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Résumé

Pour un mix énergétique, la maîtrise de la fusion nucléaire offre l’opportunité d’une
source d’énergie abondante et renouvelable. Les tokamaks ont montré les meilleurs
performances pour confiner un plasma de fusion grâce à des champs magnétiques
et ont été choisis comme la prochaine génération de machines pour la recherche
en fusion (ITER). L’évacuation des flux de chaleur et l’augmentation du temps de
confinement sont les deux principaux défis pour les tokamaks. Ils sont directement
en lien avec le transport perpendiculaire, essentiellement turbulent, vers le mur. Pour
améliorer le confinement, le mode H est recherché. Il crée un piedestal sur la pression
dans le plasma de bord, réduisant le transport perpendiculaire mais est associé à des
relaxations, les ELMs, responsables d’un afflux de chaleur transitoire sur les murs
au-delà des limites tolérables. Pour supprimer ou mitiger les ELMs, des pertubations
magnétiques 3D (MPs) ont été ajoutées grâce à des bobines externes. Les impacts
des MPs sur les ELMs, la transition L-H, leur écrantage ou leur résonance sur le
champ magnétique ont été étudiés. Peu de données existent sur leur impact sur la
turbulence dû à la difficulté de mesures expérimentales et à la complexité sur les outils
numériques nécessaires.

Dans cette thèse, nous abordons la question par la modélisation du plasma de bord,
de l’extérieur du coeur à la SOL. 2 codes complémentaires sont utilisés : un code fluide
3D électrostatique turbulent, TOKAM3X et un à champs moyens, SOLEDGE3X_HDG.

Avec TOKAM3X, un effort conjoint de l’IRFM (CEA), du M2P2 et du PIIM, nous
observons l’impact de MPs 3D sur la turbulence de bord. La capacité de traiter des
perturbations 3D a été ajoutée durant cette thèse. Une approche par étape a suivi,
d’abord par des simulations isothermes electrostatiques avec une MP mode simple
dans une géométrie circulaire avec limiteur. Des observations expérimentales ont
été reproduites comme la perte de densité par les MPs, ansi que les variations du
champ électrique radial, associées à une redistribution poloïdale et toroïdale des
flux. Les MPs impactent modérément la turbulence, réduisant l’intermittence dans
la SOL et les fluctuations de densité. Une complexification du modèle a été faite
sur des simulations non isothermes. Nous montrons l’importance du découplage
entre particule et énergie. Différents résultats sont observés lorsqu’un flux simpliste
de particules en provenance du coeur est comparé à un flux recyclé, plus réaliste,
en provenance du limiteur. Des tendances expérimentales sont retrouvées dans le
cas avec recyclage mais seulement partiellement dans le cas sans. L’impact sur la
turbulence est à nouveau modéré mais différent suivant les cas, particulièrement
lorsque l’on distingue la turbulence associée à l’énergie ou aux particules.

Une analyse des conséquences de ces observations sur les simulations à champs
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moyens est proposée par à une comparaison directe. Des différences significatives
sont observées par rapport aux simulations turbulentes qui ont des perturbations
toroïdales non-axisymétriques d’amplitudes bien plus importantes. Leur localisa-
tion spatiale est également différentes. Ces résultats démontrent certaines limites de
l’approche à champs moyens sur la modélisation des MPs et appellent à poursuivre
l’effort sur des simulations turbulentes auto-consistantes. Enfin, les premiers résultats
sur des simulations à champs moyens TOKAM3X avec des MPs plus réalistes sont
présentés. L’impact est plus faible (en amplitude) et plus localisé. Une extension de ce
travail a été implémentée sur SOLEDGE3X_HDG, utilisant pour la première fois son
modèle 3D, pour explorer des géométries et MPs plus complexes (jusqu’à un ripple
en géométrie WEST). Les MPs réalistes ont un comportement similaire aux observa-
tions faites avec TOKAM3X champs moyens mais avec des différences notables. Le
ripple modifie l’équilibre global du plasma mais, en accord avec la théorie, impacte
faiblement sa symétrie toroïdale.

Mots clés : fusion, plasma de bord, SOL, turbulence, transport, RMP, ripple
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Abstract

For the energetic mix, the mastery of fusion offers the possibility of an abundant and
sustainable source of energy. Tokamaks have demonstrated the best performance to
confine a burning plasma with magnetic fields and are the concept chosen for the
next generation fusion research device (ITER). The power exhaust and the increase
of the confinement time are two major challenges for tokamaks. These are linked
to the perpendicular, mostly turbulent transport toward the wall. To improve the
confinement, high confinement regimes (H-mode) are sought. The H-mode creates
a pressure pedestal at the edge plasma, decreasing the perpendicular transport but
is associated with deleterious relaxation events, the Edge Localized Modes (ELMs),
which lead to transient heat fluxes to the wall beyond tolerable limits. In order to
mitigate or suppress the ELMs. 3D magnetic perturbations (MP) have been added
through external coils. If the impact of MPs on ELMs, on the L-H transition, their
screening by the plasma or their resonance on the magnetic field have been studied,
few data exist on their impact on the turbulent transport owing to the difficulty of
measuring relevant quantities in experiments and to the complexity of the required
numerical tools on the modelling side.

In this thesis, we tackle this question through the modeling of the edge plasma,
from the outside core to the Scrape-Off Layer (SOL). 2 codes are used to address 2
complementary aspects: a 3D electrostatic fluid turbulent code, TOKAM3X and a
mean-field one, SOLEDGE3X_HDG.

With the TOKAM3X code, a joint effort of IRFM (CEA), M2P2 and PIIM, this thesis
aims at observing the impact of 3D MPs on edge turbulence. The capability to treat
3D perturbations has been added to the code. A step-by-step approach has been
followed, starting with an electrostatic isothermal model with single mode MP in a
limiter circular geometry. This first study reproduces some experimental observations,
such as the loss of density due to MPs (density pump-out) as well as the variation of the
radial electric field, associated with a redistribution of poloidal and parallel flows. In
this model, the MPs only moderately impact turbulence properties, mainly decreasing
its intermittency in the SOL as well as the density fluctuations. A complexification
of the model is then done, going into non isothermal simulations. We show that the
decoupling of particles and energy is important, as different results are observed
when a simplistic incoming particle flux from the core is used compared with a more
realistic recycling source around the limiter. Experimental trends are recovered for
the recycling cases but only partially for the non recycling ones. The impact on
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turbulence is still moderated but quite different between the two sets, especially
when one distinguishes between particles and energy associated turbulence. An
analysis of the consequences of such findings for mean-field simulations is then
proposed through a direct comparison. It shows a significant difference with turbulent
simulations having higher amplitudes of non-axisymmetric density perturbations.
Their spatial localization are also distinct. These results demonstrate some of the limits
of the constant transport ansatz used in mean-field codes for modeling of MPs and
call for further studies with self-consistent turbulent transport. Finally, first results in
the direction of more realistic MPs spectra are presented, using TOKAM3X mean-field
cases as a start. Their impact is smaller and more localized on the Low Field Side (LFS).
An extension of this work is done on SOLEDGE3X_HDG, testing its 3D ability for the
first time, in more complex geometries and even simulating a realistic ripple in WEST
geometry. Realistic MPs shows comparable behaviour with the mean-field version
of TOKAM3X with notable differences. Ripple shows a modification of the global
equilibrium but, as predicted by theory, little impact on toroidal non-axisymmetric
events.

Keywords: fusion, edge plasma, SOL, turbulence, transport, RMP, ripple
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1. Introduction–1.1. Controlled nuclear fusion: a general introduction

This chapter aims at a general presentation of controlled nuclear fusion. The toka-
mak, a magnetic confinement device, is the focus on this part with the introduction of
some important parameters necessary for the understanding of this thesis.

1.1. Controlled nuclear fusion: a general

introduction

The control of the thermonuclear reaction, or fusion reaction, occuring in the stars,
aims at adding a new energy source for producing electricity. This section explains
the choice of the deuterium tritium reaction as well as a quick view of the different
ways to create controlled fusion reactions.

1.1.1. Fusion reactions: the choice of D-T fusion

Fusion reactions occur naturally in the stars. The reaction is quite complex and evolves
the inconspicuous weak interaction. Through the high pressures and temperatures,
matter is submitted to, hydrogen atoms are separated into electrons and protons
(nuclei for hydrogen), forming a ionized state of matter: a plasma. Chain reactions
done in several complex steps transform the hydrogen into hydrogen isotopes 2

1H,
called deuterium 2

1D, that then fuses with hydrogen to form helium 3, 3
2He and two

helium 3 fuse to form 2 protons (hydrogen ion) and a helium nucleus (noted α), 4
2He.

This process involving the smallest nuclei of the matter, produces great amount of
energy due to the mass difference between the products and the reactants, following
the famous law: E = m · c2.

On Earth, helium 3 is almost inexistant but deuterium can be found in ocean
water (0.03% of the total hydrogen mass). To achieve a fusion reaction, the Coulomb
repulsion must be vanquished. In the stars, the enormous mass exerts a massive
pressure and, coupled with a high temperature, it allows to bypass the Coulomb
potential and to ensure an efficent probabality for the two particles to fuse (mostly by
tunnel effect, even at such temperature). This probability is called the cross-section
and depends on the temperature and the particles considered. Figure 1.1 gives an
idea for different pair of particles as a function of the temperature, expressed in keV, at
normal pressure. The electron-Volt (eV) is an energy unit and can be easily convert into
Kelvin with the Boltzmann constant kB . Thus 1 eV → 1.16 ·104 K. We can immediately
see that the most favorable reaction at the lowest temperature (still of the order of a
hundred millions Kelvin) is Deuterium-Tritium (D-T).
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1. Introduction–1.1. Controlled nuclear fusion: a general introduction

Figure 1.1.: Cross-section of main fusion reactions as a function of thermal energy [123,
Chap. 1]

Due to the rarity of helium 3 and the unfavorable behaviour of the D-D reaction at
low temperature1, the fusion reaction of interest on the Earth is:

2
1D+ 3

1T = 2
2He (3.5 MeV)+ 1

0n (14.1 MeV) (1.1)

To give an order of comparison, for the same mass of matter, the amount of resulting
energy (in Joule) of such fusion reaction is a million times larger compare to a typical
combustion reaction with oil and 5 to 10 times higher than a fission reaction with
uranium. The energy given in parenthesis is the one transported by each particle. The
alpha particles He contained 1/5 of the energy, whereas 4/5 are in the neutron n. This
neutron can be used to artificially produced tritium (a non-existent element in the
universe as its half-life is only 12 years) from 6

3Li, an isotope of lithium. The neutron
is also the particles that shall heat the wall and allows to extract the energy (the α

particles shall remains confined by the magnetic field in a tokamak).

1.1.2. Energetic approach: the Lawson’s criterion

To achieve an efficient fusion reaction on the Earth, the matter must be heated to
hundreds of millions of Kelvin. This temperature forces the matter to a state of plasma,
where nuclei (ions) and electrons are mostly (even completely) decoupled, resulting

1Low from a certain point of view. . .
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1. Introduction–1.1. Controlled nuclear fusion: a general introduction

in a mixture of free electrons and ions. To outline the yield of a fusion reactor, the
amplification factor Q is defined as:

Q = Pfus

Pinj
(1.2)

where Pinj is the injected power through heating. The methods of heating from external
sources, in a non exhaustive list, range from ohming heating, high velocity particule
injection, waves heating and laser heating. Internal source of heating is mainly the
collisional process with the α particules. Performing an energetic balance with the
sink mechanisms, such as the radiative process or the conductive and convective
losses, the Lawson’s criterium can be written as [65]:

nTiτE = f (Q) (1.3)

where n is the plasma density, Ti is the ion temperature and τE is the confinement
time of the energy. This time translates the exponential decay of the energy when all
external sources are shut down. The conditions to have a viable fusion machine to
produce electricity state:

Q ≥ 1 or nTiτE ≥ 2.7 ·1021 m−3 ·keV · s−1 (1.4)

The maximisation of Q can thus be roughly reduced with the maximisation of the
plasma density, the temperature and the energy confinement time. Depending of the
maximization criteria, different fusion devices had been considered through history.
In practice Q = 1 is not sustainable from an economic point of view and the goal is
actually more Q ≥ 40 (only 1/3 of the heating power can be transform into electricity,
according to Carnot’s theorem).

1.1.3. Different ways to see fusion: inertial or magnetic fusion

The number of proposed devices since the beginning of the world wilde research (1951)
for mastering fusion energy is vast. Considering D-T fusion, the ion temperature is
more or less imposed to be Ti ∼ 20 keV, which in itself constitute an upper limit due
to the technical challenge to achieve such a temperature on a large cluster of particles
(a particule accelerator can go a lot higher but on a really small number of particles).
The two other free parameters are thus the density and the energy confinement time.
Increasing both at the same time is not realistic and this constraint gave birth to two
different ways to see controlled fusion devices:

• the inertial confinement devices at high density (n ≥ 1031 m−3) but low confine-
ment time (τE ≤ 10−11 s).

• the magnetic confinement devices at low density (n ≤ 1020 m−3) but high con-
finement time (τE ≥ 1 s).
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1. Introduction–1.2. Tokamak configuration

The inertial confinement method uses high power LASER to compress a micro pellet
of solid D-T. The research is more military oriented and few devices exist through the
world. The most well-known are the NIF (National Ignition Facility) in the USA and
the LMJ (Laser MegaJoule) in France.

The magnetic confinement method uses powerful electromagnetic fields to confine
low density plasmas. The research is mainly oriented toward civilian applications
(electricity production). The most advanced concept is the tokamak and recent devel-
opments in computer technology (through Computer Aided Design) have allowed the
return of another device called stellarator (Wendelstein-7X being the most recent one,
in Germany [28]).

In this thesis, we study the tokamak configuration. A large number of machines
exist in the world. DIII-D [92] and NSTX-U [75] are US machines, WEST [14] a french
one, TCV [21] is in Switzerland, ASDEX-U [76] in Germany, MAST-U [56] and JET [72]
in the UK, EAST [130] in China, K-STAR [89] in Korea, JT-60SA [2] in Japan, etc. Recent
developments have resulted in the International Thermonuclear Experimental Reactor
(ITER) project, the largest tokamak to date, currently build in France with the conjoint
effort of the EU and associates (Switzerland, UK), the USA, China, India, Korea, Russia
and Japan.

1.2. Tokamak configuration

This section discusses the basic principles of the tokamak configuration. It goes from
the basic principle of the machine to the complex geometry of current tokamaks.

1.2.1. Basic principles

With a temperature of more than a hundred millions degrees, the containement of
the matter in the state of a burning plasma is of immediate concern. A plasma being
a charged state of the matter, the use of magnetic fields is the first answer to avoid
direct contact with a solid wall. The history of the tokamak was probably born from
the observation of the earth natural magnetic field. At the Poles, the magnetic field is
stronger and when solar winds strike the Earth, the particles follow the magnetic field
lines and bounce at the Poles. A part of the particles can bypass the magnetic field
and create the famous aurora borealis. The specific configuration of a weak magnetic
field at the center and a stronger one at the ends is the basic principle of the mirror
configuration [94], one of the first kind of magnetic devices. To avoid the leak at the
extremities (where the magnetic field is stronger), the device can be closed in a torus,
which is closed to a tokamak form.

To create a toroidal magnetic toroidal field Btor, toroidal coils are set evenly around
the torus (in red on Fig. 1.2). In theory, the charged particles follow the toroidal field
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lines (circles) in a helical pattern. The gyration radius of a particles around a field line
is called the Larmor radius ρL :

ρL = ms v⊥
qsB

(1.5)

where ms is the mass of the particle, qs its charge and v⊥ the cross-field velocity, which
is of the order of the thermal velocity vTs =

p
Ts/ms . For a deuterium ion D+, at a

temperature of around 10keV, in a magnetic field of 3T (Tesla), typical of magnetic
confinement machines, the Larmor radius is of the order of ρL ≈ 5 ·10−3m. With the
toroidal magnetic field, the particles are thus theoritically confined in the transverse
direction, but still free in the parallel one. This freedom is not a problem due to the
periodicity of the magnetic field. Nevertheless, a toroidal field creates inhomogeneities
between the High Field Side (HFS) and Low Field Side (LFS). By application of the
Ampère Law, it can be shown that Btor ∝ 1/R, with R the major radius (see Fig. 1.3).
The magnetic field is stronger at the HFS, resulting in different kind of drifts for the
particles (see Subsection 2.1.1 about the drift ordering). One of the drifts, due to the
magnetic gradient, is vertical by nature. It creates a top-bottom polarization of the
plasma, as the ions and electrons drift in opposite direction, generating a vertical
electric field. This electric field then drives the E ×B drift, directed to the outer side
of the tokamak, and main responsible of the loss of confinement. To counter these
drifts, a second magnetic field has been added (by russian researchers in the 1950s),
the poloidal magnetic field Bpol. It is created by a toroidal current generated through
the plasma by induction. The induction coil is situated at the center of the torus and
called the central solenoid (in yellow on Fig 1.2).

Figure 1.2.: Basic sketch of a tokamak. In red are the poloidal coils that create the
toroidal magnetic field Btor. In yellow is the central solenoid that drives
(by induction) the plasma current and thus the poloidal magnetic field
Bpol. The resulting magnetic field B is in black

The resulting magnetic field B = Btor +Bpol create a helicoidal field with magnetic
field lines turning around the torus. The ratio between the two fields is, in most
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tokamaks, around 1:10, with the strongest being the toroidal field. The complete
magnetic field forms an infinite set of magnetic surfaces from where field lines lie
upon (see Fig. 1.3). The internal forces in the plasma are expressed through the
plasma pressure p and to maintain the plasma equilibrium, the magnetic field directly
opposes this pressure. The basic condition for equilibrium in the MHD approximation
writes (see [132, Sec. 3.2]):

j ×B =∇∇∇p (1.6)

where j is the current density. We can immediately see (B · ∇∇∇p = 0) that magnetic
surfaces are also surfaces of constant pressure and that the current lie in the magnetic
surfaces. To better study the plasma equilibrium, the poloidal magnetic flux function
ψ is introduced, which is a representation of the poloidal flux lying within each
magnetic surface and thus a constant for each surface. It is then natural to labelled ψ

each flux surface (see Fig. 1.3). ψ can then define a radial coordinate different from
the minor radius r , as flux surfaces are not necessarily circle nor centered in the torus.
In an axisymmetrical equilibrium (independant of the toroidal angle ϕ), we have
thus B ·∇∇∇ψ= 0 and the poloidal magnetic field is directly related to ψ, defined as the
poloidal flux per radian in ϕ.

To characterize the number of poloidal turn per toroidal one of a field line on a
toroidal flux surface, we define the rotational transform ι [13]:

ι= 2π
dΨp

dΨt
(1.7)

where Ψp is the poloidal magnetic flux and Ψt the toroidal one. In tokamak, the term
safety factor q = 2π/ι is preferred. Rational values of q = m/n play an important role in
stability, with m the poloidal mode number (integer) and n the toroidal one (integer).
In simple term, q translates the number of toroidal turns m by number of poloidal
turns n done by the field lines2. A higher value of q is, in general, a condition for a
better stability. To calculate the safety factor, one would need to follow a field line,
whose equation can be written:

dlθ

Bpol
=

dlϕ

Btor
(1.8)

where dlX are distance in the toroidal (X =ϕ), resp. poloidal (X = θ) direction while
moving in the poloidal, resp. toroidal, direction. In an axisymmetrical configuration,
dlϕ ≈ Rdϕ, then the safety factor can be written as (see [132, Sec. 3.4]) q =

∮

dlϕ/(2π),
which simply is another description of the field line winding. It follows:

q(ψ) = 1

2π

∮
Btor

RBpol
dlθ (1.9)

This expression is correct only in axisymmetrical system. A more general expression
would necessitate the use of curvilinear coordinates (ψ,θ∗,ζ), which is beyond a

2Yes, n is the toroidal mode number but symbolizes the number of poloidal turns of the field line
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Figure 1.3.: Schematic of flux surfaces in a tokamak. A field line is drawn in blue on
the external flux surface. The radial dependency of the magnetic field is
plotted highlighing the difference between the inner side (HFS) and the
outer side (LFS) (adapted from [47]).

simple introduction and thus are discussed in Chap. 2.

1.2.2. Magnetic configuration: from limiter to divertor

The plasma is confined on closed flux surfaces but but the confinement is not perfect
(due to various mechanims among which turbulence introduced further) and there
is always a point where the plasma encounters the wall. The flux surfaces hitting a
wall are called opened and the name Scrape-Off Layer (SOL) is given to this specific
region. In contrast, flux surfaces which do not interact with the wall are said closed.
The outermost closed flux surface, by definition tangential to the wall of the reactor
at one point at least, is refered to as the Last Closed Flux Surface (LCFS). Owing to its
shape in divertor geometry (introduced below), it is also often called separatrix. The
SOL is where the plasma-wall interactions happen and the study of this specific region
of the plasma is generally gathered around the term edge plasma (as opposed to the
core region).
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On Fig. 1.4, we show two typical configurations for a tokamak. The left one is a
limiter configuration on a circular geometry. The plasma encounters a target (often
described along the generic term of Plasma Facing Component, PFC) that directly
lays on the path of the plasma, before the wall of the machine itself. On the right is a
divertor configuration (X-point geometry) where the targets are situated further away
from the core, which use a tertiary magnetic field to divert the plasma toward the PFC
(target).

Figure 1.4.: Limiter (left) and divertor (right) configuration. The plain thick black
lines are the target, the green line marks the separatrix. The blue lines are
the open flux surfaces and the red ones the closed flux surfaces (adapted
from [3]).

The targets are often made in extremely thermal resistant material such as tungsten
or carbon. The advantage of the limiter configuration is the absence of supplementary
coil to create a X-point and the inherently vertically stable configuration, as the plasma
just lay uppon the PFC. Its disavantage is the sputtering of particles from the target
that pollutes the core and thus considerably hinders the fusion reaction, by radiating,
thus cooling the reaction and by diluting the available D-T fuel. It is especially true for
tungsten particles whose Z number are largely bigger than deuterium or tritium ions,
creating partially ionized heavy impurities, resulting in a lot of cooling by radiation
(electrons permanently energize and de-energize themselves).
The divertor configuration is an answer to this problem as well as a way to provide
plasma volume to cool the plasma by radiation before arriving at the target. Finally
the divertor configuration has shown a capability to access higher mode of confine-
ment, so called H-mode (see [128] for a review of H-mode or Section 1.3.3 for a quick
introduction). For these reasons, most present machines and all expected ones (to
date) are designed in divertor configuration.

The largest challenge of the edge plasma is on the ideal properties wished for said
plasma. Where the core must be as clean and hot as possible, the edge plasma must
be as cold as possible, which can be ashieved by a polluted plasma. The temperature

22



1. Introduction–1.3. Transverse transport in tokamak

gradient in this region are thus considerable, as well as the number of species that
could interact inside this region, rendering the physics quite complex.

1.3. Transverse transport in tokamak

A tokamak plasma, and especially the edge of the plasma, is fundamentally in a state
outside of thermodynamic equilibrium, due to the temperature gradient between
the core and the wall. The tokamak allows for a fast transport process in the parallel
direction but in closed field line region (such as the core plasma), the critical part
of the transport is the transverse one, responsible of the loss of confinement. In
open field line region (the SOL), a complex equilibrium exists between parallel and
perpendicular transport, so that both become relevant, and thus critical, to improve
the plasma confinement.

1.3.1. Classical and neoclassical transport

The first mechanism for tranverse transport process is related to the Coulombian
interaction. This random walk can be described by a diffusion coefficient and is called
classical transport. The flux of particles is directly proportional to the opposite of the
density gradient, translating a transport process directed radially outward:

Γ⊥ =−D⊥∇∇∇⊥n (1.10)

With n the density of particles and ∇∇∇⊥ the gradient perpendicular to the equilibrium
magnetic field. This diffusion coefficient D⊥ depends on the collision frequency νc ,
which varies as nT −3/2 [19, Sec. 5.6], and the Larmor radius ρL, which varies as T 1/2.
The coefficient writes:

D⊥ = νcρ
2
L (1.11)

This classical description results in a typical transport coefficient estimated around
10−2 m2 · s−1, several order of magnitude lower than what is observed in experimental
tokamaks.

The second description, called neoclassical transport, takes into account the in-
homogeneities of the magnetic field in a torus. The estimation of new transport
coefficient is higher by one or two order of magnitude but still below the observed
transport in experiments. The Fig. 1.5 offers a comparison between the two models,
showing that the neoclassical transport takes into account different regimes [59].
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Figure 1.5.: Variation of the diffusion coefficient for the classical and neoclassical
theories as a function of the collision frequency νc (adpated from [132,
Sec. 4.7]). A = r /R0 ≪ 1 is the aspect ratio and vT is the thermal velocity.
η∥/⊥ is the parallel/perpendicular resistivity (see [132, Sec. 2.16] for a
definition)

1.3.2. Anomalous (turbulent) transport

The collision theory is not enough to explain the larger transport seen in the exper-
iments. This anomalous transport has been proven to be of turbulent nature [71,
133]. This turbulence has been observed experimentally and is the object of 2D [42,
49, 103] and 3D [1, 87, 99, 120] edge plasma simulations to better understand its be-
haviour (from the most simple turbulent structure to the full edge plasma), resulting
in a complex approach to correctly take into account all relevant scales [108]. This
anomalous transport in the edge plasma takes the form of intermittent filaments,
aligned on the magnetic field lines, sometimes called blobs [134]. This transport is
partly due to the electric drift, noted uE , associated to the fluctuations of the electric
potential. These fluctuations of the electric potential Ũ coupled with those of the
density ñ can explain the anomalous transport, resulting in a average radial transport
experimentally observed to be around 1 m2 · s−1. The temporal average of this radial
transport writes:

Γ
r ∝〈ñŨ 〉t (1.12)

Where the superscript r denotes the radial (also noted ψ in curvilinear coordinates)
direction. This transport results thus from the dephasing between electric potential
and density structures, being minimal when these structures are in phase, maximal
when in quadrature. In the electrostatic turbulence studied in this thesis, two types of
micro-instabilities, at the origin of the turbulence, are considered [79, 80, 107]:

• the drift-waves mechanism (see Fig. 1.6): this instability appears with the in-
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teraction between a homogenous magnetic field and a density gradient. In the
poloidal direction, electron density and electric potential fluctuations appear.
The apparition of an electric field leads to the existence of a radial E ×B drift.
If the electrons are considered adiabatic, any potential fluctuation will be in
phase with the electon density one. It results in a poloidal phase velocity without
radial transport. As the resistivity η∥ in a plasma is not zero, the electrons are not
adiabatic and, consequently, a phase shift exists between the two fluctuations,
leading to the growth of the drift wave instability, the so-called resitive drift wave.

• the interchange mechanism (see Fig. 1.7): the edge instability appears due to
the interaction between a magnetic field, its gradient and the pressure gradient.
Starting with a density (or pressure) fluctuation (on the scheme, it could be
drawn in-between each equipotential, with a positive fluctuation where the ar-
rows are larger and a negative one where they are thinner), the ∇B-drift polarizes
the fluctuation (vertical arrows, separating electrons and ions), creating a vertical
electric field (black thin arrows). This electrical field generates an E ×B-drift. If
the density/pressure and magnetic field gradients are in the same direction, the
E ×B-drift goes toward the outer side. It thus amplifies the initial fluctuation at
the LFS, resulting in a ballooning structure there.

The numerical modeling of the anomalous transport requires the resolution of all spa-
tial and temporal scales of the turbulence that vary over several orders. That leads to
costly 3D fluid simulations with codes called turbulence codes [104, 108, 119]. These
accurate but costly models target predictive capabilities for the behaviour of future
devices. For engineering purpose, with short restitution times and large parameter
ranges variations, 3D [45], or even 2D [18], reduced models are preferred, filtering high-
frequencies fluctuations by averaging. In this case, the so-called transport (or mean-
field) codes do not resolve explicitly the small spatial scales and high-frequencies time
oscillations which are modeled through a diffusive transport transverse to the mag-
netic field-lines using a gradient-like diffusion assumption. Perpendicular diffusion
coefficients are thus free parameters in the model, that need manual tuning to repro-
duce some experiments. To better understand the complex physics of anomalous
transport, a turbulent approach must be used. It is for example mandatory to adress
topics such as the transition transition between L to H-mode (see following section),
correctly analyze the asymmetry of the turbulent transport in the poloidal plane (be-
tween the inner and outer midplane) or simply to evaluate transport coefficients and
their evolution with plasma parameters/geometry and reach predictive capabilities
for the behaviour of future devices.
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Figure 1.6.: Scheme of the drift wave instability (adpated from [82]).

Figure 1.7.: Scheme of the interchange instability (adpated from [82]).
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1.3.3. Transport barriers, H-mode and Edge Localized Modes

In the last sections, we have spoken about advanced confinement modes. We have
seen that turbulence is responsible of the cross-field transport. When fully devel-
opped, it sets the so called L-mode, with low confinement time. In 1982, in ASDEX,
a divertor tokamak, a high confinement mode (H-mode) was discovered [129]. The
H-mode can be described as a sharp increase of the pressure gradient at the edge
plasma. It is generated by a transport barrier and this pressure increase is usually
called a pedestal, due to the fact that it globally increases the pressure in the whole
plasma (allowing an increase of the density and the temperature in the core). See
Fig. 1.8 for a typical pressure profile as a function of the radius between L and H-mode
regime. The transport barrier appears near the separatrix in the closed field lines
region and, if the mechanism is not totally understood, several observations point out
the role poloidal shear flows, driven by various effects such as neoclassical effects [20],
magnetic shear [43] or particles orbit losses [111] resulting in the creation of this bar-
rier [128]. It allows a reduction of the turbulence and thus of the transverse transport,
increasing the confinement time τE .

Figure 1.8.: Typical pressure profiles as a function of the radius for different confine-
ment regimes (adapted from [83]). The effect of main MHD instabilities,
especially ELMs, in terms of fluctuation on the profile is also indicated.

If the improvement of the plasma confinement in H-mode is desirable, a draw-
back is its quasi-systematic association with the existence of Edge Localized Modes
(ELMs) [57]. The ELMs are edge MHD instabilities in the form of sudden bursts of
energy at the frequency of 10 to 1000 Hz. It is a relaxation mechanism that brutally
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releases the acumulated energy, resulting to an increase of the particles and heat
fluxes [69] on the targets, up to ten times the amount during a quiescent H-mode
(without ELMs). It can potentially critically damage the machine, even if ELMs can
also provide density control and limit plasma core impurities. Recent researches are
thus two-fold on the topic of H-mode:

• understanding the L-H transition and mechanisms behind the formation of the
transport barrier.

• understanding and controlling the resulting ELMs in H-mode operating regimes.

The L-H transition has already been approached through the identification of scalling
law from existing experiments, resulting in the scaling used to guide the design of ITER
(the International Thermonuclear Experimental Reactor, presently built in France
with the collaboration of the EU, USA, Russia, China, India, Japan and Korea) [74]. To
understand the mechanism behind the formation of the barrier, a study of turbulence
itself is nevertheless still a present topic in research.
The understanding and control of the ELM has been the object of several experiments
and numerical simulations. It is the subject of the next subsection.

1.4. Plasma-wall interaction

The open magnetic field lines and the tokamak wall lead to different physical proper-
ties for the plasma at the edge than in the core [112]. In particular, in the SOL due to
plasma wall interactions at the targets conceived to sustain the high amount of energy
flowing from the core but also at any other Plasma Facing Component (PFC) such as
antennas.

1.4.1. The role of the SOL in the plasma particles, momentum
and energy balances

The particles coming in the SOL encounter a wall (limiter or divertor) which can result
in several phenomena:

• The recycling: charged particles strike the wall and are immediately neutralized
by recombination. They are thus not influenced by the magnetic field and move
freely. A large proportion of them get reflected back towards the plasma where
they get re-ionized.

• the retention: the particles react with the wall and stay there. This can erode the
wall when the particles combine with the wall, resulting in chemical erosion.

With these two processes, the SOL acts as a sink for plasma particles, energy and
momentum. During the recycling, most particules are re-ionized, which contributes
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to the loss of energy in the edge plasma. The SOL, even with re-ionization, still acts as
a particles sink, as there is still more particles going out than in. However, by fixing the
particles loss, the recycling (and so, in most tokamaks the SOL) becomes the major
source of particles for the plasma.

1.4.2. The SOL width, a key parameter for the SOL equilibrium

In the simplest picture, we have seen that particles come in the SOL, strike the wall
and recombine into neutral atoms. The wall hence appears as a perfect particles
sink for the plasma. We will see in Sec. 2.1.2 that the related physics imposes very
specific boundary conditions for the edge plasma. One of the key consequences is
that particles flow towards the wall at a velocity equal to the accoustic velocity of
the plasma, cs =

√

kB (γe Te +γi Ti )/mi , with γs the polytropic indexes. For a simple
isothermal model γe = γi = 1, which we consider there. This way, the particles balance
of open flux surfaces can be represented by a simple radial transport equation:

∂

∂r
Γr ≈−ncs

Lc
(1.13)

where r is the perpendicular (radial) direction, Γr = nvr is the radial flux going into
the SOL and ncs/Lc translates the parallel flux going into the target. Lc is the length of
the field lines between the two targets. We can now assume a diffusive radial transport
so that:

Γr =−D⊥
∂n

∂r
(1.14)

which evolves to solve a second order partial differential equation, with n as an
unknown, resulting in:

n = n0 exp

(

−r − r0

λn

)

(1.15)

with λn the density decay length or density SOL width. For the diffusive hypothesis, it
writes λdiff

n =
p

D⊥Lc /cs . It translates a typical length of loss of particles according to a
vanishing exponential. In experiments, the profiles are rarely perfectly exponential
due to various effects, including the fact that a diffusive description of anomalous
transport with constant and homogeneous transport coefficients is an oversimplica-
tion compared with the dynamics at play. Nevertheless, the ideal picture presented
here gives a reference frame of interpretation for plasma profiles in the SOL.

1.4.3. The issue of power-exhaust

The deposit of particles on the target is not so much a problem as the energy they
carry. The reasoning done with the density decay width can be reproduce for the heat
flux too. To sustain the integrity of the target, a sufficient spreading of the heat flux is
necessary. The width of this spreading is noted λq .
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To illustrate the issue of power-exhaust, we take the example of ITER. 500 MW
of power is produced through the fusion process, while 50 MW come from heating
sources. According to the D-T fusion, 4/5 of the fusion power are taken away by the
neutrons, that are not subjected to the magnetic field. Around 50 MW are dispersed
by bremstrahlung and impurity radiation. It lets 100 MW going directly into the SOL
through convective and diffusive processes, noted PSOL. Similarly to the particles
profile, energy balance imposes that the peak heat flux qpeak is inversely proportional
to the wetted surface of contact Swet of received power:

qpeak ∝
PSOL

Swet
(1.16)

where Swet = 2πR0λq /αgeo, with αgeo a geometrical factor related to the magnetic
flux expansion between the mid-plane and the targets. Taking the ITER major radius
R0 = 6m and λq = 1mm according to the reference scaling law in [34], then with
αgeo = 0.1, we obtain qpeak ≈ 265MW ·m−2. This is above the engineering limit of
10MW ·m−2. To spread the heat flux as much as possible, λq needs to be as big as
possible (the other variables being fixed by the machine itself). Past studies have
demonstrated that the heat decay length is sensitive to various parameters, e.g. the
poloidal position of the plasma-wall contact point, which a simple 1D model cannot
capture [23]. In any case, the orders of magnitude given above, demonstrate the need
for a strategy to mitigate heat fluxes coming out of the plasma before they reach the
targets. The currently foreseen solution relies on a specific aspect of edge plasma
physics, namely detachment, introduced in the next section.

