on axion interactions and we have taken a low
value of the cut-off M . Following our EFT discussion, it is technically natural to take g so small,
since it is breaking the shift symmetry of φ. However the value of g implies trans-Planckian
field excursions

∆φ &M2/g �MPl (4.24)

that in our EFT formulation are allowed, but are usually problematic when gravity is taken into
account [53,115–117,139,140]. As mentioned above the solution also requires an exponentially
large number of e-folds

N =

∫
dtHI =

∫
dφ
HI

φ̇
≈ ∆φ

HI

φ̇
≈ ∆φ

H2
I

V ′
≈ H2

I

g2
. (4.25)

The other conditions on the inflationary sector are

HI > M2/MPl , (4.26)

to inflate throughout the rolling of φ, and

HI . ΛQCD , (4.27)
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to have wiggles when the Higgs mass crosses zero and finally

H3
I . V ′ , (4.28)

so that classical rolling φc ' V ′/HI dominates over quantum brownian motion φQ ' H2
I . Let

us try to attach some numbers to these requirements, we can take f & 108 GeV from cooling
of SN1987A [141] and M & 10 TeV from explaining at least the little hierarchy problem, this
gives

g . f 2
πm

2
π

fM2
' 10−21 GeV ,

∆φ & 1010MPl ,

N & H2
I

g2
' 1036 . (4.29)

These numbers are all technically natural, but pretty extreme. Subsequent efforts were able
to dispose of super-Planckian field excursions and loosen the requirements of the inflationary
sector, introducing additional fields in the model [142–148]. We should also keep in mind that
one has to add also an appropriate reheating sector that does not spoil the mechanism.

Note also that we have not solved the strong CP problem. In this model θ ∼ O(1). If
we want to solve it without new fields, g needs to be smaller by a factor of θ ∼ 10−10 [118].
Alternatively we can include in the theory a second strongly interacting gauge group, under
which new vector-like leptons getting an O(1) fraction of their mass from the Higgs are charged.
we discuss this in Section 4.2.3.

The mechanism at the core of the relaxion was proposed by Abbott to explain the value
of the cosmological constant [149]. The first relaxion paper has had the merit to creatively
apply this idea to mh, although it must be pointed out that many of the ideas that have later
taken root in the literature (for instance using Tr[GG̃] as a trigger or looking for dynamics that
can explain mh in the multiverse) were already presents in Dvali’s first attempts in the early
’00s [150–152] that we discuss in Section 4.7. Having said this, without the relaxion, many of
us, including myself would not have started thinking about the problem in these terms and I
think that it deserves its success. As is always the case in science, today much progress has
been made and we know how to use similar ideas without the extreme requirements (or complex
model building) that the relaxion demands.

4.2 Weak Scale Triggers

Traditional solutions to the hierarchy problem, discussed in the previous Chapter, aim at mak-
ing m2

h = 0 special, be it in the context of supersymmetry (where the chiral symmetry of
fermion superpartners protects scalar masses), or theories of the Higgs as a pseudo-goldstone
boson in either their four-dimensional or AdS avatars (where approximate shift symmetries
play this role).

In this Chapter (and in anthropic solutions discussed in the previous one) we take a slightly
different perspective. In the fundamental theory of particle interactions there is nothing special
about m2

h = 0; there is no difference in the number of degrees of freedom for massless versus
massive spin zero particles, nor any obvious difference in the number of symmetries when
m2
h = 0. However m2

h = 0 is a special point for the evolution of the Universe.
To understand how this is possible we can take a step back and ask a more general QFT

question, as we did in [153]: What varies in the SM (or a BSM theory), as we change the
Higgs mass parameter m2

h? Obviously the spectrum of the Standard Model changes, and this
is detected by the non-trivial m2

h dependence of the two-point function propagators of the
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gauge bosons, fermions and the Higgs. For instance the gauge-invariant electron two-point
function, ēα̇(x)W (x, y)eα(y), where W (x, y) is an appropriate Wilson line, depends on the
distance between the two spacetime points (x− y) and certainly does strongly depend on m2

h.
But we can also ask if there is any gauge invariant local operators O(x), whose vacuum

expectation value is sensitive to m2
h. We can probe 〈O〉 by coupling O, parametrically weakly,

to some scalar φ via the coupling ξφO, and looking at the effective action induced for φ. At
tree-level, obviously Oh = |H|2 depends on m2

h. But of course, once loop corrections are taken
into account, 〈Oh〉 is not calculable in the SM, which is one of the aspects of the hierarchy
problem. We can simply look at the tadpole diagram, from ξφ|H|2 which induces ξφΛ2

H where
ΛH is the cutoff for the Higgs sector. This is completely insensitive to m2

h, and indeed 〈|H|2〉 is
essentially independent of the magnitude or sign of m2

h. Continuing this line of thought leads to
a more invariant characterization of “tuning” associated with solutions of the hierarchy problem.
Recall that the hierarchy problem is sharply posed in theories that allow the Higgs mass squared
to be calculable, rather than taken as an input parameter. A closely related characterization
is to find a theory in which 〈|H|2〉 is calculable. In supersymmetric theories, 〈|H|2〉 ∼ m2

SUSY

(mSUSY is the soft supersymmetry breaking mass) while in composite Higgs models, 〈|H|2〉 ∼ f 2
π

(fπ is the decay constant of the composite meson/pion). From this perspective, the ‘degree of
tuning’ becomes a well defined ratio r ∼ m2

h/〈|H|2〉, and in all known theories where both m2
h

and 〈|H|2〉 are calculable, making r tiny requires the usual fine-tuning of parameters in the
ultra-violet (UV) theory.

The cosmological solutions to the hierarchy problem that we discuss in this Chapter follow
a different line of attack: they use operators O that aresensitive to, or triggered by, scalar
m2 parameters to induce an early Universe event which explains the currently observed value
of m2

h. In this Section we give a general overview of these Trigger Operators. These objects
have been utilized throughout the young history of cosmological selection of the weak scale (as
early as [151]), but their general role and importance for phenomenology was first pointed out
in [153].

The reason why it is interesting to focus on these objects is twofold:

1. First of all, one trigger can be used in many ways to solve the hierarchy problem, both
in the context of cosmological selection of the weak scale and possibly also in completely
different contexts. Therefore identifying one trigger corresponds to identify new or old
physics which is generically related to the problem.

2. Secondly, we are looking for operators sensitive to the Higgs vev. In practice this means
light (m . v) new physics coupled to the Higgs. Therefore identifying triggers is equiv-
alent to identifying promising signals of these new explanations for the value of m2

h. In
most cases these triggers give the first experimental sign that cosmological selection of
the weak scale is at work.

This whole Chapter is an illustration of the first point, while we discuss the second one in
Section 4.8. However, to get there, we first have to answer: what is a weak scale trigger exactly?

We consider operators whose vacuum expectation value is calculable and sensitive to m2
h, i.e.

d log〈O〉/d logm2
h ∼ O(1). In the SM itself there is essentially a unique option–OG = (Tr[GG̃]).

Another simple possibility for O presents itself in a two-Higgs doublet extension of the Standard
Model, with Higgses H1, H2. With the crucial imposition of a Z4 symmetry under which the
product

(H1H2)→ −(H1H2), (4.30)

the operator OH = H1H2 is triggered by m2
1,2. We dub this the “type-0” Two-Higgs Doublet

Model (2HDM).
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A third option consists in adding new fermions charged under a new confining gauge group,
with Yukawa couplings to the Higgs. If an O(1) fraction of their mass comes from the Higgs

vev, the θ-term of the new gauge group, Tr[FF̃ ], can act as a trigger.

To the best of my knowledge this completes the list of viable triggers. The list becomes
much longer if we consider “imperfect” triggers, i.e. operators that are sensitive to the Higgs
vev if they are part of a theory with a small enough cutoff.

All gauge invariant operators in the SM fall into this category, with a cutoff ΛH . 4πv.
From my point of view, it is fair not to consider these as triggers, for a simple practical reason.
At energies below 4πv there is no hierarchy problem and no need to solve it. There are,
however, other options that cannot be discarded so lightheartedly. These corresponds to all the
approximate symmetries of the SM. For instance we could consider the operator

OF =
(Quc)(Qdc)

M2
. (4.31)

At two-loops it gets a cutoff-sensitive contribution to its vev, but it is suppressed by the small
product yuyd. So in practice OF could be used to solve the little hierarchy problem. However
at ΛH we need to introduce a second Higgs doublet to protect the vev of OF from even higher
energy contributions. In reality, this is a special case of the H1H2 trigger with a subset of a
PQ symmetry protecting the vev. Interestingly, also Tr[WW̃ ], if we add B+L violation to the
SM, might end up being a special case of the H1H2 trigger, as discussed in Section 4.2.4.

I have tried to find other options for about one year, at the moment without success.
However, it might be possible to find other trigger operators by looking for symmetries that
can protect their vev. It is not so trivial to find them, mostly because in the SM the symmetry
options are limited and leave a single viable operator: Tr[GG̃]. Extending the SM opens up a
larger pool of possible symmetries, but it is not at all trivial to sill accommodate new physics
with the required properties after LEP, the Tevatron and the LHC.

In the next Subsections we discuss the properties and phenomenology of the weak scale
triggers that we identified and comment on Tr[WW̃ ]. We do not yet have a theorem, but it is

fair to say that targeting Tr[GG̃], H1H2 and Tr[FF̃ ] should be nearly enough to say the final
word on this class of solutions to the hierarchy problem.

4.2.1 The SM Trigger Tr[GG̃]

As with the example of the operator |H|2 discussed above, almost all gauge invariant local
operators in the SM have UV sensitive expectation values and are thus independent of m2

h.
Consider for example a Yukawa coupling, Oq = qhuc. If we add to the Lagrangian ξqφOq to

probe its vev, at two-loops we generate the tadpole in Fig. 4.6 ∼ ξqyq
(16π2)2φΛ4, proportional to

the cutoff Λ. The reason is that every gauge invariant local operator already appears in the
SM effective Lagrangian and we can close the loops. Said more invariantly, there are no global
symmetries carried by relevant or marginal operators O in the SM, that are not broken by
the presence of O in the effective Lagrangian. Thus if we have ξφO in the Lagrangian, φ is
not charged under any symmetries. So nothing forbids ξφΛn in the effective action. We can
consider operators that are charged under the accidental baryon and lepton number global
symmetries of the Standard Model; now these expectation values are not UV sensitive, but the
global symmetries ensure that the expectation values for these operators are equal to zero, again
independent of the value of m2

h. We can also imagine that φ has a shift symmetry φ→ φ + c,
or equivalently, ask that O = ∂µV

µ is a total derivative. Then, φO = φ∂µV
µ = −(∂µφ)V µ.

Again the expectation value of O is indeed UV insensitive, but at the same time 〈O〉 = 0
independently of m2

h.
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Figure 4.6: Almost all gauge invariant local operators O in the SM have UV sensitive expec-
tation values that are thus independent of m2

h. We can probe their vevs by adding to the
Lagrangian the parametrically weak interaction φO and look at the effective action for φ. If we
add, for example, φ|H|2 or φQHuc we can always close the loops in this Figure and obtain a
tadpole for φ proportional to the cutoff. This happens because there are no global symmetries
carried by O, that are not already broken by the presence of O in the SM effective Lagrangian.

There is one famous loophole to this argument, associated with the operator Tr[GG̃] (where
the trace is over SU(3) indexes), which is the total derivative of a non-gauge invariant current,

Tr[GG̃] = ∂µK
µ, and can be turned on instanton backgrounds which break the shift symmetry

non-perturbatively. Of course Tr[GG̃] is parity odd, but 〈Tr[GG̃]〉 can be non-zero with a θ

term. In pure QCD, we have 〈Tr[GG̃]〉 ∼ θΛ4
QCD. With light quarks, we can rotate

αs
8π

(θ + ξφ)Tr[GG̃] (4.32)

into the quark mass matrix with an anomalous chiral rotation and use chiral perturbation
theory to get the effective potential

VGφ = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
ξφ+

θ

2

)
' Λ4(〈h〉)

2
(ξφ+ θ)2 + ... , (4.33)

where the potential is switched on at the QCD phase transition by chiral symmetry breaking

Λ4(〈h〉) = m2
πf

2
π

mumd

(mu +md)2
. (4.34)

Following the same reasoning as for other operators we can conclude that

〈Tr[GG̃]〉 ' θΛ4(〈h〉) ' θ(mu +md)Λ
3
QCD (4.35)

This is suppressed by θ but is triggered by the weak scale through (mu +md) and ΛQCD. This

triggering of Tr[GG̃] is used in the cosmological dynamics of relaxion models discussed in the
previous Section [118] and in many of the models discussed in later Sections. To my knowledge
the only model that exploits the connection between θ and 〈h〉 to explain both qunatities at
once is ours [154, 155]. In other cases, including the relaxion, this is seen as a hindrance (i.e.
explaining 〈h〉, generically ruins θ).

From this discussion it is not yet manifest just how non-trivial it is that 〈Tr[GG̃]〉 is sensitive
to the Higgs vev. The potential in Eq. (4.33) is generated by the interference between U(1)A
breaking from instanton effects and that from quark masses.

The first non-trivial condition that is realized is that the SM breaks U(1)A in the right way
to interfere with the instantons. If we think of one instanton as an effective vertex, we need
to attach one leg for each particle charged under SU(3) and U(1)A, so each quark, both right-
handed and left-handed comes out of this vertex. We can then close all these legs and interfere
with this vertex by putting an insertion of each quark mass. This is the famous statement (that
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can be easily derived using spurionic arguments [156]) that the potential for θ is proportional
to the determinant of the quark mass matrix.

The second non-trivial condition is that either 1) the explicit breaking of U(1)A needed to
interfere with the instanton is sensitive to 〈h〉 or 2) the scale at which gs becomes strong is
sensitive to 〈h〉. In the SM both are satisfied. The first is satisfied in a rather non-trivial way.
To interfere with the instanton we are using the SM Yuakwas

QHuc, QH†dc, ... (4.36)

The vertex is dominated by H at its vev only because the instanton amplitude contains a factor

∫
dEe

− 1
gs(E)2 × ... , (4.37)

so the calculation is dominated by energies in the loops E ' ΛQCD < v, and pairing Higgses
from different mass insertions to give a UV sensitive loop gives an exponentially suppressed
contribution compared to the one proportional to 〈h〉.

The third, and possibly most interesting, condition is that the scale at which instanton
effects become important is not much bigger than 〈h〉 (in this case, as we have just seen, it is
actually smaller). In this way changing 〈h〉 by O(1) also changes VGφ by O(1). This is crucial
to have a good trigger, i.e. an operator that can select the observed 〈h〉. All operators in the
SM are in principle sensitive to 〈h〉, but numerically the weak scale is insignificant if the cutoff
is large, for instance 〈|H|2〉 ' v2 + Λ2

H . This quantity can be used to select v only in extremely
tuned situations, where a relative change of O(v2/Λ2

H) � 1 in the potential of some scalar,
leads to a dramatic change in the history of the Universe.

Incidentally anthropic arguments rely precisely on the coincidence ΛQCD ' v. In a different
universe, where this is not true, v might have little or no impact on chemistry.

To conclude, I take quite seriously the fact that 〈Tr[GG̃]〉 is sensitive both to 〈h〉 and to θ.
Either we are in front of a triple coincidence or the SM is telling us something.

4.2.2 The H1H2 Trigger in the Type-0 2HDM

We now consider a two-Higgs doublet extension of the Standard Model, with Higgs scalars
H1, H2. Here the operator OH = H1H2 is a good candidate to act as a trigger4. We want
(H1H2) to be charged under a discrete symmetry which we can probe by coupling to some φ with
ξφH1H2. The simplest choice is a symmetry under which φ → −φ and (H1H2) → −(H1H2).
This is part of the Z4 symmetry

H1 → ieiαH1, H2 → ie−iαH2, φ→ −φ (4.38)

with α in U(1)Y . The Z4 symmetry acts also on quark and lepton bilinears and we have 23

possible charge assignments: ±ie−iα for Quc, Qdc, Lec. The case where a single Higgs couples
to the quarks and leptons will be phenomenologically safest, so we will focus on that in the
following. This fixes the fermion charge assignments, giving the Z4 symmetry

H1 → +ieiαH1, H2 → +ie−iαH2, (H1H2)→ −(H1H2),

(Quc)→ −ieiα(Quc), (Qdc) → +ie−iα(Qdc), (Lec)→ +ie−iα(Lec). (4.39)

4This operator was already considered in the context of the relaxion in [142] and in a different capacity
related to fine-tuning in [150].
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The renormalizable H1,2 potential invariant under this symmetry is

V = VH1H2 + VY ,

VH1H2 = m2
1|H1|2 +m2

2|H2|2 +
λ1

2
|H1|4 +

λ2

2
|H2|4

+ λ3|H1|2|H2|2 + λ4|H1H2|2 +

(
λ5

2
(H1H2)2 + h.c.

)
,

VY = YuqH2u
c + YdqH

†
2d

c + YelH
†
2e
c . (4.40)

Note the absence of the Bµ-term, BµH1H2 and of the two quartics λ6,7|H1,2|2(H1H2), all
forbidden by the Z4 symmetry. Note also the λ5(H1H2)2 term which is allowed. Without this
term, the potential would have an accidental Peccei-Quinn (PQ) symmetry and would yield a
weak scale axion.

It is very important that Bµ = λ6,7 = 0, otherwise we would have m2
1,2-independent contri-

butions to the vev of our trigger operator from Fig. 4.8, as for instance

µ2 ≡ 〈H1H2〉 ∼ ξφBµ log
Λ2

|m2
H |
. (4.41)

where for simplicity we have taken the Higgs masses to a common value m2
H . On the contrary,

if Bµ = λ6,7 = 0, then µ2(m2
1,m

2
2) is a UV-insensitive, calculable function of m2

1, m2
2 for which

the weak scale is a trigger. This is a consequence of the U(1) PQ symmetry of the potential
in Eq. (4.40). H1H2 has charge 1 under this symmetry. The only explicit breaking of the PQ
is by the quartic λ5(H1H2)2, for which λ5 has charge −2, and so no analytic expression in the
couplings can give something of charge 1. This is shown schematically in Fig. 4.8.

Let us now see what is the value of µ2 as a function of m2
1 and m2

2. At tree level µ2 = 0
unless both m2

1 and m2
2 are negative. If they are both negative, we have

µ2 = 〈H1〉〈H2〉 ∼
√
|m2

1||m2
2|

λ1λ2

(4.42)

where we have ignored all cross quartic couplings. For simplicity we will call µ2 ∼
√
|m2

1||m2
2|

for λ1,2 not too tiny. We will keep this characterization even including cross quartics. In this
case m2

1,2 should be interpreted as (meff
1,2)2 which include the cross quartics contributions. So,

at tree level, we have the possible µ2 shown in the left panel of Fig. 4.7.
The picture is a little more interesting taking QCD chiral symmetry breaking into account.

In the following ΛQCD is the QCD scale with all quark masses below ΛQCD. If m2
1,2 > 0, then

we do not break SU(2)× U(1) above the QCD scale. Since all the SU(2)× U(1) invariants of
charge −1 under the Z4 involve H1, in the low energy theory after integrating out H1,2, there
can be no linear terms in φ. So we have to have one or both of m2

1,2 < 0.
Consider first m2

1 > 0 and m2
2 < 0. For |m2

2| � m2
1 we can first integrate out H2. In

the effective theory containing the neutral and charged components of H1 = (h0
1, h

+
1 )T and φ,

SU(2)× U(1) is broken, but a Z2 subgroup of the Z4,

H1 → −H1, H2 → H2, φ→ −φ,
(Quc)→ (Quc), (Qdc) → (Qdc), (Lec)→ (Lec). (4.43)

is preserved. This symmetry is still not broken also after integrating out (h0
1, h

+
1 ), so again in

the low energy theory there are no linear terms in φ.
Instead for m2

1 � |m2
2|, after integrating out H1, we still have SU(2)×U(1) but there is no

operator of charge −1 under the Z4 (again since all these involve H1). So again, no linear term
in φ is generated. Thus, if m2

1 > 0, for any m2
2, we have µ2 = 0.
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Figure 4.7: In the type-0 2HDM (Eq. (4.40)), 〈H1H2〉 is a UV-insensitive, calculable function of
the masses of the two Higgses: m2

1, m2
2. In the left panel we show its classical value while in the

right one we include quantum effects. m2
1, m2

2 in the Figure are effective masses that include
contributions from cross quartic couplings. ΛQCD is the QCD scale with all quark masses below
ΛQCD.

Now consider m2
1 < 0. If m2

2 < 0, we have µ2 ∼
√
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2|,ΛQCD]. If m2
2 > 0 and

m2
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1,Λ
2
QCD, we first integrate out H2 obtaining

ξ
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φH∗1Qu
c + ... (4.44)

Hence after chiral symmetry breaking, we have µ2 ∼
√
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1|Λ3
QCD
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2

. If |m2
2| � m2

1, we can first

integrate out H1 giving

ξφ
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2 + ... (4.45)

Then if m2
2 � Λ2

QCD we get the same result as before: µ2 ∼
√
|m2

1|Λ3
QCD

m2
2

. If instead |m2
2| � Λ2

QCD,

the quartic term dominates and the H2 VEV is just set by ΛQCD from the potential

V (h0
2) ' ytΛ

3
QCDh

0
2 + λ(h0

2)4, (4.46)

so we have 〈h0
2〉 ∼ ΛQCD

λ1/3 ∼ ΛQCD for a not too tiny quartic λ. This discussion is summarized in
the right panel of Fig. 4.7. We have seen that in a 2HDM with a Z4 symmetry–what we have
called the type-0 2HDM–OH = H1H2 is a good weak scale trigger. We defer to Section 4.1 an
explicit construction that uses OH to tie the cosmological constant to the value of the Higgs
mass. In the next Section we explore the collider constraints on the type-0 2HDM.

In this Section we have worked in the limit Bµ = λ6,7 = 0. It is clear from the previous
discussion that any Bµ � µ2

S and λ6,7 � µ2
S/M

2
∗ do not affect our conclusions or the phe-

nomenology of the type-0 2HDM. However if we take Bµ and λ6,7 to be exactly zero, the model
has a Z2 symmetry under which H1 → −H1. To avoid a domain wall problem in the early
Universe, we need to introduce a tiny breaking of this symmetry, Bµ & v4/M2

Pl.
In our Universe, just below the critical temperature of the EW phase transition, domains

of size ∼ 1/v with different signs of the H1 vev are formed inside any Hubble volume. The
walls separating these domains have an energy per unit area σ ' v3. If locally the walls have
curvature 1/R they will try to flatten due to the tension σ that acts as an effective pressure
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Figure 4.8: In a 2HDM with a Z4 symmetry (Eq.s (4.38) and (4.40)) the H1H2 vev is a UV-
insensitive, calculable function of the two Higgs masses. This can be seen by adding to the
Lagrangian the parametrically weak interaction φH1H2. We can only close the loop in this
Figure and generate a φ tadpole independent of 〈H1H2〉 with an insertion of Bµ, λ6 or λ7 which
break the Z4 symmetry and are thus absent from our 2HDM potential in Eq. (4.40).

pT ' σ/R. Parametrically we can consider two extreme regimes: no coupling between the wall
and the SM thermal bath or reflection of every SM particle by the wall.

In absence of interactions with the SM bath, the walls expand at the speed of light until we
have one domain per Hubble patch. After this initial expansion the energy density in domain
walls is ρW ' v3H, redshifting as 1/a2. At a temperature TD ' v(v/MPl)

1/2 ' keV the walls
dominate the energy density of the Universe. Interactions with the SM thermal bath slow down
the expansion of the walls. If we ignore small couplings and assume that every SM particle is
reflected with unit probability, we have a pressure pF ' vWT

4 that slows down the expansion
of the wall. Here vW is the velocity of the wall. Balancing pF with pT we obtain a steady
state solution with vW ' v3/2/(MPlH

1/2) and R ' v3/2/(MPlH
3/2). In this regime, the energy

density of domain walls redshifts as 1/a3, but the initial energy density after one Hubble time
at the phase transition is larger than that in the absence of friction. In the end we obtain
the same temperature of domain walls domination as before (TD ' v(v/MPl)

1/2 ' keV). Note
that both with and without friction the walls make up a negligibly small fraction of the energy
density of the Universe during BBN.

In conclusion to avoid domain walls domination we need to introduce an energy difference
between the two vacua ±v1, for example by turning on BµH1H2 in the Lagrangian. If we
ask that the acceleration provided by this term Bµ/v is larger than Hubble at the time of
domination H(TD) ' v3/M2

Pl, we obtain Bµ & v4/M2
Pl. It is easy to show that the wall

subsequently collapse in approximately on Hubble time ∼ 1/H(TD).

4.2.3 Vector-Like Leptons and the Tr[FF̃ ] Trigger

If we go beyond the SM there is a simple way to generalize the success of Tr[GG̃]. Consider a
new strong group that confines below v and new fermions charged under it.

