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Résumé
L’optimisation et le contrôle des plasmas de tokamak demande de prédire le transport de ma-

tière et de chaleur de manière à la fois efficace et fidèle. Déclenchée par des instabilités cinétiques,
la turbulence sature par l’interaction de plusieurs échelles. Depuis la petite échelle des tourbillons,
jusqu’à la rétro-action sur les profils, en passant par la génération spontanée d’écoulements zonaux
et par le transit balistique d’avalanches, tout conspire et s’auto-organise. Des codes de simula-
tion « premiers principes » comme GYSELA résolvent l’évolution de la fonction de distribution
gyro-cinétique. Cette voie a beau être fidèle, elle est insuffisamment efficace. Il faut réduire la des-
cription. La suppression des dimensions de vitesse intervient à travers le problème de la fermeture
non-collisionelle des équations fluides. Les approches antérieures sont étendues et généralisées en
faisant appel à la littérature d’analyse des systèmes dynamiques et de théorie du contrôle. En par-
ticulier, nous appliquons les méthodes de réduction par troncature équilibrée et par interpolation
rationnelle au modèle Vlasov–Poisson unidimensionnel linéaire. La méthode d’interpolation se dis-
tingue par son faible coût et sa facilité d’utilisation, ouvrant des perspectives pour la modélisation
de phénomènes plus complexes.

La théorie quasi-linéaire est un passage obligé dans l’abstraction des effets turbulents. Les ré-
sultats de simulations non-linéaire par GYSELA sont analysés afin d’identifier la robustesse des
propriétés quasi-linéaires des filaments turbulents. Les résultats quasi-linéaires clés sont qualitative-
ment validés. Les vitesses et formes des filaments sont inférés algorithmiquement, et correspondent
aux vitesses de groupe et aux modes propres attendus. Toutefois, le chaînon manquant qu’est le
spectre du potentiel électrique turbulent doit être spécifié. Un modèle de cinétique d’ondes est
établi pour établir les conséquences du déplacement des filaments turbulents sur la génération
des écoulements zonaux en géométrie toroidales. Il apparaît que la vitesse de groupe radiale des
filaments turbulents peut résonner avec la vitesse de phase des modes acoustiques géodésiques
(GAM). Apparaissent alors des dynamiques couplées instables munies d’une propagation radiale
balistique. Celles-ci partagent plusieurs propriétés avec les avalanches observées dans les simula-
tions non-linéaires.

Abstract
Optimal control of tokamak plasmas requires efficient and accurate prediction of heat and matter
transport. Growing from kinetic resonant instabilities, turbulence saturates by involving many
scales, from the small vortex up to the back-reaction on the density and temperature profiles. Self-
organisation processes are of particular interest, encompassing spontaneous zonal flow generation
and transport by avalanche. “First principle” numerical simulation codes like GYSELA allow
studying the gyro-kinetic evolution of the particle distribution function. The large model size and
cost prompts the need for reduction.

Removing velocity dimensions is the so-called collisionless closure problem for fluid equations.
Earlier approaches are extended and generalised by calling to the dynamical systems and optimal
control literature. In particular, we apply the balanced truncation and rational interpolation to
the one-dimensional linear Vlasov–Poisson problem. The interpolation method features a cheap
and versatile formulation, opening the door to wider use for more complex phenomena.

Quasi-linear theory is the reference model for abstracting away turbulent effects. The GYSELA
three-dimensional output is analysed to estimate the robustness of linear properties in turbulent
filaments. Key quasi-linear quantities carry over to the non-linear regime. Effective velocities
and shape of turbulent structures are computed, and match expected group velocities and linear
eigenmode. Nevertheless, the turbulent potential spectrum must be specified externally to quasi-
linear models. Consequences of the turbulent filament motion on the dynamics of the spectrum
are investigated using a wave–kinetic model in toroidal geometry. When coupled to the axisym-
metric Vlasov equations, the radial filament group velocity resonates to the radial phase velocity
of geodesic acoustic modes. Results in radially travelling unstable linear solutions that share many
properties of turbulent avalanches seen in numerical simulations.
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Introduction

The energy transition is a challenge for this generation. Global warming restructures ecosystems,
floods and droughts upset vital resources, and the geopolitical balance are challenged. Since the
first oil crisis, an ambitious energy efficiency public policy has been in place in France. This is a
long-term endeavour, requiring changing the models of energy production and consumption. The
national research strategy has identified clean energy as a central pillar. Fusion research aims at
providing a way out, as a “safe, non-carbon emitting and virtually limitless energy”.

Operating a sustainable tokamak requires heating a plasma at temperatures above 150 millions
degrees. This energy has to be provided up front, for fusion processes to kick in. The profiles of
density and temperature from the tokamak’s core up to its edge need to keep sufficiently peaked,
keeping the hot matter aways from the energy sink that are the walls. In consequence, the balance
is set: the input energy shall not exceed the output. How to maximise the ratio between energy
output and input? An answer to this question is provided by Lawson’s criterion (Lawson, 1957).
We have confine the heat inside the device for as long as possible. The longer the heat stays inside
the plasma core before coming to crash against the device walls, the less energy is required to
access the desired temperature.

But heat transport in tokamaks turbulent. And nobody understands turbulence, much less
controls it. From the small vortex scale up to the back-reaction on the density and temperature
profiles, zonal flows are spontaneously generated, and avalanches cross the lines. Physicists and
engineers have been working on both practical and fundamental aspects of turbulent transport for
a few centuries now. The problem is perpetually beyond reach. What can be done to overcome
this state of facts? We can live with it and hope for the best. We can hammer it with numerical
simulations. We can stare and hopefully come up with some insight. The very nature of turbulents
asserts itself in its complexity. First-principle simulations allow to witness some complexity. They
unlock “God mode” vision, alas without the required God mind. The scientist is provided with an
unwieldy puzzle, limited only by his grasping of his own creation.

Simulating tokamak core turbulence usually requires a kinetic description of the phenomena
(Dimits et al., 2000). This corresponds to solving the Boltzmann equation for the dynamics of
the particle distribution function, coupled to Maxwell’s equations for the electromagnetic field.
This description aims to be faithful to the physical phenomena, at the cost of computational and
cognitive time. Furthermore, six-dimensional kinetic models are still out of reach for modern
supercomputers. Predicting and controlling a fusion device will require a much lighter model,
prompting the need to reduce the dynamics.

From there, many attempts models have been developped. The minimal —and most pervasive—
is the gyro-kinetic reduction, presented chapter 2. It leverages the strong background magnetic
field, and averages out the fast cyclotron motion of charged particles. Codes such as GYSELA solve
for the distribution function of particles over a five-dimensional phase space, the cyclotron phase
omitted. A five-dimensional phase space being yet too large, a more drastic reduction is required.
An entire hierarchy of models has been devised by the scientific community, removing dimension
after dimension, until reaching scaling laws. In this manuscript, we will discuss two landmarks
in this effort: the removal of the velocity direction, going from the kinetic to the fluid family of
models; the removal of the small turbulent scales using generalised quasi-linear formulations. The
two processes focus respectively on the two crucial phenomena that are the wave–particle resonance
and the non-linear turbulent advection.

The typical method to obtain fluid equations from the Boltzmann equation is integration against
moments. The resulting equations are the so-called moment hierarchy, where the evolution of each
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moment depends on the value of higher-order moments. Some kind of truncation is necessary to
obtain a finite-dimensional system. The closure rule specifying the truncated moments plays a cru-
cial part in the accessible dynamics. Most importantly, the emulation of wave–particle resonances
like Landau damping requires a so-called collisionless closure (Hammett & Perkins, 1990). Many
have been proposed in the community, founded on various physical considerations.

Among the scientific community, a large body of work is devoted to the mathematical problem of
model order reduction. The starting point is an open control system: an excitating low-dimensional
input forces the evolution of a larger-dimensional system, which is observed using a reduced amount
of outputs. Then, how to most efficiently reproduce the input–output relation, without resorting
to simulations of the full system? Many methods have been proposed in the linear case. In chapter
3, we chose to apply two of them. Balanced truncation is rooted in control theory, dynamical sub-
spaces by reachability and observability, then truncating on these grounds. Rational interpolation
attempts to directly formulate a reduced transfer function from the analytically computed kinetic
transfer function. Both resulting models will be numerically compared to earlier closure proposals.

The other curse of tokamak modelling lies in the non-linear advection fueling turbulent pro-
cesses. Thin magnetic-field-aligned filaments of electric potential grow inside the plasma, and act
as vortices mixing it. As these filaments typically correspond to toroidally asymmetric components,
so the problem is double: how to stop describing the toroidal direction, without a catastrophic
mis-estimation of turbulence? The unavoidable method is the so-called quasi-linear model. It
consists in approximating the turbulent filament with the linear unstable eigenmode from which
they grow. The problem of transport is then focused on the saturation of turbulence, how much
energy it stores. The quasi-linear model has been the subject of heated debated (Adam et al.,
1979; Elskens & Escande, 2002; Diamond et al., 2010; Besse et al., 2011), concerning its limits of
validity. Meanwhile, we would like to decypher the self-organisation of the plasma, separating the
transport through avalanche processes from diffusive mixing. In this vein, a natural question is
whether avalanches are composed of a single turbulent filament or of an assemblage. In addition,
can quasi-linear models recover such avalanching?

To this end, we perform a detailed analysis of the turbulent filaments from the GYSELA non-
linear simulations in chapter 4 and 5. Notably, we leverage the available three-dimensional outputs
to access a key linear estimate: the magnitude ratio and phase shift between the pressure and po-
tential fluctuations, to compare it to the output of the quasi-linear code QuaLiKiz. Avalanches
being recognised by their motion, we design, implement and operatre an image registration al-
gorithm to compute effective velocities and shape of turbulent filaments. The results are compared
to expected group velocities and mode structure from linear analysis. These velocities are then
used to estimate a Lagrangian correlation time of the filaments. Kubo numbers constructed from
this correlation time are of a few units: the non-linear regime is on par with the stochastic trans-
port regime. The linear properties of the filaments appear to be robust, even in this regime, but
the integrated heat fluxes depart from QuaLiKiz’s saturation rule.

As filaments retain their linear properties, we turn ourselves to the turbulent potential spec-
trum. Numerical analysis suggests the spectrum’s fluctuations to be responsible for most of the
fluctuations of the heat fluxin GYSELA data. In chapter 6, the dynamics of this spectrum are
investigated using a wave–kinetic formulation. This approach is the natural continuation of the
quasi-linear model: it considers the statistics of turbulent filament, viewed as pseudo-particles
with a motion dictated by their linear dispersion relation. Coupling the wave–kinetic dynamics to
axisymmetric Vlasov dynamics reveals the possibility of a resonance between the wave radial group
velocity and the geodesic–acoustic modes. The resulting unstable mode is radially travelling, and
features similarity with observed properties of turbulent avalanches.

Finally, chapter 7 details the extension of GYSELA to electromagnetic fluctuations. The de-
termining equations are derived, along with the adopted implementation strategy. Test simulations
are presented.
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Chapter 1

Plasmas, tokamaks, and their
modelling

Revelant simulations of heat transport in tokamaks are kinetic and non-linear. Such numerical
works make equations hard to think about, and heavy to simulate. We need to reduce them in
some way, make them more amenable to numerical and analytical work.

1.1 Fusion, plasmas, and tokamaks
Most of the material in this chapter is considered fundamental knowledge in the community. Prac-
tical references include (Rax, 2005; Wesson, 2011), and will not be cited in-text.

1.1.1 Statement of the problem
Fusion is a nuclear reaction: two light atomic nuclei come together, and fuse. The mass of the
reaction products is lower than the one of the reactants, the excess energy is transformed into
kinetic energy of the products. Achieving it is subtle: atomic nuclei have a positive electric charge,
and repel each another. In order to approach each other enough, the atomic nuclei need to overcome
this repulsion by collide at a sufficient velocity. In a gas, the typical velocity of particles is measured
using the temperature: in order to achieve fusion, we need a hot enough gas. The most accessible
reaction is the deuterium–tritium fusion, which requires temperature of the order of 150 million
degrees, ten times the temperature in the core of the Sun. To achieve fusion, we need to create
a hot enough gas to trigger reactions. This heating costs energy, the very thing we are trying to
produce. In order to keep have a net production, we need to keep this heat confined somehow.

Actually, stars cheat. They are massive and have time before them. The confinement is
guaranteed by gravity, and they can make do with horribly slow reactions. On Earth, gravitational
confinement is not an option, and we need to produce energy at a reasonable pace.

At the large temperature required for fusion to take place, particles collisions are more than
sufficient to tear the electrons away from their atom. Results a bath of ions and electrons moving
around, and getting forcefully separated at each encounter. This state of matter is called a plasma.
As the ions and electrons are untied, the overall matter is responsive to electromagnetic fields.

This property can be used for confinement, opening the field of “magnetically confined fusion”.
Instead of using the plasma’s own weight to press on it as stars do, we can use magnetic pressure.
Charged particles in a magnetic field follow the cyclotronic motion, turning around the magnetic
field lines, while traveling freely along the magnetic direction. To avoid leaks, the magnetic field
lines must close on themselves, and the fusion devices must have a torus shape. Coils generate a
toroidal magnetic field inside the chamber where the plasma is confined (figure 1.1). The design
is simple to state: heat the core of the plasma near 150 million degrees to trigger fusion reactions,
and keep the plasma cool (less than 5 000 °C) in its edge, near the device walls, to avoid melting
them. The problem is to do this in an economical way, consuming less energy than is output by

11



12 Plasmas, tokamaks, and their modelling

the fusion reactions. Energetic efficiency happens by maximising Lawson’s triple product nTτE of
density, temperature and confinement time (Lawson, 1957).

Figure 1.1: Schematic picture of a tokamak, featuring the plasma (pink). The different sets of
coils generate the background toroidal magnetic field and control the position of the plasma.
Image: EuroFusion.

1.1.2 Dynamics of hot plasmas

As the plasma is constituted by disordered charged particles, it generates its own electromagnetic
fields. When positive and negative charges get too far away, an electric field pulls them back
together. The charges oscillate around each other in their organisational attempt. The information
is carried by Langmuir waves, oscillating at the plasma frequency ωp =

√
nee2/ε0me. The typical

allowed distance is the Debye length λD = vth,e/ωp. (e, me, ne and vth,e are the electron charge,
mass, density and thermal velocity. ε0 is the vacuum permittivity.) For larger scales, the plasma
self-organises so as to screen naked charges, and appears globally neutral. This time and space
scales are very small, of the order of λD ∼ 2µm and ωp/2π ∼ 90 GHz for typical fusion plasmas.

The strong magnetic field ~B dictates a preferred direction for the particle motion. Along the
field, they roam almost free. In the other directions, the Larmor motion makes them loop around
the field at the cyclotron frequency ωc = eB/m, with a typical radius around of the Larmor
radius ρ = v⊥/ωc. The current loop produces a magnetic moment µ = mv2

⊥/2B, with v⊥ the
particle perpendicular velocity. For electrons, ωce/2π ∼ 140 GHz and ρe ∼ 50µm. For ions,
ωci/2π ∼ 80 MHz, and ρi ∼ 2 mm. Those frequency ranges are used to heat the plasma using
resonant cyclotron waves.

The macroscopic scales are the plasma minor radius a, of a few metres, and the major radius
R about three times larger. Following the direction of the magnetic field, an electron at thermal
velocity turns around the torus at 500 kHz, and an ion at 10 kHz. The inhomogeneous electromag-
netic field warps Larmor current loops so that their magnetic moment µ is conserved. Particles
move faster on the one side, slower on the other, and drift from one field line to the next in average.
The electric field ~E induces the E × B drift 1.1. The inhomogeneous magnetic field induces the
curvature and “gradB” drifts 1.2. Let v|| be the velocity parallel to the magnetic field, v⊥ the
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Figure 1.2: Coordinate system and used notations inside the tokamak.

particle velocity perpendicular to the magnetic field,

~vE =
~E × ~B

B2 (1.1)

~vD =
mv2
||

eB
[~∇×~b]⊥ + mv2

⊥
e

~B × ~∇B
B3 (1.2)

Because of the vertical magnetic drift, ions move downwards, and electron upwards. To avoid
a charge separation, the magnetic field lines need to be helical, instead of purely toroidal, and
assemble into nested closed magnetic surfaces. The particles then split their time above and below
the plasma core, and on average stay on their magnetic surface. The helicity of the magnetic field
is called the safety factor, q = rBϕ/RBθ with Bθ,ϕ the poloidal and toroidal components of the
magnetic field. There are two ways to achieve that: generating the helical field directly using the
coils, making a stellarator device; or by inducing an electrical current inside the plasma itself,
making a tokamak. We will focus on the latter.

For toroidally symmetric electromagnetic fields, the motion of the particles admits three in-
variants: their energy E = mv2

||/2 + µB, their magnetic moment µ, and their toroidal momentum
Pϕ = mRv||Bϕ/B. As a consequence, the motion is integrable: the deviation due to the drifts
is bounded, and particles are confined. Particles in the tokamak observe two typical categories
of motion. Passing particles run freely along the magnetic field, and make the full run around
the poloidal direction. Trapped particles do not have enough energy, and bounce back pushed by
magnetic pressure (figure 1.3) Because of the magnetic drift, their orbits have finite extent around
a reference magnetic surface. Because the magnetic field is sheared, the followed direction changes
with their position. As a consequence, the magnetic drift induces a toroidal motion. A toroidal
drift for passing particles, a precession for trapped ones. This toroidal motion is much slower, and
can be estimated to turn around the tokamak at around 0.8 kHz. A more precise description of
the particle trajectory will be given in paragraph 2.1.

1.1.3 The transport problem
Deconfinement happens whenever one of the three invariants is lost. The transport problem involves
understanding how much it happens: how much heat crosses each magnetic surface. Two processes
can deconfine them: collisions (changing µ) and turbulence (changing E and Pϕ). After a collision,
the involved particles have redistributed their energy and momentum. This redistribution modifies
their trajectory, swaps between passing and trapped motions, and change their reference field line.
This process is the basis for the so-called neoclassical transport. Neoclassical transport is predicted
by a mature and well tested theory (Helander & Sigmar, 2005).

The other process is the generation of electromagnetic perturbations. While the magnetic drift
effect has been mitigated by the helical magnetic field, it has not been eliminated, and pursues its
dark design. Particles on the low-field side of the tokamak are still pushed outwards. In addition,
the pressure gradient also pushes outwards. This creates the ground for the interchange instability.
The interchange instability develops filaments aligned along the magnetic field, of a few Larmor



14 Plasmas, tokamaks, and their modelling

Figure 1.3: Schématic view of the trajectory of a trapped particle in the tokamak, featuring the
cyclotron motion, the poloidal bouncing and the toroidal precession. The safety factor q is very
low for image clarity. Image: EuroFusion.

radii wide in the perpendicular directions, and grows at the curvature drift time scale. Those
filaments create a local E × B drift, which tends to mix the plasma. Heat gets transported out.
The mechanism of the ion-temperature-gradient mode is discussed paragraph 2.2.

Many other unstable mechanisms exist in the tokamak. The helicity of the magnetic field lines
requires the presence of a current running toroidally inside the plasma. Some field lines close
on themselves, and may trap current inside of them, which would start running helically instead
of toroidally. By attracting neighbouring currents, this current sheet can grow. This results in a
magnetic perturbation. This perturbation can for instance move the plasma out of its flux surfaces.
Another possibility is the creation of “magnetic islands”, inside which the plasma is mixed, and
heat gets transported. Those effects will be discussed in paragraph 2.3 and chapter 7.

The behaviour of infinitesimal perturbations is dictated by the equilibrium magnetic field and
properties of the laminar plasma. When these perturbations grow, this linearity hypothesis is no
longer valid, and the perturbations influence and couple each another. While the linear regime is
understood and efficiently computed by numerical codes, most traditional tools break down in this
non-linear regime. Most importantly, the saturation of those perturbations precisely comes from
such non-linear behaviours.

The generic behaviour of an electromagnetic perturbation is to get damped by the Landau
damping effect (Elskens & Escande, 2002). Electromagnetic perturbations exchange energy back
and forth with particles. When there is a resonance, particles closest to this resonance are most
involved. When a slow particle is accelerated, get even more involved. Conversely, decelerated
slow particles get exonerated. Conversely for fast particles. As there are more slow particles than
fast particles, the wave attracts more energy sinks than energy sources, and gets damped. This
effect will be discussed more precisely in chapter 3. An electromagnetic perturbation is unstable
when the particles give it energy, instead of depleting it. The drive for many instabilities is mixed
between a reactive component and a kinetic component (Melrose, 1989; Garbet, 2001). In the
former case, the thermodynamical plasma exchanges energy with the perturbation. In the latter,
only particular family of particles resonates with the perturbation and feeds it, while the rest of
the plasma remains passive.

Because of the very low collisionality, turbulence in the core tokamak plasma is kinetic. As a
consequence, many modelling attempts based on fluid equations miss important features (Dimits
et al., 2000): they consider the plasma as a Maxwellian, in a thermodynamical limit. Modern core
plasma simulations require kinetic formulations. Because of the increased dimension of the phase
space, the simulation cost explodes. This is a challenge for practical applications of numerical
works for day-to-day operations of fusion devices.

1.2 Model order reduction
The prediction of tokamak performances faces two issues: the model size —because of the kinetic
description—, and its complexity —because of the non-linearity and the geometry. Both trigger
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the need for a reduced description of the system, reducing both the dimension and the subtlety of
the dynamics. Reduced models aim at finding the optimal tradeoff between accuracy and rapidity.

1.2.1 The gyro-kinetic model
Before constructing a reduced model, we need a full model. The six-dimensional dynamics is
expensive to compute, both by the required time stepping, and by the size of the six-dimensional
phase space. In order to perform tractable simulations, we need a minimal reduction step. At the
time scales of turbulence, a few kiloHertz, the precision of the cyclotron motion is not relevant.
This motion is very fast even in comparison to the transit along magnetic field lines. The gyro-
kinetic model aims at abstracting out this fast Larmor motion. The motion of the particle is
replaced by the motion of the centre of the loop ~X and its radius. The position of the particle on
the loop is removed from the description. As the gyro-centre moves by the parallel transit along
the magnetic field, the simulation time steps can be much larger.

This gyro-centre reduction relies on the conservation of the magnetic moment µ (equation 1.3)
of the cyclotron loop, related to its radius. The conservation of µ allows to further simplify the
model, as the kinetic dynamics for different values of µ are independent.

µ = mv2
⊥

2B (1.3)

with v⊥ the velocity of the particle in its cyclotron motion. Several subtleties arise when taking
full account of the perturbations to the electromagnetic fields. Those will be detailed in chapter
2. The dynamics of the gyro-centre distribution function F( ~X, v||, µ) is given by the Boltzmann
equation

∂tF + div( ~̇XF) + ∂v||(v̇||F) = Collisions + Sources (1.4)

where v|| is the velocity in the direction parallel to the magnetic field. ~̇X is the sum of the parallel
velocity, the curvature drift and the E × B drift. v̇|| is the sum of the “magnetic mirror” force
due to the conservation of µ, and the parallel Coulomb force. The collision term contains the
effect of all the short-distance interaction between particles, taking place below the Debye scale.
The sources correspond to the matter and heat feeding terms. This Vlasov equation is coupled to
the quasi-neutrality equation 1.5 (often called Poisson equation for its form). Ne and Ni are the
electron and ion densities. The right-hand-side, the ion density, contains two terms. The integral
is the density of gyro-centres. The divergence is the so-called polarisation density, accounting for
the deformation of the Larmor loops by the electric field.

Ne =
∫
J [F] 2πB

m
dµdv|| + div

(
mNi

B2
~∇⊥φ

)
(1.5)

where J is the gyro-average operator, taking into account the finite Larmor radius.

1.2.2 GYSELA
Even the gyro-kinetic dynamics remain intractable for by-hand computations. In order to simulate
the gyro-kinetic equations, we will use the GYSELA code (Grandgirard et al., 2016). GYSELA is
a semi-Lagrangian non-linear global flux-driven full-f electrostatic gyro-kinetic code for tokamak
turbulence simulations.

Backward Semi-Lagrangian The semi-Lagrangian scheme exploits the conservation of the dis-
tribution function along the trajectories of particles. For each arrival phase space position
( ~X, v||, µ), the particle’s trajectory is computed backwards, to find their position at an earlier
time. The value of the latter distribution function at the arrival time is obtained by inter-
polating the earlier distribution at the particles’ origin position. Alternative schemes are
the forwards semi-Lagrangian scheme, computing the particles trajectories forward in time
and performing a projection (Crouseilles et al., 2009); the Eulerian scheme, directly using
discrete derivatives in equation 1.4 (Candy & Waltz, 2003b; Peeters et al., 2009; Görler et al.,
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2011; Idomura, 2016); and the PIC scheme, tracking the position of macro-particles from the
beginning of time (Bottino et al., 2010). The semi-Lagrangian scheme benefits from good
stability properties, and is notably free of tight CFL conditions bounding the allowed time
steps in Eulerian schemes.

Electrostatic Only the evolution of the electrostatic potential φ is computed, and with it the
fluctuations of the electric field. This approximation is acceptable in the plasma core, where
turbulence is expected to have a small magnetic component. However, magnetic fluctuations
reveal particularly important at the edge because of larger gradients.

Non-linear The trajectories of the particles contain the entirety of the E × B drift, without a
splitting between equilibrium flow and perturbations. Most concurrent codes have both the
linear and the non-linear versions. By construction, GYSELA does not separate equilibrium
from fluctuations, so has no linear version.

Full-f The complete distribution function is simulated. This is contrary to delta-f codes, which
simulate the departure from a reference distribution function. GYSELA’s description avoids
prescribing an expected shape to the distribution function F and allows for arbitrary de-
viation from the reference solution (except for the ion polarisation, but this limitation is
planned for removal).

Global The core plasma is simulated in its entirety, from the very core to the wall. This is in
opposition to local codes which only simulate a reduced set of magnetic surfaces by usually
focusing on so-called flux tubes. This distinction will be discussed paragraph 4.1.4.

Flux-driven The forcing of the dynamics is done using a heat source at near the core, letting it be
transported, and removing the excess at the edge. As such, the values of the thermodynamical
gradients evolve self-consistently, instead of being constrained in the neighbourhood of a
chosen profile in gradient-driven codes. This approach aims at reproducing the experimental
set-up where all the quantities evolve on an equal footing.

Simulations using GYSELA cost 2 millions CPU hours for approximately 1 millisecond in real
time. This cost is highly inadequate for integrated modelling of a fusion device. An additional
model reduction is required. The goal is twofold: faster simulations using a smaller simulation
state space, and a more interpretable model, by reducing the subtlety of the non-linearity.

1.2.3 Closure problem for reduction of kinetic systems
Consider the Boltzmann equation 1.4 on a distribution function F(r, θ, ϕ, v||, µ). Most of the
numerical cost comes from the dimension of the problem: five variables, with a grid for each one.
This information is too abundant, and the interest lies on its first few statistical moments: density
N , parallel momentum NV||, parallel and perpendicular pressures P||, P⊥, flux tensor Q... with a
catch: the dynamics of any such cumulant depends on the next one. We get an infinite hierarchy
of equations, and need to close it. For instance, the so-called gyro-fluid hierarchy is given by

∂tN + div
(
NV||~b+N

~b× ~∇φ
B

−
mNV 2

|| + P|| + P⊥

eB

~b× ~∇B
B

)
= Particle source (1.6)

∂t(NV||) + div
(
NV 2
||
~b+ P||~b+NV||

~b× ~∇φ
B

)

−div
(
mNV 3

|| + 3P||V|| +Q||,|| +Q||,⊥

eB

~b× ~∇B
B

)
= Torque source (1.7)

A truncation needs to be done somehow. The definition of the truncated moments is subtle: an
arbitrary choice of moments does not necessarily produce a positive distribution function (Lukacs,
1970, thm. 7.3.5). The choice of the closure subtly influences the way the distribution function
evolves. Several propositions exist in the literature, formulating different gyro-fluid models (Briz-
ard, 1992; Madsen, 2013). The traditional fluid models suppose the distribution remains close to a
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Maxwellian: a quasi-normal distribution function or a generalisation of it. More elaborate models
aim at choosing the right closure so as to recover the collisionless dynamics (Hammett & Perkins,
1990; Chang & Callen, 1992; Mattor & Parker, 1997; Smith, 1997; Sarazin et al., 2009). We will
discuss this collisionless closure problem in chapter 3, and will propose a general method based on
dynamical system theory.

1.2.4 Closure problem for non-linear dynamics
The kinetic and the non-linear problem share a key feature: both can be framed as an infinite
hierarchy of systems. In the kinetic case, this is the fluid moment hierarchy. In the non-linear
case, the equivalent curse is the Hopf distribution (Hopf, 1952) stating the probability of plasma
states. The non-linear system is generally chaotic, meaning that repeated experiments lead to
different realisations of turbulence. The exact properties of the distribution function up to the
Debye length are irrelevant, we perform an average over experiments. Instead of averaging on
velocity like the kinetic to fluid reduction, we average on ignored space directions, and on all
experiments that are indistinguishable below a certain scale. Again, a truncation needs to be
done. The mean value gives us the equation for the profiles 1.8. Closing after it requires modelling
the turbulent flux term in equation 1.8, akin to Reynolds-averaged models. Several solutions
exist, we mention direct-interaction approximation (Yakhot & Orszag, 1986; Krommes, 2002) and
quasi-linear theories (Adam et al., 1979).

∂t〈F〉+ div(〈 ~̇X〉〈F〉) + ∂v||(〈v̇||〉〈F〉)︸ ︷︷ ︸
Laminar average flow

+ div〈δ ~̇XδF〉+ ∂v||〈δv̇||δF〉︸ ︷︷ ︸
Turbulent fluxes

= Sources + Collisions (1.8)

where the 〈·〉 denotes this average on experiments, and δF = F − 〈F〉.
The idea behind quasi-linear theory is to consider a turbulence of interacting waves. The full

gyro-kinetic problem can be linearised around the average state F. The solution to the linearised
problem are electromagnetic waves, propagating in the plasma as a dielectric medium. Those
waves involve a fluctuation δ ~̇X of the E × B drift and δF of the distribution function. Their
product contributes to the turbulent flux. However, because the problem has been linearised, the
information on the wave amplitude is lost. There is no information on how unstable waves stop
growing and saturate. This has to be closed using a saturation rule, essentially an approximation
of the spectrum of turbulent electromagnetic fluctuations. The quasi-linear approximation and its
application in tokamak plasmas will be discussed in chapter 4.

This turbulent spectrum is directly related to the quadratic average 〈δF2〉. Its evolution de-
pends on some cubic term. The latter can be closed by zeroing it out, giving second cumulant
models (Farrell & Ioannou, 2007; Marston et al., 2008; Srinivasan & Young, 2012), or by relating
it to the spectrum, giving quasi-normal models (Benney & Saffman, 1966; Newell, 1968; Briard,
2017). As in the kinetic case, great care has to be taken to ensure the model is realisable (Pope,
2000): the ignored details should not correspond to nonphysical states. Chapter 5 discusses the
kinematic phenomenology of turbulent structures, and their motion inside the plasma. The mod-
elling choice is reminiscent of the wave-kinetic system, but for self-consistent non-linear turbulent
structures. As the turbulent fluctuation are modified by the variations of the background flows,
an analytic exploration of the coupling of a wave-kinetic model to the background plasma will be
attempted chapter 6.

1.2.5 Beyond the GYSELA model
GYSELA simulates the behaviour of the turbulence in an electrostatic limit with limite electron
dynamics. When studying turbulent transport in the core, we choose plasma without any violent
magneto-hydro-dynamic instabilities. The micro-instabilities contitutive of turbulence have a small
magnetic component (Garbet, 2001), and all works well. This causes difficulties in two cases.
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Limited electron dynamics reduce the access to relevant turbulent micro-instabilities, like the
trapped electron modes (TEM) and the electron temperature gradient modes (ETG). Furthermore,
the transport of density is severely limited to ensure quasi-neutrality. In order to consistently model
those effects, we need fully kinetic electrons. Electrostatic simulations with fully kinetic electrons
feature spurious unphysical modes, like the ωH mode (Lee, 1986). Simulating perturbations of the
magnetic field transforms those modes into lower-frequency and more sensible Alven modes.

The current trend is to investigate the effects of turbulence towards the plasma edge. Farther
from the plasma core, the magnetic component of the turbulent fluctuations increase. The relevant
parameter is the normalised β parameter (Maget, 2009), which scales like the inverse density
gradient. In a tokamak pedestal, the density gradient is stronger, and magnetic fluctuations are
significant. In order to increase the relevance of GYSELA for edge turbulence modelling, the
extension of the code to handle magnetic fluctuations will be discussed chapter 7.

1.3 Outline of the thesis

Chapter 2 reviews the derivation of the electrostatic and electromagnetic gyro-kinetic models. Their
principal conservation properties are emphasised. A summary derivation of the ITG instability is
provided, providing a justification of the main results.

Chapter 3 reviews the phenomenology of Landau damping, and its connection to the collision-
less closure problem. The problem of the fluid closure for the collisionless linear Vlasov system
is investigated using a perspective from control theory and model order reduction. Two methods
are borrowed from model order reduction literature, namely balanced truncation and interpolat-
ory model reduction. Their principal results are stated and briefly justified. The methods are
applied to the 1D–1V Vlasov–Poisson problem. The first few reduction singular values from bal-
anced truncation are well-separated, indicating potentially low-dimensional dynamics. To avoid
large-dimensional numerical work, a reduced model is formulated using rational interpolation,
generalising the seminal work from Hammett and Perkins. The resulting models are found to
outperform the state-of-the-art models for thermal phase velocities. Thanks to the versatility of
this formulation, an application to toroidal gyro-kinetic dynamics is discussed. The contents of
this chapter have been submitted as (Gillot et al., 2020c).

Chapter 4 reviews the assumptions behind the quasi-linear model for plasma turbulence. Both
quasi-linear assumptions and predictions are confronted to the data output by non-linear GYSELA
simulations. The output of the quasilinear integrated modelling code QuaLiKiz is compared to the
GYSELA heat fluxes. An article stating the results of this chapter has been submitted as (Gillot
et al., 2020b).

In chapter 5, the motion and shape of turbulent filaments in GYSELA output are computed.
The general algorithm is stated, using non-linear image registration as its base. The results are
compared to expected properties of the ITG mode. An article stating the results of this chapter is
in preparation.

In chapter 6, the interplay between toroidal drift wave turbulence and tokamak profiles is
investigated using a wave–kinetic description. The coupled system is used to investigate the inter-
play between marginally stable toroidal drift-wave turbulence and geodesic-acoustic modes (GAM).
The coupled system is found to be unstable. Notably, the most unstable mode corresponds to the
resonance between the turbulent wave radial group velocity and the GAM phase velocity. For a
low-field-side ballooned drift wave growth, a background flow shear breaks the symmetry between
inwards- and outwards-travelling instabilities. This mechanism is generic and displays many of the
features expected for avalanches in developed tokamak turbulence. The contents of this chapter
have been submitted as (Gillot et al., 2020a).

Chapter 7 discusses the extension of GYSELA to support electromagnetic fluctuations. The
founding equations are quoted from chapter 2. The numerical and data processing methods in
GYSELA are presented, along with the required modifications. Preliminary simulations results
are presented.
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1.4 Conventions
Velocities will be denoted using a v. Angular velocities will be noted u. Frequencies will be denoted
ω. The vector components will be denoted using co-variant and contra-variant bases

Ai = ~A · ~∇xi

Ai = ~A · ~∂xi

The normalised vectors are

êr = ~∇r = ~∂r

êθ = r~∇θ = 1
r
~∂θ

êϕ = R~∇ϕ = 1
R
~∂ϕ
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Chapter 2

Gyrokinetic model for the plasma
core

Core plasma turbulence can only be approached through simulations. Past numerical evidence
has shown the inadequacy of fluid simulations (Dimits et al., 2000), leaving the burden to full-
blown kinetic simulations. Simulation of six-dimensional dynamics only today peeps around the
corner (Brochard et al., 2020), and remains computationally challenging. While not mandatory
for core turbulence, this more complete model may become required at the edge where the gyro-
kinetic ordering may break down. Nevertheless, simulations of long time periods require a minimal
reduction step.

2.1 Gyrokinetic particle dynamics
The presence of a strong magnetic field in a tokamak binds charged particle to their Larmor motion.
Particles loop tightly around magnetic field lines at the cyclotron frequency. These loops almost
freely travel along the field lines, and slowly drift from them. Abstracting away this gyration
—confusing different particles on the same loop— produces the gyro-kinetic model (Sugama, 2000;
Brizard & Hahm, 2007).

2.1.1 Equations of motion
We consider particle of mass m and charge e, in an ambient magnetic field deriving from the static
vector potential ~A. The dynamics of the particle is given by the Lagrangian

L = m~v · ~̇x+ e ~A(~x) · ~̇x− mv2

2 (2.1)

where ~x is the position of the particle, and ~v its velocity. We expand the position of the particle
as a centre of gyration ~X(t) and a perpendicular excursion ~ρ(t). The velocity is expanded into its
parallel and perpendicular components as ~v = mv||~b + ~π. For a smooth enough magnetic field,
if ρi∇ lnB � 1, the coupling to the magnetic field can be expanded in powers ~ρ. We parameter
the Larmor motion by the Larmor radius ρ and the gyro-phase ξ. The computations are done
appendix A. The perturbed Lagrangian becomes

L ≈ mv||~b · ~̇X + e ~A( ~X) · ~̇X − m

2 v
2
||

+ eBρ2

2 ξ̇ − eB2ρ2

2m
+ e

2
~∇× [ ~B × ~ρ]× ~ρ · ~̇X + O(ρ3)

The first line corresponds to the free streaming dynamics of the guiding centre ~X. The second line
corresponds to the Larmor motion. The third line is a correction to the the vector potential ~A due

21



22 Gyrokinetic model for the plasma core

to the inhomogeneity of the magnetic field at the Larmor scale. As a consequence, the axis of the
Larmor loop is shifted by ~∇× [~∇× [ ~B × ~ρ] × ~ρ]. This correction to ~B is of order ρ2

i∇2 lnB. We
chose to neglect it for simplicity.