1.4.4. The necessity for detachement regime

Current technological limits make it mandatory to keep steady state heat fluxes to
solid surfaces below 10MW.m−2. In ITER burning plasmas, this limit will be largely
exceeded in the absence of specific measures to reduce these fluxes before they impact
the wall. The use of Tungsten as armour material in the divertor (for various reasons
exposed in [33]) also imposes another limit on the energy of ions impacting the wall
which should stay below 10eV to avoid physical sputtering. The foreseen strategy to
cope with such conditions was the main drive for the design of the ITER divertor. It
relies on 2 key physical phenomena:

1. the interaction between the plasma and neutral particles naturally present in the
volume of the divertor due to particle recycling: a significant part of the energy
required to re-ionize neutral particles is dissipated under the form of photon
radiation which isotropically redistribute the associated energy flux on a large
surface of the wall. Moreover, particle recycling strongly increases the density
in the divertor region (it can, in some regimes, locally go up to a factor of 10 to
100 higher than the mid-plane values), hence decreasing the amount of energy
carried by each particle. It is possible to control the weight of these dissipation
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mechanisms simply by controlling the density level of the plasma.

2. the interaction between the plasma and impurities: the plasma-wall interaction
in the divertor produces various types of impurities due to chemical or physical
sputtering mechanisms. Due to their high Z number, these impurities do not get
entirely ionized in the edge plasma and radiate a large amount of energy. Addi-
tional impurities (usually noble gases to avoid any spurious chemical interaction
with the rest of the plasma/wall components) can also be injected voluntarily,
thus giving an additional control knob on the dynamics of the divertor.

Combining neutral recycling (through density control) and impurity seeding, it is
possible to reach a point where most of the power incoming in the divertor is converted
into radiation before reaching the target and the plasma temperature drops below the
10eV range at the targets. If the plasma temperature goes low enough, the plasma can
even partly recombine into neutrals in front of the target. One ends up with a plasma
separated from the wall by a "cushion" of neutral particles, refered to as a detached
plasma. This regime has been demonstrated in experiments in current meidum sized
machines[68]. Reaching and controlling this regime in ITER will be mandatory for
high power pulses.

The understanding of the interaction of the plasma with impurities and neutral
particles is thus a central aspect of edge plasma modelling in sight of ITER and reactors
beyond. On the modeling side, including such physics in codes requires a significant
complexification of models because neutral particles need specific kinetic treatment
in foreseen plasma conditions and due to the large number of atomic and mollecular
reactions between ionized and neutral species that need to be taken into account.
This explains why, up-to-date, such modeling has been carried out only in mean-
field plasma codes. The inclusions of such physics in turbulence codes is one of the
on-going challenges of edge plasma modeling for tokamaks. The topic becomes all
the more complex when considering 3D perturbed fields as the plasma dynamics is
dependent on the 3D field structure while the neutrals dynamics is insensitive to it

1.5. 3D magnetic perturbations

We have considered the tokamak to have a toroidally axisymmetrical magnetic field.
Actually, this is not the case. First, by conception, magnetic perturbations exist in the
toroidal direction such as, for example, magnetic error field, caused by unavoidable
failings in the design or alignment of the coils, or the ripple. The ripple is a magnetic
perturbation due to the discretization of the main poloidal coils generating the toroidal
field. The field is stronger at the level of the coils than in between two coils. This effect
is starker at the LFS. The transport process created by ripple is considered mainly
diffusive and neglectable in present machines [24, 109, 115]. At the end of this thesis,
a few mean-field simulations with ripple with the SOLEDGE3X-HDG code are done,
but the main study of this thesis concerns another kind of magnetic perturbations,
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one voluntarily added for controlled purpose: the Resonant Magnetic Perturbation
(RMP). The main goal of the RMPs is the suppression or mitigation of the ELMs and
is the subject of the following section. A review on the different kind of 3D magnetic
perturbations, with a focus on RMPs can be found in [38].

1.5.1. ELM control methods

ITER has been designed to run in H-mode. It will achieve its target of a Q = 10 ampli-
fication factor only if a stable H-mode regime can be sustained. Due to the energy
contained in an ITER plasma, the ELMs resulting during the relaxation process are
predicted [35] to deposit an amount of energy beyond the sustainability of current
engineering capabilities [33, 110]. It becomes thus necessary to mitigate the ELMs in
ITER. An active control method has been chosen, considering that, if the Edge Trans-
port Barrier (ETB) is the origin of the ELMs, it could be possible to degrade the ETB
enough to mitigate or suppress the ELMs but still preserving the H-mode to achieve a
good confinement. Several approaches have been considered [7], among which are
vertical kicks [25] (shacking the plasma to artificially increase the ELMs frequency
and reduce their amplitudes), pellet pacing (injecting pellet near the pedestal at high
frequency to trigger artificial ELMs of lower amplitudes) and external magnetic per-
turbations (often called resonant magnetic perturbations, RMPs, created by several
sets of additional coils around the tokamak).

The RMPs increase the radial transport by degrading the ETB and will be deployed on
ITER to control the ELMs [64, 125]. RMPs tear nested flux surfaces, creating magnetic
islands (see Fig 1.9 and Refs. [127, 132]). A magnetic island creates a short-cut for the
radial transport across the island width, due to the parallel transport being allowed
to transit in the perpendicular direction. The island offers almost no resistance to
the radial transport, which is usually avoided in the core plasma but can serve an
important purpose for ELM suppression. Experimental evidences show the success of
RMPs to suppress ELMs during H-mode operations [39, 63], sustained by numerical
modeling [85, 88].

Figure 1.9.: Shematic poloidal slice of a circular plasma with a resonant flux surface
forming magnetic islands (adapted from [83])
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The magnetic perturbations (MPs) are decomposed into poloidal m and toroidal n

mode numbers and the islands are formed on flux surfaces of rational security factor
q = m/n. For example, a magnetic perturbation with a mode (m = 6,n = 2) creates a
chain of 6 islands on the flux surface q = 6/2 = 3. If the amplitude of the perturbation
increases, or the perturbation is composed of several dominant modes, the islands
may overlap with higher order ones and even create a chaotic zone, called stochastic
region, where the flux surfaces are completly broken and no island is visible. These
changes in the magnetic manifold can have, at least, two influences on the plasma
transport:

• A perturbation of the perpendicular transport, from the mean-field one to the
turbulent one, in the edge plasma.

• A perturbation of the detachment due to the additional non-aisymmetrical
component on the magnetic field, which should impact the plasma but not
neutrals.

At the current time, no numerical code is able to take into account the two effect in
a coupled and self-consistent way. The second point is thus specifically looked at
thanks to the EMC3-EIRENE 3D mean-field transport code [46]. The first point is the
object of this thesis and could have an impact on the work done in the second point.

In the following sections, we make a quick state of the Art review, focusing first on
the experimental observations before then discussing about the modelisation effort
on the topic of RMP-like magnetic perturbations.

1.5.2. Experimental evidences of turbulent transport

modifications with RMP

A large number of experiments with RMP deals with the ELM control in H-mode. It
has been shown that RMP can effectively mitigate or suppress the ELM on several
tokamaks (see Review [38]) such as DIII-D [36], JET [70], ASDEX [116], KSTAR [61], etc.
These studies have been coupled with numerical simulations [6, 84], ranging from the
study of the ELMs themselves [88] to the screening of RMP by the plasma [5]. On a side
note, to the present date, no numerical code ever manages to create a self-consistent
H-mode and subsequently ELMs, although the modeling of a single ELM crash has
been done with edge MHD codes such as JOREK [88], BOUT++ [30] and NIMROD [16]
or simplified ELMs with gyrofluid code [62]

Concerning the particles transport, the universally observed effect of RMP is the den-
sity pump-out, which translates as a loss of particles at the edge plasma, whereas the
ion temperature profile increases [37] but a decrease of the electronic pressure [105].
The pump-out suggests the existence of E ×B convective transport mechanism, that
seems linked to the dominant island chain. It has been noted that the toroidal velocity
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is highly impacted by the RMP [77, 118], suggesting the importance of a self-consistent
radial electric field in futur simulations. Finally, concerning the heat flux, it has been
shown on MAST [124] and DIII-D [81] that the RMPs split the heat flux pattern on the
target. All those observations have been done in both H-mode and L-mode regimes.

The study of turbulence itself with RMPs is rare due to the difficulties of measuring
turbulence itself. The impacts seen in experiments are mainly on the density fluc-
tuations (standart deviation). For L-mode studies, on MAST [118], the fluctuations
increase before the separatrix but decrease in the SOL. On DIII-D [77], the density
fluctuations does not increase and the changes are attributed to a transition from
ion temperature gradient to trapped electron mode regime in the edge plasma. We
should nevertheless note that no measurement has been done in the SOL in this study.
A comparison has been made between MAST L-mode and DIII-D H-mode in [78],
stating that density fluctuations increase in the plasma edge in L-mode, suggesting a
role of turbulence in the density pump-out, but they decrease in H-mode, suggesting
a different mechanism for the increased particles transport in H-mode.

Overall there is strong evidence that RMPs perturbate the equilibrium and turbu-
lence properties in the edge plasma. Nevertheless, the experimental database for
turbulence is particularly sparse due to the difficulty to measure edge turbulence
properties. The support from numerical simulations then becomes a precious tool to
progress in the understanding of physical mechanisms at play.

1.5.3. Numerical studies of 3D magnetic perturbations: from

mean-field to turbulent simulations

To study RMP effect on transport, mean-field codes have been used recently such
as EMC3-EIRENE [44]. It allows to compute realistic 3D geometries (such as NSTX,
DIII-D, ITER) and with the use of ad-hoc transport coefficients, better understand the
impact of RMP on the transport. In [45], a study is done on an NSTX-U configuration.
The splitting feature of the heat flux, observed in experiments as seen in the section
above, is recovered when the RMP is activated. The interesting part is the observation
that the splitting occurs only at the outer target (LFS) and not at the inner one (HFS). It
underlines the importance of having a 3D codes to simulate the behaviour of plasma
subjected to non-axisymmetric magnetic perturbations.

However, the mean-field approach used in EMC3 imposes to make assumptions
concerning the nature and the amplitude of transverse transport, as well as concerning
the impact of RMPs on these. In the absence of better information, the strategy applied
is to assume that transport (collisional and anomalous) can be described by homo-
geneous diffusion coefficients which do not change when applying RMPs. In other
words, when considering input parameters to such simulations, RMPs are assumed to
impact solely the magnetic equilibrium. This assumption can be questionned based
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on the experimental evidence given above showing an impact of RMPs on turbulence
properties. Addressing this question requires the use of turbulent codes able to deal
with the 3D aspect of RMPs. The first kind of approach was done during the years of er-
godic divertor studies [102]. Instead of having magnetic island chains like for RMP, the
magnetic perturbations creates stochastic field lines. This researches have an interest
for the turbulent aspect of the transport as, sometimes, part of the RMPs can create
small stochastic zones. An interesting study can be found in [8, 9]. These early 3D
electrostatic resistive ballooning turbulent simulations manage to recover key feature,
such as the decrease of pressure fluctuations due to the suppression of large scale
structures. A suppression of the sheared poloidal flow, associated to zonal flows, is
also noted, which is confirmed in [67], where RMPs decrease the energy of zonal flows.
The decrease of pressure fluctuations can be directly linked to a decrease of density
fluctuations, observed in experiments. An increase of the E ×B fluctuations has been
noted, leading to an increase of the turbulent heat diffusivity. Some features are not
observed due to the lack of a self-consistent radial electric field, not implemented in
the model. The following studies have been on barrier relaxations through RMPs [10,
66] and thus more on the topic of ELMs control simulation, showing the RMPs ability
to stabilize barrier relaxations in single mode whereas multiple harmonics result in an
energy degradation. It is shown that the conductive (turbulent) part of the energy flux
in the radial direction is the main component when RMP are applied.

A gyrofluid model was used in [95, 97], with RMP. In that case the amplitude of
the magnetic perturbations has been tuned to have either magnetic islands or to
be strong enough to create a stochastic zone. Reiser notes a reduction of the local
amplitude of density fluctuations with a destruction of blob (filament) structures in
the SOL, attributed to a reduction of the turbulent part of the E ×B transport. An
early study in [96] with the same code states of the influence of collisionality, density
and velocity fluctuations being higher at low collisionality, whereas only velocity fluc-
tuations increase at higher one. A more recent study using the same code [91], in a
non-isothermal version, shows magnetic islands in the simulation domain and man-
ages to reproduce a density pump-out but a decrease of the temperature profiles too
(wich is contradictory to some experiments discussed before). The study underlines
the dominant static influence of the RMP (and the islands), compensating the loss of
the temporally fluctuating part for the density fluctuations.

To date, few in-depth study of the impact of RMP and islands on edge plasma
turbulence in a full 3D framework have been done.

1.6. Context and objectives of the thesis

Studying 3D edge plasma dynamic is a necessary part for understanding and predict
the plasma-wall interactions in fusion machines. 2D mean-field codes use a toroidal
axisymmetrical hypothesis and 2D turbulent codes use the so-called flute assumption
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by averaging the parallel dynamic and focusing mainly on perpendicular dynamics.
The last assumption is based on the peculiar dynamic of tokamak plasma, where the
parallel one is much faster than the perpendicular one. Without even considering the
limit of 2D codes for 3D magnetic perturbations, one can argue this approach by con-
sidering typical time scale of both directions. Let us note the perpendicular velocity
v⊥ ∼ 102 m · s−1 and a typical perpendicular length scale, the SOL width λN ∼ 10−2 m,
then the typical perpendicular time scale would be τ⊥ ∼ 10−4 s. The same reasoning
in the parallel direction gives τ∥ ∼ L∥/cs ∼ 10/105 ∼ 10−4 s. The order can be thus quite
near for both directions, justifying the interest to 3D codes.

This thesis focuses on the impact of 3D magnetic perturbations on transport and
turbulence at the plasma edge of a circular tokamak with a limiter.

1.6.1. Mean-field versus turbulent modeling

Mean-field codes often play a key role in the design of new machines due to their
capability to solve extremely realistic geometries such as ITER. The equation models
allow for a fast computational solution, even in 3D geometries. Their main weakness
is actually their predictive abilities due to the lack of self-consistent turbulence, and
thus self-consistent perpendicular transport, which is often approximated by diffusive
terms.

The turbulent codes are, on the contrary, self-consitent in the perpendicular trans-
port, but at an important computational cost. The following sections discuss on the
use of one mean-field code and one turbulent code for this thesis.

1.6.2. Turbulent modeling of RMPs: the choice of TOKAM3X

Turbulent codes able to study the edge (with SOL) plasma, with realistic geometry,
are numerous with for example BOUT++ [31, 32], GBS [90, 100], GRILLIX [113, 114]
and TOKAM3X [121, 122]. In this thesis, we use TOKAM3X. The code is field aligned
on the magnetic grid and handles divertor configurations. An isothermal [48] and a
non-isothermal [4] versions exist as well as a coupling with EIRENE, a neutral kinetic
code used to handle self-consistent recycling in TOKAM3X.

The state-of-the-art turbulence code TOKAM3X based on a drift-reduced Bragin-
skii’s fluid model is thus used. Both isothermal (see Chap. 3) and non isothermal
plasmas are considered (see Chap. 4). During this thesis, we have implemented small
3D magnetic perturbations in TOKAM3X, which until now required a toroidally ax-
isymmetric magnetic equilibrium. We focus essentially on single mode magnetic
perturbation as a first step towards higher complexity. A careful analysis of the be-
haviour of the fluxes, especially the E ×B ones is done, as well as the observation of
the mean-fields such as the radial profile of the density, the temperatures, the pressure
or the electric potential (and thus the radial electric field). This is to draw a coherent
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and self-consistent picture of the edge plasma when MPs are switch on. The turbulent
behaviour through the standart deviation, the skewness and the probability density
functions is studied as well as the effect of MPs on the turbulent structures themselves
through the correlation length.

1.6.2.1. Mean-field modeling of RMPs: TOKAM3X (mean-field) and
SOLEDGE3X-HDG

Concerning transport codes, one of the most recent and advanced code for edge
plasma modeling with fluid approach is EMC3-EIRENE. Benchmark with SOLPS [12],
a 2D transport code, EMC3 [44]is a fieldline aligned 3D grid transport code, with purely
classical parallel transport and coupled with the EIRENE [98] code, a kinetic code for
the physics of impurities. In this thesis, we use a newcomer, SOLEDGE3X-HDG [52–
54], benchmarked with the 2D code SOLEDGE2D [17, 18] (a similar code to SOLPS).
SOLEDGE3X-HDG is a 2D-3D transport code using a non-aligned grid approach with a
hybrid Discontinuous Galerkin method. This code is especially interesting for solving
edge plasma in complex and realistic geometries.

After the study of turbulent transport with single mode MP in turbulent models
of increasing complexity, we switch first toward mean-field isothermal simulations
with TOKAM3X. We indeed compare the behaviour of turbulent isothermal and mean-
field isothermal TOKAM3X simulations in Chap. 5. Then we analyse the behaviour of
the plasma from single mode MPs and to more complex and realistic RMPs. In the
following part of this last chapter, we add the realistic MP model to the SOLEDGE3X-
HDG code, a 2D-3D transport code, based on Braginskii’s fluid model and able to run
on realistic geometries through a Hybrid Discontinuous Galerkin non field aligned
scheme. We thus test for the first time the 3D capability of SOLEDGE3X-HDG with the
isothermal model during this thesis. The realistic RMP approach allows us to show an
historical case of the ripple perturbation on a WEST geometry.
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This chapter describes the physical, mathematical and numerical models imple-
mented in the two codes used in this thesis to study 3D magnetic effects.

TOKAM3X [122] is a state-of-the-art 3D turbulence code developped by the team for
more than 10 years. The code solves the 3D drift-reduced Braginskii fluid equations
at the edge of the plasma, in a region encompassing close and open magnetic field
lines and till now for a magnetic equilibrium assumed to be toroidally invariant. Note
that at the time of writting this thesis, TOKAM3X is merging with the SOLEDGE2D
mean-field code [18] into SOLEDGE3X that includes self-consistently turbulence
and/or mean-field models, neutrals physics, impurities, with realistic magnetic and
wall geometries.

SOLEDG3X-HDG[54] is the most recent release of SOLEDGE3X. It solves 2D-3D
mean flow fluid equations (transport code) on unstructured meshes using a hybrid
discontinuous Galerkin method. Such an approach allowing meshes non aligned on
the magnetic geometry, is original in the magnetic fusion community. This allows us
to address simulations for tokamak walls and magnetic equilibria of any complexity,
these latter being able to be unsteady without requiring any remeshing.

The physical, mathematical and numerical models are introduced in the following
for each code.

2.1. The drift-fluid model of the plasma edge

We introduce the physical concepts of interest to derive the models treated by the two
codes TOKAM3X and SOLEDG3X-HDG.

2.1.1. The fluid model

To understand the movement of ordinary matter, the simplest way is to apply the
fundamental principle of dynamics for each particles. In the field of magnetica fusion
plasm, the particles are charged and submitted to electromagnetic fields. Other forces,
such as gravity, can be shown to be negligible. This is called the particule description.
For a particle j of mass m j , of charge q j , the equation of motion writes:

m j dt v j = q j (E +v j ×B ) (2.1)

where E and B are the electric and magnetic fields, and v the particle velocity. In this
description, the electromagnetic field is described by the Maxwell equations in a local
way that merges the global electromagnetic fields from the tokamak coils and the local
electromagnetic fields due to the interaction between the other particles. Assuming
N j particles, with 6+1 degrees of freedom (3 in position and 3 in velocity, in a phase
space, 1 in time), the number of unknowns at each time is is 6N j . With a density
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of 1020 particles per cubic meter1 in a burning plasma of tokamak, the calculation
is a computationally futile attempt at the present time. Thus, a reduced system is a
necessity felt for practically achievable calculations.

2.1.1.1. From kinetic to fluid approach

Rather than from a particule point of view, the plasma can then be described using
distribution functions fs(t , x , v ), where t is the time, x the position and v the velocity.
The distribution function represents the probability density to find a particle in an
elementary volume d3xd3v around the considered position (x , v ) The mathematical
background to go from a particular to a kinetic description is provided in the work of
Kilmontovitch, Vlasov and Boltzmann (list not exhaustive). A quick overview can be
found in [82, Chap. 2] (see also Appendix A.1). The time and space evolution of the
distribution function is described by the Boltzman equation:

∂t fs +v ·∇∇∇x fs +a ·∇∇∇v fs =Cs (2.2)

where Cs is a collision operator due to intra and inter-species collisions (Cs = 0 in the
Vlasov equation). Note that the subscript s stands for species not on a particular level
anymore but on a statistical one. a is the acceleration and can be developped into:

a = qs

ms
(E +v ×B ).

The last few years of research have seen the development of full 6D (or more often
5D) (gyro)-kinetic codes. This allows for a fine description (within some limits related
to the approximation made in the gyro-average) of plasma turbulence but with the
trade-off of the need of enormous computational times and memory storage. The
GYSELA code [55] is one example of a 5D gyrokinetic code.

To futher reduce the computational cost (at the price of a simpler description), the
fluid approach consists in averaging the distribution function in the velocity space
Ω. A number of moments are thus obtained and the first few are used to solve a fluid
model of plasma. The nth moment M

(n)
s writes:

M
(n)
s =

∫

Ω

v⊗n fs(t , x , v )dv with v⊗n ≡ v ⊗·· ·⊗v
︸ ︷︷ ︸

n times

and v⊗0 ≡ 1 (2.3)

The integration on the velocity space of equation 2.2 reduces the problem dimen-
sion from 6D to 3D with multiple fluid equations. The resulting infinite set of fluid
equations is thus strictly equivalent to the equation 2.2. The integrated Boltzmann
equation gives in its general form ∀n ∈N:

∫

Ω

v⊗n∂t fsd3v+
∫

Ω

v⊗n∇∇∇x ·(v fs)d3v+
∫

Ω

v⊗n∇∇∇v ·
(

qs

ms
(E +v ×B ) fs

)

d3v =
∫

Ω

v⊗nCsd3v

(2.4)

110 000 times less than the air at sea level
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Density, velocity (momentum) and temperature (energy) corresponds to the three first
equations of the infinite set 2.4. The particularity of the set 2.4 is the dependancy of
the nth momentum to the (n +1)th one. The system must then be closed by expressing
the last (n +1)th momentum using lower order moments. Different kinds of closure
exists, but one of the most simple and at the same time keeping a certain amount
of self-consistent physics, is based on the assumption of strong collisionality in the
plasma. According to the H-theorem, the distribution function will thus tend toward
a Maxwellian if the distribution function changes are only due to collisional processes.
Thus, we assume that:

fs ≈ ns

(
ms

2πkB Ts

)

exp

(

−|v −us |2

v2
T

)

(2.5)

where T is the temperature, n is the density, vT is the termal velocity and us is the
fluid velocity. The Braginskii closure [15] is one proposal for fluid plasma in tokamaks.
The validity criterium is νc ≫ω, which means that the collision frequency is larger
than the frequency of the modelled physical phenomena. For a 1D model, we can
take ω∼ vT /L∥. Typical collision times can be found in [132, Sec. 2.15]. For a plasma
at T = 100eV , it is equal to about 1µs. More the plasma will be cold more the fluid
approach will be rigorously justified. It is why such approach is largely used in the
plasma edge and especially into the SOL which is much colder than in the core region.

2.1.1.2. Derivation of fluid equations

Assuming the distribution function 2.5 exponentially vanishes, we have:

∀n ∈N, lim
v→+∞

v⊗n fs = 0 (2.6)

We can then derive the continuity, momentum and energy equations from the three
first equations of moments in Eq. 2.4. The following notations are used:

ns(t , x) =M
(0)
s (2.7)

nsus =M
(1)
s (2.8)

Ss =
∫

Ω

Cs fsd3v (2.9)

where us is the fluid velocity already introduced above (and now properly defined). Ss

is the collisonal particle source. The particle balance equation (n = 0) follows as (see
Appendix A.2.1):

∂t ns +∇∇∇· (nsus) = Ss (2.10)

The momentum balance equation calls for more calculation. We set ws = v −us as
the fluctuating part of the fluid velocity, such that

∫

Ω
ws fsd3v = 0. The following
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definitions are used:

Π

tot

s = ms

∫

Ω

ws ⊗ws fsd3v = ps1+Π

clos

s (2.11)

is the total pressure tensor. It can be decomposed into a scalar isotropic pressure

ps and a residual anisotropic tensor, Π
clos

s , where Brag stands for Braginskii, as it

will be explained in the following part. We note ps = Tr(Π
tot

s )/3, and we define the
temperature Ts = ps/ns (in eV).

Rs = ms

∫

Ω

vsCsd3v (2.12)

is the collisional momentum source. It leads to (see Appendix A.2.2):

∂t (msnsus)+∇∇∇·
(

msnsus ⊗us +Π

tot

s

)

= qsns(E +us ×B )+Rs (2.13)

Isothermal models stop the momentum hierarchy at this level with a closure on the
pressure tensor. Anisothermal models add the next momentum. As a remark, the
momentum equation is a vector equation, with thus 3 scalar equations (in 3D). The
energy equation is a second order tensor equation (9 scalar equations in 3D). This
level of details is redundant for most applications where the pressure is considered as
quasi isotropic and the trace of the tensor equation for energy only is retained. This
writes (see Appendix A.2.3):

∂t E tot
s +∇∇∇· (E tot

s us +us ·Π
tot

s +qs) = ns qsE ·us +QCs +Rs ·us (2.14)

with qs the heat flux and QCs the collisional energy source. E tot
s = 1

2 msns |us |2 + 3
2 ps ,

with the scalar pressure ps = 1
3 Tr

(

Π

tot

s

)

.

2.1.1.3. Braginskii closures

In the framework of fluid equations truncated at second order (Eqs. 2.10,2.13,2.14),

some moments at high order remain unknowns. These are Ss , Π
clos

s , Rs , QCs and
qs . The Braginskii’s closure [15] was developped to express these unknowns from
lower order moments with two main hypothesis. First is the hypothesis of a strongly
magnetized plasma, meaning that the Larmor frequency is higher than all the other
frequencies (the Lorentz force is dominant): ωcτe/i ≫ 1. Second is the hypothesis of a
highly collisional plasma near thermodynamic equilibrium, meaning that the collision
frequency is higher than all the other frequencies (except, according to Braginskii’s
work, the cyclotronic one ωc ): νcτe/i ≫ 1, where νc is the collisional frequency. The
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collisionality is defined as:

ν⋆ =
L∥
λc

(2.15)

where L∥ is a typical parallel length (along magnetic field lines) and λc is the colli-
sional mean free path. At the edge of the plasma, ν⋆ ≈ 103 while in the core ν⋆ ≈ 10.
For turbulent models, turbulent fluctuation frequencies must be controlled to be
lower than the collision frequencies. This allows to perform a closure relying on the
assumption of small deviation of distribution functions from the Maxwellians (see
Chapman-Enskog theory).

In the following, the main results of the Braginskii’s closure are recalled. First is
the collisional particle source Ss . As particles can only be created by ionisations,
dissociations or fusion reactions (neglected in first approximation for the latter) Ss = 0.
Nevertheless, for numerical flux driven models, a constant source of particles is added,
which can be seen as ionization processes or particles coming from the core.

For the others terms, we consider a two species plasma of electrons and protons
(hydrogen isotope). We proceed with the collisional momentum source Rs = Ru

s +RT
s ,

with Ru
s a friction force and RT

s a thermal force. For electrons, it becomes:

Re = Ru
s +RT

e = ene (η∥ j∥b +η⊥ j⊥)−0.71ne∇∇∇Te −
3

2

ne

ωCeτe
b ×∇∇∇⊥Te (2.16)

where j = j∥b + j⊥ = −ene (ue −ui ) is the current density and η∥/⊥ are the parallel /
perpendicular Spitzer resitivities defined as:

η⊥ = me

e2neτe
=

η∥
0.51

∝ T −3/2
e (2.17)

Note that Ri =−Re

The collisonal energy source QCs is:

QCi
= 3

me

mi

ne (Te −Ti )

τe
for ions and (2.18)

QCe = η∥ j 2
∥ +η⊥ j 2

⊥+ 1

ene
j ·RT

e −3
me

mi

ne (Te −Ti )

τe
for electrons (2.19)

The Braginskii’s tensor Π
clos

s can be subdivided in a viscous tensor, a Finite Larmor
Radius (FLR) tensor and a residual one. The viscous one is of the highest amplitude
and the FLR one compensates at highest order with the difference of the diamagnetic
advection and the ∇∇∇B-drift when only their divergence are taken into account (which
is the case in equation 2.13). This is the so called diamagnetic cancellation (see section
below on drift ordering for a definition of the drift velocities). The expression of each
term in equation 2.20 can be found in [3, 15, 47, 82, 117] as well as the calculation for
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the diamagnetic cancellation.

Π

clos

s =Π

vis

s +Π

FLR

s +Π

res

s (2.20)

Finally, the closure on heat flux qs can once more be split into a friction and a termal
part:

qe = q u
e +q T

e = 0.71pe (ue,∥−ui ,∥)b + 2

3

pe

ωceτe
b × (ue,⊥−ui ,⊥)

−χe,∥∇∇∇∥Te −χe,⊥∇∇∇⊥Te −
5

2

pe

meωce

b ×∇∇∇⊥Te (2.21)

qi =−χi ,∥∇∇∇∥Ti −χi ,⊥∇∇∇⊥Ti −
5

2

pi

meωce

b ×∇∇∇⊥Ti (2.22)

with χs is the thermal conductivity of species s.

2.1.1.4. Drift ordering

The drift ordering is based on the assumption that the characteristic plasma frequency
ω is slow compared to the ion cyclotronic frequency ωc : ǫω = ω

ωc
≪ 1. This leads to a

strong scale separation between the Larmor radius ρL and a characteristic length of
turbulence structure l⊥, such that: ǫl = ρL

l⊥
≪ 1. Within the drift ordering, it is useful to

split the analysis of the dynamics into the parallel and perpendicular directions to the
magnetic field, by decomposing the velocity for the ions and the electrons:

us = u∥,sb +u⊥,s (2.23)

where the perpendicular components of the velocity are described in terms of drifts.
In the present models, two first-order drift velocities are defined such that:

u(1)
⊥,s =

E ×B

B 2
+ B ×∇∇∇ps

qsnsB 2
= uE +u⋆ (2.24)

with uE the electric drift velocity and u⋆ the diamagnetic drift velocity.
The mechanism related to the electrical drift velocity is illustrated on Fig. 2.1a.

Charged particles in a magnetized environement follow the magnetic field lines with
a gyration motion. If a perpendicular (to the magnetic field) electric field exists, the
gyration motion is deformed as the particle is accelerated during one half of the
circulatory motion and decelerated during the other half. Depending of the sign of
the charge of the particle, the effect is reversed. But, as the gyration motion is reversed
depending on the sign, the global drift motion for both ions and electrons occurs in
the same direction. Thus the electric drift does not create a current, but does create a
global fluid-like motion by the local variation of the electric potential, a motion that is
a transport of plasma, perpendicular to the magnetic field lines.
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The diamagnetic drift velocity (see Fig. 2.1b), a purely fluid veloicty, is created
through a collective motion of particles but actually with little transport of matter
involved. A pressure gradient induces a spatial inhomogeneity of the number of
particle gyrating in one direction compared with the other one (density gradient) or of
their velocity (temperature gradient). The isobar at a lower pressure has less and/or
slower particles in gyration compared to the one at higher pressure. This results in a
difference of motion, even if the guiding centers themselves have a little drift. This
property has a major consequence on the nature of transport due to the diamagnetic
drift velocity. This can be seen with the divergence of the particle flux carried by the
diamagnetic drift:

∇∇∇· (nsu⋆) = 1

qs

(

∇∇∇ps ×∇∇∇
(

1

B 2

))

·B (2.25)

This way, the divergence of the diamagnetic particle flux reduces to a curvature term,
i.e. a term that is non-zero only when the magnetic field is not homogeneous. Since the
gradient length of the magnetic field (the major radius R0) is large compared with that
of other fields (the minor radius a at most), the resulting transport is actually much
smaller than what could be naively infered from the amplitude of the diamagnetic
velocity. This effect reflects the fact that guiding centers actually drift much slower than
the diamagnetic velocity. One can easily demonstrate that the diamagnetic particle
flux actually reduces to the one carried by the curvature drift velocity u∇B =±2Ts

B×∇∇∇B
B 3 .

The demonstration is given in Appendix A.3:

∇∇∇· (nsu⋆) =∇∇∇· (nsu∇B ) (2.26)

The latter result can be shown to be valid for other fluid balance equations, although
in a more subtle way. For momentum and energy balances, it is contributions from
the Braginskii tensor that counterbalance most of the diamagnetic drift flux, leading
to a remainder equivalent to an advection by the curvature drift velocity. This effect is
often refered to as the diamagnetic drift cancellation [58, 126]. In the models used in
this thesis, it is practically used by replacing the diamagnetic velocity by the ∇B-drift
velocity whenever it appears in the equations. As a final remark, we have actually
neglected an advection term of the parallel momentum due to the parallel velocity.
If taken into account, a third velocity can be expressed. The full calculation is given
in [18]. This is the curvature drift velocity ucurv. Its impact is really small and is
sometimes account for as a second order drift (see [82]). This drift comes from the
spatial variation of B a particle can experience in its parallel trajectory and can be
ignored in the hypothesis of small Mach numbers but should be taken into account in
case of large amplitude flows. In this thesis, we have used in each simulation this third
drift velocity.
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(a) Electrical drift (b) Diamagnetic drift

Figure 2.1.: Physical sketch of the first order drift velocities

2.1.2. Physics of open field lines

In the Scrape-Off Layer (SOL), the magnetic field lines encounter the Plasma Facing
Component (PFC). The interaction between a plasma and a solid wall induces different
phenomena. The charged particles hit the wall, creating first a recombination of the
ions and the electrons into neutral species. The wall is thus an energy and particle sink
for the plasma, even if, in steady-state, through recycling, the wall can then become a
source of particles (with losses, so the particle sink boundary condition is still valid).
The particle fluxes are thus extremely different in the SOL than in a close field lines
region (CFL). The heat fluxes, in contrario, always see the wall as a sink.

In this section, we quickly describe some physical impacts of the wall on the particles.
A more detailled work can be found in [112]. We assume an isothermal case with
equal ion and electron temperatures Ti = Te , such that the thermal velocity ratio
vTe /vTi

=
p

mi /me ≪ 1. This shows that, at the same temperature, ions are slower
than electrons. Physically, this translates intially into a larger flux for electrons than for
ions at the wall. Due the larger electrons flux, an electrical field arises at the proximity
of the wall, resulting in a natural sheath that accelerates ions but descelerates electrons.
The electrical sheath region builds up until the fluxes of ions and electrons reach an
equilibrium. A simple scheme of a 1D SOL is given on Fig. 2.2, with the z-axis along
the parallel direction. If we write the normalized electric potential Φ= eU /Te , with U

the electric potential, e the elementary charge, the Maxwell-Gauss equation gives:

d2
Φ

dz2
= e2n0

ǫ0Te

ne −ni

n0
(2.27)

with n0 the average plasma density, ni the ion density and ne the electron density. The
physical expansion of the sheath is directly given by the characteristic length appearing
in the equation: the Debye’s length λD =

√

e2n0/(ǫ0Te ). For a tokamak plasma with a
temperature Te = 50 eV and a density n0 = 1019 m−3, the Debye’s length is of the order
of 10−5 m, which is to be compared to the parallel length L∥ = 2πqR ∼ 100 m. As a
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consequence, the sheath is not modelled explicitly in the fluid codes but its effects
are taken into account through specific boundary conditions called Bohm boundary
conditions.

