
HAL Id: tel-03586839
https://cea.hal.science/tel-03586839v1

Submitted on 24 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Construction of a conformal hexahedral mesh from
volume fractions : theory and applications

Nicolas Le Goff

To cite this version:
Nicolas Le Goff. Construction of a conformal hexahedral mesh from volume fractions : theory and
applications. Modeling and Simulation. université Paris-Saclay, 2020. English. �NNT : �. �tel-
03586839�

https://cea.hal.science/tel-03586839v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
0
U
PA

S
G
0
3
3

Construction of a conformal
hexahedral mesh from volume

fractions: theory and
applications

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de
l’Information et de la Communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: Université Paris-Saclay, Univ Evry, IBISC, 91020,

Evry-Courcouronnes, France
Référent: Université d’Évry Val d’Essonne

Thèse présentée et soutenue à distance, le 17 décembre 2020, par

Nicolas LE GOFF

Composition du jury:

Pascale LE GALL Présidente
Professeur, CentraleSupélec
Guillaume DAMIAND Rapporteur & Examinateur
Directeur de recherche, CNRS LIRIS Université Claude
Bernard
Julien TIERNY Rapporteur & Examinateur
Chargé de recherche, CNRS LIP6 Sorbonne Université,
HDR
Sylvie ALAYRANGUES Examinatrice
Maître de conférences, Université de Poitiers (XLIM)

Jean-Christophe JANODET Directeur
Professeur, Université d’Évry-Val-d’Essonne (IBISC)
Franck LEDOUX Co-Encadrant
Docteur, Commissariat à l’énergie atomique et aux éner-
gies alternatives
Steven J. OWEN Invité
Docteur, Sandia National Laboratories

Acknowledgements

I would like to thank again the members of my dissertation committee for having kindly agreed to
evaluate this work, and I have enjoyed the questions and exchanges during the defense.
Likewise, I would like to thank my supervisors; Jean-Christophe has steered the work away from
purely obtaining something that works in favor of also getting to know why it does work, and has
shown great enthusiasm throughout those three years. As for Franck, I have been working with him
for quite a few years now and I feel privileged to have been able to work alongside him both in a
software engineer capacity and during this thesis.
Without the agreement and support of the managers at my company, this PhD would not have taken
place and I am thankful for the trust that it represents.
Through existing collaborations we have worked with other people both for research and production
purposes; in particular it has been gratifying to exchange and compare ideas on this topic with Steve
over the years.
Finally, I am grateful to my colleagues, friends and family, who provided help, encouragements and
support whenever the going got though.

I hope that this document will prove useful to you, the reader, and wish you all the best.