With this simplification, the system is independent of the gyro-phase ξ. From Lagrange’s
equations of motion, this implies the conservation of the magnetic momentum

µ = ∂L

∂ξ̇
= eBρ2

2 (2.2)

This conservation is of practical use for gyro-kinetic codes. Ignoring the gyro-phase removes the
fastest dynamic in the problem. This effectively softens the numerical constraint for simulation
codes. Leveraging this conservation, the equations of motion can be written in a compact form as

L = mv||~b · ~̇X + e ~A · ~̇X −H (2.3)

H = m

2 v
2
|| + µB (2.4)

B∗||
~̇X = 1

m

∂H

∂v||
~B∗ +

~b

e
×∇H

B∗||v̇|| = − ~B∗ · ~∇H

~B∗ = ~B +
mv||

e
~∇×~b

B∗|| = ~b · ~B∗

H is the Hamiltonian of the gyro-kinetic motion. The Lagrangian principle guarantees the conser-
vation of the phase-space volume element B∗||. The value eB∗||/m itself corresponds to a vorticity
carried by each gyro-centre, counting both the Larmor loop’s vorticity eB/m and a moving frame
effect due to magnetic curvature.

2.1.2 Unperturbed dynamics
In a first approximation, the magnetic field inside a tokamak is invariant in the toroidal direction.
At equilibrium, the electromagnetic field is stationary. Thanks to Noether’s theorem, to these
invariances are associated conserved quantities: the toroidal angular momentum Pϕ and the energy
E, in addition to the conservation of µ.

Pϕ = mv||bϕ + eAϕ (2.5)

E = m

2 v
2
|| + µB (2.6)

where we denote the toroidal co-variant component bϕ = ~b · ~∂ϕ = R~b · êϕ. As a consequence, the
motion of a particle in such a magnetic field is integrable. Both conservations imply the shape of
the motion on the poloidal plane. Depending on Pϕ, E, the poloidal angle θ, and the sign of v||,
we can compute the radial position r and the parallel velocity v|| by solving the non-linear system
2.5–2.6. This is equivalent to finding the level lines r(θ) of the following formulation of the energy

E = (Pϕ − eAϕ(r))2

2mb2ϕ(r, θ) + µB(r, θ) (2.7)

As the magnetic field varies along the poloidal direction, two classes of particles emerge. If E <
µBHFS, the particle does not have enough energy to go all the way to the high-field-side (HFS). It
is said trapped. Otherwise, it is said passing. The dynamics can then be computed through the
ordinary differential system

v(θ) = Pϕ − eAϕ(r(θ))
mbϕ(r, θ)

B∗||
dθ
dt = v||(θ)B∗,θ(r(θ), θ) + µ

er(θ)R∂rB(r(θ), θ)

B∗||
dϕ
dt = v||(θ)B∗,ϕ(r(θ), θ)− µ

eq(r(θ))R2 ∂rB(r(θ), θ)
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where q = Bϕ/Bθ is the safety factor. Sample trajectories in the poloidal plane are shown figure
2.1. Passing particles exhibit a quasi-circular motion, shifted horizontally by δR = (~vD×~b)qR/v||.
This shift can be understood exactly the same way as the E × B drift. A force averaged on a
rotation motion yields a drift perpendicular to both the force and the rotation axis. Similarly, a
vertical drift averaged on a rotation (around the ~∇ϕ axis) yields an horizontal shift.
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Figure 2.1: Sample of guiding-centre trajectories in the poloidal plane, computed as level lines
of equation 2.7 for the GYSELA magnetic equilibrium. Co- and counter-passing particles are
defined by positive (resp. negative) sign of the parallel velocity. Trapped particles are defined
by the non-solubility of equation 2.7 at θ = π.

2.1.3 Finite Larmor radius effects
The conservation of the magnetic momentum is broken when introducing a fluctuating electrostatic
potential φ. The guiding-centre feels the electric field at the position of the particle. The potential
may vary at sub-Larmor scale, so the Taylor expansion we used for the background magnetic field
is invalid. However, for turbulence, the typical time scales are much slower than the cyclotron
frequency, ω � ωci. In this limit, the potential is quasi-static during a Larmor loop. The Larmor
motion does not describe perfect circles, but rather level lines of φ. As a result, the magnetic
momentum µ is no longer constant. We work around the problem by modifying µ to label deformed
Larmor loops instead of circles. This is usually done perturbatively using the so-called gyro-
kinetic pull-back transform (Brizard & Hahm, 2007). In the fully non-linear setting, the change of
variable can be computed by homogenisation of the Hamiltonian (Lions et al., 1987). The exact
Larmor dynamics of a particle at energy H is given by solving the Hamilton–Jacobi equation for
a generating function S(ξ)

H = m

2 v
2
|| +

(
µ+ e

m

∂S

∂ξ

)
B(X) + eφ

(
~X + ~ρ

(
ξ, µ = µ+ e

m

∂S

∂ξ

))
where H is the energy of the particle with average magnetic momentum µ, and ξ the gyro-phase.
This dynamics does not necessarily correspond to a loop. However, by constraining S(ξ) to be
periodic, both S and H are uniquely determined for each phase-space position ( ~X, v||, µ). The
function H( ~X, v||, µ) can now serve as an effective Hamiltonian for the Larmor motion. For small
perturbations of the potential, it can be approximated at second order as

H ≈ m

2 v
2
|| + µB + eJ [φ]− e2

2B∂µ[J [φ2]− J [φ]2] (2.8)

The different terms correspond to statistical cumulants of the values of φ along the Larmor loop.
The first-order correction is the gyro-averaged potential J [φ], stating the guiding-centre feels the
electric field at all the similarly-centred particles. The second-order correction is the electric
potential energy contained inside the Larmor loop, yielding the so-called polarisation effect. In the
following, we will only use this gyro-averaged formulation, and drop the bar notation.
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2.1.4 Coupling to the Poisson equation

Given the Lagrangian for each particle, we can construct the action principle for the full distribution
function. For a finite number of particles, we can construct an action principle in the electrostatic
regime as (see paragraph 2.1.6 for the electromagnetic case)

S[Zi, φ] =
∑
i

[
mv||~b · ~̇X + e ~A · ~̇X − m

2 v
2
|| − µB − eJ [φ] + e2

2B∂µ[J [φ2]− J [φ]2]
]

(2.9)

+
∫
ε0

2 [~∇φ]2d3x

where Zi = ( ~Xi, vi, µi) is the phase space position of the particle i. The first line corresponds to
the Lagrangians of all the particles. The second line is the Lagrangian of the electrostatic field. The
electromagnetic case will be treated paragraph 2.1.6. The sum can be carried out to the continuum
limit using the Euler–Poincaré formalism (Arnold, 1966; Ebin & Marsden, 1970; Holm et al., 1998;
Arnold & Khesin, 1999). Using an action principle allows to derive easily conserved quantities, but
also to consistently apply approximations to keep them conserved (Scott & Smirnov, 2010). For the
simple case of a kinetic system, the procedure is as follows (Marsden & Weinstein, 1981)(Cendra
et al., 1998; Squire et al., 2013). First, we relabel the particles from the integer i to their position
in phase space at t = 0. This allows to write state of the system as a mapping Z0 7→ Z from the
phase space onto itself. We introduce the distribution function at t = 0 as F0(Z0)

S[Z(Z0), φ] =
∫ [

mv||~b · ~̇X + e ~A · ~̇X − m

2 v
2
|| − µB − eJ [φ] + e2

2B∂µ[J [φ2]− J [φ]2]
]
F0dZ0(2.10)

+
∫
ε0

2 [~∇φ]2d3~x

Until this point, the Euler–Lagrange equations keep the same form, stating the stationarity of S
with respect to variations of the mapping Z0 7→ Z. From there, we can introduce the current
distribution function F(t,Z(t,Z0)) = F0(Z0), which verifies by construction the Vlasov equation

∂tF + divZ(ŻF) = 0 (2.11)

The integral can be recast as an integral on the current distribution function F by introducing a
Lagrange multiplier to enforce the Vlasov equation. The only remaining dynamical variable is the
5D particle velocity field Ż(Z).

S[Ż(Z), φ, λ,F] =
∫ [

mv||~b · ~̇X + e ~A · ~̇X − m

2 v
2
|| − µB − eJ [φ] + e2

2B∂µ[J [φ2]− J [φ]2]
]
FdZdt

+
∫

[∂tλ+ Ż · ∂Zλ]FdZdt

+
∫
ε0

2 [~∇φ]2d3~xdt

In this form, the Vlasov equation is given by the variations with respect to λ. The velocity Ż is
given by the usual Euler–Lagrange equations for the particle Lagrangian, which we define as the
integrand against F. The bracket in the second integral is a total derivative, so λ does not appear
in the particle motion. In the following, this λ integral will be implied.

Using this action principle, we can derive easily conserved quantities using Noether’s theorem.
Direct manipulation of the action allows to access energetically consistent approximate theories
(Scott & Smirnov, 2010). For instance, the often-used Boussinesq approximation is accessible by
integrating the polarisation term e2

2B∂µ[J [φ2]− J [φ]2] against a reference distribution function F0
instead of the current one. In the long wavelength limit, the double gyro-average can be approx-
imated as a squared gradient, giving the usual polarisation term. The combined approximations
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give the simpler action principle

S[Ż(Z), φ,F] =
∫ [

mv||~b · ~̇X + e ~A · ~̇X − m

2 v
2
|| − µB − eJ [φ]

]
FdZdt (2.12)

+
∫

m

2B2 [~∇⊥φ]2N0d3 ~Xdt

+
∫
ε0

2 [~∇φ]2d3~xdt

where N0 is the reference density. The polarisation term accounts for the energy stored in the
deformation of the Larmor loops. In the long-wavelength limit, it reduces to the kinetic energy
of the E ×B velocity. Comparing the polarisation and self-energy terms (respectively lines 2 and
3 of equation 2.12), their ratio is of the order of ρ2

i /λ
2
D with λD the Debye length. For tokamak

plasma, ρi is much larger than λD, allowing for the so-called Darwin approximation: we neglect
the field self-energy. This replaces the Poisson equation by a quasi-neutrality equation. In the
parallel direction, this approximation is less justified. It is still usually carried out for numerical
simplicity, removing fast parallel Langmuir waves from the problem. With these approximations,
the Poisson equation is written as

−div⊥
(
mN0

B2 ∇⊥φ
)

=
∑
s

es

∫
J†[Fs]dv||dµ (2.13)

where s denotes the species. J† is adjoint of the gyro-average operator: while J averages on the
particles associated with a gyro-centre, J† averages on the gyro-centres which own a particle. While
the two operations are mathematically different, they are often conflated because the difference is
of order (ρi/R)4. The Laplace operator on the left-hand-side of 2.13 corresponds to the polarisation
density. Because the Larmor loops are deformed, particles are not evenly distributed on those, and
create this additional charge density. Thanks to the invariance of B∗||, the Vlasov equation is often
formulated using the distribution function F = F/2πB∗||. In that case, the Vlasov–Poisson system
becomes

∂tFs + Ż · ∇ZFs = 0 (2.14)

−div⊥
(
mN0

B2 ∇⊥φ
)

= 2π
∑
s

es

∫
J†[FsB∗||,s]dv||dµ (2.15)

The Vlasov equation has now become an advection equation, and can be solved using the method
of characteristics, as does GYSELA.

2.1.5 Treatment of the electrons
Solving the quasi-neutrality equation 2.13 requires several distribution functions, one for each
species, including the electrons. Obviously, the electron dynamics can be solved using in the gyro-
kinetic framework all the way. However, this is numerically delicate. An electron is 1 800 times
lighter than a proton. At the same energy, it moves 43 times faster in the parallel direction, with
a 43 times smaller Larmor radius. Turbulent simulations need to resolve the Larmor radius, the
requirements in the transverse direction are multiplied by this amount squared. The time step is
also much smaller, to account for the increased parallel velocity.

Furthermore, bare kinetic electrons in a gyro-kinetic simulation come with the so-called ωH
mode (Lee, 1986; Idomura, 2016). In an electromagnetic setting, this mode becomes an Alfvén
wave (Scott, 1997). Four possibilities exist to avoid these difficulties: (1) don’t simulate the
electrons, (2) simulate only the trapped electrons, (3) simulate full electrons and filter the spurious
modes, (4) simulate full electrons with magnetic perturbations. Case (1), (2) and (3) are already
handled in GYSELA (Grandgirard et al., 2016, 2019). Chapter 7 discusses the extension to case
(4).

Not simulating the electron dynamics requires to model the electron response in an adiabatic
manner. Electrons move along the field line much faster than ions, they homogenise also much
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faster. The dynamics of the electrons can be replaced by a thermodynamical response on each
magnetic surface. The electron density can be written as

Ne = 〈Ni〉FS exp
(
−eφ− 〈φ〉FS

Te

)
≈ N0

(
1− eφ− 〈φ〉FS

Te

)
(2.16)

where 〈·〉FS denotes the average on the magnetic surface, and Te the electron temperature. Plugging
this response in the action principle 2.12 gives the adiabatic electron action

S[Ż(Z), φ] =
∫ [

mv||~b · ~̇X + e ~A · ~̇X − m

2 v
2
|| − µB − eJ [φ]

]
FdZdt (2.17)

+
∫

e2

2Te
(φ− 〈φ〉FS)2N0d3 ~Xdt

+
∫

m

2B2 [~∇⊥φ]2N0d3 ~Xdt

The associated Poisson equation becomes

−div⊥
(
mN0

B2 ∇⊥φ
)

+ e2N0

Te
(φ− 〈φ〉FS) =

∑
s

es

∫
J†[Fs]dv||dµ

2.1.6 Coupling to the Ampère equation
The above derivation gives the so-called electrostatic gyro-kinetic theory. In general, the magnetic
field is perturbed too. Perturbations to the magnetic field can give rise to the zoo of magneto-hydro-
dynamic (MHD) instabilities. Macroscopic instabilities, with the notable internal kink (Bussac
et al., 1975) and tearing (Drake & Lee, 1977) modes, can have a very strong effect on the confine-
ment. In addition, microscopic magnetic instabilities, such as the micro-tearing mode, are likely
to be excited in the plasma edge due to strong density gradients.

Let the total magnetic vector potential ~A(~x) = ~A0(~x) + ~A1(~x) decompose into the background
time-intependent potential and a fluctuating component. The particle Lagrangian 2.1 becomes

L = m~v · ~̇x+ e ~A0(~x) · ~̇x+ e ~A1(~x) · ~̇x− mv2

2 − eφ(~x) (2.18)

= m~u · ~̇x+ e ~A0(~x) · ~̇x− [m~u− e ~A1(~x)]2

2m − eφ(~x) (2.19)

where ~v is the particle velocity and m~u = m~v + e ~A1(~x) a partial momentum. The same com-
putations as in paragraph 2.1.1 can be re-done. The vector ~u is split into a parallel u|| and a
perpendicular part ~u⊥. The position of the particle is decomposed into the position of the gyro-
centre and the Larmor radius ~x = ~X + ~ρ. The resulting Lagrangian is be written as earlier, with
a modified Hamiltonian

L = mu||~b · ~̇X + e ~A0 · ~̇X −H

H =
mu2
||

2 + µB( ~X) + eφ(~x) (2.20)

+ eu||A1,||( ~X + ~ρ) + e~u⊥ · ~A1( ~X + ~ρ) + e2

2m
~A2

1( ~X + ~ρ)

The first line of the Hamiltonian 2.20 has the same form as in the electrostatic case. The second
line contains three coupling terms. The first is to the parallel magnetic flux at the position of the
particle ψ(~x) = A1,||(~x). This term is responsible for the bending of the magnetic field-lines. As
such, it allows for ideal magneto-hydro-dynamic behaviours like kink and tearing modes.

The perpendicular coupling term can be expanded for a small Larmor radius.

~u⊥ · ~A1,⊥( ~X + ~ρ) ≈ ~u⊥ · ~A1,⊥( ~X) + (~ρ · ~∇) ~A1,⊥ · ~u⊥ + O(ρ3)

≈ ρu⊥
2 B1,||( ~X) + O(ρ4)
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where the second line corresponds to an average on the gyro-phase. This term couples to the fluc-
tuations of the parallel component of the magnetic field B1,||. It is related to magnetic compression
effect and to fast magnetosonic waves. We will neglect it in the following. Likewise, we neglect the
non-parallel components in the ponderomotive potential ~A2

1.
In this description, mu|| is the parallel guiding-centre momentum. It is not the parallel guiding-

centre velocity because it still includes the parallel part of the vector potential fluctuations ψ. The
gyro-averaging procedure can be carried out at order 2 in the fluctuations, giving the gyro-centre
Hamiltonian (Brizard & Hahm, 2007)

H ≈ m

2 u
2 + µB + eJ

[
φ− uψ + e

2mψ2
]
− e2

2B∂µ[J [(φ− uψ)2]− J [φ− uψ]2]

Once again, we place ourselves in the Boussinesq approximation and in the long-wavelength limit
J ≈ 1− ρ2

i k
2
⊥/2. The action principle 2.12 becomes (see appendix B)

S[Ż(Z), φ, ψ] =
∫ [

mv~b · ~̇X + e ~A · ~̇X − m

2 v
2 − µB − eJ [φ− uψ]

]
FdZ (2.21)

+
∫

e2

2m |ψ|
2N0d3 ~X

+
∫

m

2B2 [~∇⊥φ− V||~∇⊥ψ]2N0d3 ~X

+
∫

T||

2B2 |~∇⊥ψ|
2N0d3 ~X

−
∫ 1

2µ0
| ~B + ~∇× (ψ~b)|2d3~x

as earlier, we have neglected the electric permeability term. We have introduced the fluid velocity
V|| of our species and the parallel temperature T||. The parallel velocity introduces a coupling
between the Ampère and Poisson equation, which complicates the problem significantly. In order
to remove it, we assume the plasma to be globally at rest

0 =
∑

species
mN0V||

In addition, we simplify the magnetic self-energy term ~∇ × (ψ~b) ≈ ~b × ~∇ψ. The dropped term
ψ~∇×~b runs as the inverse magnetic shear length L−1

s , while the transverse gradient is of order of
the electron skin depth (Porcelli, 1991). The field equations reduce to

−div⊥

( ∑
species

mN0

B2 ∇⊥φ

)
=

∑
species

es

∫
J†[Fs]dudµ (2.22)

−µ−1
0 div⊥((1− β|| + β⊥)∇⊥ψ) +

∑
species

N0e
2

m
ψ =

∑
species

es

∫
uJ†[Fs]dudµ− J||,eq (2.23)

β|| = µ0

B2

∑
species

mN0,sV
2
||,s + N0,sT||,s (2.24)

The Poisson equation keeps exactly the same form as for the electrostatic case. In the Ampèreequa-
tion 2.23, the equilibrium current appears in the right-hand side to account for the equilibrium
magnetic field. In its left-hand side, the magnetic permeability is modified by a factor (1− β)−1.
We choose to neglect this modification, since we care about plasmas in the low-β limit, β . 1%.
The second term is responsible for the magnetic skin effect, making the typical length scale in the
Ampère equation the electron skin depth δe = ρe/

√
β where ρe is the electron Larmor radius. The
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motion equations write

B∗||
~̇X = v ~B∗ +~b× ~∇

[
µB

e
+ J [φ− uψ]

]
mB∗||u̇ = − ~B∗ · ~∇[µB + eJ [φ− uψ]]

v = u− e

m
J [ψ]

~B∗ = ~B + mu

e
∇×~b

The added terms correspond to the bending of the field line due to the changed magnetic config-
uration. Numerically, they are of the same form as the E × B velocity. We have introduced the
material parallel velocity v —as opposed to the momentum mu— because it dictates the motion
in the physical space. However, v is an unpractical variable for simulation: it is accelerated by the
electric field, which contains the term ∂tJ [ψ].

2.1.7 Conservation laws
The symmetries of the action principle given equation 2.21 guarantees conservations thanks to
Noether’s theorem (Brizard & Tronko, 2011; Abiteboul et al., 2011; Abiteboul, 2012). The system
admits three symmetric coordinates: time, the toroidal angle, and the gyro-phase. To these sym-
metries, we associate the conservation of energy, toroidal momentum, and magnetic momentum.
The expressions here are very close to those from (Abiteboul, 2012). The conservation equations
can be written as follows

∂tY + div ΓrY = 0

with Y = {E,N,M,P} the energy, density, magnetic moment and toroidal momentum, and ΓrY
the associated radial flux. The energy and its flux can be written as

E =
∑
s

∫ [
mu2

2 + µB + eJ [φ− uψ]
]
FsdudµdSFS

−
∑
s

∫
m

2B2 [~∇⊥φ− V||~∇⊥ψ]2N0,sdSFS

+
∫
e2ψ2

2m NsdSFS +
∫ [~∇⊥ψ]2

2µ0
dSFS

ΓrE =
∑
s

∫ [
mu2

2 + µB − eJ [φ− uψ]
]
ṙFsdudµdSFS

with SFS = Rdθdϕ the flux-surface surface element. The expression of the energy deserves a few
comments. It is not obviously positive, we re-express it using the particle velocity v instead of its
momentum, and using the Poisson equation for the polarisation energy

E =
∑
s

∫ [
m
(
u− e

mJ [ψ]
)2

2 + µB

]
FsdudµdSFS +

∫ [~∇⊥ψ]2

2µ0
dSFS

+
∑
s

∫
m

2B2 [~∇⊥φ]2N0,sdSFS

+
∑
s

e2

2m

[∫
ψ2NsdSFS −

∫
J [ψ]2FdudµdSFS

]
The first two terms correspond to the thermal energy in the plasma and the usual magnetic self-
energy. The third term corresponds to the polarisation energy. In our ordering, it is the kinetic
energy stored as E×B velocity. The last term is due to our treatment of the ponderomotive force,
introducing an additional magnetisation of the plasma. This is a small correction to the magnetic
self-energy (in β⊥ = µ0P⊥/B

2 ≈ β � 1).
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The conservation of the number of particles does not come from a space-time symmetry, but
rather from a relabelling symmetry. The model is invariant by relabelling the particles inside each
specie. This enforces the conservation of the number of particles for each specie independently.
The associated particle fluxes write

Ns =
∫

FsdudµdSFS

ΓrN,s =
∫
ṙFsdudµdSFS

The conservation of the electrical charge Q =
∑
esNs comes directly from the one of particles.

A consequence of the invariance of µ for each particle, the total magnetic momentum M of the
plasma is conserved and convected by the dynamics

M =
∑
s

∫
µFsdudµdSFS

ΓrM =
∑
s

∫
µṙFsdudµdSFS

The invariance by toroidal rotation implies the conservation of the toroidal momentum P. This
invariance is related to charge transport properties: the second term in P is related to an average
position of the charge density. A change in the distribution of charges implies a parallel acceleration
of the plasma.

P =
∑
s

∫
[mubϕ + eA0,ϕ]FsdudµdSFS = mNV|| + QAϕ

ΓrP =
∑
s

∫
[mubϕ + eA0,ϕ]ṙFsdudµdSFS

In addition, the relabelling symmetry provides insight into the role of the B∗|| term. Using Ertel’s
theorem as stated in (Cotter & Holm, 2012), the natural conserved vorticity 2-form for the gyro-
kinetic equation is given by B∗ = ~B∗ · d~S + m

e du∧ b. By taking the component in the direction of
the magnetic field, we obtain the vorticity around the parallel direction B∗||. It contains 2 terms:
the vorticity due to the Larmor loop motion, and the vorticity due to the motion along an helical
field line.
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2.2 Linear kinetic interchange instability
The principal mechanism for turbulence in core tokamak plasmas is due to the interchange in-
stability. This instability is due to the direction of the magnetic drift in the low-field side of the
tokamak. Consider the poloidal plane, with the magnetic field pointing towards the reader. Let a
localised positive charge in that region. It creates a locally positive electrostatic potential, and a
clockwise E × B flow around it. This flow pushes dense matter from the core above our charge,
and pull rarefied matter from the edge below it. The magnetic drift pushes the ions downwards
from the new denser region, and the electrons upwards from the sparser zone. As currents are un-
balanced, our initial positive charge finds itself enhanced. The cooperation between the magnetic
velocity and the distribution function gradient destabilises the system.

This was the so-called “reactive” interchange instability. In a kinetic setting, all particles do not
follow the same trajectories, and are not eligible to this behaviour. More generally, the potential
perturbation may have a toroidal phase velocity. Because of the toroidal drift of particles with
the curvature drift, some categories of particles may resonate with this perturbation. Close to
this resonant velocity, more energetic particles drift faster, less energetic particles drift slower.
Because of the temperature gradient, there are more faster particles towards the core. Those
are pushed above the potential perturbation, and descend into it. Conversely, the edge has more
slower particles, which are pulled below the perturbation, and ascend. In that case, the cooperation
is between the magnetic velocity and the derivative of distribution function with respect to the
toroidal drift velocity. This involves a different trade off between temperature and density gradients.

We consider an ambient Maxwellian plasma with distribution function F, density N, no mean
velocity, and temperature T . We suppose a non-zero axisymmetric potential Φ generating an
equilibrium E × B flow ~vE . A small perturbation eJ [φ] to the Hamiltonian leads to a small
perturbation f to the distribution function. Both are related by the linearised Vlasov equation

Fd3v = F
2π
m
B∗||dv||dµ = N

T 3/2
√

2π/m
exp

(
−
m
2 v

2
|| + µB

T

)
B∗||dv||dµ

(∂t + v||∇|| + ~vE · ~∇+ ~vD · ~∇)g = eF

T
(∂t + ~vE · ~∇+ u∗∂ϕ)J [φ] (2.25)

with g = f + eφF/T . The partial derivatives on the left-hand side are taken at constant energy
E = mv2

||/2 + µB and magnetic moment µ. A derivation of this equation can be found appendix
C. We introduce the following notations

~vD · ~∇ = −uDT
mv2
|| + µB

qT
(cos θ~∂θ + sin θr~∂r)

u∗ = − qT

eBr
∂r lnF = uDT

(
AN +AT

(
m
2 v

2
|| + µB

T
− 3

2

))

uTR = 1
qR0

√
T

m

uDT = qT

eBR0r
AN = −R∂r lnN

AT = −R∂r lnT

AN and AT are the normalised density and temperature logarithmic gradients. The zonal flow
poloidal advection is denoted uE . uTR and uDT are respectively the poloidal transit frequency and
the toroidal curvature angular drift. In order to perform the computations, we place ourselves in
toroidal Fourier space with mode number n > 0. We introduce the toroidal angular phase velocity
c. We expand the fields in mixed Fourier space in the radial direction

φ(t, r, θ, ϕ) = <
∑
n>0

φn(θ, ζ) exp(in(ϕ+ κr − ct)) (2.26)
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With this representation, θ a coordinate along the magnetic field line, while ϕ labels the field line
inside a flux surface. ζ is the so-called ballooning angle. The partial derivatives become

∂r → inκ

∂θ → −inq + ∂θ

∇|| = ∂ϕ
R

+ ∂θ
qR

→ ∂θ
qR

2.2.1 Particle dynamics
For simplicity, we will only discuss strongly passing particles. We introduce the variable w to write
the distribution function, and the pitch-angle variable λ as

λ = µB0

E

w = sign(v||)
√
E

T

F
2π
m
B∗||dv||dµ ≈ N exp

(
−E
T

)
B0dv||dµ

T 3/2
√

2π/m

= N exp(−w2) w2dwdλ
√
π
√

1− λB
2B0

The Vlasov equation 2.25 becomes(
v||

qR
+ uE + uDT cos θ

)
∂θgn − in

(
c+ quE + uDTw

2
(

2− λB

B0

)
cos θ − κr sin θ)

)
gn

= −ineF
T

(
c+ quE − uDT

(
AN +AT

(
w2 − 3

2

)))
J [φn](2.27)

with s the magnetic shear. Since the parallel velocity is large compared to the poloidal drifts, we
choose to neglect these in front of the θ derivative. The first parenthesis reduces to the poloidal
transit v||/qR. This is equivalent to neglecting “orbit squeezing” effects (Landreman & Catto,
2010), the deformation of the orbits due to the E ×B velocity. This equation is solvable formally
using Duhamel’s formula, as done in (Garbet, 2001, eq. 98).

gn(θ) = −ineF
T

∫ θ

±∞
ein[Λ(θ)−Λ(θ′)] c+ quE − uDT

(
AN +AT

(
w2 − 3

2
))

v||
qR + uE + uD cos θ

J [φn](θ′)dθ′(2.28)

∂θΛ = −q(r(θ)) + c+ quE(r(θ))
v||(θ)/qR

−
uDTw

2
(

2− λB
B0

)
cos θ

v||(θ)/qR
+ κ

dr(θ)
dθ (2.29)

The phase function Λ contains the information on the toroidal and poloidal dynamics of particles.
The lower bound for the integral in equation 2.28 is chosen by causality. We only integrate on
poloidal positions that were visited earlier by the particle: from −∞× sign(w) to θ. The functions
r(θ) and v||(θ) are the radial position and parallel velocity of the particle, taking into account the
radial extent δr(θ) of the orbit. Both can be obtained by solving respectively the conservation of
the energy and toroidal momentum, as done paragraph 2.1.2.

v||

qR
= wuTR

√
2R0

R

√
1− λB

B0
(2.30)

δr(θ) = w
√

2uDT

uTR

R

q

√
1− λB

B0
− r∗ (2.31)

with r∗ a reference radial position. We note that this radial extent δr(θ) has a non-zero temporal
average. This is due to the asymmetry of the excursion. This implies the relevant magnetic surface
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for the computation of the toroidal drift is not r but is shifted by an amount proportionate to w.
The choice of the reference radial position is subtle, see for instance the discussion in (Brochard,
2020, Annex B).

For an analytically tractable solution to the perturbed distribution function, we need to simplify
the expression of Λ. The denominator contains implicit dependencies on θ through the parallel
velocity v|| and the radial position r. The zonal flow velocity on the reference flux-surface can be
thought as a toroidal reference frame effect. Since the zonal flow depends on the radial position,
and the particles have a radial excursion, the zonal flow acts on the instability through its shear γE .
Meanwhile, the zonal flow velocity itself acts as a solid-body rotation of the reference flux-surface.
To simplify the notations, we set ourselves in this reference frame, and will swap back later. For
simplicity, we neglect the effect of the zonal flow shear on the shape of the particle trajectories,
and will only consider the reference-frame effect in paragraph 2.2.3.

We approximate the right-hand-side of equation 2.29 by its average and first harmonic in θ.
The averages correspond to the characteristic frequencies for the motion of the particles. Those
can be computed exactly without zonal flows.

∂θΛ ≈ −q + c− Ω3

Ω2
+ · · · (2.32)

Ω2 =
〈

1
v||/qR

〉−1

θ

= wuTRΩb(λ, ε) (2.33)

Ω3 = Ω2

〈
uDTw

2
(

1− λB
2B0

)
cos θ

v||/qR
+ q′δr

〉
θ

= w2uDTΩd(λ, ε) (2.34)

The averages 〈·〉θ are done on the poloidal trip of the particle. For passing particles, this is an
average on the full-trip around the poloidal section. For trapped particles, it averages the back
and forth motion between the bounce angles θbounce = ± cos−1 (λ−1

ε

)
. Ω2 is the characteristic

frequency for poloidal trip. Ω3 corresponds to the drift in the transverse ϕ− qθ direction. Ωb and
Ωd are dimensionless functions depending on the pitch angle λ, the radial position ε = r/R and
the magnetic shear s. The next-order correction is given by the first-harmonic in θ

∂θΛ = c− Ω3

Ω2
(2.35)

− 2 cos θ
〈
uDTw

2
(

1− λB
2B0

)
wuTR

√
2
√

1− λB
B0

(cos θ + sθ sin θ) cos θ
〉
θ

+ 2sζ sin θ
〈
uDTw

2
(

1− λB
2B0

)
wuTR

√
2
√

1− λB
B0

sin2 θ

〉
θ

∂θΛ ≈ c− w2uDTΩ̃d
wuTRΩb

(2.36)

Ω̃d = Ωd(1 + αc cos θ − sζαs sin θ) (2.37)
with αc and αs positive geometrical factors depending on λ, ε and s. The expressions are computed
for deeply passing particles λ → 0 in the large aspect ratio limit ε → 0. In this limit, the transit
and drift frequencies computed by (Zarzoso et al., 2019) become

Ωb(λ) ≈
√

1− λ+ O(ε2)
Ωd(λ) ≈ (2− λ)s+ O(λε)

The toroidal drift is due to the radial extent of the orbits. The magnetic field being sheared,
the innermost and outermost points of the trajectory feel different magnetic field direction. On
average, the orbit does not quite close on itself, and drifts in the toroidal direction. Similarly, the
E ×B shear modifies the drift velocity Ω3, by changing the poloidal drift depending on the radial
position. This term is at next order δΩ3/Ω2 ∝ γEuDT

2u2
TR

λε. We neglect it in the strongly passing
regime. Likewise, the zonal flow curvature is able to modify the drift frequency with a term of the
order of ρ2

i ∂
2
r (quE). We chose to neglect it for simplicity.
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2.2.2 Fluid response
Going back to the Vlasov equation 2.27, we approximate the left-hand-side using the averaged
phase factor equation 2.36. The distribution function response is given by

wuTRΩb[∂θgn − in∂θΛgn] = −ineF
T

(
c+ quE − uDT

(
AN +AT

(
w2 − 3

2

)))
J [φn]

g = eF

T

c− uDT
(
AN +AT

(
w2 − 3

2
))

c− w2uDTΩ̃d(λ) + wuTRΩb(λ) i∂θn
J [φn] (2.38)

The quadratic term in w corresponds to the magnetic drift. The linear term in w is responsible for
parallel dynamics. In a first approach, we expand the response g in the high phase velocity limit
c → ∞. This corresponds to the hydrodynamic approximation: it handles the bulk behaviour of
the distribution function. As a consequence, the existence of a resonant velocity layer is neglected.
The relevant quantity for the Poisson equation is the gyro-averaged density. It can be computed
from g = f − eφ

T F as

δN̄n
N

= −
∫∫

e−w
2 eJ2[φn]

T

w2dwdλ
√
π
√

1− λ

+
∫∫

e−w
2 eJ2[φn]

T

(
1− uDT

c

(
AN +AT

(
w2 − 3

2

)))
×(

1 + w2uDTΩ̃d(λ)
c

+ w2u2
TRΩ2

b(λ)
c2

(
i∂θ
n

)2
)
× w2dwdλ
√
π
√

1− λ

For simplicity, we approximate the gyro-average operator as J = 1 − 1
2k

2
⊥ρ

2. The gyro-averaged
charge density is written as

TδN̄n
eN

≈
(
−uDTAN

c
+ uDTΩ̃d

c
− u2

DTΩ̃dAP
c2

)
φn (2.39)

+ u2
TR

2c2

(
1− uDTAP

c

)(
i∂θ
n

)2
φn

+ k2
⊥ρ

2
i

uDTAP
c

φn

where AP = AN + AT . To avoid cluttering the computations, we will keep the same notation
Ωd = 2s and Ω̃d = Ωd(1 + αc cos θ − sζαs sin θ) in the following. We have only retained second-
order terms in 1/c in front of φ, and first-order terms in front of its derivatives ∂2

θφn and k2
⊥φn.

This gyro-averaged density can be put into the quasi-neutrality equation as

k2
⊥ρ

2
iφn + τφn = TδN̄n

N

We obtain the dispersion differential equation in the hydrodynamic limit

0 = τφn + uDTAN
c

− uDTΩ̃d
c

(
1− uDTAP

c

)
φn (2.40)

− u2
TR

2c2

(
1− uDTAP

c

)(
i∂θ
n

)2
φn

+ k2
⊥ρ

2
i

(
1− uDTAP

c

)
φn

Resolution method

This equation contains a lot of implicit notations. The perpendicular wave vector in ballooning
coordinates writes k2

⊥r
2 ≈ n2q2 +n2q2s2(θ−ζ)2. Most quantities depend on the radial position, as
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uDT, uTR, τ, AN , AP , . . . The ballooning angle ζ plays the role of the radial mode number for the
untwisted potential φ(r, θ, ϕ− qθ). Let us undo this Fourier transform. The dispersion differential
equation is written

φ(r, θ, ϕ, t) =
∑
n

ψn(r, θ) exp(in[ϕ− qθ − ct])

0 =
τ + uDTAN

c

1− uDTAP
c

ψn −
uDTΩd
c

(
1 + αc cos θ + ir∂r

nq
αs sin θ

)
ψn (2.41)

− u2
TR

2c2

(
i∂θ
n

)2
ψn

+ n2q2ρ2
∗ψ + n2q2s2ρ2

∗

(
θ + i∂r

nq′

)2
ψn

where the unknown is the function ψ. Solving this differential equation for ψ will give the structure
of the global ITG mode. This is difficult. This difficulty can be managed separating different scales.
In order to do that, we reintroduce our placeholder notations: ∂r = inq′ζ and ∂θ = im||. We obtain
a scalar algebraic equation.

0 =
τ + uDTAN

c

1− uDTAP
c

ψ − uDTΩd
c

(1 + αc cos θ − sζαs sin θ)ψ (2.42)

− u2
TR

2c2
(m||
n

)2
ψ

+ n2q2ρ2
∗ψ + n2q2s2ρ2

∗(θ − ζ)2ψ

The equation is split on three lines. The first one gives the instability mechanism. The second
corresponds to parallel acoustic dynamics. The third corresponds to polarisation effects. The effect
of each term will be discussed in due time.