We consider the new fermions (`, n) and their conjugates (`c, nc). ` and n carry the same
SM charges as the lepton doublet L and right handed neutrino N , respectively. They are in the
fundamental representation of the new gauge group. (`c, nc) are in the conjugate representations
of their equivalents without superscript. Importantly, one can choose the charges of `, `c, n, nc

such that a global U(1)A is anomalous with respect to the new strong group.

At this point we can in principle repeat the same discussion as for Tr[GG̃] essentially un-
changed, modulo a few phenomenological complications. First of all we have to include in the
theory vector-like masses for the new fermions (or at least for `, `c)

L ⊃ −m```
c −mnnn

c − y`hnc − yc`ch†n (4.47)

with m` & v to comply with current constraints on Higgs couplings and direct searches. If we
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again couple a probe scalar to our candidate trigger

ξφTr[FF̃ ] , (4.48)

we can see immediately that the vector-like masses contribute to its potential because if we want
an anomaly, a chiral rotation must shift also ``c and nnc in the same way as the Yukawas. There
is a now a tension between experimental constraints that want the vector-like masses to be as
large as possible, and the mechanism that requires sensitivity to 〈h〉. The best case scenario
for us is that of a light neutral lepton, which is less severely constrained. We can therefore
consider the parametrically simple case mL � fπ′ � mN , where mN,L are the physical masses
of the charged/neutral fermions. In this case the tension is easy to spell out. If we integrate
out `, `c a simple estimate gives

V (φ) ∼ 4πf 3
π′mN (4.49)

with mN the physical mass of the lightest neutral fermion. The three contributions to mN are
yyc〈h〉2/mL at tree-level, (yyc/16π2)mL log ΛUV/mL from integrating out the charged fermions
at one loop and yycf

2
π′/mL from the new strong dynamics. If we want the first contribution to

dominate we need

fπ′ . 〈h〉 , mL .
4π〈h〉√

log ΛUV/mL

. (4.50)

Furthermore, mN should be lighter than the confinement scale, otherwise the φ potential is
insensitive to it. The additional constraint is

fπ′ &
yyc〈h〉2
4πmL

. (4.51)

These requirements make these new particles interesting for HL-LHC. A dedicated study on
LHC data shows that Tr[FF̃ ] is still viable experimentally as a trigger [157].

4.2.4 A Possible Fourth Option?

The success of Tr[GG̃] motivates us to try Tr[WW̃ ] as a trigger. After all, neutrino masses
break L and in principle we can hope to generate a potential for

ξφTr[WW̃ ] , (4.52)

from SU(2)L instantons that break B+L. Unfortunately it is not quite that simple. First of all,
neutrino masses don’t have the right quantum numbers to interfere with SU(2)L instantons.
We can think of the latter as an effective vertex with nine quark doublets and three lepton
doublets coming out.

In a GUT, the natural candidate to interfere with them would be

O /B+/L =
QQQL

M2
GUT

. (4.53)

three insertions of O /B+/L can generate a potential for φ. However, this potential is insensitive
to 〈h〉. In the SM gW grows in the UV, therefore the instanton amplitude that contains the
factor

∫
dEe−1/g2

W (E) × ... (4.54)
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is dominated by the largest scale in the theory ΛUV. Taking Eq. (4.53), parametrically we get

Vφ ∼ Λ4
UV

(
ΛUV

MGUT

)3

f(ξφ) . (4.55)

To make use of Tr[WW̃ ] to select the Higgs mass we have therefore two options: 1) we find
an operator that can interfere with the SU(2)L instantons which is sensitive to 〈h〉 2) we make
SU(2)L confine at a scale that depends on 〈h〉.

Note that the first condition by itself is not enough, unless the operator that interferes with
the instanton is a trigger. Let us clarify this by an example. Take

O′/B+/L =
QQQL

M2
GUT

|H|2
M2

GUT

. (4.56)

This gives

Vφ ∼ Λ4
UV

(
ΛUV

MGUT

)6

f(ξφ) , (4.57)

still independent of 〈h〉. This might seem surprising since the equivalent of O′/B+/L
for Tr[GG̃]

are Yukawa couplings (QHuc) which are not triggers and have vevs sensitive to ΛUV. The
important difference is that gs runs strong at a scale ΛQCD < v, so large loop momenta are

exponentially suppressed, while we have to include them for Tr[WW̃ ]. To make the first option
work we would need something like

O′′/B+/L =
QQQL

M2
GUT

H1H2

M2
GUT

, (4.58)

with no Bµ-term in the Lagrangian and the same phenomenology described in Sections 4.2.2
and 4.3 for H1H2. However one might wonder why doing all this work, if in the end the actual
trigger is in practice H1H2. The answer might be phenomenological, since to discover the
Tr[WW̃ ] we would have to look for an interesting SU(2)L axion.

The second option requires adding new SU(2)L charged states with an O(1) fraction of their
mass coming from v and it must thoroughly vetted phenomenologically.

4.3 Collider Phenomenology of the H1H2 Trigger: the

type-0 2HDM

4.3.1 Masses and Couplings

In the previous Section we have described the conditions that make H1H2 a good weak scale
trigger. We need to impose a Z4 symmetry which sets to zero Bµ, λ6 and λ7. This gives the
potential in Eq. (4.40). We also choose the Z4 charge assignment which allows only H2 to
couple to the quarks and leptons:

VY = YuQH2u
c + YdQH

†
2d

c + YeLH
†
2e
c . (4.59)

As we show in the following, even in this case it is not possible to decouple collider signatures.
Many of the facts about Higgs couplings in this Section are well-known in the 2HDM literature,
but we repeat them to be self-contained. For reviews we refer the reader to [158–160].

Hermiticity makes the potential in Eq. (4.40) CP-conserving. The only coupling that can
have a phase is λ5, but the rephasing H1 → H1e

−iarg(λ5)/2 has no effect on the other terms in
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the Lagrangian, so there is no mass mixing between CP-even and CP-odd states. The masses
of the Higgs bosons in H1,2 are

m2
A = −v2λ5 ,

m2
H± = −v2λ5 + λ4

2

m2
h,H =

1

2

(
λ1v

2
1 + λ2v

2
2 ±

√
(λ2v2

2 − λ1v2
1)

2
+ 4v2

1v
2
2λ

2
345

)
. (4.60)

For convenience we have defined λ345 ≡ λ3 + λ4 + λ5. This parameter sets the strength of
the mixing between the two CP-even Higgses. Limits of enhanced symmetry include: 1) when
λ5 = 0 a PQ symmetry acting on H1H2 is only spontaneously broken and A becomes a massless
Goldstone boson, 2) when λ4 = λ5 the potential acquires a SU(2) custodial symmetry under
which H = (H+, iA,H−) transforms as a triplet, hence mA = mH± .

Measurements of Higgs couplings and low energy flavor observables require v1 . v2, as
shown in Fig. 4.9. In this limit the SM-like Higgs h is heavier than its CP-even partner H. At
leading order in v1/v we have

m2
h ' λ2v

2

m2
H ' v2

1

(
λ1 −

λ2
345

λ2

)
. (4.61)

Eq.s (4.128) and (4.129) are interesting from a phenomenological perspective, as they imply
that the new Higgses all have masses comparable to v or smaller. This is not surprising since we
set to zero Bµ, the only other scale in the potential. Before discussing laboratory constraints
on these new particles it is useful to take a look at their couplings to the SM at leading order
in v1/v (a more general approach to the decoupling limit was discussed in [158]). The charged
and CP-odd Higgses have couplings to a pair of fermions suppressed by the small H1 vev

gH+tcb ' gSM
htt

v1

v
, gH−tbc ' gSM

hbb

v1

v
, gAψψ ' ±gSM

hψψ

v1

v
, (4.62)

and no tree-level couplings to two SM gauge bosons, gH±W∓Z ' 0 , gH±W∓γ ' 0 , gAV V ' 0.
The coupling structure of the CP-even Higgs is slightly more complex. Its couplings also vanish
in the small v1/v limit, but there is a second relevant parameter, λ345. If we tune its value we
can take either a fermiophobic or a bosophobic limit,

gHψψ ' −gSM
hψψ

λ345

λ2

v1

v
, gHV V ' gSM

hV V

|λ2 − λ345|
λ2

v1

v
. (4.63)

λ345 also controls the coupling between the SM Higgs and a pair of new Higgses

λhHH ' λ345v , λhAA ' (λ345 − 2λ5)v , (4.64)

thus determining the decay width h→ HH. From Eq.s (4.62) and (4.63) it is clear that the new
states can not be easily decoupled. Decreasing v1 reduces all couplings with a single new Higgs
in the vertex, but makes H lighter. Taking λ345 � λ2 suppresses H couplings to fermions, but
maximizes those to gauge bosons. If we tune λ345 ' λ2 we reduce couplings to gauge bosons,
but those to fermions are unsuppressed. Phenomenologically we find that small λ345 is harder
to detect, as shown in Fig. 4.9, but even in this limit H is within reach of future colliders.
Notice that we need at least λ5 to be non-zero if we want A and H± to be massive. In this case
λ345 = 0 does not give any extra symmetry, as can be seen for instance by inspecting one-loop
RGEs [160].
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Figure 4.9: Experimental Constraints on the CP-even Higgs H for mH± = mA and different
values of λ345. From top to bottom we increase mH± . From left to right we move from 1% tuning
(λ345 = 0.01|λ4 + λ5|) to natural values of the quartics (λ345 = |λ4 + λ5|). In red we show the
bound from e+e− → Z → AH at LEP [168] and in yellow from HZ associated production [168]
followed by decays to fermions. In light blue we display the current sensitivity of H → γγ at
LEP and the LHC [169–171] and a projection for the HL-LHC obtained rescaling [171]. In light
green we show bounds from searches for B → K(∗)H → K(∗)µµ at LHCb [172, 173]. Indirect
constraints from Higgs coupling measurements (purple and blue) are discussed in Section 4.3.2.
The pink shaded area shows the strongest bound point-by-point between searches for flavor
changing processes, mainly b → sγ [174, 175], and LHC searches for t → H+b [176–179].
Theoretical constraints (in gray) from low energy Landau poles and the SM Higgs mass are
summarized at the beginning of Section 4.3.2.

Pair production of the new states is completely fixed, insensitive to v1 and other unknown
parameters of the model. We do not list here HHV - and HHV V -type couplings, but they
are O(g) and O(g2), respectively, for all three new Higgses. They can be found for instance
in [159].

Now we have all the ingredients to establish if this model is still consistent with experimental
constraints. The prime candidate for discovery is the CP-even Higgs, due to its relatively small
mass. In the following we will see that most of the viable parameter space has already been
explored by LEP and the LHC. All cross sections computed for our analysis were obtained from
Madgraph 5 [161], while branching ratios and the electroweak oblique parameters [162–164] were
computed with 2HDMC 1.8 [165,166]. We draw Feynman diagrams using TikZ-Feynman [167].
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Figure 4.10: Experimental Constraints on the type-0 2HDM in the mH±−mH plane (masses of
the charged and new CP-even Higgses). The three panels correspond to three different choices
for the vev of the new Higgs doublet v1 = 〈H0

1 〉 = (0.2, 0.3, 0.5)v. The mass of the new CP-
Odd Higgs mA is fixed to 160 GeV. In all three cases we allow a 10% tuning of quartics, i.e.
we take λ3 + λ4 + λ5 = 0.1|λ4 + λ5| = 0.2(mH±/v)2. In red we show the bound from H±

pair production at LEP [180,181] and in yellow from HZ associated production and decays to
fermions [168]. In light blue we display the bound from ElectroWeak Precision Tests [182] on
the S, T and U oblique parameters [163, 164]. In light green we show bounds from searches
for B → Xsγ [174, 175]. Indirect constraints from Higgs coupling measurements set an upper
bound on BR(h → HH) (in blue). The impact of LHC searches for t → H+b is shown in
pink [176–179]. Theoretical constraints (in gray) from low energy Landau poles and the SM
Higgs mass are summarized at the beginning of Section 4.3.2. At high masses there is no
solution for the quartics which gives mh = 125 GeV.

4.3.2 Experimental Constraints

In this Section we discuss current constraints and future probes of the new Higgs doublet,
which are summarized in Fig.s 4.10 and 4.9. The parameter λ345 is central to our discussion. It
determines the maximum viable mH from Eq. (4.128) and it sets H couplings to SM fermions
and bosons in Eq. (4.63). Lower bounds on m2

H± ∼ −(λ4 + λ5)v2 and mA = −λ5v
2 determine

a natural lower bound on λ345 = λ3 + λ4 + λ5. In each panel of Fig.s 4.10 and 4.9 we take λ345

proportional to m2
H± . This explains the non-trivial dependence of H phenomenology on mH±

in Fig. 4.10. In Fig. 4.9 we consider three different scenarios: λ345 = (0.01, 0.1, 1)(2m2
H±/v

2),
corresponding to three levels of tuning: 1%, 10% and no tuning. Tuning λ345 small decreases
H couplings to fermions. This typically increases the allowed parameter space as shown in
Fig. 4.9, but does not allow to decouple H and can lead to H → γγ become the dominant
decay channel.

There are areas of our parameter space that are theoretically inaccessible. These are shown
in gray in Fig.s 4.10 and 4.9. At large mH and λ345 there is no real solution for λ1,2 that
gives the observed SM Higgs mass. This happens when the argument of the square root in
Eq. (4.128) becomes negative. The second set of theoretical constraints arises from running of
the quartics. At large mH and small v1, λ1 becomes large and one can get low energy Landau
poles from dλ1/dt ' (3/4π2)λ2

1. A similar situation occurs from the running of λ4,5 when mA

and/or mH± become large, as shown in Fig. 4.10. The remaining constraints in Fig.s 4.10
and 4.9 are discussed in the next two Subsections, starting with direct searches.

Direct Searches

Charged Higgs LEP-II gives a lower bound on the charged Higgs mass from H+H− pair
production [180]: mH± & 80 GeV. This is shown in red in Fig. 4.10. The constraint on mH±

comes from a combination of τν and cs final states and assumes the absence of H± → W±H
decays. In the presence of a light neutral Higgs mH = 12 GeV the bound is slightly relaxed to
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mH± & 73 GeV [180]. Note that the direct searches at LEP were performed for mH± > 38 GeV.
Masses below 39.6 GeV are excluded by measurements of the Z boson width [181] which receives
a contribution from the charged Higgs [183]. The LHC is mostly sensitive to H± production
via top decays. Just like the Z, the top has a small width from electroweak interactions
Γt ' GeV, so the branching ratio t → H+b can be sizeable given that it is proportional to
the top Yukawa coupling. We find that LHC searches for t → H+b with H+ → τ+ντ and
H+ → cs̄ [176–179] are sensitive to BR(t→ H+b) down to a few percent. The bound is shown
in pink in Fig.s 4.10 and 4.9. When the mass difference between H± and A becomes O(mW ),
also the decays H± → W±A become relevant [184], but we do not consider this parameter
space in our analysis since it is disfavored by bounds on h → AA and Electroweak precision
measurements. For larger mH± , when top decays are not kinematically allowed, direct searches
for H±, that typically target pp → t̄bH+ and decays to tb and τν, are not yet sensitive to
our parameter space [176, 185–192]. To conclude this brief overview of the charged Higgs,
it is interesting to notice that a CMS search for stau pair production [193] has a sensitivity
comparable to LHC searches targeting H+ single production. The latter can be decoupled by
making v1 small, while pair production rates are fixed by gauge invariance. In the CMS search
the staus decay to τ ’s plus a light neutralino (mχ = GeV). The analysis is thus sensitive to
pp→ H+H− → τ−τ+ντ ν̄τ . Naively superimposing the cross section limit from this search with
H+H− VBF production gives a bound mH± & 150 GeV. The DY pair production cross section
is too small and does not give a constraint. This shows that the LHC can already set a (almost)
model-independent bound on H± and warrants a more detailed analysis.

CP Even Higgs LEP searches target mainly associated production e+e− → HZ, which
is controlled by the coupling gHV V in Eq. (4.63). The most sensitive channel is H → b̄b
for mH > 2mb [168], but even below this threshold LEP retains a comparable cross section
sensitivity (down to 2mµ) by targeting different decays [194]. The strongest constraint above
2mb is set by the combined searches for HZ production by the four LEP experiments [168].
This is shown in yellow in Fig.s 4.10 and 4.9. The bound has a non-trivial dependence on
λ345. When λ345 � λ2 the decays to SM fermions targeted by LEP are suppressed, but HZ
production is enhanced. In this limit our new CP even Higgs is fermiophobic and searches for
e+e− → HZ → γγZ become relevant. The LEP bound [169] dominates the light blue shaded
area in Fig. 4.9 for mH . 65 GeV. When λ345 ' λ2, the coupling to the Z is as small as it can
be: gHV V ' O(v3

1/v
3), but the decay to b̄b is enhanced compared to the limit λ345 � λ2.

To conclude the discussion of LEP constraints, it is interesting to notice that if we com-
pare the model-independent VBF cross-section e+e− → HHνeνe with LEP pair production
constraints [168] we find sensitivity in the mass range 10 GeV . mH . 25 GeV. This is a
bound that relies only on the electroweak doublet nature of H1. It applies to a Higgs decaying
mostly to b̄b. LEP searches for HH are optimized for CP-violating couplings, but the signal
topology is not appreciably affected by the CP properties of the couplings [168]. However this
is a rough estimate of the actual constraint (given also that the search is not designed for VBF
production) and it would be interesting to perform a dedicated collider study.

The main LHC constraints on H arise from measurements of Higgs couplings, discussed in
the next Section, and direct searches for H → γγ [170, 171]. As noted above, when λ345 � λ2

the CP-even Higgs couplings to fermions are suppressed and its BR to γγ becomes O(1). The
LHC bounds on H → γγ is shown in light blue in Fig. 4.9.

Other direct searches for SM and BSM Higgses, H → γγ [170,171,195–206], H → τ+τ− [207–
220], H → µ+µ− [221–227], H → b̄b [228–237], H → Zγ [238], H → W+W−, ZZ [239–253]
and H → ZA [254–257], give weaker constraints than the indirect probes discussed in the next
Section and shown in Fig. 4.9.

At lower masses, 0.3 GeV . mH . 5 GeV, we have constraints from LHCb searches for rare
B meson decays [172], from the CHARM beam dump experiment [135,258] and excess cooling of
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SN1987A [136,259]. For λ345 & 10−2 both these constraints and the LHC bound on Γ(h→ HH),
discussed in the next Section, exclude the whole mass range. At lower values of λ345 all the
probes of a low mass Higgs, which are mainly sensitive to the coupling to fermions gHψψ ∼
λ345/λ2, loose sensitivity. However proposals for future beam dump experiments [260–262], the
HL-LHC projections for LHCb [263] and proposed long-lived particle experiments [263–266]
can cover most of the viable parameter space down to the lowest masses that we consider:
mH ' 300 MeV.

CP Odd Higgs In the mass range 0.3 GeV . mA . 5 GeV, A is excluded by LHCb
searches for B → K(∗)µµ [172] and by the CHARM beam dump experiment [135, 258]. The
only exception are two mass windows ([2.95, 3.18] GeV and [3.59, 3.77] GeV) vetoed from
the LHCb analysis to suppress the backgrounds from J/ψ and ψ′ production. Furthermore,
A can be lighter than mh/2 only if H is heavier than mh/2 due to the indirect constraint on
Γ(h→ AA) and Γ(h→ HH) discussed in the next Section. For mA < 145 GeV direct searches
for e+e− → H1H2 at LEP [168] exclude a large fraction of our parameter space due to the large
AH production cross section at the Z pole,

gZAH ' − g

2cθW
(pA + pH) . (4.65)

This is shown in red in Fig. 4.9. We do not show this constraint in Fig. 4.10 since it completely
overlaps with other bounds. LHC searches for BSM and SM Higgses, listed for the CP even
Higgs, do not add new constraints to our parameter space. The only exception are LHC searches
for pp → A → ZH and pp → A → Zh [267–271]. For mA & 220 GeV the LHC is already
sensitive to an interesting range of our parameter space [271]. Most of this region is already
excluded by the presence of low energy Landau poles, but a more detailed experimental study
would be interesting.

Finally we can consider a light axion-like A, with mA � v. However to be consistent with
experiment this possibility requires v1 � ΛQCD, to suppress the couplings of A to the SM. This
forces also H to be light, at odds with LHC bounds on BR(h → HH) discussed in the next
Section.

Indirect Constraints

Measurements of low energy flavor changing processes, such as B → Xsγ and B → τν, are
powerful probes of our charged Higgs [272,273]. In both cases the charged Higgs contributes at
the same order as the leading SM diagram, given by a W boson exchange. If we include other
well-measured processes sensitive to the charged Higgs (B → K∗γ, Bs → µ+µ−, Ds → τν,
B → K(∗)l+l−, RD, RD∗ and Bs → φµ+µ−) [175], we find the bound in light green in Fig. 4.10
and in pink in Fig. 4.9.

The second set of indirect constraints that we need to consider arises from LHC measure-
ments of SM Higgs couplings. At small v1 and fixed masses they read

ghV V − gSM
hV V

gSM
hV V

' − v2
1

2v2

(
1− λ345v

2

m2
h −m2

H

)2

,
ghψψ − gSM

hψψ

gSM
hψψ

' − v2
1

2v2

(
1− λ2

345v
4

(m2
h −m2

H)
2

)
,(4.66)

so v1 . v insures that couplings to both vector bosons and fermions are consistent with exper-
iment. As mH approaches the SM Higgs mass at fixed λ345, the sensitivity to v1/v increases.
We also have regions where λ345v

2 ' m2
h−m2

H and most sensitivity is lost. In Fig. 4.9 we show
in purple projections for the HL-LHC and a future lepton collider at 1σ. We take projected
sensitivities from Table 1 in [274]5. To represent future lepton colliders we use ILC with unpo-

5This choice is conservative as it allows the presence of additional new physics that modifies Higgs couplings.
In our model alone, we could have used a more constrained fit with two universal coupling modifiers for fermions
and bosons and a free width to new particles.
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larized beams and
√
s = 250 GeV. Current bounds from the LHC [275, 276] are not shown in

the Figure. They give the bound v1/v . 0.45 ÷ 0.55 and completely overlap with other con-
straints. The only exception are new decay modes of the SM Higgs. The new CP-even Higgs H
is lighter than the SM Higgs. So for small enough mH we also have to consider the new decay
width Γ(h→ HH). Direct searches for decays to four SM particles via two intermediate states,
h → HH → 4SM [277–282], are less constraining than the indirect bound set by the dilution
of SM branching ratios. LHC measurements of Higgs couplings give an upper bound on λ345 if
mH < mh/2, from Eq. (4.64). If we consider the latest ATLAS combination of Higgs couplings
measurements [276], we have a global signal strength µ = 1.06 ± 0.07. From CMS [275] we
have µ = 1.02+0.07

−0.06. A very rough combination, assuming uncorrelated Gaussian errors, gives
a 2σ error δµ95% ' 0.1. This implies BR(h → HH) . 0.1 at 2σ and hence λ345 . 10−2. If
we restrict ourselves to the Yukawa couplings in Eq. (4.59) there is not much that we can do
to relax this constraint. For example, increasing ghbb to compensate for the new decay mode
decreases ghV V , as shown in Eq. (4.66). In more generality, barring detailed constructions that
exploit flat directions in Higgs couplings constraints, we need λ345 = O(10−2) for mH < mh/2,
given our current knowledge of Higgs couplings. This is shown in Fig. 4.9. When we tune λ345

to be small we have no constraint, while in the more natural parameter space mH < mh/2
is excluded. Note that if we take λ345 small the same reasoning leads to mA > mh/2, since
λhAA ' (λ345 − 2λ5)v.

To conclude, ElectroWeak Precision Tests [182], mainly the S, T and U oblique parame-
ters [163,164] constrain mostly the mass difference between A and H± that breaks the custodial
symmetry. The bound is displayed in light blue in Fig. 4.10. A more detailed analytical discus-
sion of oblique parameters, custodial symmetry and CP in 2HDMs can be found in [283,284].

4.4 Crunching Dilaton

In the previous Section we have discussed in detail one generic feature of most models of
cosmological naturalness, the existence of weak scale triggers. It is now time to put our triggers
to work and discuss explicit models of cosmological selection of the weak scale. The example
discussed in this Section is atypical, in the sense that it uses an imperfect trigger: |H|2.

In this Section we review the ideas first presented in [285]. We introduce a model where
the dilaton of a TeV-scale extra-dimension crunches all the patches of the Multiverse with the
“wrong” Higgs mass squared. By crunching we mean that in all these patches a scalar field
quickly rolls to a deep minimum where the cosmological constant is large and negative, say
ΛCC ' −M4

GUT, independently of the positions in their potential of the other moduli that form
the landscape.