3

Contents

1 Introduction 7
1.1 From Euler to Lagrange intercode . 8

1.2 Proposed solution and main contributions . 11

1.3 Manuscript structure . 13

2 Hexahedral meshing: definitions and main algorithms 19
2.1 Notions and definitions . 19

2.1.1 Meshes and cells . 19

2.1.2 The classification relation between a mesh and a geometric domain 20

2.1.3 Geometric quality of a mesh . 21

2.1.4 Hexahedral meshing : the issue of dealing with global constraints 22

2.1.5 Why use hexahedral meshes? . 24

2.2 State of the art in hex meshing . 25

2.2.1 Geometry-first . 28

2.2.1.1 Automatic full domain hex-meshing 28

2.2.2 Cartesian Idealization . 31

2.2.3 Mesh-first or overlay-grid methods . 32

2.3 Sculpt . 34

3 Sculpt evaluation and improvement 39
3.1 Discrepancy definition and evaluation . 40

3.2 Discrepancy improvement . 41

3.2.1 Target volume of output cells . 42

3.2.2 Interface node movements . 43

3.2.2.1 Overview of the algorithm to move interface nodes 43

3.2.2.2 Ideal deformation of a single cell . 45

3.3 Volume preservation: some results . 45

3.3.1 Mesh orientation sensitivity . 46

3.3.2 Our set of validation examples . 48

3.3.2.1 Simulation code output . 49

3.3.3 Results analysis . 53

3.3.3.1 Reloading node position. 53

3.3.3.2 Fuzzy volume fractions. 53

3.3.3.3 Cell contribution error. 54

3.3.3.4 Invalid mesh. 54

4 Geometrical model and voxelated interface reconstruction 57
4.1 Discrete interface reconstruction . 58

4.1.1 How to partition voxels, an overview . 58

4.1.1.1 Mixed-Integer Programming Formulation 59

4.1.1.2 Simulated Annealing . 60

4.1.1.3 Using the Graphcut algorithm . 60

4.1.2 Our method - Greedy Heuristic . 62

4.1.3 Comparative study . 63

4.1.4 Voxel assignment correction - Repartitioning 63

4.1.4.1 Kernighan-Lin . 63

5

4.1.4.2 Fiduccia-Mattheyes . 68

4.2 Geometrical model projection . 71

5 Guaranteed quality and topological operations 77
5.1 Quality-driven mesh projection . 79

5.1.1 Guarantee by controlled node movement . 79

5.1.2 Cavity pillowing . 81

5.1.3 Results . 83

5.2 Mesh refinement for getting usability . 93

5.2.1 Our user-guided process . 95

5.2.2 Automatic refinement . 99

6 Conclusion and future works 103
6.1 The current ELG pipeline . 103

6.2 Future works . 104

6.2.1 Extending pillowing capabilities . 104

6.2.2 Extending cell size control capabilities . 105

6.2.3 From graph-based representation to combinatorial maps 106

6.2.4 Improving performances and parallel implementation 106

A Mesh representation using combinatorial maps and a component-based implementa-
tion 107

B A few words about our parallel implementation 109

C French summary – résumé en français 113

6

Chapter 1

Introduction

Numerical simulation is used to study the evolution of a system, and usually comes, when possible,
with building prototypes, making experiments and careful observations. The physical phenomena
themselves are handled in what are called simulation codes; they modelize the behavior of the sys-
tem, which can be computationally intensive and can require to run on supercomputers.

In order to make a numerical simulation code run properly, one needs to prepare and craft some
data. Such data can carry geometric pieces of information, like the description of the studied domain
(a car, a bridge, a skull or body, etc.) and physical ones (pressure, temperature, material description,
etc.). Both types of data are of interest in this work: geometric and physical. Whatever the applicative
field is, one usually needs to discretize the geometric domain of interest into elementary cells that
form what is called a mesh. A mesh will provide a partition of the domain into basic elements that are
supports to apply traditional numerical methods, like Finite Element Methods (FEM) or Finite Volumes
Methods (FVM), which rely on basic functions that are defined onto finite elements or finite volumes.
Depending on the numerical methods, many types of meshes can be used. For instance, Figure 1.1
exhibits different kinds of 2D meshes that are made of triangular cells (a) or quadrilateral cells (b and
c) , and that can be structured (b), i.e. all the internal nodes of the mesh are adjacent to the same
number of cells1, or unstructured (a and c), i.e. each node can be adjacent to a different number of
cells. 3D meshes can be similarly classified.

Figure 1.1: Di�erent types of 2D meshes that were built starting from the same boundary discretization. In (a), an
unstructured triangular mesh; in (b) a fully structured quadrilateral mesh; in (c) an unstructured quadrilateral mesh.

Looking at the discrete representation of the study domain, meshes can also differ in the way they
match simulation materials. Let us consider a study domain made of two materials A and B that are in
movement, and depicted in various ways on Figure 1.2. The first line shows the “physical” evolution
without showing the mesh discretization, where A is colored in blue and B in red. The materials
are moving according to the effect of the simulated physical phenomenon, leading to an expansion
of A that tries to fill the whole domain, while B is contracted. The meshes are shown on the three
remaining lines. At the initial time, the meshes are the same: a pure quadrilateral mesh, that is a
mesh where each 2D cell is a quad and contains a single material (A or B). Three approaches are
then possible:

• Euler. On the second line, the mesh is fixed and the materials move through the cells; when
several materials are present inside one cell, the cell is called mixed and we denote such a
mesh as being Eulerian. In this case the interface between A and B is lost.

1In this example, all the internal nodes are adjacent to exactly 4 faces while boundary nodes are adjacent to 1 or 2
faces.