We will solve equation 2.41 in an eikonal fashion. From 2.42, we can express m|| and ζ as
functions of r and θ. By definition, −i∂θ lnψ = m||(r, θ) and −i∂r lnψ = nq′ζ(r, θ). Integrating
these two last equations should provide the general shape of the mode. However, this formulation
misses coherence effects: the structure of the wave eigenmode is global and must include the finite
wave size. This formulation appears in the second derivatives: −∂2

θψ = m2
||ψ + i∂θm||ψ, where

∂θm|| has been neglected. This correction will be added when constructing the final dispersion
relation, after having solved the shape of the mode.

The eigenvalue c is a priori a complex number. In the course of the resolution, we will need
to discuss the sign of its imaginary part. The constraints are provided by the Laplace transform
prescription: all expressions must be analytic in c, with no poles in the upper complex plane
=[c] > 0. The relationship with causality appears when inverting the Laplace transform. For
negative times t < 0, the Fourier–Laplace factor einct is bounded for =[c] → +∞. Analyticity
allows to close integration contour on the upper complex plane. There are no poles there, so the
integral yields zero. Conversely, for t > 0, the contour needs to be closed in the lower complex
plane, where any number of singularities can happen. In practice, (1) the complex conjugate c∗
must not appear anywhere; (2) the computations can be done with a real c, with (3) it imaginary
part vanishing from the positive side =[c]→ 0+.

In the rest of this paragraph, we will successively reintroduce the parallel dynamics m|| → ∂θ,
solve the 1D differential equation in θ, then reintroduce the radial dynamics ζ → ∂r and solve
another 1D differential equation. In the parallel direction, the wave is expected to be coherent
at the poloidal transit time scale, while the coherence in the radial direction is expected at the
curvature drift time scale. Since the former is much faster, the scales should be separable.

Slab dispersion relation

In a first approximation, let us neglect the parallel and finite Larmor with effects. They appear
respectively as the second and third lines in equation 2.42. This corresponds to the dynamics of
the mode in the so-called slab limit. The simplified dispersion relation is given by D0 = 0 defined
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equation 2.43. As a quadratic equation in c, the instability threshold is easily computed equation
2.44.

D0 = τ + AN − Ω̃d(θ, ζ)
c/uDT

+ Ω̃dAP
c2/u2

DT
(2.43)

AP

Ω̃d
>

1
4τ

(
AN

Ω̃d
− 1
)2

(2.44)

The system is rendered unstable by the match between two drift velocities. The density is pulled
into the potential perturbation at the pressure diamagnetic velocity uDT(AN +AT ), while particles
drift at the curvature velocity uDTΩ̃d. When both match, the seed potential perturbation is
reinforced and the system is unstable.

At the same time, the potential drifts at the density diamagnetic drift uDT(AN − Ω̃d). This
mixes the system by placing a delay between the pulling of the density into the perturbation,
and its charge separation. This provides a stabilising effect on the generic interchange behaviour.
When the plasma is very close to marginality, this stabilisation by rotation can be sufficient to
partially re-stabilise the mode at θ = 0. In this case, the growth rate is a non-monotonic function
of Ω̃d(θ, ζ). It features a secondary maximum for lower Ω̃d. This secondary maximum corresponds
to modes growing at a non-zero ballooning angle (Migliano et al., 2013).

Shape in the parallel direction

The first-harmonic correction to Ωd involves a term in cos θ. The magnetic drift is higher on the
low-field side (θ = 0) than on the high-field side. This additional term enhances the turbulent drive
on the low-field side, and reduces it in the high-field side. This implies an asymmetric development
of the instability, with more activity on the low-field side. This is called the ballooning effect.

This in-out asymmetry conflicts with the parallel acoustic dynamics. The development of a
non-zero parallel mode number m|| = i∂θ strongly stabilises the system. The instability threshold
becomes

AP

Ω̃d
= 1

4τ

(
AN

Ω̃d
− 1
)2

+
m2
||

2ρ2
∗n

2Ω̃2
d

As soon as the parallel mode number grows, the mode gets strongly stabilised. Equivalently, this
requires the mode to have a large parallel correlation length. Turbulent structures need to be very
smooth and elongated in the parallel direction. In a kinetic limit, this maximises the parallel phase
velocity, and minimises Landau damping.

Parallel acoustic waves tend to smooth the structure along the field line. This dialectic is
stressed by a third player. Polarisation stabilises modes with strong variations in the transverse
direction. Because of the magnetic shear, field alignment creates a radial pattern: kr = nq′(θ− ζ).
The longer the filament, the more twisted it is. The balance creates an effective parallel coherence
length, related to the radial correlation length by the magnetic shear.

In summary, the turbulent filaments need to be (1) long enough because of parallel acoustic
waves, (2) not too long either because of magnetic shear, and (3) centred on the low-field side
because this is where the instability is driven. We compute the mode structure in the parallel
direction by introducing a phase function σ and an amplitude function χn.

ψn(r, ζ, θ) = χn(r, ζ) exp[inσ(r, θ)]

The phase function σ is supposed to encode the fine details of the mode structure along a magnetic
field line. On the contrary, χ encodes the smoother shape in the radial direction. We inject this
form into the dispersion relation 2.42 by defining m||/n → ∂θσ and ζ → ζ + ∂rσ/q

′. This is
equivalent to plugging our formulation of ψ into equation 2.41 neglecting the second derivatives of
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σ. This allows to look for the structure of the mode oscillations. We compute σ as

(∂θσ)2 = 2c2

u2
TR

n2q2ρ2
∗s

2(θ − ζ − ∂rσ/q′)2 (2.45)

− 2cuDTΩd
u2

TR
(αc cos θ − s(ζ + ∂rσ/q

′)αs sin θ)

+ 2c2

u2
TR

D0(c)
1− uDTAP

c

− i∂2
θσ

n
+ i

2c2

u2
TR

n2ρ2
i ∂

2
rσ

with D0 defined equation 2.43. The first line on the right-hand side corresponds to the polarisation
effects discussed earlier. It is the main driver for the parallel dynamics. The second line is the
correction to the mode growth due to ballooning effects. The third line contains corrections due
to coherence. For simplcity, we consider it as independent of θ. The remaining terms are the
coherence effect announced earlier. For propagating waves, we expect the phase function to be
real. The right-hand-side has to be positive. Taking the square root on both sides yields the
following equation

∂θσ = ±
√

2c
uTR

√√√√√ n2q2ρ2
∗s

2(θ − ζ − ∂rσ/q′)2

−uDTΩd
c (αc cos θ − s(ζ + ∂rσ/q

′)αs sin θ)
+ indep .θ

(2.46)

The choice of branch is dictated by the behaviour at θ → ∞. There, σ ≈ ± sign(θ)
√

2cnqρ∗s
2uTR

θ2.
For an unstable mode =[c] > 0, we need the mode to have a finite energy. This requires that
<[iσ] → −∞ for large θ. For θ > 0, the branch “+” is required, and “−” for θ < 0. We need
to switch at some point, therefore the positive radicand must vanish for some θ0. The vanishing
position should also correspont to the minimum value, to preserve the positivity of the radicand.
Both conditions lead to

0 = 2n2q2ρ2
∗s

2(θ0 − ζ − ∂rσ/q′) + uDTΩd
c

(αc sin θ0 + s(ζ + ∂rσ/q
′)αs cos θ0) (2.47)

0 = n2q2ρ2
∗s

2(θ0 − ζ − ∂rσ/q′)2 − uDTΩd
c

(αc cos θ0 − s(ζ + ∂rσ/q
′)αs sin θ0) (2.48)

+ D0(c)
1− uDTAP

c

− i∂2
θσ

n
+ i

2c2

u2
TR

n2ρ2
i ∂

2
rσ

Equation 2.47 allows to solve for θ0, and equation 2.48 to prescribeD0. For large n, the polarisation
term dominates, and we approximate θ0 ≈ ζ, with a first-order correction

θ0 ≈ ζ + ∂rσ/q
′ − uDTΩd

c

αc sin ζ + s(ζ + ∂rσ/q
′)αs cos ζ

2n2q2ρ2
∗s

2

For θ close to θ0, the radicand in equation 2.46 is a parabola. We approximate it as such, which
simplifies the equation to ∂θσ =

√
2cnqρ∗s
uTR

(θ − θ0). Using the definition of θ0, we obtain

∂θσ +
√

2cnρi
uTR

∂rσ −
qΩd
n
√

2
αs cos θ∂rσ ≈

√
2cnqρ∗s
uTR

× (2.49)(
θ − ζ − uDTΩd

c

αc sin ζ + sζαs cos ζ
2n2q2ρ2

∗s
2

)
The presence of a ∂rσ term in the left-hand side is associated to a tilt of the parallel structure
of the mode. Instead of being inside a flux surface, the filament departs from its radial reference
position rref as r− rref =

√
2cnρi
uTR

(θ−θ0). This departure scales like a fraction of qρi, which is small
in comparison to the profiles. Integrating in θ, we can ignore this radial departure, and obtain the
mode structure is explicitly

φ = χn(r, ζ) exp
(
in[ϕ− q(θ − ζ)]− inc

[
t−
√

2nqρ∗s
uTR

(θ − ζ)2

2

])
(2.50)
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We recover the usual Gaussian form of the mode (Carreras et al., 1994; Garbet, 2001; Garbet et al.,
2002). Similarly to the quantum harmonic oscillator, this is only the fundamental harmonic. A
hierarchy of modes can be derived by multiplying this form with a Hermite polynomial of θ. In
the following, we will only keep this fundamental harmonic, because it has the lowest stabilisation.
This equation illustrates our earlier discussion on the ballooning effect. The shape of the mode is
dictated by the factor before (θ−θ0)2, which features the balance between polarisation and parallel
acoustic dynamics. The very value of θ0 is set by the ballooning angle ζ, and only affects this trade
off very weakly. The E ×B shear introduces an additional modulation, as δm||/n = γEuDT/u

2
TR.

In the stable case with real c, the poloidal shift of the mode θ0 is equivalent to a modulation
δm|| ∝ θ0, and because of magnetic shear to a radial shift by δr = δm||/nq

′.
The presence of a factor c in 2.49 and 2.50 is significant: it defines the propagation of information

in the parallel direction. In the parallel direction, information flows with a time delay given by
τ =

√
2nqρ∗s
uTR

(θ−θ0)2

2 . This has two consequences. For a stable mode (when =[c] = 0), the shape
inside a flux surface is a parabola ϕ = q(θ − θ0) − (· · · ) × (θ − θ0)2. For an unstable mode, the
mode is being pulled out from θ = θ0, and his growth propagates to neighbouring parallel positions
as (θ − θ0)2. This corresponds to the growth of a Gaussian mode. Overall, the equilibrium along
the parallel direction is reached in time τ|| ∼ nq2ρ2

∗/uDT. This time is very small compared to the
time scale of the mode itself u−1

DT, and justifies the treatment of the coherent mode as a whole.
The reduced dispersion relation is given by equation 2.48. We inject into it the shape ψ we just

found, along with the value of θ0. The dispersion relation for this local mode becomes

ψn(r, θ) = χn(r) exp
(
i

√
2cn2qρ∗s

uTR

(θ − θ0)2

2

)
0 = Dχn

1− uDTAP
c

=
τ + uDTAN

c

1− uDTAP
c

χn + n2q2ρ2
∗χn −

uDTΩ̄d
c

χn (2.51)

+ i
suDT√

2qc
χn −

u2
DTΩ2

d

c2
(αc sin ζ + sζαs cos ζ)2

2n2q2s2ρ2
∗

χn

Ωd = Ω̃d(θ = ζ) = Ωd(1 + αc cos ζ − sζαs sin ζ)

The first line corresponds to the slab dispersion relation 2.43. The imaginary additional term is
an unconditional stabilisation of the mode due to coherence effects. It corresponds to the delay
incurred by the parallel propagation of information. The second additional term is a ballooning
penalty: it requires the mode to remain close to ζ = 0. The above discussion covers the local
ITG mode, with its parallel structure 2.50, and its dispersion relation 2.51. This local mode
depends on 4 parameters: the toroidal mode number n, the parallel harmonic giving the degree
of the Hermite polynomial, the ballooning angle, and the radial position. We only considered the
fundamental parallel harmonic, and it is the least stabilised. The ballooning angle is associated to
the radial wave-number. Computing the coherent interaction between this radial wave-number and
the radially dependent background yields the global ITG mode. This is the object of the following
section.

2.2.3 Effect of a corrugated zonal flow
We now need to compute the radial structure of our mode. This radial structure depends on the
variations of the parameters describing the background plasma. Among them, we will focus on
the effect of the zonal flow uE . We removed it in equation 2.36 by putting ourselves in the moving
reference frame. We re-introduce it explicitly as a Doppler effect on the phase velocity c 7→ c+quE ,
with uE(r) a stationary zonal flow.

Shape of the local mode

With only the parallel structure 2.50, we can already discuss the general shape of the local mode

φ(t, r, θ, ϕ) ∝ exp
(
in[ϕ− q(θ − ζ)]− in[c+ quE ]

[
t−
√

2nqρ∗s
uTR

(θ − ζ)2

2

])
(2.52)
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The radial structure of the mode is given by the radial derivative of the phase

kr ≈ −nq′(θ − ζ)− nq′γE
[
t−
√

2nqρ∗s
uTR

(θ − ζ)2

2

]
(2.53)

This radial wave-number is the combination of three effects. First, there is the usual variation in
the poloidal direction due to magnetic shear. Second, we have the dynamic effect of the zonal flow
shear

dkr
dt = −nq′γE (2.54)

We also find the zonal flow shear to affect the value of kr at t = 0. The information in the mode
spreads from the ballooning position with a delay. As a consequence, the phase front at θ 6= ζ
reflects the radial corrugations of the zonal flow.

Eikonal structure of the mode

Without trying to compute the shape of the function χ, some insight can be gained from geomet-
rical optics and eikonal theory (McDonald, 1988). In this framework, a marginally stable wave
propagates in ~x–~k phase space such as to conserve its frequency ω(~x,~k).

In the dispersion relation 2.51, the variable ζ plays the role of the radial mode number of χ,
such as kr = nq′ζ. The radial group velocity can be computed as ∂ω/∂kr, where c = ω/n solves
the dispersion relation. In our description, this radial velocity writes

c = c0 − quE (2.55)
Deik(c0)

1− uDTAP
c0

≈
τ + uDTAN

c0

1− uDTAP
c0

+ n2q2ρ2
∗ −

uDTΩ̄d
c0

(2.56)

q′
dr
dt = q′vrg =

(
∂c

∂ζ

)
D=0

= −∂D
∂ζ

/
∂D

∂c

= − uDTΩd
τ + n2q2ρ2

∗ −
(τAP+AN )AP(

c0
uDT
−AP

)2

((A+ sB) sin ζ +Bζ cos ζ) (2.57)

dζ
dt = − 1

q′

(
∂c

∂r

)
D=0

= γE −
1
q′

(
∂c0
∂r

)
D=0

where c0 is the phase velocity in the frame moving toroidally at velocity quE . We have neglected
the additional penalty terms in the second line of 2.51 to get 2.56.

This radial group velocity vrg depends on both the sign of ζ and of the denominator. Far from
the diamagnetic resonance c = uDTAP , the denominator is positive. The group velocity is inwards
for positive ζ, outwards for negative ζ. This is expected since the ITG mode is carried by the
ions. Indeed, for positive ballooning angle, most of the perturbation lies above the mid-plane. The
curvature drift in the ion direction is vertically downwards, so it tends to push this perturbation
inwards. Conversely, the perturbation is pushed outwards when it is concentrated below the mid-
plane. Close to the diamagnetic resonance c = uDTAP , the denominator becomes negative, and
the behaviour is reversed. When the magnetic field is reversed, the signs are swapped.

In figure 2.2, we show the level lines of c solving Deik = 0 equation 2.56 with a uniformly
sheared plasma. The eikonal dynamics follows those contour lines clockwise. In the stable case,
the two branches appear distinct for each value of c. In the unstable case (figure 2.2 right), the
two branches merge, and are transformed into a growing and a damped branch.

The radial group velocity 2.57 estimates the time required to establish the global structure
of the mode. It scales like the magnetic curvature drift. Specifically, it may be slower than
typical dynamics of the background plasma, like zonal fluctuating flows. As such, the global radial
structure of the ITG mode may not have the time to establish itself, unless long-living staircase
structures appear.
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Figure 2.2: Level lines of c(r, ζ) in an uniformly sheared plasma. Left: AN = 8, AT = 4.
Right: AN = 8, AT = 5. Ωd = 0.5 + 0.5 cos(ζ). The pink shading corresponds to the unstable
parameter region.

2.2.4 Kinetic response
Because of the hydrodynamic development, the dispersion relation is real, and we only capture
reactive instabilities. The instabilities are paired with a stable mode with opposite growth rate
(actually a damping rate). The other consequences is that below the instability threshold, only
undamped modes exist. In order to grasp the fuller dynamics, we need to compute the kinetic
dispersion relation.

We go back to the solution of the Vlasov equation 2.38. Instead of developing in powers of
c, we can keep the kinetic resonant denominator, and develop in powers of c − w2uDTΩd. We
discussed the parallel dynamics in the previous section, we shall ignore it here, and drop all θ
dependencies. This simplification amounts to focusing on the deeply passing particles only. The
distribution function response is given by

gn = F

T

c− uDT
(
AN +AT

(
w2 − 3

2
))

c− w2uDTΩd + wuTRΩb
(
i∂θ
n +B γEuDT

u2
TR

cos θ
)eφn

≈ F

T

(
c− uDT

(
AN +AT

(
w2 − 3

2

)))
eφn

c− w2uDTΩd
The density response is given by the integral in w and pitch-angle λ, with odd terms cancelled by
w 7→ −w symmetry. The denominator features a resonance due to the toroidal drift at a specific
energy w2. The resonance condition can be computed as

wres ≈ ±
√

c

uDTΩd
We introduce the following family of functions Gm, for m > 0. They are related to the Fried and
Conte function Z (Fried & Conte, 1961; Lehtinen, 2010).

Gm(c) =
∫
w2me−w2

c− w2
dw√
π

Gm+1(c) = cGm(c)− (2m)!
4mm! G1(c) = −1−

√
cZ
[√
c
]

The density fluctuation is given by the integral

TδN̄n
eN

+ φn ≈
∫∫

c− uDT
(
AN +AT

(
w2 − 3

2
))

c− w2uDTΩd
w2dwdλ
√
π
√

1− λ
φn

=
[

c

uDT
−AN + 3

2AT
]
G1

(
c

uDTΩd

)
φn
Ωd

∫ 1

0

dλ√
1− λ

− ATG2

(
c

uDTΩd

)
φn
Ωd

∫ 1

0

dλ√
1− λ

≈ AT
Ωd

φn + 2φn
Ωd

[
c

uDT

(
1− AT

Ωd

)
−AN + 3

2AT
]
G1

(
c

uDTΩd

)
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As earlier, we compute the coupling to the Poisson equation and obtain the dispersion relation

0 = τ + n2q2ρ2
∗ + 1− AT

Ωd
− 2

Ωd

[
c

uDT

(
1− AT

Ωd

)
−AN + 3

2AT
]
G1

(
c

ΩduDT

)
(2.58)

We can already formulate the kinetic stability boundary for the plasma. The above equation is
linear in AN and AT . It can be solved for them, and the stability boundary is described by the
path for real c. For c > 0, there exists resonant energies wres = ±

√
c/ΩduDT, the instability is

kinetic. The associated stability boundary is given by

AN
Ωd

= 3
2 + (τ + n2q2ρ2

∗)
(

3
2 −

c

uDTΩd

)
AT
Ωd

= τ + n2q2ρ2
∗ + 1

Close to this boundary, the temperature gradient governs the instability growth, while the density
gradient defines the phase velocity of the wave.

For c < 0, no resonance occurs, G1 is a real function: the instability is reactive, closer to its
fluid behaviour. The instability threshold can be obtained by solving both the (real) dispersion
relation 2.58 and its derivative with respect to c to account for the vanishing positive imaginary
part of c. The results are plotted on figure 2.3. This result is qualitatively consistent with the
findings of (Romanelli & Briguglio, 1990; Hahm & Tang, 1989; Jenko et al., 2001; Sarazin et al.,
2005), for the purely kinetic branch AN < 3(τ + n2q2ρ2

∗ + 1), and c > 0. The kinetic branch
disappears when AN is too large, and the dynamics is closer to the hydrodynamic limit.
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Figure 2.3: Plot of the local stability boundaries equations for the hydrodynamic (equation
2.44) and kinetic (equation 2.58) descriptions. The temperature ratio is τ = 1. For reference is
plotted (Jenko et al., 2001, eq. 6) for ŝ = q = 1.

In this paragraph, we have recalled the principal features of the toroidal ITG mode. We have
recovered the stability limit in both the hydrodynamic and kinetic limit. Using the hydrodynamic
limit, we computed the local structure of the mode. In particular, we have shown this local structure
is such that the pattern of the zonal flow appears in the mode phase fronts. The permanence of
these linear properties in the non-linear regime will be investigated numerically in chapter 5.
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2.3 Ideal MHD instabilities
The simplest benchmark for our electromagnetic code is its ability to simulate global MHD instabil-
ities. Among those, we are particularly interested in the internal kink (Bussac et al., 1975) and
the tearing instabilities (Drake & Lee, 1977). In the following, we will follow a simplified version
of the derivation in (Nasr, 2018; Zarzoso et al., 2019). We consider an electromagnetic fluctuation
of poloidal mode number m and toroidal mode number n.1 For a kink mode, (m,n) = (−1, 1).
For a tearing mode, (m,n) = (−2, 1). Both instabilities obey to the same ground phenomenon:
current and magnetic energy are brought from the whole domain to a resonant magnetic surface
q = −m/n, creating a thin current sheet. Inside this current sheet, the mode is aligned with
the magnetic field, creating the grounds for parallel resonant interaction. Because this resonant
layer is very thin (a few δe), it can be thought as a jump condition between non-resonant regions.
Since the current is borne by the electrons, we will neglect the finite Larmor radius effects in this
discussion. Diamagnetic effects have been shown to stabilise the modes (Zarzoso et al., 2019). We
will neglect them for simplicity in this discussion.

We consider a Maxwellian equilibrium distribution function F, with density N and temperature
T . For this distribution to carry a current, it needs a non-zero mean velocity V||. In the following,
we will denote by ′ radial derivatives of profiles.

f = −
(

1−
ω − k||V|| − ω∗
ω − k||v||

)
F
e(φ− v||ψ)

T
(2.59)

k|| = 1
R

(
n+ m

q

)
ω∗ = −nqT

eB
∂r lnFeq

= nuDT

(
AN −RV ′||

(v|| − V||)
v2

th
+AT

( (v|| − V||)2

2v2
th

+ µB

T
− 3

2

))
uDT = qT

eBRr

vth =
√

T

mass

where we have kept the same notation for the logarithmic density and temperature gradients AN
and AT . V ′|| denotes the gradient of the species mean velocity. vth is the thermal velocity.

2.3.1 Equilibrium current profile
We consider a simple cylindrical magnetic field

~B = B0R0

(
~∇ϕ+ r2

qR2
0
~∇θ
)

(2.60)

The associated current writes

µ0 ~J = B0

R0
~∇
(
r2

q

)
× ~∇θ = JR~∇ϕ (2.61)

µ0J = B0

R0

1
r
∂r

(
r2

q

)
= B0

R0

2− s
q

(2.62)

The tearing mode grows by attracting nearby current to a resonant surface. The free energy source
is the gradient of the current density J′

µ0J
′ = B0

R0

−3q′q + 2rq′2 − rq′′

q3 (2.63)

1In this discussion, we will refrain from introducing the species mass, as to avoid notation ambiguities. When
required, it will be denoted as “mass”.
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For test cases, we will use the Wesson q profile (Wesson, 2011)

q = qa
(r/a)2

1− (1− (r/a)2)ν+1 (2.64)

The parameters are its value qa on the last closed magnetic surface r = a and a peaking factor ν.
For ν + 1 > qa, this profiles goes below 1 in the centre, so will enable us to discuss the kink mode.

2.3.2 Non-resonant region
In this region, the parallel mode number is large. Therefore, k||(v|| − V||) � ω, the mode does
not resonate. We can treat the problem in an hydrodynamic fashion. This allows to simplify the
response as

f

F

T

e
≈ −(φ− uψ)− (φ− uψ) ω∗

k||(v − V||)
≈ −(φ− uψ) (2.65)

− (φ− V||ψ)
nuDT

(
AN −RV ′||

(v−V||)
v2
th

+AT

(
(v−V||)2

2v2
th

+ µB
T −

3
2

))
k||(v − V||)

+ ψ
nuDT

(
AN −RV ′||

(v||−V||)
v2
th

+AT

(
(v||−V||)2

2v2
th

+ µB
T −

3
2

))
k||

Because of the symmetry of the distribution function in v|| − V||, we can compute the density δN
and momentum δ(NV||) response to the perturbation of φ and ψ.

δN

N

T

e
≈ −(φ− V||ψ) + (φ− V||ψ)nuDT

k||

RV ′||

v2
th

+ ψ
nuDT

k||
AN

δ(NV||)− V||δN
N

T

e
≈ v2

thψ − (φ− V||ψ)nuDT

k||
AN − ψ

nuDT

k||
RV ′||

δ(NV||)
N

T

e
= −V||(φ− V||ψ) + v2

thψ − ψ
nuDTR

k||

(NV||)′

N

+ (φ− V||ψ)nuDTR

k||

N′v2
th + NV||V

′
||

Nv2
th

Those responses can be input into the Poisson and Ampere equations. As in equations 2.13 and
2.23, we assume the plasma to be at rest. The resulting coupled differential system is

−1
r
∂r

(
r
∑
s

ρ2
sNse

2
s

Ts
∇⊥φ

)
+
∑
s

ρ2
sNse

2
s

Ts

m2

r2 φ = −
∑
s

Nse
2
s

Ts
(φ− V||,sψ)

− nq

k||Br
ψQ′

+ nq

k||Br

∑
s

es(φ− V||,sψ)
NsV

′
||,s

v2
th

−1
r
∂r(rψ) + m2

r2 ψ = −µ0
∑
s

Nse
2
s

Ts
V||,s(φ− V||,sψ)

− µ0
nq

k||Br
ψJ′

+ µ0
nq

k||Br

∑
s

es(φ− V||,sψ)
(
N′s +

NsV||,sV
′
||,s

v2
th

)
where the sum s is over the species, ions and electrons. Q′ and J′ are the radial derivatives of
the charge and current density. The right-hand side of this equations contain many terms. The
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first line for each equation is the adiabatic response of the density and velocity. The second lines
correspond to the charge and current mixing by magnetic field line bending. The third terms are
due to fluctuating mixing by the E × B velocity. If we neglect the electrostatic potential and the
individual parallel motion, we get the envelope equation as

−1
r
∂r(r∂rψ) + m2

r2 ψ = −µ0
R

B
J′
ψ

r

nq

n+ m
q

= −−3q′ + 2rq′2/q − rq′′

r
(
q + m

n

) ψ (2.66)

This equation is singular near the resonant magnetic surface, but otherwise well-behaved. The
boundary conditions are at the centre of the plasma, and near the wall. Near r = 0, we assume
ψ = 0 because the mode numbers (m,n) are non-zero. Close to the wall, a perfectly conducting
wall requires vanishing electric field, so ψ = 0. Around the resonant magnetic surface, the magnetic
flux ψ is continuous, but ψ′ needs not. The jump in slope of ψ′ defines the current that is mobilised
on the surface

µ0Jres =
∫

res

[
−1
r
∂r(r∂rψ) + m2

r2 ψ

]
rdr

= −Jrψ′Kres + m2

rres
ψres

with J·Kres the discontinuity when passing the resonant radius. We define the stability parameter
∆′ as

∆′ = Jψ′Kres

ψres
(2.67)

As will be shown below, the growth rate of the mode is directly proportional to ∆′. Sample profiles
are shown figure 2.4. Equation 2.66 is solved using shooting from r/a = 0 and r/a = 1 towards
the resonance, followed by gluing together the solutions for ψ at the resonance. The kink mode
has a very specific structure ψ ≈ r(1 − 1/q). That makes ψres vanish. It renders that kink mode
much more unstable, as it virtually has infinite ∆′.

2.3.3 Resistive resonant current sheet

In this region, the parallel mode number k|| vanishes, allowing for a resonant interaction in the
parallel direction. We choose to ignore the thin structure, and to only account for the total amount
of mobilised charge and current in the layer. This quantity will then serve as a jump condition for
the envelope equation. Close to this resonance r0, the parallel mode number can be approximated
as

k|| = k′||(r − r0) = − 1
R

mq′

q2 (r − r0)

We place ourselves in the frame moving in the parallel direction ω′ = ω − k||V||. Let the shifted
position x = r − r0 and velocity u = v|| − V||. The distribution function responds as

f(u = v|| − V||) = −
(

1− ω′ − ω∗
ω′ − k||u

)
F
e(φ− (u+ V||)ψ)

T

= −
(

1− ω′ − ω∗
ω′ − k||u

)
F
e(φ− V||ψ)

T
+
(

1− ω′ − ω∗
ω′ − k||u

)
F
euψ

T
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Figure 2.4: Exterior configuration for the (2, 1) tearing mode and the (1, 1) kink mode for the
chosen Wesson q profiles.

The density and current contribution can be computed in the limit of only a parallel resonance
(Nasr, 2018; Zarzoso et al., 2019)

δN

N

T

e
= −(φ− V||ψ)

∫ (
1− ω

ω − k||u

)
F

N
d3v + ψ

∫ (
1− ω
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)
uF

N
d3v

= 1
2
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ω

k||
ψ

)
Z ′

[
ω

|k|||vth
√

2

]
δ(NV||)− V||δN

N

T

e
= −(φ− V||ψ)

∫ (
1− ω

ω − k||u

)
uF

N
d3v + ψ

∫ (
1− ω

ω − k||v

)
u2F

N
d3v

= ψv2
th + ω

2k||

(
φ− V||ψ −

ω

k||
ψ

)
Z ′

[
ω

|k|||vth
√

2

]

where Z is the derivative of the Fried and Conte function. The mobilised charge and current can
be computed by integrating in the radial direction. The integral is taken over the full resonant
layer, with width δr. Let x = r − r0. The resonant phase velocity varies as 1/x. In the interest
of the jump condition 2.67, the relevant behaviour happens at large x, or small phase velocity.
Let the normalised phase velocity ζ = ω/|k|||vth

√
2 be our integration variable. Farther from the

resonant layer, the charge and current can be expanded in powers of 1/x and 1/|x|. Because the
volume element dx/dζ is in x2, the terms of lower order vanish for x→ 0. By symmetry, the odd
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functions of x do not contribute either. The charge in the resonant surface vanishes

Qres = 1
4

∫ δr

−δr

e2

T

(
φ− V||ψ −

ω

k||
ψ

)
Z ′

[
ω

|k|||vth
√

2

]
Nrdr

≈ Ne2rres
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2
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2 − V||
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]∫ +∞
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2
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ζ2

≈ Ne2rres

3T

[
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2 − ω
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ψ′+ + ψ′−

2

]
δr → 0 (2.68)

where the “+” and “−” subscripts denote values taken on both sides of the resonant region, to be
used as jump conditions. This accumulated charge vanishes for δr → 0. The current however has
a finite value

Jres = ψ
Ne2v2

th
T

rresδr + Ne2rres

2T

∫ +δr
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e2Nvth

T
rresψres (2.69)

where we have neglected the terms that vanish for δr → 0. The last equality has been derived for
δr much larger than the current layer width, or equivalently ζ � 1 at x = δr. The typical width
of the current layer is of the order of the electron skin width (Porcelli, 1991), such as the phase
velocity becomes

ζ(δr) = ωτA

smρ∗
√

2
(2.70)

τA = vth

R
√
β

(2.71)

where τA is the Alfvén time. Since the real part of ω is due to magnetic and diamagnetic drifts
(Drake & Lee, 1977), ω ∼ nuDT and this condition simplifies to

√
β � 1 which is our limit. The

current in the resonant layer writes

µ0Jres = µ0N
e2ψres

T

vthω

|k′|||
i
√

2π
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δ2
e
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vthω
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√
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ω = iδ2
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vth∆′√
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1
R

ms
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vth∆′√
2π

= i
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Rr2
ms

q2
r∆′√

2π
(2.72)

The mode is given by a pure growth dynamic. The growth rate is given by the ∆′ value (Drake
& Lee, 1977), which mostly depends on the magnetic configuration. The Landau damping creates
an effective resistivity of the form

µ0ηeff = vth

δe|k′|||
√

2π

inside the current layer.
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Chapter 3

Model order reduction approach
to the collisionless closure problem

First-principle simulation of plasma turbulence faces a double challenge of cost and complexity.
The physical and intellectual complexity stem from the non-linearity of the turbulent dynamics.
The cost is induced by the kinetic nature of the instability drive. Simulating the gyro-kinetic
description of tokamak turbulence is now routine for numerous codes, but requires maintaining
high-performance codes running smoothly on supercomputers. While simulations get longer and
longer, the amount of actually analysed information remains limited in proportion. A few fluid
moments of the distribution function (density, velocity, pressure...) are extracted out of the tens of
grid points used to simulate dynamics in velocity space, and the rest is discarded. Reaching more
day-to-day investigation of turbulent transport requires lighter models for tractable simulations.
However, the obvious fluid systems fail to simulate dynamics close to the marginal instability
threshold (Dimits et al., 2000). Collisionless closures are a way forward to avoid this shortfall
while retaining dynamics in a low-dimensional space (Hammett & Perkins, 1990; Chang & Callen,
1992).

We consider the linear one-dimensional electrostatic Vlasov problem

∂tf + ikvf = ikF′φ (3.1)

where k is the spatial wave-number, F′(v) is the derivative of the equilibrium distribution function
with respect to the velocity, f(v) the fluctuation of the distribution function, φ the electrostatic
potential. The velocity is normalised to the thermal velocity, and the potential to the thermal
potential. Without loss of generality, we will only consider one value of k > 0, the other cases can
be deduced by symmetry.

We consider a choice of observable quantities, for instance a few fluid moments like the density
n, the velocity u, the pressure p. The electric potential φ is considered as an input, unconstrained by
Poisson equation, and forces the dynamics of the state f . The mapping from the electric potential
φ to these moments is a linear time-invariant dynamical system. This mapping corresponds to an
open-loop control system. The eventual Poisson equation provides a closed-loop condition. Control
theory and model order reduction theory have developed useful tools for analysing the structure of
such systems, and for constructing reduced-order models matching such an input–output relation
φ 7→ (n, u, p), without solving for the full state space, here the distribution function f (Grivet-
Talocia & Gustavsen, 2016).

In this chapter, we will discuss two different methods, namely balanced truncation (Mullis &
Roberts, 1976; Moore, 1981; Gugercin & Antoulas, 2004) and rational interpolation (Gugercin
et al., 2006; Beattie & Gugercin, 2012; Gugercin, 2017). In a first part, the two methods are
reviewed and their connection to the usual collisionless closures are discussed. In a second part,
the two methods are applied numerically to the 1D–1V Vlasov–Poisson problem. The precision of
the reconstruction and temporal evolution in the Vlasov problem are compared. The influence of
the model on the behaviour of the Vlasov–Poisson problem is discussed, using the Landau damping
and bump-on-tail instability as benchmarks. Finally, the extensions to the toroidal gyro-kinetic
problem and to non-linear simulations are discussed.

47
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3.1 Review of the Landau mechanism
The Vlasov equation 3.1 contains no dissipation. In the non-linear regime, the Vlasov dynamics
goes as far as to be isentropic. However, the coupled Vlasov–Poisson system demonstrates a damp-
ing behaviour. If the particle density bears a small perturbation at initial time, this perturbation
tends to shrink and to disappear. This apparently irreversible mechanism is the so-called Landau
damping.

This behaviour can be explained as phase mixing (Elskens & Escande, 2002). For each velocity
v, the distribution function layer with reference velocity v oscillates at its own natural frequency
kv. When exciting the system with a potential perturbation at frequency ω, the excitation is spread
out on all those natural frequencies, as kv/|kv − ω|2. As time goes, each layer gets slightly more
detuned from the initial perturbation. Abundant slower particles are late, scarce faster particles
are early. In addition, the electric field is phased +π/2, early with respect to the potential. Early
particles give energy to the wave, late particles take from it. In average, the energy is taken from
the wave, damping it.

This argument can be made rigorous using dynamical system analysis. The frequency response
of the density from the Vlasov dynamics can be computed analytically from equation 3.1 as

n(ζ) = φ(ζ)
∫ +∞

−∞

F′(v)
v − ζ − i σ|k|

dv (3.2)

with ζ = ω/|k| the phase velocity of the perturbation, normalised to the thermal velocity. We
have introduced a small damping rate σ. The integral on the right-hand-side is singular if σ =
0. The so-called Landau prescription enables to evaluate it for positive damping rate σ. This
corresponds to the Laplace transform formalism, and enforces causality. The resulting n/φ function
is holomorphic, and can be extended to the negative complex plane.

When the equilibrium distribution function is a Maxwellian, the frequency response if expressed
using the Fried and Conte function Z (Fried & Conte, 1961; Goodrich, 1972; Lehtinen, 2010), and
is plotted figure 3.1.

Hkin(ζ) = n

φ
= −1− ζ√

2
Z

(
ζ√
2

)
(3.3)

The phase plot 3.1c shows a positive phase delay τ = ∂ω angle[H]: the density response is late
with respect to the potential. On the Nyquist plot 3.1a, increasing ζ corresponds to running
counter-clockwise. Holomorphic functions preserve orientation: everything on the right of the
curve (ie. outside) corresponds to damped dynamics, everything on its left (ie. inside) corresponds
to unstable dynamics.
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Figure 3.1: (a) Nyquist plot, (b) amplitude and (c) phase for the density response 3.3 for real ζ.