Figure 2.2.: Sketch of a 1D SOL. Profiles of potential and density along the parallel
direction (scaling not respected)

2.1.2.1. The Bohm boundary conditions

To study the dynamics of the sheath, we take a reference electric potential far from
it and set it to zero. The region when the potential starts to drop and the ions to be
accelerated is called the pre-sheath. For simplicity, values at the entrance of the sheath
are noted (·)se for the sheath entrance. We assume an isothermal plasma, so that Ti = 0
(a more general case is given in [112, Sec. 2.4]), a ion electrical charge qi = 1 and equal
sources of ions and electrons (which is generally the case). We assume adiabatic ions,
meaning that as mi ≫ me , and neglect the electron inertial terms in front of the ion
one. This allows us to assume that the electrons follow the Boltzmann’s distribution:

ne = nse
e exp

(
e(φ−φse )

kB Te

)

(2.28)

Now, to solve the Poisson’s equation 2.27, we need to express ni as a function of φ.
As the Debye’s length is much smaller than the mean free path, we can assume that
the sheath is collisionless (no ionization or recombination inside the sheath) and so
the flux of ions is conserved ni ui = nse

i
use

i
. Thanks to the energy conservation and

assuming the electron temperature to be much larger than the ion one, we know that:

1

2
mi u2

i =−eφ (2.29)
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Then, with the quasi-neutrality hypothesis at the sheath entrance (and only there)
nse

e = nse
i

= nse , we can write:

ni = nse

√

φse

φ
(2.30)

So that the Poisson’s equation becomes (dimensional one):

d2φ

dz2
=−nse e

ǫ0

[√

φse

φ
−exp

(
e(φ−φse )

kB Te

)]

(2.31)

By defining δφ=φse −φ, we can make a Taylor expansion which leads at first order to:

d2δφ

dz2
=−e2nseδφ

ǫ0kB Te

(

1− kB Te

2e|φse |

)

(2.32)

An exponentially vanishing solution is possible if:

e|φse | ≥ kB Te

2
(2.33)

With the energy conservation equation from above, it becomes the Bohm’s criteria:

use ≥

√

kB Te

mi
≡ cs (2.34)

If we define the Mach number as M ≡ u∥/cs , the Bohm’s criteria writes as M se ≥ 1
that means that the plasma should achieved a supersonic velocity before the sheath
entrance. Let’s note that the sound speed cs in a plasma is still different from the
sound speed in fluid as the latter propagates through mechanical collisions whereas
the former propagates through electrostatic interactions. A more detailed study of the
supersonic transition in the edge plasma can be found in [51].

The expression of the sound speed can be generalized for hot ions plasma according
to [112] into:

cs =

√

kB (γe Te +γi Ti )

mi
(2.35)

where γe/i is the polytropic index (for ion and electron respectively), equal to 1 for an
isothermal plasma and 5/3 for an adiabatic plasma with isotropic pressure.

2.1.2.2. The Bohm-Chodura boundary conditions

We have assumed so far field lines normal to the solid surface, which is generally not
the case in tokamaks. The Bohm conditions must thus take into account an incidence
angle α. This angle is actually made as small as possible to reduce the heat flux on the
targets such that qpeak = q∥ sin(α). In this situation, the perpendicular drifts have to
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be taken into account leading to the Bohm-Chodura’s boundary condition [93]:

|(u∥b +u⊥) ·nwall| ≥ cs |b ·nwall| (2.36)

where nwall is the normal to the wall, flux directed toward the wall.

2.1.2.3. Bohm conditions for the current

Following the Bohm conditions in the normal incidence case, we can expressed the
plasma flux at the sheath entrance as:

Γ
se = nse v se = nse cs (2.37)

As already mentioned, we can assume the ions flux to be constant in the sheath and
consequently the flux at the wall to be the same at the sheath entrance: Γ

w
i
= Γ

se .
Finally, assuming the electron density at the wall to follow a Boltzmann distribution
similar to Eq. 2.28, the current in the parallel direction at the wall writes:

j w
∥ = e(Γw

i −Γ
w
e ) = ense cs

(

1−exp

(

Λ+ e(φw −φse )

kB Te

))

(2.38)

where exp(Λ) = v w
e /cs . The condition to having j w

∥ = 0 at the wall gives:

Λ= e(φse −φw )

kB Te
(2.39)

defining the potential drop in the sheath for a wall at floating potential. Its expression
can be found in [112, Sec. 2.6].

2.1.2.4. Bohm conditions for the energy balance

According to [112, Sec 2.8], in a collisionless sheath, the heat flux is convective and
writes:

q se
e/i = γe/i kB Te/iΓ

se (2.40)

with γe/i the sheath heat transmission coefficients.

2.2. TOKAM3X: 3D fluid turbulence code

TOKAM3X is a first principle 3D turbulent code for edge plasma modeling. The code
solves the equations based on a Braginskii’s closure and drift-reduced model as seen in
the upper sections, in an electrostatic framework. Two general models can be solved,
the isothermal one and the anisothermal one. Both are described and used in this
thesis. The isothermal model assumes constant temperatures in time and space. The
anisothermal model uses self-consistant temperature dynamics.
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2.2.1. Normalization

As in most numerical codes, every quantity is normalized by a reference one. The use
of normalized quantities has 2 advantages:

• it often allows one to reduce the size of the parameter space of the model by
reducing the number of free parameters to their minimum (eliminating possible
redundancies).

• it allows the code to run with quantities of the order of 1 which can be of precious
help when debugging or analysing the output of the code.

In the model solved by TOKAM3X, a typical reference density n0 is chosen according
to its value at the separatrix of typical tokamaks. The same goes for the reference
temperature T0 and B0, the reference magnetic field, is taken on the machine magnetic
axis. Lengths (meter) are normalized by the ion Larmor radius ρL =

p
mi T0/(eB0),

the time scale is set by the ion cyclotronic frequency ωc = eB0/mi . Actually, only 3
reference quantities are needed, the others can then be expressed according to said
quantities and some physical constants (such as the ion mass mi or the electronic
charge e): T0, B0, and n0.

2.2.2. TOKAM3X equations

The continuity equation is set under the hypothesis of quasi-neutrality, so that ni /n0 ∼
ne /n0 ≡ N . TOKAM3X makes an approximation for the continuity equation by taking
the ion continuity equation but neglecting the polarization drift, due to its complexity
and numerical difficulties associated with its treatment. It leads to:

∂t N +∇∇∇· (Γi b +N u⊥,i ) =∇∇∇· (D⊥N∇∇∇N )+SN (2.41)

with Γi = ni u∥,i /(n0cs), u⊥,i ≈ uE +u∇B ,i +ucurv. We have potentially another equa-
tion on the electrons for the particule conservation, but due to the quasi-neutrality
assumption ne = ni , TOKAM3X uses the ions one, the electrons one is used for the
charge conservation. In TOKAM3X, the assumption Γe ∼ Γi is also done. The term
∇∇∇ · (D⊥N∇∇∇N ) is a diffusive term modeling transport at scales smaller than the grid
cells or due to collisions. SN is is a volumetric particle source whose distribution can
be chosen arbitrarily. It is often applied in the vicinity of the inner boundary of the
simulation domain to model a particle flux coming from the core region. Its position
can change with the anisothermal model, coming from the wall or the target (the
so-called recycling).

The parallel momentum equation is the results of the parallel projection of the
balance momentum equation for ions and electrons. Due to the small mass of the
electrons compare to ions, the inertial terms for the electron balance are neglected.
The divergence of the Braginskii’s tensor is neglected too. For electrons, it leads to:

0 =−ne eE∥−∇∥pe +R∥ (2.42)
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where ∇∥ = b ·∇∇∇. For the ions:

mi

(

∂tΓi +∇∇∇· (Γi (u∥,i b +u⊥,i ))
)

=+ni eE∥−∇∥pi −R∥ (2.43)

Once summing the 2 equations, using the continuity equation and the normalization
process, we obtain:

∂tΓi +∇∇∇·
(

Γi

(
Γi

N
b +u⊥,i

))

=−∇∥(Pe+Pi )+∇∇∇·
(

D⊥ΓN∇∇∇(
Γi

N
)+D⊥N

Γi

N
∇∇∇N

)

+SΓ (2.44)

where ∇∇∇·
(

D⊥ΓN∇∇∇(Γi

N
)+D⊥N

Γi

N
∇∇∇N

)

is a diffusive term modeling scales smaller than

the grid scale and SΓ is a momentum source from the core region. Γi = Nu∥,i so that
in this equation, only N , Γi , Pe and Pi are unknown. The pressure can be expressed
as Pe/i = N Te/i so that one needs 2 additional equations on the electron and ion
temperatures respectively are needed (Te = Ti = 1 for an isothermal model or two
equations for an anisothermal model).

Expressing the electrostatic assumption as E∥ =−∇∥Φ and the parallel component
of the friction term R∥ =−0.71N∇∥Te +η∥N J∥ according to the Braginskii’s closure in
Eq. 2.42 leads to the parallel conservation law or Ohm’s law:

η∥N J∥ =∇∥Pe −N∇∥Φ+0.71N∇∥Te (2.45)

The next equation is the charge equation whose calculation can be found in [47, 117].
This equation simply translates the conservation of the charge:

∇∇∇· j = 0 =∇∇∇· ( j∥b)+∇∇∇· jp +∇∇∇· j∗ (2.46)

where jp is the polarisation current and j∗ is the diamagnetic current. The latter
is easily expressible as the current resulting from the flux difference from the ∇B-
drift of ions and electrons (where we use the equality between the divergence of the
diamagnetic drift and ∇B-drift). The former is more complex and is often simplified
through a so-called Boussinesq approximation [11]. This allows to write the charge
conservation as a function of vorticity noted W , which is actually the equation for the
potential obtaining Φ:

W =∇∇∇·
(

1

B 2
∇∇∇⊥Φ+ 1

N B 2
∇∇∇⊥Pi

)

(2.47)

The charge conservation ends up as the vorticity equation:

∂t W +∇∇∇·
(

W

(
Γi

N
b +u⊥,i

))

=∇∇∇· (N (u∇B ,i −u∇B ,e ))+∇∇∇· (J∥b)+∇∇∇· (D⊥,W ∇∇∇W ) (2.48)

with ∇∇∇· J∗ =∇∇∇· (N (u∇B ,i −u∇B ,e )). ∇∇∇· (D⊥,W ∇∇∇W ) is a modeling term for small scale
structures.

The isothermal model of TOKAM3X assumes Te = Ti = 1 and the pressures become
simply Pe = Pi = N Te = N Ti = N . For the anisothermal model, two set of equations
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are added. The energy balance of both ions and electrons are written with a number of
simplifications too. First, we neglect the contributions of the perpendicular velocities
on the total energy, so that all associated terms in the energy conservation vanish (e.g.
E ·us and Rs ·us where only the parallel contribution is kept). The same assumption
about the perpendicular drift as in the density balance is also done. The ion drift
replaces the electron one. The anisotropic part of the pressure tensor (the Braginskii’s
tensor) is once again neglected. To close the equation, the heat fluxes qe/i and the
friction sources QC ,i /e are futher are further simplified, keeping only the dominant
terms of the Braginskii closure, leading to:

qe/i =−K0,e/i T 5/2
e,i ∇∥Te,i b (2.49)

where K0,e/i is a constante chosen as a parameter in the code.

QC ,i =−QC ,e =
me

mi
ν⋆

N

τe
(Te −Ti ) (2.50)

The balance energy equation for electron writes then:
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+∇∇∇·
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2
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Γi
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2
Pe u⊥,e +qe
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N
R∥+QC ,e

+∇∇∇·
(

D⊥,Te N∇∇∇Te +D⊥,N
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2
Te∇∇∇N

)

+SEe (2.51)

It is to be noted in this equation the approximations (J∥−Γi )E∥ ∼−Γi E∥ and Γe /N ≡
u∥,e ∼ u∥,i ≡ Γi /N . Then for ions, we have:
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(
Γi

N

))

+SEi
(2.52)

with, as a reminder Pe = N Te and Pi = N Ti . The SX terms are energy sources from the
core and the two divergence terms with diffusion coefficient terms (D⊥) are for the
modeling of scales smaller than the grid.

The TOKAM3X equations are thus:

∂t N +∇∇∇· (Γi b +N u⊥,i ) =∇∇∇· (D⊥N∇∇∇N )+SN (2.53)

∂tΓi +∇∇∇·
(

Γi

(
Γi

N
b +u⊥,i

))

=−∇∥(Pe+Pi )+∇∇∇·
(

D⊥ΓN∇∇∇(
Γi

N
)+D⊥N

Γi

N
∇∇∇N

)

+SΓ (2.54)
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η∥N J∥ =∇∥Pe −N∇∥Φ+0.71N∇∥Te (2.55)

∂t W +∇∇∇·
(

W

(
Γi

N
b +u⊥,i

))

=∇∇∇· (N (u∇B ,i −u∇B ,e ))+∇∇∇· (J∥b)+∇∇∇· (D⊥,W ∇∇∇W ) (2.56)
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(2.58)

One of the free parameters of the model is the normalized parallel Spitzer resistivity,
which is proportional to the collisonality:

η∥ ∝ 0.51
me

mi
ν⋆T −3/2

e (2.59)

In isothermal model, we can thus choose to fixe η∥ to fixe ν⋆, whereas a self-consitent
model can be used in non-isothermal simulations. Typically, for TORE-SUPRA at
the separatrix, we have ν⋆ = 0.01. In TOKAM3X, we used η∥ = 10−5 in isothermal
simulations (corresponding to ν⋆ ≈ 0.07) and ν⋆ = 0.05 in non-isothermal ones with a
self-consitent paralle resistivity.

2.2.3. Magnetic geometry

TOKAM3X uses a flux surface aligned coordinate approach and complex geometries
can be described. Before this thesis, it was only for axisymmetrical magnetic geome-
tries. This is done through the so-called curvilinear coordinates. A complete study
of this kind of topology is beyond the scope of this thesis but can be found in [27].
We detail here only the main lines of the topic. Let us assume we have access to the
magnetic field in cylindrical coord-nates B(R, Z ,φ) with R the major radius, Z the
vertical axis and φ the toroidal curvilinear coordinate. We assume the existence of flux
surfaces, which are tangent to the magnetic field lines.

To have a topology based on the magnetic topology, we need to define a 3D non-
orthogonal and local basis. We define a set of three scalars (ψ,θ∗,ζ) with ψ labelling
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flux surfaces, θ∗ a poloidal curvilinear coordinate and ζ a toroidal curvilinear coor-
dinate. ψ is a radial coordinate and can be sometimes refer with a r subscript or
superscript, especially in simplified circular geometry. In TOKAM3X, ζ is actually a
local curvilinear angle noted ϕ, as a toroidal angle, and such that ϕ ∈ [0,2π]. This is
due to the fact that tokamaks are considered periodic. This allows one to define a
transformation operation of a position vector r as:

r (R, Z ,φ) = r (ψ,θ∗,ϕ) (2.60)

The notation curvilinear comes from the fact that iso-coordinate lines are not neces-
sarily straight lines or even orthogonal to one another. At every point in space, a triptic
of vectors can be defined to create a basis. The vectors tangent to the iso-coordinate
curves form the covariant basis:

eψ = ∂r

∂ψ
; eθ∗ =

∂r

∂θ∗
; eϕ = ∂r

∂ϕ
(2.61)

whereas the vectors orthogonal to the plane defined by two curves form the contravari-
ant basis:

eψ =∇∇∇ψ ; eθ∗ =∇∇∇θ∗ ; eϕ =∇∇∇ϕ (2.62)

By construction, the two basis (see Fig. 2.3b for the (ψ,θ∗,ζ) basis, the (ψ,θ∗,ϕ) one
would have the covariant and contravariant ϕ vectors being the same) have a certain
number of properties detailled in Appendix B. Beyond the mathematical properties,
the most important one is the axisymmetrical assumption in the toroidal direction. It
translates into:

eϕ ·eψ = eϕ ·eθ∗ = eϕ ·eψ = eϕ ·eθ∗ = 0 , eϕ×eϕ = 0 (2.63)

Which is the mathematical justification that, in practice, the mesh is magnetically
aligned in the poloidal plan (ψ,θ∗), but in the toroidal direction, the mesh follows the
toroidal angle ϕ and not the magnetic field lines.

The magnetic field can be expressed as the curl of a potential vector A, following [59].
It writes A =Ψp (ψ)∇∇∇ϕ+Ψt (ψ,θ∗)∇∇∇θ∗. Then we have:

B =∇∇∇Ψp ×∇∇∇ϕ+∇∇∇Ψt ×∇∇∇θ∗ (2.64)

where Ψt and Ψp are toroidal and poloidal flux functions whose parameter depencies
are chosen so that B ·∇∇∇ψ = 0. This means that the magnetic field has no radial (ψ)
component in the covariant basis. Furthermore, the field lines are thus ensured to lie
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(a) Flux surfaces in (R, Z ,φ) (b) Curvilinear vectors in general configura-
tion. In TOKAM3X eζ and eζ have the same
direction and are noted eϕ or eϕ

Figure 2.3.: Scheme of the different basis

on flux surfaces. The magnetic field can be written:

B =
dΨp

dψ
eψ×eϕ+ ∂Ψt

∂ψ
eψ×eθ∗ (2.65)

= Bθ∗eθ∗ +Bϕeϕ, with Bθ∗ =−1

J

dΨp

dψ
and Bϕ = F

R|eϕ|
(2.66)

Where we have set:
∂Ψt

∂ψ
= F J

R|eϕ|
, F = µ0Itor

2π
(2.67)

with J the Jacobian of the transformation between cylindrical and curvilinear coordi-
nates (see Appendix B) and Itor the toroidal current in the plasma (obtained from an
application of the Ampère’s law on the magnetic field). R is the radius. We can note
that, once normalized, the toroidal contravariant component of the magnetic field
ends up as B̂ϕ = F /R which shows an inversely proportional to R toroidal field, an
important property of tokamaks.

2.2.4. Numerical methods

TOKAM3X uses a conservative finite-difference discretization method. The time
evolution is done by a Runge-Kutta scheme of order one to four. The advancement of
each term in the equations depends on their respective dynamics. Advection terms
follow an explicit scheme, a shock-capturing Roe-Marquina one [29, 101] completed
with a Weighted Essentially Non Oscillatory (WENO) interpolation [73].

The perpendicular diffusive terms use an explicit advancement. The parallel heat
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diffusion terms, use an implicit one to avoid breaking the CFL condition. The implicit
advancement of these terms is done as a final step in the numerical scheme.

Finally, two terms are treated differently through an implicit scheme due to their
dynamics: the parallel current term (more specifically its dependency in Phi) in the
vorticity equation and the heat fluxes in the energy balances. Both terms have parallel
dynamics much faster than the perpendicular advection terms. We describe the
case for the vorticity equation as it is the most complex one. Once the advection
terms are computed, the expression of the parallel current from the Ohm’s law 2.45
is substituted in the vorticity equation 2.48. Then, with the potential function as
unknown, the following equation is solved implicitely:

(L ⊥+L
∥δt )Φt+1 =W ⋆−∇∇∇·

(
1

N t B 2
∇∇∇⊥P t

i

)

−δt∇∇∇·
(

1

N tη∥
b∇∥P t

e +
0.71

η∥
b∇∥T t

e

)

(2.68)

Where W ⋆ is a field resulting from the explicit advancement. L ⊥ =∇∇∇·
(

1
B 2∇∇∇⊥

)

and

L ∥ =∇∇∇·
(

1
η∥

b∇∥
)

are operators. (L ⊥+L ∥δt) is a 3D operator inverted thanks to a

direct sparse L-U solver with the support of specific libraries such as PASTIX.

2.2.5. Boundary conditions and flux control

In the toroidal direction, periodic conditions are set. TOKAM3X solves both closed and
open flux surfaces (SOL). Periodic conditions are also applied in the poloidal direction
for closed flux surface zones. The Bohm boundary conditions are set in the SOL region.
With respect to Sec. 2.1.2, at the target (limiter or divertor), a Bohm-Chodura boundary
condition is imposed for the momentum:

Γ
se = |(u∥,i b +u⊥,i ) ·nwall| ≥ cs |b ·nwall| (2.69)

with cs =
p

Te +Ti here. The condition for the parallel current (and thus the electric
potential) is the linearized version of Eq. 2.38:

j∥ ≈±N (Λ−Φ) (2.70)

The sign depends on the side of the target. A condition on the parallel gradient of the
potential is set using the Ohm’s law and the condition on the parallel current:

∇∥Φ=±η∥N (Λ−Φ)+
∇∥Pe

N
+0.71∇∥Te (2.71)

We finally have a condition (still on the target) for the parallel heat flux:

qe/i = γe/i N Te/i (2.72)
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At the inner and outer radial boundaries, a Neumann condition ∂ψX = 0 is applied for
all unknown fields (N ,Γ,Φ,W,Te ,Ti ).

Figure 2.4.: Scheme of the boundary conditions used in TOKAM3X. In red are the
inner (core) bounday, in green the outer (wall) boundary and in blue the
target boundaries. The grey and black parts are in the simulation domain.
The buffer zones are a few cells in the domain at every boundaries.

To fullfill the conservation properties of the code, sources and sinks have to be
carefully tuned. In TOKAM3X, the particle density is driven by a volumetric source and
the sinks are given by the fluxes at the boundaries. If the Bohm-Chodura condition
is well-defined, the Neumann conditions in the radial direction need, on the other
hand, more control. Such a simple condition must not reflect a physical border
but just a limitation in the geometry. If the turbulence is not dampened near the
boundaries, unphysical phenomena appear (stronger gradient, stronger turbulence,
etc). Consequently, at the inner boundary, a null flux condition is imposed: Γψ = 0.
This prevents unwanted source losses. For numerical stability, the implementation
of buffer region is done, where, near the inner boundary, the diffusive coefficient is
artificially increased to homogeneise the plasma. This radial zone is limited to a few
cells (one to four at most) in order to limit the computational cost.

2.2.6. Quick overview in the litterature

TOKAM3X is a well established code in its specialities. Its isothermal model has been
used to described edge plasma turbulence in circular limiter geometry [121] and
quickly in realistic X-point geometry [48]. The non-isothermal model has allowed to
study turbulent behaviour in circular limiter geometry [4]. Recent developments have
added the neutral physics in TOKAM3X coupling with the EIRENE code [41]. In the
community of edge plasma turbulent codes (such as the already discussed BOUT++,
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GBS or GRILLIX), TOKAM3X is on the same league and the 3D MPs added in this thesis
should allow it to keep a good position on the market.

2.3. SOLEDGE3X-HDG: 3D fluid transport code

SOLEDGE3X-HDG is a 2D-3D code using Hybrid Discontinuous Galerkin method to
solve a reduced 2D-3D transport equation model in realistic tokamak geometry. The
model can be chosen isothermal or anisothermal [52–54]. For this thesis, we only
use the 3D isothermal model. The reason is that this is the first time the 3D version
of SOLEDGE3X-HDG is used, so we choose the simplest model as a starting point.
The code is moreover still under development with the recent addition of neutral
physics and turbulence. Nevertheless, the strength of SOLEDGE3X-HDG compare to
TOKAM3X is the geometry. In SOLEDGE3X-HDG, thanks to high order finite elemnts,
any magnetic and wall geometries can be given.

2.3.1. Transport equations

In the same way as for TOKAM3X, the drift ordering hypothesis is done, splitting
parallel and perpendicular dynamics. We write u = ub +u⊥. In SOLEDGE3X-HDG,
only the ion diamagnetic drift is taken into account, substituted by the curvature drift
velocity under the diamagnetic cancellation:

u⊥ = u∇B = 2Ti

B

B ×∇∇∇B

B 2
(2.73)

A minimum system of equations with the ion density and parallel momentum balances
leads to: {

∂t N +∇∇∇· (N u)−∇∇∇· (D∇∇∇⊥N ) = SN

∂tΓi +∇∇∇· (Γi u)+b∇∥(2N )−∇∇∇· (µ∇∇∇⊥Γi ) = SΓ

(2.74)

where SN and SΓ are sources of particles and momentum flux. cs is the dimensionless
sound speed. D and µ are diffusion coefficient that take into account both collisional
transport and the turbulence in the cross-field direction, assumed to be constante. In
this thesis D =µ.

2.3.2. Boundary conditions

The boundary condition are similar to the one in TOKAM3X. The density at the wall is
left free and the plasma-wall interactions are done with mainly a Bohm condition for
the parallel velocity. It simply translates as:

{

Γi ≥+N
p

2 if b ·n > 0

Γi ≤−N
p

2 if b ·n < 0
(2.75)
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with n the outer normal to the wall. When the field lines are almost tangent to the
wall, the Bohm theory is not true anymore so a switch has been implemented when
|b ·n| < 0.1 so that the condition turns into a free density and momentum flux and a
Neumann condition ∂t X = 0.

2.3.3. Non-aligned grid and numerical methods

One limit of field-aligned grid code is to handle complex geometry of the wall. SOLEDGE3X-
HDG can accurately discretize real geometries of tokamaks. It aims toward a compu-
tationaly efficiency as well as being flexible with magnetic geometry. This flexibilty
stems from the use of a finitie elements method on unstructured meshes (see Figs 2.5).

(a) Mesh horizontal limiter (b) Mesh WEST geometry

Figure 2.5.: Non-aligned grid for SOLEDGE3X-HDG

A high-order Hybrid Discontinuous Galerkin (HDG) algorithm is used. The mathe-
matical background of this scheme is beyond the scope of this thesis but details can
be found in [53]. We just recapitulate the step of the HDG method.

To solve the system 2.74, a local problem is solved in each element of the finite-
element discretization, then a global problem allows to solve the system in the whole
mesh skeleton (corresponding to the boundaries between elements). The local prob-
lem is a weak formulation of the system, written in conservative form, expressed as
a conservative variable U = N , NΓi in each nodes (nodes are constitutive parts of an
element of the mesh). Thanks to the weak formulation, U is expressed into another
approximation, the trace solution, defined on the element borders Û . The global
problem comes from the conservation of the fluxes in weak form applied on this
element borders. From the global problem solved for Û , U can be recovered in each
element. The advantage of the HDG method are:

• The problem is decomposed in a combination of local problems in each elements
and a local problem corresponding to the flux between elements.

• Each local problem is independant from the others and thus making the scheme
highly parallel.
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• The global problem has less degrees of freedom than the total number of degrees
of freedom of the problem, which decreases its computational cost.

The time discretization is fully implicit with a Backward Euler scheme (first order)
or Geiler scheme (second order). Non-linear terms are linearized with a Newton-
Raphson method.

2.3.4. Quick overview in the litterature

The first benchmark of SOLEDGE3X-HDG with SOLEDGE2D in [53] has been done
with a WEST geometry in an isothermal model. It has been able to reach a steady-state
solution in a few minutes compare to the hours necessary for SOLEDGE2D. The results
between the two codes are extremely similar. Furthermore, SOLEDGE3X-HDG is able
to solve the equations in the core plasma, allowing to avoid to set boundary conditions
on the inner boundaries. It is an advantage as numerical codes can be extremely
sensible to arbitrarily set boundary conditions. In [52], SOLEDGE3X-HDG solve with
an isothermal model a transient magnetic equilibrium on a WEST geometry, from a
limiter to divertor transition, a completely new feature in the current codes for plasma
transport simulations.

60



3. Self-consistent study of
isothermal turbulent transport in
circular geometry with 3D
magnetic perturbations

Table of Content

3.1 Implementation of 3D magnetic perturbations in TOKAM3X . . . . . . 62
3.2 Simulations set-up for this chapter . . . . . . . . . . . . . . . . . . . . . 63
3.3 Direct observation on the magnetic field . . . . . . . . . . . . . . . . . . 65
3.4 Impact of three-dimensional single MP on the mean fields . . . . . . . 66

3.4.1 Density pump-out . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 Mean profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 Impact on flows and rotation . . . . . . . . . . . . . . . . . . . . 71
3.4.4 Impact on radial transport . . . . . . . . . . . . . . . . . . . . . 71

3.4.4.1 Flux-surface averaged fluxes . . . . . . . . . . . . . . 72
3.4.4.2 Poloidal distribution of 〈Γψ〉t ,ϕ . . . . . . . . . . . . . 73
3.4.4.3 On the role of the E ×B transport . . . . . . . . . . . . 75

3.4.5 On the role of the E ×B shear . . . . . . . . . . . . . . . . . . . . 79
3.4.6 SOL width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Impact of MP on turbulence properties . . . . . . . . . . . . . . . . . . 81
3.5.1 Impact on the fluctuations levels . . . . . . . . . . . . . . . . . . 81
3.5.2 Impact on the turbulence intermittency . . . . . . . . . . . . . 82
3.5.3 Shape of turbulent structures . . . . . . . . . . . . . . . . . . . . 86

3.6 Implications for mean field modeling . . . . . . . . . . . . . . . . . . . 86
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

61



3. Isothermal turbulent simulations with 3D MP–3.1. Implementation of 3D

magnetic perturbations in TOKAM3X

In this chapter, we analyze the impact of single mode magnetic perturbations (MPs)
on turbulence and transport in the edge of a circular limited and isothermal plasma.
The TOKAM3X code introduced in Chap. 2 is used for that purpose. We first describe
the changes made in the code to deal with 3D magnetic perturbations, before reporting
simulation results.

3.1. Implementation of 3D magnetic perturbations

in TOKAM3X

As introduced in Section 2.2.3, the magnetic field B0 in TOKAM3X derives from a
potential vector of the form:

A0 =Ψ
0
p (ψ)∇∇∇ϕ+Ψ

0
t (ψ,θ∗)∇∇∇θ∗ (3.1)

The code was thus originally only able to deal with toroidally axisymmetric magnetic
equilibria, with however arbitrary geometries in the poloidal cross-section. The first
task of this PhD consisted thus in modifying the magnetic equilibrium implementation
to allow a perturbative approach (small amplitude perturbations) for 3D magnetic
perturbations. The potential vector is thus rewritten as:

A =Ψ
0
p (1+ǫp )∇∇∇ϕ+Ψ

0
t ∇∇∇θ∗ (3.2)

with |ǫp (ψ,θ∗,ϕ)| ≪ 1. The small amplitudes assumption allows us to keep a mesh
aligned on the flux surfaces along the magnetic field lines. This leads (see Appendix B.2
for more) to the following expression for the magnetic field B :

B = Bϕeϕ+Bθ∗eθ∗ +Bψeψ

= Bϕ||eϕ||
eϕ

||eϕ||
+Bθ∗ ||eθ∗ ||

eθ∗

||eθ∗ ||
+Bψ||eψ||

eψ

||eψ||
= Bϕ√

gϕϕêϕ+Bθ∗pgθ∗θ∗ êθ∗ +Bψ√
gψψêψ

= B torêϕ+B polêθ∗ +B psiêψ

(3.3)

where (B tor,B pol,B psi) are the toroidal, poloidal and radial covariant components of
the magnetic field. The magnetic perturbations mainly introduce a new radial term,
otherwise equal to zero in the former version of TOKAM3X.

This new component of the magnetic field leads to the many additional components
that must have been implemented in the TOKAM3X model. A special attention has
been given to the perpendicular velocity drifts. Let a scalar quantity f , then the related
drift velocity can be written as:

udrift =α
B ×∇∇∇ f

B 2
(3.4)
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where α is a term depending on which drift velocity is considered. For example the
electric drift sets α= 1 and f =Φ, whereas the ∇B , for ions sets α= 2Ti /B and f = B .
The curvature drift sets α= Γ

2
i

/(N 2
i

B) and f = B . The complete calculation of the drift
velocities is done in Appendix B.3. We summarize here by saying that each vector com-
ponent gains a new term from the radial component of the magnetic field. As already
mentionned, in this approach the mesh can remain aligned along the magnetic fiels
lines and only the equations are changed.

All these new terms are treated explicitly is the numerical scheme assuming that they
remain small that does not impact too much the stability condition of the numerical
scheme. It is especially important for the vorticity equation 2.48, from whom the
potential evolution is done implicitely.

3.2. Simulations set-up for this chapter

Simulation a m n

Reference 0 0 0

MP no island

1 6 4
2 6 4
3 6 4
1 10 6

MP islands

1 6 2
1 15 4
1 18 4
1 22 6

Table 3.1.: Parameters (a,m,n) for
the MPs used in the sim-
ulations. a is the am-
plitude, m the poloidal
mode number and n the
toroidal one. n is given
for a full torus.

The poloidal cross-section is circular with an in-
finitely thin limiter located at the bottom. The
computational domain emcompasses both open
(SOL) and closed field lines (CFR). Only half a
torus is computed, assuming a π-periodic solu-
tion in the toroidal direction. The mesh resolu-
tion sets as ψ×θ∗×ϕ= 64×512×64 (see Figs. 3.1).
Each simulation runs for a longer time than the
confinement time. The steady state is assumed
to be reached when the slidding average of inte-
gral quantities, such as the total particle content,
on a time scale longer than the fluctuation cor-
relation time does not vary of more than 2−3%.

Geometrical parameters and magnetic field
- The aspect ratio is set as A = R0

a
= 3.4. The

minor radius is equal to 256ρL (in Larmor radius
unit). The simulated domain is defined such that
r /a ∈ [0.8,1.2], with r /a = 1 being the separatrix.
The reference value B0 for the magnetic field is
chosen by convention as the amplitude of the
toroidal field on the magnetic axis, so that F = 1
and the safety factor q in the simulation box follows a parabolic profile with values
bounded in [3,6], 6 being the value at the wall. The magnetic field is oriented such
that the ∇Bi velocity drift is going toward the bottom of the machine.
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(a) Mesh (b) 3D view

Figure 3.1.: (3.1a) Poloidal cut of the 3D mesh. The limiter is the thick black line at the
bottom. The mesh is coarsened two times in each direction for readability.
The green part is the Closed Field lines Region (CFR), the blue part the
Scrape-Off Layer (SOL). (3.1b) 3D view of a TOKAM3X simulation (here
non isothermal model, see Chap. 4). The RMP coils are represented in
yellow (see Chap 5, in this chapter a simplified model is used). Magnetic
field lines are drawn. A density snapshot can be seen on the left and an
electron temperature snapshot on the right.

Plasma parameters - The normalized parallel resistivity η∥, which is directly de-
pendent on the collisionality in isothermal simulation, is set as:

η∥ = 10−5 (3.5)

that corresponds to ν⋆ ≈ 0.07. The effective diffusion is equal to:

D⊥,X = 10−2ρ2
Lωc (3.6)

It is a trade-off to be small enough to ensure dominant turbulent transport while
preserving the numerical stability with respect to the mesh resolution.

Sources - The simulations are flux-driven so we set a particle source at the inner
boundary (in this model without neutrals, the particles are assumed coming from the
core). The form of the source is a radially decaying function (vanishing exponential)
after a few cells, to ensure a constant particle source with no effect on the solutions
away from the boundary.

Magnetic perturbations (MPs) - A first simulation of reference without MP is
run. Then, the 3D perturbation is fixed equal:

ǫp = a ·10−3 sin
(

mθ∗−nϕ
)

(3.7)
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with the triptic (a,m,n) a set of constants whose different values are given in table 3.1.
The toroidal mode n is given for a full torus. In the following, the legend for each
simulation in the plots is (a,m,n). The reference simulation is noted (0,0,0). The
expression of the perturbation is correct in circular geometry only as we have θ∗ = θ,
the poloidal angle.

3.3. Direct observation on the magnetic field

In agreement with theory on magnetic perturbations, depending on the mode number,
magnetic islands can naturally form on flux surfaces of rational q = m/n (remind
that the parabolic safety factor profile varies between 3 ≤ q ≤ 6). In this case, the
corresponding solution is called solution with magnetic island, as opposed to the case
without magnetic island. The solutions without magnetic islands are actually due
to the fact that the amplitude of the perturbation is to weak to break the magnetic
surfaces. We thus expected to observe islands for example for MP (1,6,2) at q = 3 but
not MP (1,6,4) as q = 3/2 is outside of the computational domain.
To observe magnetic islands, Poincaré plots are drawn. Poincaré plots are obtained
by following a set of magnetic field lines (if possible uniformly distributed on flux
surfaces) and marking a point each time they intersect a given poloidal plane. This is
done by solving the following system of equations:







dlψ

dlϕ
= Bψ

Bϕ

dlθ∗

dlϕ
= Bθ∗

Bϕ

(3.8)

This system corresponds to follow a magnetic field line s, as by definition, an infinites-
imal element of the field line ds can be defined as ds×B = 0, where s is the curvilinear
abscissa along a field line. By noting ds = dlψeψ+dlθ∗eθ∗ +dlϕeϕ and expressing B

the same way in the covariant basis, it is easy to retrieve the system above. Poincaré
plots reduce to 2D maps of the particle movement by taking a poloidal slice.