The Basic Concept

We assume a landscape of Higgs mass and cosmological constant values with a cutoff at the
scale Λ:

VH(H) = −m2
H,i|H|2 + λ(|H|2)2 (4.67)

where a typical m2
H,i is O(Λ2). We remain agnostic as to how this landscape is generated and

populated. We introduce dynamics which can support the expansion of the universe only when
the Higgs VEV, h ≡ 〈H0〉, is in a finite range,

HI . hmin . h ≤ hcrit ' O(1 TeV) , (4.68)

and cause an immediate crunch for other values. In the above equation HI is Hubble during
inflation. Such dynamics excludes all positive and large negative mass terms for the Higgs,
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and only values of the VEV below the weak scale survive inflation. The mechanism is not
sensitive to the minimal value hmin, which can be generated in many ways briefly discussed in
the Cosmological Constraints Section below.

The dynamics needed to achieve this is based on the mixing of the Higgs with a sponta-
neously broken CFT—or a bulk Higgs in the AdS picture with the Higgs potential, Eq. (4.73),
on the UV brane. The CFT is spontaneously broken via the Goldberger-Wise (GW) mecha-
nism, with the GW minimum for the dilaton 〈χ〉 = χGW at a value of the potential above Λ4

and the scale of inflation M4
I ' M2

PlH
2
I , so that the total vacuum energy in this minimum is

always negative, even during the slow-roll regime of inflation. Any patch in which the dilaton
has reached this minimum crunches. The heart of our mechanism is the generation of a second
minimum for the dilaton by the bulk Higgs VEV, for which the vacuum energy is subdominant
to the inflaton vacuum energy; any patch in this second minimum then goes through inflation
without crunching. This minimum only exists for a finite range of small Higgs VEVs, set by the
parameters of the bulk Higgs. Therefore, only this range of VEVs survive after inflation and
until today. These small values are not typical in the landscape, thus generating a hierarchy
and an apparent naturalness problem. We assume that one of the usual mechanisms (such as
scanning in the multiverse plus anthropic selection) ensures a small positive CC in the shallower
metastable minimum, while it cannot overcome the large negative energy of the true minimum.

RS model

We use the 5D warped description [82] of the CFT with the Higgs field in the bulk of AdS space

ds2 =

(
R

z

)2

(ηµνdx
µdxν − dz2) . (4.69)

Here R = 1/k is the AdS curvature and the location of the UV brane, while R′ is the location
of the IR brane, with χ = 1/R′ identified with the dilaton/radion field [84,286,287]. Note that
the dilaton defined this way is not canonically normalized—its kinetic term is

3(N2 − 1)

4π2
(∂µχ)2 , (4.70)

where N is the number of colors in the dual CFT picture, related to the 5D parameters by
N2 − 1 = 16π2(M∗R)3, where M∗ is the 5D Planck scale.

The Goldberger-Wise (GW) stabilization field [85] gives rise to the usual GW potential for
the dilaton [84] that we parametrize as

VGW(χ) = −λχ4 + λGW
χ4+δ

kδ
. (4.71)

We imagine that the GW minimum is at large negative values of the potential, such that the
negative CC generated when χ is at this minimum is larger than any other scale in the theory
and leads to a rapid cosmic crunch. The χ4 term is scale-invariant and in the RS framework can
be understood as the effect of some mistuning of the tension of the IR brane and the bulk CC.
The χ4+δ term is the effect of the small explicit breaking 6 of scale invariance by an operator
with anomalous dimension δ in the 4D CFT. In the RS picture it is generated by the GW scalar
bulk mass.

The novel pieces of the effective potential (valid below the warped-down local cutoff ΛIR)
necessary for generating the Higgs-dependent second minimum are

VHχ(χ,H) = λ2|H|2
χ2+α

kα
− λHε|H|2

χ2+α+ε

kα+ε
− λ4|H|4

χ2α

k2α
, (4.72)

6The dilaton is a non-compact Goldstone boson, thereby evading the type of generic problems a shift sym-
metric relaxion field poses [288].

89



and we assume that the couplings λ, λGW, λ2, λHε, and λ4 are all positive. These additional
terms can be easily generated from interactions localized on the IR brane. We assume that the
Higgs field is sourced on the UV brane where the usual χ-independent part of the potential

VH(H) = −m2
H,i|H|2 + λ(|H|2)2 (4.73)

arises from. We assume that the dynamics responsible for populating the landscape are localized
on the UV brane and thus it is the coefficients of the UV Higgs potential that are being scanned.
The scanning of the quartic changes our results only by O(1) factors and so we focus only on
the scanning of the Higgs mass. Due to our assumption of a UV localized landscape the bulk
parameters are not being scanned. It would be interesting to consider the effect of scanning the
bulk parameters as well, which we leave for future work. For simplicity we also assume that
dimensionless couplings on the UV brane are not scanned, so we can straightforwardly apply
Weinberg’s argument to anthropically select a small CC in our Universe. This can be realized
for example in a “friendly landscape” construction [105].

If the bulk mass of the Higgs is m2
b (in units of R) the Higgs VEV profile along the extra

dimension will be of the form

H(z) =
H+√
R

( z
R

)2+
√

4+m2
b

+
H−√
R

( z
R

)2−
√

4+m2
b

, (4.74)

with H+ + H− = |H| the UV brane VEV. Assuming to leading order a Neumann boundary

condition on the IR brane we find H+/H− = 2+∆
2−∆

(
R
R′

)2∆
, where ∆ =

√
4 +m2

b . Solving for H±
we find the expression of the bulk Higgs field on the IR brane to be given by

HIR = HUV

(
R′

R

)2−∆
2−∆

2 + ∆
. (4.75)

Introducing α ≡ 2∆− 2 we find that the IR brane value of the Higgs VEV will scale as

HIR ∝ HUVχ
α
2
−1 . (4.76)

We take α to be small and positive, so m2
b ' −3. In accordance with Eq. (4.74) this implies a

Higgs field approximately linear in z. Let us now consider the effect of an IR brane-localized
Higgs quartic self-coupling LIR =

√
gλ4|H|4|z=R′ . Using the AdS metric and the usual identi-

fication χ = 1/R′ we find that this term will give rise to a potential term

λ4|HUV|4χ2α . (4.77)

Similarly, an IR-localized Higgs mass term will produce the |H|2χ2+α term. If we also introduce
localized terms that include the GW scalar Φ ∼ zε, or any other field with an approximately
marginal dimension, we obtain a modified quadratic term of the form |H|2χ2+α+ε, completing
the terms outlined in Eq. (4.72).

CFT interpretation The detailed CFT interpretation of this mechanism is a spontaneously
broken conformal sector, stabilized by the VEV of a marginal operator OGW , as in the standard
GW stabilization of the dilaton. The “techni-quarks” of the CFT sector are charged under the
EW gauge group and can form an SU(2) doublet operator OH of dimension 3 + α/2 which
couples linearly to a fundamental Higgs, i.e. O†HH. If we also assume the presence of a marginal
operator needed for GW stabilization Oε of dimension 4+ε, which may or may not be the same
operator as OGW , the deformations in the UV action are given by

λ̃HO†H + λ̃εOε . (4.78)

Expanding the effective potential for these terms in the IR, we reproduce the potential of
Eq. (4.72). In essence, the fundamental Higgs acts as an additional stabilizing force on the
CFT, generating a second stable minimum for the dilaton.
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Figure 4.11: The dilaton potential V (χ,H) = VGW(χ) + VHχ(χ,H) for three different values
of the Higgs VEV 〈h〉, using k = 108 TeV, λGW = 1.2 × 10−5, λ = 1.1λGW, λ2 = 0.005,
λH,ε = 0.018, λ4 = 3, δ = 0.01, α = 0.05, and ε = 0.1. The true vacuum is depicted in the main
figure while the second minimum is visible in the inset; note the potentials are shifted so that
the inflection point χcrit lies at the origin.

Dynamics of the dilaton-Higgs potential

Let us now investigate the dynamics resulting from the Higgs-dilaton potential V (χ,H) =
VGW(χ) + VHχ(χ,H) + VH(H), where VGW and VHχ are given in Eqs. (4.71)–(4.72) and VH is
the UV brane-localized SM Higgs potential in Eq. (4.73). To ensure that the Higgs mass is
still dominated by VH we take the exponent α in Eq. (4.72) to be positive and not too large,
implying m2

b ' −3 (and hence a Higgs field linear in z). We also take VGW to be subdominant
to VHχ at small values of χ, around the VHχ minimum.

For a finite range of Higgs values the χ potential admits two minima, one generated by VGW

and the other by VHχ. Above the critical value of the Higgs VEV hcrit the latter disappears,
leaving only the GW minimum (see Fig. 4.14). The minimum also disappears when the Higgs
VEV is zero. The Higgs VEV in our part of the universe must be smaller than hcrit, or the
dilaton would have rolled down to the GW minimum, resulting in a crunch. Hence, there is no
tuning associated with the Higgs VEV.

If we neglect VGW at small χ, hcrit can be computed by finding the value of h for which
∂χVHχ has only one zero:

hcrit = k

(
λ2

λHε

4− α2

(2 + ε)2 − α2

) 1−α/2
ε

√
λ2

λ4

ε(2 + α)

2α(2− α + ε)
. (4.79)

For h . hcrit, we can also estimate the second minimum of the χ potential as

χmin '
(
h2

kα
2αλ4

(2 + α)λ2

) 1
2−α

(4.80)

neglecting the λHε term, which is suppressed at the minimum by (χmin/k)ε relative to λ2. For
small ε a mild hierarchy between couplings λ2 . λHε can generate a large hierarchy of scales
hcrit, χmin � k.
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χmin sets the size of the extra dimension, hence determining the mass scale of new states
potentially observable at colliders. The little hierarchy problem is reflected in the need to impose
a mild hierarchy h/χmin . 0.1. This implies a hierarchy of couplings λ2, λHε < 10−2αλ4. The
resulting tuning (along with the NDA for these couplings) is discussed in detail at the end of
this Subsection.

The most interesting consequence of this little hierarchy is the prediction of a light dilaton.
Its mass for small ε, α and δ is

mχ ' mh

√
h

χmin

π sin θ√
6N
− 8π2(λ− λGW)

N2

χ2
min

m2
h

, (4.81)

where

sin θ ∼ (λ2 − λHε)
N

hχmin

m2
h

(4.82)

parametrizes the dilaton mixing with the Higgs.
As stated above, the previous analysis is valid only if the GW potential is subleading to

VχH around χcrit, leading to an upper bound λ ∼ λGW . λ2
2/λ4. If VGW dominates over VχH at

χcrit, it washes out the metastable minimum.
We have seen that the phenomenologically successful models require small values of the

couplings λ2, λ and λGW, which in turn will necessitate some tuning in the theory. Here we
explain the underlying reasons and quantify the amount of tuning needed to achieve these small
values of the couplings. We can easily understand the main reason behind the need for small
couplings. First, there is an upper limit on the brane-localized Higgs quartic λ4 . 3 imposed by
requiring that a Landau pole does not appear before we hit at least a few KK modes. The value
of χ at the metastable minimum sets the masses of KK modes for the bulk electroweak gauge
bosons, which would appear as W ′ and Z ′-type states. To avoid the LHC bounds [289,290] on
these W ′, Z ′ states we need χ to be larger than 1 TeV. However, as we have seen Eq. (7) then
leads to λ4/λ2 & 102, and hence λ2 . 10−2. Finally, we must ensure that the GW part of the
potential does not overwhelm the metastable minimum, by simply imposing the condition that
at χ ∼ 1 TeV the GW potential is smaller than the minimum value of the Higgs dependent
part in Eq. (5). This yields λ, λGW . 10−5. These values are quite a bit smaller than one would
expect from simple NDA in a warped extra dimension. For example, consider the NDA for the
coupling λ2. This is the coefficient of an IR brane-localized mass term for the bulk Higgs scalar
of the form ∫

d4x
√
gindλ̃2 |H|2|z=R′ , (4.83)

where H is the dimension 3/2 bulk scalar field and λ̃2 is a dimension one coupling. Consider
the contribution of a brane-localized loop of gauge fields to λ̃2; it is a quadratically divergent

4D loop giving the simple NDA estimate λ̃2 ∼ Λ2
UV

16π2 g
2
5, where ΛUV is the unwarped global cutoff

and g5 is the bulk gauge coupling. To obtain the NDA value of the λ2 coupling we need to
include the (R/R′)4 factor from

√
g, use the scaling (4.76) for the expression of the Higgs field

on the IR brane, define the local cutoff ΛIR = ΛUV
R
R′

, and assume g2
5 ∼ R. This will lead to

the NDA estimate of λ2:

λ2 ∼
1

16π2

Λ2
IR

χ2
(4.84)

Note that λ2 will also get a contribution from bulk loops. However, since the brane term
dominates the NDA, we restrict ourselves to that. Similarly, the NDA estimate for the GW

quartic λ has been presented in [291] and is given by λ ∼ 1
16π2

Λ4
IR

χ4 . We can see that in order to
minimize the tuning we should lower the local cutoff scale such that ΛIR . χ. In this case the
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natural value for λ2 will be approximately ∼ 10−2 as needed. Depending on the actual value of
ΛIR . χ there may be some tuning still left in the the GW potential. For example, if ΛIR ∼ χ
we get a tuning of around a percent corresponding to the usual little hierarchy problem. If the
Higgs VEV was a factor of ∼ 10 larger the NDA value for λ would have been sufficently small
since χ could also have increased.

Whether one can achieve ΛIR/χ . 1 depends on the particular UV completion of the theory.
In a generic RS model, we expect ΛIR to be the local warped down 5D cutoff, given by the lower
of the gravitational or gauge cutoffs, where Λ3

gravity ∼ 24π3M3
∗ and Λgauge ∼ 24π3/g2

5. Either
way one expects ΛIR > χ. However, this is an upper bound on the cutoff, and one can of course
always lower it by introducing additional new physics. For example, in a supersymmetric
version of the RS model, the divergent contributions to the couplings vanish when SUSY is
unbroken, and therefore ΛIR will be set by the SUSY breaking scale on or near the IR brane. In
this setting one may impose that the bulk is supersymmetric, while SUSY is broken on the UV
brane (and also spontaneously broken on the IR brane to allow the generation of the dilaton
quartic χ4). This would be along the lines of [292], and imply that the fields in the bulk have
light superpartners. While a complete discussion of such a setup is beyond the scope of this
work, we outline a simple scenario without tuning. A high SUSY breaking scale on the UV
brane ensures that all sfermions are ultra-heavy. The structure of SUSY breaking on the UV
brane keeps the electroweak gauginos and Higgsinos light, of order a few hundred GeV, as in
split SUSY models. In this case the IR brane cutoff relevant for λ would be lowered to the
gaugino mass scale and λ ' 10−5 would be fully natural.

Finally it is useful to consider also the bounds on N . Requiring that the 5D gravitational
theory is not strongly coupled (i.e. the 5D AdS scalar curvature 20/R2 is smaller than the
5D cutoff Λ3

gravity ∼ 24π3M3
∗ ) yields N & 3. Assuming that the gravitational KK modes have

approximately the same 1/N suppression as the weak gauge KK modes, and using the matching
of weak gauge couplings, we get an upper bound N . 40 .

Phenomenological Consequences

While we are dealing with a warped 5D model, the essence of our mechanism for a light Higgs
is completely different from a vanilla holographic composite Higgs model. Our theory does not
have top partners, light or heavy; they play no role in the stabilization of the Higgs hierarchy.
There are no KK gluons either. There have to be KK electroweak gauge bosons, since the Higgs
propagates in the bulk, but they do not have to be light and also play no role in stabilizing the
hierarchy. The Higgs gets a large fraction of its potential on the UV brane, and can be thought
of as a mixture of elementary and composite states.

The most salient phenomenological feature of our model is the existence of a light dilaton,
as shown in Eq. (4.81). Due to its mixing with the Higgs it inherits all SM Higgs couplings
suppressed by the mixing angle θ. In addition to these, the dilaton has direct couplings to the
SM fields. Since the SM fermions are assumed to be localized on the UV brane and the dilaton
is localized predominantly on the IR brane their direct couplings are negligible. In contrast,
electroweak gauge bosons propagate in the bulk and their direct coupling to the dilaton is given
by [287,293]

χ

2χmin log R′

R

(F 2
µν + Z2

µν + 2W 2
µν) . (4.85)

The direct couplings to the Z,W mass terms are a small correction to those obtained from the
mixing with the Higgs, and their effects can be neglected.

From Eqs. (4.81) and (4.82) we have an upper bound on the dilaton mass

mχ . mh

√
h

χmin

π sin θ√
6N
∼ h

√
π(λ2 − λHε)√

6N2
. (4.86)
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As explained in the previous Subsection we require λ2, λHε . 10−2 and N & 3, which leads to
an upper bound mχ . 10 GeV.

There is also a lower bound determined by the contribution from VGW. Given that we need
λGW . λ to have a second minimum at large values of χ, the VGW contribution to the dilaton
mass is always negative at the metastable minimum. Therefore, if we do not tune the two terms
in Eq. (4.81), m2

χ > 0 implies

mχ & 2π
χmin

N

√
2(λ− λGW) . (4.87)

Numerically χmin ' TeV, N . 40 and λ, λGW & 10−6; as explained in the previous Subsection.
Hence, we expect a lower bound of O(100) MeV.

In summary, we have a dilaton with mass 0.1 GeV . mχ . 10 GeV and couplings to
fermions proportional to sin θ ∼ m2

χ/m
2
h. The direct coupling to photons in Eq. (4.85) plays an

important role in its phenomenology, giving an O(1) correction to its branching ratios.

To explore the properties of this dilaton and the experimental constraints on it, we randomly
generated 105 points in the parameter space, fixing the parameters k = 1011 GeV, δ = 0.01,
N = 3 and α = 0.05, while uniformly sampling the other parameters from the ranges λGW ∈
(0.5, 1.5) × 10−5, λ2 ∈ (0.5, 1.5) × 10−2, λHε ∈ (2, 4) · λ2, λ4 ∈ (2, 3), and ε ∈ (0.03, 0.1). We
also took λ = 1.1λGW and set the Higgs VEV 〈h〉 ' 174 GeV. The parameter values chosen
here reflect the little hierarchy hcrit/χmin . 0.1 and VGW . VHχ at χmin. k could be taken
larger than 1011 GeV if desired, up to the Planck scale; in this case one can just as easily find
satisfactory points in the parameter space, without substantially affecting our results. To probe
lower dilaton masses, we performed a similar analysis of 5×104 points, choosing N = 8, α = 0.1,
λGW = 2 × 10−6, λ2 ∈ (0.5, 1) × 10−2, and ε ∈ (0.05, 0.1), while keeping the other parameters
the same. Points were excluded from our analysis if they failed to satisfy the following criteria:
the metastable vacuum must exist and be located at χmin > 1 TeV; hcrit ≤ 2 TeV so the Higgs
VEV is natural; the metastable vacuum reproduces the SM values of the Higgs mass and VEV
and corresponds to a stable local minimum of the 2 dimensional potential; and the O(4) bounce
action S4 between the two potential minima is at least O(200) so that tunnelling is suppressed.

The bounce action (see [294]) was computed by numerically solving the Euclidean equation
of motion, using the shooting method to satisfy the boundary conditions. In practice, S4 was
at least O(104) for points satisfying the other three criteria.

The results of the two scans are plotted in Fig. 4.12. We indicate the relevant experimental
bounds from rare B meson decays [172,295], adapted from [296,297]. The region in the mχ– sin θ
plane populated by the two scans can be understood from Eq. (4.81): the points approximately
fall on the curve mχ ∼

√
sin θ, with upper (lower) bounds determined by the values of λ2,Hε

(λ, λGW). The lightest KK Higgs and KK EW gauge bosons lie around 3–4 TeV and 2.5–3.5 TeV
respectively7, the precise number depending on the value of χmin for each point. There are two
regions in the parameter space free of bounds around 0.5–1.5 GeV and 5–7 GeV, as illustrated
in Fig. 4.12 along with expected future experimental sensitivities [168,194,262–266,297–302].

Finally, in Fig. 4.13 we plot the dilaton coupling to photons 1/Λγγ for each point in our
scans, alongside current and projected experimental bounds adapted from [303–305]. These
bounds provide constraints on the model that are independent of sin θ. We normalize the
coupling such that the dilaton-photon interaction term is 1

4Λγγ
χ̃F 2

µν , with χ̃ the canonically

normalized dilaton. The region of parameter space populated by our model evades the existing
experimental bounds [306–308]; projections for future sensitivities [303, 309–311] are also pre-
sented in Fig. 4.13. A combination of beam dump experiments and a future lepton collider can
cover all our viable parameter space.

7Note that the LHC bounds on the KK W and Z are not significantly reduced by moving the gluons and
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Figure 4.12: The dilaton mass mχ and its mixing angle with the Higgs sin2 θ for randomly
sampled points from our model. The blue and red points use different parameter ranges, detailed
in the body of the text. We show current bounds from B meson decays at LHCb [172, 295]
(blue and red shaded regions), adapted from [296,297]. We estimate updated B decay bounds
for N = 8 following Run 3 of the LHC (dotted red line), assuming an integrated luminosity of
15 fb−1 [299]. We also include projections (using N = 8) for bounds from searches for hidden
light particles, at the beamdump experiments SHiP [262] and SeaQuest [298, 299], as well as
the colider experiments MATHUSLA [265, 266], CODEX-b [263, 301], and FASER [264, 300]
(dashed lines). Finally, we include a projection for Z → Z∗χ at the FCCee running on the Z
pole (Tera-Z) [297] (dotted black line), rescaled from the corresponding LEP limits [168,194].
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Figure 4.13: The dilaton coupling to photons 1/Λγγ for randomly sampled points from our
model. We include points from both of our two choices of parameter ranges. We show bounds,
adapted from [303], from searches at LEP for e+e− → γχ → 3γ [306, 307] (turquoise), beam
dump experiments [312] (red), supernova SN1987a [313, 314] (orange), and γγ → χ → γγ in
lead ion collisions at the LHC with 2.2 nb−1 of data [308] (purple). We also include projected
bounds for an FCCee search for e+e− → γχ → 3γ [303, 309], lead ion collisions with 10 nb−1

of data [310,311], Belle-II, FASER2, NA62, SeaQuest, and SHiP (dashed lines) [304,305].

Cosmological Constraints

First, we require that the energy density in the true vacuum is indeed always negative—i.e.
λχ4

GW > M4
I , which results in k & 17MI for λ ' 10−5. In addition, if we assume that

the cosmological constant problem is solved via a standard anthropic mechanism, we need to
require that the highest possible CC in the landscape is below ∼ λχ4

GW , so that all patches
reaching the true minimum of the GW potential crunch. This condition may naturally arise
for an O(Λ) SUSY breaking scale on the UV brane.

A second important requirement is that quantum diffusion never dominates over classical
evolution of the dilaton. This prevents patches with the wrong value of h to enter a phase
of eternal inflation. We want to ensure that for a Higgs VEV large enough or small enough
such that the dilaton potential has only one minimum with a negative CC, the dilaton does
indeed roll to that minimum during inflation and does not get stuck in an eternally inflating
phase. For large Higgs VEVs, the second derivative of the dilaton potential is always at least
of O(v2 ' (174 GeV)2) (see Eq. (4.72)), so classical rolling dominates over quantum diffusion,
as we already imposed that the Hubble scale is less than the electroweak scale.

The case of a small or vanishing Higgs VEV could potentially be more problematic. Once
the Higgs VEV is zero, the χ potential is a pure χ4 term even for very small values of χ,
leading to a very small second derivative near the origin. Hence for any choice of the Hubble
scale during inflation there are regions which support eternal inflation. This can be avoided
by a simple modification of the model following the ideas of [315, 316], which was also used
in [317]. We include an additional term λγχ

γΛ̃4−γ in the χ potential, corresponding to explicit
breaking of scale invariance at the scale Λ̃ � k. This term does not change our analysis for

quarks onto the UV brane, due to the tail of the KK gauge wave functions only being logarithmically suppressed
on the UV brane.
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χ � χ∗, defined as the scale where the effective quartic coupling blows up, i.e. χ∗ ∼ Λ̃λ
1

4−γ
γ .

However for χ . χ∗ the potential is dominated by the explicit breaking term, which signals
that for χ . χ∗ the description in terms of a dilaton breaks down. In that region we expect the
effective potential to be dominated by the mass scale χ∗, and effectively behave as if a negative
mass term of order χ2

∗ was generated. Such an explicit breaking term can be generated by any
relevant operator which has a negligible coupling in the UV and grows to be O(1) in the IR.
One such realization could be to have the SM QCD (or a BSM QCD-like gauge theory) in the
bulk.