7

• Lagrange. On the third line, the mesh moves at the same speed as materials do. Cells remain
pure during all the simulation but their geometry can drastically change. We note such a mesh
as Lagrangian, and the interface between A and B is totally defined by some mesh edges.

• ALE. Eventually, on the fourth line, the mesh moves but not at the same speed as materials
do. Cells can become mixed and their geometry remains controlled. We qualify such a mesh
as being ALE, for Arbitrary Lagrangian-Eulerian.

Figure 1.2: A 2D domain made of two materials (�rst line) and discretized in an Eulerian (second line), a Lagrangian
(third line) and an ALE ways (fourth line).

1.1 From Euler to Lagrange intercode

The main context of our work is about converting data from Eulerian to Lagrangian codes, where
the first ones act on Eulerian meshes and the latter ones on Lagrangian meshes. In the former, the
mesh will in most cases be easy to generate, typically a grid, and the cells will be able to contain
several materials, which will be expressed as volume fractions. Some of those Eulerian codes have
Adaptive Mesh Refinement (AMR) capabilities, meaning that, usually by use of an octree-like data
structure, the mesh is locally refined or coarsened to respectively track a phenomenon of interest
or to reduce the execution time and the memory footprint of the simulation (see Figure 1.3). In the
latter, i.e. the Lagrangian codes, a cell can only contain one material, which means that the mesh
follows the interfaces between the components that form the domain of study, such as the different
parts of a CAD assembly for instance. The requirements on those meshes can vary wildly: it can go
from unstructured tetrahedral meshes to boundary aligned block-structured hexahedral meshes (see
Figure 1.4), and it depends on what the simulation code can handle.

Conversion of data between codes are usual in industrial studies where many different codes are
used to solve a complex multi-physics problem. It can be done in different ways going from loosely
coupled codes, where codes are assembled in a pipeline and communicate by reading and writing
files, to tightly-coupled codes, that are interleaved in a simulation loop and share data in memory. We
focus here on loosely-coupled codes, where simulation codes are chained one after another. As each
code has its own input and output requirements, an intercode tool is required to convert the output of
one code into the input of the next one. In the case of converting the output of an Eulerian code into
the input of a Lagrangian code, this task is not trivial at all, especially as we target the generation of
a full hexahedral Lagrangian 3D mesh (see Figures 1.5 and 1.6). Right now in practice at CEA2, the
process of converting an Eulerian code output to an input that fits Lagrangian codes is done using
interactive tools. This process requires from several days to weeks for an experimented engineer to
create the expected hexahedral Lagrangian mesh. Our final aim is to provide a way to do it in an
automatic manner with selecting a little set of parameters.

2To our knowledge, the same process is used in other laboratories facing the same issue.

8

(a) (b) (c)

Figure 1.3: Example of the evolution of the mesh when an Adaptive Mesh Re�nement (AMR) technique is activated
during a simulation from the deal.II [Bangerth et al. 2007] software suite tutorial.

Figure 1.4: Example of the mesh deformation during a laser simulation. As the simulation moves forward from left to
right we can see that the green and red materials have expanded greatly at the cost of the grey material; close-ups show
the extent of the mesh deformation and illustrate the need for a "good" starting mesh, as no cell can become tangled
during the simulation.

9

Figure 1.5: Example of the purpose of our work in 2D, with our input (left) a grid mesh carrying volume fractions in
a two material CFD case from [Toro 2009] and our output (right) an unstructured quadrilateral mesh containing only
pure cells. The presented hexahedral mesh (on the right) is obtained automatically with this work. Using interactive
tools, we would get another hexahedral mesh (more structured) but that would necessitate a lot of engineer interactions.