The Figs. 3.2 shows two Poincaré sections for MP (1,6,4) (Fig. 3.2a) and MP (1,6,2)
(Fig. 3.2b). For the case (1,6,4), we observe no island, as expected, since the flux
surface q = 6/4 = 1.5 is outside of the domain. For the case (1,6,2) the m = 6 islands
are as expected on the flux surfaces q = 6/2 = 3. Nevertheless, we can note the
existence of islands of smaller amplitudes for other flux surfaces. This phenomenon
is a resonance due to the way the perturbation is implemented on an equilibrium
magnetic field that takes into account the helicity of said field. The poloidal magnetic

field can actually be expressed as Bp =∇∇∇Ψp ×∇∇∇ϕ∝ |Ψp |
R0(1+A cos(θ∗)) . The dependency

in 1/R leads to a Taylor serie expansion in θ∗ (due to the ǫp perturbation), involving
successives modes and not only the mode excited by the perturbation of Ψp . As a
direct consequence, subsequent modes with decreasing amplitude are found, as in
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this case, modes m = 7. . .11. For the case (1,6,4), the amplitude of the subsequent
modes are too small to be able to break the flux surfaces into islands, explaining the
absence of them.

(a) (a,m,n) = (1,6,4) (b) (a,m,n) = (1,6,2)

Figure 3.2.: Poincaré sections for different MPs. The value of the safety factor q has
been plotted on the vertical axis on the right side. As a convention θ∗ = 0 is
the Low Field Side (LFS or outer) midplane. Increasing θ∗ is in the electron
diamagnetic direction. No magnetic island (3.2a) and magnetic islands at
q = 6/2 (3.2b)

In the poloidal and toroidal directions, the response of the magnetic field to any
MP is as expected. The Fourier transforms of the norm of the total magnetic field
|B | is shown on Fig. 3.3. The plots are drawn at r /a = 0.9 and ϕ=π/8. It shows that
peak values correspond to the poloidal m mode of the perturbation, with a secondary
peak of smaller amplitude corresponding to a harmonic at 2m. The peaks become
more visible for high m, typically m ≥ 10, specially when magnetic islands appear
in the simulation box, Fig. 3.3b. Results in the toroidal direction are not shown, the
spectra being simply composed of two peaks, one at n = 0 corresponding to the
toroidal component of the magnetic field and the other one to the wavenumber of the
perturbation.

3.4. Impact of three-dimensional single MP on the

mean fields

In this section, we describe the effects of single mode MPs on the mean fields (time
averaged), distinguishing between the cases with or without magnetic islands. A
coherent picture is drawn upon each field and basic trends are given if possible.
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(a) Case MP no island (b) Case MP islands

Figure 3.3.: Fourier transforms in the poloidal direction of the norm of the total mag-
netic field |B | for different MPs without (3.3a) or with (3.3b) magnetic
islands inside the computational domain. r /a = 0.9 and ϕ= π/8. Cm is
the energy for each mode m.

3.4.1. Density pump-out

Experiments in DIII-D [40], JET [70] or MAST [118] have shown that the presence of
MPs leads to a degradation of the particle confinement marked by a decrease of the
plasma density. It is commonly called density pump-out and is often seen through the
time trace of the density in experiments. In the same way, the time trace of the particle
content in the simulation is plotted on Figs 3.4. We can clearly see that as soon as the
MP is activated, the particle content drops by a few percent (5 to 10% at most), which
is a clear reminiscent of the experimental density pump-out. We observe a pump-out
for all perturbated cases for the simulations without magnetic island (see Fig. 3.4a)
with a greater amplitude for the cases (2,6,4) and (1,10,6). It seems that a threshold
exists with respect to the amplitude of the MP for the pump-out, as the case (3,6,4)
is similar to (1,6,4). For the cases with magnetic islands (see Fig. 3.4b), the maximal
pump-out is for the cases (1,15,4) and (1,6,2) whereas the case (1,22,6) could almost
be seen as a pump-in. No visible trends can be isolated concerning the pump-out
effect with respect to the mode numbers or the amplitude of the perturbation.

3.4.2. Mean profiles

After seeing the time trace of the particle content, we take a look at the density radial
profile. The Low Field Side (LFS) midplane shows the strongest impact and to better
see the impact in the SOL, we plot such profiles on a log scale on Fig. 3.5. The cor-
responding density gradient, −∇ψN /N is plotted too. The radial density profiles at
the Low Field Side, outer side of a tokamak (LFS) midplane in the far Closed Field
lines Region (CFR), shows that whatever the MP, the radial gradient remains almost
unchanged while the density is reduced. Then, just before the separatrix, the gradient
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(a) (b)

Figure 3.4.: Time traces of the particle content in the simulation box for the case
without (3.4a) and with (3.4b) magnetic islands.

decreases compared to the reference, resulting in an increase of the density profiles.
The gradient, then, peaks at the separatrix, with a lower peak for most MPs. The
density profiles show globally a higher density around the separatrix and in the near
SOL, when MP are on. The gradient decreases after the separatrix, in the same way,
with or without MPs. Deeper into the SOL, the density profiles flatten, with a mostly
higher gradient.
For the cases without magnetic island, (Fig. 3.5a), the density deviation from the
reference solution increases with the MP amplitude (see solutions (1,6,4), (2,6,4)) but
seems to have a saturation as (3,6,4) is really similar to (2,6,4). The solution (1,10,6)
behaves almost similarly to the solution (2,6,2), with changes starker than the case
of similar amplitude (1,6,4). Thus, even without magnetic islands, the response of
the density profile can be impacted in similar way with either a higher amplitude
with lower mode number or a lower amplitude but with higher mode number of the
perturbation.
For the cases with magnetic island (Fig. 3.5b), the density deviation from the reference
solution changes with the MP mode number, the amplitude, here, being the same for
all MPs. The changes are however more pronounced than in the solutions without
magnetic island, especially around the separatrix and in the SOL. Density gradients
decrease more sharply around the separatrix under the effect of the resonant MPs (see
Figs. 3.5c and 3.5d). It results in a higher density around the separatrix for these MPs.

The density profile is the first visible change in experiments with MPs. We have seen
that the pump-out seems to occur more in the CFR whereas the behaviour in the SOL
looks more like an increase of particle. A second observable field is the radial electric
field, directly impacted by the new radial component of the magnetic field. Figs. 3.6
show the radial profiles of the mean electrostatic potential Φ at the LFS midplane.
Without magnetic islands (Fig. 3.6a), an increase is observed for most studied cases in
the CFR as well as a global drop in the SOL, leading to a flattening of the profile. The
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(a) No magnetic island (b) Magnetic islands

(c) No magnetic island (d) Magnetic islands

Figure 3.5.: Radial profiles of the mean density (3.5a,3.5b) in log scale and of the den-
sity radial gradient (3.5c,3.5d) at the LFS midplane for different MPs. MPs
with no magnetic island in the simulation box (3.5a,3.5c). MPs with mag-
netic islands (3.5b,3.5d). Quantities are averaged on time t and toroidal
direction ϕ. The vertical dashed line is the separatrix.

direct consequence is an increase of the radial electric field Er =∇ψΦ. This trend is
observed experimentally too [22, 118, 131]. With magnetic islands (Fig. 3.6b), the shift
of potential is a global increase in both CFR and SOL, except in the far SOL where the
potential decreases below the reference value of the non perturbated solution. We
observe that the amplitude of the increase for the electric potential is dependent on
both the mode and the amplitude. Higher modes (m,n) or higher amplitudes a seem
to increase the rise of the electric potential.

Figs. 3.6c,3.6d show the radial profiles of the mean radial electric field at the LFS
midplane. As a side note, the HFS midplane profile follows the same trend. For the
cases without magnetic island (Fig. 3.6c), the flattening of Er on perturbated solutions,
hints by the profile of Φ, is confirmed. The mean radial electric field, negative in
the CFR in the reference simulation, shifts towards positive values resulting in a
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much lower amplitude. Deeper into the SOL, the mean radial electric field flattens
with respect to the reference solution but the profiles become nearly independent
on the MP. For the cases with magnetic islands (Fig. 3.6d), in the CFR, the mean
radial electric field shifts in the same manner with the MP wavenumber. In the SOL
near the separatrix, Er sharply increases, with an increasing radial gradient with
the MPs amplitude, then decreases to a plateau in the far SOL. This flattening of the

(a) No magnetic island (b) Magnetic islands

(c) No magnetic island (d) Magnetic islands

Figure 3.6.: Radial profiles of the mean electrostatic potential Φ (3.6a,3.6b) and of
the mean radial electric field E r = 〈−∂rΦ〉t ,ϕ (3.6c,3.6d) at the LFS mid-
plane for different magnetic perturbations (MPs). MPs with no mag-
netic island (3.6a,3.6c) in the simulation box. MPs with magnetic is-
lands (3.6b,3.6d). Quantities are averaged on time t and in the toroidal
direction ϕ. The vertical dashed line is the separatrix.

electric potential and the corresponding drop of the radial electric field can have direct
consequences on the parallel flows, and this is the object of the following section.
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3.4.3. Impact on flows and rotation

The change of the radial electric field leads to a reorganization of the plasma rota-
tion and flows which is illustrated by a change of the parallel velocity. It has been
experimentally measured in [118] and can be a point of qualitative comparison with
the simulations. Fig. 3.7 shows the radial profiles of the mean parallel Mach number
(M∥ = Γ/(N

p
2)) averaged on time and on the toroidal direction at the LFS (Figs 3.7c

and 3.7d) and HFS (Figs 3.7a and 3.7b) midplanes. A positive Mach number corre-
sponds to the electron diamagnetic direction (in our case, it corresponds to a negative
Mach number at the outer target, going toward the positive value at the inner target).

At the HFS midplane, in the cases without island, Fig. 3.7a shows a decrease of M∥
for the perturbed solutions around the separatrix, with a reversal of the sign of M∥. In
the far SOL and in the far CFR, the variations with respect to the reference case are
very small. In the cases with magnetic islands in the simulation box, Fig. 3.7b shows
similar trends around the separatrix but a significant increase of M∥ in the far SOL
and a more significant increase in the far CFR than in the cases without magnetic
islands. We note that the decrease (or increase if relevant) is more pronounced for
high amplitudes or high mode numbers.

At the LFS midplane (Figs 3.7c and 3.7d), all cases show similar trends with a global
increase of M∥ for perturbated solutions, with still a stronger increase for higher modes
or amplitudes. On Fig. 3.7d, the presence of magnetic islands lead to a larger rise
of the profiles. For low amplitude and modes MPs, such as (1,6,2) and (1,6,4), the
increase of M∥ is actually a decrease of the parallel flow as it tends to zero. For larger
amplitudes or modes, the MPs create a positive parallel flow, so that the increase is
both a change in the direction of the flow and an increase of the speed of the flow. This
trend is observed in [118], at least in the SOL. In the CFR, the parallel flow is shown to
increase, which we observed mostly at the HFS midplane.

3.4.4. Impact on radial transport

In order to better understand the changes in the radial profiles of the density N and
the potential Φ on the global plasma behaviour, the different components of the radial
flux are analyzed. As the simulation is flux-driven, and the forcing value of the flux
is constant through all simulations, the radial particle flux is constant. The radial
particle flux can be decomposed into 5 components:

Γ
ψ = Γ

ψ

E×B
+Γ

ψ

∇Bi
+Γ

ψ
curv +Γ

ψ

diff +Γ
ψ

∥ (3.9)

The terms successively denote the E ×B velocity driven flux (comprising a mean-field
and a turbulent component), responsible of the turbulent transport, two contributions
of the 2 curvature driven drifts i.e. the ∇Bi flux and the curvature one, the diffusive
flux and the last one the radial component of parallel flux. The latter is non zero only
when MP are turned on.
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(a) No magnetic island HFS (b) Magnetic islands HFS

(c) No magnetic island LFS (d) Magnetic islands LFS

Figure 3.7.: Radial profiles of the mean parallel Mach number M∥ = Γ/(N
p

2) aver-
aged on time and in the toroidal direction at the LFS (3.7a,3.7b) and at
the HFS (3.7c,3.7d). MPs without magnetic islands in the simulation
box (3.7a,3.7c) and with magnetic islands (3.7b,3.7d). The vertical dashed
line is the separatrix.

3.4.4.1. Flux-surface averaged fluxes

The mean flux is estimated here by integrating each component along the flux surface
(in θ,ϕ), then averaged on time. The E ×B , the ∇Bi and the curvature components
are shown on Fig. 3.9 at LFS. The diffusive component is shown on Figs. 3.8. The last
component is neglectable even with MP, and will thus not be discussed here. To give
an idea, the contribution of the Γ

ψ

∥ flux is systematically lower than 1% of the total
flux.

In the CFR, both the E ×B and ∇Bi fluxes slightly increase near the separatrix,
that is compensated by an equivalent decrease of the diffusive flux, in both cases
with or without magnetic islands. The changes are more complex in the middle and
far SOL. For the cases without magnetic island, the E ×B flux (Fig. 3.9a) decreases
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in the far SOL, which is partially compensated by an increase of the diffusive flux
(Fig. 3.8a). For the cases with magnetic islands, the trend is a growth of the E ×B

flux in the middle SOL (Fig. 3.9b) but a decrease in the far SOL. The diffusive flux
increases comparably to the decrease of the E ×B flux (Fig. 3.8b). As a note, the
∇Bi flux is negative (Figs. 3.9c and 3.9d), that explains why the sum of the E ×B and
the diffusive fluxes is above 100%. Finally the curvature drift shows an interesting
behaviour as the case without magnetic island (Fig. 3.9e) is not impacted whereas the
case with magnetic island (Fig. 3.9f) shows a decrease in the SOL accoringly to the
mode number. These observations demonstrate a direct impact of the MPs on radial
transport mechanisms, explaining the changes in density profiles and the density
pump-out. The fact that the radial projection of the parallel flux remains negligible
in all our simulations also demonstrates that the perturbation of the profiles cannot
be attributed to a direct contribution of parallel mechanims to radial transport in
spite of the presence of magnetic islands. A more detailed analysis of the impact on
turbulence properties is proposed in Section 3.5.

(a) No magnetic island (b) Magnetic islands

Figure 3.8.: Radial profiles of the mean diffusive flux Γ
ψ

diff (3.8a,3.8b) at LFS. Cases
without magnetic islands (3.8a) in the simulation box. Cases with magnetic
islands (3.8b) in the simulation box. The quantities are averaged both in
time t and in the poloidal and toroidal directions (θ,ϕ). The vertical
dashed line denotes the separatrix

3.4.4.2. Poloidal distribution of 〈Γψ〉t ,ϕ

In order to explain the changes in the parallel flow velocity, we now investigate the
poloidal distribution of radial fluxes. Indeed, the time averaged parallel flow in the
edge plasma is driven by two mecanisms: the sheath boundary conditions and the
necessity to balance the local divergence of the radial flux (∇∇∇·Γ = 0). The poloidal
distribution and asymetries of radial fluxes hence are key in the understanding of the
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(a) No magnetic island (b) Magnetic islands

(c) No magnetic island (d) Magnetic islands

(e) No magnetic island (f) Magnetic islands

Figure 3.9.: Radial profiles of the mean E ×B flux Γ
ψ

E×B
(3.9a,3.9b), ∇Bi flux (3.9c,3.9d)

and curvature flux Γ
ψ
curv (3.9e,3.9f) at LFS. Cases without magnetic is-

land (3.9a,3.9c,3.9e) in the simulation box. Cases with magnetic is-
lands (3.9b,3.9d,3.9f) in the simulation box. The quantities are averaged
both in time t and in the poloidal and toroidal directions (θ∗,ϕ). The
vertical dashed line denotes the separatrix
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changes on parallel flows M∥. For each quantity we note:

f (t ,ψ,θ∗,ϕ) = f̄ (ψ,θ∗,ϕ)+ f̃ (t ,ψ,θ∗,ϕ) (3.10)

where f̄ = 〈 f 〉t is averaged over time and 〈 f̃ 〉t = 0 per construction. We are interested
here in the time averaged fluctuating parts, so that only the product of two (or more)
fluctuating parts remains. We apply this decomposition to 〈Γψ

E×B
〉t ,ϕ = 〈Nu

ψ

E×B
〉t ,ϕ.

〈Nu
ψ

E×B
〉t ≡ Γ̄

ψ

E×B
= N̄ ū

ψ

E×B
+ Ñ ũ

ψ

E×B
≡ Γ̄

ψ

Ē×B
+ Γ̄

ψ

Ẽ×B
(3.11)

Where we note, by simplicity, the time averaged E ×B radial flux as Γ̄
ψ

E×B
, the part,

corresponding to the mean-field flux solved by transport code without turbulence, is
noted Γ̄

ψ

Ē×B
and the part, corresponding to the averaged flux driven by turbulence, is

noted Γ̄
ψ

Ẽ×B
.

Fig. 3.10 shows the poloidal mean profiles related to the decomposition of Γ̄ψ

E×B
,

averaged in the toroidal direction at the flux surface r /a = 0.9. The Fig. 3.10a clearly
shows a shift to the LFS midplane (θ = 0) of the ballooning of the total Γ̄ψ

E×B
mean flux

when the solution is perturbated by MP. This shift is larger when magnetic islands are
in the simulation box as shown on Fig. 3.10b. This change in the poloidal asymmetry
is directly related to the change of M∥. This is underlined by the complex role plays by
the mean and fluctuating part of the flux.

If the fluctuating part is the major contribution of the flux (see on Fig. 3.10e and 3.10f)
with an increase of the ballooning in the upper LFS midplane, the mean-field part
varies the most. The mean contribution shows a complete reversal (see on Figs. 3.10c
and 3.10d) around the LFS midplane.
The others mean-field contributions, Γ̄ψ

∇Bi
and Γ̄

ψ
curv, are not shown here as their varia-

tions are at least one order of magnitude lower than the E ×B mean-field variations.
Furthermore, the most varying part, the Γ̄

ψ
curv for the case with magnetic islands, shows

a similar profile as the mean-field E ×B with an increase at the bottom of the machine
and a decrease at the top, the reference case being completely flat.

The main conclusion of this part is that the MPs create a poloidal redistribution of
the radial fluxes, especially the mean-field part and particularly the E ×B flux. This
is linked to the poloidal reorganization of the density and is in agreement with the
parallel flow changes.

3.4.4.3. On the role of the E ×B transport

To explore the ballooning, we continue by studying the radial profiles of the mean-field
and turbulent part of the E ×B flux at both HFS and LFS midplanes on Figs. 3.11. One
can clearly have a more detail view for the HFS midplane. The Figs 3.11a and 3.11b
confirm the lack of change of the static part Γ̄ψ

Ē×B
in the SOL both without and with

islands. Nevertheless, near the separatrix, a decrease can be seen. We note for the case
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(a) No magnetic island (b) Magnetic islands

(c) No magnetic island (d) Magnetic islands

(e) No magnetic island (f) Magnetic islands

Figure 3.10.: Poloidal profiles of the E ×B total flux Γ̄
ψ

E×B
(3.10a,3.10b), the mean-field

part Γ̄ψ

Ē×B
(3.10c,3.10d) and the fluctuating part Γ̄ψ

Ẽ×B
(3.10e,3.10f) parts

at r /a = 0.9 (CFR). Quantities are (t ,ϕ)-averaged. (3.10a,3.10c,3.10e)
cases without magnetic islands in the simulation box. (3.10b,3.10d,3.10f)
cases with magnetic islands in the simulation box. θ = 0 corresponds to
the LFS midplane.
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without magnetic island that the decrease is deeper for higher amplitude or higher
mode numbers. With magnetic islands, the decrease reaches a threshold for all high
mode numbers.
At LFS midplane (Fig.3.11c and 3.11d), the static part of the tranport increases with the
MP at the CFR, which is what has been observed in the poloidal profiles. The increase
seems linked to the amplitude and the mode numbers. For the case without magnetic
island (Fig.3.11c), the increase goes up with the amplitude and the mode numbers
and reverse just after the separatrix, fluctuating then around zero value of the static
transport when the MP are on. For the case with magnetic islands (Fig.3.11d), the
increase is stronger and goes up with the mode numbers in the CFR. Then, in the SOL,
we see a progressive decrease toward zero, except for the low mode number where the
value stays constant in the SOL.

(a) Case MP no island, HFS midplane (b) Case MP island, HFS midplane

(c) Case MP no island, LFS midplane (d) Case MP island, LFS midplane

Figure 3.11.: Radial profile of (t ,ϕ)-averaged of Γ̄ψ

Ē×B
, the static (mean-field) part of

the E ×B radial transport

Concerning the turbulent part, shown in Figs. 3.12, the changes are not in the same
regions. At HFS midplane, we notice no change at the CFR, neither without magnetic
island (Fig. 3.12a), nor with (Fig. 3.12b). A decrease is noted in the SOL, independant
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of the MP for the case without island but more important for higher mode numbers
for the case with. At LFS midplane, the turbulent part is quasi not impacted by the MP.
For the case without magnetic island (Fig. 3.12c), a small increase can be observed
in the CFR just before the separatrix, whereas with magnetic islands (Fig. 3.12d), a
decrease is seen at the separatrix only. For both, the change happens in a similar
fashion not dependant of the MP.

(a) Case MP no island, HFS midplane (b) Case MP island, HFS midplane

(c) Case MP no island, LFS midplane (d) Case MP island, LFS midplane

Figure 3.12.: Radial profiles of (t ,ϕ)-averaged of Γ̄ψ

Ẽ×B
, the fluctuating part of the E ×B

radial transport

The E ×B transport hints of a clear change of ballooning. The picture we have is
that MPs tend to shift the ballooning from the top LFS to bottom LFS (while still being
around the LFS midplane). The radial E ×B transport increases in the SOL in the lower
part of the outer midplane but mostly due to the static component of the transport.
Whereas the turbulent part increases the ballooning at the upper outer midplane, it is
compensated by the static part that decreases in this region. This is the case in the
CFR. The global balloning in the SOL is then shifted toward the top of the machine.
Finally, we note that the turbulent part is dominant but the fluctuations created by
the MP are of similar order for the turbulent and static parts.
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3.4.5. On the role of the E ×B shear

An explanation of the changes observed on the mean flow could have been the de-
crease of the shearing flow into the SOL, mainly the E ×B shear sE×B , due to MPs.
Even if effectively the impact of MPs is a global reduction of the shear as shown on
Fig. 3.13, the reduction is much stronger for the non resonant modes than for the
resonant ones, while the impact on the ballooning is stronger for resonant modes. It
seems so that the shearing reduction due to MPs is not the main mechanism related
to this mean flow modification.

(a) No magnetic island, HFS midplane (b) Magentic islands, HFS midplane

(c) No magnetic island, LFS midplane (d) Magnetic islands, LFS midplane

Figure 3.13.: Radial profiles of the E ×B shear averaged over (t ,ϕ) at the HFS mid-
plane 3.13a,3.13b and at the LFS midplane 3.13c,3.13d, 〈sE×B 〉t ,ϕ =
〈∂r uθ∗

E×B
〉t ,ϕ. 〈sE×B 〉t ,ϕ = 〈∂r uθ∗

E×B
〉t ,ϕ. MPs corresponding to magnetic

islands into the computational domain 3.13b,3.13d or not 3.13a,3.13c.

3.4.6. SOL width

The flux reorganization incites us to analyze the impact of the MPs on the SOL width.
The decrease of the density in the SOL can be approximated into an exponential de-
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Density decay length (in ρL)

MP 〈λN 〉 Trend 〈λN ,near〉 Trend

(0,0,0) 36 − 11 −

MP no island

(1,6,4) 30 ց 14 ր
(2,6,4) 30 ց 15 ր
(3,6,4) 28 ց 16 ր

(1,10,6) 30 ց 15 ր

MP islands

(1,6,2) 41 ր 11 −
(1,15,4) 33 ց 13 ր
(1,18,4) 31 ց 13 ր
(1,22,6) 29 ց 13 ր

Table 3.2.: SOL density decay length λN (in Larmor radius ρL) averaged in poloidal
and toroidal direction. λN ,near is taken in the near SOL near the separatrix.

cay such that ∂ψ〈N〉t = 〈N〉t /λN where λN is the density gradient length, sometimes
called the density decay length. The impact of MP on λN is shown in Tab. 3.2. The
values are obtained through an exponential fit of the density in the SOL. Except for
the perturbation (1,6,2) with an increase of around 10%, the density decay length
decreases when the solution is perturbated. This decrease is of the order of 20%, and
curiously of similar order for every MP. The mechanism of the drop of λN can be
seen as a consequence of the flow reorganization discussed before. This is what has
been seen in Fig. 3.5 except for the perturbation (1,6,2). The solutions also show
an increase of the radial density gradient in the SOL, which is also a reason for the
decrease in λN . The particularity of (1,6,2) can not be explained but we underline,
that it is an extremum in the scan in mode numbers with larger islands than the others.

As a remark, we could argue on the behaviour of λN , as the density gradient in the
SOL, near the separatrix, decreases, especially for the cases without magnetic islands
(see Figs. 3.5). This means that just after the separatrix, λN actually increases due to
the MP, as shown as λN ,near in Tab. 3.2 (which is directly calculated as a local λN ). This
is one of the limits of reducing the SOL width to a single averaged value with a simple
exponential curve fit. A double exponential for the near and far SOL could have been
more accurate but it raises the question of the choice of what can be considered near
and far SOL. Thus, for a simple isothermal model, we should conclude that the SOL
width, on average, decreases due to MP but increases locally just after the separatrix.
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3.5. Impact of MP on turbulence properties

We have seen in the previous section that MPs impact the plasma equilibrium via
a reorganization of particles fluxes, including the radial flux driven by turbulence.
Changes in the properties of fluctuations have also been reported experimentally as a
signature of the impact of MP on the edge plasma [103, 118]. Here, the impact of the
MPs on turbulent fluctuations is analyzed.

Quantities are decomposed into a mean and a fluctuating part as presented in
Eq 3.10. The fluctuations properties are analyzed from Probability Density Functions
(PDFs). The skewness for any variable X is defined here as:

γ1(X ) = E

[(
X −µX

σX

)3]

(3.12)

where µX is the mean and σX the standart deviation of X . The Pearson’s moment
coefficient of excess kurtosis is defined as:

γ2(X ) = E

[(
X −µ

σ

)4]

−3 (3.13)

where the minus 3 stands for having a kurtosis of 0 for a normal distribution.

3.5.1. Impact on the fluctuations levels

The evolution of the fluctuations level for density events in the radial direction, char-
acterized here by the toroidal averaged of σN /N , is shown on Fig. 3.14. To compare
both the difference with or without magnetic island and the poloidal asymmetry of
the turbulence, the standard deviation is plotted at the HFS and the LFS midplane.

At the HFS midplane on Figs. 3.14a and 3.14b the fluctuations level in the CFR is low
(of the order of 5%) and rather constant in the radial direction up to the vicinity of
the separatrix. This trend remains unsensitive to MPs, whether magnetic islands are
present or not. On the contrary, MPs have a clear impact on the density fluctuations
level in the SOL. In this region, MPs reduce the fluctuations level from around 25%
down to 15 to 20% depending on cases. In the cases with no magnetic island, the
lowering of fluctuation level is nearly independent of the MP, whereas it becomes
very sensitive to the perturbations wavenumber in the cases with magnetic islands. In
these cases, the difference in the fluctuations levels with respect to the unperturbated
case increases with r /a, and with the poloidal wavenumber m of the perturbations.

At the LFS midplane on Figs. 3.14c and 3.14d, the fluctuations level in the CFR
rapidly and continuously increases with r , independently of the MP, from 10% at
the core boundary to 25% at the separatrix. The difference of amplitude with the
HFS illustrates the ballooned character of turbulent transport already mentionned
in Section 3.4. In the near SOL, the fluctuations level decreases with respect to the
unperturbated case. The differences are larger in the cases with magnetic islands (up
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to 5% absolute increase) than without islands (at most 1%). The trend is opposite with
an increase of the fluctuations level when perturbations are added (at the notable
exception of the (1,6,2) case). The amplitude of the increase does not seem to depend
on the presence or not of magnetic islands, and no clear trend emerges with the
mode number. However, the transition from lower fluctuations level in the near SOL
to higher fluctuations level in the far SOL is systematically located further from the
separatrix, when magnetic islands are present.

(a) No magnetic island HFS (b) Magnetic islands HFS

(c) No magnetic island LFS (d) Magnetic islands LFS

Figure 3.14.: Radial profiles of the standart deviation over time of the density averaged
in the toroidal direction ϕ and normalized by the (t ,ϕ)-averaged density
at the HFS (3.14a,3.14b) and at the LFS (3.14c,3.14d). Cases with no
magnetic island (3.14a,3.14c) in the simulation box. Cases with magnetic
islands (3.14b,3.14d). The dashed line is the separatrix.

3.5.2. Impact on the turbulence intermittency

The PDFs of the density are plotted on Fig. 3.15 at two radial locations in the CFR
and into the SOL at LFS midplane, i.e. r /a = 0.98 and r /a = 1.02, respectively. Both
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locations correspond to a region with magnetic islands (if relevant). The color zones
correspond to the direct histogram of the events and the curves are obtained through
a kernel density estimation1. In the CFR, the PDFs of the perturbated solutions are
nearly Gaussian for the case without magnetic island (see Fig. 3.15a). The cases with
magnetic islands (see Fig. 3.15b) show a positive skewness (skewed to the right), which
seems stronger for higher mode number. This is a visible effect of the islands on thef
turbulence itself.

In the SOL, the PDF of the reference case shows a PDF shape characterized by
intermittent turbulence with a well-marked positive skewness with a large number of
events concentrated on the left of the mean of the PDF (see Figs. 3.15c and 3.15d).

For the cases without magnetic island (Fig. 3.15c), the PDF skews to the right, simi-
larly with the reference case, which is still a mark of intermittency. Nevertheless, with
a higher amplitude (or mode number), the peak of the curve decreases, forcing the
distribution toward a less skewed profile.
For the cases with magnetic islands (Fig. 3.15d), the peaks of the PDFs decrease imme-
diately for all MPs with no visible trends. The PDFs are still skewed to the right but as
for the cases without magnetic islands, the PDFs tends toward a gaussian shape, com-
pared to the reference case. These results show that the MPs change the turbulence
properties only a little in the CFR. The changes occur mainly near the separatrix and
in the SOL with an opposite effect between the HFS and LFS midplanes. At the HFS
midplane, the intermittency and bursty behaviour of the turbulence increases while
the effect is opposite at the LFS midplane. The intermittency still exists but with less
high density (bursty) events.

The radial profiles of the skewness of the density along the time axis are now shown
on Fig. 3.16 at both HFS and LFS. It is noted γ1,N and it is averaged in the toroidal
direction. In the CFR, all plots show that the impact of MPs is weak, with a nearly zero
skewness in this region. We note nevertheless an increase of the skewness for the LFS
midplane when we approach the separatrix. The near zero value means that, as in the
reference solution, density events stay clearly well centered around the mean value
with no favorable events (bursts or sinks). These plots show whatever the solution a
larger skewness on the LFS midplane than on the HFS corresponding to the turbulence
ballooning already mentionned.

In the SOL, the impact of perturbations is larger in all plots. At the HFS midplane
and with respect to the reference solution (Figs. 3.16a and 3.16b), there is a small
decrease of the skewness near the separatrix, this effect being more pronounced in
the case without magnetic island, followed by a large increase in the middle of the
SOL, this effect being now more pronounced in the case with magnetic islands. For
non resonant modes Fig. 3.16a, there is no clear dependence of the solution on the
wavenumber or the amplitude of the pertubation even if the perturbation of largest
amplitude has the largest skewness all the others behave fairly similarly. For resonant
modes Fig. 3.16b, MP of high wavenumbers lead to a high positive skewness. As a final

1It is, in simple term, a smoothing data problem, so that the PDFs look nicer than a naive histogram
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(a) No magnetic island, r /a = 0.975 (b) Magnetic islands, r /a = 0.975

(c) No magnetic island, r /a = 1.0188 (d) Magnetic islands, r /a = 1.0188

Figure 3.15.: Normalized PDFs of density events along (t ,ϕ)-axis at the LFS mid-
plane and at two radial positions in the CFR and in the SOL, i.e.
r /a = 0.98 3.15a,3.15b and r /a = 1.02 3.15c,3.15d. Cases with no mag-
netic island 3.15a,3.15c in the simulation box. Cases with magnetic is-
lands 3.15b,3.15d. As a reference, the dotted black line corresponds to an
exact Gaussian. The color zones is the histogramm of each curve. The
curves have been obtain with a kernel density estimation.

overall trend at HFS midplane, we can see that MPs seem to shift spacially to the left
the behaviour into the SOL of the density events (the events arising earlier with MP).

At LFS midplane, without or with magnetic islands, the largest changes concentrate
into the SOL. For non resonant modes and with respect to the reference solution,
the skewnesses of the perturbed solutions are smaller in the vicinity of the separatrix
and then become larger deeper into the SOL, Fig. 3.16c. These deviations become
larger when the amplitude of the perturbation is increased. We note an increase of
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the skewness in the far SOL. A similar trend is observed with magnetic islands, but
the skewness remains smaller than the reference solution even in the far SOL (see
Fig. 3.16d). The deviation becomes larger with the mode wavenumber.

(a) No magnetic island, HFS midplane (b) Magnetic islands, HFS midplane

(c) No magnetic island, LFS midplane (d) Magnetic islands, LFS midplane

Figure 3.16.: Radial profiles of the skewness over time of the density, averaged over ϕ.
HFS midplane 3.16a,3.16b. LFS midplane 3.16c,3.16d. The error bar for
each curve is estimated to be smaller than 5%.

To see the repartition of extrem density events (both positive and negative), the
radial profiles of the kurtosis, averaged in ϕ, is plotted on Figs. 3.17. Beginning at the
HFS midplane with Fig. 3.17a and 3.17b, both shows little change in the CFR. We note
an increase at the middle of the SOL. Without magnetic island, this increase occurs for
the highest mode numbers and is pretty similar for the others mode numbers despite
their varying amplitudes. When the magnetic islands are presents (Fig. 3.17b), the
case with high mode numbers shows the highest effect, with the exception of MP
(1,18,4). This increase switch the sign of the kurtosis and can double the amplitude.
The near zero kurtosis hints of a normal distribution in CFR. On the opposite, with
the kurtosis near one in the SOL, the weight of extreme events in the distribution is
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over-represented.
At LFS midplane, the effect is quite similar for both cases with a small decrease of

the kurtosis in CFR to tend near zero and a sharp decrease in the SOL, just after the
separatrix. Except for the far SOL, the MP seem to decrease the kurtosis. Without
magnetic island (Fig. 3.17c), the mode numbers does not seem to change the effect
but the amplitude does, with a stonger flattening for higher amplitude. With magnetic
islands (Fig. 3.17d), the higher the mode numbers, the stronger the flattening is. This
caracterizes a strong effect on turbulent events, with a loss of extrem events after the
separatrix. The bursty behaviour of the turbulence with the change between a closed
then opened fieldline region looks to be dampened by the MP.

To conclude, the MP have a small impact on the CFR, both at LFS and HFS midplane.
At HFS midplane, in the middle SOL, extrem events seems to be amplified by MPs.
At LFS midplane, the extrem events are considerably dampened by MP just after the
separatrix but remain in high number in the far SOL.