The RG evolution of the gauge coupling for the additional group in the bulk, assuming the
presence of a UV and IR brane [293,315] is given by:

1

g2(Q,χ)
=

log k
χ

kg2
5

− bUV

8π2
log

k

Q
− bIR

8π2
log

χ

Q
+ τ (4.88)

where Q is the running scale and the dependence on χ is introduced due to the finite size of
the extra dimension. τ = τUV + τIR contains the brane-localized kinetic terms and bUV,IR are
the 4D β-functions on the two branes. Note that Eq. (4.88) is valid only for Q < χ. From
Eq. (4.88) we get the χ dependence of the dynamical scale of the bulk gauge group

Λ̃(χ) =

(
kbUVχbIRe−8π2τ

(χ
k

)−bCFT

) 1
bUV+bIR

= Λ0

(
χ

χmin

)n
.

(4.89)

For our benchmark point of χmin ' 1 TeV and 〈H〉 = 0, QCD in the bulk gives Λ̃(χmin) ∼
ΛQCD ∼ 100 MeV. The lower bound on n is n & 0.1, which results in χ∗ ∼ 10−100 MeV ∼ ΛQCD.

For our benchmark point of χmin ' 1 TeV and 〈H〉 = 0, bulk QCD gives Λ̃ ∼ χ∗ ∼ ΛQCD.
While for χ > χ∗ the additional λγχ

γΛ̃4−γ term generated from the bulk QCD is negligible,
for χ . χ∗ the potential is dominated by the explicit breaking term, which signals that for
χ . χ∗ the description in terms of a dilaton breaks down. In that region we expect the effective
potential to be dominated by the mass scale χ∗, and effectively behave as if a negative mass
term of order χ2

∗ was generated.
To avoid eternal inflation we have to take the highest Hubble constant in the landscape

to be just below χ∗. Assuming that the corresponding cutoff also sets the scale of the CC
landscape, we find that Λ <

√
χ∗MPl . 105 TeV for SM QCD in the bulk; with a different

gauge group, the cutoff can be taken all the way to 107 TeV. This addition also generates a
minimal value for the Higgs VEV hmin below which the universe will crunch. This will occur
when the corresponding χmin is of order χ∗, and so hmin ∼ 0.1χ∗. Note that including QCD in
the bulk also has an impact on the light dilaton phenomenology whose study we leave to future
work.

4.5 Sliding Naturalness

In the previous Section we have discussed a possible implementation of the general idea that
patches of the Multiverse with the “wrong” Higgs mass rapidly crunch. The model predicted a
quite unique phenomenology in the realm of extra-dimensional theories for the Higgs mass.
There is also a simpler implementation of this general idea that does not rely on extra-
dimensions and does not predict any new physics with gauge couplings to the SM around
a TeV. Interestingly, this second implementation can potentially solve the strong-CP problem
at the same time. We first introduced the idea in [154] and then further elaborated on it
in [155]. This proposal has the following qualities:
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Figure 4.14: Example potential V−(φ−) with two widely separated minima. The right panel
zooms in close to the safe local minimum at φ ∼M∗. This is destabilised if the Higgs acquires
a large vev (red line). Note the different rescaling in the two panels for both the field and the
potential.

1. It is entirely described by a simple polynomial potential for two weakly-coupled light
scalars.

2. It does not make any assumption on what can explain current CMB observations, in
particular it is compatible with one’s favorite mechanism (and scale) for inflation, but
also with de Sitter swampland conjectures.

3. It can explain a small value of the Higgs vev v ' 246 GeV, even if the Higgs is coupled
at O(1) with particles at MPl.

4. It is not affected by problems of measure in the landscape8.

4.5.1 Basic Idea

At low energy the theory includes a new scalar φ− with an approximate shift symmetry. The φ−
potential has two widely separated minima. The deepest minimum of the potential has energy
density of O(−M2M2

∗ ) with M the largest mass scale in the theory and M∗ = M/g∗ ∼M a vev
associated to it. This energy density is O(1) larger than the largest cosmological constant in
the landscape. Universes where φ− rolls to this minimum rapidly crunch. The shallow “safe”
minimum of φ− has energy density O(m2

φ−
M2
∗ ), with mφ− � M . In this minimum the CC

can be scanned finely around zero. Its observed value today can, for instance, be selected by
Weinberg’s anthropic argument [318]. The φ− potential is schematically depicted in the left
panel of Fig. 4.14.

A small value for the Higgs vev, 〈h〉 � M∗, is selected by a 〈h〉-dependent tadpole in the
φ− potential. This tadpole destabilizes the safe metastable minimum when the Higgs vev is
larger than v. The tadpole is generated by a coupling of φ− to an operator OT

VHφ = −aφ−OT + h.c. (4.90)

8If the landscape is populated via eternal inflation there will be a measure problem if one is interested in
understanding what values of fundamental parameters are more likely in the Multiverse. However this does
not affect the validity of the mechanism, since we are not asking probabilistic questions in the Multiverse. We
instead have a theory where all unwanted patches are either always empty or always crunch. So we never need
to know if the unwanted patches are more or less likely (occupy a smaller or larger volume in the Multiverse)
than the one that we observe.
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Figure 4.15: Example potential V+(φ+), that selects a nonzero Higgs vev. The right panel
zooms in close to the safe local minimum at φ+ ∼ M∗, present only if the Higgs acquires a
sufficiently large vev (green line).

whose vev is a monotonic function of 〈h〉. When 〈h〉 � v the tadpole in Eq. (4.90) dominates
the φ− potential around M∗ and destroys the safe minimum (see Fig. 4.14), so all universes
with large and negative Higgs mass squared rapidly crunch. The small number that separates
the weak scale from the cutoff M∗ is mφ, i.e. universes where the tadpole dominates near the
metastable minimum of φ−,

a〈OT 〉
m2
φM∗

� 1, (4.91)

are those which crunch fast. The separation between mφ− and M∗ is technically natural, because
φ− is part of a very weakly coupled sector that can naturally be approximately scale-invariant
or supersymmetric, without any measurable trace of scale invariance or supersymmetry in the
SM.

The basic “crunching” setup is conceptually the same as [285, 319], but, as we will see in
more detail in the following, there are two important differences: 1) differently from [285] in our
case inflation can happen at a very high scale and possibly be eternal. Crunching of patches
where 〈h〉 � v occurs after reheating at temperatures below v, independently of the details of
inflation. 2) In [285] the SM becomes approximately scale invariant already above a few TeV.
In [319] new physics that protects the Higgs mass must appear at a few TeVs. Here and in [154]
the symmetries protecting the φ− potential can be invisible in the SM sector.

We have seen that φ− stabilizes a hierarchy between the Higgs vev and the cutoff, but we
can still have universes with vanishing Higgs vev. Universes with small (or vanishing) Higgs
vevs are destabilized by an additional scalar φ+ coupled to OT in the same way as φ−. The main
difference is that φ+ does not have a safe metastable minimum when 〈h〉 = 0. This minimum
is generated only if 〈h〉 & v. Then, as shown in Fig. 4.15, the universe rapidly crunches unless
the Higgs acquires a sufficiently large vev. The mechanism with both scalars φ± selects a small
and non-zero Higgs vev.

In Fig. 4.16 we show the allowed parameter space for mφ+ = mφ− and OT = H1H2, which
we discuss in more detail in Section 4.5.3. The Figure shows that cutoffs as large as ∼MPl can
be explained by the mechanism. For cutoffs of O(MGUT) coherent oscillations of the new scalars
can be the DM of our Universe. The crunching time of Universes without the shallow minimum
is approximately 1/mφ± . This gives an upper bound on the φ+ mass: mφ+ . H(v) ' 10−4 eV.
For heavier φ+ also universes with the observed Higgs vev rapidly crunch, because crunching
would occur before the effect of the Higgs vev in our universe is felt by φ+.

Note also that the lifetime of our “safe” metastable minimum is much longer than the
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Figure 4.16: Parameter space of the mechanism, assuming the same mass for both scalars. The
red lines denote the maximal crunching time of patches with the “wrong” value of the weak
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or because crunching would occur before the Electroweak phase transition. In the blue region
oscillations of the scalars produce too much dark matter, at its boundary the cosmological DM
abundance is reproduced. In the gray region the DM mass is larger than astrophysical lower
bounds [320].

age of our universe. The tunneling rate is Γ/V . M4
∗ e
−8π2M2

∗/m
2
φ± . If we take for instance

M∗ ' 1014 GeV and mφ+ = mφ− = 10−11 eV, a point in our Fig. 4.16 where we also reproduce
the observed DM relic density, we obtain a tunneling action S > 8π2M2

∗/m
2
φ±
∼ 1069. Lowering

M∗ all the way to a TeV and raising mφ to H(ΛQCD) does not change the conclusion that our
minimum is orders of magnitude more long-lived than the current age of the Universe.

4.5.2 Scalar Potential and Selection of the Weak Scale

To make the previous discussion more explicit, we consider the scalar potential

Vφ− = m2
φ−M

2
∗

(
φ−
M∗

+
φ2
−

2M2
∗
− φ3

−

3M3
∗

+
δ

4

φ4
−

M4
∗

)
+ ... (4.92)

and imagine that the quartic coupling is small (δ � 1). We have set to one possible numerical
coefficients of the φ− monomials, but our discussion applies also to more general choices. V−
has a low-energy minimum at φ− ∼ M∗, where |V−| ∼ m2

φM
2
∗ � M2M2

∗ and a deep stable
minimum at φ− ∼ M∗/δ where −V− ∼ m2

φM
2
∗/δ

3 & M2M2
∗ . The potential is shown in the left

panel of Fig. 4.14.
This potential can naturally arise from simple supersymmetric models. We can consider for

instance the superpotential

Wφ− = LΦ− + µΦ2
− + λΦ3

− , (4.93)

and the SUSY breaking term

VB = εµφ3
− . (4.94)
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In absence of SUSY breaking, the potential from Wφ− can have two widely separated minima
in field space. One is at φ− ∼ L/µ the other at φ− ∼ µ/λ, both have zero vacuum energy.
The SUSY breaking term can split the two minima by a large amount without making the
construction unnatural. In particular, for L = mφ−M∗, µ = mφ− , ε = mφ/M∗ and λ =

√
δε� ε

we recover Vφ− shifted by an unimportant overall CC of O(m2
φ−
M2
∗ ).

This supersymmetric UV completion shows that more general choices than Eq. (4.92) are
natural and lead to the structure with a deep and a shallow minimum that we are interested in.
In particular we do not need to consider the form in Eq. (4.92) that is suggestive of the potential
for a pseudo-Goldstone boson. We could take mass, cubic and tadpole at different scales. We
could also consider, as we did in [154], a Z2-symmetric potential, protected by approximate
scale invariance, where the deep minimum comes from a negative quartic coupling, eventually
stabilized by non-renormalizable operators at large field values. For simplicity we use Eq. (4.92)
in the rest of this Section, which is manifestly natural if (mφ−/M∗)

2 . δ. The second scalar
that we introduced, φ+, can have the same potential as φ−, but a different sign for the cubic
term

Vφ+ = m2
φ+
M2
∗

(
φ+

M∗
+

φ2
+

2M2
∗

+
φ3

+

3M3
∗

+
δ

4

φ4
+

M4
∗

)
+ ... . (4.95)

In this case the metastable minimum is not present. We only have the deep minimum at
φ+ ∼ M∗/δ. The potential is shown in the left panel of Fig. 4.15. Clearly other possibilities
are viable, but to simplify the discussion we consider the same structure for the potentials of
φ±. In principle the vev M∗ and the parameter δ can be different for the two scalars, as we
discussed in [154]. When appropriate we will comment on the impact of this possibility on
phenomenology. The last aspect that we need to specify is the coupling of φ± to the SM. In
this work we will mainly consider

Vφ+H + Vφ−H = −κH1H2(mφ+φ+ +mφ−φ−) + h.c. , (4.96)

where H1 is a new Higgs doublet present in addition to the SM-like Higgs H2 and κ ≤ 1. For
H1H2 to be a good “trigger”, i.e. select the weak scale, we need to impose an approximate Z2 on
the Two Higgs Doublet Model (2HDM) potential. We discuss this in Section 4.5.4. Finally, we
could consider cross-couplings between φ+ and φ−. For κ� 1 it is technically natural to take
them to be negligibly small. Therefore, for simplicity in this work we set them to zero, although
we expect that our mechanism is effective also in the presence of cross-couplings, provided that
the potential has the structure with two minima that realizes our crunching mechanism.

The mechanism can be realized also for a trigger operator OT purely within the SM, as we
did in [154]. In the following we discuss

Vφ+G + Vφ−G = −αs
8π

(
φ+

F+

+
φ−
F−

)
Tr[GG̃] , (4.97)

expanding on the results in [154]. We discuss the coupling to Tr[GG̃] in Section 4.5.5, while in
the following we consider the potential9:

V = Vφ+ + Vφ− + VHφ+ + VHφ− = m2
φ+
M∗φ+ +m2

φ−M∗φ− +
m2
φ+

2
φ2

+ +
m2
φ−

2
φ2
−

+
m2
φ+

3M∗
φ3

+ −
m2
φ−

3M∗
φ3
− + δ

m2
φ+

4M2
∗
φ4

+ + δ
m2
φ−

4M2
∗
φ4
− − κ

(
mφ+φ+ +mφ−φ−)(H1H2 + h.c.

)
,

(4.98)

9For those more used to a relaxion-like parametrization of the potential: gM2φ + g2φ2 + ..., we note that
g = mφ,M∗ = M2/mφ.

101



where we recall that δ � 1. The potential is technically natural for κ . 4π, δ & max[κ6(v4/m4
H,min),m2

φ/M
2
∗ ]

where mH,min is the smallest Higgs mass in the landscape. If mH,min ' 0 the IR divergence
is cutoff by mφ± . Notice that as long as these conditions are verified, large mixed couplings
are not generated by loops, at least if the parameters of the two scalars are not too different.
Furthermore we will see that the values of κ that give the observed dark matter relic density
in the form of coherent oscillations of φ± are κ . 10−5, making induced cross couplings com-
pletely negligible. Therefore, for simplicity we can set the mixed couplings to zero, as mentioned
above, to keep the analytic treatment tractable. Notice however that O(1) cross couplings do
not necessarily spoil our mechanism, provided that at large field values they do not lift the
deep minimum of V .

The global minimum of V is at φ± ∼ ∓M∗/δ, where the potential is V ∼ −(m2
φ+

+

m2
φ−

)M2
∗/δ

3. Since the universes where the scalars are at this minimum must crunch, this
is also the value of the maximal CC allowed in the landscape for our mechanism to work. For
δ . ((m2

φ+
+m2

φ−
)/M2

∗ )
1/3 this is ∼M4

∗ or larger, i.e. at the cutoff of the EFT.
The potential in Eq. (4.133) has one metastable local minimum (where neither φ+ nor φ−

are at their global minimum) only for

µ2
S . 〈H1H2〉 . µ2

B , (4.99)

where

µ2
S '

mφ+M∗
κ

, µ2
B '

mφ−M∗
κ

. (4.100)

This result can be more easily understood by considering independently the potentials for the
two scalars. Vφ− is depicted in the left panel of Fig. 4.14 and it has two cosmologically long-
lived minima. If φ− rolls to the deepest minimum the universe rapidly crunches. The coupling
to the Higgs VHφ− induces a tadpole that destroys the metastable minimum at φ− ∼ M∗ if
〈H1H2〉 & µ2

B (right panel of Fig 4.14), giving the second equality in (4.100). Vφ+ is depicted
in the left panel of Fig. 4.15 and it has one cosmologically long-lived minimum. If φ+ rolls
to the minimum the universe rapidly crunches. The coupling to the Higgs VHφ+ induces a
tadpole that generates a metastable minimum at φ+ ∼ M∗ only if 〈H1H2〉 & µ2

S (right panel
of Fig 4.14). This gives the first equality in (4.100). Only universes where this metastable
minimum exists both for φ± can live for cosmologically long times. These are universe where
µ2
S < 〈H1H2〉 < µ2

B.
Given our choice of trigger operator we are really selecting the vev of H1H2. This is sufficient

to select the weak scale (i.e. the vev of the SM-like Higgs) under the conditions described in Sec-
tion 4.5.4. As shown in that Section, if we want to select the weak scale we need parametrically
〈H1H2〉 ' v2 which implies

mφ± '
κv2

M∗
. (4.101)

At the local minimum, if it exists, the potential is thus of order V ' κ2v4 and the φ-only
potential Vφ+ + Vφ− is comparable to the Higgs-induced potential VHφ+ + VHφ− . We imagine
that the CC problem at the local minimum is solved by tuning in the landscape plus Weinberg’s
argument.

4.5.3 Cosmology

In this Section we describe the cosmology of the model. The initial reheating temperature
does not affect our main results. For concreteness, we take all universes to be reheated at
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T 'M∗. We imagine that the scalars can be in any position on their potential after reheating.
In Section 4.5.3 we show that φ± are good DM candidates. In Section 4.5.3 we show that the
crunching time for universes with the “wrong” Higgs vev is dominated by the local part of the
potential (|φ±| .M∗) and is at most tc ∼ max[1/mφ+ , 1/mφ− ].

Dark Matter

As in the previous Section, we focus on the coupling to H1H2 in Eq. (4.96). Similar results for
the coupling to gluons are discussed in [154] and Section 4.5.5.

The scalars φ± are stable over cosmological timescales10

Γφ ' Γ(φ→ γγ) '
GFα

2m5
φ

9
√

2π3m2
h

(κ
λ

)2

' 1

1017 × (13× 109 years)

(mφ

eV

)5 (κ
λ

)2

, (4.102)

and their coherent oscillations can constitute the DM of the Universe. To compute the relic
density, we note that φ± get a “kick” at the Electroweak (EW) phase transition, when T ' v,
and acquire an energy density in the form of a misalignment from their minimum. To be more
explicit let us consider a single scalar with potential

V = Vφ + VHφ = m2
φM

2
∗

(
φ

M∗
+

φ2

2M2
∗
− φ3

3M3
∗

+ δ
φ4

4M4
∗

)
− (κmφφH1H2 + h.c.) .(4.103)

Before the EW phase transition, under the conditions discussed in Section 4.5.4 that are neces-
sary to select the weak scale, 〈H1H2〉 = 0, so at early times we can focus on Vφ. Our universe
survived for cosmologically long times, so initially |φ| . M∗. Universes with different initial
conditions eventually see φ roll to its deep minimum and crunch independently of the value of
〈h〉. Early on, as long as mφ . H(T ), φ is stuck with an initial misalignment from the minimum
φI and an energy density given by Vφ ' m2

φφ
2
I . m2

φM
2
∗ . When mφ & H(T ) it starts to oscillate

around its metastable minimum φmin ' M∗, and its energy density starts to redshift like cold
DM. This can occur either before (mφ & H(v) ' 10−5 eV) or after (mφ . H(v)) the EW phase
transition. We can call φEW the average amplitude of the field at the EW phase transition.
This is given by φEW = φI if mφ . H(v) and φEW = φI(a(Tosc)/a(v))3/2 if mφ & H(v), where
a(T ) is the scale factor of our universe and Tosc the temperature at which φ starts to oscillate.
In both cases |φEW| .M∗.

At the EW phase transition the average position of φ in its potential is φ̄ 'M∗+φEW 'M∗
and VHφ starts contributing to the φ potential

∆V = VHφ ' κmφM∗〈H1H2〉us ' κmφM∗v
2 , (4.104)

where 〈H1H2〉us is the operator vev in our universe. If our universe is close to one of the
boundaries of the “safe” region for the Higgs vev, i.e. 〈H1H2〉us ' µ2

S or 〈H1H2〉us ' µ2
B, then

∆V ' Vφ(M∗) and the minimum of φ is shifted from its initial position,

∆φmin 'M∗ . (4.105)

This contributes another factor of M∗ to φ’s initial misalignment. Generically we expect to be
in the situation 〈H1H2〉us ' µ2

B, given the distribution of mass squared parameters in a typical
landscape (i.e. since we need to tune to make 〈H1H2〉 small, larger values are generically
preferred). Therefore in the following we imagine that 〈H1H2〉us ' µ2

B when 〈h〉 ' v and take
Eq. (4.105) as a good parametric estimate of the misalignment of φ− at the EW phase transition.
If M∗ and κ are the same for both scalars, φ+ gives at most a comparable contribution to the

10Here λ is an O(1) combination of quartics in the 2HDM Higgs sector.
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Figure 4.17: Laboratory and astrophysical constraints on a scalar coupled to the Higgs boson
via the trilinear interaction κmφ−φ−|H|2. The bounds include tests of the equivalence princi-
ple [321–323], tests of the Newtonian and Casimir potentials (5th force) [324–332] and stellar
cooling constraints [333]. The red solid line shows the target given by φ− reproducing the
observed dark matter relic density. Above the gray dashed line κ > 1. In the gray shaded
region κ > 4π, making the scalar potential unnatural. The constraint from AURIGA [334] is
not shown because the mass ranged explored is too narrow to be visible on this scale. The
bound does not touch our DM parameter space. Bounds on this coupling and future probes,
spanning a larger mass range, can be found in [296,335].

DM relic density, and only if it starts oscillating and redshifting as cold DM after the EW
phase transition. Since we are interested in a first estimate of the relic density, we neglect the
φ+ relic density and continue with our single scalar description, which captures the relevant
parametrics.

The kick at the EW phase transition gives the dominant contribution to the relic density if
mφ & H(v), since the initial misalignment (that can be at most O(M∗)) has already partially
redshifted away. If mφ . H(v), ignoring the initial misalignment still gives parametrically
the correct result, since it can give at most an O(1) correction on top of the EW-induced
misalignment. Therefore modulo O(1) factors, we get

ρφ−(T ' v) ' m2
φM

2
∗ & ρφ+(T ' v) . (4.106)

From Eq. (4.101) we know that to select the weak scale we need m2
φM

2
∗ ' κ2v4, so the relic

density is entirely specified by giving the coupling κ of the scalars to the SM, and their mass
mφ, which determines the moment in time when they start to oscillate and redshift as cold DM
(mφ ' H(Tosc)). We are in the same situation described in [153, 154]. Light scalars coupled
to trigger operators offer universal targets to DM searches. We now give an estimate of the
target. The relic density today is

ρφ− + ρφ+

ρDM

' ρφ−
ρDM

' m2
φ−M

2
∗

s0

ρ0
DM min[s(v), s(Tosc)]

. (4.107)

To highlight the phenomenological significance of this result we can use Eq. (4.101): m2
φ−
M2
∗ '

κ2v4 and rewrite our expression in terms of the effective trilinear coupling of φ− with the Higgs
that determines the strength of φ− interactions with the SM:

L ⊃ −b−φ−H1H2 + h.c. ' −b−φ−|H|2 + ..., b− ' κmφ− . (4.108)
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Here for simplicity we have taken the limit of a small coupling of H1 to SM fermions (i.e.
λ3 + λ4 + λ5 � λ2 with λi’s defined in Eq. (4.121); generalizing introduces additional O(1)
factors that do not qualitatively affect our discussion). In conclusion

ρφ
ρDM

=
b2
−v

4

m2
φ−

s0

ρ0
DM min[s(v), s(Tosc)]

'





b2v
m2
φ−

Teq
mφ− ≥ H(v)

b2v4

m
7/2
φ−

M
3/2
Pl Teq

mφ− < H(v)
(4.109)

where Teq ' eV is the temperature of matter-radiation equality, and we have a target for
ultralight DM searches:

bDM ' mφ−

√
Teq

v
min

[
1,
m

3/2
φ−
M

3/2
Pl

v3

]
. (4.110)

For any given mass only one value of the coupling to the SM bDM gives the observed relic
density. In Figure 4.17 we show this ultralight DM target and current constraints on our
parameter space. The bounds include tests of the equivalence principle [321–323], tests of the
Newtonian and Casimir potentials (5th force) [324–332] and stellar cooling [333].

Future probes of φ− dark matter, including torsion balance experiments [336], atom inter-
ferometry [337], optical/optical clock comparisons and nuclear/optical clock comparisons [338],
resonant mass detectors (DUAL and SiDUAL [339]) and gravitational-wave detectors [340,341]
are orders of magnitude too weak to probe our parameter space. Current constraints on 5th
forces that are more than twenty years old are relatively close to motivated parameter space in
the range 10−5 eV . mφ− . 10−3 eV and we hope that this study will motivate future efforts
towards improving their sensitivity.

Modulo factors related to the multiplicity of scalars, the prediction for the relic density is
exactly the same as in [153] and similar considerations can be made in relaxion models [342].
This is one manifestation of the universality of this prediction. Light scalars that can select
the weak scale, generically get the biggest contribution to their relic density from a SM phase
transition. If the Universe is reheated above the relevant phase transition, their relic density
today depends only on their mass and coupling to the SM.

Crunching dynamics

In this Section we consider the dynamics of φ± crunching in detail and calculate the crunching
time. We follow the evolution of the Universe after inflation, starting from a SM reheating
temperature of the order of the cutoff, T ∼ M∗. If the reheating temperature is lower than
this, similar considerations are possible.