The Poisson equation can be written as
n

φ
= k2λ2

D (3.4)

On the Nyquist plot, this corresponds to crossing the positive real half-line (in red). Because of its
imaginary part =[Z(ζ)] ≈ F′(ζ), n/φ never crosses this resonant line for real ζ. This resonant line
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always stays on its right, ie. the damped side. In the region where both are very close, ζ larger
than a few units, we can compute the Landau damping rate σLandau as

σLandau ≈ =[Hkin(ζ)]
∂ζ<[Hkin(ζ)] = F′(ζ)

∂ζ<[Hkin(ζ)] (3.5)

The numerator is negative —particles rarefy when going farther from v = 0—, and the denominator
too —the density goes as n ≈ φ/ζ2 at high-frequency. The perturbation is damped. This last
equation is the basis for the following rule of thumb: the wave is damped if there are more slower
particle than faster particles.

Still, the energy and information are not gone, rather encoded on each particle’s position and
velocity. This can be seen using the obscurely-named regularity transfer mechanism (Mouhot &
Villani, 2009). The Vlasov system is fed energy by the potential. Since the system is conservative,
the energy must go somewhere: either through an interaction, or to infinity. As there is no other
interaction, the energy has no choice but to go to the only available infinity, velocity wave-number
infinity. By performing a Fourier transform into velocity space v → kv, the Vlasov equation
becomes an advection equation

∂tf̂ + k∂kv f̂ + σf̂ = −kkvF̂φ (3.6)

As such, all the energy input is shifted in time to kv → +∞× sign(k). This makes the distribution
function more and more irregular in velocity. The information is not lost. However, the more
irregular the distribution function, the more fragile this information, the easier it is to dissipate
by collisions. In the non-linear setting, the information can be retrieved using the “plasma echo”
experiment: sending a second potential perturbation can scatter this information to another wave-
number k′ of opposite sign. The so-scattered information will then come back, get visible when it
crosses kv ≈ 0, and go away to the other infinity.

3.2 The fluid hierarchy truncation
In order to reduce the simulation cost, we need a reduction step. The traditional method involves
the formulation of the fluid hierarchy. It consists in the projection of the Vlasov equation 3.1
against graded polynomials. For instance, the fluid moments m` verify

m` =
∫
v`fdv (3.7)

∂tm` + ikm`+1 = −ikφ`
∫
v`−1Fdv (3.8)

where m0 is the density n, m1 is the momentum Nequ, m2 is the pressure p. The equation for each
moment m` requires the one for the next moment, ad infinitum. Practical applications require to
truncate this hierarchy somehow. This truncation dictates the way we model the energy escape to
infinity: m` = (−i∂kv )`f̂(0) defines how far in frequency space we are modelling.

The last relevant moment has to be expressed using the available information. In the linear
setting, it is just a linear combination of its forebearers and of the forcing φ. Once the fluid hierarchy
is closed, the frequency response can be constructed, and compared to the kinetic response Hkin.
The standard fluid corresponds to putting the integral of the ` + 1st Hermite polynomial to zero
(Smith, 1997, ch. 2)1. For instance, the standard 4-field fluid model writes∫

(v4 − 6v2 + 3)fdv ≈ 0 (3.9)

Hfluid(ζ) = ζ2 − 3
ζ4 − 6ζ2 + 3 (3.10)

This transfer function is real, all its poles are on the real axis, so the model is conservative: it is
not able to reproduce a damping mechanism as in the kinetic case.

1Other definitions are possible, like setting the `+1st cumulant to zero. In the linear setting, both are equivalent.
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The collisionless closure problem comes the non-determination of the fluid moment `+ 1 in the
`-fluid reduction. The goal is to find the best linear combination to recover relevant kinetic effects,
to recover the kinetic response Hkin(ζ). Several methods have been suggested in the literature
(Smith, 1997). Asymptotic methods use a Taylor (Hammett & Perkins, 1990; Sarazin et al., 2009)
or Padé (Hunana et al., 2018) expansion of the kinetic response function Hkin for ζ � 1 and ζ � 1
to constrain the free parameters. As such, they explicitly choose an asymptotic frequency range,
and are limited to it. Other authors have introduced the excitation frequency as a parameter
(Mattor & Parker, 1997; Wang et al., 2019). This renders the simulation of the closed model
very difficult, because strongly non-linear. These methods have an even larger number of free
parameters, and rely heavily on physical choices and orderings (Sarazin et al., 2009).

3.3 Review of the balanced truncation method
Balanced truncation allows approaching the model reduction problem as a linear optimisation
problem (Gugercin & Antoulas, 2004). Instead of a term-by-term matching of some expansion, it
can be thought as a uniformly-weighted matching. This method is systematic, and only depends on
(i) the original model equation, (ii) an energy functional on the input variables and (iii) a quadratic
functional on the output variables. The reduced model is constructed by removing hard-to-reach
and hard-to-observe states from the dynamics.

3.3.1 Notions of reachability and observability
Given a potential perturbation φ(t), the response of the distribution function is given by

f(t, v) =
∫
gτ (v)ikφ(t− τ)dτ (3.11)

gτ (v) = e−ikvτ−στF′(v) (3.12)

g defines an infinite family of distribution functions, indexed by τ . All solutions to equation 3.1
are superpositions inside this family of states, as given by equation 3.11. From the opposite point
of view, let f(v) be an arbitrary distribution function. The easier f is to represent as a linear
combination of gτ , the closer it is to an actual solution of 3.1. Conversely, the more energy k2|φ|2
a state requires to appear, the more convoluted φ is in 3.11, the less reachable it is.

To quantify this, we reduce the infinite family g to a set of principal components (Jolliffe, 2002).
In order to achieve this, we construct the so-called reachability Gramian R

R(v′, v′′) =
∫ +∞

0
gτ (v′)g∗τ (v′′)dτ

= F′(v′)F′(v′′)
2σ + ik(v′ − v′′) (3.13)

This (infinite-dimensional) matrix is symmetric, positive and bounded. It can be diagonalised as

R(v′, v′′) =
+∞∑
p=0

λ2
pfp(v′)f∗p (v′′) (3.14)

The orthonormal eigenvectors fp correspond to principal components. The eigenvalues λ2
p allow

to order them from most reachable (high λp) to least reachable (low λp). All the distributions
functions in the family gτ can be written as an (infinite) sum of fp. For numerical application, we
will discretise the velocity space. The Gramian R will become a matrix Rpq = R(p∆v, q∆v).

To diagonalise, we need the fp to be orthogonal, but we are yet define with which inner product.
We need a second symmetric matrix to define this orthogonality. It can be provided by measuring
the observability of the states. Given a distribution function f at t = 0, the density at later times
is given by

n(t) =
∫

e−ikvt−σtf(v)dv (3.15)
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A state that cannot be observed is of no interest for us. Conversely, a state that is clearly and
strongly visible for a long time is physically relevant and should be captured. For our toy model,
we chose to only measure the density response n. The signal strength for a state f can be measured
as a squared norm of n for positive times. We introduce the observability Gramian O equation
3.16. This can be generalised to several moments by adding the appropriate terms in the integral
in the left-hand side. ∫ +∞

0
|n(t)|2dt =

∫
O(v′, v′′)f∗(v′)f(v′′)dv′dv′′ (3.16)

O(v′, v′′) = 1
2σ − ik(v′ − v′′) (3.17)

Notice the changed sign with respect to 3.13. As a symmetric positive matrix, O provides an
inner product. We can proceed to computing our principal components equation 3.14. In this
case, λp is called a Hankel singular value. The orthonormality of the fp makes λ2

p scale with
their observability. Therefore, the λp measure the product of observability and reachability for
a distribution component fp. Since the components are orthogonal with respect to O, we can
construct the dual basis µp

µp(v′) =
∫

O(v′, v′′)fp(v′′)dv′′ (3.18)∫
µp(v)fq(v)dv = δpq (3.19)

3.3.2 Usage for model order reduction
We decompose the perturbed distribution function on the basis defined by the gp, weighted by new
dynamical variables xp. The functions µp give a projection basis, a set of generalised moments to
consider for the reduction.

f(t, v) =
+∞∑
p=0

xp(t)fp(v) (3.20)

xp(t) =
∫
µp(v)f(t, v)dv (3.21)

By plugging this form into the Vlasov equation 3.1 and projecting against the µp, we can formulate
the evolution of the xp as

ẋp =
+∞∑
q=0

Apqxq +Bpφ (3.22)

m` =
+∞∑
q=0

C`qxq (3.23)

with the matrices

Apq =
∫∫

dxdvµp(x, v)(−ikv)fq(x, v) (3.24)

Bp =
∫∫

dxdvµp(x, v)F′(v)ik (3.25)

C`q =
∫

dvv`fq(x, v) (3.26)

Truncating the sum in equation 3.20 provides a finite-dimensional model, with state defined by
the xp. The relevance of the truncation is defined by the sequence of Hankel singular values λp.
The accuracy of the reduced model is defined the sum of neglected singular values (Gugercin &
Antoulas, 2004). More generally, the sequence of singular values allows to estimate the reducibility
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of the original equation. The faster they decay, the shorter the sum 3.20 can be to reach the same
accuracy.

This method departs from the more traditional principal component analysis (Pearson, 1901;
Jolliffe, 2002) by using the observability Gramian instead of the implicit identity matrix. The
latter is determined by the data acquisition choice rather than physics, and leads to poorer reduced
models (Rowley, 2005). We remark the scaling of the Gramians does not modify the reduced basis,
making the scalar σ/|k| the only regularisation parameter.

3.3.3 Numerical investigation
The kinetic equation 3.1 describes dynamics in a continuous-velocity space. Grid-based simulations
require a discretisation in the velocity space. Because of the finite grid, the discrete system is
plagued by a return to initial conditions. With a uniform radial grid of step ∆v, the impulse
response is written

f(t, j∆v) = e−ijk∆vt−σtikF′(j∆v)φ(t = 0) (3.27)

The first exponential factor is periodic in time, of period T = 2π/k∆v. This periodicity is a
spurious numerical echo. It is due to the discretisation, and can be thought as aliasing in kv space
for equation 3.6. Relevant simulations thus require a regularisation to remove this effect, such as
σ � k∆v. This can be achieved either through a thinner grid, or by strong enough collision term.

We compute numerically the two Gramian matrices 3.13 and 3.17 on a uniform velocity grid
between −5 and 5 times the thermal velocity, with ∆v = 10−2. Regularisation is σ/k∆v = 2. It
should be noted that up to a scaling factor, the two matrices 3.13 and 3.17 only depend on σ and
k through the ratio σ/|k|. As a consequence, in the following and until paragraph 3.5.2, we shall
consider only k = 1.

We use the Schur-based computation method from (Penzl, 2006). Given the Cholesky fac-
torisation of the matrices R = RR† and O = OO†, the singular value decomposition of R†O is
computed. The singular values are exactly the Hankel singular values λp. The left singular vectors
up yield the distribution components fp = Rup.

Hankel singular values are plotted figure 3.2. The figure outlines seven outstanding well-
separated singular values and a bulk of singular values with Gaussian decrease. The first seven
correspond to truncation relevant modes. The bulk modes are a reminder of Van-Kampen modes
around each velocity grid point. The bulk modes are purely numerical modes, due to the finite-time
recurrence of the Fourier-space formulation. Increasing σ/∆v decreases the bulk, and unearthes
additional discrete modes. Nevertheless, modifying σ/∆v does not lead to discernible change to
the shape of discrete modes.

The strong separation between the first singular values is promising for model order reduction
perspectives. In our case, the singular values drop 5 orders of magnitude in the first 7 singular
values. The relevance of additional dimensions for the description decays rapidly. From this
consideration, the dynamics of the linear Vlasov equation 3.1 appears to be low-dimensional, and
a reduced model should be accessible. Conversely, the singular values corresponding to the bulk
are very close together. Adding components fp from this bulk should not increase the accuracy of
a reduced model.

The balanced truncation basis is shown figure 3.3. The structures are different from the Hermite
polynomial used for fluid modelling. The complex amplitude of the components fp is reminiscent
of the derived equilibrium |fp| ∼ F′(v). Surprisingly, the complex argument of the fp(v) decreases
monotonically with v. This indicates that only negative velocity-Fourier wave-numbers kv < 0 are
involved. This can be explained by the filamentation process: positive kv drift towards kv → +∞
and are never observed by polynomial moments at kv = 0. On the other hand, negative kv pass
once at kv = 0 before going away at kv → +∞.

3.4 Review of interpolation-based reduction
Balanced truncation requires to construct two Gramian matrices. For a velocity grid of size Nv,
each Gramian has size N2

v . This renders the method computationally expensive. Furthermore, the
performances of the method are bounded by those of the discrete Vlasov model.
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Figure 3.2: Hankel singular values of the balanced truncation problem.

On the contrary, interpolation-based model order reduction is a phenomenological method. It
only requires the evaluation of the reference kinetic frequency response function Hkin, equation 3.3.
The closure problem is a reduction of the infinite-dimensional Vlasov equation to a finite dimen-
sional dynamical system whose variables are the fluid moments. Because of the finite dimension,
the associated transfer function n/φ is a rational function of the phase velocity ζ, akin to equation
3.10. Instead of constructing a projection basis equations 3.20–3.21 for the Vlasov equation, we can
try to directly approximate the reduced transfer function. Several methods have been employed
to this end (Gustavsen & Semlyen, 1999; Grivet-Talocia & Gustavsen, 2016). We chose to present
the interpolation framework (Antoulas et al., 2010; Beattie & Gugercin, 2017): how to construct
a rational transfer function Hred which interpolates Hkin at chosen points?

This can be done using the Loewner framework (Mayo & Antoulas, 2007). The method has
found wide applications, not limited to model order reduction (Gosea, 2017; Gosea & Antoulas,
2017; Pontes Duff Pereira, 2017; Karachalios et al., 2018; Vuillemin & Poussot-Vassal, 2019). First,
let us generalise the problem. Our reduced linear time-invariant system (equation 3.22) can be
written in the so-called descriptor form as

Eẋ = Ax+Bφ (3.28)
n = Cx (3.29)

where E and A are two square matrices, where E is invertible. B is a column matrix, and C is a
row matrix. x is the state variable. The associated response function is

Hred(ζ) = C · (−iζE −A)−1 ·B (3.30)

This representation is highly redundant: changing x into S−1x for some matrix S does not change
the dynamics, only the matrices E,A,C. Neither does left-multiplying the equation 3.28 by a
matrix T , only the matrices E,A,B. This freedom allows to chose the coefficients in B and C,
and then to fill-up the matrices E and A.
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Figure 3.3: Plot of the components corresponding to the first four Hankel singular values.
Above: norm of the distribution components fk(v). Below: complex angle of the distribution
components fk(v).

3.4.1 Construction of the matrices
We want to construct a set of matrices E,A,B,C such that Hred(αp) = Hkin(αp) and Hred(βq) =
Hkin(βq) for two sets of (possibly complex) frequencies αp and βq. We chose to define arbitrarily
Bp and Cq to the interpolated values. The response function Hred will interpolate Hkin as soon
as the inverted matrix −iζE − A allows to select the right coefficient off Bp or Cq. This can be
achieved by constructing the two matrices E and A such that, for all p, q,

(−iαp)Epq −Apq = Cq (3.31)
(−iβq)Epq −Apq = Bp (3.32)

Bp = Hkin(αp) (3.33)
Cq = Hkin(βq) (3.34)

The first equation is our selection rule: C must be the pth row of −iαpE − A. This guarantees
that Hred(αp) = C · (−iαpE−A)−1 ·B = Bp. Likewise, the second equation forces Hred(βq) = Cq.
Finally, the definitions of B and C give the values to be interpolated.

By modifying equations 3.31–3.34, the method can be generalised to also interpolate the de-
rivatives (Mayo & Antoulas, 2007) and to match the asymptotic behaviour at high frequency. In
order to interpolate the point αp up to order K, the trick is to arrange the successive derivatives
of Hred in order after the value. The matrix C is such that, for 0 6 r 6 K,

Cq+r = 1
irr!H

(r)
red(βq) (3.35)

= C · [(−iβqE −A)−1 · E]r · (−iβqE −A)−1 ·B (3.36)

By straightforward recursion, this is equivalent to asserting, in addition to 3.31, that for 1 6 r 6 K,

−iβqEp,q+r −Ap,q+r = Ep,q+r−1 (3.37)
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For points at infinity, the formulation is reversed: for 1 6 r 6 K,

Hred(ζ) =
+∞∑
r=0

C · iE−1 · [iA · E−1]r ·B
ζr+1 ≈

K∑
r=0

iBp+r
ζr+1 (3.38)

E0,q = Cq (3.39)
Ep+r,q = iAp+r−1,q (3.40)

Using the two last equations, we recognise the well-known form of the fluid equations 3.8 as

A · E−1 =


0 −i

. . . . . .
0 −i

γ0 · · · · · · γN

 (3.41)

C · E−1 =
(

1 0 · · · 0
)

(3.42)

Bp = −ik
∫
vpFeqdv (3.43)

where γ gives the coefficient of the closure. We recover that any solution formulated as the closure
of the N th moment matches the behaviour at infinity at order N . Two-sided interpolation “α = β”
is possible, doubling the order of interpolation.

3.4.2 Collisionless closures as special cases
For instance, to compute an order ` realisation matching the high-frequency behaviour at order 2`,
we consider setting α = β all infinite. If ` is even, it corresponds to setting the `+ 1st cumulant to
zero. In this case, the Loewner matrices have anti-diagonal (Hankel) structure, and can be written
as

Hred(ζ) =
∑
r>1

γr
ζr

(3.44)

E =

 γ1 · · · i`γ`
...

. . .
...

i`γ` · · · −γ2`−1

 A =

 γ2 · · · i`γ`+1
...

. . .
...

i`γ`+1 · · · −γ2`

 (3.45)

Bp = Cp = −iγp (3.46)

If ` is odd, the matrix E is singular, the model is degenerate. In order to have the models
corresponding to zeroing the `th cumulant, we need interpolate the adiabatic dynamics by setting
β` = 0 (but keep α` =∞). In that case, the matrices become

E =


γ1 · · · i`−1γ`−1 −H(0)
...

. . .
... iγ1

...
...

...
i`γ` · · · iγ2`−2 i`γ`−1

 A =

 γ2 · · · i`−1γ` γ1
...

. . .
...

...
i`γ`+1 · · · iγ2`−1 i`−1γ`−1

(3.47)
Bp = −iγp (3.48)
C =

(
−iγ1 · · · −iγ`−1 H(0)

)
(3.49)

In addition, the 3-field and 4-field Hammett–Perkins models correspond to all infinite α, with
β = (∞, 0, 0) and β = (∞, 0, 0, 0). This choice of interpolation points directly corresponds to
the Padé approximation order in (Hammett & Perkins, 1990). More generally, we expect all the
closures found by (Hunana et al., 2018) to be computable by this method, using only high-order
interpolation at 0 and ∞.

This interpolation method is very lightweight, and almost phenomenological: the model is built
so as to match the behaviour at phase velocities αp and βq. However, the choice of those αp and βq
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is completely free, and left to the wisdom of the physicist. The hydrodynamic behaviour is encoded
by interpolation at infinity, while kinetic effects happen for finite phase velocities. The symmetry
between positive and negative phase velocities advises using interpolation points with the same
symmetry. While optimality properties have been shown for some special relations between the
interpolation points (Gugercin et al., 2006; Beattie & Gugercin, 2012), this choice has not been
retained here because of numerical difficulties.

3.5 Numerical comparison with known closure schemes
We compute two interpolated models: a 3-dimensional model matching high-frequency behaviour
at order 3 and interpolating Hkin at ζ = 0,±1.3; and a 4-dimensional model matching high-
frequency behaviour at order 2, interpolating at order 2 at ζ = 0, and at order 1 at ζ = ±1.3 and
ζ = ±7.04. The value of 1.3 has been chosen inside the thermal region. The value of 7.04 has
been chosen so as to preserve the sign of the imaginary part. Choosing symmetric interpolation
points makes the model real when written in physical coordinates. Those are compared to the
zero-cumulant fluid models and to Hammett–Perkins models. Wang’s closure (Wang et al., 2019)
is equivalent to 4-field Hammett–Perkins, and is not studied separately.

For most cases, the stationary limit ζ → 0 verifies H → −1, recovering the expected low-
frequency response n ∼ −n0×eφ/T . For high-frequency waves ζ →∞, the fluid, Hammett–Perkins
and interpolated formulations correctly give H ∼ ζ−2. Balanced truncation is worse performing
in this region, exhibiting a slower decrease H ∼ αζ−1 + (1 + β)ζ−2, with α and β going to 0 when
increasing the number of components.

3.5.1 Accuracy of the Vlasov dynamics

The error on density are plotted figure 3.4, as the complex modulus |Hmodel(ζ) − Hkin(ζ)|. For
reference, the kinetic response |Hkin(ζ)| is plotted in dotted line. Adding components fp to the
balanced model from the bulk of Van–Kampen modes does not increase accuracy. Our new models
outperforms both Hammett–Perkins formulations in the thermal phase velocity region, without
a significant penalty in the low phase velocity region. Unsurprisingly, the best response in the
high phase velocity region is obtained from more conventional fluid models, because of very weak
kinetic effects in this regime. As the interpolated models explicitly constrain their behaviour at
infinity, their performances are comparable. Landau phase-mixing phenomenon is embedded into
the balanced truncation formulation as a damping term. This is confirmed by looking at the
eigenvalues of the balanced truncation system, table 3.1, whose imaginary part are well below the
−σ = 0.02 regularisation term. More generally, all the eigenvalues of both the balanced truncation
and interpolation model have a larger negative real part than the Hammett–Perkins model, hinting
at a stronger damping behaviour. The imaginary parts come in the thermal range, and in conjugate
pairs to keep the symmetry between positive and negative phase velocity.

Model Eigenvalues
Balanced 3 0. ±1.576 + 1.222i

Interpolation 3 0. ±1.508 + 0.894i
Hammett-Perkins 3 0. ±1.472 + 0.463i

Fluid 3 0. ±1.732− 0.i
Balanced 4 ±0.678 + 1.485i 2.087 + 1.479i

Interpolation 4 ±0.617 + 1.272i 1.956 + 1.146i
Hammett-Perkins 4 ±0.555 + 1.004i 1.922 + 0.755i

Fluid 4 ±0.742− 0.i 2.334− 0.i

Table 3.1: Eigenvalues of the reduced models.
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Figure 3.4: Reduced model error for density as a function of phase velocity. The “kinetic re-
sponse” curve corresponds to |Hkin(ζ)|, to be used as a baseline for comparison. The “balanced”
curves correspond to the response of the balanced truncation model. The “fluid” curves corres-
pond to the zero-cumulant models.

3.5.2 Coupled Vlasov-Poisson problem
The previous section investigated the behaviour of the uncoupled Vlasov equation. We now try to
recover two well-known features of the Vlasov-Poisson system: Landau damping and bump-on-tail
instability. The dispersion relation is

k2 = H(ζ) (3.50)

with H one of the frequency responses above, and k is the spatial wave-number scaled to the
Debye length. We solve this dispersion relation by computing the right-hand-side H(ζ) on a grid
of complex ζ. For each value of <[ζ], seek the value of =[ζ] where the imaginary part =[H[ζ]] is
closest to zero. The value of k2 is given by <[H[ζ]]. A more elaborate method would be to solve
the polynomial equations arising from the transfer functions, but precision is not an issue.

The results are given figure 3.5. We observe that for k > 0.4, the behaviour of the 4-field
balanced truncation model is very close to the kinetic result. Unfortunately, a very low k instability
appears, related to high phase velocities. For the “balanced 4” model, the maximal growth rate is
smaller than the regularisation σ. This is due to the aberrant behaviour of the transfer function for
high phase velocities: the analytic response is closest to the positive real axis for ζ →∞, and the
reduced model tends to overshoot. The violated property is known as passivity (Grivet-Talocia &
Gustavsen, 2016): the real part of iζn/φ must be positive when =[ζ] > 0. This ensures the energy
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flows from the wave to the particles, so that ~ · ~E > 0. Passivity-preserving extensions of balanced
truncation (Reis & Stykel, 2009) have been tried unsuccessfully.

The interpolation method outperforms the Hammett–Perkins method in both cases. While
being less precise than the balanced model for k > 0.4, the passivity constraint is respected, and
Landau damping damps. The optimal choice in terms of interpolation error should be α = β
opposite complex conjugates of the dynamical poles (Beattie & Gugercin, 2012). Unfortunately,
this choice leads to the same kind of passivity breakage.
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Figure 3.5: Numerical dispersion relations for the Landau-damping test.

We also benchmark the bump-on-tail instability. It can be excited by mixing another cold
Maxwellian into the equilibrium. To study it, we double the state space, once for the bulk, once
for the beam. We use the same method for solving the dispersion relation

k2 = H(ζ) + n1H

(
ζ − u1√
T1

)
(3.51)

where n1 = 0.2, u1 = 3 and T1 = 0.01 are the density, velocity and temperature of the cold
beam. In the region where the slope of the distribution function is reversed, for 2.7 < ζ < 3, the
system is unstable. Farther for this phase velocity (including opposive phase velocity), the waves
are Landau-damped. The results are shown on figure 3.6. As a function of the wave-number k,
two branches appear, corresponding to positive and negative phase velocities. As earlier, both
interpolation and balanced truncation methods feature a damped branch, with a modulated shape
near kλD = 0.4 compared to stock Landau damping. In addition, an unstable branch appears in
the kλD < 0.5 region, which corresponds to the expected bump-on-tail instability. Once again,
the balanced truncation method fails in the region kλD < 0.1. Meanwhile, both interpolation and
balanced method outperform both the Hammett–Perkins and the zero-cumulant fluid models for
the bump-on-tail instability.
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Figure 3.6: Numerical dispersion relations for the bump-on-tail distribution function. The
bump-on-tail case uses n1, u1, T1 = (.2, 3, .01). The slope of the distribution function is reversed
for 2.7 < v < 3.

3.6 Discussion of the method
3.6.1 Back to real space
The obtained models have been derived in terms of the phase velocity ζ = ω/k. In order to
formulate them in real space, they need to be extended to k < 0 (the equations for k = 0 are
trivial). The correct way to achieve that is to use the symmetries of the dynamical system.
Changing k → −k corresponds to discussing frequencies ω with negative real part. To keep the
causality properties, the imaginary part of ω must remain the same. The transformation rule is
then ω → −ω∗. The state-space model is

−iωx = Akx+Bkφfor k > 0
+iω∗x = −Akx−Bkφfor k < 0

or in general

−iωx = |k|<[A]x+ ik=[A]x+ |k|<[B]φ+ ik=[B]φ (3.52)

We recover the Hammett–Perkins prescription of an |k| term. In real space, this is associated to a
non-local operator instead of a regular x-derivative.

3.6.2 Application to other kinetic problems
Since the interpolation method only requires evaluations of the frequency response function, it is
very versatile and can be applied to other kinetic problems. For instance, we can consider the
linear gyro-kinetic problem. Analytical work allows to perform the resonant integrals formally in
terms of the Fried and Conte function, leaving smooth integrals in other directions. The KineZero
model performs such computations as part of the QuaLiKiz code (Bourdelle et al., 2002; Citrin
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et al., 2017; Stephens, 2019). An interpolatory reduced model could be formulated to interpolate
simultaneously the few first moments of the perturbed distribution function, as proposed equations
3.53–3.55.

H∗n

(ω
n

)
≈

∫ 1
ω − k||v|| − nuD

Fdv||dµdθ (3.53)

H∗u

(ω
n

)
≈

∫
v||/vth

ω − k||v|| − nuD
Fdv||dµdθ (3.54)

H∗e

(ω
n

)
≈

∫ (
m
2 v

2
|| + µB

)
/T

ω − k||v|| − nuD
Fdv||dµdθ (3.55)

where ω is the mode frequency, n its toroidal wave number, uD the toroidal precession angular
velocity. The gyro-kinetic dispersion relation would then be written as

1 + n2q2ρ2
∗ =

∫
ω − ω∗

ω − k||v|| − nuD
Fdv||dµdθ (3.56)

= (ω − ω∗n)H∗n − ω∗uH∗u − ω∗T
(
H∗e −

3
2

)
ω∗ = ω∗n +

v||

vth
ω∗u + ω∗T

(
m
2 v

2
|| + µB

T
− 3

2

)
(3.57)

with ω∗ the diamagnetic frequency split into the contributions ω∗n,u,T or the density, parallel velo-
city and temperature gradients. In this local linear setting, the functions H∗n,u,e are independent
of the density and temperature gradients. Rather, the gradients only appear in the assembled dis-
persion equation 3.56. As a consequence, we expect the coefficients of the closure to be independent
of the gradients, as seen by (Sarazin et al., 2009). Extensions of the method for parametric model
order reduction (Lefteriu et al., 2011) would allow to include the dependency on the ballooning
angle or the E ×B shear.

3.6.3 Non-linear extension
The balanced truncation and interpolation methods are built for linear systems, and their applic-
ability to non-linear systems is not straightforward. The simplest heuristic is to simply replace
the time derivative ∂t → ∂t + ~u · ~∇ thanks to Galilean invariance. More sophisticated methods
have been devised to extend the method systems with a so-called bilinear non-linearity (Benner
& Damm, 2011; Benner & Breiten, 2012; Gosea, 2017). Instead of embedding the non-linearity as
the Reynolds stress ~u⊗~u, quadratic in fluid moments, the non-linearity would remain as a product
of fluid moments and the electric field.

Since the idea is to formulate a reduced order model to accelerate simulations, the interpolation
method can be leveraged to compute a reduced model directly in discrete time. This can be done
by interpolating at values of eiω∆t instead of the frequency ω (Vuillemin & Poussot-Vassal, 2019).
The complexity would not change much —everything would still be in a largely opaque matrix—,
while the numerical accuracy may benefit.

Progress has also been made for fluid systems using balanced proper orthogonal decomposition
on nonlinear simulations instead of their linearisation (Rowley, 2005). In the cited works, balancing
has shown to improve significantly the relevance of the decompositions. Other methods based on
neural networks have also shown promising results (Ma et al., 2020).

3.7 Conclusion
The reduction of the collisionless Vlasov equation has been investigated using the balanced trunca-
tion method. This method constructs a simplified dynamical space, where the basis is chosen so as
to maximise both the reachability and the observability of its individual vectors. The rapid decay
of the Hankel singular values indicate a strong reducibility of the Vlasov model. The balanced
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truncation reduced model reconstructs the Vlasov dynamics accurately in the thermal phase velo-
city region, but has degraded performances in the asymptotic low and high phase velocity regimes.
This degradation involves a violation of passivity. As a result, the coupled Vlasov–Poisson dynam-
ics features a spurious instability at high phase velocities. This violation comes from the difficulty
to approximate the Landau damping rate ω4/k3 exp(−ω2/k2) as a rational function. General
passivity-preserving model reduction is still an open problem (Grivet-Talocia & Gustavsen, 2016),
but existing algorithms may allow more systematic application of the method.

We have formulated a novel non-collisional closure method based on interpolation of the lin-
ear response function, and applied it to the Vlasov–Poisson problem. The method generalises
derivations based on asymptotic matching at low and high frequency. The resulting model out-
performs usual Hammett and Perkins’ formulation in the thermal phase velocity range, for both
the density response, the Landau damping rate and the bump-on-tail instability growth rate. The
general method is very versatile, and should allow for efficient and cheap model order reduction
for gyro-kinetic toroidal drift waves in the collisionless regime.
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Chapter 4

Persistence of linear properties in
flux-driven turbulence

A tokamak is an open system: it is forced out of equilibrium by a heat source, develops a self-
consistent turbulent state, and transports the heat outwards. The excess is removed at the bound-
ary by thermal sinks and dissipative processes. The conjoint evolution of the free energy sources
and of the fluxes allows for rich dynamics at all scales. Modelling through flux-driven simulations
allows to estimate the resulting state: the balance between sources, sinks, neoclassical and turbu-
lent fluxes dictate density and temperature profiles. On the one hand, zonal flow (Diamond et al.,
2005) are a key player: their stabilising effect on turbulence (Biglari et al., 1990; Terry, 2000)
gives rise to complex patterns (Kosuga et al., 2014; Dif-Pradalier et al., 2015; Peeters et al., 2016;
Dif-Pradalier et al., 2017b). The generation of zonal flows is a generic process in self-organised
systems (Charney & Drazin, 1961; Balmforth et al., 1998; Paparella & von Hardenberg, 2012). As
a critically non-linear process, it has provided a puzzle for the community. On the other hand,
turbulence saturation through avalanche formation (Garbet & Waltz, 1998; Beyer et al., 2000;
Idomura et al., 2009; McMillan et al., 2009; Sarazin et al., 2010) and spreading (Garbet et al.,
1994; Hahm et al., 2004) remains insufficiently understood. The interplay of all these dynamical
events, together with their interaction with the equilibrium profiles, is expected to determine the
generation of transport barriers (Miki et al., 2012; Itoh & Itoh, 2016; Ashourvan & Diamond, 2016,
2017), eventually leading to bifurcations (Hinton, 1991; Itoh et al., 1994). However, the imprac-
tical numerical cost of such simulations prompts the use of reduced models. In this context, two
complementary assumptions are often used: the quasi-linear reduction, and the locality assump-
tion. These will be adressed in the following, together with their relevance when confronted to the
outputs of flux-driven gyro-kinetic simulations, by essence free of such simplifications.

4.1 Quasi-linear estimation of the fluxes

Efficient estimates of transport levels have been achieved through local quasi-linear modelling
(Bourdelle et al., 2007; Citrin et al., 2017; van de Plassche et al., 2020). These models have been
extensively benchmarked against non-linear simulations (Jenko et al., 2005; Casati et al., 2009)
and experiments (Kotschenreuther et al., 1995; Waltz et al., 1997). The turbulent intensity is not
predicted, and has to be externally provided by a so-called saturation rule (Citrin et al., 2017).
Although it has proven robust beyond its assumptions (Besse et al., 2011), quasi-linear theory relies
on ad-hoc closures and debated assumptions (Elskens & Escande, 2002; Diamond et al., 2010). It
has not yet demonstrated an ability to simulate self-organisation processes such as zonal flows and
staircases. Whether this is a dead-end of the approach or a limitation of current implementations
is still unknown. Three assumptions are specifically under question: (1) the linearity of turbulent
fluctuations; (2) the choice of a saturation rule; (3) the magnetic surface locality.

63
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4.1.1 The quasi-linear problem
The particular quasi-linear theory attempts to describe the motion of particles subject to those
perturbations. For stationary and toroidally symmetric electric field, the particles follow an in-
tegrable Hamiltonian motion. In the presence of perturbations, this is not longer guaranteed.
Depending on the strength of this perturbation and the properties of the particle, the motion can
remain nearly integrable or become chaotic. In the latter case, particles are no longer kept close
to their reference flux-surfaces, and can be deconfined. On very short times, the particles see
individual perturbations, and the motion remains predictable. Conversely, on larger time scales,
the perturbations decorrelate and tend to resemble a stochastic process. In turn, the particles
trajectories become stochastic and diffuse in phase space (Elskens & Escande, 2002).

Assuming each particle has a stochastic motion, the distribution function diffuses. From the
particles’ responses, matter and heat fluxes can be computed, formulating the flux quasi-linear
model. Given an ambient toroidally symmetric distribution function Feq and weak enough per-
turbations, the perturbed response of the distribution function f can be approximated as linear in
the potential φ̃, hence the quasi-linear name

fnω = Hnω · [φ̃Feq]nω (4.1)

where Hnω is some linear operator. This response notably depends on the temperature and density
gradients, but also on the fluctuation’s properties like the toroidal wave-number. This linear
relation can be used to estimate the transport due to the fluctuations of the potential (Diamond
et al., 2010). For instance, the radial heat flux appears as

Qr =
∫

fast
dω
∑
n 6=0

∫ (m
2 v

2 + µB
)
fnωv

r∗
E,nωB

∗
||Rdθdvdµ

QrQL[φnω] ≈ 1
rB

∫
fast

dω
∑
n 6=0

∫ (m
2 v

2 + µB
)
∂θφ̃
∗
nωHnω · φ̃nωFeqRdθdvdµ (4.2)

This heat flux still depends on the specific realisation of turbulent flows, but is a quadratic
quantity in the potential field. Therefore, in the ergodic limit, its ensemble average on the potential
fluctuations should be finite. This last quantity, the quasi-linear heat flux, only depends on the
spectrum of the potential and ambient distribution function Feq.

The vaguely labelled “fast” frequency integral in the equation deserves some explanation. The
distribution function fnω reacts to the product of the fluctuations of the potential φ̃nω and of
the ambient distribution function Feq (equation 4.1). This response is frequency dependent and
causal, so embeds a time delay. For consistency of the ambient vs. fluctuation splitting, the
profiles must evolve more slowly than this delay. In other words, in the frequency integral equation
4.2, “fast” means very large compared to the profile frequency, and of the order of fluctuation
frequency. The exact same condition allows to approximate Hnω · [φ̃Feq]nω ≈ [Hnω · φ̃nω]Feq.
This temporal separation is justified for quasi-static profiles. But may becomes more brittle for
flux-driven dynamics.

For instance, the time spectra of two GYSELA simulations are shown figure 4.1. The spectra
of the profiles feature a dominant stationary component, and a weak higher-frequency spectrum.
The turbulent n 6= 0 modes have a consistently broad spectrum.