3.5.3. Shape of turbulent structures

The MPs modify the magnetic equilibrium, creating islands of various sizes. It raises
the question of the modification of the turbulent structures themselves.
We thus plot on Figs. 3.18 the auto-correlation length of density fluctuation in the
poloidal direction, taken at r /a = 1.05 and averaged it along the time and toroidal
axis. In practice we compute the correlation on the quantity (N −〈N〉θ∗)/σθ∗

N
by mean

of Fourier transform (with enough padding zero as the turbulent signal is far from
periodic in the SOL). We clearly see that no variation are observed on the central peak,
meaning that the length of typical structures in the poloidal direction is not influenced
by MP. The variations occur mainly on the neighbour peaks, which show an increase
when MP are applied. The impact of MP seems, in our cases, to add a few poloidal
harmonics on turbulence.

3.6. Implications for mean field modeling

So far, the numerical analysis of the impact of RMPs on the edge equilibrium plasma
including neutrals recycling have only been performed using mean-field codes [45].
In the absence of better indications, these studies are conducted assuming that per-
pendicular diffusion coefficients characterizing anomalous radial transport remain
unchanged when RMPs are switched on. Our simulations allow us to cast some
light on this assumption. An effective transport coefficient has been computed from
turbulence simulations. It has been defined as:

D⊥ =− Γ
ψ

∇ψN
=−

Γ
ψ

E×B
+Γ

ψ

∇Bi
+Γ

ψ
curv +Γ

ψ

diff +Γ
ψ

∥
∇ψN

(3.14)
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(a) Case MP no island, HFS midplane (b) Case MP island, HFS midplane

(c) Case MP no island, LFS midplane (d) Case MP island, LFS midplane

Figure 3.17.: Radial profile of the kurtosis over time of the density, averaged over ϕ.
A positive kurtosis (leptokurtic) means fatter tails, 0 is a gaussian and a
negative kurtosis means thinner tails. The dashed line is the separatrix,
the SOL is on the left side.

We show the variations of D⊥ at the LFS midplane in the SOL in table 3.3, where we
can clearly see the loss of perpendicular transport for most MP (except (1,6,2)). The
decrease can go beyond 20% for the case (1,22,6). The decrease of D⊥ is actually
consistent with the observations of the increase of the density gradient in the SOL.
Nevertheless, an average over the radial direction hides a lot about the true behaviour
of the diffusion coefficient, that varies significantly depending on the localization.
The Figs. 3.19 illustrate the radial variations at the LFS midplane of D⊥. We can see
the small increases when MPs are on near the separatrix in the CFR, consistent with
the decrease of the density gradient (see Figs. 3.5) and the small increase of the radial
flux. The decrease, noted with the radial average, is still present but occurs mainly
after the separatrix and in the mid SOL.

The Figs. 3.20 illustrate two examples of 2D maps in the poloidal plane of the time
and toroidal averaged D⊥, to better show the poloidal variations of the diffusion
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(a) Case MP no island, r /a = 1.05 (b) Case MP island, r /a = 1.05

Figure 3.18.: Autocorrelation function in the poloidal direction of density fluctuation,
averaged in time and ϕ at r /a = 1.05

(a) No magnetic islands (b) Magnetic islands

Figure 3.19.: Radial profil at the LFS midplane of D⊥, averaged in time and ϕ.

coefficient. Results show a rather weak variations in the poloidal direction of this
coefficient, with as expected highest values on the LFS (appart from the immediate
vicinity of the limiter where even negative effective transport coefficients are found).
A complete study we have performed, shows a global lowering of the averaged D⊥ (in
the same way as λN ) when MPs are applied: D⊥ = 3.3 ·10−2(ρ2

Lωc ) for the reference
solution (0,0,0), and D⊥ oscillates between 2.3 · 10−2 and 2.8 · 10−2 depending on
the perturbation, excepted for an unexplained reason for the MP (1,6,2) for which
D⊥ = 3.8 ·10−2.

The comparison between turbulent and mean-field simulations is continued in
the Chapter 5. The observations done during this chapter hint to possible diverging
behaviours between the two approaches.
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D⊥ (in ρ2
Lωc )

MP 〈D⊥〉 Trend

(0,0,0) 0.066 −

MP no island

(1,6,4) 0.049 ց
(2,6,4) 0.050 ց
(3,6,4) 0.044 ց

(1,10,6) 0.053 ց

MP islands

(1,6,2) 0.076 ր
(1,15,4) 0.053 ց
(1,18,4) 0.047 ց
(1,22,6) 0.042 ց

Table 3.3.: SOL D⊥ at LFS midplane, averaged on time and in the toroidal direction

(a) Reference solution (0,0,0) (b) Magnetic perturbation (1,15,4)

Figure 3.20.: 2D map in the poloidal plane of the effective diffusion coefficient for the
radial transport D⊥ = Γ

ψ/∇ψN , averaged in time and ϕ.

3.7. Conclusion

This work is a first step toward a better understanding of the impact of 3D magnetic
perturbations (MPs) on electrostatic and isothermal fluid turbulence at the edge of
a limiter plasma in circular geometry. Single mode 3D MPs of small amplitude have
been considered eventually leading to magnetic islands in the computational domain
or not depending on the wavenumbers combination in the poloidal and toroidal
direction (resonant modes or not). Results show an impact of MPs on the plasma
equilibrium, and on a lesser extent, on the turbulence properties, with a magnitude
which depends on bothe the MPs amplitude and wavenumbers.

89



3. Isothermal turbulent simulations with 3D MP–3.7. Conclusion

Concerning the plasma equilibrium, numerical results show an impact on profiles
and flow. They recover some key features seen in experiments, such as the loss of
density in the edge of the closed field lines region and the decrease of the radial elec-
tric field, coupled with a change of the plasma rotation. These changes of profiles
are associated with a reorganisation of both mean and turbulent fluxes in the edge
plasma, leading to strong changes and even local reversal of the parallel velocities
(hence toroidal rotation). The latter effect had also been reported in experiments.

As far as exhaust issues are concerned, numerical results have shown that the MPs
impact the SOL width, with a decrease of the SOL width, on average, consistent with
the increase of the radial density gradient in the SOL. This is most probably related to
the overall decrease of the radial turbulent transport in the SOL, driven by a drop of
the fluctuations level in the presence of a MPs. We note, nevertheless, that just after
the separatrix, MPs locally increase the SOL width.

Concerning the fluctuation properties, MPs do not change the fundamental nature
of edge turbulence which remains dominated by intermittent large amplitude events
associated with radially filamentary structures. Nevertheless, quantitative properties
are impacted, especially in their spatial distribution (LFS/HFS asymmetries and radial
profiles). MPs trigger a drop of the relative density fluctuations level in the near SOL. In
the far SOL, the fluctuations level is found to decrease on the HFS but increase on the
LFS. Intermittency, measured here as the skewness of the PDF of density fluctuations
is also impacted, with a reduction in the vicinity of the separatrix in open field lines.
On the opposite, an increase of the skewness of density fluctuations is observed in
the outermost part of the close field lines when magnetic islands are present. The
latter effect is more marked when magnetic islands are present in the vicinity of the
separatrix. We have noted a difference between LFS and HFS midplane, with a more
important decrease of the skewness in the SOL, near the separtrix at LFS midplane
compare to the HFS midplane. The skewness increases then at the HFS in the mid SOL
whereas this increase is observed on the far SOL at the LFS only. Finally, the shape of
the turbulent structures show more poloidal harmonics with MPs.

Finally, the study of the behaviour of an equivalent diffusion coefficient (taking into
account turbulent transport) hints to a complex influence of the MPs both (at least)
in the radial and poloidal directions. This calls for a comparison between mean-field
and turbulent simulations that will be the topic of Chap. 5.
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This chapter extends the analysis of Chap. 3 to a non-isothermal model.

4.1. Settings for non-isothermal simulations

4.1.1. Implementation of magnetic perturbation in non
isothermal simulations

The same magnetic perturbation described in Section 3.1 is considered. In particu-
lar, modified drift terms have been explicitely added in the resolution of the energy
equations 2.51 and 2.52. This is especially important for the heat fluxes define as:

qe/i = K0,e/i T 5/2
e,i ∇∥Te,i b (4.1)

This term is treated implicitely in a similar way as for the vorticity equation. As for
the vorticity, the perturbated terms added due to MPs are treated in an explicit way,
assuming them to be small enough to not impact numerical stability of the code.

4.1.2. Simulation settings

Simulation a m n

Reference 0 0 0

MP
1 6 2

0.35 15 4

Table 4.1.: Parameters (a,m,n) for
the MPs used in the non
isothermal simulations.
a is the amplitude, m

the poloidal mode num-
ber and n the toroidal
one. n is given for a full
torus.

The simulations set-up is similar to the one de-
fined in Chap. 3, with however two key differ-
ences related to the definition of the parallel re-
sistivity η∥ and the introduction of the parallel
heat conductivity.

The parallel resistivity η∥ is now dependent
on both ν⋆ and the local dimensionless electron
temperature Te according to the following ex-
pression:

η∥ ∝ ν⋆T −3/2
e (4.2)

with ν⋆ = 0.05 at the separatrix. Thus η∥ is now
a function of time and space.
The collisionality also determines the collisional
parallel heat conductivity derived from the Bra-
ginskii model such that:

K∥,e/i ∝ T 5/2
e /ν⋆ (4.3)

Sources - In non isothermal simulations, particle and energy sources are set inde-
pendently and can eventually be decoupled as will be done later on in this manuscript.
For a start, we set both at the inner boundary (assuming the particles and energy
come from the core). The form of the source is a radially decaying function (vanishing
exponential) after a few cells, to ensure a constant particle source and to have no effect
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on the simulation away from the boundary.

In a second set of simulations, the position of the particles source has been changed
assuming that 10% come from the core and 90% come from the top of the limiter
(located at the bottom) in the form of a vanishing exponential in ψ and θ∗ directions.
The sources of particle have been set so that the integral of the two sources (from the
core and from the limiter) is equal to the integral of the source of particles coming
only from the core. This models a simplified recycling phenomenon, the particles in
experiments, mainly coming from the target through the recycling process. A scheme
of the particles and energy sources is illustrated on Fig. 4.1. A 2D map of a full recycling
source of particles is given on Fig. 4.2b. The standard case with particles coming from
the core is plotted on Fig. 4.2a.

(a) Core (b) Recycling

Figure 4.1.: Sources repartitions of density and energy for the standart cases (4.1a)
and recycling cases (4.1b). The Gaussian-like functions are not to scale.

In the following we distinguish cases without recycling (particles coming from the
core) and cases with recycling (particles coming mainly from the limiter). A time shot
of the density fluctuations levels on Figs. 4.3 illustrates the large differences in the
turbulence patterns between the solutions without (Fig. 4.3a) and with (Fig. 4.3b)
recycling.

Magnetic perturbations (MPs) - Let’s consider small magnetic perturbations
under the form:

ǫp = a ·10−3 sin
(

mθ∗−nϕ
)

(4.4)

where (a,m,n) define the amplitude, the poloidal and toroidal modes, respectively,
given in Table 4.1. The toroidal mode n is given for a full torus. The reference simula-
tion corresponds to (a,m,n) = (0,0,0).
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(a) 100% from the core (b) 100% from the target

Figure 4.2.: Distribution of the source of particles. Case 4.2a: 100% of the particles
coming from the core. Case 4.2b: 100% of the particles produced by the
recycling and coming from the target

(a) No recycling (b) Recycling

Figure 4.3.: Instantaneous 2D map of density fluctuations (N − N̄ ) at ϕ=π/2 (mid of
the half-torus). Left (4.3a) is the reference without recycling. Right 4.3b is
the reference with recycling.

4.1.3. Density pump-in or pump-out: the importance of
recycling

Fig. 4.4 shows the time traces of the particles content for different configurations.
Without recycling, a density pump-in (around 20%) is observed when the MPs are
switched on. This is not observed in experiments. However, former results comparing
solutions with recycling and without recycling suggest that relocating the particle
source in the vicinity of the limiter leads to a major reorganization of fluxes in the
edge plasma. We have then decided to run simulations in similar conditions but with
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a particle source mimicking recycling as described above.

Figure 4.4.: Time trace of the particle content for the sources of particles and energy
comming from the core (dashed lines) and with recycling (full lines).

With recycling and MPs, the pump-in becomes a pump-out (around 20%) as shown
on Fig. 4.4. This change underlines the sensitivity of the solution to the position of
the particles source and hints on a complex interaction between particles and energy
fluxes that the isothermal model could not take into account.

4.2. Impact of 3D MPs on the mean fields

The time traces of the particles content have shown different behaviour between
simulations with or without recycling. In the following, we analyze the impact of MPs
in each case in order to highlight the role played by the source position in the observed
phenomenology. The comparison is made first between the two reference simulations
then between the different MP cases.

4.2.1. Mean profiles

Toroidal and poloidal averaged radial profiles of the density are shown on Fig. 4.5b
and Fig. 4.5a with and without recycling, respectively. The corresponding density
gradient defined as −∇ψN /N is plotted below (see Figs. 4.5d and 4.5c respectively).
There is a difference on the density radial profiles between the two reference cases.
The density is clearly lower in the CFR for the recycling cases. It is linked to a decrease
of the density gradient, with a flattening of the density profile. This is an expected
behaviour as the relocation of the source from the inner boundary to the limiter leads
to the disappearance of particles fluxes in the CFR (there is no source of particles at
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the inner boundary anymore so no flux to evacuate). The fluxes being mainly driven
by the radial gradient, the system does not require anymore the build up of steep
density profiles to evacuate the incoming particles flux.

Without recycling, the density profiles with MPs show a clear pump-in on the whole
profiles, with a stronger one in the CFR compare to the SOL. The pump-in is around
15% at most in the CFR and lower than 5% in the SOL.
With recycling, we clearly see a pump-out in the CFR which is at most around 30%
in the CFR, then it shifts to a small pump-in after the separatrix of the same order of
magnitude as the ones in the SOL for the cases without recycling. It is coherent with
the 20% pump-out observed in the time trace of the particle content.
The last comment about the density profiles can be done uppon the MPs themselves.
The two are vastly different in modes number and amplitude. We can nevertheless see
a similar behaviour between the high amplitude/low mode numbers (1,6,2) and low
amplitude/high mode numbers (0.35,15,4).

Regarding the density gradients, we observe a similar trend for the two reference
cases in the CFR, then a peak value near the separatrix, stronger for the solution with
recycling. The peaking of the density gradient in the recycling case is enhanced by the
localization of the source near the separatrix, which calls for a progressive build-up of
the radial flux/gradient when moving out radially in this region. Without recycling,
the MPs do not change the gradient much in the CFR but this latter decreases in the
far SOL. With recycling however, the gradient clearly decreases in the CFR and at
the separatrix whereas its value with MPs are almost the same as the reference with
recycling in the SOL.

Figs. 4.6 show now the electron Te and ion Ti temperatures radial profiles, averaged
on time, toroidal and poloidal directions. Between the reference cases, the change
in the particle source location impacts the temperatures profiles in an opposite way
with respect to the density profiles. When the source is located at the inner boundary
(no recycling), temperature profiles are relatively flat in the CFR. In contrast, when
the particles source is located at the limiter (recycling) the profiles are steeper and the
temperatures larger. This can be again related to the change in the radial distribution
of the radial fluxes, as it will be discussed later in more details. When the source of
particles and energy are located both at the inner boundary, both outwards particle
and energy fluxes are driven in the CFR. In that case, most of the energy flux is driven
convectively by the particle flux. When the sources are decorrelated (different loca-
tions), only an outwards energy flux is present in the CFR. The energy flux then needs
to be conductive, and can only be driven by a temperature gradient.

With MPs, for the non recycling cases, both the electron (see Fig. 4.6a) and the ion
(see Fig. 4.6c) temperatures decrease. For each temperature, the decrease is the same
for the two MPs. For Te , the decrease is around 30% in the CFR, then the disturbed
profiles come close to the reference one in the SOL. For Ti , the decrease is similar in
the CFR, but then a constant decrease of around 10% is maintained in the SOL between

96



4. Turbulent anisothermal simulations with 3D MP–4.2. Impact of 3D MPs on the

mean fields

(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.5.: Radial profiles of the time, toroidal and poloidal averaged den-
sity (4.5a,4.5b) and of the corresponding density radial gradient (4.5c,4.5d)
for different magnetic perturbations. Cases without recycling (4.5a,4.5c).
Cases with recycling (4.5b,4.5d). The vertical dashed line is the separatrix.

the disturbed profiles and the reference one. The electron (Fig. 4.6b) and ion (Fig. 4.6d)
temperatures for the recycling cases with MPs have different behaviours. For Te , the
temperature is higher with MPs than the reference one near the core (far CFR), then it
decreases below the reference at the mid CFR until just after the separatrix. In the SOL,
MPs lead to flatter temperature gradients, so that the electron and ion temperatures
which are lower than in the no-MP reference in the near SOL progressively become
larger than the reference in the far SOL. The trend is almost identical for both MPs.
For Ti , the decrease compared to the reference occurs in the whole CFR and just after
the separatrix and amounts to around 5%. Both MPs solutions provide similar profiles,
with the case (0.35,15,4) decreasing a bit more in the CFR (less than 1% more).

We have stated that the density pump-out observed in experiments and retrieved
in the isothermal simulations cannot be found in the non isothermal ones without
recycling. In isothermal models, the density gradient is the only drive for turbulence
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.6.: Radial profiles of the time, toroidal and poloidal averaged elec-
tron (4.6a,4.6b) and ion (4.6c,4.6d) temperatures for different magnetic
perturbations. Cases without recycling (4.6a,4.6c). Cases with recy-
cling (4.6b,4.6d). The vertical dashed line is the separatrix.

while in non-isothermal models it is the pressure gradient (thus a combination of the
density and temperature gradients) that plays this role. The averaged radial profiles
of both pressures for the two kind of simulations (recycling or not) are shown on
Figs. 4.7. The reference simulations show scale difference for both pressures with or
without recycling. With respect to the solution without recycling, Pe is multiplied by
a factor 2 or 3 at the same radial position in the CFR (Figs. 4.7a and 4.7b). Pi follows
the same trend (Figs 4.7c and 4.7d). In spite of having the same energy source (hence
pressure) in both cases, the difference most likely lies in the difference of temperature
profiles. As explained above, the solutions with recycling exhibit hotter temperatures
in the CFR, leading to significantly lower local collisionalities (i.e., lower parallel resis-
tivity and larger parallel heat conduction in the present model). It has been shown
in recent TOKAM3X simulations (R. Tatali, submitted to Nuclear Fusion) that the
collisionality strongly impacts the turbulent transport in the CFR with a reduction of
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anomalous transport when the collisionality decreases. This way, the relocation of
the particle source drives a better energy confinement that explains the steepening
of the pressure gradients. Furthermore, with or without recyling, the MPs always
induce a loss of electron or ion pressures in the CFR. It is of around 20% for the non
recycling cases (Figs. 4.7a and 4.7c) and 30% for the recycling ones (Figs. 4.7b and 4.7d).

The pressure profiles in disturbed solutions are quite similar. In the SOL, the impact
of MPs is much milder, with mainly a flattening/decrease in the near SOL, driven by
continuity, to a flattening in the CFR.

(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.7.: Radial profiles of the time, toroidal and poloidal averaged elec-
tron (4.7a,4.7b) and ion (4.7c,4.7d) pressures for different magnetic per-
turbations (MPs). Cases without recycling (4.7a,4.7c). Cases with recy-
cling (4.7b,4.7d). The vertical dashed line is the separatrix.

We have seen in isothermal simulations (and it was observed in experiments too),
that MPs create a change of electric potential leading to a modification of the parallel
transport. The averaged radial profiles of the electric potential and the corresponding
radial electric field are plotted at the LFS midplane in Figs. 4.8. The electric potential
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Φ profiles (Figs. 4.8a and 4.8b), show that the reference simulation with recycling has
far lower value in the CFR at the same radial position. This effect can be explained
by the change in the ion pressure gradient. Indeed, force balance in the CFR makes
us expect that the radial electric field has to compensate the radial gradient of the
ion pressure: Er ∼ −∂r Pi . The steepening of Pi hence leads to a steepening of the
potential profiles. Conjugated with an approximately fixed point in the SOL due to
Bohm boundary conditions (Φ∼ 3Te ), one ends up with a decrease of the electrostatic
potential.

The disturbed solutions with MPs show a similar behaviour as the one already ob-
served for isothermal simulations: the electric potential increases in the CFR but does
not vary much in the SOL. For the non recycling cases, the MPs increase similarly the
potential in the CFR. For the recycling cases, the MPs increase comparatively more
the potential in the CFR with a stronger increase for the (1,6,2) MP.

Concerning the radial electric field profiles (Figs 4.8c and 4.8d), the trend is similar
between the two solutions of reference, except that the amplitude of the variations
are two times larger for the case with recycling in the CFR than without. For the cases
without recycling, the radial electric field is negative in the CFR and tends to higher
values when MPs are switched on, but remains negative. The plots for the two MPs
solutions are almost the same. For the reference solution with recycling, the electric
field is negative in the CFR but goes into positive value at some points when the MPs
are switched on. The increase is the most important for the perturbation (1,6,2). For
both cases with/without recycling the trend is the flattening of Er and a reduction of
its amplitude due to MPs.

4.2.2. Impact on flows

The variation of the radial electric field lets presume of a reorganization of the flows
which should be sensed also on the parallel flows. Figs; 4.9 show the average poloidal
profile of the parallel Mach number M∥ = Γ/(N

p
Te +Ti ) at two radial positions, in the

CFR at r /a = 0.9 (Figs. 4.9a and 4.9b) and in the SOL at r /a = 1.1 (Figs. 4.9c and 4.9d).
The poloidal angle θ = 0 is the LFS midplane and π/2 is the top of the machine. A
positive Mach number corresponds to the electron diamagnetic direction. Without
recycling (Figs. 4.9a and 4.9c), the poloidal distribution of the parallel Mach number
in the reference case is quite similar to the isothermal case. The main difference is
the weak impact of the MPs. At r /a = 0.9, the reversal of M∥ due to MPs in isothermal
cases does not occur there, and the same can be said at r /a = 1.1. Still, in the SOL, we
note an increase of M∥ at the HFS of the machine with the MPs. Both MPs for the non
recycling cases have similar behaviour.
The solutions with recycling are largely different (Figs. 4.9b and 4.9d). First, the
reference solution shows little change in M∥ in the CFR (r /a = 0.9) but we still note
greater oscillations around the LFS midplane. These oscillations in the SOL (r /a = 1.1)
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.8.: Radial profiles of the time and toroidal averaged electrostatic potential
Φ (4.8a,4.8b) and of the mean radial electric field Er = 〈−∂rΦ〉t ,ϕ (4.8c,4.8d)
at the LFS midplane with or without recycling, for different MPs. Cases
without recycling (4.8a,4.8c). Cases with recycling (4.8b,4.8d). The vertical
dashed line is the separatrix.

are considerably amplified compare to the solution without recycling. They can be
interpreted as the presence of Pfirsch-Schlütter flows of large amplitude. The M∥
in the solution of reference in the SOL is three times higher at the LFS midplane,
and negative at the HFS. The presence of MPs increases the oscillations in the CFR,
particularly at the LFS midplane (positive M∥) and HFS midplane (negative M∥). The
effect is the strongest for the case (1,6,2). In the SOL, still with recycling, the MPs
decrease the poloidal oscillations of M∥ in a similar fashion for both MPs. M∥ is thus
lower at the LFS (but still positive) and higher at the HFS (passing from a negative
reference one to barely positive, showing a decrease of the plasma velocity in absolute
value).

Considering these observations, the solutions with recycling seem more in agree-
ment with the experimental measurements mentioned in Chapter 3.
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(a) No recycling r /a = 0.9 (b) Recycling r /a = 0.9

(c) No Recycling r /a = 1.1 (d) Recycling r /a = 1.1

Figure 4.9.: Poloidal profiles of the time and toroidal averaged parallel Mach number
M∥ = Γ/(N

p
Te +Ti ) at r /a = 0.9 (4.9a,4.9b) and at r /a = 1.1 (4.9c,4.9d).

Cases without recycling (4.9a,4.9c) and with recycling (4.9b,4.9d). The
vertical dashed line is the separatrix.

4.2.3. Impact on particles and energy radial transport

The electric potential variations as well as the parallel velocity ones hint at a change in
the radial transport for the particles and the energy. We concentrate on the electron en-
ergy and particles transport in this section. The radial energy flux can be decomposed
into:

Γ
ψ

e,Ee/i
= Γ

ψ

E×B ,Ee/i
+Γ

ψ

∇Be ,Ee/i
+Γ

ψ

diff,Ee/i
+Γ

ψ

∥,Ee/i
(4.5)

The radial particle flux can be decomposed into:

Γ
ψ

e,N = Γ
ψ

E×B ,N +Γ
ψ

∇Bi ,N +Γ
ψ

diff,N +Γ
ψ

∥,N (4.6)

The parallel component, due to TOKAM3X approximations is considered to be the
same for both ions and electrons. A notable difference between the energy and
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particles fluxes is the ∇B drift, which comes from the ion in the particles fluxes. In the
following, we note the particles fluxes as:

Γ
ψ

X ,N = Nu
ψ

X
(4.7)

with X being the corresponding drift. The energy fluxes are noted:

Γ
ψ

X ,Ee/i
= N Te/i u

ψ

X
(4.8)

4.2.3.1. Flux-surface averaged fluxes

We estimate the radial fluxes for both particles and energy by integrating the full (then
each component) flux along the flux surfaces (poloidal and toroidal directions). The
profiles are then averaged in time. The total particles and electron energy balances
are plotted on Figs. 4.10. The first difference between solutions with recycling and
without is visible on the particle fluxes (Figs. 4.10a, and 4.10b). Without recycling, the
particle flux builds up close to the inner boundary of the simulation domain where is
located the source, and it remains constant (no losses) radially up to the separatrix.
With recycling, the particle flux is much lower in the CFR, and progressively builds up
moving out radially and encountering the source. Contrary to the isothermal simu-
lations, the MPs increase the total particles flux in the SOL. The electron energy flux
balance is similar for the solutions with or without recycling (Figs. 4.10c and 4.10d) in
the sense that both have energy fluxes in the CFR. The solutions with recycling exhibit
energy fluxes without particle fluxes, which suggests a change from a convective to a
conductive regime. There are nevertheless notable differences.

We first note that contrary to the particle fluxes, the electron energy fluxes are
never exactly constant in the CFR. They tend to increase regularly with the radius, the
increase being more marked in the solution with recycling. Such behaviour can be
explained by the fact that the electron energy is not a conserved quantity in our model.
Neither is the sum of the electron and ion energies. The sum of the electron and ion
energy balances exhibits additional flux terms, in particular carried by currents, that
can lead to energy exchanges between the components of the flux. In the CFR, MPs
have opposite effects depending on the location of the source between the solutions
with recycling and without. Indeed, without recycling, MPs perturbations lead to an
increase of the electron energy flux by around 10%, while they lead to a decrease by
around 15% in the solutions with recycling. On the contrary in the SOL the effects
are in the same direction for both particles source locations. The decay of the flux is
slower with MPs, leading to a larger electron energy flux through out the SOL.

We then decompose the global fluxes into their different terms according to Eq. 4.6.
The first decomposition is on the particle fluxes. The main components are, as for the
isothermal model, the E ×B and diffusive fluxes, and they are plotted in Figs. 4.11, in
percentage of the global particule flux. The ∇Bi particle flux numbers for less than
20% of the total flux in non recycling case (but is not negligible in the recycling case,
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.10.: Radial profiles of the total radial flux-surface averaged flux of particles
(4.10a,4.10b) and electron energy (4.10c,4.10c). The dashed line denotes
the separatrix. Cases without recycling (4.10a,4.10c). Cases with recycling
(4.10b,4.10d)

wighting more than 50% in the CFR) and the parallel flux below 1% is thus absolutely
negligible. Concerning the solutions without recycling, the E ×B flux (Fig. 4.11a)
constitutes 70 to 80% of the fluxes. The MPs decrease by 5% the flux in the CFR just
before the separatrix but increase them by up to 15% in the mid SOL. This behaviour
is completely opposite to the isothermal simulations. The diffusive flux (Fig. 4.11c)
clearly adapts itself to the variations of the E ×B flux, having opposite behaviour.

For the solutions with recycling, the E ×B flux (Fig. 4.11b) decreases considerably in
the CFR to a negative value (around -40%). This negative value hints to a turbulent
flux from the source going toward the core, i.e. going in the opposite direction to
the pressure gradient. The diffusion, thus compensates with the ∇Bi flux (Figs 4.11d
and 4.12b). In the SOL, the E ×B component constitutes up to 60% of the total flux.
MPs shift the relative weight of the E ×B driven particle towards positive values. One
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can then distinguish three regions: close to the inner boundary, the MPs lead to a
reversal of the E ×B flux; in the middle of the CFR, the contribution of the E ×B driven
particle flux decreases and becomes negligible; in the outer part of the CFR and in the
SOL, the E ×B contribution, which was positive, is enhanced from 50% to 90% of the
global flux. The diffusive flux (Fig 4.11d), as said before, compensates the loss of the
E ×B flux in the CFR (or its increase for the MP cases). In the SOL, the diffusive flux is
similar for the solutions of reference or the MPs disturbed solutions, with nevertheless
a loss of flux near the separatrix and in the far SOL.

(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.11.: Radial profiles of the E ×B (4.11a,4.11b) and diffusive (4.11c,4.11d) radial
flux-surface averaged fluxes of particles. The dashed line denotes the
separatrix. Cases without recycling (4.11a,4.11c). Cases with recycling
(4.11b,4.11d)

Figs 4.12 show the two last components of the particle fluxes: the ∇Bi and the
parallel one. As for the isothermal simulations, the parallel component is completely
negligible for the cases without (Fig 4.12c) and with (Fig 4.12d) recycling, with a
maximum value barely above 0.1% of the total flux. The role of the ∇Bi flux is more
interesting. For the solutions without recycling (Fig 4.12a), it constitutes only a small
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part of the fluxes, around 20% at most (staying mostly below 10%) and can be positive
or negative depending on the exact location. The MPs tend to decrease it in the SOL.

For the solutions with recycling (Fig 4.12b), it plays a more significant role, compen-
sating the loss of the E ×B flux in the CFR. The solution of reference shows that up to
40% of the flux comes from the ∇Bi flux in the far CFR. It decreases to small values
(below 10%) near the separatrix, passing even negative, but increases then in the SOL,
passing positive once again (still below 25%) before decreasing. The MPs increase the
trend in the CFR, to compensate the E ×B flux. In the SOL, the MPs seem to decrease
the ∇Bi flux.

(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.12.: Radial profiles of the ∇Bi (4.12a,4.12b) and parallel (4.12c,4.12d) radial
flux-surface averaged fluxes of particles. The dashed line denotes the
separatrix. Cases without recycling (4.12a,4.12c). Cases with recycling
(4.12b,4.12d)

We now look at the energy flux decomposition. We begin with the two major com-
ponents in percentage of the total electron energy flux, the E ×B and the diffusive
fluxes shown on Figs. 4.13. For the solutions without recycling, the E ×B (Fig. 4.13a)
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flux is above 70% in the CFR and near SOL, and above 80% of the total flux in the rest
of the SOL. The MPs increase the flux by 10% in the CFR, but do not impact it in the
SOL. The diffusive flux (Fig. 4.13c) is below 30% in the CFR and below 20% in the SOL.
It complements the E ×B flux.

For the solutions with recycling, the E ×B energy flux (Fig. 4.13b) has a similar
trend with the particles, with an increase from negative values at the inner boundary
(-20%) up to positive values of the order of 65% at the separatrix. It goes to 90% at
most in the mid SOL but with low values, below 50%, just after the separatrix and
in the far SOL. The MPs tend to increase the proportion of the flux driven by the
E ×B drift both in the CFR (from 20% at the mid CFR and up to 80% just before the
separatrix), leading to a flat profile in the SOL at 80% of the total flux. The diffusive
flux (Fig 4.13d) compensates clearly the loss of the E ×B energy flux, in the same
way as for the particles profiles. The only difference with the MPs is in the far CFR
where the diffusive flux, contrary to the E ×B one, does not show a peak value. This is
nevertheless seen in the ∇Bi profiles, as explained in the following description.

We plot the contribution of the ∇Be and parallel fluxes in percentage of the total
radial flux on Figs 4.14. As expected, the parallel component is completely negligible
without (Fig. 4.14c) or with (Fig. 4.14d) recycling. The energy ∇Be flux also has a small
contribution for the solutions without recycling (Fig 4.14a) and a bigger one for the
solutions with recycling (Fig. 4.14b). In these simulations, the reference in the CFR
peaks at almost 30% at the inner boundary before decreasing to 0% at the separatrix
and having small oscillations (around 5 to 10%) in the SOL. The MPs trigger a reversal
in the far at the center of the simulation domain, in a mirror image of what happens
to the energy E ×B flux. Then in the SOL, MPs seem to flatten the ∇Be profile into
positive values (around 5 to 10% of the total flux).

4.2.3.2. Poloidal distribution of 〈Γψ

X ,N 〉t ,ϕ

To better understand the change in the radial flows, their poloidal distributions are
now investigated. We know that the time averaged parallel flow is driven by both
the sheath boundary conditions and the poloidal distribution of the divergence of
the radial flux. To give a thorough overview, we study the poloidal distribution of
both particles and energy fluxes at r /a = 0.9 and r /a = 1.1, in the CFR and in SOL,
respectively. For particles, we study the E ×B and the ∇Bi mean and fluctuating parts
of the fluxes following the decomposition:

f (t ,ψ,θ∗,ϕ) = f̄ (ψ,θ∗,ϕ)+ f̃ (t ,ψ,θ∗,ϕ) (4.9)

where f̄ = 〈 f 〉t is averaged over time and 〈 f̃ 〉t = 0 per construction. For the particles
flux, the decomposition can be written:

〈Nu
ψ

X
〉t ≡ Γ̄

ψ

X ,N = N̄ ū
ψ

X
+ Ñ ũ

ψ

X
≡ Γ̄

ψ

X ,N̄
+ Γ̄

ψ

X ,Ñ
(4.10)
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.13.: Radial profiles of the E ×B (4.13a,4.13b) and diffusive (4.13c,4.13d) radial
flux-surface averaged energy fluxes of electrons. The dashed line denotes
the separatrix. Cases without recycling (4.13a,4.13c). Cases with recycling
(4.13b,4.13d)

The time averaged flux decomposed thus into two terms, the product of mean fields
components plus the product of fluctuating components. We call the total mean flux
the time averaged flux, the mean-field mean flux the product of the mean fields, and
the fluctuating-field mean flux the product of the fluctuating fields.

Starting with the poloidal distribution of the particles fluxes, the poloidal profiles of
Γ
ψ

E×B ,N , the E ×B radial particule flux, time and ϕ averaged is plotted for r /a = 0.9 (in
the CFR) on Figs. 4.15 and for r /a = 1.1 (in the SOL) on Figs. 4.16.