We want to solve the classical equations of motion in an expanding universe

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 , (4.111)

for both φ+ and φ−, assuming that initially φ̇±(t0) = 0, T ' M∗. Since the two scalars
are approximately decoupled (κ . 10−5 to get the observed DM relic density) we can solve
Eq. (4.111) separately for φ+ and φ−. As in the DM case we can consider a single scalar φ,
solve its equations of motion and then see how the solution applies to φ+ and φ−.

In principle there are four relevant regimes (that if needed can be glued together). They
correspond to the position of φ (near the local minimum or as far as it can be, see Fig. 4.18)
and to whether H(T ) is dominated by the φ± vacuum energy or SM radiation. If φ± vacuum
energy dominates the expansion of the universe the patch is in a state of φ±-driven inflation
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ϕ ~ M* ϕ ~ M*/δ

Δt ~ 1/mϕ

Δt ~ δ /mϕ

Figure 4.18: Schematic view of the structure of the potential including the time to cross the
local (global) region around (far from) the metastable minimum. Scalars that roll to the deep
minimum and lead to a crunching universe take most of the time to cross the local region
(
√
δ � 1).

until the rolling of the scalars makes it crunch. These patches do not reheat11, because of the
feeble φ± interactions. As a consequence, independently on the rolling time, these patches are
basically empty, excluded by the standard anthropic arguments on the possibility of complex
structures. In summary only two cases are actually relevant:

1. H(T ) ' T 2/MPl, φ(t0) 'M∗

2. H(T ) ' T 2/MPl, φ(t0) 'M∗/δ .

First consider patches that start with the fields φ±, denoted generically by φ, at the scale of
the local minimum of the potential, i.e. φ ∼M∗. Since at this scale V ∼ m2

φM
2
∗ �M2M2

∗ , the
patch is initially radiation-dominated and the evolution of the scalars is given by

φ̈+
3

2 t
φ̇+

∂V

∂φ
= 0 . (4.112)

In universes destined to crunch and in the local region |φ| . M∗, we can approximate V with
a tadpole (either the Higgs induced one for φ− or the one in Vφ+ for φ+), so ∂V

∂φ
' const. and

we can solve Eq. (4.112) exactly. We find that φ± cross a region of O(M∗) in a time

∆t−(M∗) =

√
5

2
√
κ(mφ−/M∗)µH

, µ2
H ≡ 〈H1H2〉 ,

∆t+(M∗) =

√
5

2mφ+

, (4.113)

respectively. The longest crossing time for universes with 〈h〉 & v is obtained for 〈H1H2〉 ' µ2
B,

i.e. when the Higgs-induced tadpole has the smallest slope that can still destroy the local
minimum for φ−. This happens for ∆t−(M∗) ' 1/mφ− .

To make sure that this calculation is consistent we need to check that in a time ∆t± the
temperature has not dropped enough from the initial value to take the universe to a new phase
of inflation. We have

∆t± = −
∫ T±

M∗

dT

H(T )T
→ T 4

± =
M4
∗

(2H(M∗)∆t± + 1)2
. (4.114)

11More precisely, as described in [343], while the scalar slides down its potential a subdominant thermal bath
is formed, due to the tiny interaction with the SM photons. When the vacuum energy crosses zero and crunching
starts, both the kinetic energy of φ and the thermal bath rapidly blue-shift until the big crunch.
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Comparing with Vφ± ' mφ±M
2
∗ we get that we do not enter a phase of inflation if

H(M∗)

M∗
. 1 , (4.115)

which is satisfied for sub-Planckian M∗. Now, let us instead assume that the patch starts from a
value of the scalar fields at the global scale, i.e. φ ∼M∗/δ and V ∼ m2

φM
4
∗/δ

3. If δ3 . m2
φ/M

2
∗

the scalar potential dominates with respect to the thermal bath and the patch is in a state of
φ-driven inflation until the rolling of the scalars makes it crunch. As explained above these
universes are empty.

In the opposite regime δ3 & m2
φ/M

2
∗ the patch starts as radiation-dominated. After a time

∆ts .
√
δ/mφ Hubble friction becomes negligible12. This can be estimated for instance by

showing that when H(T ) ' mφ/
√
δ, φ is slow rolling over a range ∆φ ' M∗/δ in one Hubble

time. When Hubble friction is negligible we can solve Eq. (4.111) in its simpler form

φ̈+
∂V

∂φ
' 0 . (4.116)

We obtain that φ crosses the “global” region ∆φ ' M∗/δ, in a time ∆tg '
√
δ/mφ. Therefore

the longest time that φ can spend in this region of the potential, obtained combining the two
times (the time in which φ can be stuck due to Hubble friction and the time needed to cross
the region), ∆tg + ∆ts '

√
δ/mφ, is much shorter than the one required to cross the region

around the local minimum: ∆t± . 1/mφ.

In summary, as shown in Fig. 4.18, the longest time that it can take a universe with the
wrong Higgs vev to crunch is parametrically

∆tmax
c ' max[1/mφ+ , 1/mφ− ] , (4.117)

dominated by patches where φ± are initially in the region where their local minimum can be
generated |φ±| .M∗.

Finally, notice that: 1) If ∆tg is consistently smaller than a Hubble time, the global region is
crossed in a time ∆tg and the crunching time is dominated by the time to cross the local region,
as discussed above. In the opposite case, instead, the temperature drops until T 4 ∼M2

Plm
2
φ/δ.

This can be smaller than V itself, signalling the onset of a stage of φ-driven inflation, which
would give an empty patch till crunching. 2) a patch starting from sufficiently far away from
the local minimum could be doomed to crunch anyway, independently on the value of the Higgs
vev, since the kinetic energy of φ when Hubble friction becomes negligible, which for φ initially
at M∗/δ is given by

φ̇2 '
m2
φM

2
∗

δ3
, (4.118)

can be sufficient to overtake the local maximum and access the unstable region of the potential.
Nevertheless, the crunching time of these patches is at most the one given in Eq. (4.117), so
our mechanism is effective as long as tc ∼ 1/mφ is short enough.

In conclusion some patches might crunch or enter a phase of φ-driven inflation, leading to an
empty universe, even if they have the observed Higgs vev. However all patches with the wrong
Higgs vev rapidly crunch or enter a phase of φ-driven inflation, in a time bounded by (4.117),
making our mechanism an effective way to select the weak scale.

12Hubble friction can be negligible from the beginning for low cutoffs, i.e. if H(M∗) 'M2
∗/MPl . mφ/

√
δ.
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Parameter space

Our parameter space is summarized in Fig. 4.16. The scalar mass mφ is bounded from below
by the requirement that the crunching time must be shorter than the cosmological scale, say
109 yr, otherwise patches with heavy Higgs, or without EW symmetry breaking, are too long-
lived. Imposing a shorter maximum crunching time a more stringent limit is obtained, as
shown in Fig. 4.16. On the other hand, mφ is bounded from above by the requirement that the
crunching time for φ+ must be longer than 1/H at the EW phase transition, so that the the
Higgs vev has the possibility to stop the rolling of φ+ in due time. Finally, the cutoff M∗ is
bounded from above by the requirement that scalar oscillations do not overclose the Universe.
If M∗ & 1012 GeV, they can reproduce the observed DM relic density. If this is the case, the
scalars must however be heavier than ≈ 10−22 eV, because of limits on fuzzy DM [320].

4.5.4 The H1H2 trigger

The essence of our mechanism is the generation of a Higgs-dependent tadpole for two scalars φ±.
When the Higgs vev is larger than a certain threshold, 〈h〉 & µ̄S, this tadpole generates a “safe”
minimum for φ+. When it gets even larger, 〈h〉 & µ̄B & µ̄S, it destabilizes a minimum for φ−.
As discussed in Section 4.5.3, only universes with the Higgs vev in the range µ̄S . 〈h〉 . µ̄B,
do not rapidly crunch. So far we have mainly considered one operator that can generate this
Higgs-dependent tadpole

OT = H1H2 , L ⊃ −κH1H2(mφ+φ+ +mφ−φ−) + h.c. . (4.119)

This type of operator is a trigger in the definition of [153]. When the Higgs vev (and thus the
operator vev) crosses certain upper or lower bounds, a cosmological event is triggered via the
coupling to the new scalar(s). In our case the event is a rapid crunch of the universe.

In this Section we discuss the dependence of 〈H1H2〉 on the vev of the SM Higgs in more
detail. In particular we show how bounding the vev of H1H2 selects a value for 〈h〉 if the
Two Higgs Doublet Model (2HDM) has a Z2 symmetry: H1H2 → −H1H2. This singles out
a very specific kind of 2HDM potential that leads to characteristic signals at the LHC. We
find interesting that discovering new fundamental scalars at the LHC, without new symmetries
protecting their masses, is traditionally considered as a “death sentence” for naturalness. On
the contrary, our study and the work in [153] show that this can be the first manifestation of
naturalness of the Higgs mass.

We consider the most general Z2 symmetric 2HDM potential [153]

H1H2 → −H1H2 , VH1H2 → VH1H2 , (4.120)

where

VH1H2 =
m2

1

2
|H1|2 +

m2
2

2
|H2|2 +

λ1

2
|H1|4 +

λ2

2
|H2|4

+ λ3|H1|2|H2|2 + λ4|H1H2|2 +

(
λ5

2
(H1H2)2 + h.c.

)
. (4.121)

This potential does not contain odd spurions that can generate contributions to µ2
H = 〈H1H2〉

sensitive to the cutoff. If the Z2 is exact we have µ2
H = 0. Coupling H1H2 to φ±, as in

Eq. (4.119), does not break the Z2 symmetry if φ± → −φ±. Furthermore it leaves µ2
H and all

2HDM phenomenology approximately unaltered, since the couplings between the new scalars
and the 2HDM are minuscule mφ . v2/M∗, as discussed in Section 4.5.3. Therefore, in the
study of µ2

H we can ignore the coupling to φ± and only (4.121) matters.
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The vevs of H1,2 and the QCD condensate break the Z2 and generate µ2
H 6= 0. To compute

the value of µ2
H we need to assign Z2 charges to the quarks and leptons. We choose

H2 → −H2, (quc)→ −(quc), (qdc)→ −(qdc), (lec)→ −(lec), (4.122)

so that one of the two Higgs doublets is inert and the only Yukawa couplings in the model are

VY = YuqH2u
c + YdqH

†
2d

c + YelH
†
2e
c + h.c. . (4.123)

This is the safest choice phenomenologically. It was shown in [153] that this charge assignment
is still viable experimentally, but it will be decisively probed by HL-LHC.

The model defined by Eq.s (4.121) and (4.123) has a UV-insensitive and calculable vev µ2
H ,

shown in Fig. 4.19. µ2
H gives a tadpole to φ± and so the mechanism is really selecting

µ2
S . 〈H1H2〉 . µ2

B , (4.124)

which is not the vev of the SM Higgs: 〈h〉 '
√
|m2

2|. In principle µ2
H can be close to v2

also for universes with very different EW-symmetry breaking compared to ours, for instance
m2

1 ∼ −v4/M2
∗ , m

2
2 ∼ −M2

∗ still gives µ2
H(T = 0) ' v2. However our selection mechanism takes

place at T 6= 0. In practice we never need to worry about these patches provided that φ+ is
heavy enough to roll to its stable minimum before H1H2 gets a vev in these universes. In our
universe µ2

H 6= 0 already at the EW phase transition, while in these patches it is zero until
much later: T 2 . v4/M2

∗ .
There is one additional subtlety to consider. QCD can generate a vev for H1H2 even

for m2
2 ≥ 0 (see the right panel of Fig. 4.19): at the QCD phase transition quark bilinears

condensate. This gives an effective tadpole for H2, via (4.123). As a consequence, µ2
H can

be close to v2 also for another class of universes with very different EW-symmetry breaking
compared to ours, for instance m2

1 ∼ −v4/Λ2
QCD, m2

2 ' 0 still gives µ2
H(T = 0) ' v2. For

concreteness here and in the following we assume that dimensionless couplings do not scan in
the landscape. ΛQCD is still different from universe to universe due to the different SM Higgs
vevs, but this does not affect our discussion, so we do not show explicitly this dependence here
and in the following.

As in the previous case, these unwanted patches rapidly crunch if φ+ is heavy enough to
roll to its stable minimum before the QCD phase transition. Indeed, as shown in the left panel
of Fig. 4.19, before the QCD phase transition µ2

H can be nonzero only if both m2
1,2 < 0 and

larger, in absolute size, than the positive thermal contribution. These considerations favour a
relative heavy φ+, close to the boundary of its allowed region mφ+ . H(v) ' 10−4 eV.

There are other possibilities to solve the problem raised by these unwanted patches (both
those with m2

2 > 0 and those with small m2
1 or m2

2). We can consider low cutoffs M∗ . v2/ΛQCD,
so that these patches are not present in the Multiverse or supplement the mechanism with the
anthropic considerations in [153].

The model that we just described has an accidental symmetry, as noted in [153]. The
Lagrangian is actually Z4-symmetric

H1 → iH1 H2 → iH2 (quc)→ −i(quc) (qdc)→ i(qdc) (lec)→ i(lec) , (4.125)

this creates a potential cosmological problem. After EW symmetry breaking a Z2 subgroup of
the Z4 survives

H1 → −H1 . (4.126)

This Z2 subgroup can be obtained from the Z4 after a global hypercharge rotation. As a
consequence the model has a domain-wall problem, i.e. domain walls between regions with ±v1

109



0
<latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit>

<latexit sha1_base64="EU/oKZRopGzx2M7FD3jPsE5Ec4k=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5IURTdC0U2XFewDmhAm02k7dDIJMxOhhIIbf8WNC0Xc+hPu/BunbRbaeuDCmXPu5c49YcKZ0o7zbRVWVtfWN4qbpa3tnd09e/+gpeJUEtokMY9lJ8SKciZoUzPNaSeRFEchp+1wdDv12w9UKhaLez1OqB/hgWB9RrA2UmAfeRyLAaeoHrimqsiT8/e1E9hlp+LMgJaJm5My5GgE9pfXi0kaUaEJx0p1XSfRfoalZoTTSclLFU0wGeEB7RoqcESVn81umKBTo/RQP5amhEYz9fdEhiOlxlFoOiOsh2rRm4r/ed1U96/8jIkk1VSQ+aJ+ypGO0TQQ1GOSEs3HhmAimfkrIkMsMdEmtpIJwV08eZm0qhX3ouLcnZdrN3kcRTiGEzgDFy6hBnVoQBMIPMIzvMKb9WS9WO/Wx7y1YOUzh/AH1ucPOICV9Q==</latexit>hH1H2i = 0

<latexit sha1_base64="EU/oKZRopGzx2M7FD3jPsE5Ec4k=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5IURTdC0U2XFewDmhAm02k7dDIJMxOhhIIbf8WNC0Xc+hPu/BunbRbaeuDCmXPu5c49YcKZ0o7zbRVWVtfWN4qbpa3tnd09e/+gpeJUEtokMY9lJ8SKciZoUzPNaSeRFEchp+1wdDv12w9UKhaLez1OqB/hgWB9RrA2UmAfeRyLAaeoHrimqsiT8/e1E9hlp+LMgJaJm5My5GgE9pfXi0kaUaEJx0p1XSfRfoalZoTTSclLFU0wGeEB7RoqcESVn81umKBTo/RQP5amhEYz9fdEhiOlxlFoOiOsh2rRm4r/ed1U96/8jIkk1VSQ+aJ+ypGO0TQQ1GOSEs3HhmAimfkrIkMsMdEmtpIJwV08eZm0qhX3ouLcnZdrN3kcRTiGEzgDFy6hBnVoQBMIPMIzvMKb9WS9WO/Wx7y1YOUzh/AH1ucPOICV9Q==</latexit>hH1H2i = 0

<latexit sha1_base64="EU/oKZRopGzx2M7FD3jPsE5Ec4k=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5IURTdC0U2XFewDmhAm02k7dDIJMxOhhIIbf8WNC0Xc+hPu/BunbRbaeuDCmXPu5c49YcKZ0o7zbRVWVtfWN4qbpa3tnd09e/+gpeJUEtokMY9lJ8SKciZoUzPNaSeRFEchp+1wdDv12w9UKhaLez1OqB/hgWB9RrA2UmAfeRyLAaeoHrimqsiT8/e1E9hlp+LMgJaJm5My5GgE9pfXi0kaUaEJx0p1XSfRfoalZoTTSclLFU0wGeEB7RoqcESVn81umKBTo/RQP5amhEYz9fdEhiOlxlFoOiOsh2rRm4r/ed1U96/8jIkk1VSQ+aJ+ypGO0TQQ1GOSEs3HhmAimfkrIkMsMdEmtpIJwV08eZm0qhX3ouLcnZdrN3kcRTiGEzgDFy6hBnVoQBMIPMIzvMKb9WS9WO/Wx7y1YOUzh/AH1ucPOICV9Q==</latexit>hH1H2i = 0

<latexit sha1_base64="LldWMx2L3dq1ZSS8RQ9JkikHMp0=">AAACGHicbVA9T8MwEHXKVylfAUYWiwqJqSQRCBakCpaORaIfUhMix3Vaq44TbAepSvszWPgrLAwgxNqNf4PbZoCWJ53u+d2dzveChFGpLOvbKKysrq1vFDdLW9s7u3vm/kFTxqnApIFjFot2gCRhlJOGooqRdiIIigJGWsHgdlpvPREhaczv1TAhXoR6nIYUI6Ul3zxzGeI9RmDNt3U40BXz9zV05aNQ2Sjy7QdnpJOj09g3y1bFmgEuEzsnZZCj7psTtxvjNCJcYYak7NhWorwMCUUxI+OSm0qSIDxAPdLRlKOISC+bHTaGJ1rpwjAWOriCM/X3RIYiKYdRoDsjpPpysTYV/6t1UhVeeRnlSaoIx/NFYcqgiuHUJdilgmDFhpogLKj+K8R9JBBW2suSNsFePHmZNJ2KfVGx7s7L1ZvcjiI4AsfgFNjgElRBDdRBA2DwDF7BO/gwXow349P4mrcWjHzmEPyBMfkBjtqe4A==</latexit>

hH1H2i =
q

|m2
1||m2

2|

<latexit sha1_base64="qyIhEoat0T0woB8lWM0qOGMogvI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseiF48VTFtoY9lsN+3S3U3Y3Qgl9Dd48aCIV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3M79zhNVmsXywUwTGgg8kixiBBsr+WLgPTYG1Zpbd3OgVeIVpAYFWoPqV38Yk1RQaQjHWvc8NzFBhpVhhNNZpZ9qmmAywSPas1RiQXWQ5cfO0JlVhiiKlS1pUK7+nsiw0HoqQtspsBnrZW8u/uf1UhNdBxmTSWqoJItFUcqRidH8czRkihLDp5Zgopi9FZExVpgYm0/FhuAtv7xK2o26d1l37y9qzZsijjKcwCmcgwdX0IQ7aIEPBBg8wyu8OdJ5cd6dj0VrySlmjuEPnM8fIrmOPQ==</latexit>

m2
1

<latexit sha1_base64="pZ8WVFkg4nEx4htnDMR/h7d+TWo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseiF48VTFtoY9lsN+3S3U3Y3Qgl9Dd48aCIV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3M79zhNVmsXywUwTGgg8kixiBBsr+WLQeGwMqjW37uZAq8QrSA0KtAbVr/4wJqmg0hCOte55bmKCDCvDCKezSj/VNMFkgke0Z6nEguogy4+doTOrDFEUK1vSoFz9PZFhofVUhLZTYDPWy95c/M/rpSa6DjImk9RQSRaLopQjE6P552jIFCWGTy3BRDF7KyJjrDAxNp+KDcFbfnmVtBt177Lu3l/UmjdFHGU4gVM4Bw+uoAl30AIfCDB4hld4c6Tz4rw7H4vWklPMHMMfOJ8/JD+OPg==</latexit>

m2
2

<latexit sha1_base64="DtC+b+UylFBb1hxchdDy0d5JST4=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYXEVCUIAWNFGRgYWqkvqYkix3Fbq7YT2Q5SFXVg4VdYGECIlY9g429w2wzQciRLR+fco+t7woRRpR3n2yqsrW9sbhW3Szu7e/sH9uFRR8WpxKSNYxbLXogUYVSQtqaakV4iCeIhI91wXJ/53QciFY1FS08S4nM0FHRAMdJGCuxyC3pDbXwOvXsTi1CQeZLDZv12GtgVp+rMAVeJm5MKyNEI7C8vinHKidCYIaX6rpNoP0NSU8zItOSliiQIj9GQ9A0ViBPlZ/MjpvDUKBEcxNI8oeFc/Z3IEFdqwkMzyZEeqWVvJv7n9VM9uPYzKpJUE4EXiwYpgzqGs0ZgRCXBmk0MQVhS81eIR0girE1vJVOCu3zyKumcV93Lqtu8qNRu8jqKoAxOwBlwwRWogTvQAG2AwSN4Bq/gzXqyXqx362MxWrDyzDH4A+vzB5Zfl2w=</latexit>

T & ⇤QCD

<latexit sha1_base64="5N7xj4N6NBGRJBV3mR8DrZ683sQ=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBi2W3iHosevFYoV/QriWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgpr6xubW8Xt0s7u3v5B+fCoraNEEdoiEY9UN8CaciZpyzDDaTdWFIuA004wucv8zhNVmkWyaaYx9QUeSRYygk0mXTQfa4Nyxa26c6BV4uWkAjkag/JXfxiRRFBpCMda9zw3Nn6KlWGE01mpn2gaYzLBI9qzVGJBtZ/Ob52hM6sMURgpW9Kgufp7IsVC66kIbKfAZqyXvUz8z+slJrzxUybjxFBJFovChCMToexxNGSKEsOnlmCimL0VkTFWmBgbT8mG4C2/vEratap3VfUeLiv12zyOIpzAKZyDB9dQh3toQAsIjOEZXuHNEc6L8+58LFoLTj5zDH/gfP4AQHKNuQ==</latexit>

�T 2

<latexit sha1_base64="5N7xj4N6NBGRJBV3mR8DrZ683sQ=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBi2W3iHosevFYoV/QriWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgpr6xubW8Xt0s7u3v5B+fCoraNEEdoiEY9UN8CaciZpyzDDaTdWFIuA004wucv8zhNVmkWyaaYx9QUeSRYygk0mXTQfa4Nyxa26c6BV4uWkAjkag/JXfxiRRFBpCMda9zw3Nn6KlWGE01mpn2gaYzLBI9qzVGJBtZ/Ob52hM6sMURgpW9Kgufp7IsVC66kIbKfAZqyXvUz8z+slJrzxUybjxFBJFovChCMToexxNGSKEsOnlmCimL0VkTFWmBgbT8mG4C2/vEratap3VfUeLiv12zyOIpzAKZyDB9dQh3toQAsIjOEZXuHNEc6L8+58LFoLTj5zDH/gfP4AQHKNuQ==</latexit>

�T 2

0
<latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit><latexit sha1_base64="6ZTwbptvK00HUiMuNssEoeJJPkc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AeRmMtA==</latexit>

<latexit sha1_base64="EU/oKZRopGzx2M7FD3jPsE5Ec4k=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5IURTdC0U2XFewDmhAm02k7dDIJMxOhhIIbf8WNC0Xc+hPu/BunbRbaeuDCmXPu5c49YcKZ0o7zbRVWVtfWN4qbpa3tnd09e/+gpeJUEtokMY9lJ8SKciZoUzPNaSeRFEchp+1wdDv12w9UKhaLez1OqB/hgWB9RrA2UmAfeRyLAaeoHrimqsiT8/e1E9hlp+LMgJaJm5My5GgE9pfXi0kaUaEJx0p1XSfRfoalZoTTSclLFU0wGeEB7RoqcESVn81umKBTo/RQP5amhEYz9fdEhiOlxlFoOiOsh2rRm4r/ed1U96/8jIkk1VSQ+aJ+ypGO0TQQ1GOSEs3HhmAimfkrIkMsMdEmtpIJwV08eZm0qhX3ouLcnZdrN3kcRTiGEzgDFy6hBnVoQBMIPMIzvMKb9WS9WO/Wx7y1YOUzh/AH1ucPOICV9Q==</latexit>hH1H2i = 0

<latexit sha1_base64="EU/oKZRopGzx2M7FD3jPsE5Ec4k=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5IURTdC0U2XFewDmhAm02k7dDIJMxOhhIIbf8WNC0Xc+hPu/BunbRbaeuDCmXPu5c49YcKZ0o7zbRVWVtfWN4qbpa3tnd09e/+gpeJUEtokMY9lJ8SKciZoUzPNaSeRFEchp+1wdDv12w9UKhaLez1OqB/hgWB9RrA2UmAfeRyLAaeoHrimqsiT8/e1E9hlp+LMgJaJm5My5GgE9pfXi0kaUaEJx0p1XSfRfoalZoTTSclLFU0wGeEB7RoqcESVn81umKBTo/RQP5amhEYz9fdEhiOlxlFoOiOsh2rRm4r/ed1U96/8jIkk1VSQ+aJ+ypGO0TQQ1GOSEs3HhmAimfkrIkMsMdEmtpIJwV08eZm0qhX3ouLcnZdrN3kcRTiGEzgDFy6hBnVoQBMIPMIzvMKb9WS9WO/Wx7y1YOUzh/AH1ucPOICV9Q==</latexit>hH1H2i = 0