4.1.2 The saturation issue
The only remaining modelling knob is the potential fluctuation spectrum: the linear description
makes no attempt to provide one. A closure is needed for effective use of this discussion in integrated
transport estimation. Turbulent fluctuations tend to grow from linear unstable eigenmodes of the
coupled Vlasov–Poisson system. As instabilities, they can be expected to dominate the dynamics,
while stable modes are damped out. Indeed, several frameworks assume the spectrum only to
contain unstable modes, with the amplitude given by the non-linear saturation level. A popular
method is fitting on reference non-linear simulation (Waltz et al., 1997; Staebler et al., 2007; Citrin
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Figure 4.1: Frequency spectrum of axisymmetric (dashed lines) and non-axisymmetric modes
(dotted lines) for the two simulations discussed in paragraph 4.2. The bump at frequency
1.4 × 10−3ωci in the “strong drive” simulation is due to a numerical artefact in the collision
operator. It should not affect the results of this section.

et al., 2017). We shall call this system saturated quasi-linear models, to distinguish from bare-bones
flux estimation.

This modelling strategy faces several challenges. First, the resulting model is obviously not
self-consistent, as it depends on exterior data. Second, restricting the spectrum to unstable modes
is debatable: turbulence spreads into linearly stable regions, and can populate stable modes in
unstable regions (Garbet et al., 1994; Hahm et al., 2004; Terry et al., 2006; Hatch et al., 2011).
Third, the turbulent spectrum has no reason to saturate at a quasi-static value: it needs to
responds to the dynamical evolution of the free energy source and large-scale flows in the problem.
For instance, an ubiquitous feature in non-linear simulation of tokamak turbulent flows is the so-
called avalanche effect (Garbet & Waltz, 1998; Beyer et al., 2000; Idomura et al., 2009; McMillan
et al., 2009; Sarazin et al., 2010): heat and matter packets travel across the plasma domain with a
seemingly ballistic motion. The precise dynamics of these avalanches is still to be known. Already,
generation of and interplay with sheared zonal flows is believed to be critical (Terry, 2000; Diamond
et al., 2005). We expect that any self-consistent description of flux-driven dynamics requires a self-
consistent back-reaction on zonal flows.

On the other hand, the rigorous evolution of the turbulent spectrum is acccessible through
the second-order cumulant equation (Farrell & Ioannou, 2007; Marston et al., 2008; Srinivasan &
Young, 2012). This equation is very complicated, depends on the third-order cumulant, unearthing
a cumulant closure problem (Tobias & Marston, 2013). Nevertheless, this equation has proven
useful in its ability to recover zonal flow growth. As an equation on the phase space of waves,
postulating a scale separation between the turbulent waves and the profiles allows to formulate
an optical approximation (Parker, 2016). The associated equation corresponds to a wave-kinetic
equation (Weinberg, 1962).

Equation 4.1 and 4.2 contain the heart of the quasi-linear modelling: turbulent fluctuations
obey linear dynamics, and only affect the profiles by non-linear self-coupling. As such, those
turbulent fluctuations should be considered as infinitesimal non-interacting waves in a dispersive
medium. This analogy turns out fruitful when pushed further. In a dispersive medium, waves tend
to get moved and molded by their neighbourhoods. A full social theory of waves would require
to understand the fully non-linear dynamics, but a macroscopic theory of non-interacting waves is
accessible. Describing this motion can be done using the eikonal approximation (McDonald, 1988),
which reduces to a wave-kinetic equation upon further scale separation.

4.1.3 Relation to the Hopf hierarchy
In chapter 1, we related the two problems of kinetic moment closure and non-linear flux closure
using the Hopf hierarchy. Let us deepen this analogy. In the non-linear setting, probability
distribution of realisations is not known. The relevant information is its average —the profile—
, and its evolution. In the kinetic system, the associated object is the mean velocity u. Their
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evolution 4.3–4.4 is bound to a quadratic quantity: the profile equilibrium dynamics and the
Reynolds stress on its left-hand side; and a second-order quantity: the flux ~Γ and the pressure
tensor P on its right-hand side.

∂tFeq − [Heq, Feq] = − div ~Γ (4.3)
∂t~u+ div(~u⊗ ~u) +∇Φeq = −divP (4.4)

The laminar dynamics correspond to no turbulent flux, and is analoguous to a cold beam. The
quasi-linear approximation seeks to relate the pressure tensor to the dynamics of particles around
a reference position

d
dt

(
~x− ~x0

~v − ~u(x0)

)
=

(
~v − ~u(x0)

−(~x− ~x0) · ~∇~∇Φeq(x0)

)
(4.5)

where ~x0 is in the fluid frame, moving at velocity ~u. Instabilities of the beam correspond to regions
where the electric field is divergent, widening the beam. A saturation rule corresponds to defining
an effective pressure from a priori estimates of the velocity excursions in this dynamics.

The next step is embracing a non-zero pressure P . As usual, its dynamics depend on the
laminar advection, and a third-order term. The wave-kinetic formulation here corresponds to
using the linearised dynamics 4.5 to define the evolution of the tensor P . In our case, the tensor
P is advected by the flow ~u, and its components are rotated by the fluctuation dynamics. A non-
linear saturation of the pressure can be defined in a quasi-normal fashion by adding a damping
term proportional to P 2.

4.1.4 The locality assumption
The quasi-linear assumption corresponds to a temporal and an intensity assumption, nothing is
said about spatial scales. Still, linear turbulent structures are expected to be radially thin around a
reference magnetic surface (Görler & Jenko, 2008), and to only depend on plasma parameters and
their gradients close by. This is a result of the assumption which relates the distribution function
fluctuations to the potential fluctuations through local equilibrium parameters. This induces a
spatial scale separation between a local turbulent behaviour, and a slower and smoother evolution
of the profiles (Peeters et al., 2009). In the point of view of turbulence, the free energy source
is static and externally defined. The system conserves enough degrees of freedom to non-linearly
saturate turbulence and develop zonal flows, but back-action on the profiles is severely limited.
In this so-called gradient-driven model, the turbulent heat flux becomes a non-linear function of
stationary imposed gradients. As such, this model allows to infer a non-linear turbulent Fourier
law. However, this contradicts flux-driven dynamics, where profile corrugations may render the
scale separation insufficient, resulting in a brittle non-linear Fick’s law (Dif-Pradalier et al., 2010).
Combined with the quasi-linear framework, the locality assumption reveals extremely powerful,
and has been the ground for the development of quasi-linear transport models (Citrin et al., 2017).
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4.2 Persistence of linear properties in turbulent dynamics
In order to test these hypotheses, we perform two non-linear electrostatic gyro-kinetic turbulence
simulations using GYSELA, compute key indicators from the three-dimensional potential and fluid
moment outputs, and confront them to the quasi-linear code QuaLiKiz (Citrin et al., 2017).

We feed QuaLiKiz with the temporal averages of the GYSELA profiles. QuaLiKiz (Citrin
et al., 2017) is a gyro-kinetic quasi-linear code for transport modelling. It solves the gyro-kinetic
dispersion relation with adiabatic electrons. For efficiency, the analytic distribution response is
simplified by computing the shape of the potential fluctuations in the fluid limit (Bourdelle et al.,
2007; Stephens, 2019), while keeping a kinetic treatment of the wave–particle resonance. The num-
ber of numerical integrations is limited by performing the resonant velocity integration analytically.
The effect of zonal flow shear is done by perturbative modification of this response.

As we will see, both simulations exhibit Kubo numbers of a few units, suggesting assumption
(3) is brittle. However, properties of turbulent fluctuations match expected linear properties both
qualitatively and quantitatively, strengthening this assumption. As will be discussed, a static
saturation rule would suggest the temporal variations of the heat flux to be determined by the
fluctuations of the phase. However, this is not verified: the variations of the turbulent intensity
explain most of the variations the flux. Furthermore, the turbulent transport exists in the linearly
stable region. These results emphasise the need for a self-consistent prediction of the turbulent
intensity, taking into account turbulent spreading.

4.2.1 The setup

We perform non-linear flux-driven simulations using the code GYSELA. It simulates electrostatic
turbulence between the full gyro-kinetic ion distribution function and adiabatic electrons, from the
centre to the last closed magnetic surface, with a buffer region extending beyond the “separatrix” at
r/a > 1. With a centrally peaked heat source driving the system out of equilibrium, the simulations
are run long into the turbulent regime, until convergence of the temperature and density profiles.
Both cases are run in the so-called “local limit” (Lin et al., 2002), at ρ∗ = 1/350. In this limit,
the scale separation between the profile behaviour (∼ a) and the turbulent eddies (∼ 10ρi) is often
considered valid. In order to avoid cherry-picking an artificially unfavourable specific set of plasma
para- meters, all other main plasma parameters are differ- ent, as illustrated in table 4.1.

Case ρ∗ Aspect ratio ν∗ (q50; q95) Ti/Te
Near marginal 1/350 A = 3.2 0.24 (1.4; 4.0) 6= 1
Strong drive 1/350 A = 6 0.02 (1.7; 2.8) = 1

Table 4.1: Plasma parameters at mid-radius: normalised Larmor radius ρ∗ = ρi/a; aspect ratio
A = R/a; collisionality ν∗; safety profile q; electron temperature ratio τ = Ti/Te.

The converged normalised temperature gradient profiles R/LT = −R∂rT/T and mean zonal
flow profiles are shown figure 4.2 (R is the tokamak major radius, r its minor radius, and T is
the temperature profile). The linear instability threshold of the equivalent non sheared laminar
plasma is estimated using (Jenko et al., 2001). Because it neglects E × B shear, this threshold
should be thought as a lower bound (Terry, 2000; Garbet et al., 2002; Dagnelie et al., 2019). Also,
the threshold is reported to be upshifted in collisionless regimes (Dimits et al., 2000), although
accounting for collisions somewhat weakens this assertion (Dif-Pradalier et al., 2009).

One simulation is in a “strong drive” regime: the temperature gradient R/LT is well above the
no-flow threshold R/LTc . The zonal flow shear features a large stationary component (plain green
line), with subdominant fluctuations (green shade). Part of the fluctuations resemble the avalanches
observed in (McMillan et al., 2009; Idomura et al., 2009). In opposition, the second simulation is
in a “near marginal” regime: the temperature gradient is around the threshold R/LT ∼ RLTc , and
zonal flow shear is dominated by its fluctuating component. A staircase pattern from the zonal
mean flow exists but remains subdominant. Avalanche-like events are observed to propagate over
a significant fraction of the entire radial domain.
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Figure 4.2: Radial profiles of the normalised temperature gradient (red and blue) and of the
zonal flow (green) profile for the considered simulations. Upper: strong drive simulation. Lower:
near marginal simulation. The plain black lines give an estimate for the instability threshold.
The shaded are correspond to temporal standard deviation.

4.2.2 Strength of the non-linear effects
The above hand-waving about slow vs. fast dynamics can be made more precise by estimating
typical frequencies (Diamond et al., 2010) and associated Kubo number. Quasi-linear modelling of
the heat fluxes assumes turbulent fluctuations obey linear dynamics. The effect of non-linearities
should remain weak enough not to upset the structure of the turbulent cells. From the point of view
of mixing, particles must jump from one eddy to the next before being trapped by the eddy and
engaging in its non-linear advection. Several estimates are proposed hereafter, and summarised
table 4.2.

The non-linearity acts on two scales: individually on the particles and statistically on the
potential and on fluid fields. Particles mostly transit along the field line, and transversely drift
depending on their energy. Given a kinetic nature of the ITG instability, the resonant particle layer
drifts at the diamagnetic frequency. Introducing the poloidal correlation length Lθ of turbulence,
we write the typical time scale required for non-resonant particles to cross the turbulent filament
and jump to its neighbour

ω∗T = 1
Lθ

∇T
eB

(4.6)

with e the species charge, B the magnetic field strength. Turbulent structures over-impose their
E ×B drift on this motion. Turbulent trapping happens if a particle has the time to turn around
the eddy before being decorrelated by drifts. This exploration frequency around the centre of that
structure is given by the vorticity ∇2

⊥φ̃/B. We estimate it using its root-mean-squared value

ωeddy =
〈∣∣∣∣∇2

⊥φ̃

B

∣∣∣∣2
〉1/2

FS

(4.7)
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where the angle brackets denote the flux-surface average of the quantity, and the tilde denotes the
non-axisymmetric part.

The potential field and fluid moments are expected to evolve more slowly, as they average over
the dynamics of individual particles. A relevant time-scale is the correlation time of turbulent
fluctuations, trying to evaluate the cycling between unstable growth and non-linear saturation.
For kinetic instabilities, the eigen-frequency defines the phase velocity of the linear instability.
The relevant Lagrangian correlation time (as opposed to the Eulerian one) has to be evaluated in
a moving frame to remove the associated Doppler effect. We compute this Lagrangian correlation
time τcorr by following the toroidal shift between turbulence snapshots, and only integrating after
realignment. We emphasise the choice of a Lagrangian correlation time: the ratio of Lagrangian to
Eulerian correlation time is of a few units, rising up to 25 in a limited region. Using the Eulerian
correlation time would result in a significant underestimation. This correlation time can be thought
as a jump from one turbulent eddy to a (temporal) successor.

Turbulence acts on the Vlasov equation as both radial ṽrE and poloidal ṽθE advections. Particles
in this velocity field may follow a random walk motion. Using the transverse correlation lengths
Lr and Lθ computed from the GYSELA output, we estimate the turbulent diffusion time scale as
τdiff = Lr,θ/〈|ṽr,θE |2〉1/2. This diffusivity acts on turbulence itself, so should be small compared to
τcorr itself.
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Figure 4.3: Kubo numbers for the principal non-linear dynamics in the problem. Plain and
plusses: turbulent radial and poloidal E ×B velocity effect during a turbulent auto-correlation
time. Circles: trapping of particles due to turbulent vorticity during transverse crossing of the
turbulent filament.

The associated Kubo numbers —ratios of non-linear to linear frequency— are explicit table
4.2, and plotted figure 4.3. For the strong drive simulation, the value is around 1 consistently
across the domain. This suggests that non-linear effects come into play in balance with the linear
dynamics. The higher values for the near marginal simulation are consistent with self-organisation
near criticality, where non-linear behaviours are enhanced (Pringle et al., 2017). Overall, these
values cast doubt on the validity of the quasi-linear assumption of wave turbulence, valid for low
Kubo numbers. The different definitions of K with lead to similar magnitudes, strengthening the
overall conclusion. Yet, quasi-linear theory is known to remain valid well beyond its domain of
validity (G. Laval & Adam, 2018).

4.2.3 Comparison of heat fluxes
Yet, we know the relevance of quasi-linear modelling can extend beyond its immediate domain of
validity (Besse et al., 2011). In order to quantify this, we compare the fully integrated value of the
heat flux between the two models. We feed QuaLiKiz with the temporal averages of the GYSELA
profiles. The heat fluxes in the two simulations are shown figure 4.4.
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Radial diffusion Kr
diff =

√
〈|vrE |2〉

τcorr

Lr

Poloidal diffusion Kθ
diff =

√
〈|vθE |2〉

τcorr

Lθ
Particle trapping Ktrap = ωeddy

ω∗T

Table 4.2: Turbulent Kubo numbers shown figure 4.3.

Figure 4.4: Heat flux from the GYSELA simulations as a function of radial direction (horizonal)
and time (vertical).

The GYSELA heat flux is computed as the flux carried by the non-axisymmetric component
of the radial E × B velocity. Close to marginality, the heat flux is expected to strongly depend
on the gradient. Since GYSELA’s values of R/LN and R/LT vary in time, we need to account
for the prediction uncertainty due to this stiffness effect. This is done by scanning the R/LN and
R/LT values, using 3 × 3 points within GYSELA’s standard deviation. The local limit in which
QuaLiKiz is derived requires the profiles to be smoother than the local instability width, of a few
tens of ρi. To take this into account, we computed QuaLiKiz’s heat flux with an additional radial
smoothing of 20 ρi and 60ρi. This smoothing has been computed by interpolating the profile from
a reduced number of grid points, so as to avoid reducing the density and temperature gradients.
The results are shown figure 4.5.

For the strong-flow test case, the discrepancy goes as high as a factor of 25 near r/a = 0.65. The
zonal flow shear stabilisation effect accounts for a ten-fold reduction of the heat flux when compar-
ing to the same QuaLiKiz simulation with shear removed (not shown). Because of the QuaLiKiz
model for shear stabilisation, part of the difference could be attributed to modelling extrapolation:
some very sharp peaks in the heat flux ratio correspond to positions of vanishing shear. For the
near marginal simulation, the stationary zonal flow shear is smaller, so this shortcoming should be
avoided. In that case, QuaLiKiz underestimates the heat flux by a factor of 3 for a large part of
the simulation, and recovers the correct value on the far side of the chosen uncertainty range.

The local non-linear code GKW (Peeters et al., 2007) has been run on both profiles at positions
r/a = 0.3, 0.4, 0.6. The time-averaged flux are shown figure 4.5. The results for the near marginal
simulation under-estimate the flux obtained by GYSELA. This is consistent with the results from
QuaLiKiz.
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4.2.4 Possible origin of the discrepancy
We investigate further by testing the linearity hypothesis itself. Linear gyro-kinetic analysis pre-
dicts the linear response of the distribution function to an applied disturbance in the potential as
(Garbet, 2001)

fnω = −
(

1− ω − kθv∗
ω − k||v|| − kθvD

)
F
eφkω
T

(4.8)

v∗ = T

eB
∂r lnF (4.9)

with F the equilibrium distribution function at temperature T . kθ denotes the poloidal Fourier
mode number, k|| the parallel wave-number. vD is the poloidal drift velocity, and v∗ is the poloidal
diamagnetic velocity. As part of its flux estimation, QuaLiKiz computes both the active and the
reactive components of the particle and heat flux. This corresponds to the complex integrals

Γn =
∫
ikθfnωφ

∗
nd3vdθ (4.10)

Qn =
∫
ikθEfnωφ

∗
nd3vdθ (4.11)

with E the energy, and where the frequency ω is enslaved to kθ and k|| through the ambipolarity
relation for adiabatic electrons

ZΓn(ω) = Ne
Te

∫
ikθ|φn|2 (4.12)

In the linear setting, the value of |φn|2 is unconstrained, it must be defined using the saturation
rule. The total flux is then given by the sum over the toroidal mode number

〈Γ〉 =
∑
n>0
<[Γn] = 0

〈Q〉 =
∑
n>0
<[Qn] =

∑
n>0
|Qn| sinαn
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We define the phase of the heat flux response as the complex argument of Qn. This property can
be compared to the value computed in the GYSELA simulation, defined as the complex argument
α̂n of

Q̂n =
∫ (1

2 P̂
∗
||,n + P̂ ∗⊥,n

)
v̂rE,ndθ = −i|Q̂n|eiα̂n (4.13)

where P̂||,n, P̂⊥,n and v̂rE,n are GYSELA output 3D data. In addition to the phase, linear theory
also predicts the magnitude of the total heat flux relative to the convected heat flux. We compute
it as

Rn =
∣∣∣∣ Qn
TeqΓn

∣∣∣∣ (4.14)

for both QuaLiKiz and GYSELA. The computed estimates are shown figure 4.6. The relative
contribution of each toroidal mode number to the total flux is shown in the lower panel. Both
phase and magnitude ratios agree qualitatively, for both simulations, for n & 15. Noticeably,
for the near marginal simulation, QuaLiKiz predicts stable modes for n & 40, while these modes
contribute around 15% of the Gysela flux. For lower wave-numbers n . 15, the magnitudes ratios
from two codes depart. This region only accounts for 10% of the Gysela fluxes, but between 35%
and 55% of the QuaLiKiz output.

These results are consistent with previous findings (Casati et al., 2009; Besse et al., 2011).
While it is unclear whether this difference should be attributed to approximations in QuaLiKiz or
to hypothesis breakdown, the overall conclusion is that the fluctuation linearity assumption seems
to hold in the flux-driven non-linear regime.

4.3 Influence of the turbulent intensity
The fluctuation linearity assumption seems to hold in the flux-driven non-linear regime, despite
Kubo numbers around unity. This fortifies the case for quasi-linear integrated modelling. Mean-
while, the mismatch of the flux suggests a reduced involvement of the linear dynamics in the
determination of the heat flux, replaced by a greater involvement of the turbulent intensity spec-
trum. Hence great care has to be taken in the definition of this modelling knob. For instance,
QuaLiKiz’s spectrum uses a double power law in kθ for unstable modes, and neglects stable modes.
The coefficients have been fitted to non-linear gradient-driven simulations with the GENE code
(Casati et al., 2009; Görler et al., 2011; Citrin et al., 2017).

This property is compared to cross-correlation values in the GYSELA simulation. We decom-
pose the heat flux into amplitude and phase effects

Q(t, r) = 〈P̂ v̂rE〉FS = IR sinα(t, r) (4.15)
I = 〈(v̂rE)2〉FS

R =

√
〈P̂ 2〉FS

〈(v̂rE)2〉FS

where I is the turbulent intensity. R and α represent the contribution of the pressure response
magnitude and of fluctuation cross-phase to the heat flux. To test the sensitivity to the turbulent
spectrum, we reconstruct the heat flux as

QA(t, r) = I(t, r)R(t, r)× 〈Q〉t
〈IR〉t

(4.16)

QI(t, r) = I(t, r)× 〈Q〉t
〈I〉t

(4.17)

Qα(t, r) = sinα(t, r)× 〈Q〉t
〈sinα(t, r)〉t

(4.18)

with the angle brackets denoting a time average. These different quantities correspond to synthetic
models: part of the information is computed by a closure model, and the rest is self-consistent. For
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Figure 4.6: (a) Phase for each toroidal Fourier mode from GYSELA simulation (circles) and
QuaLiKiz (stars). The statistics is done on a reduced radial span 0.3 6 r/a 6 0.7. (b) Same plot
for the magnitude Rn (equation 4.14) for each toroidal Fourier mode from GYSELA simulation
(circles) and QuaLiKiz (plusses). The statistics is done on a reduced radial span 0.3 6 r/a 6 0.7.
(c) Normalised contribution of each mode number to the amplitude |Q̂n|.

QA , an average phase 〈Q〉t/〈IR〉t is prescribed, for QI both the phase and the response magnitude
are prescribed. Qα does the converse: we use the true phase, and the turbulent spectrum is mod-
elled externally. For each radial position, we compute the relative error for these reconstructions
as the root-mean-squared distance to the true flux Q, normalised to 〈Q〉. The results are shown
figure 4.7. Only using the phase information, Qα does not lead to a significant gain in precision
compared to just using the constant 〈Q〉. The reconstructions QA and QI perform alike and much
better, except for r/a > 0.6 in the near marginal case where all reconstructions perform equally.
This means that the fluctuations of the heat flux are dominated by the fluctuations in the turbulent
intensity I for large part of radial domain, while R and α could be prescribed externally.

4.4 Conclusion
Experimentally relevant flux-driven simulations of open systems like tokamak plasmas show that,
although quasilinear assumptions may reveal valid, quasilinear modelling likely requires dedicated
closures. Indeed, the magnitude of the turbulent heat flux computed in flux-driven simulations
with the GYSELA is not recovered with the well benchmarked quasi-linear QuaLiKiz model. Kubo
numbers found larger than unity would suggest that quasilinear validity assumptions are broken.
However, the prevalence of linear properties of the fluctuations seem to hold even in the non-
linear regime: magnitude and phase of the pressure response to the potential are well captured
by linear predictions. The mismatch of heat fluxes partly results from the quasilinear closure on
the turbulence intensity spectrum I. Indeed, the latter governs most of heat flux fluctuations,
while the phase contribu- tion remains subdominant. Complementing quasilinear models with a
dynamical equation for I could represent an efficient alternative to present closures, for instance
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Figure 4.7: Relative error on the heat flux for the reconstructions 4.16–4.18.

in the form of k − ε equations. Also, the locality assumption of the quasilinear framework may
need being revisited —or possibly also the role of damped modes— since the non-linear heat flux
exhibits non-vanishing magnitudes in linearly stable regions.

As a final word, notice that the ground breaking observations reported in this chapter are not
inconsistent with the relative success of present quasi-linear modelling in recovering the estimated
experimental heat fluxes within the large error bars of equilibrium gradients. Indeed, this results
from the large sensitivity of the fluxes to thermodynamical forces when operating close to marginal
stability, the case of most discharges. However, the reported weakness are expected to become
critical when using such models for prediction purposes, as is done routinely for ITER and DEMO.

The contents of this chapter have been submitted as (Gillot et al., 2020b).



Chapter 5

Kinematics of turbulent
fluctuations

From the previous chapter, we take away the following: turbulent fluctuations keep some linear
properties in the non-linear regime, and the saturation rule is to blame for the mismatch between
the turbulent heat flux measured by GYSELA and quasi-linear predictions coming from QuaLiKiz.
This naturally leads us to reconsider the modelling choice for this saturation rule. Hence comes
the question: how to self-consistently evolve the turbulent spectrum?

The QuaLiKiz saturation rule is a local model: everything depends on the quantities on the
reference flux surface. Meanwhile, linear analysis of the ITG modes predict specific shapes and
group velocities for the modes. Consistent estimations of turbulent spectra need to take this motion
into account. Waves cannot be expected to remain inside their flux-surface, and this needs to be
quantified. Thus, we need to assess the non-locality of this turbulent spectrum. A paramount
concern is the interaction with the zonal flows, both mean flows and fluctuating flows.

In order to decipher this interaction, we analyse the kinematics of turbulent structures in the
GYSELA simulations already used for the comparison to quasi-linearity, chapter 4. The results can
then be compared to known linear properties, like the ones derived paragraph 2.2. Given access
to three-dimensional fluctuations of the potential φ(t, r, θ, ϕ), a variety of methods are available.
In the following, we denote φ̃n the toroidal Fourier transform of the potential φ, for n > 1. In the
following, we will denote the zonal flow velocity by vE = rvθE = ruE . Its poloidal shear will be v′E ,
and its toroidal shear γE = (quE)′/q′ to match the notations from paragraph 2.2.

Considered simulations In addition to the two simulation cases we considered in chapter 4,
we will make use of a third case dubbed “large flow”. The latter simulates a smaller plasma,
ρ∗ = 1/150, and features a large zonal flow with strongly marked extrema. Even though the main
results from paragraph 4 are valid for this simulation, it has been excluded from the study because
it does not qualify as in the local limit (Lin et al., 2002). Nevertheless, the large flow and low
avalanching makes it a relevant test case for analysing the effect of zonal flows on turbulent cells.
The zonal flow velocity and shear for the three simulations are shown figure 5.1.

5.1 Interplay between turbulence and zonal flows
Modification of the free energy sources —density and temperature gradients— plays a role in the
turbulent self-organisation of tokamak plasma. But, in addition, corrugated zonal flows emerge,
and are expected to be a key player (Terry, 2000; Diamond et al., 2005).

Both linear and non-linear effects of zonal flows are very difficult to assess, and subject to live
debates. Several heuristic rules have been developed in the literature, relying on different and
possibly complementary effects of zonal flow velocity vE = −Er/B, its shear rate v′E = −∂rEr/B
(Biglari et al., 1990; Diamond et al., 2005) and its curvature −∂2

rEr/B (Ghendrih et al., 2003; Itoh
& Itoh, 2016; Nace, 2018). Sheared zonal flows naturally arise from turbulent state (Chen et al.,
2000; Manfredi et al., 2001; Hallatschek & Diamond, 2003). A seed zonal flow shears and modulates

75
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Figure 5.1: Zonal flow patterns in velocity (upper) and shear (lower) for the three considered
simulations (“strong drive”, “near marginal” and “large flow”). The shaded area corresponds to
one temporal standard deviation.

turbulent eddies. The so-sheared eddies induce a Reynolds stress. This stress reinforces the flow,
feeding it with energy taken from the turbulence. This process naturally generates sheared zonal
flows.

Sheared zonal flow phenomenology typically exists at two time scales: the so-called zonal
mean flows and zonal fluctuating flows. For the “mean” component, simulations typically feature
staircase-shaped patterns (Kosuga et al., 2014; McIntyre, 2014; Paparella & von Hardenberg, 2014;
Dif-Pradalier et al., 2015). The typical distance between flow peaks, as well as the asymmetrical
nature of these staircases with peaked maxima and flat minima —see (Dif-Pradalier et al., 2015,
fig. 1 and 4)—, are still unexplained. The fluctuating component is often taken as an indicator for
avalanche dynamics (Beyer et al., 2000; Idomura et al., 2009; McMillan et al., 2009). The related
dynamics of geodesic acoustic modes (GAM) are candidates to trigger avalanches (Sasaki, 2018),
and will be discussed chapter 6.

Interchange-like instabilities feature a ballooned character: their activity is higher on the low-
field side than on the high-field side. This is due to the vertical diamagnetic drift, destabilising in
former, stabilising in the latter. Zonal flows perturb this picture by moving turbulent structures
poloidally. However, the poloidal position of the ballooning —the so-called ballooning angle— is
not expected to follow the flow. It is bound by the diamagnetic drift, and cannot leave the low-field
side. To compensate this restraint, the system makes use of the magnetic field tilting to convert
the poloidal motion into a toroidal one. As such, two limiting behaviours are possible: either
turbulence is weakly ballooned, and turbulent cells move poloidally, or it is strongly ballooned,
and turbulent cells move toroidally.

In the latter case, the advection is done in the symmetrical toroidal direction. The stabilising
effect is expected to come from the zonal flow shear. The central argument of the shear effect is
the shrinking of the turbulent structures. One of them can be thought as a superposition of waves
with given wave-vectors (kr, kθ, n). Each wave is subject to a stretching of the form (cf. paragraph
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2.2.3)

dkr
dt ≈ kθv

′
E (5.1)

With time, the structure thins further and further. Its transport becomes less efficient, until it is
damped away by some kind of diffusive process (turbulent or collisional for instance). If the zonal
flows fluctuate, the rapid variations of v′E may produce a diffusive behaviour in kr space (Diamond
et al., 2005).

A rule of thumb for the mean flow shear is the so-called Waltz’s rule (Waltz et al., 1994), which
predicts a strong reduction in the turbulence as soon as v′E dominates the turbulent growth rate
γlin. In the transport point of view, Hinton’s quenching model (Hinton, 1991) has been qualitatively
successful (Malkov & Diamond, 2008) and quantitatively tested.

Dturb −→
Dturb

1 + (v′E/γlin)2 (5.2)

For fluctuating zonal flows, (Hahm et al., 1999) suggests using an effective zonal shear.
Both rules are independent of the shear sign, and neglect the effect of the radial electric field

curvature. The sign of the zonal mean flow shear is known to affect the motion of turbulent
avalanches (McMillan et al., 2009; Idomura et al., 2009). Furthermore, the sign of the fluctuating
zonal flow curvature has an effect on turbulence in the case of GAMs (Sasaki, 2018), and can affect
the stability of the zonal flow in a turbulent bath (Zhu et al., 2020).

5.2 Motion inside the flux-surface
The lifetime of turbulent structures can be estimated using a temporal correlation function. This
must be done in the structures’ reference frame. Since the structures move inside the plasma, the
associated Doppler effect would lead to strong underestimation of the correlation time if computed
in the laboratory frame. In order to remove it, we first perform a registration (Brown, 1992) of flux
surfaces between time snapshots. This is achieved by minimising the squared error mismatch 5.3.
If the potential φ is purely advected, Lnonlin is a positive function which vanishes at the advection
velocity veff . Equation 5.4 formulates a linearised mismatch, for veff∆t small enough, and is used for
linear registration. The minimisation is done independently for each flux surface and time step, by
standard least-squares (linear registration) and Gauss–Newton iteration (non-linear registration).

Lnonlin

(
vθ,ϕeff

∣∣∣t, r) = 1
2

〈∣∣∣φ̃n(t+ ∆t, r, θ)− φ̃n
(
t, r, θ − vθeff∆t

)
einv

ϕ
eff∆t

∣∣∣2〉
FS

(5.3)

Llin

(
vr,θ,ϕlin

∣∣∣t, r) = 1
2

〈∣∣∣∂tφ̃n(t, r, θ) +
(
vrlin∂r + vθlin∂θ + invϕlin

)
φ̃n(t, r, θ)

∣∣∣2〉
FS

(5.4)

We obtain two velocity estimates, namely veff and vlin. The minimisation principle 5.4 for vlin is
a linearisation of equation 5.3, the two estimates should be similar. This allows to cross-check the
computation. In addition, our algorithm for veff does not support computing the radial velocity,
so we have to rely on the linear estimate vrlin in that direction.

The choice of quadratic error in 5.3–5.4 provides group velocities rather than phase velocities.
For instance, focusing on the toroidal direction, the resulting velocity from the problem 5.4 is
obtained by solving for the variation condition

0 = ∂Llin (vϕlin|t, r)
∂vϕlin

≈ <〈∂tφ̃n(t, r, θ)∗inφ̃n(t, r, θ)〉FS + vϕlin〈n
2|φ̃n|2〉FS

≈ −〈n[ω + nvg(n)]|φ̃n|2〉FS + vϕlin〈n
2|φ̃n|2〉FS

with vg a n-dependent wave velocity, ω a n-independent frequency. The averages 〈·〉FS are done
on the whole turbulent spectrum, with both positive and negative non-zero n. The first term
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containing ω vanishes by symmetry n 7→ −n. The second does not. vϕlin is an average of vg over
the toroidal mode number n, weighted by the turbulent spectrum n2|φ̃n|2.

vϕlin = 〈vg(n)n2|φ̃n|2〉FS

〈n2|φ̃n|2〉FS
≈ vg(neff)

If vg does not vary much with n, or if the spectrum is peaked, this can be thought as a group
velocity taken at an effective wave-number neff . Conversely, using an absolute error would have
computed a phase velocity (and could not have been done in Fourier space).

Figure 5.2 shows the components of the effective angular velocity inside the flux-surface vθ,ϕeff .
Surprisingly, the inferred velocity profile is principally directed in the toroidal direction, rather
than in the poloidal direction. The usual picture is one of poloidally moving turbulent cells, as
observed in simulation movies. There is no contradiction. Turbulent cells are very elongated in the
parallel direction. By observing a poloidal cut, the toroidal motion is projected onto the poloidal
direction following this parallel direction.

We explain this phenomenon as a ballooning constraint. Turbulent fluctuations are unstable
on the low-field side, and stable on the high-field side. When a turbulent structure gets moved
poloidally by the zonal flow, it is favourable for it to go back to the low-field-side. This is achieved
by means of the parallel dynamics. The parallel acoustic dynamics homogenises this direction at
the thermal velocity, which is ρ−1

∗ times faster than the typical drift velocities. Therefore, when
the poloidal zonal flow acts, turbulent structures adiabatically return to their ballooning position
at low-field side. This does not require a parallel velocity of particles V||, as those have larger
inertia than the potential φ.

The physics is reminiscent of the plasma reference frame, a toroidally moving reference frame
designed to cancel the electric field on a given flux surface. This interpretation is comforted by the
transverse projection of the velocity vϕeff − qvθeff , which follows faithfully and with little fluctuations
the transverse projection of mean E ×B flow −qvθE . In those simulations, the toroidal projection
of the parallel fluid velocity V|| is small compared to the E ×B flow.

There remains a poloidal velocity component, even if weaker that the original zonal flow. This
component is related to the motion of the structure along the parallel direction. The origin of this
velocity is an open question.
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Figure 5.2: Time-averaged profile of effective structure velocity inside a flux-surface two simu-
lations. Shaded area corresponds to one temporal standard deviation.
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5.3 Dimensions of the turbulent filaments
5.3.1 Typical correlation lengths
The spatial dimensions of turbulent structures are also of interest to understand the effect of
zonal shear. Physical considerations suggest preferred axes: the structures are expected to follow
magnetic field lines. We expect the parallel (~∂ϕ + q−1~∂θ), transverse (~∇ϕ − q~∇θ) and radial
directions to play first-class roles. In order to cancel the magnetic helicity, we define the untwisted
potential φ as

φ(t, r, θ, ϕ) = φ̃(t, r, θ, ϕ− q∗θ∗) (5.5)

q∗ = q√
1− ε2

tan θ
∗

2 =
√

1− ε
1 + ε

tan θ2

where q∗ and θ∗ are the effective q profile and intrinsic poloidal angle, taking into account GY-
SELA’s poloidally varying local field-line pitch bϕ

bθ
= q(r)R0

R (Grandgirard et al., 2016). The
toroidal rotation is done in toroidal Fourier space. An example is given figure 5.3. It features a
sharp discontinuity at θ = ±π. This is expected for irrational values of q∗. A mask is placed in
the θ = π ± π

5 range to avoid artefacts close to low-order rational q values.
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Figure 5.3: Left: sample cut of the fluctuations of the electrostatic potential on a flux-surface
at ρ = 0.7. Right: untwisted version φ of the same cut according to equation (5.5).

On these grounds, we compute the poloidal and parallel correlation functions

Cθ(t, r,∆θ) = 〈φ̃(t, r, θ)φ̃(t, r, θ + ∆θ)〉FS (5.6)

C||(t, r,∆η) = 〈φ(t, r, θ)φ(t, r, θ + ∆η)〉FS (5.7)

where η plays the role of a coordinate along the parallel direction. Cθ and C|| are computed from
the Fourier space power spectrum. The associated normalised correlation lengths Lθ/r and L||/qR
are computed as half-width at half-maximum.

The radial and poloidal correlation lengths are shown figure 5.4a for the “large flow” simulation.
As expected, the poloidal and radial correlation lengths are of the same order of magnitude, around
a few ρi. The parallel correlation length is very large in comparison, and scaled by the cubed
aspect ratio for readability. This confirms the usual hypothesis of field-aligned modes. The radial
correlation length features a bump around the zonal flow minimum at r/a = 0.65, while the poloidal
correlation length remains smooth.
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Slices of Cr and Cθ are shown figure 5.4b and 5.4c for two radial positions: inside the shear layer
at r/a = 0.4 and inside the bump at r/a = 0.65. While Cθ does not change beyond scaling, Cr
exhibits a slower decay and strong asymmetry at r/a = 0.65. This asymmetry suggests a specific
behaviour inside the shear layer at r/a = 0.4.
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Figure 5.4: “Large flow” simulation: (Left) Poloidal and radial correlation length in units of the
local ion Larmor radius ρi. To fit on the plot, the parallel correlation length is scaled down by
the cubed aspect ratio (R0/a)3 = 216. The shaded area corresponds to temporal fluctuations.
(Right) Slices of the radial and poloidal correlation coefficient, at one given time and two radial
positions. The spatial shifts ∆r and r∆θ are normalised to the local ion Larmor radius.