In the CFR, the solutions without recycling for the total mean flux are shown on
Fig. 4.15a. The solution of reference exhibits a ballooning at the LFS, which is amplified
by the MPs on the disturbed solutions. The mean-field mean flux (Fig. 4.15c) and the
fluctuating-field mean flux (Fig. 4.15e) profiles show that most of the flux comes from
the fluctuating-field mean part. Regarding now the solutions with recycling, the total
mean flux (Fig. 4.15b) exhibits a more complex structure. While the flux is positive
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.14.: Radial profiles of the ∇Be (4.14a,4.14b) and parallel (4.14c,4.14d) radial
flux-surface averaged energy fluxes of electron. The dashed line denotes
the separatrix. Cases without recycling (4.14a,4.14c). Cases with recycling
(4.14b,4.14d)

between the limiter and the LFS mid-plane, a large amplitude inwards flux is present
just above the LFS midplane. This negative peak is localized at θi n[0,π/3], and the
flux rapidely decreases to almost zero in the whole HFS core region. We thus have
the reverse of the usual ballooning picture. The mean-field mean (Fig. 4.15d) and
fluctuating-field mean (Fig. 4.15f) decompositions show that most of the flux comes
from the mean-field mean part even if a turbulent part still exists at the LFS of the
machine. As the particles source is not symmetric in the solutions with recycling, it
is likely that the poloidal distribution of the density is inhomogeneous, resulting in
an outward ∇Bi flux (more ions at the bottom of the machine results in an outward
flux, as the ions drift toward the bottom). The particle flux from the core is only 10%,
leading to a necessary flux reorganization to compensate the outward flux. This could
explain the behaviour of the total mean (and mainly mean-field mean part) E ×B flux,
which shows a reverse picture of the usual pattern.
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

(e) No recycling (f) Recycling

Figure 4.15.: Poloidal profiles of the E ×B total mean flux Γ̄
ψ

E×B ,N (4.15a,4.15b), the

mean-field mean Γ̄
ψ

E×B ,N̄
(4.15c,4.15d) and the fluctuating-field mean

Γ̄
ψ

E×B ,Ñ
(4.15e,4.15f) parts at r /a = 0.9 (CFR). Quantities are (t ,ϕ)-

averaged. (4.15a,4.15c,4.15e) cases without recycling. (4.15b,4.15d,4.15f)
cases with recycling. θ = 0 corresponds to the LFS midplane.
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In the SOL, the solutions without recycling for the total mean E×B flux are shown on
Fig. 4.16a. The solution of reference (without perturtbation) still shows a ballooning
at the LFS, which is amplified by 100% by the MPs. The decomposition into the mean-
field (Fig. 4.16c) and the fluctuating-field mean parts (Fig. 4.16e) shows that almost
all the E ×B flux comes from the fluctuating-field mean part. For the solutions with
recycling now, the total mean flux (Fig. 4.16b) shows no ballooning but an almost
constant positive flux, which doubles with the MPs. The mean-field (Fig. 4.15d) and
fluctuating-field (Fig. 4.15f) mean decompositions show that most of the flux comes
from the turbulent part, even if a mean-field mean part still exists. The fluctuating-
field mean part shows a strong ballooning at the LFS, which almost doubles with the
MPs.

Regarding now the poloidal distribution of the ∇Bi flux, the time and ϕ averaged
poloidal profiles of the Γ

ψ

∇Be ,N , the ∇Be radial particule flux is plotted in the CFR
(r /a = 0.9) and in the SOL (r /a = 1.1) on Figs. 4.17 with only the total mean flux.
The fluctuating-field mean flux is actually always negligible (at least one order of
magnitude lower than the mean-field mean flux), resulting in the ∇Bi mean flux being
mainly from the mean-field mean part. Fig. 4.17a shows the profiles of the total mean
flux in the CFR for the solutions without recycling. The profile of the solution of
reference takes the form of a sinusoid, whose amplitude decreases in the disturbed
solutions with the MPs. The sinusoid form seems consistent with the radial profile of
∇Bi , plotted on Figs. 4.12, where the integrale is near zero at r /a = 0.9.

Fig. 4.17b shows now the profiles of the total mean flux for the solutions with re-
cycling. The profile for the solution of reference is of similar form, with an higher
amplitude (at least by a factor two), but the amplitude losses are stronger in the dis-
turbed solutions with the MPs with respect to solutions without recycling. The fact
that the ∇Bi flux integral on Figs. 4.12 lets suppose that the periodic form is actually
a bit deformed, resulting in a non zero contribution of the ∇Bi particle flux. This is
probably due to the non symmetrical particles source distribution, resulting in local
inhomogeneities of the density and thus of the important contribution of the ∇Bi flux
in the solutions with recycling cases compare to the solutions without recycling.

The total ∇Bi mean flux is shown in the SOL on Fig. 4.17c for the solutions with-
out recycling. The profile of the solution of reference takes the form of a deformed
sinusoid, whose amplitude increases in the disturbed solutions with MPs. The MPs in-
crease the amplitude of the profiles, particularly at the top and bottom of the machine.
In the solutions with recycling, the total mean flux (Fig. 4.17d) is of similar form, but
the increase of the amplitude is stronger when the solution is disturbed by the MPs.

As a conclusion for the particule fluxes, the important part is the change in bal-
looning through Γ̄

ψ

E×B ,N , in both the CFR and SOL for the non recycling cases at the
LFS, mainly from the fluctuating-field mean part, amplified by MPs. The same MPs
create a loss of flux at the top and bottom of the machine through Γ̄

ψ

∇Bi ,N , mainly the
mean-field mean part.
For the recycling cases, an opposite trend to the expected ballooning exists in the CFR,
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

(e) No recycling (f) Recycling

Figure 4.16.: Poloidal profiles of the E ×B total mean flux Γ̄
ψ

E×B ,N (4.16a,4.16b), the

mean-field mean Γ̄
ψ

E×B ,N̄
(4.16c,4.16d) and the fluctuating-field mean

Γ̄
ψ

E×B ,Ñ
(4.16e,4.16f) parts at r /a = 1.1 (SOL). Quantities are (t ,ϕ)-

averaged. (4.16a,4.16c,4.16e) cases without recycling. (4.16b,4.16d,4.16f)
cases with recycling. θ = 0 corresponds to the LFS midplane.
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(a) No recycling r /a = 0.9 (b) Recycling r /a = 0.9

(c) No recycling r /a = 1.1 (d) recycling r /a = 1.1

Figure 4.17.: Poloidal profiles of the ∇Bi total mean flux Γ̄
ψ

∇Bi ,N at r /a = 0.9 (CFR)
(4.17a,4.17b) and at r /a = 1.1 (SOL) (4.17c,4.17d). Quantities are (t ,ϕ)-
averaged. (4.17a,4.17c) cases without recycling. (4.17b,4.17d) cases with
recycling. θ = 0 corresponds to the LFS midplane.

decreased by MPs, mainly from the mean-field mean part, whereas no ballooning can
be seen in the SOL, even if MPs increase the Γ̄

ψ

E×B ,N flux (mainly the fluctuacting-field

mean part this time). An increase of Γ̄ψ

∇Be ,N flux is observed at the top and bottom, in
the SOL, when MPs are switched on, mainly from the mean-field mean part of the
flux.

4.2.3.3. Poloidal distribution of 〈Γψ

X ,Ee
〉t ,ϕ

Regarding the energy fluxes, we only study the E ×B flux Γ
ψ

E×B ,Ee
as it is the major

component of the flux in most of the domain (especially the outer part) according to
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the previous section. This flux can be decomposed as follow:

2

5
Γ
ψ

E×B ,Ee
= N Te u

ψ

E×B
= N̄ T̄e ū

ψ

E×B
︸ ︷︷ ︸

mean-field

+ T̄e Ñ ũ
ψ

E×B
︸ ︷︷ ︸

convected

+ N̄ T̃e ũ
ψ

E×B
︸ ︷︷ ︸

conducted

+ ū
ψ

E×B
Ñ T̃e

︸ ︷︷ ︸

negligible

+ Ñ T̃e ũ
ψ

E×B
︸ ︷︷ ︸

negligible

(4.11)
As for the particle flux, we note the total mean electron energy flux Γ̄

ψ

E×B ,Ee
, the mean-

field mean flux Γ̄ψ

E×B ,Ēe
, the convected mean flux Γ̄ψ

convected,Ee
and the conducted mean

flux Γ̄
ψ

conducted,Ee
.

The averaged total mean flux, noted Γ̄
ψ

E×B ,Ee
, as well as the mean-field mean part

Γ̄
ψ

E×B ,Ēe
are shown in the SOL at (r /a = 0.9) and in the CFR (r /a = 1.1) on Figs. 4.18

and 4.20, respectively. In the CFR and in the solutions without recycling, the MPs
increase the total flux Γ

ψ

E×B ,Ee
at the LFS (Fig. 4.18a), reminding of the increase of

the particle balloning. Comparing with the profiles of the solutions with recycling
(Fig. 4.18b), the solution of reference shows a small increase of the E ×B energy flux at
the bottom of the LFS, and a reverse trend (negative flux) at the top LFS. These effects
are damped in amplitude in the disturbed solutions with the MPs. Regarding now the
decomposition, the solutions without recycling show that the mean-field mean E ×B

energy flux Γ̄
ψ

E×B ,Ēe
amounts for less than 10% of the total flux (Fig. 4.18c), whereas it

is at least 50% for the solutions with recycling (Fig. 4.18d). Into the SOL, and in the so-
lutions without recycling, the convected (Fig. 4.19a) and conducted (Fig. 4.19c) fluxes
are of similar amplitude, constituting the main part of the total flux. The existence of
the conducted flux in the solution of reference without recycling is unexpected and
still not well understood. The impact of MPs is opposite on the two components. For
the convected flux, the MPs shift the profiles to lower values, globally decreasing the
flux, while still preserving the ballooning structure at the LFS. On the contrary, the
MPs increase the conducted flux, even changing its sign, creating a strong ballooning
at the LFS, explaining the strong ballooning observed on the total flux in the disturbed
solutions without recycling.

For the solutions with recycling, the convected flux in the SOL (Fig. 4.19b) plays a
minor role with the balloning at the LFS and still the same decrease is observed due
to MPs, even if the effects are quite different depending on the MP. Thus, the pertur-
bartion (1,6,2) creates a stronger decrease at the LFS compare to the perturbation
(0.35,15,4). The conducted flux (Fig. 4.19d) constitutes the other half of the flux (the
first half being the mean-field mean component), showing a shift from convection to
conduction fluxes between the solutions without and with recycling. This behaviour
is not surprising due to the relocalization of the particles source at the limiter in the
solutions with recycling, that leaves an energy flux in the core with a little particles
flux to convect it. The behaviour of the conducted flux is similar to the mean-field one,
and it is only shifted toward more negative values. This similarity is unfortunately still
not understood.
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.18.: Poloidal profiles of the E ×B total mean energy flux Γ̄
ψ

E×B ,Ee
(4.18a,4.18b)

and mean-field mean energy flux Γ̄
ψ

E×B ,Ēe
(4.18c,4.18c) time and ϕ aver-

aged at r /a = 0.9 (CFR). Cases without recycling (4.18a,4.18c). Cases with
recycling (4.18b,4.18d)

Into the SOL (r /a = 1.1), and for the solutions without recycling, the total mean E×B

energy flux (Fig. 4.20a) shows a ballooning structure at the LFS, which is amplified
in the disturbed solutions by by MPs. For the solutions with recycling (Fig. 4.20b),
the peak amplitude is half at the LFS, resulting in a less localized increase of the flux.
We still observe an increase by a factor 2 due to the MPs in the disturbed solutions.
Instead of being only at the LFS, the increase is observed at the top and HFS of the
machine.

Looking at the decomposition, the mean-field mean component Γ̄ψ

E×B ,Ēe
is negligible

in the both solutions without (Fig 4.20c) and with (Fig. 4.20d) recycling, by at least an
order of magnitude. Thus most of the radial transport is made through convection
and conduction. The solutions without recycling show that the convection (Fig. 4.21a)
is around half of the conduction part (Fig 4.21c). A ballooning structure is seen at the
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.19.: Poloidal profiles of the E × B convected energy flux Γ̄
ψ

convected,Ee

(4.19a,4.19b) and conducted energy flux Γ̄
ψ

conducted,Ee
(4.19c,4.19c) time

and ϕ averaged at r /a = 0.9 (CFR). Cases without recycling (4.19a,4.19c).
Cases with recycling (4.19b,4.19d)

LFS, which is amplified for both components of the flux in the disturbed solutions
with the MPs. In the solutions with recycling, similar observations can be made.

With a two time larger amplitude, the conduction part in the solution of reference
(without perturbation) with recycling (Fig. 4.21d) is less ballooned at the LFS compare
to the non recycling reference. However, in the disturbed solutions the MPs increase
the ballooning on a similar level in both solutions with and without recycling. The
convection part in the solution of reference with recycling (Fig. 4.21b) is also lower
than in the solution without recycling. In the disturbed solutions with the MPs, the
convection part has the same amplitude with recycling or without.

In summary, we have seen that in the solutions without recycling the MPs increase
the ballooning of the radial energy flux at LFS, both in the CFR and in the SOL.
In the solutions with recycling, a reverse trend (negative flux) is seen in the CFR at
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.20.: Poloidal profiles of the E ×B total mean energy flux Γ̄
ψ

E×B ,Ee
(4.20a,4.20b)

and mean-field mean energy flux Γ̄
ψ

E×B ,Ēe
(4.20c,4.20c) time and ϕ aver-

aged at r /a = 1.1 (SOL). Cases without recycling (4.20a,4.20c). Cases with
recycling (4.20b,4.20d)

the LFS, with a weaker ballooning in the disturbed solutions, while it is increased
by the MPs in the SOL. We have also observed a reorganization of the energy flux
between the convective and the conductive parts for the radial transport, which is
more a consequence of the recyling than of the MPs themselves.

4.2.4. Density and power SOL width

We study the impact of the MPs on the density SOL width λN and on the power SOL
width λq . We already defined in Chap. 3 the density SOL width as the e-folding length
of the density. In the same way, the power SOL width is the e-folding lentgh of the
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(a) No recycling (b) Recycling

(c) No recycling (d) Recycling

Figure 4.21.: Poloidal profiles of the E × B convected energy flux Γ̄
ψ

convected,Ee

(4.21a,4.21b) and conducted energy flux Γ̄
ψ

conducted,Ee
(4.21c,4.21c) time

and ϕ averaged at r /a = 1.1 (SOL). Cases without recycling (4.21a,4.21c).
Cases with recycling (4.21b,4.21d)

parallel heat flux, defined as:

q∥ = q∥,e +q∥,i = γe N Te

√

Te +Ti +γi N Ti

√

Te +Ti (4.12)

with γe/i the sheath heat transmission coefficient for electron and ion, respectively set
at 4.5 and 2.5 for all non isothermal simulations. A reminder of the poloidal profile of
λN for the isothermal cases is plotted on Figs. 4.22a and 4.22b. The main result in the
isothermal solutions is the mostly 5 to 10% decrease of the density SOL width in the
disturbed solutions with respect to the solution of reference.

Figs 4.22 show both the density SOL width and the power SOL width for the non
isothermal solutions. A complete opposite trend is observed here where disturbed
solutions show increasing witdhs. In the solutions without recycling, λN is plotted

118



4. Turbulent anisothermal simulations with 3D MP–4.3. Impact of MP on turbulence

properties

on Fig. 4.22c. In the solution of reference, λN is mostly around 30ρL, and the MPs
increase it all around the poloidal direction, especially at the top of the machine where
the increase is of the order of 30%. In the solutions with recycling (Fig. 4.22d), λN in
the solution of reference is a bit higher (around 35ρL) and the MPs increase this value
to a peak at the top LFS. The form of the profile is also different, as the peak is well
visible, compare to the almost flat profile in the disturbed solutions without recycling.

The power SOL width λq in the solutions without recycling (Fig. 4.22e) is around
30ρL in the solution of reference and it shifts upward around 40ρL in the disturbed
soluitons with MPs. The solutions with recycling are even more striking (Fig 4.22f),
with similar value in the solution of reference (with a notable minimum at the HFS
top), but a sharp increase at around 50ρL at the top of the machine in the disturbed
solutions withMPs.

The trend between isothermal and non isothermal solutions is thus effectively
opposite concerning the impact of the MPs. This is assuming a single exponential
e-folding length for both isothermal and non-isothermal model. We have seen in
Chap. 3, that, near the separatrix, the isothermal λN actually increases with MPs.

4.3. Impact of MP on turbulence properties

The impact of on the fluctuations level of density and temperatures (electron and ion)
is investigated first. Then, Probability Density Functions (PDF) and higher moments
are studied to analyze the impact of MPs on the turbulence structures themselves.

4.3.1. Impact on fluctuations level

The evolution of the fluctuations level for the density, the electron and the ion tem-
peratures in the radial direction, characterized here by the toroidal averaged of σX /X

(with X the correspong field), are shown on Figs. 4.23, 4.24 and 4.25 respectively. To
exhibit the differences on the poloidal asymmetry of the turbulence in the solutions
with recycling and without, the fluctuations are plotted at the HFS and the LFS mid-
planes.

Figs. 4.23a and 4.23b show the density fluctuations at the HFS midplane. The fluctu-
ations level in the CFR is low (below 0.1) and rather constant in the radial direction up
to the vicinity of the separatrix. We still note that in the solutions with recycling the
levels is even lower and near zero in the CFR close to the core. The MPs decrease the
fluctuations in the solutions without recycling but increase them in the solutions with
recycling, only for the perturbation (1,6,2). In the SOL, fluctuations levels increase to
a maximum at the mid SOL, before decreasing. The profile is narrower for the solution
of reference with recycling. The MPs seem to decrease the peak level of fluctuations,
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(a) No magnetic island (b) Magnetic islands

(c) No recycling (d) Recycling

(e) No recycling (f) Recycling

Figure 4.22.: Poloidal profiles of λN and λq , time and ϕ averaged for the isother-
mal and non-isothermal cases. Cases without magnetic island (λN ,
isothermal) (4.22a). Cases with magnetic islands (λN , isothermal) (4.22b).
Poloidal profiles of λN , the density SOL width (4.22c,4.22d), and λq , the
power SOL width (4.22e,4.22f), time and ϕ averaged for the non isother-
mal cases. Cases without recycling (4.22c,4.22e). Cases with recycling
(4.22d,4.22f)
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which is a bit similar to what has been observed in isothermal simulations at the HFS
midplane.

The second diptic of profiles is the LFS midplane in the solutions without (Fig. 4.23c)
and with (Fig. 4.23d) recycling. In the solutions without recycling, fluctuations are
almost two times higher at the LFS than on the HFS in the CFR, with no impact of the
MPs (quite similarly to isothermal cases). Then they peak at the mid SOL, almost two
times higher than before decreasing in the far SOL (for the reference simulation). The
MPs decrease the fluctuations in the mid and far SOL, and result in a mild increase in
the vicinity of the separatrix in both closed and open flux surfaces. In the solutions
with recycling, the density fluctuation levels are lower at the LFS (for one solution
by almost a factor four) both in the CFR and in the SOL compare to the solutions
without recycling. The decrease of density fluctuations in the CFR in the solutions
with recycling is coherent with the weakening of the convective flux observed in
the last section. On the contrary, in the solutions with recycling, MPs increase the
fluctuations up to 50% in the SOL, with a flat profile from mid to far SOL (having
almost an homogenous effect on the radial evolution of the fluctuations). Still, we
note that, in the solutions with recycling, the fluctuations levels are lower than in
the solutions without recycling. The decrease due to MPs in the solutions without
recycling is higher than the increase level due to MPs in the solutions with recycling at
the LFS midplane.

We look at now the electron (Figs. 4.24a and 4.24b) and ion (Figs 4.25a and 4.25b)
temperatures fluctuation levels at the HFS midplane. The Te fluctuations are of similar
order of magnitude (below 0.05) in both solutions of reference with and without
recycling in the CFR, but they are a bit higher in the solutions without recycling in
the SOL. The MPs in the disturbed solutions without recycling do not change the
fluctuations in the CFR, and decrease them by around 30 to 50% (in relative variations)
in the SOL. In the solutions with recycling, however, the MPs increase the fluctuations
in the CFR by a factor up to five (for (1,6,2)) and flatten them to a plateau value similar
to the distrubed solutions without recycling. The Ti fluctuations (still HFS midplane)
are 30% higher in the solutions with recycling than without. In the solutions without
recycling, the MPs decrease the fluctuations both in the CFR and in the SOL. In the
solutions with recycling, the MPs increase them at the CFR and decrease/flatten them
in the SOL.

The LFS midplane shows, as usual, higher fluctuation levels for electron (Figs. 4.24c
and 4.24d) and ion (Figs 4.25c and 4.25d). The shape of the profiles is quite similar to
what happens at the HFS midplane. For Te , in the solutions without recycling, there
is almost no change (a slight increase) at the CFR when MPs are switched on but a
decrease in the SOL. In the solutions with recycling, the MPs increase the fluctuations
in the CFR and flatten the profiles in the SOL, with a global increase, resulting in
similar level of fluctuations for the two source models. For Ti , we note in solutions
without recycling a global decrease by around 20% of the fluctuations level when
MPs are applied, whereas an increase of similar order happens in the solutions with
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(a) HFS no recycling (b) HFS recycling

(c) LFS no recycling (d) LFS recycling

Figure 4.23.: Radial profiles of the standart deviation over time of the density averaged
in the toroidal direction ϕ and normalized by the (t ,ϕ)-averaged density
at the HFS (4.23a,4.23b) and at the LFS (4.23c,4.23d) midplane. Cases
without recycling (4.23a,4.23c). Cases with recycling (4.23b,4.23d)

recycling.
As previously noted, in the solutions with recycling, a large part of the flux comes

from the diffusive part in the CFR. Two hypothesis have been made:

• either the turbulence has been effectively damped by physical mechanims cap-
tured by our discretized system.

• either the physical response of the system leads to a shift of turbulence scales
towards lower scales possibly badly or not captured by our discretization grid, in
which case the drop of turbulent transport would be artifically enhanced in our
results.

The lowering of the fluctuation levels in the CFR seen in the solutions with recycling
for all the fields (and mainly the density N ), at the HFS and LFS is consitent with the
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(a) HFS no recycling (b) HFS recycling

(c) LFS no recycling (d) LFS recycling

Figure 4.24.: Radial profiles of the standart deviation over time of the electron tem-
perature averaged in the toroidal direction ϕ and normalized by the
(t ,ϕ)-averaged electron temperature at the HFS (4.24a,4.24a) and at the
LFS (4.24c,4.24a) midplane. Cases without recycling (4.24a,4.24c). Cases
with recycling (4.24b,4.24d)

loss of turbulent fluxes (fluctuating-field mean ones for example) at these locations.
This feature raises the question if the increase in temperature in the solutions with
recycling, associated with a steepening of the temperature profiles, results in smaller
fluctuations (in size), ill-captured by our mesh. Complementary simulations with a
finer mesh would be needed to clarify this point.

In summary, the global trend is a decrease of the fluctuations levels in the solutions
without recycling when MPs are switched on, with an opposite trend in the solutions
with recycling.
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(a) HFS no recycling (b) HFS recycling

(c) LFS no recycling (d) LFS recycling

Figure 4.25.: Radial profiles of the standart deviation over time of the ion tem-
perature averaged in the toroidal direction ϕ and normalized by the
(t ,ϕ)-averaged ion temperature at the HFS (4.25a,4.25a) and at the
LFS (4.25c,4.25a) midplane. Cases without recycling (4.25a,4.25c). Cases
with recycling (4.25b,4.25d)

4.3.2. Turbulence intermittency for particle and energy

To better understand the effects of MPs on turbulence, we look at the Probability Den-
sity Functions of density events (Figs. 4.26), electron (Figs. 4.27) and ion (Figs. 4.28)
temperature events. We choose the radial position r /a = 0.98 (near islands in the CFR)
and r /a = 1.1 (in the SOL) at the LFS midpplane.

For the density events, the solutions without recycling at r /a = 0.98 (Fig. 4.26a) show
nearly Gaussian PDFs with little impact of the MPs. In the solutions with recycling
(Figs. 4.26b), the PDF in the solution of reference is still nearly Gaussian, albeit weakly
skewed to the left (negative skewness). The MPs decrease visibly the skewness as
the PDFs peak on the right and skew more on the left. In the middle of the SOL, at
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r /a = 1.1, the PDFs of the solutions without recycling (Fig. 4.26c) show a very right
skewed profiles (postive skewness), proof of an intermittent solution with bursts
of higher than average density events. The MPs, in a similar fashion as what was
observed in isothermal simulations, decrease the skewness, resulting in less skewed to
the right (and peaked to the left) profiles. In the solutions with recycling, at r /a = 1.1
(Fig. 4.26d), the PDF of the solution of reference has a quasi opposite trend and skewed
to the left. This result is surprising compare to other TOKAM3X simulations. Further
investigations will be needed to understand this feature.

The MPs create a less negative skewness, resulting in more Gaussian shaped profiles.
In all cases, the two MPs have similar effects on the PDFs, even if the amplitude and
mode numbers are different. The conclusion for density events is quite like the one
for isothermal simulations: the MPs decrease the intermittency into the SOL.

Regarding now the energy events, electron and ion temperatures are similar in be-
haviour and so are treated in parallel. At r /a = 0.98 and in solutions without recyclings,
the electron temperature PDFs (Fig. 4.27a) are all nearly Gaussian with little influence
of the MPs. A Gaussian shape is also observed for the ion temperature (Fig. 4.28a),
but the solution of reference shows a higher amplitude than the disturbed solutions
with MPs, showing an increase of the skewness. In the solutions with recycling now, at
r /a = 0.98, the PDFs of the solution of the references for both Te (Fig. 4.27b) and Ti

(Fig. 4.28b) are still nearly Gaussian, even if it is a bit flatten for Ti . The PDFs in the
distrued solutions with MPs skew to the left (negative skewness) for Te with a more
pronounced effect for the case (1,6,2). For the ion temperature (Fig. 4.28b) it is more
peculiar as the reference flattened PDF, it flattens even more for the case (0.35,15,4),
but skews to the left (negative skewness) with a well-marked double bump for the case
(1,6,2). This double bump is not new in our simulations, since it was already observed
in isothermal solutions at the same poloidal locations (not shown in Chap. 3). The
resulting behaviour for turbulent events is still to be understood. We nevertheless
can conclude that the impact of MPs on temperature events for the solutions with
recycling seem more oriented toward an increase of intermittency (increase of positive
skewness) in the CFR in the vicinity of the separatrix.

Into the SOL at r /a = 1.1 and in solutions without recycling, Te events are shown
on Fig. 4.27c. The PDFs skew strongly to the right (positive skewness) and the MPs
tend to increase the skewness in a similar way (no strong difference between the two
modes). The solutions with recycling (Fig. 4.27d) still shows a profile skewed to the
right (positive skewness) for the solution of reference but with a lower amplitude of
the peak on the left. In the distrubed solutions, the MPs tend to increase (opposite to
the density events) the skewness with a stronger effect for the case (1,6,2) (the peak is
20% higher compare to (0.35,15,4)).

For the solutions without recycling, Ti events at r /a = 1.1 are shown on Fig. 4.28c.
The description is similar, with a right skewed profile (positive skewness) for the so-
lution of reference and MPs which tend to shift more toward a Gaussian profile. The
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(a) r /a = 0.98, no recycling (b) r /a = 0.98, recycling

(c) r /a = 1.1, no recycling (d) r /a = 1.1, recycling

Figure 4.26.: Probability Density Functions of density events taken at the LFS mid-
plane. r /a = 0.98 (4.26a,4.26b). r /a = 1.1 (4.26c,4.26d). The dotted black
line is a perfect gaussian for help. The color area is the histogram while
the curves are obtained through a density kernel method.

difference is that the reference is barely skewed for Ti as compared to Te profiles. For
the solution with recycling (Fig. 4.28d), the PDF for Ti in the solution of reference
is more flat than the one for Te , and the MPs still increase the skewness to the right
(increase of the positive skewness, to lesser extend), with still a more pronouced effect
for the case (1,6,2).

In summary, the global trends for temperature fluctuations are the following:

• In the core without recycling, MPs very midely move the skewness towards nega-
tive values compared with the quasi-Gaussian PDFs of the solution of reference.
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• In the core with recycling, the negative skewness of the solution of reference
gets amplified by the MPs, with a different behaviour (possible double-bump)
depending on the mode number of the perturbation.

• In the SOL without recycling, the MPs reduce the strongly positive skewness of
the PDF of the reference solution.

• In the SOL with recycling, the MPs on the contrary increase the weakly positive
skewness of the PDF of the reference solution.

(a) r /a = 0.98, no recycling (b) r /a = 0.98, recycling

(c) r /a = 1.1, no recycling (d) r /a = 1.1, recycling

Figure 4.27.: Probability Density Functions of electron temperature events taken at
the LFS midplane. r /a = 0.98 (4.27a,4.27b). r /a = 1.1 (4.27c,4.27d).
The dotted black line is a perfect gaussian for help. The color area is
the histogram while the curves are obtained through a density kernel
method.
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(a) r /a = 0.98, no recycling (b) r /a = 0.98, recycling

(c) r /a = 1.1, no recycling (d) r /a = 1.1, recycling

Figure 4.28.: Probability Density Functions of ion temperature events taken at the LFS
midplane. r /a = 0.98 (4.28a,4.28b). r /a = 1.1 (4.28c,4.28d). The dotted
black line is a perfect gaussian for help. The color area is the histogram
while the curves are obtained through a density kernel method.

We have considered the PDFs at the LFS midplane (where the turbulence is more
developped) at a specific radial position. To have a more thorough study of the possi-
ble impact of the MPs on the intermittency for both density and temperature events,
we plot the radial skewness γ1 at the LFS midplane, averaged in the toroidal direction,
of N , Te and Ti on Figs. 4.29.

In solutions without recycling, Fig. 4.29a in the CFR shows little impact of the MPs,
with an almost zero constant value of the skewness on the whole region. This is well
represented by the density PDF at r /a = 0.98 (Fig. 4.26a), with no intermittency for
this part. The major change occurs first in the mid SOL and further out, with the
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decrease of the skewness due to the MPs, well seen on the PDF 4.26c. For the electron
temperature (Fig. 4.29c), the skewness changes from zero to a constant negative value
in the CFR, which was seen on the PDF. 4.27a. We can improve the analysis by saying
that MPs in the CFR in the solutions with recycling tend to create an intermittency of
lower than average bursty events for Te . No change in the skewness is observed at the
separatrix and so until the mid SOL where the MP s decrease the skewness, which has
been described on the PDF. 4.27c. Finally for Ti (Fig. 4.29e), the behaviour induced by
the MPs in the CFR is similar with Te , with a global decrease to negative constant value
(low burst-behaviour intermittency). The decrease of the skewness is on the whole
radial profile, which is clearly seen on the mid SOL PDF 4.28c. The conclusion in the
solutions without recycling is that the MPs decrease the high burst intermittency for
density and temperature events. It is completed with the fact that the MPs can favor
low burst intermittency in the CFR for temperature events.

Regarding now the solutions with recycling we analyze the skewness in the in-
nermost part of the CFR. It is probably not so meaningfull due to the fact that the
turbulence in this region is severely damped and so we limit ourself to the region near
the separatrix and the SOL. For the density (Fig. 4.29b), the MPs tend to increase the
skewness toward less negative values in the CFR, except near the separatrix, which was
observed on the PDF 4.26b. In the SOL, the MPs still create a lower skewness before
reverting the trend in the mid and far SOL, switching from negative (in the solution of
reference) to positive (din distrubed solutions with MPs) skewness, a clearly observed
phenomenon on the PDF 4.26d. For Te (Fig. 4.29d) and Ti (Fig. 4.29f), the MPs midely
increase the skewness in the CFR, near the separatrix to less negative values. The
analysis of the impact of MPs in the solutions with recycling is thus confirmed to be an
increase in high burst intermittency in the SOL for both density and temprature events.
It is completed, thanks to the study of the skewness, by the observation of a loss of
intermittency in the CFR (at least near the separatrix) when the MPs are switched on.

4.4. Conclusion on MPs in non-isothermal turbulent

simulations

We have studied the impact of the MPs on electrostatic non isothermal fluid turbu-
lence at the edge of a limiter plasma in a circular geometry. Single 3D mode MPs of
small amplitude have been considered as well as two settings for the particle sources,
one being located at the core and the other one at the limiter mimicking recycling.
Results show an impact of MPs on both the plasma equilibrium and on the turbulence
properties. The impact can be quite different depending on the source location mim-
icking or not the recycling.

Regarding the plasma equilibrium, the MPs lead to a decrease of the pressure
profiles. However, only the solutions with recycling recover experimental trends
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(a) N , no recycling (b) N , recycling

(c) Te , no recycling (d) Te , recycling

(e) Ti , no recycling (f) Ti , recycling

Figure 4.29.: Radial profiles of the skewness γ1 at LFS midplane, ϕ averaged. Density
skewness (4.29a,4.29b), electron temperature skewness (4.29c,4.29d),
ion temperature skewness (4.29e,4.29f). Cases without recycling
(4.29a,4.29c,4.29e). Cases with recycling (4.29b,4.29d,4.29f)
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characterized by the loss of density in the edge of closed field lines region (the so-
called density pump-out). The solutions without recycling show on the contrary a
density pump-in. A decrease/flattening of the radial electric profile is recovered for
both source locations. Without recycling, it is not associated to a change in the parallel
velocity but it is when recycling is taken into account. Theses changes are associated
to a complex flux reorganisation in the edge plasma, both for the mean and turbulence
fluxes. Concerning particles fluxes, the mean-field mean changes are more important
in the solutions with recycling than without, whereas for the turbulence ones changes
are more important in the solutions without recycling. An more marked ballooning is
seen in the solutions without recycling when the MPs are switched on, whereas in the
solutions with recycling, a reverse trend with a negative particle flux exists in the CFR,
decreased by MPs, and without any ballooning into the SOL. Still, the MPs increase
the particle flux in this region. Concerning the energy fluxes, the MPs increase the
ballooning in the solutions without recycling. In the solutions with recycling, a reverse
trend with negative energy fluxes is seen in the CFR, with a weakening effect of the
MPs, but with a ballooning in the SOL which is more marked with MPs. It is probably
possible to explain most of the differences in the response of the solution to MPs
depending on the particle source position, by considering the poloidal symmetry
breaking induced by the localization of the source in the vicinity of the limiter in the
recycling case. A deeper analysis would be necessary to backup this explanation.

Concerning the exhaust concern, isothermal simulations showed a decrease of the
density SOL width due to the MPs. Here, non isothermal simulations exactly show the
opposite trend for both the density and the power SOL width.

Regarding the turbulence properties, even if the nature of the edge turbulence can
change a lot depending on the source locations (with or without recycling), the MPs
impact the turbulence spatial distribution on the LFS/HFS asymmetries and on the
radial profiles. The MPs have opposite effects in the solutions with or without recylc-
ing. Without recycling, the turbulence intermittency weakens whereas the fluctuation
levels decrease, especially in the SOL. With recycling, the MPs change the intermit-
tency for density events, from large amplitude events to low amplitude ones in the
CFR, but still conserve a classic intermittent behaviour for the temperature events.
Moreover, the MPs have been seen to increase the fluctuation levels for both density
and temperatures.

Finally, this study raises several questions. Most can be linked to the turbulence
apparent weakening in the CFR in the solutions with recycling. Several progress can
be made. The first is a study on a finer mesh to see if the turbulence weakening is
due to an excessive dissipation related to turbulent scales smaller than the mesh
resolution. A second progress is on the realism of the sources in the modeling of
the recycling process. The correct way is to incorporate neutrals physics by running
TOKAM3X-EIRENE coupled simulations in order to have a self-consitent recycling. In
present simulations, the source of particules is very crude and it is not associated to a
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new energy sink which could be the explanation for the sharp increase of the radial
temperature profile, resulting in an apparent weakening of turbulence intensity in the
CFR.
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At the end of Chapter 3, we saw that one can define anomalous transport coefficients
from the output of direct turbulence simulations by taking the ratio of the average flux
by the opposite of the average gradient of the transported quantity. Such diffusion
coefficients can then be used in mean-field simulations to represent anomalous
transport without modeling turbulence. Although this approach, referred to as the
gradient-diffusion assumption, has been shown to have strong limits and to describe
only very coarsly turbulent transport [50, 86], it is widely used in mean-field models
to give a simple and quick representation of anomalous transport. It is currently the
work-horse of edge plasma simulations with magnetic perturbations [45] under the
assumption that the MPs do not impact these coefficients. We saw in Chap. 3 that
effective diffusion coefficients post-calculated from TOKAM3X turbulence simulations
demonstrate on the contrary an impact of the MPs on this description of transport. In
this chapter, we adress the same issue in a different way by looking how mean plasma
fields respond to MPs in mean-field simulations and comparing this to post-calculated
mean-fields in turbulent cases. In order to compare on the same footing, we first use
the TOKAM3X code in mean-field mode (no turbulence) with the isothermal model
and compare the output with the turbulent simulations presented in Chap. 3. In a
second part, we implement magnetic perturbations into the SOLEDGE3X-HDG.