⇤2
QCD

<latexit sha1_base64="xb4coz1arfBrUYmkvLMdJ17rVhQ=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFclaQU1F2xLly4aME+oIlhMpm0QyeTMDMRQqi/4saFIm79EHf+jdM2C209MHA451zuneMnjEplWd/G2vrG5tZ2aae8u7d/cGgeHfdknApMujhmsRj4SBJGOekqqhgZJIKgyGek709aM7//SISkMb9XWULcCI04DSlGSkueWXHudDhAXu6ICHZaN9OHumdWrZo1B1wldkGqoEDbM7+cIMZpRLjCDEk5tK1EuTkSimJGpmUnlSRBeIJGZKgpRxGRbj4/fgrPtBLAMBb6cQXn6u+JHEVSZpGvkxFSY7nszcT/vGGqwks3pzxJFeF4sShMGVQxnDUBAyoIVizTBGFB9a0Qj5FAWOm+yroEe/nLq6RXr9mN2lWnUW1eF3WUwAk4BefABhegCW5BG3QBBhl4Bq/gzXgyXox342MRXTOKmQr4A+PzB7LllCw=</latexit>

<latexit sha1_base64="ykNjHCKJLtR2dH89p7EIf6yeLvY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG0tSFF0W68KFixbsA5oYJpNJO3QmCTMToYbir7hxoYhb/8Odf+O0zUJbDwwczjmXe+f4CaNSWda3UVhaXlldK66XNja3tnfM3b22jFOBSQvHLBZdH0nCaERaiipGuokgiPuMdPxhfeJ3HoiQNI7u1CghLkf9iIYUI6Ulzzw4dW51OkD3VS9zBIfN+vXYM8tWxZoCLhI7J2WQo+GZX04Q45STSGGGpOzZVqLcDAlFMSPjkpNKkiA8RH3S0zRCnEg3m14/hsdaCWAYC/0iBafq74kMcSlH3NdJjtRAznsT8T+vl6rw0s1olKSKRHi2KEwZVDGcVAEDKghWbKQJwoLqWyEeIIGw0oWVdAn2/JcXSbtasc8rVvOsXLvK6yiCQ3AEToANLkAN3IAGaAEMHsEzeAVvxpPxYrwbH7Nowchn9sEfGJ8/G6SUWw==</latexit>

�⇤2
QCD

<latexit sha1_base64="qyIhEoat0T0woB8lWM0qOGMogvI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseiF48VTFtoY9lsN+3S3U3Y3Qgl9Dd48aCIV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3M79zhNVmsXywUwTGgg8kixiBBsr+WLgPTYG1Zpbd3OgVeIVpAYFWoPqV38Yk1RQaQjHWvc8NzFBhpVhhNNZpZ9qmmAywSPas1RiQXWQ5cfO0JlVhiiKlS1pUK7+nsiw0HoqQtspsBnrZW8u/uf1UhNdBxmTSWqoJItFUcqRidH8czRkihLDp5Zgopi9FZExVpgYm0/FhuAtv7xK2o26d1l37y9qzZsijjKcwCmcgwdX0IQ7aIEPBBg8wyu8OdJ5cd6dj0VrySlmjuEPnM8fIrmOPQ==</latexit>

m2
1

<latexit sha1_base64="pZ8WVFkg4nEx4htnDMR/h7d+TWo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseiF48VTFtoY9lsN+3S3U3Y3Qgl9Dd48aCIV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3M79zhNVmsXywUwTGgg8kixiBBsr+WLQeGwMqjW37uZAq8QrSA0KtAbVr/4wJqmg0hCOte55bmKCDCvDCKezSj/VNMFkgke0Z6nEguogy4+doTOrDFEUK1vSoFz9PZFhofVUhLZTYDPWy95c/M/rpSa6DjImk9RQSRaLopQjE6P552jIFCWGTy3BRDF7KyJjrDAxNp+KDcFbfnmVtBt177Lu3l/UmjdFHGU4gVM4Bw+uoAl30AIfCDB4hld4c6Tz4rw7H4vWklPMHMMfOJ8/JD+OPg==</latexit>

m2
2

<latexit sha1_base64="LldWMx2L3dq1ZSS8RQ9JkikHMp0=">AAACGHicbVA9T8MwEHXKVylfAUYWiwqJqSQRCBakCpaORaIfUhMix3Vaq44TbAepSvszWPgrLAwgxNqNf4PbZoCWJ53u+d2dzveChFGpLOvbKKysrq1vFDdLW9s7u3vm/kFTxqnApIFjFot2gCRhlJOGooqRdiIIigJGWsHgdlpvPREhaczv1TAhXoR6nIYUI6Ul3zxzGeI9RmDNt3U40BXz9zV05aNQ2Sjy7QdnpJOj09g3y1bFmgEuEzsnZZCj7psTtxvjNCJcYYak7NhWorwMCUUxI+OSm0qSIDxAPdLRlKOISC+bHTaGJ1rpwjAWOriCM/X3RIYiKYdRoDsjpPpysTYV/6t1UhVeeRnlSaoIx/NFYcqgiuHUJdilgmDFhpogLKj+K8R9JBBW2suSNsFePHmZNJ2KfVGx7s7L1ZvcjiI4AsfgFNjgElRBDdRBA2DwDF7BO/gwXow349P4mrcWjHzmEPyBMfkBjtqe4A==</latexit>

hH1H2i =
q

|m2
1||m2

2|

<latexit sha1_base64="jwKAkHLsfIA9NnBo/Eb5Hz0lFVI=">AAACCXicbVC7TsMwFHV4lvIKMLJYVEhMVVKBYKwoAwNDK9GH1ITIcZzWqp0E20Gq0q4s/AoLAwix8gds/A1umwFajmTp6JxzdX2PnzAqlWV9G0vLK6tr64WN4ubW9s6uubffknEqMGnimMWi4yNJGI1IU1HFSCcRBHGfkbY/qE389gMRksbRrRomxOWoF9GQYqS05JnQudHhAHmZIzhs1K7G0JH3QmUj7tl3ldHYM0tW2ZoCLhI7JyWQo+6ZX04Q45STSGGGpOzaVqLcDAlFMSPjopNKkiA8QD3S1TRCnEg3m14yhsdaCWAYC/0iBafq74kMcSmH3NdJjlRfznsT8T+vm6rwws1olKSKRHi2KEwZVDGc1AIDKghWbKgJwoLqv0LcRwJhpcsr6hLs+ZMXSatSts/KVuO0VL3M6yiAQ3AEToANzkEVXIM6aAIMHsEzeAVvxpPxYrwbH7PokpHPHIA/MD5/AO0Dmdk=</latexit>

⇤QCD

q
|m2

1|

<latexit sha1_base64="arm/uNLJCW6HCp9vAVCOBBJLpV0=">AAACGHicbVC7TsMwFHXKq5RXgJHFokJiKkkBwVhRBgaGVqIPqWkjx3Vaq3YSbAepSvMZLPwKCwMIsXbjb3AfA7Qc6UpH59xr33u8iFGpLOvbyKysrq1vZDdzW9s7u3vm/kFdhrHApIZDFoqmhyRhNCA1RRUjzUgQxD1GGt6gPPEbT0RIGgYPahiRNke9gPoUI6Ul1zxz5KNQyYi7dqc4Sh1fIJw49/qBLnITR3BYLd+mnfM04W6xU0xdM28VrCngMrHnJA/mqLjm2OmGOOYkUJghKVu2Fal2goSimJE058SSRAgPUI+0NA0QJ7KdTA9L4YlWutAPha5Awan6eyJBXMoh93QnR6ovF72J+J/XipV/3U5oEMWKBHj2kR8zqEI4SQl2qSBYsaEmCAuqd4W4j3Q2SmeZ0yHYiycvk3qxYF8WrOpFvnQzjyMLjsAxOAU2uAIlcAcqoAYweAav4B18GC/Gm/FpfM1aM8Z85hD8gTH+AQFXoFY=</latexit>q
|m2

1|
⇤3

QCD

m2
2

<latexit sha1_base64="oQUJ4Cq0eF02xmXC8Y5itWwNqMI=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqUoQAsaKMjAwtFJfUhNFjuO2Vm0nsh2kKurCwq+wMIAQK//Axt/gthmg5UiWjs65R9f3hAmjSjvOt1VYWV1b3yhulra2d3b37P2DtopTiUkLxyyW3RApwqggLU01I91EEsRDRjrhqDb1Ow9EKhqLph4nxOdoIGifYqSNFNjHTegxopSiHHr3JhehIPMkh43a7SSwy07FmQEuEzcnZZCjHthfXhTjlBOhMUNK9Vwn0X6GpKaYkUnJSxVJEB6hAekZKhAnys9mV0zgqVEi2I+leULDmfo7kSGu1JiHZpIjPVSL3lT8z+ulun/tZ1QkqSYCzxf1UwZ1DKeVwIhKgjUbG4KwpOavEA+RRFib4kqmBHfx5GXSPq+4lxW3cVGu3uR1FMEROAFnwAVXoAruQB20AAaP4Bm8gjfryXqx3q2P+WjByjOH4A+szx9nDpfg</latexit>

T . ⇤QCD

Figure 4.19: Vacuum expectation value of H1H2 in the model of Eq.s (4.121) and (4.123)
as a function of the two Higgs masses. We show the vev before (left) and after (right) the
QCD phase transition. m1,2 are effective masses with the dimensions of vevs that contain
contributions from O(1) quartic couplings. ΛQCD is a function of the Higgs vevs and varies
within the purple and yellow boxes. We have approximated thermal corrections to m2

1,2 with
T 2 to improve readability. Note that in the light red regions the vev is not exactly zero, because
of a small effective Bµ term induced by the φ± vevs. However this effect is too small to affect
our conclusions. It only gets rid of dangerous domain walls, as discussed in the main body of
the text.

are generated at the EW phase transition and they come to dominate the energy density of our
Universe at T ' v(v/MPl)

1/2 ' keV. We can solve the problem via a tiny breaking of the Z4

that does not alter any of our conclusions. If the 2HDM potential contains a Bµ-term of size

VH1H2 ⊃ −BµH1H2 + h.c. Bµ ' v4

M2
Pl

. (4.127)

This insures that the domain walls annihilate at T ' keV. At larger temperatures they consti-
tute a negligibly small fraction of the total energy density [153]. This Bµ term breaks also our
original Z2, but it is numerically negligible in our analysis. In a large fraction of our parameter
space, shown in Fig. 4.16, the misalignment of φ± at the EW phase transition automatically
generates a large enough Bµ, and we do not need Eq. (4.127).

As noted in [153] the phenomenology of this Z2 symmetric “type-0” 2HDM is very in-
teresting. Since we effectively set to zero any scale in the potential besides the two masses
(Bµ ' v4

M2
Pl
� v2), the new Higgs states contained in H1 are close to the weak scale. If we

adopt the usual notation for charged, scalar and pseudo-scalar Higgses we have

m2
A = −v2λ5 ,

m2
H± = −v2λ5 + λ4

2

m2
h,H =

1

2

(
λ1v

2
1 + λ2v

2
2 ±

√
(λ2v2

2 − λ1v2
1)

2
+ 4v2

1v
2
2λ

2
345

)
(4.128)

and to avoid TeV-scale Landau poles we need all quartics to be . 2 around the weak scale [153].
Therefore we have a sharp target for searches at the LHC and HL-LHC, which is made even
sharper if we notice two well-known facts: 1) There are couplings between the SM and two
new Higgses proportional to the SU(2)L gauge coupling, which are fixed by gauge invariance.
2) Couplings with a single new Higgs, that are proportional to v1, can not be made arbitrarily
small.
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Both points are quite interesting for the LHC: 1) a CMS search for staus in a τ+τ−+MET
final state, is sensitive to pair production of H+H− [193]. If recasted it can potentially extend
LEP’s bound on the H± mass to about 150 GeV [153]. 2) At small v1 the new scalar Higgs
becomes light

m2
H = v2

1

(
λ1 −

λ2
345

λ2

)
+O(v4

1/v
4) . (4.129)

So when trying to decouple H1 we rapidly run into stringent constraints from LEP, B-factories
and beam-dump experiments. Quantitatively this means that Higgs coupling deviations in this
model will be visible at HL-LHC. A more complete summary of signals and constraints can be
found in [153].

To conclude this section it is worth to point out that the Z2 symmetry is not mandatory.
However disposing of it forces two coincidences of scale to make µ2

H sensitive to the SM Higgs
vev.

To show this we can write a left-right symmetric model which is approximately invariant
under H1 ↔ H2 as in [142, 151]. If Bµ . 16π2v2 and λ6,7 . 16π2v2/M2

∗ , µ2
H is dominated

by the tree-level contributions from the vevs. Furthermore, the exchange symmetry forces
|m2

1,2| ' v2 when µ2
H ' v2, just what we want to select the weak scale from H1H2. Nonetheless,

to make this model compatible with present LHC constraints we need both ||m2
1| − |m2

2|| & v2

and Bµ & v2. As we have just shown, to make H1H2 a good trigger we have upper bounds of
the same order on both quantities: 1) we do not want loop corrections to µ2

H to dominate on
the vevs, hence Bµ . 16π2v2, 2) we can not take the two masses too far apart, since breaking

too much the exchange symmetry can lead to 〈H1H2〉 ' Bµ
|m2

1|
|m2

2|
, which can be close to the weak

scale even when m2
2 ' −m2

1 ' M2
∗ . In summary we need both ||m2

1| − |m2
2|| and Bµ to be of

O(v2). So this is still an interesting possibility to consider, but it is not as simple as imposing
the Z2 symmetry.

4.5.5 The Standard Model Trigger

We now consider the SM trigger, expanding the discussion of [154]. We take φ± to have an
axion-like coupling to gluons

VGφ = − 1

32π2

(
φ+

F+

+
φ−
F−

+ θ

)
Tr[GG̃] . (4.130)

As we discussed in Section 4.5.5, for mu,d . 4πfπ, if we rotate φ± in the quark mass matrix
and match to the chiral Lagrangian at low energy, Eq. (4.130) gives

VGφ = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
φ+

2F+

+
φ−
2F−

+
θ

2

)
' Λ4(〈h〉)

2

(
φ+

F+

+
φ−
F−

+ θ

)2

, (4.131)

where the potential is switched on at the QCD phase transition by chiral symmetry breaking

Λ4(〈h〉) = m2
πf

2
π

mumd

(mu +md)2
. (4.132)

We stress that its size is a monotonic function of the Higgs vev even in the regime mu,d & 4πfπ,
although the functional form of Λ(〈h〉) becomes different. For the moment, we assume that
the vacuum angle θ (which includes the quark-mass phases) is fixed and small because of some
UV-mechanism that solves the strong-CP problem. Later, in Section 4.5.5 we will relax this
assumption and show that the mechanism can actually also solve the strong-CP problem by
itself in a novel way [154], if the θ angle instead scans in the landscape.
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We consider a scalar potential with the same form as in Section 4.5.2:

V±(φ±) = m2
±M

2
±

(
φ±
M±

+
φ2
±

2M2
±
± φ3

±

3M3
±

+
δ

4

φ4
±

M4
±

)
+ ... (4.133)

with the total potential being V = V+ + V− + VGφ. Notice that (4.131) does not impose
constraints on the naturalness of V±. Therefore, M± are not related to the Higgs cutoff, which
can be arbitrarily large. We take M±/F± � 1 so that in the local region of the potential VGφ
is dominated by the quadratic term in the second equality of Eq. (4.131). As we will see in the
following this is required by current measurements of the QCD θ-angle.

We assume m+ . H(ΛQCD), so that when φ+ starts to move, from the local region φ+ ∼M+

(otherwise the patch crunches anyway), the potential (4.131) is already switched on. Then, the
φ+ potential is locally stabilized only if 〈h〉 > µS, with

Λ4
S ≡ Λ4(〈µS〉) ' m2

+F
2
+ . (4.134)

This can be understood as follows: in absence of VGφ, φ+ does not have a metastable minimum
in the local region |φ+| .M+. In this region VGφ is given approximately by the quadratic term
in the second equality of Eq. (4.131). The only monomial that can generate a minimum is the
φ2

+ term in VGφ. The minimum is generated only if this term (with positive sign) dominates
within |φ+| .M+.

In general we may not have µS ' v, so in this section we give formulas valid also for µS < v,
which is enough to select successfully the weak scale. For instance, in this case the size of local
stable region around the metastable minimum is increased from M+, at µS = v, to 13

M̃+ '
Λ4

QCD

Λ4
S

M+ . (4.135)

The physical mass of the scalar is

m2
φ+
' Λ4

QCD

F 2
+

' Λ4
QCD

Λ4
S

m2
+ . (4.136)

The above arguments show how we get a lower bound on the weak scale. An upper bound
is generated as long as the φ− potential in (4.131) is dominated by the tadpole, i.e. M−/F− .
M̃+/F+ + θ. In this case, the safe local minimum exists as long as 〈h〉 < µB, with

Λ4
B ≡ Λ4(〈µB〉) '

m2
−M−F−

θ + M̃+/F+

. (4.137)

If both φ+ and φ− exist in Nature, the only patches that do not crunch are those with µS <
〈h〉 < µB. Given that, typically, large Higgs masses are favoured in the landscape, we have
v ≈ µB, so that ΛB ≈ ΛQCD. The physical scalar mass is mφ− ' m−. This could be smaller
or bigger than m+ and H(ΛQCD). Accordingly, during φ− dynamics the other scalar φ+ could
be still frozen by Hubble friction or not. We have replaced the unknown φ+ misalignment at

the time when φ− starts to move, with its typical value M̃+, i.e. the size of the local stability

region close to the safe metastable minimum of φ+. Notice that φ+ moves by an amount ∼ M̃+

after the QCD phase transition, so even patches for which the denominator in (4.137) is initially

13This formula is valid if the instability is generated by a cubic term, as in (4.133). If, instead, the instability

is generated by a quartic coupling, like in the example potential of [154], we find M̃+ 'M+Λ2
QCD/Λ

2
S .
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tuned to be small can survive until today only if 〈h〉 . µB, since the denominator will effectively
be detuned when φ+ starts to move. The θ-angle today is

θ0 ' θ +
M̃+

F+

+
M−
F−
' θ +

M̃+

F+

. (4.138)

We had already assumed θ . 10−10 from an unspecified UV solution to the strong CP problem

(for instance of the Nelson-Barr type [344,345]), we further require M̃+/F+ . θexp ' 10−10.
Notice that along the flat direction of (4.131), F−φ+ = −F+φ− − θF+F−, the potential is

not sensitive to the Higgs vev. However, with our assumptions (and at fixed θ), generically the
flat direction does not intersect the local stability region φ± ∼M± and hence it does not pose
a threat to the mechanism.

Solving also the strong-CP problem

So far we have assumed that the θ angle is set to be small by some unspecified mechanism
operating at a high energy scale (E �

√
mφ±M±). We now show that the usual Peccei-Quinn

solution is not compatible with the mechanism. Let us assume that an axion a is present,
heavier than φ±, so that (4.131) is modified to

VGφa '
Λ4(〈h〉)

2

(
φ+

F+

+
φ−
F−

+
a

f

)2

, (4.139)

having used the shift-symmetry of a to absorb the UV θ angle. Then, the first scalar that
starts rolling is the axion itself, which rapidly relaxes the whole 〈h〉-dependent potential to 0;
this is continuously readjusted to 0 even subsequently, during the slower motion of φ±. As a
consequence, φ± would not be sensitive to the Higgs vev. Notice that some small Peccei-Quinn
breaking potential for the axion, coming from the UV, would not help, being independent on
the Higgs vev.

However, if the θ-angle is also scanned in the landscape (for instance because of the presence

of a scalar coupled to GG̃ and lighter than φ±), then our mechanism itself solves the strong-CP
problem in a novel way, in addition to the Higgs hierarchy problem [154]. This occurs because
the φ+ metastable minimum is generated only if θ is small enough that the minimum of (4.131)
lies within the local region φ ∼M+, where the destabilizing cubic term of V+ does not dominate.
Otherwise the patch crunches, in the same way as the ones with a “wrong” value of the Higgs
vev. A small θ is selected by this requirement:

M̃+

F+

& θ . (4.140)

The only patches that do not crunch are those with µS . 〈h〉 . µB and θ0 � 1. This novel
solution to the strong-CP problem has its own phenomenological features that distinguish
it clearly from the axion one, as discussed in [154] and summarized in the next subsection.
Additionally, the same dynamics selects a small and nonzero Higgs vev.

Before discussing the phenomenology, we point out a subtlety that arises once θ scans in the
landscape. In this case, there certainly exist patches with tuned values of θ such that the flat
direction of (4.131) crosses the local stability region φ± ∼M± and therefore becomes relevant.
Recall that along the flat direction the potential is not sensitive to the Higgs vev. On the one
hand, it is possible to show that the potential along this direction is locally stabilized by the
quadratic terms of (4.133), as long as ΛB & ΛS. On the other hand, this “tuned” local minimum
keeps being present in the potential even for large values of Λ(〈h〉) � ΛQCD, threatening the
successful selection of 〈h〉 . v: as just mentioned along the flat direction the potential is locally
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stable to start with, along the orthogonal direction it is made stable by the large contribution
of (4.131). However, our mechanism is still successful because these metastable patches with
Λ(〈h〉)� ΛQCD are doubly tuned. First, in order for the flat direction to cross the local stability
region, θ needs to be tuned by an amount

εθ ∼
M−/F−

M̃+/F+

� 1 (4.141)

as compared to stable patches with Λ(〈h〉) ∼ ΛQCD. Second, given that the flat direction is
essentially parallel to φ− ∼ const., the barrier along it is ∆V‖ ∼ m2

−M
2
−. Then, for these “bad”

patches to be metastable, the initial value of φ+ needs to be tuned to lie within a tiny region
of size ∆φ+ such that ∆V⊥ . ∆V‖, otherwise the combined evolution of φ±, which explores the
phase-space energetically allowed, would probe the instability. This gives an additional tuning
εφ+ ∼ ∆φ+/M̃+, with:

Λ(〈h〉)4∆φ2
+

F 2
+

∼ m2
−M

2
− , (4.142)

yielding

εφ+ ∼
√
M−/F−

M̃+/F+

Λ2
B

Λ(〈h〉)2
� 1 . (4.143)

The combined tuning εθεφ+ can be made arbitrarily small by taking M−/F− � M̃+/F+, so to
compensate any reasonable a priori preference for large values of Λ(〈h〉) in the landscape, thus
making the doubly tuned patches irrelevant, being arbitrarily rare or absent altogether14.

Smoking-gun phenomenological pattern

The cosmology of the model is basically the same as for the H1H2 trigger, with the role of
the electroweak phase transition replaced by the QCD one. In particular, the scalar φ+ needs
to be lighter than H(ΛQCD), or the universe would crunch independently of 〈h〉 before the
Higgs-dependent potential is switched on.

Both scalars can constitute the totality of dark matter in the Universe, yielding a DM
phenomenology cross-correlated with EDM experiments, as studied in detail in [154] for φ+.

Let us start from this scalar. At the QCD phase transition it gets a kick of order M̃+, which
dominates its oscillations. Then, its energy density when it starts oscillating after the QCD
transition is ρ+ ∼ m2

φ+
M̃2

+ ∼ θ2
0Λ4

QCD, giving the relic density today

ρφ+

ρDM

' θ2
0Λ4

QCD

TeqM
3/2
Pl m

3/2
φ+

'
(

θ0

10−10

)2(
10−19 eV

mφ+

)3/2

. (4.144)

Therefore, its relic density is ' θ2
0 times smaller than the one of a Peccei-Quinn axion with

the same mass, avoiding overclosure constraints on light axions. Also φ− can be the dark
matter of the Universe, if light enough. Analogously to φ+, its energy density at the onset of
its oscillations is ρ− ∼ m2

−M
2
− ∼ (M−/F−)θ0Λ4

QCD . θ2
0Λ4

QCD, smaller than the one for φ+.
However, it can give the correct relic density if lighter than φ+:

ρφ−
ρDM

' θ0Λ4
QCDM−/F−

TeqM
3/2
Pl m

3/2
φ−

'
(

θ0

10−10

)(
M−/F−
10−10

)(
10−19 eV

mφ−

)3/2

. (4.145)

14This latter possibility happens in case the tuned initial values of θ or φ+ are forbidden by additional
interactions in the UV, for instance non-minimal couplings to gravity during inflation.
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Figure 4.20: Parameter space for which φ+ (left panel) or φ− (right panel) constitute the totality
of DM of the Universe, as function of their mass and the θ-angle today. The DM relic density is
reproduced along the blue line (left panel) or white region (right panel). The red shaded region
(dashed line) shows bounds [14] (future prospects [346–348]) from hadronic EDM searches.
New ideas involving molecular compounds could further improve future sensitivities [349–353].
We also plot in black constraints on fuzzy DM from Lyman-α forest [354–359], measurements
of the subhalo mass function [360] and the Eridanus II dwarf galaxy [361] (similar to the
constraints from other dwarf galaxies [362,363]). We shade the area where multiple observations
disfavor the corresponding DM mass hypotheses [320]. The dashed lines denotes the potential
sensitivity from future observations in 21 cm cosmology (HERA) [364] and by the Vera Rubin
Observatory [365].
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Summarizing, the scalar φ+ is an axion of mass mφ+ . 10−11 eV which lies on the QCD line
mφ+ ' Λ2

QCD/F+, as it can be seen by combining (4.134) and (4.136). Instead, φ− is an ALP
with a mass comparable to or larger than a QCD axion with the same couplings, as it can be
seen from (4.137) and M−/F− . θ0.