The case of field-aligned simulations: The “marginal” simulation has been run using GY-
SELA’s aligned coordinates (Latu et al., 2017). This coordinate system allows to reduce the
run-time of the code by compressing the data representation. Since the dynamics are expected to
be aligned along the field lines, the (m,n) spectrum of the potential is sparse, and the information
is along the m+nq ≈ 0 line. By reducing the discretisation in the toroidal direction, the spectrum
is aliased in n direction.

This grid invalidates the method outlined above, for instance making figure 5.3 terribly unre-
solved in the toroidal direction. In addition, most operations in the toroidal directions are wrong,
even a simple toroidal average features spurious high-m components. Two possibilities exist to
avoid this issue. The first one is to re-grid the toroidal direction, taking care of unfolding the
aliasing. This method is very expensive in memory space, and has been left out. The second one
is to only work in (m,n) Fourier space, but adjusting the n value depending on q and m to remove
this aliasing. This method has been preferred for practical computations.

5.3.2 Principal directions
In the analysis performed in the previous section, the relevant directions were prescribed a priori on
the basis of the linear properties of the instability. Those are expected to adequately characterise
turbulent structures. In complement, the directions of interest can also be determined purely
numerically, using principal component analysis. If we consider turbulence to be a superposition
of anisotropic Gaussian cells, we can estimate the co-variance matrix C using the derivatives of
the potential φ in the three dimensions

Cij ≈ 〈(~ei · ~∇φ)(~ej · ~∇φ)〉FS (5.8)

with ~ei = (~er, ~eθ, ~eϕ) the toroidal orthonormal basis. Diagonalising it with respect to the orthonor-
mal metric yields the ellipsis principal axes as eigenvectors ~di and associated principal lengths `i.
The results are presented figure 5.5 and 5.6. As shown figure 5.5b, the longest principal axis `2
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approximates the parallel direction ∂ϕ + q−1∂θ, consistently with the magnetic alignment. In the
perpendicular plane, `0 and `1 are of the same magnitude, stating that the structures have low
eccentricity. The preferred orientation can be estimated as the angle χ of the longer axis with
respect to ~er (figure 5.6b). These properties are consistent with the correlation length computed
in the previous paragraph.

The angle χ features two sharp jumps of π/2 for the “large flow” simulation. These are ei-
genvalue collisions, and correspond to passage through circular sections where the definition a
larger axis is degenerate. The positions of these jumps happen to be related to the position of
the flows. Outside these jumps, the tilt angle appears to follow a mixture of the magnetic shear
s —a geometric effect due to the field-line alignment—, and of the zonal flow shear. This angle χ
is also related to the ballooning angle. This suggests a different poloidal position of the turbulent
intensity depending on the zonal flow shear.
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Figure 5.5: (Upper) Principal correlation length. (Lower) Projections of the longest principal
direction ~d2 on the perpendicular plane.

5.4 Radial motion of the structures

5.4.1 Lagrangian correlation time
We define for each flux-surface the Lagrangian correlation function between time t and t + τ as
in equation 5.9. For simplicity —to avoid dealing with poloidal asymmetry and ballooning—, we
only remove the toroidal motion, which has been shown to dominate over the other components in
paragraph 5.2. For instance, the radial motion of the structures is not cancelled. More elaborate
schemes received limited testing, with no discernible advantage. The associated correlation time
τcorr is computed as half-width at half-maximum, and shown figure 5.7c. As computed, it estimates
how long a turbulent structure lives on a given flux surface. The limiting factors are the structure
growth and damping, but also its motion towards another radial position. For reference, the
eulerian correlation time τ eul

corr is shown in gray line figure 5.7c. The diffence between the two can
reach up to a factor of 25 due to this Doppler effect.

Clag(t, r, τ) = <
〈
φ̃∗n(t+ τ)φ̃n(t) exp

(
in

∫ t+τ

t

vϕeffdt
)〉

FS
(5.9)
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Figure 5.6: (Upper) Principal transverse correlation length. (Lower) Ellipsis tilt in the perpen-
dicular plane. For reference are given the (scaled) zonal shear γE and magnetic shear s. Shaded
area corresponds to one temporal standard deviation.

where the flux-surface average is replaced by an average on θ and a sum over n. Figure 5.7b shows
the effective radial velocity vreff of the structures, as computed in paragraph 5.2. It is aligned with
the background E×B shear (figure 5.7a). The effective radial velocity appears to follow the E×B
shear rate. This is consistent with previous observations in the literature (Idomura et al., 2009;
McMillan et al., 2009).

This relationship has a consequence on the structures lifetime (figure 5.7c) and width (figure
5.7d) at the E × B flow extremes, especially where vreff vanishes. In particular, this correlation
is found to result in the yet unreported specific role of the sign of the shearing rate on the way
turbulence is affected. Indeed, the flow maximum (r/a ≈ 0.3) exhibits an increase in correlation
time and convergent vreff , as if the turbulent structures were trapped. On the contrary, the flow
minimum (r/a ≈ 0.65) exhibits an increase in structure width and no effect on correlation time,
as if the divergent vreff was chasing them. The sign of vreff is sich that the structures move towards
the maximum of the flow whatever their radial position with respect to this maximum. On the
other hand, the structures lifetime does not exhibit an inflexion close to r/a ≈ 0.65, even with the
strong variations of u′E . The same observation is made for the structure width close to r/a = 0.3.

For the “marginal” simulation (figure 5.8a), as the zonal flows are wobblier and less established,
rendering correlation very difficult. Nevertheless, a similar tendency can be observed: the radial
velocity vrlin changes sign in the same regions as the shear γE , for r/a in (0.28, 0.32), (0.46, 0.50), or
(0.7, 0.9). The correlation time has a small peak around r/a = 0.32, 0.5 and 0.9, where the radial
velocity changes sign from positive to negative. The radial correlation length works opposite, with
small bumps at the beginning of those intervals, where the radial velocity changes from negative
to positive.

Qualitatively, the same observation relation between the pattern of the radial velocity and the
correlation time and length can be done on the “strong drive” simulation (figure 5.8b). However,
the fluctuating component of the zonal flow is higher, making statistics more noisy. In the region
0.6 6 r/a 6 0.8, the zonal flow shear oscillates twice. Surprisingly, the relationship between the
radial velocity and the zonal flow shear is reversed. This may be caused by

The asymmetry between the flow minimum and maximum appears in the works of previous
authors (Sasaki, 2018; Zhu et al., 2020), and will be discussed in paragraph 6. Figures 5.7 and 5.8
provide numerical evidence for the trapping of turbulent cells inside the flow pattern. According
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Figure 5.7: “Large flow” simulation: (a) Background mean poloidal E ×B flow and associated
flow shear rate. (b) Radial effective velocity vreff . (c) Lagrangian correlation time. (d) Radial
correlation length. Shaded area corresponds to one temporal standard deviation.

to (Zhu et al., 2020), this trapping has significant consequences on the stability of the underlying
zonal flow. A self-consistent treatment of this trapping effect may prodive useful insight into the
formation of the zonal flow staircase pattern.

5.4.2 Partition of energy
The ballooning character in our simulation is computed using the poloidal cross-section of the
turbulent energy. The turbulent energy can be split into three contributions: adiabatic electron
potential energy, the E×B poloidal kinetic energy, and the E×B radial kinetic energy. We chose
to use the poloidal turbulent kinetic energy Eθ as a diagnostic, keeping only non-axisymmetric
modes.

Eθ = miN

2

〈∣∣∣∣∂rφ̃B
∣∣∣∣2
〉
ϕ

(5.10)

Figure 5.9 features the time-average of Eθ for the three simulations. As expected, we observe a
strong asymmetry between high- and low-field side. However, the ballooning itself is qualitatively
different for each quantity. For the “large flow” simulation (figure 5.9a), the poloidal kinetic energy
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(a) Near-marginal simulation.
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(b) Strong drive simulation.

Figure 5.8: Same figure as 5.7: (a) Background mean poloidal E × B flow and associated
flow shear rate. (b) Radial effective velocity vreff . (c) Lagrangian correlation time. (d) Radial
correlation length. Shaded area corresponds to one temporal standard deviation.

exhibits a significant poloidal shift, around π/4 with an inversion around r/a = 0.65. The other
simulations exhibit the same kind of angular shift, altough at different radial positions.

For the “large flow” and “near marginal” simulations, the variation of the ballooning angle
provides an explanation to the radial motion. In the region of negative γE the turbulent structures
are ballooned above the mid-plane. Since the distribution function linear response is proportional
to the potential, more particles are involved in that region. The vertical magnetic drift pushes
the particles downwards. Projecting on the radial direction, more particles move inwards than
outwards. On average, the turbulent structure moves radially inwards. Conversely, where γE is
positive, the ballooning is below the mid-plane, the diamagnetic drift still pushes downwards, and
the structures move outwards.

5.4.3 Non-linear radial velocity
The same computations have been performed with various additional filters for the integration in
the 5.4. This allows for instance to separate positive and negative vorticity structures.

L(~v≷|t, r) = 1
2

〈∣∣∣∂tφ̃n(t, r, θ) + (vr≷∂r + vθ≷∂θ + invϕ≷)φ̃n(t, r, θ)
∣∣∣2 1[−∇2φ̃ ≷ 0]

〉
FS

(5.11)

In a linear setting, we do not expect the velocities ~v≷ to differ from −→vlin. Numerical investigation
shows this is actually the case for the poloidal and toroidal components. They are shown figure
5.10.

On both the “large flow” and “near marginal” case, the filtered radial velocities vr≶ depart from
the unfiltered version vrlin. No departure is observed on the poloidal and toroidal projections. In
the “near marginal” case, a positive vorticity appears to increase the radial velocity of the filament.
In the “large flow” case, this behaviour appears in the region 0.5 < r/a < 0.8, but is reversed in the
0.3 < r/a < 0.5 region. This behaviour has not been observed on the “strong drive” simulation.
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Figure 5.9: Poloidal partition of the poloidal E × B kinetic energy of turbulent fluctuations.
High-field side is on the left, low-field side on the right.

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

vr

vr: > 0
vr: < 0

(a) Large flow case.

0.0 0.2 0.4 0.6 0.8 1.00.15

0.10

0.05

0.00

0.05

0.10

0.15

vr

vr: > 0
vr: < 0

(b) Near marginal case.

Figure 5.10: Pattern of the effective radial velocity depending on the sign of the turbulent
filament vorticity computed by 5.11. Blue: unfiltered vrlin. Orange: positive vorticity vr>.
Green: negative vorticity vr<.

A tentative explaination is as follows: the particles constituting the turbulent filament feel a
total vorticity given by the sum of the zonal flow shear v′E = ∂2

rφ and of the local vorticity. As
a consequence, the radial velocity of the structure come from this total vorticity, and not only
from the zonal component. This explaination is brittle and insufficient, because of the subtlety of
non-linear interactions, and because of the behaviour reversal depending on the radial position.

5.5 Radial patterns in turbulence
The observed poloidal and toroidal motions are sheared. We observed the variations of the shear
have an effect on the turbulence correlation time and length, rather than the shear itself. This
begs the question of the effect of that shearing on the turbulent structures: is the eddy-stretching
equation 5.1 observable?

At lowest order, the transverse tilt of the turbulent eddies is expected to be dominated by
the magnetic shear: the local radial mode number is given by (see equation 2.53 and associated
discussion)

kr = −nq′(θ − ζ) (5.12)

where ζ is the ballooning angle. In a flux-surface-averaged setting, only the nq′ζ quantity is of
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interest. The registration method used earlier is used on the untwisted φ potential to measure the
mismatch between neighbouring flux surfaces. This is done by minimising the squared error 5.13.

Lshear (−→seff |t, r) = 1
2

〈∣∣∣φn(t, r + ∆r, η)− φn (t, r, η + sηeff∆r) eins
α
eff∆r

∣∣∣2〉
FS

(5.13)

This effectively provides an estimate of the shear strain

sαeff ≈ −
〈
kr
n

〉
FS

sηeff ≈ −
〈
kr
m||

〉
FS

in the parallel η = θ and the transverse α = ϕ− qθ directions. m|| is a parallel mode number. The
sαeff value should estimate the value q′ζ. The temporal average of computed seff (equation 5.13) is
shown figure 5.11. With the eddy stretching model, sαeff should grow linearly in time as −q′γEt,
at least on on short time scales. Therefore, we would expect a large temporal variance of sαeff , and
an irrelevant mean value.
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Figure 5.11: Time-averaged profile of effective shear inside a flux-surface. Mean negative E×B
shear rate is overlain. Shaded area corresponds to one temporal standard deviation.

Surprisingly, the numerically computed values for seff feature a strong stationary component
on both simulations. On the transverse direction ~∇α = ~∇(ϕ − qθ), along which the E × B flow
acts, the temporal variance is very low. The zonal flow shear γE seems to dictate sαeff instead of its
time derivative, as shown with the overlain v′E figure 5.11. These observations suggest the effect of
the E ×B flow shear rate is frozen in the structures, rather than externally applied. The parallel
component sηeff is much wobblier, and no satisfactory explanation has been found to explain its
magnitude nor its profile.

Recalling the linear analysis of the ITG instability paragraph 2.2, we found a stationary zonal
flow embeds itself into the radial pattern of the local drift-wave mode.

φ̃ ≈ exp
(
in

[
ϕ− q(θ − ζ)− (c+ quE)

(
t−
√

2nqρ∗s
uTR

(θ − ζ)2

2

)])
(2.52)

The untwisted potential takes the following form

φ(r, η, α) ≈ exp
(
in

[
α+ qζ − (c+ quE)

(
t−
√

2nqρ∗s
uTR

(η − ζ)2

2

)])
(5.14)
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As a result, we expect the sαeff to have the following form

sαeff ≈ −
kr
n
≈ −q′ζ + q′γEt− q′γE

nqρ∗s√
2uTR

L2
|| (5.15)

where we recall γE = ∂r(quE)/∂rq. L|| is an effective parallel correlation angle, which comes from
the poloidal integration in equation 5.13 of the (η − ζ)2 term in 5.14. Three terms appear in this
last equation: a ballooning effect q′ζ, a mode distortion effect q′γEt, and a parallel equilibration
effect. Figure 5.11 suggests this last term to be dominant in the investigated simulations, where
the nq3ρ∗sL

2
||/
√

2 factor has been hand-picked to 1 for simplicity.
Equation 2.52 can be understood as a toroidal shift of the mode depending on the poloidal and

radial position. The wave is actually centred around a toroidal position ϕref given by

ϕref ≈ −∂ ln φ̃
i∂n

= q(θ − ζ) + (c+ quE)t− 2(c+ quE)
√

2nqρ∗s
uTR

(θ − ζ)2

2 (5.16)

This is confirmed by figure 5.12. As a consequence, the contours of φ̃ in a r–ϕ snapshot follow the
zonal flow velocity, as is shown figure 5.12. Here, the nq3ρ∗s(θ− ζ)2/

√
2 factor is set to 2 on both

figures.
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Figure 5.12: Cross-section of the fluctuating potential φ̃ at θ = 0. The time step is chosen
arbitrarily as the last simulation step. The profile of the zonal flow is overlain.

In time, the structures follow the local E × B velocity. This velocity is sheared. However,
after all shearing is accounted for, the radial pattern is given the zonal flow velocity multiplied
by the parallel equilibration time. We suppose that the parallel transit forbids excessive tilting of
the drift-wave mode at a given radial position. In order to resolve this paradox, we must call for
some radial motion. When the filament experiences shearing, the additional tilting forces a radial
motion in order to balance itself.

This picture contrasts with often observed shearing of the turbulent structures when looking
at poloidal cross-sections. This can be explained using a projection effect: when looking at a
poloidal cross-section of the plasma, the rotational transform projects the zonal pattern onto the
cross-section. The additional zonal shear is evacuated through the parallel and radial directions,
forming a global mode.

5.6 Conclusion
In this chapter, we have explored the properties of non-linear turbulent filaments in gyro-kinetic
ITG turbulence. As could be expected from the linear analysis paragraph 2.2, the structures are
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most elongated in the parallel direction, and are ballooned near (but not at) the low-field side.
The most awaited player in the regulation of turbulence if the sheared zonal flow. The numeric-

ally computed motion of the filament inside a flux-surface corresponds to the transverse projection
of the poloidal zonal velocity onto the toroidal direction. This projection is done along the very
correlated parallel direction. This effectively preserves the ballooned character of turbulence. The
effect of the zonal flow shear is more subtle. Because of the structure of the ITG mode, the zonal
flow velocity also appears as a radial pattern. From the numerical toroidal velocity, we were able
to compute a Lagrangian correlation time of the turbulent structure. This Lagrangian correlation
time is found to significantly differ from the Eulerian correlation time because of the Doppler shift
by the toroidal motion due to the zonal flow.

The radial velocity of turbulent filaments has been investigated numerically. As expected, its
direction and amplitude are related to the zonal flow shear. Near the zonal flow extremes, the
radial velocity vanishes. In the case of zonal flow maxima, the radial velocity has a negative
divergence ∂rvreff : turbulent filaments are trapped in the region, and feature increased correlation
time. Conversely, zonal flow minima feature a radial velocity with positive divergence, hinting at
repulsive behaviour. Both are consistent with the discussion by (Sasaki, 2018; Zhu et al., 2020).
This behaviour breaks the symmetry with respect to the shear flow sign, which is a common
assumption of models of turbulence regulation by E ×B shear.

Such an asymmetry between the flow minimum and maximum casts doubt on shear-sign-
agnostic models. Furthermore, the radial propagation of turbulent structures questions the validity
of local turbulent spectrum estimations, as the information flows globally in the zonal flow pattern.
The interaction between turbulence and zonal flow needs to be revisited.

Furthermore, the turbulent filaments’ radial velocity appears to be influenced by the vorticity
of the turbulent structure itself. This provides an additional saturation mechanism for turbulent
growth: when the filament has accumulated enough vorticity, it moves radially, moves out of its
energy source, and spreads out its contents.

In the presence of a sheared zonal mean flow, turbulent filaments tend to structure themselves
according to the zonal flow velocity. When observed in a toroidal cross-section, radially elongated
corridors appear in the fluctuations of the potential spectrum. The pattern of these corridors in the
toroidal direction follows the zonal flow velocity according to ∆ϕ ∝ vθE/uTR (equation 5.16). When
correcting for this deformation, the corridors are reminiscent of the streamer structures observed in
ETG turbulence (Dorland et al., 2000). As electrons feature a much faster transit velocity uTR,e,
the toroidal shift is more modest, and the streamer structure appears in a poloidal cross-section.
As a consequence, the notion of turbulent “filaments” appears ill-posed, where turbulence can
arrange itself in radially elongated ribbons.



Chapter 6

Investigation of tokamak turbulent
avalanches using wave–kinetic
formulation

The estimation of the quasi-linear fluxes requires proper knowledge of the turbulent spectrum.
This is a complex endeavour. The turbulent fluxes require computing the two-point correlation
function Cφ(t1, t2, ~x1, ~x2) of the potential (Adam et al., 1979). This correlation function is then
weighted appropriately to express the flux carried at (t1, ~x1) by a plasma parcel that was displaced
from (t2, ~x2).

Cφ(~x1, ~x2) = 〈φ(~x1)φ(~x2)〉turb

The average 〈·〉turb is taken on realisations of the system and on unobserved symmetry directions.
Its determining equations are very complex and can be unpractical for both analytical and numer-
ical works (Farrell & Ioannou, 2007; Srinivasan & Young, 2012). In the case of tokamak plasmas,
turbulence is populated by drift-wave-like micro-instabilities at high toroidal mode number, driven
by kinetic interchange coupling.

Explanations for turbulent saturation often revolve around mode coupling. Non-linear coupling
pours an excess of energy from a turbulent eigenmode to stabler eigenmodes, through modulation
by a mode with low wave-number or through scattering with another turbulent modes. In the near-
marginal regime, avalanches provide an effective vector for heat transport (Diamond & Hahm, 1995;
Newman et al., 1996): bursts travel through the plasma in an almost ballistic fashion (Sarazin &
Ghendrih, 1998; Sarazin et al., 2010). Such avalanches have been linked to the transition from
Bohm to gyro-Bohm scaling for turbulent transport (Carreras et al., 1996; Garbet et al., 1999;
Lin et al., 2002; Candy & Waltz, 2003a), and are routinely observed in non-linear flux-driven
simulations (Beyer et al., 2000; Idomura et al., 2009; McMillan et al., 2009; Dif-Pradalier et al.,
2017b). The coupling to the axisymmetric modes and especially zonal flows is of particular interest,
because they shear turbulent eddies and act as an efficient mean to saturate turbulence. One of the
drivers of the growth of zonal flows is the so-called zonostrophic instability. This instability is due to
a modulational coupling of two drift waves giving energy to the sheared zonal flow (Champeaux &
Diamond, 2001; Diamond et al., 2005). When turbulent structures and zonal flows act on different
radial and temporal scales, individual modulations can be thought of as infinitesimal: the problem
can be modelled through the dynamics of a turbulent spectrum, alone forgetting individual wave–
wave interactions. This approach has been applied to the modelling of drift waves, on temperature
gradient and trapped electron modes, see (Anderson et al., 2002, 2006; Srinivasan & Young, 2012;
Parker, 2016; Gillot, 2016; Ruiz, 2017; Zhu et al., 2018).

Wave-kinetic modelling (Weinberg, 1962) attempts to estimate the fluctuation spectrum in a
simplified manner. The two-point correlations decay with the scale of the turbulent structures. If
turbulent structures are much smaller than the background profile scale, the two-point separation
can be represented in Fourier space as a local turbulent spectrum I(~x,~k). As a result, both the
driving gradients and the zonal flows are assumed axisymmetric and radially smooth. They should
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evolve slowly enough for the turbulent structures to adapt adiabatically. In these conditions, an
eikonal approach is accessible. By neglecting non-linear saturation mechanisms, the dynamics can
be reduced to a kinetic equation on the spectrum I. The so-called wave–kinetic equation is written
as

∂tI + ∂~kω · ∂~xI − ∂~xω · ∂~kI = 2γI + Saturation (6.1)

The saturation term corresponds to non-linear couplings between turbulent cells, and the saturation
level they prescribe. In full generality, this term requires the three-point correlation function. By
analogy with the Boltzmann equation, it is often approximated by some kind “eddy–eddy” collision
operator (Ruiz et al., 2019). Here, ω + iγ is the eigenmode angular frequency and growth rate,
computed from the dispersion relation. The variable I represents a conserved wave action. It can
be defined using the Wigner density function of the potential, or equivalently the Fourier-transform
of the two-point correlation function Cφ.

I(t, ~x,~k)δ(ω − ω(t, ~x,~k)) = Dc

∫
Cφ

(
t+ τ

2 , t−
τ

2 , ~x+ ~s

2 , ~x−
~s

2

)
eiωτ−i~k·~sd~sdτ (6.2)

where the factor Dc will be made explicit later. The choice of a wave–kinetic formulation in
opposition to an eikonal formulation is not without consequences. The non-linear coupled evolution
of the amplitudeAp(t, ~x) and phase σp(t, ~x) of individual wave packets φp = Ap(t, ~x) exp iσp(t, ~x) is
lost, and replaced by a statistical description. One may expect to lose valuable phase information,
and the associated phase dynamics. Nevertheless, the wave–kinetic approach has been successfully
implemented for the drift wave coupling to zonal flows in (Parker, 2015, 2016; Gillot, 2016; Ruiz
et al., 2016; Ruiz, 2017; Zhu et al., 2018).

In this framework, and in a simplified slab geometry, a seed zonal flow shears the turbulent
eddies, making the spectrum I asymmetric in radial wave-number kr. This induces a non-zero
Reynolds stress R, which reinforces the zonal flow.

R(t, ~x) =
∫
krkθ
Dc

I(t, ~x,~k) d~k
(2π)2 (6.3)

As a consequence, the zonal flow grows as γ ∝ kr,ZF
√
E with E the turbulent energy, proportional

to I. This growth rate diverges at high zonal flow wave-number kr,ZF. Actually, for thinner zonal
flows, the free-energy source that is the density gradient is modified. The associated diamagnetic
drift is sheared in the opposite direction (b×∇n ∼ −k2

r,ZFuE). The zonal flow growth is stabilised
(Parker, 2016), with a weaker global growth as γ ∝ kr,ZF

√
E
√

1− k2
r,ZF/k

2
⊥,turb.

In the case of a tokamak plasma, toroidicity makes everything more complicated. On the one
hand, turbulence has to make do with ballooning and magnetic shear. The radial mode number
results from a competition between polarisation, magnetic shear and parallel acoustic dynamics.
This severely impacts the shearing effect on turbulence (Garbet et al., 2002) by providing an
effective recall towards low-field-side ballooning. This constrains the accessible transverse mode
numbers. On the other hand, the response of the zonal flows is also modified, as it is coupled to
the Landau-damped geodesic acoustic modes (GAM) (Qiu et al., 2018).

GAMs have been shown to have a mitigating effect on turbulence by various authors (Hal-
latschek & Biskamp, 2001; Waltz & Holland, 2008). In addition, simulations with both ITG and
energetic–particle-driven GAMs (EGAMs) feature increased turbulent avalanches, synchronised at
the EGAM frequency (Zarzoso et al., 2013). Furthermore, the non-linear interaction of a GAM
on an ITG mode can produce another ITG mode through parametric decay (Girardo, 2015). ITG
turbulence has a radial group velocity which scales with the magnetic drift. In certain conditions,
the slab zonostrophic instability has been shown to have a travelling branch (Ruiz et al., 2016).
GAMs have a radial phase velocity that the slab Euler equation does not have, which also scales as
the magnetic drift velocity. When the radial motion of turbulent structures matches the GAM’s,
the turbulent wave gets trapped inside the GAM (Sasaki, 2018; Sasaki et al., 2018b). The coupled
system is unstable and features travelling solutions (Sasaki et al., 2016, 2018a). These unstable
solutions are investigated as candidates for turbulent avalanches.
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We propose to extend the model from (Sasaki et al., 2018a) to the kinetic description of GAMs.
Along the way, we derive (section 6.1) a self-consistent wave–kinetic equation for any dispersion
relation, along with its back-reaction on the profiles (section 6.2). As a consistency check, we
apply the formalism to a simple slab drift-wave model (section 6.3). We model the laminar profiles
using the axisymmetric component of the Vlasov equation, keeping the poloidal dependency to
access GAM dynamics. The non-axisymmetric components are modelled using the wave–kinetic
equation, using a general dispersion relation for the ITG mode (section 6.4 and 6.5).

We show that the GAM radial phase velocity and the wave–kinetic radial advection resonate,
destabilising the GAM mode into a radially moving zonostrophic instability. When introducing
a population of energetic particles, this resonance happens at the EGAM frequency, and so does
the zonostrophic instability. When the turbulent growth rate is poloidally uniform, neither an up-
down asymmetry in the turbulent intensity nor a background flow shear are enough to introduce a
preferred radial direction for the unstable mode. However, this asymmetry can be triggered by the
cooperation between both a background flow shear and a turbulent growth ballooned on the low-
field side. The direction of this asymmetry is consistent with the observation from (Idomura et al.,
2009; McMillan et al., 2009): avalanches propagate according to the sign of the background zonal
flow shear rate. These features make this travelling unstable coupled mode between turbulence
and GAMs a candidate explanation for turbulent avalanche processes.

6.1 Derivation of the wave–kinetic equation
The wave–kinetic equation models small-scale waves as pseudo-particles inside the plasma. The
waves should maintain their coherence at their scale, and should only be affected by local properties
of the background plasma. The pseudo-particles move according to geometrical optics. Their
spatial motion is given by their group velocities. In an inhomogeneous or dispersive medium, the
waves are distorted, and their wave-number change.

The wave–kinetic equation has found various applications in plasma physics since its introduc-
tion by (Weinberg, 1962). Its use in turbulence modelling has often relied on ad-hoc formulations
like in (Diamond et al., 2005; Sasaki et al., 2018a). Conversely, several authors have attempted a
simple self-consistent formulation of this model (Dodin & Fisch, 2012; Parker, 2016; Ruiz, 2017),
and found earlier versions to be missing essential physics for the saturation of the zonal flows
(Parker, 2015; Ruiz et al., 2016).

Our derivation follows the one in (Whitham, 1965; Jimenez & Whitham, 1976). It is preferred
to the formulation from (McDonald, 1988; Dodin & Fisch, 2012) for the flexibility in the choice
of coordinate system. The idea is to define a variational principle for the waves, and to derive
the wave–kinetic and Poisson equation from it. This allows to ensure the correct conservation
properties. In paragraph 2.2, we computed a dispersion relation D(c, r, ζ) in mixed Fourier space
for the local ITG modes. n is the toroidal mode number, c = ω/n the mode phase velocity, r
the reference radial position of the mode, and ζ = kr/nq

′ its ballooning angle. By symmetry, we
assume n > 0. The eigenfrequency is obtained as a function of r and ζ by solving D(c) = 0. In
case of multiple branches, an index can be introduced to lift the ambiguity. As a starting point,
we recast it as an action principle

S =
∫

Ne2

2T D(c, r, ζ, n)|φ|2rdrn2q′dζdc (6.4)

Equivalently, the mode dispersion relation is obtained by setting ∂S/∂|φ|2 = 0. A scalar dispersion
relation D is defined up to a function of r, ζ, n. The normalisation of the integrand is chosen so as
to retrieve the action 2.12 in the high frequency limit.

S −−−→
c→∞

∫
Ne2

2T k2
⊥ρ

2
i |φ|2rdrn2q′dζdc (6.5)

The wave–kinetic equation describes the behaviour of the amplitude of turbulent waves and ab-
stracts out their precise shape. This argument can be made precise by introducing an amplitude–
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phase decomposition of the potential as a sum of wave-packets p

φ(t, r, θ, ϕ) =
∑
p

√
2TAp(t, r)

Ne2 exp(iσp(t, r, θ) + inϕ) (6.6)

where Ap plays the role of the energy in the fluctuation, and σp is a complex phase function. Ap

is a very smooth function, while σp contains the fine details. To avoid cluttering the notation, the
subscript p will remain implicit except when otherwise noted.

The computations leading to 6.4 can be re-done using ω = −∂tσ, kr = ∂rσ instead of the
ballooning phase function σ = −nct−nq(θ− ζ), and neglecting the second derivatives of σ. These
second derivatives are related to the coherence and finite extent of the waves, and are neglected
by construction. A is assumed to be constant at the scale of the waves, so its derivatives are
neglected. This allows to define the eikonal action principle

Seik =
∑
p

<
∫

D

(
t, c = −∂tσp

n
, r, ζ = ∂rσp

nq′
, n

)
Ap(t, r) exp(−2=σp)rdrdt (6.7)

with the exact same dispersion relation D. <σ and =σ denote the real and imaginary parts of σ.
The variations of Seik with respect to A give the dispersion relation 6.8, but applied to derivatives
of σ. The wave conservation equation 6.9 corresponds to the variations of Seik with respect to σ.

D

(
t, c = −∂tσ

n
, r, ζ = ∂rσ

nq′
, n

)
= 0 (6.8)

∂t(A∂cDe−2=σ)− 1
r
∂r

(
rAe−2=σ ∂ζD

q′

)
= 0 (6.9)

Those two equations are valid for each wave packet individually. By analogy with traditional
mechanics, 6.8 is called the Hamilton–Jacobi equation. In resolved form, it would write c(x, ∂rσ) =
−∂tσ with c(x, k) the wave phase velocity from the dispersion relation. The phase function σ
serves as a pilot wave. It has a similar role as Hamilton’s function for the motion of the individual
turbulent waves: it provides the evolution of the canonical momentum k = ∂xσ as a function of
space and time. Equation 6.9 is already in a conservative form. The convected quantity is A∂cD,
the ratio of an energy to a toroidal phase velocity. It represents the toroidal momentum stored
in the wave packet. We note that the derivative ∂cD must not vanish. This excludes from this
description the case of reactive instabilities, caused by the unfortunate encounter of two stable
branches. Conversely, this description is adequate for kinetic excited or damped waves, for which
∂cD 6= 0. The system 6.8–6.9 is of two non-linear equations, thus unpractical for a bath of wave
packets. In order to derive the wave–kinetic equation, we introduce the Wigner density function
(Moyal & Bartlett, 1949; McDonald & Kaufman, 1985; McDonald, 1988, 1991)

W(t, r, ζ) = Ne2

2T

∫
φ
(
t, r + x

2

)
φ∗
(
t, r − x

2

)
exp(−inζq′x)nq

′dx
2π

≈
∑
p

Ap exp(−2=σp)δ
(
ζ − ∂r<σp

nq′

)
(6.10)

where δ is the Dirac distribution. The second equality is valid thanks to the radial scale separation
between A and σ. The function W encodes both the amplitude and the phase. It serves as a
Klimontovitch distribution for the wave packets. Using Whitham’s equation 6.9, the convection of
the wave action density W can be computed as

∂t(W∂cD)− 1
r
∂r

(
rW

∂ζD

q′

)
= −

[
∂cD

∂2
tr<σ
n
− ∂ζD∂r

(
∂r<σ
nq′

)]
∂ζW (6.11)

− 2W
[
∂cD∂t=σ + ∂ζD

q′
∂r=σ

]
The first square bracket quantifies how radially neighbouring wave trajectories get pulled apart.
It will yield the wave stretching term in the wave–kinetic equation. The second square bracket
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contains the growth rate γ = −∂t=σ, computed using the dispersion relation. Finally, we assume
∂rσ to be real, corresponding to propagating waves (Suchy, 1981). To compute the first square
bracket, we differentiate the Hamilton–Jacobi equation 6.8 with respect to r

0 = ∂r

[
D

(
c = −∂tσ

n
, r, ζ = ∂rσ

nq′
, n

)]
= −∂cD

∂2
trσ

n
+ ∂ζD∂r

(
∂rσ

nq′

)
+ ∂rD (6.12)

∂t(W∂cD)− 1
r
∂r

(
rW

∂ζD

q′

)
= −∂rD

q′
∂ζW + 2γ∂cDW (6.13)

The parameters to D in equation 6.13 are still the derivatives of σ. In order to replace mentions
of ∂rσ by ζ, we use the absorbing property of the Dirac distribution1 inside W. We get the
wave–kinetic equation as

∂t(W∂cD)− 1
r
∂r

(
rW

∂ζD

q′

)
+ ∂ζ

(
W
∂rD

q′

)
= 2γ∂cDW (6.14)

The value of ∂tσ is completely defined by the Hamilton–Jacobi equation 6.8 as a function of r
and ζ. σ is completely eliminated from the description. The equation on W can be recast as a
conservation for the wave action I

I = W∂cD = Ne2

2T |φ|
2δ

(
ζ − ∂r<σ

nq′

)
∂cD (6.15)

∂tI + 1
r
∂r(rvrgI) + ∂ζ(vζgI) = 2γI (6.16)

The growth rate arises from the solution of the complex analytic dispersion relation 6.8. The group
velocity vrg and the wave distortion vζg given by the usual formulas

q′vrg = −∂ζD
∂cD

=
(
∂c

∂ζ

)
D=0

(6.17)

q′vζg = ∂rD

∂cD
= −

(
∂c

∂r

)
D=0

(6.18)

γ = −n=[D]
∂cD

(6.19)

Equation 6.16 is a kinetic equation. The waves are advected in phase space so as to conserve the
wave phase velocity c(r, ζ). This phase velocity actually serves as a Hamiltonian for the waves.
The additional n factor in the growth rate 6.19 comes from the choice of the phase velocity c
as a variable of interest, instead of the frequency ω. The turbulent energy can be derived using
Noether’s theorem from the eikonal action 6.28, and coincides with the usual definition in dispersive
media (Landau & Lifschitz, 1984, eq. 61.9)

Eturb =
∫
cIdζrdr =

∫
∂c[cD]Ne

2

T
|φ|2dζrdr (6.20)

where c is the real solution to the real part of the dispersion relation 6.8. By removing the function
σ from the description, the non-linear phase dynamics associated to the Hamilton–Jacobi equation
6.8 is lost. Only a linearised version is kept, in the form of the advection velocities vrg and vζg .

Dimensionally, the total wave action
∫
Idζ from 6.15 is an energy divided by a toroidal angular

velocity. It represents the momentum of turbulence when waves are sped up toroidally. Because
of the parallel alignment of the turbulent structures, qI serves as a poloidal momentum.

The growth rate is not self-consistent. This is expected: this description conserves energy, but
does not contain the depletion of the free energy source. In order to obtain a self-consistent system
of equations, we need to write the associated energy depletion in the evolution of the profiles. This
problem is notoriously subtle. It involves the computation of quasi-linear particle fluxes, as well
as introducing a ponderomotive force into the system. For reference, see (McDonald et al., 1985;
Kaufman et al., 1987). In the following, we will consider marginally stable modes, γ = 0. As a
consequence, the quasi-linear energy fluxes will be zero.