5.1. From turbulence to mean-field simulations

As mentionned in the conclusion of Chap. 3, the numerical analysis of the impact of
RMPs on the edge equilibrium plasma including neutrals recycling have only been
performed using mean-field codes [45]. These studies relied on perpendicular dif-
fusion coefficients to characterize anomalous radial transport. They are currently
assumed to remain invariant when RMPs are switched on. We seek in this section to
quantify the impact of such assumptions. 3D turbulence simulations are compared to
corresponding 3D transport simulations in which velocity drifts have been switched
off and the anomalous transport has been modeled by a constant diffusion coefficient.

5.1.1. Simulation settings

Concerning the turbulent simulations, we use the MP (1,6,2) and (1,22,6) already
seen in Chapter 3. Concerning the mean-field simulations, the isothermal model is
simplified into the system:







∂t N +∇∇∇· (Γi b) = ∇∇∇· (D⊥N∇∇∇N )+SN

∂tΓi +∇∇∇·
(
Γ

2
i

N
b

)

= −∇∥(Pe +Pi )+∇∇∇·
(

D⊥ΓN∇∇∇(Γi

N
)+D⊥N

Γi

N
∇∇∇N

)

+SΓ

(5.1)

The effects of the perpendicular drifts are all expressed through the perpendicular co-
efficients D⊥. Three mean-field simulations have been done with D⊥ = 3.9 ·10−2ρ2

Lωc ,
according to the results obtained with the turbulent transport in Chap. 3 (the perpen-
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dicular diffusion takes into account the turbulent transport), and the perpendicular
velocity ~u⊥ is set to zero. We keep the same geometry and physical parameters as the
turbulent simulations used in Chap. 3. In addition, to avoid the occurence of small
flow scales related to microturbulence the vorticity and the Ohm law equations are
shunted. The perpendicular velocity ~u⊥ is put to zero and thus the radial transport is
entirely modelled by D⊥.

The only way to compare turbulent and mean-field simulations are the density and
the ion momentum. In the following part, we concentrate on the density toroidal
inhomogeneities defined as:

δN 0
ϕ =

〈NMP〉t −〈N(0,0,0)〉t ,ϕ

〈N(0,0,0)〉t ,ϕ
(5.2)

This allows to see the toroidal as well as poloidal differences due to MP compared with
the reference simulation. An other observation of interest is the 3D impact of the MPs
themselves and could be seen through the density toroidal variation, noted:

δNϕ =
〈NMP〉t −〈NMP〉t ,ϕ

〈NMP〉t ,ϕ
(5.3)

which allows to see the toroidal variations induced by the MPs, as well as, for the
reference cases, to compare turbulent and mean-field simulations without MP.

5.1.2. Localized inhomogeneities on islands in transport
simulations

In turbulent simulations, the MPs have been seen to play a role on averaged quantities
as well as turbulent properties. We compare the toroidal density inhomogeneities δN 0

ϕ

on poloidal slices taken at ϕ= 0 on Figs 5.1. We choose the simulation of reference
(0,0,0), and two disturbed solutions with (1,6,2) and (1,15,4).

The Figs 5.1a,5.1c and 5.1e respectively show the mean-field solutions obtained for
(0,0,0), (1,6,2) and (1,15,4) without turbulence. The Figs 5.1b,5.1d and 5.1f correspond
to the solutions with the same perturbations but obtained with the turbulence model.

The first difference to be noted in the two sets of simulations is the amplitude of the
perturbation between mean-field and turbulent simulations without MP (fig. 5.1a,5.1b).
The turbulence in the toroidal direction creates fluctuations around 10% of the density
distribution, which is to compare with the perfectly axisymmetric mean-field simula-
tion. This difference is probably due to the finite duration of our statistical interval
and the strong correlation in the toroidal phasing between consecutive large scale
events. In turbulent simulations, filaments develop in the toroidal direction (blobs in
2D) in the SOL. These filaments turn along the magnetic field lines. These latter natu-
rally do not appear in a mean-field simulations as they are typical turbulent structures.

We can now compare the difference with MPs and we can clearly see the difference
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in the amplitude of the perturbation between mean-field and turbulent simulations,
being one order of magnitude stronger in the turbulent cases (see Figs 5.1). In the
mean-field simulations (Figs. 5.1c and 5.1e), we clearly see the inhomogeneities near
the location of the islands. They are located around the separatrix and the structures,
then, spread in the SOL. Some inhomogeneities can be seen in the CFR but barely.
We can note that they are more defined at the HFS, particularly for the MP (1,6,2)
(Fig. 5.1c). In this case, the large structures at LFS seem to be more diluted in the
SOL than the case (1,15,4) (Fig. 5.1e). The turbulent simulations clearly shows an
influence of the islands as the structures look smaller in the SOL for the case with
smaller islands (resp. Fig.5.1d,5.1f). Nevertheless, the toroidal inhomogeneities are
not aligned with the magnetic islands and mainly appear after the separatrix, in the
far SOL. It is really different compare to the mean-field simulations. We can also note
in the case (1,15,4), fig. 5.1f, that a loss of density appear in the CFR at the LFS. This
loss is a direct observation of the density pump-out studied in Chap. 3.

These results demonstrate that the MPs perturb turbulent transport in a non poloidally/toroidally
symmetrical way, which in turn impacts the distribution of the transported field, i.e.
the density in this case. The effect is non local and keeps a trace of the mode of
the MP even in the SOL far from the magnetic islands. A possible explanation for
these observations is that the instabilities driving turbulence develop with a specific
poloidal phase and mode due to their interaction with the magnetic perturbation
rather than with a random phase. The turbulent structures then keep trace of this
initial phase during their radial propagation in the SOL. This way, the MPs generate a
phase locking of turbulent structures and drive poloidally/toroidally non symmetric
turbulent transport even away from the islands.

5.1.3. Density distribution on the limiter

In this section, a comparison is made of the density toroidal inhomogeneities δN 0
ϕ at

the limiter between turbulence and mean-field simulations. The geometry, equation
model and MPs are all simpler than what can be found in [45], which is the most ad-
vanced study of the sort at the current date. Nevertheless, even a simpler model could
provide insight on the physic at play. On Figs 5.2, we plot the density toroidal inhomo-
geneity at the limiter. The dotted horizontal line separates the HFS limiter (above) and
the LFS one (below). The Figs 5.2a,5.2c and 5.2e are respectively the mean-field model
with MP (0,0,0), (1,6,2) and (1,15,4). The Figs 5.2b,5.2d and 5.2f are respectively
the turbulent model with MP (0,0,0), (1,6,2) and (1,15,4). Looking at the reference
cases, without MP, we note, as expected, the homogeneous density distribution for the
mean-field simulations (Fig. 5.2a) whereas the turbulence model shows fluctuations
that spread in regular stripes but with weak amplitudes and without favorable side
(Fig. 5.2b). When MPs are introduced, the results change sharply. In the (1,6,2) MP,
mean-field model (Fig. 5.2c), we note a clear asymetry between LFS and HFS, with
a predominant effect at LFS. The toroidal mode n = 2 is clearly visible (we remind
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(a) Case MP (0,0,0) no turbulence (b) Case MP (0,0,0) turbulence

(c) Case MP (1,6,2) no turbulence (d) Case MP (1,6,2) turbulence

(e) Case MP (1,15,4) no turbulence (f) Case MP (1,15,4) turbulence

Figure 5.1.: TOKAM3X simulations: poloidal slice at ϕ= 0 of density toroidal inhomo-
geneity as δN 0

ϕ = (〈NMP〉t −〈N(0,0,0)〉t ,ϕ)/〈N(0,0,0)〉t ,ϕ
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the reader that the simulation is a half-torus). The same can be observed for (1,15,4)
MP (Fig. 5.2e) with a smaller amplitude of density inhomogeneities. Fluctuations of
similar amplitudes can still be seen at HFS but more concentrated at the upper level
of the limiter. In mean-field simulations, the MP seems to actually impact mainly
the target at the LFS rather than the HFS. The turbulence cases are more complex to
analyse. No clear trend seems to appear concerning the mode numbers (fig. 5.2d,5.2f).
We still can say that a larger density fluctuation occurs at the LFS limiter for both MP
but the fluctuations at the HFS can not be neglected.

In order to highlight solely the non axysymmetric part of the perturbed density field,
we now plot on Figs. 5.3 δNϕ which excludes the toroidally symmetric part of the
perturbation. The reference turbulent case is already plotted on Fig. 5.2b (δN 0

ϕ = δNϕ

for the reference case). Figs. 5.3 show only the turbulence cases as the mean-field
ones are no different from the density toroidal inhomogeneities seen on Figs. 5.2. We
can clearly see the difference in the turbulence cases between N 0

ϕ and δNϕ. The mode
(1,6,2) shows clearly the n = 2 mode (see Fig. 5.3a), and (1,15,4) does as well for n = 4
(see Fig. 5.3b). We note that the impact for the toroidal variations created by MPs is
stronger in the HFS part of the limiter.

The conclusion at this point is the importance of accurately modeled 3D turbulent
processes coupled with MP. It should be taken as an encouragement to pursue the
development of turbulence codes to handle plasma simulations in realistic geometries
with magnetic perturbations. In mean-field simulations, the response of the plasma
to the MP is local and exhibits the same mode number as the MP. In turbulence
simulations, the response of the plasma is more complex with an impact not only
on the mode number corresponding to the MP but also on axisymmetric modes.
Turbulence introduces non locality in the plasma response, the largest perturbation
on the density being localized radially downstream of the magnetic islands probably
due to phase locking of instabilities by the MPs.
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(a) Case MP (0,0,0) no turbulence (b) Case MP (0,0,0) turbulence

(c) Case MP (1,6,2) no turbulence (d) Case MP (1,6,2) turbulence

(e) Case MP (1,15,4) no turbulence (f) Case MP (1,15,4) turbulence

Figure 5.2.: TOKAM3X simulations: density toroidal inhomogeneity as δN 0
ϕ =

(〈NMP〉t − 〈N(0,0,0)〉t ,ϕ)/〈N(0,0,0)〉t at the limiter, above the dotted line is
the HFS and below is the LFS
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(a) Case MP (1,6,2) turbulence (b) Case MP (1,15,4) turbulence

Figure 5.3.: TOKAM3X simulations: density toroidal variation as δNϕ = (〈NMP〉t −
〈NMP〉t ,ϕ)/〈NMP〉t at the limiter, above the dotted line is the HFS and below
is the LFS

5.2. From single mode to multi-modes magnetic

perturbations

Until this point, we have only focused on single mode MPs in order to isolate their
basic effect on the plasma. RMPs are in reality composed of a superposition of modes.
Unfortunately, we have not been able to address RMPs with realistic spectra with
TOKAM3X used in turbulent mode due to unidentified and, to date unsolved, nu-
merical instabilities when applying realistic RMPs. Nevertheless, first steps towards
real RMP spectra have been achieved with mean-field simulations. As the mean-field
simulations are numerically more stable we manage to input a more complex MP and
can used higher amplitude of perturbations.

5.2.1. Simulation settings

To be more realistic, a set of rectangular magnetic coils has been modeled around the
torus of the simulation. It is a set of two rows (upper and lower) of four rectangular
coils. The magnetic field produced by these coils is computed throught the Biot and
Savard law in a very similar way as what is done in [84]:

Bcoils(P ) = µ0

4π

ncoils∑

i=1

(∮

Ci

Iiδr × r

r 3

)

(5.4)

where a summation is done on all coils. µ0 is the vacuum magnetic permeability,
Ii is the current in the coil numbered i , r is the vector between a point P of the
simulation domain and a point along the coil contour C and δr is the infinitesimal
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vector for integration along the contour of the coil. The magnetic field is expressed in
the cylindrical basis. To obtain the contravariant coordinates of the coil, we apply the
following transformation:






B
ψ

coils
Bθ∗

coils
B
ϕ
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where J is the local Jacobian matrix (defined in Appendix B). The contravariant coordi-
nates of the coils are then added to the equilibrium magnetic field B0. A 3D illustration
is given in Figs 5.4a on the left. The RMP coils are the red rectangles and some field
lines of the simulation domain are shown in green.

(a) RMP coils

(b) B̃ field ϕ= 0 (c) B̃ field ϕ=π/8

Figure 5.4.: 3D plot of the RMP coils (in red) with some fieldlines in green 5.4a. Poloidal
2D slice of the norm of the perturbated magnetic field B̃ at ϕ= 0 5.4b and
ϕ=π/8 5.4c for the realistic RMP

The Biot and Savart law expressed in equation 5.4 can be simplified for a constant
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Even configuration
+ - + - + - + -

+ - + - + - + -

Odd configuration
+ - + - + - + -

- + - + - + - +

Table 5.1.: The even and odd configuration. The ± sign directly translates the sign of
the current in the coil.

coil current as:

Bcoils(P ) = µ0Icoil

4π

ncoils∑

i=1

(∮

Ci

δiδr × r

r 3

)

(5.6)

where Icoil is a constant current into each RMP coil, which is realistic in the chosen
configuration, as each coil is identical. δi =±1 is the parity of the coil. If the current
goes into a specific direction inside a coil, the direct neighbour is set so that the current
goes the other way. For a RMP case with 2 rows of 8 set of coils, one can implement
two kind of configurations: the even and odd configurations, as shown in Table 5.1.
The ± signs correspond to the current direction.

In this thesis, we only use the even configuration. A study about even and odd
configurations has already been done in the thesis [83] with the MHD code JOREK [26,
60].

The equation 5.6 is still not dimensionless. We thus introduce the toroidal current
Itor, seen in Chap. 2, as well as F =µ0Itor/(2π), which is a parameter of the code that
caracterizes the amplitude of the dimensionless equilibrium magnetic field b0. It is
generally set to 1. We can then write the equation 5.6 as:

Bcoils(P ) = FǫRMP

ncoils∑

i=1

(∮

Ci

δiδr × r

r 3

)

(5.7)

with ǫRMP = 0.5Icoil/Itor ≪ 1. To keep a similar notation as what was done for the MP,
the realistic RMP is noted rmp (a, irow, icol), where ǫRMP = a ·10−3, irow is the number
of rows of coils and icol the number of coils in a row. The TOKAM3X code has been
implemented with the possibility to create coils such that irow = 1. . .2 (1 or 2 rows of
coils) and any number of evenly spaced (in the toroidal direction) coils in a row. In
this thesis, we choose irow = 2 and icol = 8 (in even configuration).

To ensure a comparable result between a single mode MP and a realistic RMP, we
choose to have an equivalent amplitude of magnetic perturbation at the point in
the simulation exhibiting the largest perturbation. We choose a maximal amplitude
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of the order of 10−3B0. This corresponds to single mode MP (10,6,2) and (10,15,4),
whereas the realistic RMP is (0.1,2,8). The form of the realistic RMP can be seen on
Figs 5.4b and 5.4b. Those two poloidal slices taken at ϕ = 0 and ϕ = π/8 shows the
relative amplitude of the magnetic perturbation (|B −B0|/|B0|). With the scale, it
clearly shows an amplitude of the order of 10−3B0. We complete it by the poloidal
spectrum of the three different cases (two single mode MP and one realistic RMP)
taken at r /a = 0.9 (to see if the RMP goes in the CFR) and ϕ= π/8. Whereas we can
clearly see, for the single mode, the expected mode m (with the resonance due to
the magnetic curvature), the realistic RMP shows a full spectrum of poloidal mode
numbers m ∈ [4 . . .50]. Concerning the toroidal mode number n, the single mode
MPs show (as stated in Chapter 3) the main toroidal mode number corresponding to
the perturbation. The realistic RMP is more complex with the expected mode n = 4
(corresponding to the coils configuration in a row: 8 coils, whose current switches
between two neigbours in a row, create a n = 4 oscillation), but other modes exist such
as n = 12,20 of similar amplitudes due to the toroidal shaping of the coils.

(a) Poloidal DFT of |B | (b) Toroidal DFT of |B |

Figure 5.5.: Spectrum of |B | along the poloidal direction at r /a = 0.9, ϕ = π/8 5.5a.
Spectrum of |B | along the toroidal direction at r /a = 0.9, θ∗ = 0 (LFS
midplane) 5.5b.

The addition of several mode numbers in both directions have a direct impact on
the island formation. This can be observed on the Poincaré map on Figs 5.6. The
Fig 5.6a shows the Poincaré map for the case MP (10,6,2). We can clearly observe
large magnetic islands with a stochastic region at 3.50 ≤ q ≤ 3.55. We note that the
magnetic islands are not well defined and that the magnetic field lines seem to fill all
the available space (with the exception of the islands, that look like empty elongated
structures), forming a stochastic field region. The Fig 5.6b shows the Poincaré map
for the case RMP, even configuration, (0.1,2,8). The first observation is the size of the
islands, extremely small in the CFR, where the flux surfaces are almost unperturbed.
The SOL is more perturbated with islands of equivalent size at 5.25 ≤ q ≤ 6.0, but more
numerous compare to (1,6,2). The islands then shrink the more it goes toward the
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CFR. This is due to a major difference between the single mode MP and the realistic
RMP: the radial dependency of the amplitude of the MP. For realistic RMP, the strength
of the MP decreases the more it goes inside the plasma.

(a) MP (10,6,2) (b) RMP (0.1,2,8)

Figure 5.6.: Poincaré map for MP (10,6,2)5.6a and RMP (0.1,2,8)5.6b

This radial dependency should have interesting behaviour on the turbulence itself.
Unfortunately, the turbulent model of TOKAM3X is not yet stable enough to man-
age the realistic RMP. In the following part, we study the difference in the density
2D profiles obtained from solutions with realistic and single mode MP of similar
amplitude.

5.2.2. Impact of RMPs on the mean density distribution

Following the steps done in the first section, the density fluctuation in the toroidal
direction is plotted on Figs 5.7. The first two Figs 5.7a,5.7b show the density toroidal
inhomogeneities δN 0

ϕ for the single mode MP (10,6,2) and (10,15,4). The 4 others
Figs. are successive poloidal slices for the RMP (0.1,2,8) at ϕ= 0 (fig. 5.7c), ϕ= π/8
(fig. 5.7d), ϕ = π/4 (fig. 5.7e), ϕ = 3π/8 (fig. 5.7f) of density fluctuations. The first
comparison that can be done is the fluctuation level. Realistic RMP, for an equivalent
amplitude, modifies only barely the density. The fluctuation are only of a few percents.
The single mode MP, whom amplitude has been multiplied by 10, shows a quasi linear
increase in density fluctuation level with repect to the former cases (see Figs. 5.1). It is
interesting to note that in the mean field simulations, an increase of the MP amplitude
relates directly with an increase in the amplitude of the density inhomogeneity. It was
not so strinking for the turbulence model as shown in Fig. 5.8. When we compare
the turbulent case (1,6,4) (Fig. 5.8a) and (3,6,4) (Fig. 5.8b) we still note an increase in
the level of density fluctuations, but not as much as a factor three, like what would
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be observed in a mean-field simulation. The density inhomogeneity in the turbulent
model seems to spread farther in the SOL.

Going back into the mean field model and the RMP case, we can see on Figs 5.7c, 5.7d, 5.7e
and 5.7f that the density fluctuations follow the form of the MP. The HFS region shows
little change whereas, at LFS, fluctuations become completely non-axisymmetric. The
density fluctuation is positive with a positive perturbated magnetic field (Fig. 5.7d)
and negative otherwise (Fig. 5.7f). Seeing that the realistic RMP mainly modifies the
LFS region, the 2D map of the density fluctuations on the limiter (Fig. 5.9) shows, as
expected, mainly fluctuations at the LFS region. The fluctuations shape in lobe-like
structures at the LFS. This is observed in experiment on MAST [124] for example,
although in a different magnetic geometry.

5.3. Modeling of the impact of MPs in realistic

plasma and wall geometry with the

SOLEDGE3X-HDG code

The SOLEDGE3X-HDG code is a transport code able to compute isothermal and
non-isothermal models in complex geometries. At the time this work was carried
out, a new 3D version of the code had just been released but had never been used
appart from basic verification tests. The model solved by the code is currently a mean-
field model but developments are already relatively advanced to extend it towards
turbulence. The SOLEDGE3X-HDG code relies on a finite element HDG approach
which offers greater geometrical flexibility compared with the numerical discretization
used in TOKAM3X or other edge codes. It opens the path to simulations in 3D realistic
geometry, for the plasma but also for the wall, with any type of magnetic topology,
toroidally symmetric or not, eventually with turbulence. In this thesis, we propose the
first physical application of the SOLEDGE3X-HDG code to 3D magnetic equilibria. We
wish to see the capabilities of SOLEDGE3X-HDG to react to 3D MPs. As the code is
vastly different from TOKAM3X, even its mean-field version, we do not aim towards a
comparison of both codes. Still, we use the results found in the previous sections to
see if compararable trends can be highlighted. We choose to approach the problem by
changing the geometry of the simulation applying the same RMP-like (multi-modes)
MP.

5.3.1. Simulations settings

Capitalizing on the geometrical flexibility of the code, we have performed simulations
in three kind of circular geometries with limiter at the bottom: a vertical infinitely thin
limiter (see Fig. 5.10a), a vertical limiter (see Fig. 5.10b), a realistic horizontal limiter
(see Fig. 5.10c). The simulated domain is a region of 250ρL and the inner radius of
the torus is 500ρL . The perpendicular transport is set through a diffusion coefficient
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(a) Case MP (10,6,2) (b) Case MP (10,6,2)

(c) Case RMP (0.1,2,8), ϕ= 0 (d) Case RMP (0.1,2,8), ϕ=π/8

(e) Case RMP (0.1,2,8), ϕ=π/4 (f) Case RMP (0.1,2,8), ϕ= 3π/8

Figure 5.7.: TOKAM3X simulations: density inhomogeneity as δN 0
ϕ = (〈NMP〉t −

〈N(0,0,0)〉t ,ϕ)/〈N(0,0,0)〉t for the cases (10,6,2) (5.7a), (10,15,4) (5.7b) and
RMP (0.1,2,8) at ϕ= 0 (5.7c), ϕ=π/8 (5.7d), ϕ=π/4 (5.7e) and ϕ= 3π/8
(5.7f)
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(a) MP (1,6,4) (b) MP (3,6,4)

Figure 5.8.: TOKAM3X simulations: Density inhomogeneity as δN 0
ϕ = (〈NMP〉t −

〈N(0,0,0)〉t ,ϕ)/〈N(0,0,0)〉t for the cases (1,6,4) (5.8b) and (3,6,4) (5.8b) with
the turbulent model at ϕ= 0

Figure 5.9.: TOKAM3X simulations: density inhomogeneity as δN 0
ϕ = (〈NMP〉t −

〈N(0,0,0)〉t ,ϕ)/〈N(0,0,0)〉t at the limiter for the realistic RMP (0.1,2,8), above
the dotted line is the HFS and below is the LFS

at D⊥ = 0.038, wich corresponds, in dimensional unit, to a diffusion of 1 m2 · s−1. We
should note that the perpendicular velocity u⊥ is set to zero so that the perpendicular
transport is fully diffusive. A reference value of T0 = 50 eV and B0 = 2 T are chosen at
the edge plasma. The aspect ratio is A = 3.4 and the safety factor at the edge is q = 3.5.
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(a) Infinitely thin limiter (b) Vertical limiter (c) Horizontal limiter

Figure 5.10.: Three types of bottom limiters. Non field-aligned mesh configurations.

The equilibrium magnetic field is analytically set as (cylindrical basis):

B0 =







BR =− B0 y

xq
√

1− r
R0

2

BZ = B0
x−R0

xq
√

1− r
R0

2

Bφ = B0
R0
r

(5.8)

with r =
√

(x −R0)2 + y2. The magnetic perturbation is added through a set of mag-
netic coils in the same framework as TOKAM3X. A row of rectangular coils are set
above and below the midplane of the torus. In these simulation, the toroidal elon-
gation of each coil is π/8, which create, for a simulation domain on a π/2 torus (for
symmetry), the result shows on Fig. 5.11. The coils are set in even configuration.

For each perturbated simulation, a reference simulation without perturbation is
run. The amplitude of the magnetic perturbation is set so that |BRMP|/|B | ∼ 10−3 at
the maximum of the perturbation, as seen on Fig. 5.12

5.3.2. RMP in different limiter configurations

To study the effect of the geometry, we take a look at the density toroidal inhomo-
geneities δN 0

ϕ and the density toroidal variations δNϕ. In SOLEDGE3X-HDG the
average in time is implicit as the simulation is steady-state. We plot for 3 different po-
sitions (from π/8 to π/4 by 3π/4 step) poloidal slices of δN 0

ϕ and δNϕ for the infinitely
thin limiter (see Fig. 5.13), the vertical limiter (see Fig. 5.14) and the horizontal limiter
(see Fig. 5.15). The first remark is the similar behaviour between the infinitely thin
limiter simulation with SOLEDGE3X-HDG and the one of TOKAM3X, at the LFS with
a large scale structure. We note nevertheless that the SOLEDGE3X-HDG simulation
shows small scale perturbations at the external boundaries of the domain, which is
not visible in TOKAM3X. This is most certainly due to the difference in boundary
conditions.
We can observe similar structures between the 3 geometries with few differences.
Starting with the infinitely thin limiter, we note that the positive RMP induces an
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Figure 5.11.: Coils distributions (red) for the different simulations. The grey zone
shows the simulation domain. The coils are in even configuration.

(a) Infinitely thin limiter (b) Vertical limiter (c) Horizontal limiter

Figure 5.12.: |Bpert|/|B | at ϕ=π/10

increase of the density at the LFS (see Figs. 5.13a and 5.13b) both for δN 0
ϕ, which mark

a direct impact of the RMP on the unperturbed equilibrium, and for the δNϕ, which
underline the 3D effects of RMP even with mean-field simulations. The negative RMP
creates a loss (see Figs. 5.13e and 5.13f). This is also observed for the vertical limiter
(see resp. Figs. 5.14a and 5.14b then 5.14e and 5.14f) and the horizontal one (see resp.
Figs. 5.15a and 5.15b then 5.15e and 5.15f). The density fluctuations at the limiter
is stronger on the LFS part. The few differences we can observe are the spreading
of the density perturbations, which is mostly due to the difference of the SOL thickness.

The conclusion to this part is twofolds. First is the capability of SOLEDGE3X-HDG
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to efficiently deal with a full 3D isothermal simulation with RMP-like perturbations.
Second, limiter configurations in circular geometries does not seem to change much
the density fluctuations (both δN 0

ϕ and δNϕ) at the target.

5.4. Modeling of the ripple for different geometries

with SOLEDGE3X-HDG

In this part, we take a look to a different kind of 3D magnetic perturbations: the ripple.
This perturbation is due to the finite number of toroidal field coils. An illustration
is given in Figs. 5.161. As we can see, the strength of the magnetic field intensity is
stronger near the coils and weaker between two coils. The more the number of toroidal
coils N increase, the less is the impact. The effects of the ripple can be numerous and
could lead to particles and heat flux losses [109, 115]. This section aims to show the
capability of SOLEDGE3X-HDG to deal with a ripple in various geometries.

5.4.1. Simulations settings

The ripple perturbations is applied to the same geometries and parameters. We also
extend the study to the more realistic geometry of WEST, in diverted configuration.
The mesh of the X-point configuration is shown on Fig 2.5b. For WEST, A = 2.5 and
the diffusive coefficient is chosen artificially larger D⊥ = 0.1 (adimensional unit). The
other parameters are left unchanged.

To create a ripple, a set of N toroidal coils is created in the same framework as the
RMP coils. The Biot and Savard law allows then to obtain a toroidal magnetic field
with ripple Btot. The toroidal average Beq = 〈Btot〉ϕ of this field is then calculated,
corresponding to an equilibrium magnetic field. This equilibrium is then substracted
to the total field, leaving only the ripple perturbation:

Bripple = Btot −Beq (5.9)

The ripple is then added to the 2D equilibrium field computed by the code (for the
circular geometries, already explained in the previous section) or the one taken from a
file (for the WEST geometry).

To create the toroidal coils, we create a set of points (xc , yc , zc ) defined as:







xc = (R0 +br0 cos(θ+δt sin(θ)))cos
(

ϕ
)

yc = (R0 +br0 cos(θ+δt sin(θ)))sin
(

ϕ
)

zc = κe br0 sin
(

ϕ
)

(5.10)

1source: http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/

electri/toremagne.html
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(a) δN 0
ϕ,ϕ=π/8 (b) δNϕ,ϕ=π/8

(c) δN 0
ϕ,ϕ=π/4 (d) δNϕ,ϕ=π/4

(e) δN 0
ϕ,ϕ= 3π/8 (f) δNϕ,ϕ= 3π/8

Figure 5.13.: SOLEDGE3X-HDG simulations: density toroidal inhomogeneities
(5.13a,5.13c,5.13e) noted δN 0

ϕ and density toroidal variations
(5.13b,5.13d,5.13f) noted δNϕ for the infinitely thin limiter at dif-
ferent poloidal slices with RMP
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(a) δN 0
ϕ,ϕ=π/8 (b) δNϕ,ϕ=π/8

(c) δN 0
ϕ,ϕ=π/4 (d) δNϕ,ϕ=π/4

(e) δN 0
ϕ,ϕ= 3π/8 (f) δNϕ,ϕ= 3π/8

Figure 5.14.: SOLEDGE3X-HDG simulations: density toroidal inhomogeneities
(5.14a,5.14c,5.14e) noted δN 0

ϕ and density toroidal variations
(5.14b,5.14d,5.14f) noted δNϕ for the vertical limiter at different
poloidal slices with RMP
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(a) δN 0
ϕ,ϕ=π/8 (b) δNϕ,ϕ=π/8

(c) δN 0
ϕ,ϕ=π/4 (d) δNϕ,ϕ=π/4

(e) δN 0
ϕ,ϕ= 3π/8 (f) δNϕ,ϕ= 3π/8

Figure 5.15.: SOLEDGE3X-HDG simulations: density toroidal inhomogeneities
(5.15a,5.15c,5.15e) noted δN 0

ϕ and density toroidal variations
(5.15b,5.15d,5.15f) noted δNϕ for the horizontal limiter at differ-
ent poloidal slices with RMP
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(a) N = 8 (b) N = 16

Figure 5.16.: Illustration of the ripple by plotting the magnetic field lines (in red) gen-
erated by a set of N poloidal coils (in green). Adapted from there

with θ ∈ [0,2π], b > 1 a constante, r0 the inner radius of the torus (with the SOL), δt

the triangularity, fixed at 0 for all simulations, and κe the ellipticity fixed at 1 for all
simulation. b is chosen to have the coils far enough of the simulation box, so that the
approximation of a coil being an infinitly thin line does not invalidate the form of the
magnetic field.

We choose to set N = 18 toroidal coils for each simulation (same number as WEST).
For symetry reasons, only 2π/9 of the torus is simulated. The Fig 5.17 shows in red the
coils and in black the simulation domain for the vertical limiter and WEST geometries.

(a) Infinitely thin limiter (b) WEST

Figure 5.17.: Toroidal coils (red) with the simulation domain (black) for the infinitely
thin limiter (Fig. 5.17a) and WEST (Fig. 5.17b) geometries.
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5.4.2. Ripple on different limiter configurations

The first observation we can make is on the ripple itself. We plot on Figs 5.18 the
2D map of the module of the perturbation for the infinitely thin limiter (the other
geometries having the same kind of profile) for different poloidal slices. We can clearly
see the modulation of the field at the LFS region.

(a) ϕ= 0 (b) ϕ=π/15 (c) ϕ= 2π/15

Figure 5.18.: |Bpert|/|B | at different toroidal position for the vertical limiter

The next step is the observation of δN 0
ϕ and δNϕ. According to the litterature cited

in Chap 1, the ripple should have little 3D impact on the axisymmetry of the plasma.
Consequently, we can expect δN 0

ϕ to change but δNϕ should show little variations.
As seen for all geometries (see on the left side on Figs. 5.19, 5.20 and 5.21), the ripple
creates a positive δN 0

ϕ at the LFS of the machine and a negative one at the HFS from
the limiter and up to the top. The ripple is known to produce alternate patterns of pos-
itive and negative density flux at the limiter. We can take a look at the density toroidal
variations, on the right side of each set of Figs. For all geometries, we clearly have a
alternate pattern of positive and negative density fluctuations δNϕ at the LFS, whereas,
in opposite phasis, we see a similar phenomenon at the HFS, albeit at lower amplitude.
On a side note, δN 0

ϕ varies around ±20% of the average density and show that the
ripple can considerably change the equilibrium of the plasma. But δNϕ is actually
small, barely ±2% of the average density. Furthermore, we note that these variations
are too small to be correctly captured by SOLEDGE3X-HDG for the horizontal limiter,
as oscillation are clearly visible (see Figs. 5.21 on the right). These oscillations are
probably related to specific issues due to boundary conditions in grazing incidence
angles (specific of the horizontal limiteur case) and could probably be removed with a
finer mesh or specific treatment of boundary conditions when the magnetic field is
tangential to the wall.

SOLEDGE3X-HDG seems capable to reproduce a ripple-like MP for simple geome-
tries. Even if the horizontal limiter configuration would require probably a finer mesh.
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(a) δN 0
ϕ,ϕ=π/27 (b) δNϕ,ϕ=π/27

(c) δN 0
ϕ,ϕ= 2π/27 (d) δNϕ,ϕ= 2π/27

(e) δN 0
ϕ,ϕ=π/9 (f) δNϕ,ϕ=π/9

(g) δN 0
ϕ,ϕ= 4π/27 (h) δNϕ,ϕ= 4π/27

Figure 5.19.: SOLEDGE3X-HDG simulations: density toroidal inhomogeneities
(5.19a,5.19c,5.19e,5.19g) noted δN 0

ϕ and density toroidal variations
(5.19b,5.19d,5.19f,5.19h) noted δNϕ for the infinitely thin limiter at dif-
ferent poloidal slices with ripple-like MP
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(a) δN 0
ϕ,ϕ=π/27 (b) δNϕ,ϕ=π/27

(c) δN 0
ϕ,ϕ= 2π/27 (d) δNϕ,ϕ= 2π/27

(e) δN 0
ϕ,ϕ=π/9 (f) δNϕ,ϕ=π/9

(g) δN 0
ϕ,ϕ= 4π/27 (h) δNϕ,ϕ= 4π/27

Figure 5.20.: SOLEDGE3X-HDG simulations: density toroidal inhomogeneities
(5.20a,5.20c,5.20e,5.20g) noted δN 0

ϕ and density toroidal variations
(5.20b,5.20d,5.20f,5.20h) noted δNϕ for the vertical limiter at different
poloidal slices with ripple-like MP
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(a) δN 0
ϕ,ϕ=π/27 (b) δNϕ,ϕ=π/27

(c) δN 0
ϕ,ϕ= 2π/27 (d) δNϕ,ϕ= 2π/27

(e) δN 0
ϕ,ϕ=π/9 (f) δNϕ,ϕ=π/9

(g) δN 0
ϕ,ϕ= 4π/27 (h) δNϕ,ϕ= 4π/27

Figure 5.21.: SOLEDGE3X-HDG simulations: density toroidal inhomogeneities
(5.21a,5.21c,5.21e,5.21g) noted δN 0

ϕ and density toroidal variations
(5.21b,5.21d,5.21f,5.21h) noted δNϕ for the horizontal limiter at different
poloidal slices with ripple-like MP
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5.4.3. The ripple from limiter to divertor

The last simulation we have tried is the WEST geometry with a ripple of one order
of magnitude lower than the circular simulations, due to computational limits. We
plot on Figs. 5.22 δN 0

ϕ (left) and δNϕ (right) at different toroidal positions. The limit
observed with the horizontal limiter can also be observed here at the boundary, where
the density becomes very low, creating spurious oscillations. The code still converges
and thus we can concentrate around the lower and upper X-point. For δN 0

ϕ, we can
observe the increase of density fluctuations at the bottom inner and top outer target,
whereas the bottom outer and top inner targets show a decrease of density. For δNϕ,
at the bottom limiter, we can distinguish alternating pattern of positive and negative
density fluctuations.