Notice that φ± do not give rise to black hole superradiance in the region mφ± ∼ 10−12 eV
because of the self-coupling in Eq. (4.133) [366]. If either of them is observed in this region,
this would then constitute a first characteristic trait that distinguishes our scalars from the
Peccei-Quinn axion.

However, the best phenomenological prospects occur if they are lighter and constitute the
dark matter of the Universe, as shown in Figure 4.20. Their relic density is strongly correlated
with the value of the θ angle today. This is a 1-to-1 correspondence for φ+, while for φ−
there is an additional parameter M−/F−. However this ratio has the upper bound M−/F− .
θ0. As a consequence, limits on fuzzy DM imply θ0 & 10−12, observable at future EDM
experiments [346–348]: if either φ+ or φ− is dark matter, we predict sizeable EDMs. A joint
observation of θ0 in the near future and a measurement of the DM mass would allow to test the
smoking-gun relations in Eq. (4.144) or (4.145). A combination of future EDM measurements
and fuzzy DM probes [320, 354–365] can fully test the hypothesis of φ± DM, as shown in
Fig. 4.20.

4.5.6 Conclusions

The two main discoveries of the LHC so far have been: the Higgs boson and the unnaturalness
of its mass. In this work we have presented a novel mechanism that explains this unnaturalness
by means of cosmological selection: the multiverse is populated by patches with different values
of the Higgs mass; the ones where the EW scale is too small or too large crunch in a short
time, the other ones, with the observed (unnaturally small) value of the EW scale survive and
expand cosmologically, resulting in an universe as the one that we observe. In [154] we called
this scenario Sliding Naturalness, since the crunching is due to two light scalars sliding down
their potential.

The phenomenology of our proposals depends strongly on the trigger operator that connects
the two scalars to the SM. For the H1H2 trigger, as discussed in detail in [153] and summarized
in Section 4.5.4, the most favourable prospects for detection come from the observation of the
type-0 2HDM at colliders, with the high-luminosity LHC probing completely this possibility.
For the SM trigger GG̃, the mechanism yields ALP phenomenology. However, a remarkable
feature of our scenario [154] is that in this case it also solves automatically the strong-CP
problem, in a novel way, different from the usual Peccei-Quinn mechanism, as described in
Section 4.5.5.

In both cases, the oscillations of the two scalars can constitute the totality of dark matter
in the Universe (see Section 4.5.3). In the case of the SM trigger, this possibility additionally
implies a large value of the QCD angle θ & 10−12, observable in the near future, and strongly
correlated to the DM mass, the latter in the fuzzy-DM range (see Figure 4.20).

There are a number of important features that single out our mechanism as compared to
other existing proposals in the literature. First, an important distinction between models of
cosmological naturalness arises from how they influence inflation. In some cases the Hubble
rate during inflation is required to be smaller than mh and an exponentially large number of
e-folds might be needed. This clearly requires additional model building that the reader is
screened from, but which might considerably complicate the model or introduce tuning. Our
mechanism, instead, factorizes from the sector responsible for inflation. Second, the model can
have large cutoffs (comparable to MPl) for both the CC and Higgs mass and at low energy
only predicts two extremely weakly coupled scalars with a simple potential. Finally, as argued
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in [154], Sliding Naturalness is compatible with modern swampland conjectures and does not
suffer from ambiguities connected to eternal inflation.15

We cannot know if the unnaturalness of the Higgs mass discovered by the LHC will ulti-
mately be explained by cosmological dynamics. However, the progress of the last years gives
us a plausible alternative to traditional solutions to the problem or to accepting tuning. This
framework can be tested experimentally in the next decade. In this context, the novel mech-
anism that we propose is, in our opinion, a particularly attractive solution, in view of its
simplicity, and compatibility with simple realizations of other sectors of the theory.

4.6 Triggered Landscapes

We now present a vacuum selection mechanism in the context of an explicit construction of
the landscape, where the weak scale as a trigger is crucially needed to find a vacuum with
tiny enough cosmological constant. We first introduced it in [153] We imagine there is a
“UV landscape” containing moderately many vacua, not enough to find vacua with our small
Cosmological Constant (CC). The UV landscape scans the CC and the Higgs mass(es) without
scanning dimensionless couplings [105].

We also imagine a separate “IR landscape”, with nφ ultra-light, weakly coupled scalars φi,
each with a (spontaneously broken) Z2 discrete symmetry, potentially giving a factor of 2nφ

more vacua. The φi also couple to a trigger operator OT . If 〈OT 〉 is too small, the 2nφ vacua
of the φi sector are all degenerate and they don’t help with making smaller vacuum energies
possible. If 〈OT 〉 is too big, the symmetry is broken so badly that only one vacuum remains
for each φi, and there is again no way to find small vacuum energy. The only way to find small
vacuum energy is to tune Higgs vacuum expectation values so that µ∆T

S < 〈OT 〉 < µ∆T
B . Thus

using the weak scale as a trigger allows us to tie solutions to the cosmological constant and
hierarchy problems.

Our low-energy effective theory, contains in addition to the SM or the type-0 2HDM, a “IR
landscape” consisting of nφ scalars φi. In first approximation the scalars are uncoupled, and
each have a Z2 discrete symmetry, described by the potential:

VNφ =

nφ∑

i=1

ε2i
4

(
φ2
i −M2

∗,i
)2
. (4.146)

In absence of new symmetries or dynamics below M∗, we take the φi vevs M∗,i to be the
fundamental scale of the theory O(M∗). εi is an order parameter that quantifies the breaking
of the shift symmetry on φi, such that mφi ∼ εiM∗,i � M∗ is technically natural. We assume
that the cosmological constant and the Higgs mass(es) squared are scanned uniformly in a “UV
landscape”, which has NUV vacua, with NUV too small to find a vacuum with small enough CC.
The smallest CC in the UV landscape is ' M4

∗/NUV. In vacua where Higgs mass(es) squared
are ∼ v2 the minimal CC is larger and we call this value of the CC Λ∗.

We now imagine that each of the φi also couples to our weak scale trigger operator OT ,

VNφT =

nφ∑

i=1

κiεiM
3−∆T
∗,i√
nφ

φiOT + h.c. (4.147)

Here κi parametrizes an additional weak coupling, breaking the (Z2)nφ symmetry down to a
single diagonal Z2. Note that gravity loops also couple the different sectors, but the coupling

15More precisely, our mechanism is compatible with eternal inflation (but does not require it, as long as the
landscape is populated by some mechanism), and at the same time it does not suffer from the so-called measure
problem, since the relevant dynamics that selects the Higgs mass takes place after reheating, at the EW or QCD
phase transition.
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Figure 4.21: The landscape contains a UV sector and an IR sector (in this Figure). The high
energy sector is generated by fields of mass close to the cutoff mΦ ∼ M∗ and does not have
enough vacua to scan the CC down to Λobs ' meV4, but can scan the Higgs mass(es) m2

H down
to the weak scale. The low energy sector is generated by fields of mass mφ ∼ v2/M∗ and has
a number of non-degenerate minima dependent on the Higgs vev. When 〈h〉 ' v we can scan
the CC down to its observed value.

to gravity doesn’t break the (Z2)nφ discrete symmetry that we have when κ→ 0, (and at any
rate, induces parametrically minuscule cross-quartics of order ε2i ε

2
jφ

2
iφ

2
j). The structure of our

IR landscape is depicted in Fig. 4.21 while their role in scanning the CC is sketched in Fig. 4.22.
The interaction in Eq. (4.147) makes the number of minima in the landscape sensitive to the
value of 〈OT 〉. If16

〈OT 〉 &
ε

κ

√
nφM

∆T
∗ ≡ µ∆T

B , (4.148)

some minima are lost, as shown in Fig. 4.21, which makes it impossible for the CC to have the
observed value.

If 〈OT 〉 is too small

〈OT 〉 .
√
nφ

εκ

Λ∗
M4
∗
M∆T
∗ ≡ µ∆T

S (4.149)

the degeneracy between the minima of Eq. (4.146) is not lifted enough to scan the CC down
to (meV)4. This defines the two scales µS and µB. To see how these two opposite pressures on
the vev of 〈OT 〉 select the weak scale we need to specify the field content of OT . In the two

following Sections we discuss OT = GG̃ and OT = H1H2.

4.6.1 SM Trigger of the Landscape

The simplest trigger OT is already present in the SM. It is given by the familiar GG̃ operator
that we now couple to the nφ scalars in the low energy landscape,

VNφG =
1

32π2

nφ∑

i=1

(
φi
fi

+ θ

)
GG̃ , GG̃ ≡ εµνρσ

∑

a

Ga
µνG

a
ρσ . (4.150)

16For simplicity we have dropped the subscript i, assuming that all εi, κi and M∗,i are close to a common
value.
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Figure 4.22: Values of the Cosmological Constant in our two-sectors landscape. When 〈OT 〉 = 0
the UV landscape does not have enough minima to scan the CC from M4

∗ down to Λobs ' meV4.
The minimal value of the CC in the landscape is M4

∗/NUV � meV4. When 〈OT 〉 6= 0 the
degeneracy in the vacua of the low energy landscape in Fig. 4.21 is broken and if µ∆T

S .
〈OT 〉 . µ∆T

B we can harness the full potential of its 2nφ vacua and scan the CC down to meV4.
If 〈OT 〉 � µ∆T

B the low energy landscape loses all its minima but one and the minimal CC in
the landscape is again M4

∗/NUV � meV4.

Here we only briefly discuss how to use this trigger in the context of our landscapes. We give
more details in the next Section for the H1H2 trigger.

In the notation of the previous section we have

OT = GG̃ ,
1

fi
=

32π2κiεi√
nφM∗,i

. (4.151)

We imagine that one of the usual mechanisms solves the strong CP problem, leaving at low
energy a residual θ angle smaller than 10−10. We also impose 〈φi〉/fi . 10−10/nφ to avoid
re-introducing the problem. To study the effect of VNφG in Eq. (4.150) we can move φi into the
quark mass matrix with an anomalous chiral rotation and use chiral perturbation theory to get

VNφG '





f 2
π(〈h〉)m2

π(〈h〉)
(∑

i
φi
fi

+ θ
)2

+ ... , 〈h〉 . ΛQCD(〈h〉)
yu

,

Λ4
QCD(〈h〉)

(∑
i
φi
fi

+ θ
)2

+ ... , 〈h〉 & ΛQCD(〈h〉)
yu

.
(4.152)

In the previous equation we have introduced ΛQCD(v∗), which is the chiral condensate with
quark masses proportional to the vev v∗. Similarly f 2

π(v∗) and m2
π(v∗) are the values of these

parameters with EW symmetry breaking at the scale v∗. Note that the dependence on v∗
saturates when ΛQCD(v∗) ≥ v∗ and QCD itself becomes the main source of EW symmetry
breaking.

The potential in Eq. (4.152) makes the number of minima in the landscape sensitive to the
value of the Higgs vev 〈h〉. When 〈h〉 is too large some minima are lost, when it is too small
the minima of Eq. (4.146) remain almost degenerate. To see why minima are lost when 〈h〉 is
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large consider the limit Λ4
QCDM∗/f � ε2M4

∗ , where Eq. (4.152) dominates over the potential
in (4.146). Then at the minimum Eq. (4.152) is effectively fixing

∑
i(φi/fi) = −θ. We can

implement this condition as a Lagrange multiplier

L = λ

(∑

i

φi
fi

+ θ

)
− VNφ . (4.153)

From the point of view of this Lagrangian fixing
∑

i(φi/fi) = −θ corresponds to λ/fi �
∂VNφ/∂φi, so when we try to solve the cubic equation

fi
∂VNφ
∂φi

= fiε
2
iφi
(
φ2
i −M2

∗,i
)

= λ , (4.154)

we are guaranteed to find at most one solution. This would be true also if VNφ was a periodic
potential. This discussion shows that in the limit of large 〈h〉 all minima in the low energy
landscape (but one) are lost.

In summary we have an upper and a lower bound on 〈h〉 that depend on the mass of the
scalars in the landscape and on Λ∗ (the smallest CC in the UV landscape). If we imagine that
both opposing “pressures” are saturated at the same value of 〈h〉, then in the multiverse this
is the only value consistent with Weinberg’s anthropic argument. We have measured this value
to be the weak scale v, so the mass scale in the low energy landscape and the residual CC must
be:

mφ '
fπmπ

min[f,
√
fM∗/θ]

, Λ∗ '
(
N2fπmπ

√
θM∗
f

)2

. (100 keV)4

(
θ

10−10

)
, (4.155)

where mπ and fπ are those observed in our universe. In Eq. (4.155) the value of mφ determines
whether minima are lost or not, so it depends on the term that dominates the QCD potential
of the new scalars. This can either be the linear one if θ > M∗/fi or the quadratic one in
the opposite limit. On the contrary Λ∗ is sensitive only to the linear term, since Λ4

QCDθφ/f
provides the only difference between the value of the potential at the two minima φ ' ±M∗.
This shows that we cannot have an axion lighter than the φi’s and the strong CP problem has
to be solved at higher energies.

There is a priori no reason why the two pressures on 〈h〉 are saturated at the same scale,
given that they arise from two distinct physical requirements (VNφG . VNφ and Λ∗ ' V min

NφG).
In general we expect a range around the weak scale, µS . 〈h〉 . µB, to be viable. We further
expand on this point in the next Section.

4.6.2 Type-0 2HDM Triggering of the Landscape

We now consider the case where the triggering operator is OT = OH = H1H2, so that we have

V (I) =

nφ∑

i=1

[
ε2

4

(
φ2
i −M2

∗
)2

+
εκ
√
nφ
M∗φiH1H2

]
+ V

(I)
H . (4.156)

For simplicity we have dropped the subscript i, assuming that all εi, κi and M∗,i are close to a
common value. The Higgs potential reads

V
(I)
H = (m2

1)(I)|H1|2 + (m2
2)(I)|H2|2 + Λ(I) +

+
λ1

2
|H1|4 +

λ2

2
|H2|4 + λ3|H1|2|H2|2 + λ4|H1H2|2 +

(
λ5

2
(H1H2)2 + h.c.

)

+ YuqH2u
c + YdqH

†
2d

c + YelH
†
2e
c . (4.157)
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Here I = 1, · · · , NUV labels vacua in the UV landscape. We imagine that Λ(I), (m2
1,2)(I) are

uniformly distributed between (−M4
∗ ,M

4
∗ ), (−Λ2

H ,Λ
2
H) where ΛH is the Higgs cutoff. Of course

the simplest choice is to assume Λ2
H ∼M2

∗ , but it is possible to have Λ2
H �M2

∗ and on occasion
we will consider ΛH much smaller than M∗.

The first term in Eq. (4.156) has a large (Z2)nφ discrete symmetry. The couplings φiH1H2

break it down to a single diagonal Z2 under which all φi’s are odd and H1H2 is odd. The small
parameter ε is a measure of the small breaking of the shift symmetry φi → φi + ci, while κ is a
further weak coupling of φi to H1H2, which breaks (Z2)nφ down to the diagonal Z2. By spurion
analysis we should also include

∆Vij ∼
∑

i,j

ε2κ2φiφjM
2
∗ (4.158)

in the potential for φ, which is logarithmically induced by a one-loop diagram. Now, suppose
we are in a region of the big landscape where the operator (H1H2) is not triggered, i.e. µ2 ≡
〈H1H2〉 = 0, say with m2

1,2 > 0 and close to the cutoff Λ2
H . From the UV landscape, we have

a distribution of vacua with CC splittings of order ∆ΛUV ' M4
∗/NUV. When κ = 0, each of

these vacua is 2nφ degenerate, as in the first column of Fig. 4.22. Turning on κ, from ∆Vij
in Eq. (4.158) we get CC splittings of order ε2κ2M4

∗ . If this splitting was much bigger than
∆ΛUV 'M4

∗/NUV, we would already finely scan the CC. So, we assume that κ is small enough
so this splitting is much smaller than the splitting in the UV landscape,

ε2κ2M4
∗ �

M4
∗

NUV

. (4.159)

Note that if we tune down the Higgs masses squared to m2
1 and m2

2, the CC splitting in the
UV landscape increases as

∆ΛUV(m2
1,m

2
2) ∼ M4

∗
NUV

Λ2
H

|m2
1|

Λ2
H

|m2
2|
, (4.160)

so if the condition in Eq. (4.159) is satisfied, then obviously the loop-induced ε2κ2M4
∗ splitting

gets even smaller relative to ∆ΛUV. Thus we must have µ2 = 〈H1H2〉 6= 0 in order to be able
to find a vacuum with the CC much smaller than ∆ΛUV 'M4

∗/NUV.
Now let’s look at the region in the landscape with m2

1,2 < 0, and look at tree-level where

µ2 =
√
|m2

1||m2
2|. If µ2 is too big, we tilt the φi potentials so much as to lose one of the vacua,

as shown in Fig. 4.21. This happens for µ2 & µ2
B where µ2

B is determined from

ε2M4
∗ ∼ κεM2

∗µ
2
B → µ2

B ∼
ε

κ
M2
∗ . (4.161)

When µ drops below µB, we want the splittings in the NIR = 2nφ vacua, now of order εκµ2
BM

2
∗ '

κ2µ4
B, to be much larger than

∆ΛUV(m2
1,m

2
2) ∼ M4

∗
NUV

Λ4
H

|m2
1m

2
2|
∼ M4

∗
NUV

Λ4
H

µ4
B

. (4.162)

So we should have

κ2 � M4
∗

NUV

Λ4
H

µ8
B

. (4.163)

Putting Eq.s (4.159) and (4.163) together, we have

Λ2
HM

2
∗

N
1/2
UVµ

4
B

� κ� M∗
µB

1

N
1/4
UV

. (4.164)
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This forces NUV � (Λ2
HM∗/µ

3
B)4. So for µ2

B ' v2, suppose we take the simplest possibility
where ΛH ∼M∗ ∼MPl. Then, the above inequality tells us that NUV � 10180. In this case, our
mechanism is clearly irrelevant. There would be more than enough vacua in the UV landscape
to simply tune down one Higgs and the CC. For our mechanism to be relevant, we would like
to have NUV � (M4

∗/Λobs)(Λ
2
H/v

2) ' 10120Λ2
H/v

2. Thus we must have

Λ8
HM

4
∗

v12
� 10120 Λ2

H

v2
, (4.165)

and we get an upper bound on the Higgs cutoff: ΛH � 1012 GeV. Note that since NUV �
(Λ2

HM∗/µ
3
B)4, and κ� M∗

µB

1

N
1/4
UV

, we have also an upper bound on the coupling of the new scalars

to the Higgses

κ� µ2
B

Λ2
H

∼ v2

Λ2
H

. (4.166)

With these conditions, ΛH � 1012 GeV and κ � v2/Λ2
H , satisfied, our mechanism works. For

instance if we take ΛH ' 106 GeV, M∗ 'MGUT ' 1016 GeV, κ ' 10−5, ε ' 10−30, NUV ' 1077,
we have µS ' 100 GeV, µB ' 6 TeV and the smallest CC in the UV landscape corresponds to
an Hubble size of O(10R�). With this choice of parameters we have nφ ' 120 light scalars with
mass mφ ' 10−5 eV in the IR landscape which scan the CC down to its observed value. In the
next Section we discuss φi dark matter, but let us mention here two cosmological constraints
necessary for our mechanism to work. First, we must have Hinf � M∗ during inflation. This
ensures that the fluctuations of the φi during inflation are small, so that after inflation, our
Hubble patch has the φis in the basin of attraction of one of the NIR = 2nφ minima. Obviously
the condition Hinf �M∗ is trivially satisfied for M∗ ∼MPl. We also want the φis to be massive
enough to actually oscillate and reach their minima. Minimally we should have mφi � Htoday.
Putting mφ ∼ εM∗ ∼ κµ2

B/M∗, we have that κv2/M∗ � Htoday which gives a lower bound on
κ.

v2M∗
M3

Pl

� κ� v2

Λ2
H

. (4.167)

The resulting condition on ΛH , Λ2
HM∗ � M3

Pl, is trivially satisfied once ΛH ≤ M∗ ≤ MPl.
Indeed, mφ ' Htoday is the limit in which ∆ΛUV < H2

todayM
2
∗ ≤ H2

todayM
2
Pl ∼ Λobs and the max-

imum scan of φ is smaller than the observed CC and thus our mechanism would be irrelevant.
As we keep dropping µ, at some point the splitting εκµ2M2

∗ ∼ κ2µ2µ2
B will eventually

become smaller than ∆ΛUV. This happens for µ = µS, where µS is defined by

κ2µ2
Sµ

2
B ∼ M4

∗
NUV

Λ4
H

µ4
S

, (4.168)

which determines µS as

µS ∼
M

2/3
∗ Λ

2/3
H

µ
1/3
B

1

N
1/6
UVκ

1/3
. (4.169)

Below µ ∼ µS, the extra scanning of NIR = 2nφ vacua cannot bring the smallest CC down,
and the minimum CC shoots back up to M4

∗/NUV. A schematic plot of the smallest CC in the
landscape, as a function of µ2, is shown in Fig. 7. As we have seen, only for µ2

S . µ2 . µ2
B can

the power of the extra 2nφ vacua be harnessed to exponentially suppress the CC’s we can get
from the landscape.
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Figure 4.23: The smallest CC in the landscape as a function of µ2 ≡ 〈H1H2〉. In the light blue
area the CC is smaller than its observed value, while for µ2 > µ2

B or µS < µ2
S it is much larger,

M4
∗/NUV � meV4.

We can perform a similar analysis for the case where m2
1 < 0 and m2

2 > 0, in which
µ2 ∼

√
|m2

1|Λ3
QCD/m

2
2. Here keeping µ2 < µ2

S is easy since µ2 is naturally tiny (' Λ3
QCD/ΛH).