1This replacement is only possible on functions f that directly “touch” the δ distribution: f(a)δ(a − b) =
f(b)δ(a− b). If a derivative is present, the expression needs to be shuffled to get it out of the way: f(a)∂bδ(a− b) =
∂b[f(a)δ(a− b)] = ∂b[f(b)δ(a− b)].
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6.2 Coupling to the profile
Equation 6.16 is coupled to the Vlasov equation for the axisymmetric component of the distribution
function F

∂tF + div ~Γtraj + div ~Γturb = Sources + Collisions (6.21)

~Γtraj is the flux governed by the advection of F by the trajectories of the gyro-centres, while ~Γturb
contains the heat flux coming from the non-linear coupling of non-axisymmetric fluctuations. The
latter flux has components along directions r, θ and energy E. In our wave-centred description,
~Γturb is approximated as the quasi-linear flux, an integral over the spectrum I. The integrands
encode the efficiency of turbulent transport depending on the class of particles. Those depend
on the profiles, their gradients and on the wave phase space. Let the linear response f of the
distribution function to the wave φ be written symbolically as

f

F
= Λ

[
c = −∂tσ

n
, ζ = ∂rσ

nq′
, n; r, θ, E, µ

]
eφ

T
(6.22)

For a drift-kinetic system, the dispersion relation with adiabatic electrons can be written as

Dadiab = τ + k2
⊥ρ

2
i −

∫
ΛF

N
d3v (6.23)

with τ = T/Te the ion to electron temperature ratio, and k2
⊥ρ

2
i corresponds to the ion polar-

isation. The extension to a gyro-kinetic model is straightforward by inserting the appropriate
gyro-averaging. The quasi-linear fluxes of gyro-centres read as follows

Γrturb = 〈vr∗E f〉turb

= −<
∑
n>0

inqφ∗

rB
Λeφ
T

F

= −2F
eN
<
∑
n>0

∫
inq

rB
Λ I

∂cD
dζ (6.24)

Γθturb = 〈vθ∗E f〉turb = 2F
eN
<
∑
n>0

∫
inq′ζ

B
Λ I

∂cD
dζ (6.25)

where the brackets 〈·〉turb denote a sum over all the turbulent modes for all n and ζ. The turbulent
intensity is inserted using its definition equation 6.15. We suppose that the modes are marginally
stable, so that the dispersion relation is real, and there is no direct energy exchange between the
particles and the wave, so the energy flux ΓE is zero.

It should be noted that the total quasi-linear charge flux (
∑
s es

∫
Γrturb,sd3v) vanishes. In the

case of adiabatic electrons, the ion particle flux is ambipolar. This can be seen by integrating 6.24
and 6.25 on velocity.

∑
s

esΓrturb,s = 2
N0

∑
n>0

∫
nq

rB
=

[∑
s

∫
FsΛsd3v

]
I

∂cD
dζ (6.26)

The factor inside the brackets is the total density response. The dispersion relation 6.23 tells us it is
purely real. Hence, the total charge flux vanishes. This is unexpected: we should get a polarisation
flux carried by the turbulence. This polarisation flux contains the Reynolds stress responsible for
the growth of zonal flows (Taylor, 1915).

There is actually no issue with equations 6.24 and 6.25. The vanishing of the polarisation flux is
consistent with our ordering on radial derivatives ∂r � nq′ζ. Because of this ordering, quantities
involving an odd number of derivatives are purely imaginary. Instead, the polarisation flux is
frozen in the turbulence, and appears as a additional charge density in the Poisson equation. For
consistency, we need to adapt the Poisson equation to the eikonal action principle 6.7.

Let Φ be the axisymmetric electrostatic potential. This potential is associated to a poloidal
zonal flow angular velocity uE = ∂rΦ/rB. Derivations of a dispersion relation are typically done
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in the toroidally rotating plasma frame, where the zonal flow vanishes. In order to move back to
the laboratory frame, we introduce the zonal flow as a toroidal Doppler shift

D

(
c = −∂tσ

n
, r, ζ = ∂rσ

nq′
, n;uE

)
= D

(
c = −∂tσ

n
+ quE , r, ζ = ∂rσ

nq′
, n

)
(6.27)

The complete action principle becomes

S =
∫

D

(
c = −∂tσ

n
+ q∂rΦ

rB
, r, ζ = ∂rσ

nq′
, n

)
A(t, r)e−2=σrdr (6.28)

+
∫

mN

2B2 (~∇⊥Φ)2rdr +
∫

Ne2

2Te
(Φ− ΦFS)2rdr −

∫
eΦFd3vrdr

The first line is our eikonal action. The second line contains the kinetic energy stored inside the
zonal flow and the potential energy of the particles. As usual, the Poisson equation is obtained
from the variations of S with respect to Φ.

−div⊥
(
mN

B2
~∇⊥Φ

)
+ Ne2

Te
(Φ− ΦFS)− e

∫
Fd3v = 1

r
∂r

[
r

∂D

∂(∂rΦ)A(t, r)e−2=σ
]

= divr
∫

qI

rB
dζ (6.29)

where the last equality uses 6.27 and the definition of the wave packet density I. Turbulence is
affected by the poloidal flow uE . Modifying the flow costs energy according to a momentum qI.
This momentum is equivalent to a polarisation for the E ×B flow. By redefining the distribution
function F, this charge could be added to the Vlasov equation as our dearly missed polarisation
flux. The final system of equations is composed of 6.16, 6.21 and 6.29. Once again, the total energy
can be derived using Noether’s theorem on the action 6.28

Etot = Ekin + Epol + Eturb

Ekin =
∫ [m

2 v
2
|| + µB

]
Fd3vrdrdθ

Epol =
∫

mN

2B2 |~∇⊥Φ|2rdrdθ +
∫

Ne2

2Te
(Φ− ΦFS)2rdrdθ

Eturb =
∫ [

c+ q
∂rΦ
rB

]
Idζrdrdθ

Ekin is the energy stored in kinetic form by the particles. Eturb is the energy stored in the
turbulence. Epol is the energy stored in the zonal electric field. The Vlasov equation 6.21 is
constructed so as to follow the Hamiltonian m

2 v
2
|| + µB + eΦ. Similarly, the wave–kinetic equation

6.16 is constructed so as to always verify the dispersion equation: it conserves c+ q ∂rΦ
rB along the

trajectories in phase space. Both dynamics allow one to verify the energy conservation

dEkin

dt =
∫

ΓEturbd3vrdrdθ − e
∫
∂tΦFd3vrdrdθ

dEpol

dt =
∫
mN

B2
~∇⊥Φ · ∂t~∇⊥Φrdrdθ +

∫
Ne2

Te
(Φ− ΦFS)∂tΦrdrdθ

dEturb

dt =
∫
q
∂2
rtΦ
rB

Idζrdrdθ +
∫

2γ
[
c+ q

∂rΦ
rB

]
Idζrdrdθ

dEtot

dt =
∫

2γ
[
c+ q

∂rΦ
rB

]
Idζrdrdθ +

∫
ΓEturbd3vrdrdθ = 0

where we have used the Poisson equation 6.29 multiplied by ∂tΦ to get the simplified last equation.
The last equation corresponds to the energy exchange between the waves and the particles. For
marginally stable modes, it is trivially zero. The conservation of the poloidal momentum can be
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computed directly from the Poisson equation 6.29

r2

q
mN∂tuE = 1

r
∂r

∫
rvrgIdζ − er

q

∫
ΓrQLd3v (6.30)

= −1
r
∂r

∫
rW∂ζDdζ

where we have used the definition of the radial group velocity vrg = −∂ζD/∂cD. The first equality
corresponds to the definition of the Reynolds stress as a flux of toroidal momentum, while the
second equality allows to relate it to the potential spectrum.

6.3 Drift wave model
As a pedagogical example, let us first apply our approach to the wave–kinetic equation to the well-
known Charney–Hasegawa–Mima model for slab drift waves (Charney & Drazin, 1961; Hasegawa
& Mima, 1978). The advection equation for the vorticity w(x, y) has a particularly simple form

∂tw + ~vE · ~∇w + β∂yφ = 0 (6.31)

We introduce the amplitude A and phase function as in equation 6.6

φ̃ =
√

2A exp(iσ(t, x) + ikyy)

Around a reference radial position x, with a background flow uE = ∂xΦ in the y direction, the
linearised response for 6.31 is easily computed as

w̃ = β − ∂xW
c+ uE

φ̃

with W the equilibrium vorticity profile, and c = −∂tσ/ky the phase velocity in the y direction.
The action principle for Poisson equation becomes

S = 1
2

∫
[ρ2
i |∇φ|2 + τ |φ|2 − φw[φ]]

=
∫

D

(
−∂tσ
ky

+ uE , x,
∂xσ

ky
, ky

)
A

D(c, r, ζ, n) = k2
yρ

2
i (1 + ζ2) + τ − β − ∂xW

c
= 0 (6.32)

where ζ = ∂xσ/ky. The k2
yρ

2
i (1 + ζ2) is the Laplacian operator in the Poisson equation. The

dispersion relation for the drift-waves is D(c, r, ζ, n) = 0. We introduce the Wigner function W

and the wave action density I

W =
∫
φ(x+ δx)φ(x− δx)e−inζxndx = 2Aδ

(
ζ − ∂xσ

n

)
I = W∂cD = β − ∂xW

c2
W = (τ + k2

⊥ρ
2
i )2

β − ∂xW
W

By following the steps in paragraphs 6.1 and 6.2, the wave–kinetic equation 6.16 and the Poisson
equation 6.29 become

∂tI − ∂x
[
∂ζD

∂cD
I

]
+ ∂ζ

[
∂xD

∂cD
I

]
= 0 (6.33)

−∇2Φ = ∂x

∫
Idζdn (6.34)

with the group velocities given by

vxg = −∂ζD
∂cD

= −2ζn2ρ2
∗

β − ∂xW
[n2ρ2

∗(1 + ζ2) + τ ]2 (6.35)

vζg = ∂xD

∂cD
= − ∂c

∂x
= −∂xuE + ∂2

xW

n2ρ2
∗(1 + ζ2) + τ

(6.36)
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The expression of the Reynolds stress is retrieved by considering the time evolution of uE

−∂t∂xΦ = ∂x

∫
∂ζD

∂cD
Idζdn = ∂x

∫
ρ2
∗n

2ζWdζdn (6.37)

We recover the conservation of the Wigner function of the vorticity, and not of the potential. This
is consistent with the observations from the CE2–GO approach (Parker, 2016; Gillot, 2016). The
formulation of the Reynolds stress exactly matches the expected kxky|φ|2 from Euler equation,
with less usual notations. Although derived from a different formalism, the obtained wave–kinetic
system with velocity 6.36 features the saturation mechanism highlighted in (Parker, 2015; Ruiz
et al., 2016). Its origin lies in the depletion of the free-energy source ∂xW . The next section
extends the physics application to the toroidal ITG mode.

6.4 Generalised ITG model
In order to avoid notation complexity, we consider a prototype generalised ITG model. The
instability mechanism stems from the resonance between the toroidal phase velocity c of the mode
and the toroidal drift Ωd of involved particles. In general, Ωd is an even function of ζ. For this
reason, we shall take Ωd = Ωd0 + Ωd1 cos ζ, with Ωd0 and Ωd1 of the order of uDT. The dispersion
relation writes

D(c, r, ζ, n) = D

(
c+ quE
Ωd(ζ) , n

)
= 0

Without loss of generality, we suppose there is only one branch of solutions, D(δn + iεn, n) = 0.
In the converse case, the wave–kinetic system can be replaced by a sum over the branches. In this
framework, one has

c = Ωd(ζ)(δn + iεn)− quE

The wave–kinetic equation becomes

∂tI + 1
r
∂r(rvrgI) + ∂ζ(γEI) = 2γI

vrg = ∂c

q′∂ζ
= −vg sin ζ (6.38)

vζg = − ∂c

q′∂r
= (quE)′

q′
= γE

γ = Ωd(ζ)εn

where the group velocity vg scales like the thermal magnetic drift. We recover the expected
advection in ζ space by the zonal flow shear γE . With the chosen expression of Ωd, the growth
rate is maximal for ζ close to 0, which is consistent with the preferred growth of the modes on
the low-field side. Since we neglected the wave–particle energy exchange in paragraph 6.2, we will
take εn = γ = 0 to keep a consistent model.

6.5 Effect of toroidicity on the zonostrophic instability
Given these three equations 6.16, 6.21 and 6.29, we can discuss their behaviour around a plasma
state (Feq,Ieq,Φeq). For a small departure in the profiles and turbulence intensity, the coupled
second-order system can be analysed linearly.

The wave–kinetic equation contains a radial advection 6.38 that scales like the magnetic drift.
In certain conditions, this advection gives a travelling branch to the slab zonostrophic instability.
Conversely to the slab model, the profiles in the toroidal case respond according to the GAM
dynamics. Therefore, one can expect the GAM radial phase velocity and the wave–kinetic radial
advection to resonate, destabilising the GAM mode.
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Moreover, the radial velocity scales like equation 6.38: the inwards/outwards direction depends
on the effective ballooning angle. With a background zonal flow shear, the turbulent spectrum
is asymmetric in ζ. This effect should allow one to explain the relation between the direction of
avalanches and the sign of the zonal shear, as reported in numerical simulations (Idomura et al.,
2009; McMillan et al., 2009). We take the coupled system as

∂tI + 1
r
∂r(rvrgI) + ∂ζ(γEI) = 0 (6.39)

∂tF(r, θ, E, µ) +
v||

qR
∂θF − uD(cos θ∂θ + sin θr∂r)F + b

B
× ~∇Φ · ~∇F = −div ΓQL (6.40)

where we denote the magnetic drift angular velocity as

uD =
mv2
|| + µB

eBRr

We chose to neglect the effect of the quasi-linear fluxes in 6.40. These fluxes balance the excitation
in the wave–kinetic equation. In order to keep the energetic consistency, we put this excitation to
zero.

We perturb the system with a fluctuation of the n = 0 potential Φ̃, with p/r the radial mode
number. Let ω be the mode frequency, and ω|| = v||/qR. For simplicity, we neglect the back-action
onto the density and temperature gradients used as free energy sources for the ITG turbulence. As
a consequence, the growth of the mode in the thin corrugation limit —around the eddy size— may
be overestimated (Parker, 2016). In the Vlasov equation, we neglect the poloidal drifts (magnetic
and E×B) compared to the poloidal projection of the parallel velocity. We suppose the equilibrium
electric field is purely radial Φeq(r). The Poisson equation is obtained from equation 6.29.

−iωĨ − ipvg
r

sin ζĨ + γE∂ζ Ĩ = p2

r2
Φ̃0

B
∂ζIeq (6.41)

−iωF̃ + ω||∂θF̃ − uD sin θr∂rF̃ = −[ω||∂θ − uD sin θr∂r]Φ̃
Feqe

Teq
(6.42)

(−p2ρ2
∗ + ρ2

∗∂
2
θ + τ)Neqe

2

Teq
Φ̃ = e

∫
F̃ + ip

∫
qĨ

r2B
dζ (6.43)

We denote as Φ0,c,s the symmetric, cosine and sine components of Φ̃, likewise for F̃ . We perform
a similar decomposition for Ĩ with the ballooning angle ζ. −2iω −ip vgr 0

−ip vgr −iω −γE
0 +γE −iω

 Ĩ0
Ĩs
Ĩc

 = p2

r2
Φ̃0

B

 0
−Ieq,c
Ieq,s

 (6.44)

 −2iω −ipuD 0
−ipuD −iω −ω||

0 +ω|| −iω

 F̃0
F̃s
F̃c

 = Feqe

Teq

 0 ipuD 0
ipuD 0 −ω||

0 +ω|| 0

 Φ̃0
Φ̃s
Φ̃c

 (6.45)

We can verify that the matrices on the left-hand side are skew-symmetric. This is consistent with
the advection form of the Vlasov and wave–kinetic equations. For simplicity, we set the wave group
velocity as vg = uDT/q

′, with the thermal toroidal magnetic drift frequency uDT = qT/eBRr. Let
uTR be the poloidal transit frequency, uTR = vth/qR. We introduce the normalised mode frequency
Ω = ω

uTR
√

2 , mode number P = uDT
2uTRq

p = qρ∗p/2, and background flow shear S = γE
uTR
√

2 . Inverting
the two matrices gives the resolved form

Ĩ0 = iP 3/s

Ω2 − S2 − P 2/s2

[
Ieq,c − i

S

ΩIeq,s

]
2Φ̃0

q2ρ2
∗r

2uTRB
(6.46)

F̃0 = eFeq

2Teq

−ΩP
√

2 quDuDT
Φ̃s + 2P 2

(
quD
uDT

)2
Φ̃0

Ω2 − Ω2
||

(6.47)

F̃s = eFeq

Teq

−
√

2ΩP quD
uDT

Φ̃0 + Ω2
||Φ̃s + iΩΩ||Φ̃c

Ω2 − Ω2
||

(6.48)
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with s = rq′/q the magnetic shear. For a symmetric distribution function, the only the even terms
in Ω|| contribute, so Φ̃c disappears from the description. Integrating in velocity, we obtain

Ñ0 = eNeq

2Teq
[PI1Φ̃s + P 2I2Φ̃0] (6.49)

Ñs = eNeq

Teq
[PI1Φ̃0 + I3Φ̃s] (6.50)

where we used the resonant integrals from (Girardo, 2015):

I1 =
√

2
∫ Ω quD

uDT

Ω2 − Ω2
||

Feq

Neq
= −
√

2
[
Z[Ω]

(
1
2 + Ω2

)
+ Ω

]
(6.51)

I2 = 2
∫ (

quD
uDT

)2

Ω2 − Ω2
||

Feq

Neq
= −2

[
Z[Ω]

(
1

2Ω + Ω + Ω3
)

+ 3
2 + Ω2

]
(6.52)

I3 =
∫ Ω2

||

Ω2 − Ω2
||

Feq

Neq
= −1− ΩZ[Ω] (6.53)

Finally, Poisson equation gives

P 2

q2 Φ̃0 = 1
2[PI1Φ̃s + P 2I2Φ̃0] + i

2P
r2ρ∗B

Teq

Neqe2 Ĩ0 (6.54)

= 1
2[PI1Φ̃s + P 2I2Φ̃0]

− 4Φ̃0
P 4/s

Ω2 − S2 − P 2/s2

∫
Ieq,c − iSΩIeq,s

Neqmr2uDT
dζ(

τ + ρ2
∗ + P 2

q2

)
Φ̃s = PI1Φ̃0 + I3Φ̃s (6.55)

We introduce the turbulent intensity as Tc,s =
∫

Ieq,c,sdζ
Neqmr2uDT

. The dispersion relation is given by
DG(Ω) = 0 with

DG(Ω) = 1
q2 −

J2(Ω)
2 − I2

1 (Ω)
2
(
τ + P 2

q2 − I3(Ω)
) (6.56)

J2 = I2 −
8P 2/s

Ω2 − S2 − P 2/s2

[
Tc − i

S

ΩTs

]
(6.57)

The dispersion relation 6.56 is plotted figure 6.1. This plot is done with q = 1.6, s = 1 without any
sheared flow S = 0. The turbulent intensity is chosen as Tc = 10−2 and Ts = 0. This corresponds
to an in-out asymmetry of turbulent energy of the order of Tcq2ρ2

∗ε
2 times the plasma pressure.

For P = 0, we recover the usual GAM dispersion relation, with J2 becoming I2. The GAM is
located at ΩGAM = 3.1− 0.02i.

DGAM(Ω, P,T) = 1
q2 −

I2
2 −

I2
1

2
(
τ + P 2

q2 − I3
) (6.58)

For P/s far from ΩGAM, the zero due to the zonostrophic instability provides an unstable mode
with growth rate Γ = 0.01, and is located near the resonance position Ω = P/s. For P = 3, the
two zeros interact. The zonostrophic instability is further destabilised at Ω = 2.8 + 0.35i, while
the GAM is strongly damped at Ω = 2.8 − 0.38i. This example does not contain a linear growth
rate for the turbulent structures, so the growth of the zonal flow comes from pumping energy from
turbulence.

It is straightforward to extend the relation dispersion 6.56 to handle EGAMs (Girardo, 2015).
The same plot can be done with a population of 7% of energetic particles going at 2.8 times the
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Figure 6.1: Contour lines of |DG| for q = 1.6 and s = 1. A = S = 0. The GAM frequency is
Ω = 3.07 − 0.02i. The zeros are in dark blue. The zeros due to the zonostrophic instability is
highlighted by a red cross.

thermal velocity, figure 6.2. The EGAM lies at Ω = 2.5 + 0.07i. For P = 2.5, the zonostrophic
instability interacts with it. The EGAM is stabilised at Ω = 2.4 − 0.17i, while the zonostrophic
mode is destabilised to Ω = 2.3 + 0.24i. This behaviour is consistent with the observations from
(Zarzoso et al., 2013): the avalanche synchronises at the EGAM frequency when energetic particles
are present.

If we add a non-zero background zonal shear, we expect the system to develop an asymmetry
depending on the sign of Ω. This is not the case without a turbulent growth rate. Turbulent
structures are allowed to travel the full poloidal plane. The system is symmetric in phase velocity,
and does not prefer a direction over the other. This is a consequence of the joint symmetry principle
(Hwa & Kardar, 1992; Diamond & Hahm, 1995). In order to regain the asymmetry, we need to
take into account the differential growth between the two sides. The damping on the high-field
side cuts the poloidal travel of the turbulent structures. We add a growth rate γ = α cos ζ to
equation 6.39. The α coefficient constrains a localised growth of the turbulence on the low-field-
side. This effectively expresses the intensity growth where the instability growth is maximum. The
J2 function becomes

J2 = I2 −
P 2/s

Ω2 + 2A2 − S2 − P 2/s2

[(
1− ASs

ΩP

)
Tc − i

(
S

Ω −
As

P

)
Ts

]
(6.59)

where A = α/uTR. By introducing A 6= 0, the structures are damped when arriving at the high-
field side. The symmetry between ζ > 0 and ζ < 0 is broken, and the instability can develop
with a preferred direction. We consider this modified system with A = S = 2. The dispersion
relation for P = 3 is shown figure 6.3. The two instabilities are located at Ω = −2.3 + 0.41i and
Ω = 2.3+0.11i. The direction is consistent with the observed inwards avalanches for positive zonal
flow shear. Contrary to (Sasaki et al., 2018a), we do not need to introduce an ad-hoc up-down
asymmetry of the turbulent spectrum, it is generated self-consistently by the ballooned growth rate
and the background flow shear. Although the wave–particle energy exchange is not self-consistent
for α 6= 0, the instability mechanism already exists in the self-consistent α = 0 case. As a result,
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Figure 6.2: Contour lines of |DG| for q = 1.6 and s = 1 with 7% energetic particles at 2.8 times
the thermal velocity. A = S = 0. The EGAM frequency is Ω = 2.47 + 0.07i. The zeros are in
dark blue. The zeros due to the zonostrophic instability is highlighted by a red cross.

the computed instability is not spurious, but a modification of the former case.

6.6 Conclusion
In order to study the zonostrophic instability in toroidal plasmas, we developed a self-consistent
and conservative formulation of the wave–kinetic equation coupled to a background plasma. This
formulation is parameterised by the dispersion relation for the underlying turbulent linear wave,
but is restricted to marginally stable modes. It is usable both in slab and toroidal geometry.
This conservative formulation has been used to investigate the effect of toroidal geometry on the
generation of zonal flows.

In toroidal geometry, as we have shown in paragraph 5, the zonal flows affect turbulent cells by
moving them toroidally, and by shearing them. This shearing acts by moving the turbulent cells in
the poloidal direction, making them ballooned above or below the mid-plane. As the toroidal drift
velocity depends on the ballooning angle of turbulence, the ITG mode frequency follows the same
dependency. Since the ballooning angle is related to the radial mode number of the turbulent cell,
this induces a radial group velocity of the turbulent cells, mostly following the ion direction.

The generic zonostrophic instability carries over from slab to toroidal geometry. It is driven by
the modulation of the drift-wave turbulence by a sheared zonal flow. This generic instability has its
phase velocity close to the radial group velocity of the underlying turbulence. In toroidal geometry,
the zonal flow responds according to the GAM dynamics, with a specific radial phase velocity.
When the radial motion of turbulent cells resonates with the GAM radial phase velocity, the
zonostrophic instability and the GAM interact. The zonostrophic instability is further destabilised,
and the GAM has stronger damping. This mechanism could be responsible for the avalanche
behaviour. It is able to explain the typical frequency of avalanches, close to the GAM frequency.
Furthermore, it is able to reproduce the synchronisation to EGAM frequency (Zarzoso et al.,
2013). When a background zonal flow shear is present, a ballooned turbulence has an up-down
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Figure 6.3: Contour lines of |DG| for q = 1.6 and s = 1. A = S = 2. The unstable inwards mode
Ω < 0 is more unstable than the outwards one. The −2 < Ω < 2 region has been compressed to
help visualisation in the 2 < |Ω| < 4 regions.

asymmetry. The footprint of this asymmetry gets carried over to the avalanches by preferring the
same propagation direction.

The resulting coupled instability develops at a resonance between the GAM frequency and the
radial magnetic drift. As a consequence, the resonant radial wave-number krρi is a few times s/q2.
In the weak magnetic shear regime, krρi is a fraction of a unit, the radial scale separation between
turbulence and GAMs is only marginally verified. Slower branches of GAMs, like trapped particles
driven and precession driven (Sasaki et al., 2016), may provide a more reasonable radial scale.

The non-linear regime with an established GAM has been described by (Sasaki, 2018; Sasaki
et al., 2018b,a). An extreme in the flow can act as a trap in phase space for turbulent cells. The
toroidal drift wave phase velocity can be approximated as

c ≈ −quE + δnΩd(ζ) ≈ c0 −
1
2(quE)′′(r − r0)2 − δnΩd(ζ)ζ

2

2

For maxima of the flow, (quE)′′ > 0, the phase velocity is a potential well, turbulent structures may
become trapped. This corresponds to the increased correlation time featured on figure 5.7c. On
the contrary, for minima of the flow, (quE)′′ < 0, the phase velocity has a saddle point, turbulent
structures are expelled. This corresponds to the increased radial correlation on figure 5.7d. By
trapping turbulence inside its lobes, a GAM can carry it to a stable region, providing an effective
turbulence spreading mechanism (Miki & Diamond, 2010; Sasaki et al., 2017). The same generic
mechanism exists for stationary zonal flow (Zhu et al., 2020): the stability of the zonal flow pattern
depends on the sign of the curvature. The formalism developed in this chapter should be extended
to account for these additional phenomena. The idea of trapping relies on an eikonal description
of the system. These trapped eikonal waves actually correspond to stationary radially-coherent
waves inside the trap (McDonald, 1988). Lifting the eikonal hypothesis may provide useful insight
into the nature of non-linear cooperative structures between GAMs and turbulence.



Chapter 7

Electromagnetic effects in
GYSELA

Plasma core turbulence is strongly affected by the behaviour of the plasma edge (Dif-Pradalier
et al., 2017a; Caschera, 2019). In order to get a self-consistent simulation of the plasma, the
different effects in this region need to be accounted for. Among them, electromagnetic effects come
into play because of the strong density gradient in the edge. More importantly, the instabilities
inside the H-mode pedestal are expected to have a strong magnetic component (Hamed, 2019).

The present version of GYSELA handles the self-consistent evolution of multiple particle spe-
cies, including electrons, and of the electrostatic potential. The current push towards more in-
tegrated simulations of the interplay between core and edge turbulence requires alleviating the
electrostatic hypothesis. Furthermore, the simulation of fully kinetic electron dynamics in the
electrostatic regime are plagued by the so-called ωH mode. This ωH mode happens to be the
electrostatic limit of Alfvén eigenmodes, for infinite Alfvén velocity. Successful simulation of fully
electron dynamics therefore require electromagnetic effects.

7.1 Statement of the problem

In the electrostatic description, we consider a stationary magnetic field ~B = B~b. Our objective
here is to introduce fluctuations of this magnetic field. More precisely, we are interested by the
magnetic fluctuations carried by the parallel component of the magnetic vector potential ψ = ~b·δ ~A.
The associated Vlasov equation has been derived paragraph 2.1.6. It features additional terms in
the equations of motion compared to the electrostatic version. Those additional terms are due to
the deformation of the magnetic field lines δ ~B = ~∇× (ψ~b), and to the acceleration by the parallel
electric potential E|| = −∂tψ −∇||φ. For convenience, the equations of motion are reproduced

B∗||
~̇X = v ~B∗ +~b× ~∇

[
µB

e
+ J [φ− uψ]

]
(7.1)

mB∗||u̇ = − ~B∗ · ~∇[µB + eJ [φ− uψ]] (7.2)

v = u− e

m
J [ψ] (7.3)

~B∗ = ~B + mu

e
∇×~b (7.4)

where v = ~b · ~̇X is the “symplectic” gyro-centre parallel velocity, and mu its parallel Hamiltonian
momentum. The magnetic field in those equations is the equilibrium magnetic field, and the
perturbations appear explicitly through ψ. The perturbed magnetic potential ψ is given by the
Ampère equation 7.6. In full generality, the Poisson and Ampère equations are coupled, but
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decouple when the plasma is at rest 0 =
∑
smsNsV||,s, as discussed paragraph 2.1.6.

−div⊥

( ∑
species

mN0

B2 ∇⊥φ

)
=

∑
species

e

∫
J†[FB∗||]dudµ (7.5)

−µ−1
0 ∇2

⊥ψ +
∑

species

N0e
2

m
ψ =

∑
species

e

∫
uJ†[FB∗||]dudµ− J||,eq (7.6)

β = µ0N0T0

B2 (7.7)

with F = FB∗|| the gyro-centre distribution function, and J||,eq is the current generating the equi-
librium magnetic field. The Poisson equation keeps exactly the same form as for the electrostatic
case. The second term in the Ampère equation is responsible for the magnetic skin effect. This
makes the typical length scale of magnetic fluctuations of the order of the electron skin depth
δe = ρe/

√
β, where ρe is the electron Larmor radius. The β parameter is the ratio of kinetic to

magnetic pressure. It quantifies the strength of magnetic perturbations: ψ scales like β. The lim-
iting case of β = 0 corresponds to the electrostatic case, where magnetic fluctuations are dwarfed
by the background field.

7.1.1 Magnetic cancellation
The model can also be formulated using of the symplectic velocity v as a variable, instead of u.
In that case, the skin term in the Ampère equation vanishes. Meanwhile, the equations of motion
change, and depend on ∂tψ. The Lagrangian writes

L = mv~b · ~̇X + e ~A · ~̇X + eJ [ψ]~b · ~̇X − m

2 v
2 − µB − eJ [φ] (7.8)

B∗||
~̇X = v ~B∗ +~b× ~∇

[
µB

e
+ J [φ]

]
(7.9)

mB∗||v̇ = − ~B∗ · ~∇[µB + eJ [φ]]− eB∗||∂tψ (7.10)
~B∗ = ~B + ~∇× (ψ~b) + mu

e
∇×~b (7.11)

−µ−1
0 ∇2

⊥ψ =
∑

species
e

∫
vJ†[FB∗||]dvdµ (7.12)

There are three main changes. First, the magnetic field line bending terms have moved, from the
gradient of the Hamiltonian in 7.1–7.2 to the effective magnetic field ~B∗. Second, the skin term
in the Ampère equation disappears. Third, the time derivative ∂tψ enters the equation. This is
a major drawback: we would need a semi-implicit gyro-kinetic solver. GYSELA is inherently an
explicit code. This alone means the symplectic coordinate system is a no-go.

The Ampère equation 7.6 as written is linear and solvable. However, it tends to be numerically
challenging and prone to inaccurate solutions, due to the so-called gyro-kinetic magnetic cancel-
lation (Cummings, 1996). In the Maxwell–Ampère equation 7.12, the relevant magnetic source is
the current due to the charge motion, given by v. The “real” parallel current is

J|| =
∑

species
e

∫
vJ†[F]dvdµ (7.13)

=
∑

species
e

∫ (
u− e

m
ψ
)
J†[F]dudµ

≈
∑

species
e

∫
uJ†[F]dudµ− Nse

2

m
ψ (7.14)

where the last equality neglects the gyro-averaging. This current can be thought as the difference
between the currents carried by two distribution functions, centred at two different positions, as
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illustrated figure 7.1. The two components in equation 7.14 expected to be large, and to cancel
out, resulting in a smaller real current 7.13. This is the magnetic cancellation.

The choice of the u variable tends to move the distribution function in the velocity grid. For
the GYSELA storage of the distribution function, this comes as a serious risk of code breakdown:
for larger values of ψ, the distribution function may get out of its velocity-space grid [A. Bottino,
private communication]. For a typical GYSELA grid, this happens when eψ reaches

√
meTref .

This corresponds to a magnetic fluctuation of the order of δB/B ∼ ρek⊥. Considering magnetic
instabilities develop at k⊥ ∼ 1/δe, this amounts to δB/B . ρe/δe =

√
β. This is actually a tight

upper bound for purely numerical stability, notably in the non-linear regime where δB/B already
approaches β ∼ 1%.
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Figure 7.1: Illustration of the spurious shift in the parallel distribution function when formulated
in the momentum variable u. Plain lines are the current integrals in 7.13 and 7.14 respectively.
Chosen distribution function is FM = exp

(
− m

2T

(
u− eψ

m

)2). We chose eψ
m

= 0.6vth.

7.1.2 Methods from the other codes
In the literature, the problem has been cured for δF and PIC codes. For δF codes, the magnetic
flux ψ is assumed to remain small. Their coordinate of choice is the symplectic velocity v. The
Vlasov equation is solved by introducing a modified distribution function g

g = f − e

m
J [ψ]∂vFeq

Rewriting the Vlasov equation with g effectively removes the ∂tJ [ψ], and avoids an implicit scheme.
This essentially corresponds to solving the Vlasov equation in Hamiltonian coordinates, and ap-
proximating v ≈ u in the equations of motion.

The historical method in ORB5 is due to Hatzky (Hatzky et al., 2007). PIC codes are especially
sensitive to inaccuracy because of the sampling noise they contain. Their method is centred on
a better computation of the skin term: it is replaced by a numerical integration on the locally
present particles,

e2

m
N0 ≈ e2

m

∑
u

N0
u2

v2
th
FM (u)

withFM the reference Maxwellian distribution function. The accuracy of the density in the Ampère
skin term is deemed critical in both GENE (Görler et al., 2011), GKW (Peeters et al., 2007) and
GYRO (Candy & Waltz, 2003b). The skin term is computed numerically using the same velocity
grid as the distribution function. This ensures a consistent numerical scheme, and cancellation of
the spurious current including its own discretisation error. For the time being, GYSELA uses a
Fourier-based scheme for solving the Poisson and Ampère equations. Therefore, we have to use
a skin term which is uniform on flux-surfaces. For numerical simplicity, we ignore their advice,
and use the analytical value for the skin term. However, the degraded accuracy may reveal a
prohibitive price, and in that case will need proper treatment. This will have a consequence in the
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expression of the conserved energy 7.32. This limitation is being removed with recent progress on
non-circular geometry and a 2D Poisson solver.

Furthermore, the position of the gyro-average operator in the different terms depends on the
code. For instance GENE and GKW gyro-average ψ in the skin term. This adds a β⊥ term in
the permeability term, which is of the same order as the β|| we neglected earlier. Taking this term
into account would be a numerically costly for Ampère solvers based on direct matrix inversion, as
the sparsity of the matrix is significantly degraded. Nevertheless, ongoing work on the GYSELA
Poisson solver may render this possible.

7.1.3 Change of variable scheme
Recent works in EUTERPE and ORB5 have developed a new method based on a change of variable
scheme (Mishchenko et al., 2014b,a; Kleiber et al., 2016; Mishchenko et al., 2017, 2019). The idea
is the following: magnetic cancellation is due to the distribution function shifting in u space.
Meanwhile, the equations of motion in variable v require knowledge of ∂tψ.

Hand-waving explanation

The problem with equation 7.10 lies in the presence of the time derivative of ψ. Let us discretise
the equations of motion explicitly at first order

~Xt+∆t − ~Xt ≈ ∆t ~̇X
(
t+ ∆t

2 , ~Xt, vt+ ∆t
2

)
(7.15)

vt+ 3∆t
2
− vt+ ∆t

2
≈ ∆tv̇

(
t+ ∆t, ~Xt+∆t, vt+ ∆t

2

)
(7.16)

≈ −∆t
~B∗

mB∗||
· ~∇[µB + eJ [φ]]− e

m
J [ψt+∆t − ψt] (7.17)

One difficulty in this formulation lies in the computation of the current at t + ∆t in order to get
ψt+∆t. The time stepping for the velocity can be further split into the following

vt+∆t − vt+ ∆t
2

= −∆t
2

~B∗

mB∗||
· ~∇[µB + eJ [φ]] (7.18)

v′t+∆t − vt+∆t = − e

m
J [ψt+∆t − ψt] (7.19)

vt+ 3∆t
2
− v′t+∆t = −∆t

2
~B∗

mB∗||
· ~∇[µB + eJ [φ]] (7.20)

The first and third equations are electrostatic half pushes. The current can be computed using
the position ~Xt+∆t and the velocity vt+∆t. The second equation can be thought as a change of
variable, shifting the definition of vt+∆t by e

mJ [ψt+∆t − ψt].
In the point of view of particle pushing, everything is contained in the above three equations.

The subtlety arises when deciding which Ampère equation should be used to obtain a self-consistent
semi-Lagrangian scheme. The following section resolves this ambiguity by introducing separate
variables for the magnetic perturbation used in the advection, called ψs, and for the shift in
equation 7.19, ψh = ψt+∆t − ψt.