Our goal is to further the automation of Lagrangian meshing from Eulerian data outputs. It can be
split into two sub-objectives:

1. Provide a valid geometrical model extraction process. The current process to inter-
actively generate a Lagrangian mesh from an Eulerian one is to: first extract a geometrical
representation of the material interfaces, which are 3D surfaces connected along curves and
points, then to inject those surfaces into a CAD-meshing software so that it can be meshed
in 3D. In order to be usable, such surfaces need to be quite smooth and the topology of the
overall model (surfaces, curves, points) must be as clean as possible. It means, for instance,
that when two surfaces have to intersect one another along a curve, this curve must be simple
and not made of a lot of disconnected pieces, and we must not have a lot of noisy tiny surfaces
created. If we are not able to provide that, the engineering time – already huge in the best of
cases – one has to spend on cleaning the model and meshing could be prohibitive. Extracting
a geometrical model is useful for the current pipeline used at CEA (see Figure 1.5) but also for
getting a geometry reference for the expected fully automatic solution.

2. Automatically generate a valid hexahedral mesh. Directly obtaining a usable mesh would
be most beneficial; while what defines a "good" mesh varies between the codes and the cases
run, some geometric quality criteria on the cells are common among the simulation codes which
cannot operate when even one single cell becomes too distorted [P. M. Knupp 2001].

An overall constraint is to avoid to deviate too much from the input data, namely the material
volume fractions. Indeed, the physical quantities must be preserved as best as possible between the
two simulation codes that are chained. This constraint is both strong and loose:

• Strong because as this process is used in a physical simulation pipeline, it is mandatory to
preserve physical quantities as best as possible to get “high-fidelity” results. In other words, we
need to convert data from one code to another one without too many approximations. In our
case, one of the main issues is the ability to generate a material interface between materials
that are implicitly defined in the first code.

• Loose because this problem is overconstrained and so approximations are unavoidable. Getting
both high-fidelity material preservation and a smooth clean geometrical definition of the material
interfaces is quite difficult in many cases. Moreover during those intercode data transfers, some

10

materials can be deemed as being of higher priority by the engineer that drives the simulation
or he can decide to remove some non-significant materials.

We can summarize our goal as follows:

Starting from a 3D Eulerian mesh ME with a set of materials M, we want to generate
both an interface geometrical model GeomM , and a full hexahedral mesh ML such that :

1. All the surfaces of GeomM are as smooth as possible;

2. The topological structure of GeomM is as “clean” as possible;

3. Cells of ML fit minimum quality requirements to be used by a FEM or FVM simula-
tion codes;

4. Every material m ∈ M is preserved as best as possible, in the meaning that the
overall volume of m is similar in ME and ML and it is located at the same spatial
location.

Figure 1.6: A 3D Example of what we want to achieve after having run the simulation code Grid�uid [Guy 2019]
with water being poured against a concrete pillar. On the left, our input, a grid mesh carrying the volume fractions of
respectively the water, the concrete pillar and the air. On the right our output Lagrangian mesh (the air is meshed but
not shown here).

1.2 Proposed solution and main contributions

When looking at existing techniques we consider that two different categories of approaches seem
to be able to address our problems: interface reconstruction methods and overlay-grid meshing al-
gorithms.

First are the interface reconstruction methods [Kucharik et al. 2010]. These methods take an
Eulerian mesh as an input and reconstruct the interfaces between materials inside each cell; they are
classically used in ALE simulation codes and in associated scientific visualization software [Childs
et al. 2012; Ahrens et al. 2005]. While the volume fractions preservation is actually enforced by
design, a limitation of those methods is that the obtained interfaces do not fit our purpose, as they
are jagged, not continuous and potentially with small slivers of materials (see Figure 1.7) and we
would be hard pressed to use them as an input in a CAD-meshing software and for projecting mesh
nodes associated to those surfaces without any significant modification, which would in turn render
the volume preservation property null and void.

11

(a) VOF green �rst (b) VOF-PD (c) MOF

Figure 1.7: Illustrations from [Kucharik et al. 2010] showing several interface reconstruction methods applied on
the triple point problem. VOF stands for "Volume-of-Fluid", VOF-PD for "VOF with power diagram" and MOF for
"Moment-of-Fluid".