Instead the constraint is in making µ big enough for the splitting κ2µ2µ2
B to be bigger than

∆ΛUV. Clearly ∆ΛUV(µ) is minimized when m2
1 ∼ −Λ2

H . Then µ2 ∼ ΛHΛ3
QCD/m

2
2 and we

obtain

∆ΛUV(−Λ2
H ,m

2
2) ∼ M4

∗
NUV

Λ2
H

m2
2

∼ M4
∗

NUV

µ2ΛH

Λ3
QCD

. (4.170)

To scan the CC to its observed value, we need the splittings in the IR landscape to be larger
than ∆ΛUV. Then we must have

κ2µ2µ2
B � M4

∗
NUV

µ2ΛH

Λ3
QCD

, (4.171)

which gives a lower bound on µ2
B,

µ2
B � 1

NUVκ2

M4
∗ΛH

Λ3
QCD

. (4.172)

If this happens we can also find small CC vacua in this part of the landscape. But note that
we can never find a vacuum that looks like our world here. While the W/Z bosons are massive,
near the cutoff ΛH , the fermions are massless in the effective field theory beneath ΛH . If
we integrate out H2, the 4 fermi operators (qqc)(eec)/m2

2 are generated and leptons also get
minuscule masses ∼ Λ3

QCD/m
2
2 ∼ µ2/ΛH after chiral symmetry breaking. But if we suppose the

parameters of the model are such as to have µ2 . µ2
B . v2, the lepton masses are suppressed

by at least by a factor of v/ΛH compared to our world. In this situation for atoms to form,
the temperature of the universe must drop by a factor of v/ΛH further relative to our universe,
meaning that the CC must be further smaller by a factor of ( v

ΛH
)4 before atoms can form. It

could easily be that NIR = 2nφ is not large enough to realize this possibility. Thus while finding
vacua with tiny CC suppressed by 1/NIR = 2−nφ is possible with m2

1 ∼ −Λ2
H , forcing m2

2 > 0 to
be tuned small, these worlds look nothing like ours. It is only possible to get a world that looks
like ours with m2

1 < 0 and m2
2 < 0. As we have seen in our discussion of the phenomenology of

this model, since the weak scale is set by the largest of the Higgs VEVs, this forces the existence
of new light charged and neutral Higgs states which we cannot decouple or tune away.
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4.7 Statistical Selection in the Multiverse

The very first attempts at explaining the Higgs mass cosmologically were made, to the best
of my knowledge, in [150–152]. The idea was to create a Multiverse with an exponential
accumulation of vacua near m2

h = 0. The basic mechanism can be described as follows. We
have our usual 4-form

F4 = dA3 , (4.173)

introduced in Section 3.4, where we have used a shorthand for Eq. (3.62) employing the defini-
tion of the exterior derivative. The theory contains the terms relevant for the mechanism

S ⊃
∫
d4x
√−g

(
−F

2
4

48
+M2

Pl(−1 +
F 2

4

M2
Pl

)h2

)
+ q(h)

∫
d3ξAµνρ

∂xµ

∂ξa
∂xν

∂ξb
∂xρ

∂ξc
εabc . (4.174)

The nucleation of bubbles can proceed as in Section 3.4, following the Brown-Teitelboim idea.
The crucial difference is that

q(h) =
hN

MN−2
Pl

, (4.175)

this can be enforced via a discrete symmetry [151,152]. After every nucleation, the brane charge
decreases. If N > 2,

∆〈h〉2
〈h〉2 ∝ 〈h〉

N−2 , (4.176)

the vast majority of vacua have 〈h〉 close to zero. We have illustrated the idea for a scalar, but
it can be generalized to an SU(2)L doublet. To populate these vacua, through nucleation of
branes (which is an exponentially slow semiclassical process) eternal inflation is needed. This
introduces the problem of measuring how likely a certain vacuum is. Even if we have a theory
with exponentially more vacua at 〈h〉 ' 0 compared to large values of the vev, we still can not
compute how likely these vacua are in the Multiverse, due to the well-known measure problem
of eternal inflation [367]. This is a common problem of models that aim to explain mh using
“statistical” arguments, i.e. by populating a special landscape where small m2

h is more likely.
Other interesting examples include [368–370]. They most rely on the fact that regions at the
top of the potential, i.e. with larger positive vacuum energy, inflate more, presumably becoming
more likely in the Multiverse. However, they run into the problem of measure just described.

4.8 General Aspects of Cosmological Naturalness

In the previous Sections we have described a number of creative ideas that trace the origin of
the weak scale to early times in the history of the Universe and more are present in the litera-
ture [118,119,151–154,285,319,368–372]. Taken at face value these ideas seem widely different,
selecting the weak scale by unrelated mechanisms and predicting different phenomenology. In
this Section we identify the basic structure common to these proposals and find that a large
subset of these ideas have common ingredients which often lead to similar low-energy predic-
tions.

Cosmological explanations of the weak scale have the schematic structure shown in Fig. 4.24.
Early in the history of the universe (left panel) we have a landscape of values for m2

h and a
symmetric sector weakly coupled to the SM. In the symmetric sector a large hierarchy of scales
is technically natural and it is not destabilized by the small coupling to the SM. The sector is
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Figure 4.24: Models of cosmological selection of the weak scale. A symmetric sector, where a
large hierarchy of scales is technically natural, is weakly coupled to a landscape of values of m2

h.
The SM landscape contains tuned values of m2

h including the observed one and is populated
early in the history of the Universe. At a later time a cosmological event selects the observed
value of m2

h through the coupling to the symmetric sector. Different selection mechanisms are
shown in Fig. 4.25.

symmetric in the sense that its approximate symmetries naturally stabilize a large hierarchy of
scales. At late times, a cosmological event triggered by the Higgs vev and the coupling between
SM and symmetric sector selects the observed value of the weak scale (right panel of Fig. 4.24).

The landscape of vacua can be realized in the form of causally disconnected patches of the
Universe forming a Multiverse [101, 367, 373], possibly populated during inflation. It is easy
to always approximately decouple the landscape to the point of making detection prospects
of the multitude of vacua almost non-existent. However it is useful to keep in mind that the
more standard string theory (or field theory [105, 374]) landscape is not the only option. The
landscape can also be entirely contained in our patch of the Universe, either in the form of a
scanning field coupled to the Higgs, as is the case for the Relaxion [118], or of feebly interacting
copies of the Standard Model, as was proposed in Nnaturalness [119].

We identify three broad categories for the selection mechanism in Fig. 4.25: 1) Anthropic
Selection [104, 375–377]. Observers can arise only if 〈h〉 ' v. 2) Statistical Selection [151,
152, 368–370]. Given some measure, the Multiverse is dominated by patches where 〈h〉 ' v.
3) Dynamical Selection [118, 119, 153, 154, 285, 319, 371, 372]. Only non-empty17 patches where
〈h〉 ' v live for cosmologically long times.

Anthropic and statistical selection do not require new observable physics coupled to the
SM. The mechanism that populates the landscape and generate its structure can take place at
unobservably high energies or be due to non-dynamical fields with extremely feeble couplings
to the SM [151,152,370,372].

Dynamical selection occurs when at early times we have a “standard” landscape, with no
preference for small 〈h〉, but at late times only universes with 〈h〉 ' v exist and are not
empty. The distinction between this class of ideas and anthropic selection might seem blurred.
However there are one conceptual difference and one (more important) practical difference.
The conceptual difference is that dynamical selection mechanisms do not require the absence
of observers from other patches of the Multiverse. The “wrong” values of the Higgs vev are
matter and/or radiation dominated for a very short time compared to the age of the observable

17The simplest definition of an empty a patch is given by a universe where a positive CC always dominates
the energy density. However for our purposes it is sufficient that, as explained below, observers can only exist
for a sufficiently short time. We can consider empty also patches where the CC is positive and larger than a
certain threshold Λ > Λmin. In these patches we can have a period of radiation and/or matter domination that
lasts at most ∼MPl/

√
Λmin. For an empty patch this time has to be much shorter compared to the age of our

universe. In most models this time is much shorter than typical particle physics scales (� 1/v).
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Figure 4.25: Models of cosmological selection of the weak scale. Anthropic selection (upper
left panel), Statistical selection (upper right panel) and Dynamical selection (lower panel)
are distinguished by the structure of the landscape at late times. In the anthropic case the
landscape contains all values of m2

h with no preference for 〈h〉 ' v. In the statistical case
〈h〉 ' v dominates Multiverse according to some measure, but also all other values are present.
In the dynamical case only universes with 〈h〉 ' v are cosmologically long-lived and non-empty.

Universe (often even compared to particle physics scales). During this time, an observer whose
typical timescales are 1/M � 1/v can possibly exist, but it does not change the statement that
the only way to have a universe even remotely resembling our own is to have 〈h〉 ' v. The
practical difference is that dynamical selection requires new physics coupled to the Higgs and
can be detected in the near future. From now on we focus on this class of models that does
not suffer from measure problems and has the best chance of being tested experimentally. Our
idea belongs to this category.

Having said this, it is clear that what we have called dynamical solutions have anthropic
elements. First of all, most of them, including our proposal, rely on Weinberg’s argument to
explain the CC. Secondly, the existence of a macroscopic, long-lived and non-empty universe is
Weinberg’s argument. We have already argued that dynamical solutions, unlike anthropic ones,
do not require the absence of observers from other universes, but we can see how this conceptual
point can be the starting point of endless debates. However we find that the distinction be-
tween these two classes of ideas has practical value in light of the important phenomenological
distinctions that we now discuss.

In existing “dynamical” models the selection mechanism is composed of two ingredients: 1)
one or more new scalars or pseudo-scalars with masses inversely proportional to the cutoff of
the Higgs sector and 2) an operator whose vev is a monotonic function of the Higgs vev. These
operators are coupled to the new scalar(s) and were collectively identified as triggers in [153].
When the Higgs vev (and thus the operator vev) crosses certain upper or lower bounds, a
cosmological event is triggered via the coupling to the new scalar(s).

In the next two Subsections we show why we expect new particles with masses inversely
proportional to the cutoff and how the choice of trigger operator determines the phenomenology
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Figure 4.26: Schematic structure of how the Higgs-dependent potential VHφ can affect the scalar
potential Vφ to trigger a qualitative change when 〈h〉 ' v.

of dynamical selection. Our considerations apply to the majority of these models, but exceptions
to the power counting arguments in the next Section exist, either because the weak scale is not
selected by comparing two different terms in the potential of a new scalar, but rather directly
its mass to that of SM particles [119] or because it occurs via a non-dynamical field [372].

4.8.1 Cosmological Naturalness Power Counting

The presence of new light scalars φ, in many of the models that dynamically select the weak
scale in the early history of the Universe, can be understood from a simple parametric argument.
Neglecting O(1) factors we can write any term in the φ potential as

Vφ ⊃ m2
φM

2
∗

(
φ

M∗

)m
. (4.177)

Here and in the following, we restore units of ~ [378] to infer the correct parametrics. How-
ever, for simplicity, we keep giving formulas in natural units ~ = 1. If ~ 6= 1 masses and
scalar fields/vevs have different dimensions and we will be careful about this distinction. In
our formulas M∗ is a cutoff scale (with the same dimensions as φ), whereas mφ is a mass.
Dimensionally, mass = coupling× scale.

We can now include an interaction between φ and the Higgs boson. We denote the cutoff
scale of the Higgs sector by ΛH and by ṽ ≤ v possible light SM or BSM scales, not depending
explicitly on the Higgs vev 〈h〉. Then, integrating out the SM at tree-level we have

V〈H〉φ ' µ2M2
∗

(
φ

M∗

)n
ṽ2q−j〈h〉j

Λ2q
H

, (4.178)

with q ≥ 1 and j > 0. Examples of couplings of φ to the SM present in the literature include:
1) φTr[GG̃] [118,151,152,154,368], giving

ṽ2q−j〈h〉j ' f 3
π〈h〉 (4.179)
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Figure 4.27: Schematic diagram giving loop corrections to the potential Vφ from two insertions
of VHφ. The scalar φ is denoted by a continuous line, the 2q Higgs propagators by dashed lines.

for QCD (note that fπ depends on 〈h〉). A similar result holds for BSM gauge groups whose
quarks get part of their mass from the Higgs. 2) φnH1H2 [153]:

ṽ2q−j〈h〉j =
sin 2β

2
〈h〉2 (4.180)

and 3) φn|H|2 [285,319,369]: ṽ2q−j〈h〉j = 〈h〉2.

To select the weak scale, we need the Higgs-induced part of the potential V〈H〉φ to be com-
parable to the Higgs-independent part Vφ when 〈h〉 ' v, as sketched in Fig. 4.26. Alternatively,
if the mechanism involves, for instance, stopping a slow-rolling scalar, we want the first deriva-
tives with respect to φ to be comparable [118]. With our parametrization of the potential these
two conditions lead parametrically to the same result

m2
φ

µ2
' ṽ2q−jvj

Λ2q
H

. v2q

Λ2q
H

. (4.181)

This shows that the separation between the weak scale and the Higgs cutoff is given by an
approximate symmetry on φ that protects its mass and potential. Furthermore, it gives a
smoking-gun signature for these models. If we measure the φ mass, its coupling to the SM µ
and the Higgs cutoff ΛH , we can test Eq. (4.181).

We can go even further and obtain an upper bound on mφ that depends only on the cutoff
scales M∗, ΛH , by noticing that µ2 has two upper bounds. One is determined by experiment,
since µ2 sets the strength of φ interactions with the SM. The other one comes from quantum
corrections, since integrating out the SM beyond tree-level can generate contributions to Vφ,
but to select the weak scale Vφ cannot be too large (i.e. it has to be comparable to the tree-level
Higgs-induced potential V〈H〉φ when 〈h〉 ' v). We now use these constraints to derive upper
bounds on mφ for three different types of couplings of φ to the SM.

The simplest example is given by the φ|H|2 coupling. Let us first consider the impact of
quantum corrections on µ. In this case the leading contribution to Vφ is from a single insertion
of VHφ,

VHφ = µ2M∗ φ
|H|2
Λ2
H

. (4.182)

By closing the Higgs loop we see that (barring fine-tuning) m2
φ & g2

Hµ
2/16π2, with gH being a

coupling in the Higgs sector. This takes into account that Higgs loop integrals are cut off by a
mass scale gHΛH (and not a vev ΛH). Eq. (4.181) supplemented by this condition on µ shows
that a cosmological selection mechanism with the trilinear coupling φ|H|2 can solve only the
little hierarchy problem

gHµ . 4πmφ → gHΛH . 4πv . (4.183)
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To get the bound onmφ we may use the fact that µ has an experimental bound µ < µexp(mφ;M∗,ΛH),
so that (4.181) gives: mφ . µexp. We do not give the explicit value of µexp since it depends
strongly on mφ. In Fig. 4.17 we plot it in terms of κ ≡ µ2M∗/(Λ

2
Hmφ) for mφ . eV.

Instead, if the leading contribution to Vφ arises from two (or more) insertions of VHφ (for
instance in the φH1H2 case) we have

g4q−4
H

(16π2)2q−1

µ4M4
∗

Λ4
H

. m2
φM

2
∗ , (4.184)

as shown in Fig. 4.27, assuming for simplicity j = 2q, so that extra light scales ṽ are absent. If
we put this together with Eq. (4.181) we obtain

mφ .
g2
HΛ2

H

4πM∗

(
4πv

gHΛH

)2q

. 4πv2

M∗
, (4.185)

where the last inequality is valid in the φH1H2 case, i.e. 2q = 2. We can raise the cutoff all
the way to MPl, predicting very light scalars with mφ . v2/M∗.

As our last example, we consider the coupling (φ/M∗)Tr[GG̃]. With this choice, quantum
corrections do not give us any information on mφ beyond Eq. (4.181). In this case experiment
is more useful. Stringent bounds on axion couplings allow us to conclude

m2
φ . µ2

exp

vf 3
π

Λ4
H

' (0.1 eV)2

(
108GeV

M∗

)2

(4.186)

for QCD. A similar discussion holds for (φ/M∗)Tr[FF̃ ] with a new non-abelian gauge group
whose charged fermions have a 〈h〉-dependent mass [118].

These three examples make more precise the intuition from Eq. (4.181). The separation
between the Higgs vev and the cutoff is made stable by a symmetry protecting mφ. They also
provide a second type of inequalities that can be used to test these mechanisms: the bigger the
cutoff M∗ of the φ sector the lighter we expect the new scalars to be. Note that Eq. (4.181)

on its own, in the φTr[GG̃] case, does note give an experimentally interesting relation between
mφ and ΛH , because µ depends on ΛH in a way that cancels it from the equation.

To conclude we remark that one can couple φ to the SM more weakly than what naturalness
or experiment require, making it even lighter. The dilaton in [285], mχ ' MeV−GeV, saturates
our upper bound for the cutoff M∗ ' ΛH ' few TeV. On the contrary, the scalar in [319] is
much lighter mφ . v4/M3

Pl even if the same |H|2 trigger was used and the cutoff is of a similar
order. The relation in Eq. (4.181) between the φ mass and the coupling to the SM remains
valid. This gives an interesting target to laboratory searches, as we discuss in Section 4.5.3 in
the context of dark matter.

4.8.2 Trigger Operators and Low Energy Predictions

The second generic prediction of mechanisms selecting the weak scale dynamically is old or new
physics with relatively small mass m . 4πmh coupled at O(1) to the Higgs. This is what we
have called the trigger, i.e. the local operator whose vev depends on 〈h〉. We have already seen

in the previous Section that three examples exist in the literature: φTr[GG̃], φH1H2, φTr[FF̃ ],
where G is the QCD field strength and F the field strength of a BSM gauge group. In the
previous Section we have also discussed φ|H|2, but as noted also in Section 4.2 this is an
imperfect trigger that can barely explain the little hierarchy problem.

Clearly the choice of trigger is central to the phenomenology of the model. From the point of
view of experiment, models of cosmological naturalness can be conveniently classified based on

129



their trigger. For example, theories with a φTr[GG̃] coupling predict axion-like phenomenology
at low energy, while theories with φH1H2, Equivalence-Principle-violating light scalars and a
new Higgs doublet.

In the SM we essentially have only one possible category of operators that can act as a
trigger, given by divergences of non-gauge invariant currents: Tr[GG̃] and Tr[WW̃ ]. In this
case QCD and EW interactions are the physics coupled to the Higgs, characterized by mass
scales comparable or smaller than mh. However purely within the SM the weak θ-angle is not
observable [379]. The difficulties associated to using Tr[WW̃ ] as a trigger beyond the SM are
discussed in Section 4.2.4.

Constructing BSM triggers requires introducing new physics coupled to the Higgs. For
instance we can have a second Higgs doublet and the operator OT = H1H2 [142, 150, 153] or
a new confining gauge group whose fermions have a Yukawa coupling to the Higgs [118] with

trigger operator OT = Tr[FF̃ ]. In general if we introduce in the BSM theory masses much
larger than mh the vev of the trigger operators will be proportional to those scales rather than
v, just from dimensional analysis. This is one of the familiar incarnations of the hierarchy
problem, i.e. dimensional analysis works.

Other examples of triggers that might work in extensions of the SM are Tr[WW̃ ] or higher
dimensional operators breaking baryon and/or lepton number. Both options require adding to
the SM new baryon and/or lepton number breaking sensitive to the Higgs vev. To assess the
feasibility of these ideas a phenomenological study comparable in scope to the one performed
in [153] for H1H2 is needed.

The difficulty in finding BSM “trigger” operators OT lies in the requirement that 〈OT 〉
must be sensitive to the Higgs vev. In general we need new particles coupled at O(1) to the
Higgs whose typical mass scales are at most comparable to the weak scale. Beyond the SM it
is extremely challenging to find new physics with these characteristics not already excluded by
the LHC. Currently viable models, as the type-0 2HDM proposed in [153], which leads to the
operator in (4.96), are on the verge of being discovered or excluded. A similar phenomenological

analysis has been performed for Tr[FF̃ ] in [157].
In practice only a limited number of trigger operators is viable and each trigger can be

used in many different ways to select the Higgs mass. For example Tr[GG̃] is used in [118,151,
152, 154, 368]. So each trigger identifies phenomenology that is generically associated to Higgs
naturalness, independently of a specific construction.

This feature is generic to a large class of models that select the observed value of the weak
scale in the early history of the Universe: only a few choices of couplings to the SM are possible.
This leads to unified expectations for their phenomenology and the concrete possibility of testing
in the near future the concept of cosmological naturalness for the Higgs mass.
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Chapter 5

Conclusion

It was the best of times, it was
the worst of times

Charles Dickens

The questions surrounding the Higgs boson mass have driven most of the research in particle
physics in the last decades. Experiments at LEP and at the LHC have neither discovered the
symmetries that we expected [29, 30, 63–66, 68, 380–383] nor those that initially we did not
expect [384,385], leaving the value of the Higgs mass as puzzling as ever.

This situation has led some to question the problem rather than its proposed solutions.
However, the problem is more concrete and interesting today than it ever was. It is more
concrete because we have discovered the Higgs boson, measured its mass and established that
it is a fundamental scalar1. The results from LEP were already pointing to a naturalness
problem, but before the LHC we did not know what caused electroweak symmetry breaking in
the Standard Model.

The problem is now more interesting because its most elegant solutions can not be realized
in their simplest form and it is unclear whether we should abandon them entirely and radically
change our outlook on the weak scale or accept some amount of tuning as a fundamental aspect
of physics. Either way we will learn something new about Nature.

Possibly the most fascinating aspect of this question is that even ignoring it amounts to
making important assumptions about physics at high energies. The Higgs boson mass is not
calculable in the Standard Model, it is a measured parameter of the effective theory, so we
could say that in our current description of Nature there is no problem and forget the whole
issue.

However this leaves open only two possibilities: 1) The Higgs mass is not calculable at
any energy 2) There is no mass scale beyond the Standard Model sufficiently strongly coupled
to the Higgs to generate a fine-tuning problem. The first option, even if seemingly harmless,
strongly constrains fundamental physics at high energies, to the point that we do not know
a theory of quantum gravity that realizes it. The second one has interesting implications
for model building and the description of other aspects of fundamental physics (dark matter,
gauge coupling unification, ...) [94–96], and it forces us to think about theories of gravity with
no new scales [47–51] whose consistency is still unclear [90–93] or to even more speculative
generalizations of 2D theories [52].

At the moment the (theoretically) most conservative attitude is to assume that supersym-
metry (or anything else that makes the Higgs mass calculable) exists below the scale of quantum
gravity. For concreteness we can imagine that string theory describes gravity at high energies

1At least up to a factor of ten in energy above its mass
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and supersymmetry is broken somewhere below the string scale. In this case, at the theory level
the naturalness problem of the Higgs mass squared can be stated sharply, already at tree-level
and without any ambiguity. The Higgs mass is a calculable function of supersymmetric param-
eters that in principle we can measure independently. If two or more measured contributions to
the Higgs mass are much larger in absolute value than its central value we want to understand
why. It is not guaranteed that the explanation will manifest itself at low energy, it might be
related to the distribution of supersymmetry breaking parameters in a Multiverse or to the
constraints imposed on their values by quantum gravity. However, even in these cases, thinking
about the problem can shed light on fundamental aspects of physics.

We have been looking for symmetric (or dynamical) explanations for the Higgs mass for more
than 40 years and we have not yet found any obvious sign that they are realized in Nature. This
has generated a “little” hierarchy problem [34, 46]. We have established a hierarchy between
the Higgs mass mh and the scale at which new sources of flavor and CP violation can appear
in Nature. This considerably complicates extending the SM to accommodate a symmetry or
new dynamics that can protect the Higgs mass. The problem is further complicated by the null
direct searches at LEP and the LHC.

Faced with these results we can take a different perspective and consider seriously the
existence of a landscape for m2

h. If we accept the existence of a vast landscape of vacua (for
instance because of the cosmological constant or just because of string theory), it is likely
that m2

h varies from vacuum to vacuum. Note that even if we extrapolate to the extreme
the explanatory power of current swampland conjectures [117] and imagine that the measured
Cosmological Constant (CC) can be understood from the internal consistency of string theory,
we still expect the existence of a vast landscape of vacua.

Historically the existence of a landscape for m2
h coincides with anthropic solutions to the

electroweak hierarchy problem [104]. Recently a new class of ideas emerged that makes a
very different use of the landscape [118, 119, 154, 285, 319, 372], with much better prospects for
detection and little or no recourse to anthropic arguments. In these models a dynamical event is
triggered by the Higgs vev during the early history of the Universe. This event selects the value
of m2

h that we observe today, leaving traces at low energy that can escape current searches, but
are in principle detectable in the near future.

The newest implementations of this idea are simple, in particular [154] has the following
qualities : 1) It is entirely described by a simple polynomial potential for two weakly-coupled
light scalars 2) it does not make any assumption on what can explain current CMB observations,
in particular it is compatible with one’s favorite mechanism (and scale) for inflation, but also
with de Sitter swampland conjectures 3) it can explain a small value of the Higgs vev v '
246 GeV, even if the Higgs is coupled at O(1) with particles at MPl, 4) it is not affected by
problems of measure in the landscape2. 5) It makes definite experimental predictions that can
be tested in the near future.

The main lesson that I have learned from [154] and many more ideas of cosmological selection
for mh that were discussed or referenced in this work are that we are still far from exploring
experimentally all possible low energy traces of naturalness.

A second more technical, but equally interesting point is that mh and the QCD θ-angle
might be more intimately related than previously thought. It was well known that the vev of
Tr[GG̃] depends on both, but I find fascinating that this is the only SM operator sensitive to
〈h〉 and that the explanations for this sensitivity are highly non-trivial. The series of apparent

2If the landscape is populated via eternal inflation there will be a measure problem if one is interested in
understanding what values of fundamental parameters are more likely in the Multiverse. However this does
not affect the validity of the mechanism, since we are not asking probabilistic questions in the Multiverse. We
instead have a theory where all unwanted patches are either always empty or always crunch. So we never need
to know if the unwanted patches are more or less likely (occupy a smaller or larger volume in the Multiverse)
than the one that we observe.
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coincidences that make it possible might be concealing something deep about Nature.
Many might find the restrictions imposed by m2

h cosmological selection on the landscape
not very palatable. However, they do not violate any real or imagined constraint imposed by
string theory, so to them I say: experiment will decide. Our aesthetic sense has already failed
us more than once, particularly spectacularly about m2

h (for instance about supersymmetry
at LEP). I think that this is the time to be humble and explore alternatives that might seem
overly adventurous to our EFT intuition.

Paraphrasing Dickens only slightly: It is the best of times, it is the worst of times, it is the
age of wisdom, it is the age of foolishness, it is the epoch of belief, it is the epoch of incredulity,
it is the season of light, it is the season of darkness, it is the spring of hope, it is the winter of
despair.
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