Formal definition

Both magnetic cancellation and semi-implicitness can be cured by introducing an additional degree
of freedom. We decompose the vector potential into a symplectic component ψs and a Hamiltonian
component ψh. We introduce a mixed velocity coordinate w as

w = u− e

m
J [ψs] = v + e

m
J [ψh] (7.21)

ψ = ψh + ψs (7.22)
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The equation of motion derive from the following Lagrangian

L = mw~b · ~̇X + eJ [ψs]~b · ~̇X + e ~A · ~̇X −H

H = mw2

2 + µB + eJ [φ]− ewJ [ψh]

Their explicit form is

B∗||
~̇X =

(
w − e

m
J [ψh]

)
~B∗ +

~b

e
× ~∇H (7.23)

mB∗||ẇ = − ~B∗ · ~∇H− eB∗||J [∂tψs] (7.24)
~B∗ = ~B + mw

e
∇×~b+ m

e
∇× (J [ψs]~b) (7.25)

As earlier, we need to know ∂tψs. Except this once, we have an available degree of freedom in
the splitting ψ = ψs + ψh. We can chose whatever form we like for ∂tψs. The actual evolution
of ψ is obtained by solving the Ampère equation for ψh. As such, ψs serves as a background
magnetic perturbation for which we guess the evolution, while ψh gives the correct evolution of
this perturbation by the Vlasov dynamics. Using the Boussinesq approximation for the skin term,
the variational principle can be written as

S =
∫

LFd3 ~Xdwdµ+
∫
mN0

2B2 [∇⊥φ]2d3 ~X (7.26)

−
∫
µ−1

0
2 [∇⊥ψs +∇⊥ψh]2d3 ~X −

∫
N0e

2

2m ψ2
hd3 ~X

Cancelling the variations of S with respect to ψh implies the following Ampère equation

−µ−1
0 ∇2

⊥(ψh + ψs) +
∑

species

N0e
2

m
ψh =

∑
species

e

∫
wJ†[FB∗||]dwdµ− J||,eq (7.27)

We emphasise the presence of both components ψh + ψs in the Laplacian term, while only the
Hamiltonian component ψh appears in the skin term. The ∇2ψs term acts as a current in the
right-hand side of the equation. It contains the current already mobilised into generating ψs, so
that ψh is generated only by the newly available current. We draw attention to the B∗|| jacobian in
the right-hand side of 7.27: it depends on ψs. To the contrary, the equilibrium current is a static
value. It has to be evaluated with ψs = 0, with the equilibrium B∗||,eq, so as to always keep the
same value.

J||,eq =
∑

species
e

∫
vJ†[FeqB

∗
||,eq]dvdµ

The strength of this approach comes from the following: by controlling the magnitude of ψh,
the magnetic cancellation can be managed. The simplest way to achieve that is to use ψs as an
accumulator for ψh: at each time step, increment ψs by ψh, and reset ψh to zero. From the point of
view of the Vlasov equation, this resetting is a change of variable, moving from wold = v+ e

mJ [ψold
h ]

to wnew = v + e
mJ [ψnew

h ] = v. This change of variable is exactly the one in equation 7.19 with
different notations. Since we suppose ψh to be of order ∆t, we drop it from the equations of motion.
As a result, the modification of the equations of motion only happens through the distortion of
the effective magnetic field ~B∗. The general algorithms is therefore:

1. Start a time step with ψs = ψ and ψh = 0.
The distribution F is discretised in a w grid, with w = v + e

mJ [ψh] = v.

2. Perform the Vlasov advection with equations 7.23–7.25.
Now, F is still discretised with a w grid, but w = v+ e

mJ [ψh] 6= v where ψh 6= 0 is unknown.

3. Solve the Ampère equation 7.27 to find ψh.
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4. Change the variable, while keeping ψ = ψs + ψh and v = w − e
mJ [ψh] constant

ψnew
s = ψold

s + ψold
h (7.28)

ψnew
h = 0 (7.29)

wnew = wold − e

m
J [ψold

h ] (7.30)

F new(wnew) = F old
(
wold = wnew + e

m
J [ψold

h ]
)

(7.31)

During a time step, the coordinate w essentially works as the Hamiltonian coordinate u. The whole
distribution function gets shifted by J [ψh]. At the end of the time step, the Ampère equation
solves for ψh. The spurious current Ne2ψh/m is of the order of ∆t and much smaller than the
full Ne2ψ/m, so a priori more manageable for numerical accuracy. Then, we change the variable
wold to wnew. This change of variable displaces the distribution function in velocity space, so as
to centre it around the correct gyro-centre mean velocity V||.

7.1.4 Boundary conditions
We need boundary conditions to solve the Poisson and Ampère equations. This requires choosing
a model for the tokamak wall. This question is not precisely addressed in the literature. Local
codes tend to use radially periodic boundary conditions (Peeters et al., 2007; Görler et al., 2011).
Many global codes have decided to use a buffer region as “benign” boundary conditions (Candy &
Waltz, 2003b; Bottino et al., 2010; Görler et al., 2011; Candy & Belli, 2015).

We chose a perfectly conducting wall: the electric field along the wall is zero. This can be
written as the vanishing of both toroidal and poloidal components as

0 = Eϕ = −bϕ∂tψ − ∂ϕφ
0 = Eθ = −bθ∂tψ − ∂θφ

This implies the vanishing of both ψh = ∆t∂tψ and φ.

7.1.5 Conserved quantities in mixed variables
Using the action principle 7.26, we can formulate conserved quantities as in paragraph 2.1.7. The
conservation of the energy E writes

0 = ∂tE + div ΓrE

E =
∑
s

∫ [
mw2

2 + µB + eJ [φ]− ewJ [ψh]
]
FdwdµdSFS

−
∫
mN0

2B2 [∇⊥φ]2dSFS +
∫
µ−1

0
2 [∇⊥ψs +∇⊥ψh]2dSFS +

∫
N0e

2

2m ψ2
hdSFS

=
∑
s

∫ [
m
(
u− e

mJ [ψh]
)2

2 + µB

]
FB∗||dwdµdSFS (7.32)

+
∫
mN0

2B2 [∇⊥φ]2dSFS +
∫ [∇⊥ψs +∇⊥ψh]2

2µ0
dSFS

+
∑
s

e2

2m

[∫
ψ2
hN0,sdSFS −

∫
J [ψh]2FB∗||dwdµdSFS

]
ΓrE =

∑
s

∫ [
mw2

2 + µB + eJ [φ]− ewJ [ψh]
]
ṙFB∗||dwdµdSFS

with SFS the flux-surface surface element. The equation has sensibly the same form as in paragraph
2.1.7: the sum of the kinetic energy of particles mv2/2 + µB, the polarisation energy density, and
the magnetic field self-energy. The extra term in ψ2

h − J [ψh]2 comes from our approximation in
the treatment of the magnetic skin term in the Ampère equation. In the long-wavelength limit,
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this term is positive and proportional to T⊥[∇⊥ψh]2, so should create additional instabilities. The
conservation of the toroidal momentum becomes

0 = ∂tP + div ΓrP

P =
∑
s

∫
[mwbϕ + eJ [ψs]bϕ + eAϕ]FB∗||dwdµdSFS

ΓrP =
∑
s

∫
[mwbϕ + eJ [ψs]bϕ + eAϕ]ṙFB∗||dwdµdSFS

7.2 Application to GYSELA
GYSELA is a backwards semi-Lagrangian code. In order to compute the distribution function
F at a time t, it tracks where each point on the phase space grid was at t − ∆t by following
the trajectory backwards in the 4D phase space r, θ, ϕ, v|| (µ is an invariant), and interpolates
the former distribution function. The computation of the backwards trajectories is done explicitly
using the potential computed from the distribution at t−∆t. This scheme is essentially performing
a change of variables at each time step, in the shape of a map (r, θ, ϕ, v||)t,µ 7→ (r, θ, ϕ, v||)t+∆t,µ.

The GYSELA main loop does four things1: evolve the distribution function, compute the
potential, compute and store the diagnostics, and finally save the distribution function for restart.
The first two steps are actually repeated in a prediction–correction sub-loop. The evolution of the
distribution function is split into advections in different directions. The general algorithms can be
summarised as follows

1. Start a time step with the distribution function F

2. Prediction–correction sub-loop:

(a) Copy F into G

(b) Half-advection in v for G
(c) Half-advection in ϕ for G
(d) Advection in (r, θ) for G
(e) Half-advection in ϕ for G
(f) Half-advection in v for G
(g) Solve Poisson equation for φ from G

3. Compute diagnostics on G

4. Save the restart file on G

5. Swap F and G, and loop.

To make modifications granular, electromagnetic GYSELA is controlled by three parameters.
solve_Ampere enables and disables the solving of the Ampère equation. beta_toro provides
the value of the β = µ0N0T0/B

2
0 parameter, which specifies µ0 in equation 7.6 (N0, T0 and B0 are

the reference density, temperature and magnetic field). advec_Ampere enables and disables the
effect of ψ in the equations of motion. Having solve_Ampere and advec_Ampere separate allows to
test separately the Ampère solver and the advection. Most notably, enabling only solve_Ampere
allows to verify the implementation of the Ampère equation without polluting the time stepper.
Conversely, enabling only advec_Ampere allows to check for difficulties in data communications.
As an extension, the same mode will allow to study the effect of a static magnetic island on the
plasma.

In this paragraph, we will use the normalisation and naming from the code. Phi is the scalar
potential φ normalised to the thermal potential T0/Z0. Apar and Apar_diff are the symplectic

1For simplicity, we chose not to discuss additional operators like diffusion, Krook damping and collisions, nor
alternate schemes like aligned coordinates (Latu et al., 2017). The extension to these is straightforward.
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ψs and Hamiltonian ψh parts of the parallel vector potential, normalised to with
√
A0T0/Z0. The

full parallel vector potential is thus ψ = Apar+Apar_diff. The GYSELA parallel velocity grid
vparg is normalised to the species thermal velocity

√
T0/As. In consequence, it must be divided

by
√

hatAs =
√
As/A0 to obtain the velocity in the

√
T0/A0 dimension. We denote the normalised

charge hatZs= Zs/Z0.
In the electrostatic version, there is only one velocity coordinate, v = u = w. In the electro-

magnetic case, the three are different. We re-purpose the GYSELA velocity grid vparg to be a
uniform grid in w. As w is a moving target when we change the definition of ψs and ψh, we will
specify when to interpret the grid as in wold versus wnew.

7.2.1 Modifications to data structures
The algorithm in the previous section has been simplified for brevity. For instance, concerns about
data decomposition and communication are hidden. Nevertheless, this engineering work contains
a large part of the needs of a high-performance computing code. Instead of one three-dimensional
field φ, GYSELA now has three of them: Phi, Apar and Apar_diff. The complexity of the data
storage stems from the need for adequate communication between processors with different data
decompositions. Thankfully, the three fields have approximately the same requirements. Both φ
and ψh are solved in Poisson and Ampère solvers on a reduced set of processes with one value of
the toroidal angle ϕ each. The resulting data needs to be (1) gyro-averaged, (2) differentiated with
respect to r, θ and ϕ, (3) broadcast on the two data decompositions used for the Vlasov solver.

All the heavy lifting was already done for the potential Phi. This infrastructure has been
adapted and re-used to compute the derivatives and broadcast both Apar and Apar_diff. The
accumulation of Apar_diff into Apar is a straightforward operation. However, it implies Apar
needs to be preserved between time steps. As a consequence, Apar must be stored into restart files
to be reloaded later.

7.2.2 Modification to the time stepper
In order to adapt this algorithm to the electromagnetic case, we need to insert three key steps:
(i) the change of variable from wold to wnew, (ii) the resolution of Ampère equation of Apar_diff,
and (iii) the accumulation of Apar_diff into Apar. Because of step (iii), the Apar has become an
induction variable. Therefore, we have to take care of the predictor–corrector loop, and to avoid
modifying Apar inside it.

For step (i), we chose to leverage the first half-advection in the velocity direction to operate the
change of variable. This amounts to changing the foot of the characteristic according to 7.34, by
hatZsJ [Apar_diff] /

√
hatAs. Therefore, it leads to a low additional cost. As it is the first step of

the Vlasov advection, it sets the grounds for the remainder of the Vlasov advection. This choice
has two important consequences. First, we need to store the distribution function in variable w
in the restart files. Second, we must preserve the value of Apar_diff from the previous time step
during the prediction–correction sub-loop. Therefore, the resolution of the Ampère equation (ii)
must happen after the sub-loop.

The new algorithm is the following:

1. Start a time step with the distribution function F (wold)
(iii) if solve_Ampere: accumulate Apar_diff into Apar.

Apar := Apar + Apar_ diff.

From this point on, the invariant ψ = Apar+Apar_diff is broken: ψ =Apar and Apar_diff6=
0.
This will be repaired by the change of variable step (i).

2. Prediction–correction sub-loop:

(a) Copy F (wold) into G(wold)
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(b) Half-advection in v for G(wold)
(i) if advec_Ampere: change variables into G(wnew). It is detailed paragraph 7.2.3.
By assigning Apar_diff:= 0, we restore the invariant ψ = Apar+Apar_diff2.

(c) Half-advection in ϕ for G(wnew)

(d) Advection in (r, θ) for G(wnew)

(e) Half-advection in ϕ for G(wnew)

(f) Half-advection in v for G(wnew) with no change of variable

(g) Solve Poisson equation for φ from G(wnew)

The distribution function is now G(wnew) with some unknown Apar_diff.

(ii) if solve_Ampere: solve Ampère equation 7.27 for the new Apar_diff from G(wnew)

3. Compute diagnostics on G(wnew)

4. Save the restart file on G(wnew) and Apar

5. Swap F and G, and loop.

7.2.3 Change of variable

The advection routine computes the foot of the characteristic backwards from G(wnew) at spatial
position ~X. This is done using the wnew coordinate, by solving equation 7.24 (7.35 in normalised
form) backwards. The resulting position is wnew

foot at the same position ~Xfoot = ~X.
Meanwhile, the distribution function is expressed in variable wold. We need to find the foot

of the characteristic in that variable. The passage rule is given by equation 7.30, involving J [ψh]
at the spatial position of the foot ~Xfoot. Since the advection is split, the spatial position does
not change, and we can access cheaply J [ψh] at the starting spatial grid point ~Xfoot = ~X. In the
GYSELA normalisation, w = vparg/

√
hatAs. Therefore, the normalised passage rule is

vpargold
foot

(
vpargnew; ~X

)
= vpargnew

foot

(
vpargnew; ~X

)
(7.33)

+ hatZs√
hatAs

J [Apar_diff] ( ~X)

In consequence, the velocity advection is written

G (vpargnew) := G

(
vpargnew

foot

(
vpargnew; ~X

)
+ hatZs√

hatAs
J [Apar_diff] ( ~X)

)
(7.34)

In the electrostatic case Apar_diff= 0, and the advection step is unchanged. This interpolation
step requires boundary conditions. We keep the Neumann boundary conditions that were already
in use.

2This zeroing is not actually done in code. The value of J [ψh] is just ignored.
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7.2.4 Modifications to the advection equations
The advection equations are solved for ψh = Apar_diff = 0. In normalised GYSELA notation,
they write

~̇X = vparg√
hatAs

~b∗ + ~vE + ~vD + ~vA

√
hatAs

dvparg
dt = −µ~b∗ · ~∇B − e~b∗ · ~∇J [φ] +

√
hatAsvparg+hatZsJ [Apar]

B
~vE · ~∇B(7.35)

B∗||
~b∗ = ~B +

(√
hatAsvparg

hatZs
+J [Apar]

) ~∇× ~B

B

B∗||~vD =
vparg

(
vparg+ hatZs√

hatAs
J [Apar]

)
+ µB

ZB
{B, ~X}

B∗||~vE =
{
J [Phi] , ~X

}
B∗||~vA = − vparg√

hatAs

{
J [Apar] , ~X

}
B∗|| = B +

(√
hatAsvparg

hatZs
+J [Apar]

) ~b · ~∇× ~B

B

where we have set ∂tψs = 0. The modifications are shown in bold font. The Poisson bracket
denotes {F,G} = ~b · ~∇F × ~∇G. The B∗|| is ubiquitous, as it serves as a jacobian in velocity space3.
The Ampère equation writes in normalised form

−∇2
⊥ (Apar_diff + Apar) + beta_toro

∑
species

ns0(r)hatZs2

hatAs
Apar_diff =

∑
species

beta_toro× hatZs√
hatAs

∫
vpargJ†[FB∗|| − FeqB

∗
||,eq]dvpargdµ

where
∫

dvparg denotes the properly weighted integral in velocity space, and ns0 is the equilibrium
density profile.

7.2.5 Initial distribution function
In order to have consistent simulations, the magnetic field and the plasma current must agree.
Since the current is carried almost exclusively by the electrons, this prescribes the parallel velocity
around which the electron distribution function is centred. For the GYSELA magnetic equilibrium,
the current is given by

µ0 ~J = B0

qR

(
2− s− r

R
cos θ

)
R~∇ϕ

mu0J_dot_b = µ0J|| = B0√
r2 + q2R2

(
2− s− r

R
cos θ

)
with q the magnetic safety factor, s = d ln q/d ln r the magnetic shear. By rewriting the magnetic
permeability µ0 in terms of the plasma β = µ0N0T0/B

2
0 , this implies the electron velocity shift is

Vpars0(r, θ) = −
√

hatAs
hatZs

× mu0J_dot_b(r, θ)
beta_toro× ns0(r)

It should be noted that this parallel electron velocity scales like 1/β. Because of this, a lower β
means faster electrons to produce the same magnetic field. Therefore, a lower limit exists on the
accessible β in the code, to avoid triggering a bump-on-tail instability. A brief scan in β shows the
limit to be around β = 5× 10−4.

3The modification to the B∗|| and ~b
∗ have actually been stalled due to the amount of modifications required.

Furthermore, the difference between B and B∗|| is underestimated at the moment, and this correction is blocked by
a known bug in the collision operator.
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7.3 Numerical tests
As a test bench, we consider the n = 1 tearing and kink modes, respectively m = 2 and m = 1.
Since these instabilities should develop for the specific toroidal mode number n = 1, we chose to
filter all modes n 6= 1 from the simulations. Since our initial circular magnetic configuration is not
a MHD equilibrium, it triggers a transient will pollutes the discussion. To simplify the discussion
to the maximum, we simulate flat plasma profiles with unit density and temperature. In order to
ensure the scale separation between the electron and ion dynamics, we use a near-realistic mass
ratio mi/me = 1600.

As discussed paragraph 5.3.1, the local magnetic field tilt depends on the poloidal position. As a
consequence, the parallel resonance does not happen at qGYS = m/n, but rather at q∗(rres) = m/n.
This induces a slight radial shift of the mode when analysing the simulation result.

q∗(rres) = qGYS√
1− r2/R2

0
(7.36)

For all the tests, we will use a Wesson safety profile as presented paragraph 2.3. We reproduce the
defining formula for reference. For r/a > 1, the profiles are extended with constant shear s = 2.
Since µ0J = B0

R0
2−s
q , this corresponds to an absence of current outside of the separatrix.

q = qa
(r/a)2

1− (1− (r/a)2)ν+1 (2.64)

The used parameters will be given in-text for the different test cases. The profiles are shown figure
7.2.
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Figure 7.2: Safety factor profile used for the internal kink test case.

7.3.1 Internal kink mode test
One of the easiest MHD instabilities to trigger is the internal kink mode. The only requirements
are a safety profile that dips below 1 close to the centre. We use the Wesson profile with qa = 3.5
and ν = 3.6 (equation 2.64), shown figure 7.2.

The simulation was first run in the purely magnetic case, by clamping the potential φ = 0.
The results are shown figure 7.3. The radial grid is chosen with 512 points. The normalised ion
Larmor radius ρ∗i = 1/100. The normalised electron skin depth is δe/a = 1/400, with β = 1%.
As such, the simulation marginally resolves the electron current sheet. The simulation time step
is ωci∆t = 0.1. Simulations with time steps up to ωci∆t = 1 were tested and converged.

The current sheet appears at the right position in figure 7.3 (red dotted line at r/a = 0.38 and
q∗ = 1). The magnetic perturbation is close to the expected shape ψ1,1(r) ∝ r(1−1/q). The mode
grows exponentially, with a subtle change of slope at the middle of the simulation. We associate
it to pollution by the initial transient reorganisation. At the end of this simulation, a numerical
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instability develops from the central position r = 0 (not shown). Since this benchmark is synthetic,
we did not compare the growth rate to a theoretical value.
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Figure 7.3: For a simulation of the internal kink mode with safety profile 7.2 in the purely
magnetic case. (Left) Time evolution of the radial profile for the n = 1, m = 1 mode of
(in order) the electron current and parallel vector potential ψ. (Right) Time evolution of the
amplitude of ψ1,1 inside resonance position rres.

The same simulation has been run in the fully electromagnetic case, with freely evolving φ.
The evolution of φ implies the propagation of Alfvén waves in the parallel direction, as shown
figure 7.4. As a consequence, the simulation time step is bounded above. We use the same value
of ωci∆t = 0.1. Contrary to the purely magnetic case, using ωci∆t larger than 0.5 results in a
numerical instability.

The shape of the parallel vector potential ψ1,1 remains essentially the same as in the former
case. Meanwhile, the electric potential features the characteristic saw-tooth radial shape φ1,1 ∝
r1[q∗ < 1], with traces of the propagating waves overlain. Both are shown figure 7.5. The mode
appears to grow about twice more slowly. The reason for this slowdown remains to be investigated.
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Figure 7.4: For a simulation of the internal kink mode with safety profile 7.2a in the purely
magnetic case. (Left) Time evolution of the radial profile for the n = 1, m = 1 mode of (in
order) the electron current and parallel vector potential ψ and electric potential φ.
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Figure 7.5: For a simulation of the internal kink mode with safety profile 7.2a in the purely
magnetic case. (Left) Radial shape of (1, 1) mode of the current, vector potential and potential
at final simulation time. (Right) Time evolution of the amplitude of ψ1,1 at the resonance
position rres.

7.3.2 Tearing mode test
A simulation test case has been run with a qa = 3.6, ν = 1.8 profile, shown figure 7.2 (right). This
profile crosses both the q∗ = 2 at rres = 0.65. We use the same grid, with ωci∆t = 1 and β = 10−3.
The associated electron skin depth is δe/a = 1/135.

The results are shown figure 7.6. The growth rate is of the order of γ = 3.4 × 10−6ωci. This
is to be compared to the expected growth rate given by equation 2.72, γth = 3.1 × 10−5ωci, with
instability coefficient r∆′ = 10.5.

γth = δ2
evth,e

Rr2
ms

q2
r∆′√

2π
(2.72)

The shape of the mode is shown figure 7.7. The current sheet is well resolved. The theoretical
mode shape obtained from equation 2.66 is shown in dotted line. Both the current profile and the
vector potential closely follow the expected shape. The resonance is placed at the right q∗ = 2
position. The departure can be attributed to the difference between q and q∗.
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Figure 7.6: For the simulation of a tearing mode (m = 2, n = 1) with safety profile 7.2b. (Left)
Time evolution of the (2, 1) modes of the electron parallel current and of the magnetic potential.
(Right) Time evolution of the amplitude of ψ2,1 at the resonance position rres.
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Figure 7.7: For the simulation of a tearing mode (m = 2, n = 1) with safety profile 7.2b. Plain
line: radial pattern of the current and vector potential at last time step. Dotted line: theoretical
radial pattern solved using equation 2.66.

7.4 Future directions
The electromagnetic extension to GYSELA is at the moment a mere proof of concept. Before
accessing full non-linear electromagnetic simulations, a few roadblocks need to be removed.

Electromagnetic diagnostics: the diagnostics have not been updated to include the effect
of the magnetic fluctuations. Some care needs to be taken: the distribution function is to be
interpreted in w variable with non-zero ψh.

Prediction-correction of ψh: Only the value of ψs is used to compute the electromagnetic
perturbations in the equations of motion. This limits the order of the time stepping scheme by
neglecting ψh of order ∆t. This limitation comes from the re-use of the same storage space for
ψold
h and ψnew

h in step (ii). In a future extension, both ψh fields will a need different storage space
to use the prediction–correction scheme.

Magnetic equilibrium: At the moment, the background magnetic field used in GYSELA is not
a magnetic equilibrium. Starting from an equilibrium governed by the Grad–Shafranov equation
and lifting this constraint is on-going work, and will allow to self-consistently evolve the n = 0
component of ψ.

Alfvén waves: The first transient in simulations is dominated by Alfvén waves. Those waves
contain oscillations of the parallel electric field. They evolve very fast, with a frequency of the
order of ω = nva/R with va = vth/

√
β the Alfvén velocity. Since β � 1, these oscillations are

much faster than the GAM transient existing in electrostatic simulations. This results in a tight
bound on the time step ∆t . 0.1ωci for numerical stability with realistic electrons. A possible
correction would be to assume an ideal MHD prescription for ∂tψs = −∇||φ instead of zero. This
would make the advection by a parallel electric field implicit:

mB∗||ẇ = µ~B∗ · ~∇[µB − wJ [ψh]]− e ~B∗⊥ · ~∇J [φ]
− eB∗||[∇||J [φ]− J [∇||φ]]

The second line is of the order ρ4
i /R

4, so can be neglected at our approximation level. This
formulation should allow to lighten the constraint from fast Alfvénic dynamics, and the associated
numerical instability.



Conclusion

Let us now take a step back, and examine where we stand. We set out looking to lighten the
models for turbulent plasmas dynamics. Three approaches have been discussed in this manuscript.
The first one is homogenisation, with the instance of the kinetic to gyro-kinetic reduction. The
fast cyclotron dynamics are averaged out, and only remains an effective equation to describe the
system.

The second one is subspace pruning. This area has received amble attention by the model
order reduction community. In chapter 3, we borrowed two methods, balanced truncation and
interpolatory model reduction to investigate the 1D–1V Vlasov–Poisson dynamics. The former is
inspired by control theory, and aims at removing unreachable and unobservable subspace from the
description. The sharp decrease of the Hankel singular values suggests the effective subspace to be
low-dimensional. However, the models output by balanced truncation feature a spurious instability
in the closed-loop Vlasov–Poisson setting. As an alternative, we considered formulating a reduced
model by interpolating the expected kinetic response. The resulting model performs well, both on
the bare Vlasov and the coupled Vlasov–Poisson problem. The versatility of the method allows
to envision extensions to linear toroidal gyro-kinetic dynamics. Use of this method to construct a
linearised Landau gyro-fluid could be worthwhile.

The third one —and the most difficult— is bypassing the turbulent non-linearity. We followed
a phenomenological view, trying to characterise the non-linear turbulent filaments that swim inside
the plasma. This led us to ask ourselves, how much of the linear properties are conserved in the non-
linear regime? To answer that question, we analysed in depth the three-dimensional data output
by GYSELA. We compared key linear quantities from GYSELA data to the expected results from
the QuaLiKiz code (chapter 4). Even though the Kubo numbers are of a few units, the magnitude
and phase of the pressure response to a potential perturbation qualitatively match the expected
value. In addition, we developed an automated diagnostic tool to extract the motion and shape
of turbulent structures (chapter 5). The reconstructed motion and shape tend to follow the group
velocity dictated by the linear analysis. All in all, the plasma appears to obey quasi-linear theory.

But the total heat fluxes differ. Of course, the turbulent potential spectrum is not predicted
by quasi-linear theory, and has to rely on a physically motivated closure. The problem may run
deeper, as even the non-linear local code GKW disagrees. Turbulent filaments tend to move around
the plasma: toroidally, poloidally and radially. Understanding this last motion is key to grasp
the nature of turbulent avalanches in the plasma. First, contrary to oft-stated estimates, zonal
flow shear does not necessarily distort and destroy turbulent cells. It may rather warp turbulent
corridors. Those are akin to streamers observed for ETG turbulence, but following the zonal flow
pattern. Second, the back-reaction of distorted turbulent cells on the zonal flow is enhanced by a
resonance between the wave radial group velocity and the geodesic acoustic phase velocity. The
coupled dynamics is unstable, and features many characteristic properties of avalanches seen in
non-linear simulations (chapter 6).

As no reduction tale is ever complete without an extension, chapter 7 embarked into extending
GYSELA with magnetic fluctuations. We formulated the scheme and implemented it in the code.
In the occasion, many numerical and engineering challenges had to be overcome. Preliminary tests
have been performed, validating the general algorithm, and identifying limitations of the model.

Now what? In our race to reduce the description of tokamak turbulence, we gathered knowledge
and suspicions. However, we have yet to positively propose anything. Key questions remain
unanswered. Are non-linear Landau fluid models adequate for turbulence modelling? Is turbulent
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saturation quasi-linear —by coupling to the profiles—, or fully non-linear —through non-linear
self-advection of turbulent structures? Or both, as usual in physics? On a related note, how
non-local is turbulent saturation?



Appendix A

Derivation of the drift–kinetic
Lagrangian

The easiest way is to formulate everything as differential forms, and apply the rules of exterior
calculus (Brizard, 2017). This formalism allows to avoid the difficulties of vector calculus, and
allows to remove exact derivatives as early as possible. The original Lagrangian 1-form is written
as

L0dt = m~V · d ~X + e ~A · d ~X − mV 2

2 dt (A.1)

with d the exterior derivative. It obeys the usual calculus rules, except for d2 = 0. ~X and ~V are
the position and velocity of the particle. The objective of this section is to compute the second
order perturbation of L0 by the Larmor motion δ ~X = ~ρ and δ~V = ~π. Since the Lagrangian is
defined up to a total derivative, we will opportunistically drop these. In the following, we denote
as ∧ the antisymmetric exterior product. Let ~u ◦ ` be the contraction of a vector ~u with a form `
by the left.

~u ◦ dXi = ui

~u ◦ (l ∧ m) = (~u ◦ l) ∧ m − l ∧ (~u ◦ m)

The first order perturbation can be written as a Lie derivative

d[L0dt] = md~V ∧ d ~X + e

2
~B × d ~X −m~V · d~V ∧ dt

L1dt =
(
~ρ
~π

)
◦ d[L0dt] + d

[(
~ρ
~π

)
◦ [L0dt]

]
= −m~ρd~V + (m~π + e ~B × ~ρ) · d ~X −m~V · ~πdt+ d[. . .]

We have used the relation

d[ ~A · d ~X] = ∂Ai
∂Xj

dXj ∧ dXi = 1
2(~∇× ~A)jdXj ∧ dXi

The factor in front of d ~X cancels when the ~π and ~ρ describe a Larmor loop

~π + e

m
~B × ~ρ = 0 (A.2)
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The second order perturbation can be computed from the exterior derivative of L1 as

d[L1dt] = −md~ρ ∧ d~V +md~π ∧ d ~X + e

2
~∇× [ ~B × ~ρ]× d ~X + eB × d~ρ · d ~X

− (m~V · d~π +m~π · d~V ) ∧ dt

L2dt = 1
2

(
~ρ
~π

)
◦ d[L1dt] + d

[(
~ρ
~π

)
◦ [L1dt]

]
= m~π · d~ρ+ e

2∇× ( ~B × ~ρ)× ~ρ · d ~X − e

2B × d~ρ · ~ρ− m

2 ~π
2dt+ d[. . .]

=
(
m~π + e

2
~B × ~ρ

)
· d~ρ+ e

2∇× ( ~B × ~ρ)× ~ρ · d ~X − m

2 ~π
2dt+ d[. . .]

We can now parameter the Larmor motion A.2 by the Larmor radius ρ and the gyro-phase ξ. In
addition, we force the unperturbed velocity ~V = mv||~b to only have a parallel component. The
Lagrangian becomes

L ≈ mv~b · ~̇X + e ~A( ~X) · ~̇X − m

2 v
2

+ eBρ2

2 ξ̇ − eB2ρ2

2m
+ e

2∇× [ ~B × ~ρ]× ~ρ · ~̇X + O(ρ3)

The first line corresponds to the free streaming dynamics of the guiding centre ~X. The second line
corresponds to the Larmor motion. The third line denotes a correction to the dynamics due to the
inhomogeneity of the magnetic field at the Larmor scale. It is of order ρ2

i∇2 lnB, and is neglected
for a smooth background magnetic field.



Appendix B

Derivation of the electromagnetic
action principle

The electomagnetic action principle can be defined in the same way as the electrostatic case

S[Ż(Z), φ, λ,F] =
∫ [

mu~b · ~̇X + e ~A0 · ~̇X −
m

2 u
2 − µB

]
FdZdt

−
∫ [

eJ
[
φ− uψ + e

2mψ2
]
− e2

2B∂µ[J [(φ− uψ)2]− J [φ− uψ]2]
]
FdZdt

+
∫
ε0

2 [~∇φ]2d3~xdt−
∫ 1

2µ0
[~∇× ~A]2d3~x

In the Boussinesq approximation, we replace the integration of the polarisation term in the second
line by an integration against the reference Maxwellian F0. In the long wavelength limit, J ≈
1− ρ2

i k
2
⊥/2, and this term simplifies to

∫
e2

2B∂µ[J [(φ− uψ)2]− J [φ− uψ]2]F ≈
∫

e2

2B∂µ
[
ρ2
i

2
~∇⊥[φ− uψ]2

]
F0

=
∫

m

2B2 [~∇⊥φ− u~∇⊥ψ]2F0

using ρ2
i = 2mµ/e2B. This quantity can be integrated, introducing the density N0, parallel velocity

V|| and temperature T||

∫
e2

2B∂µ[J [(φ− uψ)2]− J [φ− uψ]2]F ≈
∫

m

2B2 [~∇⊥φ− V||~∇⊥ψ]2N0 +
∫
mT||

2B2 [~∇⊥ψ]2N0

We apply the same approximation to the ponderomotive term J [ψ]2F. We obtain

∫
e2

2mJ [ψ2]F ≈
∫
e2ψ2

2m F0 =
∫
e2ψ2

2m N0

Meanwhile, the magnetic field can be decomposed into

~∇× ~A = ~∇× ~A0 + ~∇× (ψ~b)

The first term is the equilibrium stationary magnetic field. It is orthogonal to the other terms
when integrating [~∇× ~A]2 in time. This is equivalent to removing the equilibrium current in the
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source for the Ampère equation. The full action becomes

S[Ż(Z), φ, ψ] =
∫ [

mv~b · ~̇X + e ~A · ~̇X − m

2 v
2 − µB − eJ [φ− uψ]

]
FdZ

+
∫

e2

2mψ2N0dZ

+
∫

m

2B2 [~∇⊥φ− V||~∇⊥ψ]2N0d3 ~X

+
∫

T||

2B2 [~∇⊥ψ]2N0d3 ~X

+
∫
ε0

2 [~∇φ]2d3~xdt−
∫ 1

2µ0
B2

0d3~x−
∫ 1

2µ0
[~b× ~∇ψ]2d3~x

The first line is the gyro-centre Lagrangian. The second line is the magnetic skin term. The third
and fourth line is the charge polarisation. The fifth line is the electromagnetic Lagrangian.



Appendix C

Linearized Vlasov equation

The gyro-kinetic equation writes, in variables Pϕ, θ, ϕ,E, µ, with E the kinetic energy and Pϕ the
toroidal momentum.

∂tF(Pϕ, θ, ϕ,E, µ) + θ̇∂θF + ϕ̇∂ϕF + Ṗϕ∂PϕF + Ė∂EF = 0

E = m

2 v
2
|| + µB

Pϕ = mv||bϕ + eAϕ

where the particle velocity is given by

Ṗϕ∂Pϕ + θ̇∂θ + ϕ̇∂ϕ = v||~∇|| + ~vD · ~∇+ ~vE · ~∇
Ė = −e(ṙ∂r + θ̇∂θ + ϕ̇∂ϕ)φ
Ṗϕ = −e∂ϕφ

We consider an ambient canonical Maxwellian plasma with distribution function F(Pϕ, E, µ), with
density N, and temperature T . We suppose a non-zero axisymmetric potential Φ generating an
equilibrium E ×B flow ~vE,eq.

F(Pϕ, E, µ) = N(rref)√
2πmT (rref)3/2

exp
(
− E

T (rref)

)
where rref is the reference flux-surface for particles the particles with momentum Pϕ, energy E and
magnetic moment µ. A small perturbation eJ [φ] to the Hamiltonian leads to a small perturbation
f of the distribution function. The fluctuations acts as a modification of the E × B velocity and
in Ė and Ṗϕ. As the equilibrium distribution only depends on Pϕ, µ and E. As a result, the
linearised Vlasov equation can be simplified to

∂tf(Pϕ, θ, ϕ,E, µ) + θ̇∂θf + ϕ̇∂ϕf = −e∂ϕφ∂PϕF − e(ṙ∂r + θ̇∂θ + ϕ̇∂ϕ)φ∂EF

since Ṗϕ = Ė = 0 for unperturbed dynamics. The Maxwellian equilibrium distribution function is

∂PϕF = − eq

rB
∂rrefF =

[
AN +

(
E

T
− 3

2

)
AT

]
× eqF

rRB

∂EF = −F

T

where we have introduced the normalised logarithmic gradients

AN = −R∂r lnN

AT = −R∂r lnT

The resulting linearised Vlasov equation is

∂tf(Pϕ, θ, ϕ,E, µ) + θ̇∂θf + ϕ̇∂ϕf = F ×
[
AN +

(
E

T
− 3

2

)
AT

]
q∂ϕφ

RrB

− eF

T
(v||~∇|| + ~vD · ~∇+ ~vE,eq · ~∇)φ
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Let g = f + eφF/T . The function g cancels the second term in the right-hand side, corresponding
to the adiabatic response. The resulting equation is

∂tg(Pϕ, θ, ϕ,E, µ) + θ̇∂θg + ϕ̇∂ϕg =
{
q∂ϕφ

RrB

[
AN +

(
E

T
− 3

2

)
AT

]
+ e∂tφ

T

}
×F

= eF

T

{
∂t + qT

eRrB∗||

[
AN +

(
E

T
− 3

2

)
AT

]
∂ϕ

}
φ

Expressing g in the left-hand side in r, θ, ϕ,E, µ variables, we get

∂tg(r, θ, ϕ,E, µ) + v||~∇||g + ~vD · ~∇g + ~vE,eq · ~∇g = eF
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with the diamagnetic toroidal velocity
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