Secondly figure among the variety of hexahedral meshing techniques the overlay-grid methods [R.
Schneiders 1996] where a shape – an explicit geometrical CAD model – that needs to be meshed
is embedded into a mesh that discretizes its bounding box. Said mesh will usually be a grid, easy
to generate and possibly refined locally [Robert Schneiders et al. 1999] (see Figure 1.8); its cells
are assigned to the components of the models and those outside discarded, and the mesh is then
deformed or a padding layer is inserted in order to capture the geometric features of the model.
Contrary to the interfaces reconstruction methods, extracting a geometrical model from that mesh will
give a relatively smooth model with a clean topology, but as a drawback one does not preserve the
volume of the materials as overlay grid algorithms have difficulty capturing features with sharp angles.
There are additional incompatibilities with our aim: first the expected inputs of those methods are
CAD models, not meshes carrying volume fractions; secondly, most of those methods are designed
to mesh only one component and cannot be used to mesh a CAD model that is the assembly of
several pieces, while we have several materials. Thirdly, those methods heavily rely on the ability to
generate an adequate initial mesh, possibly with local refinements to offer more robustness, to better
capture the CAD or to provide a modicum of volume preservation [X. Gao, Shen, et al. 2019]. This is
again in direct conflict with what we need, as in our case the input mesh is fixed as part of our input.

(a) initial mesh (b) kept cells (c) padding layer inserted

Figure 1.8: Illustrations from [Robert Schneiders et al. 1999] showing an overlay-grid method based on an octree mesh.
(a) an initial single englobing cell is repeatedly split and re�ned to be adapted to the domain; (b) only the in-domain
cells are kept; (c) boundary cells are added to �ll-in the whole domain.

As stated before, our first aim is to get a clean geometrical and topological model. We propose to
adopt an overlay-grid technique that meets our concerns, and more specifically, we decided to extend
the Sculpt algorithm [Owen, M. L. Staten, and Sorensen 2012; Owen, Brown, et al. 2017], which
implements an overlay-grid approach considering volume fractions data as an input. A complete
presentation of the Sculpt algorithm will be given in Section 2.3. This work has required to make

12

several improvements in order to fit our requirements, and it led to the definition of a new algorithm,
called ELG that stands for Euler to LaGrange remeshing, which is a complete pipeline of different
treatments (see Figure 1.10) that works both in dimension 2 and 3. It comes with the following main
contributions:

• Volume preservation measure and control: We implemented a post-process algorithm where,
as the volume fractions are not preserved by Sculpt, we wanted to evaluate the difference be-
tween the output of the algorithm and its input. It is done in the last step of our process in the
“Discrepancy-Driven Mesh Deformation” box in our pipeline. We defined in [Le Goff, Ledoux,
and Owen 2018] a discrepancy criterion, which is computed on each cell of the volume fraction
mesh. It gives us locality information, on the meaning that locally to each input cell we know
how each material is preserved in terms of volume. Additionally, we used the computation of
the discrepancy to provide us with a feedback on whether cells of the output mesh are too large
or too small (meaning that we locally have too much or too little of a material), and introduced
a discrepancy-controlled loop so as to reduce it by moving the interface nodes while ensuring
the cell quality did not drop below a user-defined threshold;

• Geometrical model and material interfaces extraction: we studied a discrete interface re-
construction method, where the problem is defined as follows: all the mixed cells and their
adjacent pure cells are subdivided into so-called voxels, and we assign a material on those vox-
els. Voxels spawned from pure cells are assigned to the material of their corresponding pure
coarse cell, leaving those spawned from mixed coarse cells as "free" to be assigned. We im-
plemented several methods that we published and presented in [Le Goff, Ledoux, and Janodet
2019a; Le Goff, Ledoux, Janodet, and Owen 2019], with some inspired from graph partitioning
techniques. From this we can extract an alternative geometrical model that can be used to
project mesh nodes on. In the pipeline shown on Figure 1.10, it is the first computation that we
do since it will help us to guide mesh deformation afterward;