5.5. Conclusion on transport simulations

A comparison between self-consistent turbulence simulations and mean-field simu-
lations, in which radial transport is prescribed via a gradient-diffusion assumption,
shows a significant difference in the response of the plasma to MPs. The amplitude
of the non-axisymmetric density perturbation is much more pronounced in the tur-
bulent simulations than in the mean-field ones. Moreover, its spatial localization
also changes, the effect of magnetic islands remaining local in the mean-field simula-
tions while non local effects are important with turbulent simulations. These results
suggest that the assumption of unperturbed perpendicular transport in mean-field
simulations with MPs is probably an oversimplification and calls for further studies on
the significant role played by turbulence on the response of the plasma to magnetic
perturbations.

A study over more realistic RMP in mean-field simulations with TOKAM3X and
SOLEDGE3X-HDG, has shown that the impact of this more localized perturbation is
somewhat smaller on the density variations for the same amplitude as single mode
MPs.

Finally, the mean-field code SOLEDGE3X-HDG has shown a promising ability to
treat 3D MPs. Satisfying results have been obtained for the realistic RMP but more
work is needed to obtain a correct ripple-like MP, especially in complex geometries.
Still, the first results obtained in this thesis are promising for the 3D capabilities of the
SLOEDGE3X-HDG code.
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(a) δN 0
ϕ,ϕ=π/27 (b) δNϕ,ϕ=π/27

(c) δN 0
ϕ,ϕ= 2π/27 (d) δNϕ,ϕ= 2π/27

(e) δN 0
ϕ,ϕ=π/9 (f) δNϕ,ϕ=π/9

(g) δN 0
ϕ,ϕ= 4π/27 (h) δNϕ,ϕ= 4π/27

Figure 5.22.: SOLEDGE3X-HDG simulations: density toroidal inhomogeneities
(5.22a,5.22c,5.22e,5.22g) noted δN 0

ϕ and density toroidal variations
(5.22b,5.22d,5.22f,5.22h) noted δNϕ for WEST at different poloidal slices
with ripple-like MP
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Conclusion

A study of the impact of 3D magnetic perturbations on turbulence and plasma equi-
librium on the edge plasma has carried out. For the first time, the state-of-the-art
fluid simulation code TOKAM3X has been used to simulate isothermal and non-
isothermal edge-plasmas of tokamak, including single mode magnetic perturbations.
A comparison between turbulence (TOKAM3X) and mean-field models (TOKAM3X,
SOLEDGE3X-HDG) had been also carried out.

Single mode magnetic perturbations have been applied on isothermal limiter plas-
mas in circular geometry. Depending on the perturbations wavenumbers, magnetic
islands may occur inside the computational domain. A dependency on the amplitude
and wavenumbers of the perturbation, especially if it corresponds to resonance with
magnetic islands, has been seen on the plasma equilibrium and, to a lesser extent, on
the turbulence properties. Magnetic perturbations lead thus to changes on plasma
rotation and flows, with solutions recovering experimental key features such as the
density pump-out or the reversal of parallel velocities.

The density SOL width increases just after the separatrix when MPs are switched on
but otherwise decreases in the rest of the SOL. Concerning the turbulence properties,
the fundamental nature of turbulence is not changed much, with still intermittent
events in the SOL, even if MPs tend to decrease it in the SOL, especially when magnetic
islands are present. Density fluctuations are shown to decrease in the SOL when MPs
are switched and an increase of the ballooning of the E ×B turbulence is observed in
the SOL.

In non-isothermal plasmas, the impact of the sources location has been investigated
mimicking or not the recycling due to plasma wall interactions. In simulations without
recycling the particles and energy sources are assumed coming from the core and
have been located at the inner radius of the computational domain. On the contrary,
in simulations with recycling assuming that 90% of the particles come from the limiter
and 10% from the core, the main source has been located at the limiter. Experimen-
tal features such as the density pump-out and the reversal of parallel velocities are
recovered in the recycling cases only, even if a pressure loss and a decrease of the
radial electric profile are observed on both simulations. These different behaviors are
associated to complex flux reorganizations. The simulations without recycling show
an increase in the particle ballooning, whereas the simulations with recycling and
MPs show a reverse particle ballooning in the CFR and no impact of the magnetic
perturbations in the SOL. On the energy part, the MPs increase the ballooning in
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the simulations without recycling, in both the CFR and the SOL. With recycling, this
stronger ballooning is only visible in the SOL (whereas the reverse energy flux de-
creases). The ballooning behavior seems quite different with respect to the isothermal
simulations, but are actually similar since the particle ballooning in isothermal cases
should be compared with the energy ballooning in non isothermal simulations.

On the power exhaust concern, non isothermal simulations have shown a clear
difference with isothermal ones, as both the density SOL width and power SOL width
increase in both cases when MPs are switched on. Finally, on turbulent properties, for
non recycling cases, density and temperature fluctuations decrease with MPs as well
as the intermittency. In simulations without recycling, the density and temperature
fluctuations increase, especially in the SOL, whereas the intermittency reverses in the
CFR for density events, but not for the temperature events.

The complexity of the changes of the turbulent transport in both isothermal and non
isothermal simulations have raised the question of the limit of mean-field simulations
when considering 3D MPs. A comparison between mean-field and turbulent isother-
mal simulations with single mode perturbations has been done with TOKAM3X. It has
been shown that the amplitude of the non-axisymmetric density perturbation is more
pronounced in turbulent simulations. The spatial localization of the density toroidal
inhomogeneities due to MPs is also different with non local effects probably due to a
phase-locking of turbulent structures on magnetic perturbations in turbulent cases. It
suggests that the assumption of unperturbed perpendicular transport in mean-field
simulations is probably an oversimplification, which calls for further studies on the
topic.
Still, present mean-field simulations have allowed for much more complex MPs and ge-
ometries that what have been done in the turbulent framework of this thesis. As such,
an attempt in mean-field simulations with both TOKAM3X and SOLEDGE3X-HDG
has been performed with more realistic MPs and make a first step towards realistic
magnetic perturbations such as RMPs or ripple. Thus perturbations mimicking real-
istic RMP coils and magnetic field have been implemented in TOKAM3X. Solutions
show in mean-field simulations that the impact of realistic MP is more localized on
the LFS region of the machine. The amplitude of the density toroidal inhomogeneities
are also much lower for the same peak amplitude of the magnetic perturbation. The
same perturbation have been applied to SOLEDGE3X-HDG, using for the first time its
3D framework. More complex geometries have been studied, showing little changes
on the response of the plasma in the volume but underlining that the impact on wall
fluxes and conditions is strongly dependent on the wall geometry. Finally a generaliza-
tion of the study of magnetic perturbation to the case of ripple has been performed,
including on a real WEST tokamak geometry, highlighing that the ripple leads to strong
density toroidal inhomogeneities (the equilibrium compare to a case without ripple
change a lot) but little density toroidal variations (the density variation in the toroidal
direction are weak). Overall, the studies with the SOLEDGE3X-HDG code demonstrate
promising capabilities at handling complex geometries in 3D magnetic configurations,
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but also point out specific issues (boundary conditions, stability of small scales) that
will need improvement before exhaustive use of the code’s capabilities can be made.

In summary, this thesis offers a first insight on the impact of 3D magnetic perturba-
tions in self-consistent turbulence simulations. Results hightlight some fundamental
limits concerning the modeling of the edge plasma with 3D magnetic fields under
the gradient-diffusion assumption with constant diffusion coefficients. They call
for urgent additional studies in order to rapidely provide guide-lines to mean-field
simulations which will remain the work-horse for ITER studies in the upcoming few
years. Although existing numerical tools have shown their capabilities to adress these
issues, some limits have been identified that need to be worked on in order to extend
our conclusions to more realistic configurations and conditions. Concerning the
TOKAM3X code, such development has been undertaken in parallel to the course of
this PhD, leading to a new version called SOLEDGE3X with more advanced geometri-
cal flexibility. The exploitation of this new code together with the continuous progress
of the SOLEDGE3X-HDG code will allow to pursue these studies in the near future
and bring more detailed conclusions on the topic.
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A. Derivation of the fluid model

A.1. From particle to Vlasov-Boltzmann equations

From [106], we detail here the calculation to obtain the Boltzmann-Vlasov equations.
Starting from the particle descritpion, we have:

m j dt v j = q j (E j +v j ×B j ) (A.1)

where E j and B j stand for a local description of the electric and magnetic fields,
composed of the external fields and the complex interaction of the particle with the
others. Both fields follow the Maxwell’s equations:







∇∇∇·E j = ρ j /ǫ0

∇∇∇·B j = 0
∇∇∇×E j = −∂t B j

∇∇∇×B j = µ0( j j +ǫ0∂t E j )

(A.2)

where ρ j and j j are the local charge and current densities, written:







ρ j (t , x) =
N j∑

k=1

qkδ(x −xk )

j j (t , x) =
N j∑

k=1

qkδ(x −xk )vk

(A.3)

The particle description can be extended into a microscopic distribution function Ns

for each specie s in the 6D phase space, leading to the Kilmontovitch equation. We
note thus:

Ns(t , x , v ) =
N js∑

k=1

δ(x −xk )δ(v −vk ) (A.4)

where N js notes the number of particles of specie s, verifying
∑

s N js = N j . Ns is a
discrete function in the phase space. Writinf the conservation law for particles dNs = 0,
we obtain (Lorentz force and v are divergence free in v space):

∂tNs +v ·∇∇∇xNs +
qs

ms
(E j +v ×B j ) ·∇∇∇vNs = 0 (A.5)
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A. Derivation of the fluid model–A.2. Fluid equation derivations

by recognizing that ẋ = v and v̇ = qs

ms
(E j +V j ×B j ). This equation cannot be solved

numerically as it describes still a too large number of microscopic states. Futhermore,
the results will be a huge amount of data that are not directly physical quantities
(average properties such as density, velocity, etc.) and so hardly relevant for a physicist.

To obtain more physical measures, the equations A.5 are averaged with the following
method:







Ns(t , x , v ) = fs(t , x , v )+δNs(t , x , v ) with <Ns > = fs

E j (t , x) = E (t , x)+δE (t , x) with < E j > = E

B j (t , x) = B (t , x)+δB (t , x) with < B j > = B

To complete the averaging, we add the charge and the current from the Maxwell’s
equations:







ρs(t , x) = < ρ j (t , x) > =
∑

s

qs

∫

Ω

fsd3v

js(t , x) = < j j (t , x) > =
∑

s

qs

∫

Ω

v fsd3v

Thus equation A.5 write:

∂t ( fs +δNs)+v ·∇∇∇x ( fs +δNs)+ qs

ms
(E +δE +v × (B +δB )) ·∇∇∇v ( fs +δNs) = 0

Averaging leads to (using ∇∇∇· (a +b) =∇∇∇·a +∇∇∇·b and < ∂xi
f >= ∂xi

< f >):

∂t fs +v ·∇∇∇x fs +
qs

ms
(E +v ×B ) ·∇∇∇v fs +

qs

ms
< (δE +v ×δB ) ·∇∇∇v (δNs) >= 0

and by noting Cs =− qs

ms
< (δE +v ×δB ) ·∇∇∇v (δNs) >, we achieve the Boltzmann equa-

tions:
∂t fs +v ·∇∇∇x fs +

qs

ms
(E +v ×B ) ·∇∇∇v fs =Cs (A.6)

A.2. Fluid equation derivations

In this part, we precise the computation for n = 0 · · ·2 in equation 2.4. We assume the
distribution function fs to be exponentially vanishing (see expression 2.5), that is:

∀n ∈N, lim
|v |→∞

v⊗n fs = 0 (A.7)

Using commutative properties, equation 2.4 writes ∀n ∈N:

∂t

∫

Ω

v⊗n
s fsd3v+∇∇∇x ·

∫

Ω

v⊗n+1
s fsd3v+

∫

Ω

v⊗n
s ∇∇∇v ·

(
qs

ms
(E +v ×B ) fs

)

d3v =
∫

Ω

v⊗n
s Csd3v

(A.8)
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A.2.1. The continuity equation n = 0

Equation A.8 becomes:

∂t

∫

Ω

fsd3v

︸ ︷︷ ︸

≡ ns

+∇∇∇x ·
∫

Ω

v fsd3v

︸ ︷︷ ︸

≡ Γ≡ nsus

+
∫

Ω

∇∇∇v ·
(

qs

ms
(E +v ×B ) fs

)

d3v

︸ ︷︷ ︸

≡ (i)A.9

=
∫

Ω

Csd3v

︸ ︷︷ ︸

≡ Ss

(A.9)

Using as definitions ns the particle density, the momentum Γ≡ nsus , with us the fluid
velocity and the collisional particle source Ss , we only have to calculate (i)A.9:

(i)A.9 = lim
v→+∞

[
qs

ms
(E +v ×B ) fs

]+++v

−v

= 0 (A.10)

by property of fs (exponentially vanishing). This gives the continuity equation:

∂t ns +∇∇∇· (nsus) = Ss (A.11)

A.2.2. The momentum equation n = 1

Equation A.8 becomes:

∂t

∫

Ω

v fsd3v

︸ ︷︷ ︸

≡ nsus

+∇∇∇x ·
∫

Ω

v⊗2 fsd3v

︸ ︷︷ ︸

(i)A.12

+
∫

Ω

v∇∇∇v ·
(

qs

ms
(E +v ×B ) fs

)

d3v

︸ ︷︷ ︸

(ii)A.12

=
∫

Ω

vCsd3v

︸ ︷︷ ︸

(iii)A.12

(A.12)

The velocity particle ws in the moving frame of the fluid us is defined as: ws = v −us

with by definition
∫

Ω
ws fsd3v = 0. Thus we have the following calculations:

(i)A.12 =
∫

Ω

(us +ws)⊗ (us +ws) fsd3v

=
∫

Ω

us ⊗us fsd3v +
∫

Ω

us ⊗ws fsd3v +
∫

Ω

ws ⊗us fsd3v +
∫

Ω

ws ⊗ws fsd3v

︸ ︷︷ ︸

≡Π

tot

s /ms

= us ⊗us

∫

Ω

fsd3v +us ⊗
∫

Ω

ws fsd3v

︸ ︷︷ ︸

= 0

+
∫

Ω

ws fsd3v

︸ ︷︷ ︸

= 0

⊗us +
1

ms
Π

tot

s

= nsus ⊗us +
1

ms
Π

tot

s

with the total pressure tensor Π
tot

s = ps1+Π

clos

s . ps = Tr(Π
tot

s )/3 is the scalar isotropic

pressure and Π

clos

s , the residual stress tensor.
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The second term is calculated with an integration by part and this writes:

(ii)A.12 =
[

v · qs

ms
(E +v ×B ) fs

]∞

−∞
︸ ︷︷ ︸

= 0

−
∫

Ω

qs

ms
(E +v ×B ) fsd3v

=− qs

ms

(

E

∫

Ω

fsd3v +
∫

Ω

v fsd3v ×B

)

=− qs

ms
ns(E +us ×B )

Finally the collisional term gives:

(iii)A.12 =
∫

Ω

(us +ws)Csd3v = us

∫

Ω

Csd3v +
∫

Ω

wsCsd3v

= usSs +
∫

Ω

wsCs =
1

ms
Rs

with Rs ≡ ms

∫

Ω
vsCsd3v the collisional momentum source. Finally the momentum

equation writes:

∂t (msnsus)+∇∇∇·
(

msnsus ⊗us +Π

tot

s

)

= qsns(E +us ×B )+Rs (A.13)

or in non-conservative form:

msns∂t us +msns(us ·∇∇∇)us =−∇∇∇ps −∇∇∇·Π
res

s +qsns(E +us ×B )+Rs (A.14)

where we used ∇∇∇· (msnsus ⊗us) = us∇∇∇· (msnsus)+msns(us ·∇∇∇)us and the continuity
equation A.11

A.2.3. The energy equation n = 2

Equation A.8 becomes:

∂t

∫

Ω

v⊗2 fsd3v

︸ ︷︷ ︸

(i)A.15

+∇∇∇x ·
∫

Ω

v⊗3 fsd3v

︸ ︷︷ ︸

(ii)A.15

+
∫

Ω

v⊗2∇∇∇v ·
(

qs

ms
(E +v ×B ) fs

)

d3v

︸ ︷︷ ︸

(iii)A.15

=
∫

Ω

v⊗2Csd3v

︸ ︷︷ ︸

(iv)A.15
(A.15)

The first term is exactly the same as above (i)A.12, so:

(i)A.15 = nsus ⊗us +
1

ms
Π

tot

s
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The second term follows the same development:

(ii)A.15 =
∫

Ω

(us +ws)⊗3 fsd3v = ·· ·

= nsu⊗3
s + 1

ms

(

Π

tot

s ⊗us +us ⊗Π

tot

s

)

+
∫

Ω

ws ⊗us ⊗ws fsd3v + 2

ms
Q s

with Q s = 1
2 ms

∫

Ω
w⊗3

s fsd3v the pressure flux tensor.
The third term leads to, with the same method as before (integration by part):

(iii)A.15 =−
∫

Ω

(
qs

ms
(E +v ×B ) fs

)

⊗vd3v −
∫

Ω

v ⊗
(

qs

ms
(E +v ×B ) fs

)

d3v = ·· ·

=− qs

ms
ns(E ⊗us +us ⊗E )− 2

ms
W

v×B

s

with the work tensor of the Lorentz force W
v×B

s ≡ 1
2 qs

∫

Ω
((v ×B )⊗v +v ⊗ (v ×B )) fsd3v

Finally, the last collisional term gives:

(iv)A.15 =
∫

Ω

(us +ws)⊗2Csd3v = ·· ·

= 2

ms
H s +

1

ms
(Rs ⊗us +us ⊗Rs)+us ⊗usSs

with the collisional pressure source tensor H s =
∫

Ω
Cs ws ⊗ws fsd3v . It is useful to note

the energy tensor ǫs such that:

nsǫs ≡
1

2
msnsus ⊗us +

1

2
Π

tot

s (A.16)

Leading to the energy tensor equation:

∂t (nsǫs)+∇∇∇·
(

1

2
ns(ǫs ⊗us +us ⊗ǫs)+ 1

2

∫

Ω

ms ws ⊗us ⊗ws fsd3v +Q s

)

= 1

2
qsns(E ⊗us +us ⊗E )+W

v×B

s +H s +
1

2
(Rs ⊗us +us ⊗Rs)+

1

2
msus ⊗usSs (A.17)

This tensor equation gives information on the total energy in each direction, which is
considered mostly useless, so that only the total energy in the system is kept by taking
the trace Tr of the equation above. The total energy is noted E tot

s = 1
2 msns |us |2 + 3

2 ps ,

with the scalar pressure ps = 1
3 Tr

(

Π

tot

s

)

. The collisional energy source is noted QCs =
1
2 ms

∫

Ω
|ws |2Csd3v and the heat flux qs = 1

2 ms

∫

Ω
|ws |2ws fsd3v . The energy equation
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thus writes:

∂t E tot
s +∇∇∇·

(

E tot
s us +us ·Π

tot

s +qs

)

= ns qsE ·us +QCs +Rs ·us +
1

2
ms |us |2Ss (A.18)

or using the continuity and momentum equations, in a non conservative form:

∂t

(
3

2
ps

)

+∇∇∇·
(

3

2
psus

)

+
(

Π

tot

s ·∇∇∇
)

·us +∇∇∇·qs =QCs (A.19)

A.3. Drift approximations

In this section, we show that the diamagnetic drift u∗ can be expressed as u∇B =±2Ts
1
B

in the divergence operator as both divergence are roughly the same.

∇∇∇· (nsu∗) =∇∇∇·
(

nsB ×∇∇∇ps

ns qsB 2

)

=∇∇∇
(

1

B 2

)

· (B ×∇∇∇ps)+ 1

B 2
∇∇∇· (B ×∇∇∇ps)

=∇∇∇
(

1

B 2

)

· (B ×∇∇∇ps)+ 1

B 2



(∇∇∇×B )
︸ ︷︷ ︸

≈0

·∇∇∇ps −B · (∇∇∇×∇∇∇ps)
︸ ︷︷ ︸

≡0





=∇∇∇
(

1

B 2

)

· (B ×∇∇∇ps)

In this work, the electrostatic hypothesis assumes ∇∇∇×B = µ0 j . The current j can
be split into the current generated by the toroidal coils, which is zero in the plasma
by construction (all the current is inside the coils) and the plasma current driven
by transformer effect to generate the poloidal field and local currents circulating in
the edge plasma due to boundary conditions or fluctuations. Due to the resistivity
gradient between the center of the plasma and the edge, it is safe to assume that
most of the plasma current goes through the center of the plasma, i.e. outside the
simulated domain in our simulations. As for the last component, it is neglected in the
electrostatic approach under the low β assumption. Consequently the Ampere’slaw
can be reduced to ∇∇∇×B ≈ 0. Now we calculate the divergence of the curvature drift,
assuming ps = nsTs :

∇∇∇· (nsu∇B ) =∇∇∇·
(

2ps
B ×∇∇∇B

B 3

)

=∇∇∇
(

2ps

B 3

)

· (B ×∇∇∇B)+
(

2ps

B 3

)

∇∇∇· (B ×∇∇∇B)
︸ ︷︷ ︸

≈0 same as ∇∇∇·(B×∇∇∇ps )

= 2

B 3
∇∇∇ps · (B ×∇∇∇B)+2ps

(
1

B 3

)

· (B ×∇∇∇B)

=− 2

B 3
∇∇∇B · (B ×∇∇∇ps)− 6ps

B 4
∇∇∇B · (B ×∇∇∇B)
︸ ︷︷ ︸

≡0

=∇∇∇
(

1

B 2

)

· (B ×∇∇∇ps)
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Thus ∇∇∇· (nsu∗) =∇∇∇· (nsu∇B )
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B. Magnetic geometry: general
concept and TOKAM3X
approach

TOKAM3X is based on a flux surface aligned coordinate system, allowing complex
magnetic configurations. In the following part we describe the mathematical concept
of curvilinear coordinates and set the general approach assuming a full 3D code. Then
we introduce the hypothesis done in TOKAM3X and detail the notation used in the
code. The interested reader can take a look to [27] and [47] for more information.
In the whole part, we use the Einstein’s summation convention:

Ai Bi =
∑

i

Ai Bi

B.1. Curvilinear coordinates

The magnetic field in a tokamak is usually known from experiments and reconstructs
through code such as EFIT. The magnetic field in output is expressed in the cylindrical
coordinates, B = B (R, Z ,φ), where R is the major radius, Z is the vertical axis from the
magnetic axis and φ is the curvilinear coordinate along the toroidal direction.1

Because of the anisotropy of the transport process between parallel (to the magnetic
field) and perpendicular directions, a coordinate system based on the magnetic topol-
ogy is used to be aligned with magnetic flux surfaces. For any orthonormal euclidian
coordinates r = r (x, y, z) (here cylindrical ones for example) in an euclidian orthonor-
mal basis (êx , ê y , êz ), we define a set of three scalar (u1,u2,u3) representing the general
curvilinear coordinates. For any point r we have thus:

r = r (x, y, z) = r (u1,u2,u3)

x = x(u1,u2,u3)

y = y(u1,u2,u3)

z = z(u1,u2,u3)

For every point in 3D space, we define a curve along which two parameters are

1I remind the reader that these three coordinates are all with the dimension of a length [L]: φ is not an
angle!
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constant and the last one is free. These coordinates curves define thus at every point a
set of vectors, tangent to the three coordinates curves.

ei =
∂r

∂ui
i ∈ (1,2,3) (B.1)

where,
∂r

∂ui
= ∂x

∂ui
êx +

∂y

∂ui
ê y +

∂z

∂ui
êz (B.2)

These tangent basis vectors set the covariant basis, that is generally not orthogonal.
We define a dual (or reciprocal) basis as the three curves form three surfaces. The
vector orthogonal to these surfaces are the contravariant basis vectors, defined as:

e i =∇∇∇ui i ∈ (1,2,3) (B.3)

where,

∇∇∇ui = ∂ui

∂x
êx +

∂ui

∂y
ê y +

∂ui

∂z
êz (B.4)

Due to the local construction of those two basis, we define the Jacobian matrix J̄ as:

J̄ =










∂x

∂u1

∂x

∂u2

∂x

∂u3

∂y

∂u1

∂y

∂u2

∂y

∂u3

∂z

∂u1

∂z

∂u2

∂z

∂u3










J̄−1 = J̄












∂u1

∂x

∂u1

∂y

∂u1

∂z
∂u2

∂x

∂u2

∂y

∂u2

∂z
∂u3

∂x

∂u3

∂y

∂u3

∂z












which allows to switch from a classical set of euclidiean coordinates X̄i to a covariant
ones Xi :

X̄i = Ji j X j

or to contravariant ones X i :
X̄ i = J−1

i j X j

We remind the reader that in euclidean basis X̄i = X̄ i . We can define the Jacobian, that
is the determinant of the Jacobian matrix:

J ≡ ∂r

∂ui
· ∂r

∂u j
× ∂r

∂uk
(i , j ,k) in cycl. order

or
J−1 ≡∇∇∇ui ·∇∇∇u j ×∇∇∇uk (i , j ,k) in cycl. order

By construction we have the following properties and definitions (see [27] for more
details).
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B.1.1. Relation covariant and contravariant

ei = J (e j ×ek ) (i , j ,k) in cycl. order

e i = J−1(e j ×ek ) (i , j ,k) in cycl. order

e i ·ei = δi
j

= 1 if i = j

= 0 otherwise

For any vector X , we can express it in covariant or contravariant basis. In convariant
basis, the components are the contravariant ones (upper index) and inversely.

X = Xi e i (Covariant components in contravariant basis)

Xi ≡ X ·ei

X = X i ei (Contravariant components in covariant basis)

X i ≡ X ·e i

B.1.2. Metric tensor

These two basis set a metric defined by:

gi j ≡ ei ·e j = g j i

g i j ≡ e i ·e j = g j i

Computing the metric tensor is not trivial at all but we can show that a local approxi-
mation is:

(gi j ) = J̄ T J̄ locally

(g i j ) = J̄
T
J̄ locally

The following properties can then be infered:

Xi = gi j X j

X i = g i j X j

ei = gi j e j

e i = g i j e j

gi k g k j = δ
j

i

g i k gk j = δi
j

180



B. Magnetic geometry: general concept and TOKAM3X approach–B.2. Magnetic

based coordinate system

And finally as a side note:

g = det
(

gi j

)

= J 2

g−1 = det
(

g i j
)

= J−2

B.1.3. Operator and other useful relations

We can write the differential arc length, area element and volume element as:

dl = J |∇∇∇u j ×∇∇∇uk |dui

dS = J |∇∇∇ui |du j duk

dV = Jdu1du2du3

The gradient, divergence and curl are then defined as:

∇∇∇= e i ∂

∂ui

∇∇∇·X = J−1 ∂

∂ui
(J X i )

∇∇∇×X = J−1
∑

k

(
∂X j

∂ui
− ∂Xi

∂u j

)

ek (i , j ,k) in cycl. order

B.2. Magnetic based coordinate system

Now the definitions and properties for curvilinear coordinates are set. In tokamak,
the existence of flux surfaces is assumed. These surfaces, tangent in every point to
the magnetic field lines, are labelled by a coordinate ψ. The curvilinear coordinate θ∗

varies along magnetic flux surfaces in the poloidal plane. Finally ζ is the curvilinear
coordinate along the toroidal plane.
At this point, TOKAM3X makes some assumptions or uses different notations:

• θ∗ is a poloidal curvilinear angle varying in [0,2π], which is the same as θ in
circular geometry.

• (gi j ) is noted G or gmat in the code and (g i j ) is noted H or hmat in the code.

• ζ is considered to be the same as ϕ the toroidal angle in cylindrical coordinates
(careful: not the cylindrical curvilinear coordinate φ) because tokamaks are
axisymmetrical machines so that the flux surface are not much deformed in the
toroidal direction. We consider ζ to be a local index in the toroidal direction.

• The discretization of the domain transforms (ψ,θ∗,ϕ) basis into (iψ, iθ, iϕ) basis.
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From the last point, a lot of assumption can be made and simplify the metric. The
Jacobian matrix becomes:

J̄ =












∂R

∂iψ

∂R

∂iθ
0

∂Z

∂iψ

∂Z

∂iθ
0

0 0
dφ

diϕ












(B.5)

This structure is correct for 2D magnetic field but wrong in fully 3D magnetic field. Still
we preserved this form for small 3D perturbations on the 2D magnetic field, assuming
that the main 2D structure is still preserved, and thus flux surfaces. In this case, we
have:

eϕ ·eψ = eϕ ·eθ∗ = eϕ ·eψ = eϕ ·eθ∗ = 0 , eϕ×eϕ = 0 (B.6)

This way allows to reduce memory usage and computation time as we can write:

J̄TK3X =







∂R

∂iψ

∂R

∂iθ
∂Z

∂iψ

∂Z

∂iθ







,
dφ

diϕ
= ||eiϕ || =

dφ

dϕ

dϕ

diϕ
= R

dϕ

diϕ
(B.7)

where:
dϕ

diϕ
=

Lϕ

Nϕ
(B.8)

represents the angular extension along the toroidal direction (dphi_diphi in the code).
Thus we have:

J = det
(

J̄
)

= det
(

J̄TK3X
)

R
dϕ

diϕ
= JTK3XR

dϕ

diϕ
(B.9)

Since the magnetic field is divergence-free, it is written:

B =∇∇∇× A (B.10)

with (correct only with curvilinear angles):

A =Ψp∇∇∇ϕ+Ψt∇∇∇θ∗ =Ψp eϕ+Ψt eθ∗ (B.11)

Ψp and Ψt are respectively the poloidal and toroidal flux of magnetic field. A general
(3D) way assume them to be fonction of the three variables (ψ,θ∗,ϕ). But we assume
them to be of the form:

Ψt =Ψ
0
t (ψ,θ∗) (B.12)

Ψp =
(

1+ǫp (ψ,θ∗,ϕ)
)

Ψ
0,3D
p (ψ,ϕ) =

(

1+ǫp (ψ,θ∗,ϕ)
)

Ψ
0
p (ψ)

dϕ

diϕ
(B.13)
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with ||ǫp ||≪ 1 and Ψ
0,3D
p the 3D poloidal flux function can be reduced to a 2D one Ψ

0
p

multiplied by the toroidal angular elongation dϕ/diϕ.
The calculation of the magnetic field gives then, using ∇∇∇×∇∇∇= 0:

B = ∂ψt

∂ψ
J−1eϕ−

(
∂ψp

∂ψ
(1+ǫp )+ψp

∂ǫp

∂ψ

)
dϕ

dϕ
J−1eθ∗ +ψp

∂ǫp

∂θ∗
J−1eψ (B.14)

In TOKAM3X, the basis vectors are normalized (noted êi ) such that:

B = Bϕeϕ+Bθ∗eθ∗ +Bψeψ

= Bϕ||eϕ||
eϕ

||eϕ||
+Bθ∗ ||eθ∗ ||

eθ∗

||eθ∗ ||
+Bψ||eψ||

eψ

||eψ||
= Bϕ√

gϕϕêϕ+Bθ∗pgθ∗θ∗ êθ∗ +Bψ√
gψψêψ

= B torêϕ+B polêθ∗ +B psiêψ

(B.15)

In the former version of TOKAM3X, ǫp = 0 so that Bψ = 0. By choosing Ψ
0
t such that:

∂Ψ0
t

∂ψ
= F J

R
p

gϕϕ

This expression can be check with the Ampère’s law along a magnetic field line (toroidal
direction): ∮

B ·dl = 2πF =µ0Itor

Thus:

F = µ0Itor

2π

B.3. Parallel gradient, drifts velocities and fluxes

This section is memento giving the global expressions of useful quantities in both
mathematical and TOKAM3X notations. Here are the correspondances between
the code (left) and mathematical notations (right). We always assume the Einstein
convention on the mathematical notations.

B tor = B iϕ
√

giϕiϕ

B pol = B iθ
√

giθiθ

B psi = B iψ
√

giψiψ

We note:

b = B

|B |
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with:

B = |B | =
√

gi j B i B j

=
TK3X

(

B tor2 +B pol2 +B polB psi
giθiψ

√
giθiθ giψiψ

+B psiB pol
giψiθ

√
giθiθ giψiψ

+B psi2

)

Let a scalar f , then the parallel gradient is written:

∇∥ f = b ·∇∇∇ f = B i

B

∂ f

∂ui
(B.16)

=
TK3X

B tor

B
√

giϕiϕ

∂ f

∂iϕ
+ B pol

B
p

giθiθ

∂ f

∂iθ
+ B psi

B
√

giψiψ

∂ f

∂iψ
(B.17)

The perpendicular gradient is exactly the gradient minus the parallel gradient along
the magnetic (parallel) direction. We skip this easy step and directly calculate the drift
velocities. Each drift velocity is of the form:

udrift =
B ×∇∇∇ f

B 2

Passing B in the contravariant basis gives an easier computation:

B = (B i ei ·e j )e j = (B i gi j )e j

Then:

udrift =
B i

B 2
gi j e j ×ek ∂ f

∂uk

= B i

JB 2
gi j

∂ f

∂uk
el

For each contravariant component of the drift velocity ui = u · e i /|ei |, we have
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therefore:

uψ = Bψ

JB 2
√

gψψ

(

gψθ∗
∂ f

∂uζ
− gψζ

∂ f

∂uθ∗

)

+ Bθ∗

JB 2
√

gψψ

(

gθ∗θ∗
∂ f

∂uζ
− gθ∗ζ

∂ f

∂uθ∗

)

+ Bζ

JB 2
√

gψψ

(

gζθ∗
∂ f

∂uζ
− gζζ

∂ f

∂uθ∗

)

=
TK3X

B psi

JB 2√giψiψ

√

g iψiψ

(

giψiθ

∂ f

∂uiϕ

)

+ B pol

JB 2pgiθiθ

√

g iψiψ

(

giθiθ

∂ f

∂uiϕ

)

− B tor

JB 2√giφiφ

√

g iψiψ

(

giϕiϕ

∂ f

∂uiθ

)

uθ∗ = Bψ

JB 2
√

g θ∗θ∗

(

gψζ
∂ f

∂uψ
− gψψ

∂ f

∂uζ

)

+ Bθ∗

JB 2
√

g θ∗θ∗

(

gθ∗ζ
∂ f

∂uψ
− gθ∗ψ

∂ f

∂uζ

)

+ Bζ

JB 2
√

g θ∗θ∗

(

gζζ
∂ f

∂uψ
− gζψ

∂ f

∂uζ

)

=
TK3X

− B psi

JB 2√giψiψ

√

g iθiθ

(

giψiψ

∂ f

∂uiϕ

)

− B pol

JB 2pgiθiθ

√

g iθiθ

(

giθiψ

∂ f

∂uiϕ

)

+ B iϕ

JB 2√giϕiϕ

√

g iθiθ

(

giϕiϕ

∂ f

∂uiψ

)
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uζ = Bψ

JB 2
√

g ζζ

(

gψψ
∂ f

∂uθ∗
− gψθ∗

∂ f

∂uψ

)

+ Bθ∗

JB 2
√

g ζζ

(

gθ∗ψ
∂ f

∂uθ∗
− gθ∗θ∗

∂ f

∂uψ

)

+ Bζ

JB 2
√

g ζζ

(

gζψ
∂ f

∂uθ∗
− gζθ∗

∂ f

∂uψ

)

=
TK3X

B psi

JB 2√giψiψ

√

g iϕiϕ

(

giψiψ

∂ f

∂uiθ
− giψiθ

∂ f

∂uiψ

)

+ B pol

JB 2pgiθiθ

√

g iϕiϕ

(

giθiψ

∂ f

∂uiθ
− giθiθ

∂ f

∂uiψ

)
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