• Hexahedral mesh quality control: We introduced several modifications to the initial pipeline,
especially as it does not consider the cell quality until the very last smoothing step (see Fig-
ure. 2.22 at page 35); basically in such an algorithm we move the nodes, change the mesh
topology and hope for the best with a smoother (see Figures 2.22.f , g and h). In our context,
where our input is the output of a simulation code, we have shown in [Le Goff, Ledoux, Janodet,
and Owen 2019] that depending on the mesh resolution the code ran with, we can end up with
a good quality mesh (no inverted cells) or a bad quality one. It is unrealistic to ask engineers
to run their simulations again with different resolutions at random, assuming it is even feasi-
ble; this exhibits the need for an algorithm that consistently works. We proposed in [Le Goff,
Ledoux, Janodet, and Owen 2019; Le Goff, Ledoux, and Janodet 2019b] an alternative where
the ELG pipeline controls the mesh quality at each step. It is done at the “Quality-driven mesh
projection” stage;

• Input mesh controlled adaptation: Looking at the geometrical model we build in stage 1.2 on
Figure 1.10, we can decide to refine the initial mesh in order to fit it as best as possible. Our
aim here is to mimic the techniques available in some overlay-grid methods. For instance, let
us consider the example of Figure 1.9 where the initial cell assignment in (a) does not have the
same structure of materials than the voxelated geometry in (b). As a consequence, we refine
the initial mesh (c), compute new volume fractions on it using (b) and we reassign materials (d)
before moving the interface nodes in (e), and applying topological modifications and smoothing
in (f).

1.3 Manuscript structure

The remainder of this document is structured as follows. In chapter 2, we introduce notions and
definitions that are used throughout this manuscript, along with a survey of mesh generation meth-
ods with an emphasis on hexahedral meshes, and more precisely on overlay-grid methods and the
Sculpt algorithm, which serves as the starting point of our study. This work led us to adapt the

13

(a) Initial assignment (b) Voxelated geometry (c) Re�ned mesh

(d) New assignment (e) node movement (f) Pillowing & smoothing

Figure 1.9: Example of input mesh re�nement in order to �t the built geometrical model.

algorithm in many ways to finally propose our own ELG pipeline, which is illustrated on Figure 1.10.
Individual steps of this pipeline will be presented in the following chapters.

In chapter 3, we describe the post-process that we devised and applied on Lagrangian meshes in
order to measure and improve their volume preservation compared to the Eulerian meshes they
originated from. Even if it is the last step of our pipeline, it also motivates why we had to adapt the
initial Sculpt algorithm to fit our requirements.

In chapter 4, we study several variations on discrete interface reconstructions and the way we link
the extracted geometrical model to its overlay-grid counterpart in order to project the mesh nodes
associated to these models.

In chapter 5, we introduce mesh quality control and mesh refinement stages in order to ensure getting
both a minimum cell quality (which is required by simulation codes) and a mesh that fits the topology
of the geometrical model extracted in chapter 4.

Eventually, in chapter 6, we will conclude on this work and give some evolutions the study of which
could benefit our proposed solution, whether by improving the results (pillowing in Section 6.2.1)
or extending the usefulness of our method (cell size control in Section 6.2.2). We will also present
technical details about our implementation, namely the multithreaded (6.2.4) and the components
programming model (6.2.3) we used3.

As a foreword, one should note that :

• the techniques depicted in this work are not limited to Eulerian to Lagrangian intercode prob-
lems: they are relevant as long as one is able to provide a mesh carrying volume fractions,
which is typically the case for the examples issued from CAD models that we have used;

• similarly, while the majority of the inputs that we will show in our study are grid meshes, we are
not limited to those meshes and can handle any unstructured conformal hexahedral meshes.

3Both of them were presented at [Le Go�, Ledoux, and Janodet 2018].

14

Figure 1.10: The ELG pipeline that we developed.

We do not handle non-conformal meshes, such as those shown in Figure 1.3 because as our
method consists in using the input mesh as a base for our overlay-grid algorithm this base mesh
should meet the requirements, first of all being conformal;

• Most of the steps are not restricted to hexahedra and can directly accommodate other types of
cells, such as tetrahedra and prisms, with the caveat of course that our output would not be an
hexahedral mesh, but it is not the focus of our work.

15

Our publications

Le Goff, Nicolas, Franck Ledoux, and Jean-Christophe Janodet (2018). “A Parallel Shared-Memory Implemen-
tation of an Overlay Grid Method”. oral talk. Symposium on Trends in Unstructured Mesh Generation.

— (2019a). “An Overlay Grid Driven Geometric Model Extraction”. oral talk. Symposium on Trends in Unstruc-
tured Mesh Generation.

— (2019b). “Hexahedral Overlay Grid Method with Guaranteed Element Quality”. oral talk. International Con-
ference on Adaptive Modeling and Simulation.

Le Goff, Nicolas, Franck Ledoux, Jean-Christophe Janodet, and Steven J. Owen (2019). “Guaranteed quality-
driven hexahedral overlay grid method”. In: Proceedings of the 28th International Meshing Roundtable.

Le Goff, Nicolas, Franck Ledoux, and Steven J. Owen (2018). “Hexahedral mesh modification to preserve
volume”. In: Computer-Aided Design 105, pp. 42–54.

17

Chapter 2

Hexahedral meshing: de�nitions and main

algorithms

Our work focuses on converting Eulerian data into a Lagrangian hexahedral mesh that could be used
by a simulation code. To understand it, many notions have to be handled; we describe those that are
useful for our work just after in Section 2.1. As our work consists in generating hexahedral meshes,
Section 2.2 is dedicated to an overview of the main families of hexahedral meshing techniques and
we conclude this chapter with a description of the Sculpt algorithm, which is the starting point of our
work.

2.1 Notions and de�nitions

Many definitions and notions do not depend on the dimension n of the embedded space or the
object we consider, n being a strictly positive integer value. That is why we will often talk about
“n-dimensional objects”, i.e. objects of dimension n. Note that in this work we focus on spaces of
dimension 2 and 3.

2.1.1 Meshes and cells

Considering an n-dimensional geometric domain Ω, a mesh M of Ω partitions Ω into a finite set of
simple n-dimensional elements, which are called n-dimensional cells, n-cells, or more simply cells.
With M being a partition of Ω, it roughly means that Ω is totally covered by cells that belong to M that
do not overlap with one another (see Figure 2.1). In other words, a single point of Ω belongs to one
and only one cell of M .

Figure 2.1: 2D examples showing a simple domain Ω in (a), a triangular conformal mesh of Ω in (b) and a non-conformal
mixed mesh in (c) where red dots correspond to non-conformal nodes.

An n-dimensional cell is composed of i-cells with 0 ≤ i ≤ n. 0-cells are usually called nodes
or vertices, 1-cells are called edges, 2-cells are called faces and 3-cells are called regions. An n-
dimensional mesh is said to be conformal if any couple of n-cells of M share at most one (n−1)-cell.
Otherwise, it is non-conformal. Cells of a mesh can be classified by looking at their combinatorial
structure, or topology. For instance, very generic and simple meshes are the simplicial meshes,

19

which are made of triangles in 2D and tetrahedra in 3D. As they only contain a single type of n-
cells, such meshes are qualified as being full-triangular or full-tetrahedral. A 3D mesh only made
of hexahedral 3D cells will similarly be called full-hexahedral. On the contrary, an n-mesh made of
several types of n-cells, such as triangles, quadrilaterals and polygons in 2D, will be qualified as
being mixed. Eventually, we also recall the notions of structured and unstructured meshes, which are
relative to the overall topological structure of a mesh. An n-mesh is structured if all of its inner nodes
are shared by the same number of n-cells and unstructured otherwise. In 2D or 3D, the simple case
of structured mesh is a grid.

In the context of this work, an n-mesh is used as a support for numerical simulation and it can
be an Eulerian or a Lagrangian mesh. Considering a set of materialsM = {m1,m2, . . . ,mp}, every
n-cell of a Lagrangian mesh is pure, i.e. made of a single material ofM, while an n-cell of an Eulerian
mesh can contain several materials ofM. It leads us to the two following definitions that will be useful
in the remainder of this document.

Definition 1 (volume fraction) Let Ω be a geometric domain partitioned by a set of materialsM,
V (.) a function that gives the volume of an entity, M be a mesh that discretizes Ω and a cell c ∈ M ,
then the volume fraction fc,m of a material m in c is defined as:

fc,m = f(c,m) =
V (c ∩m)

V (c)
(2.1.1)

where c∩m is the geometric intersection between c and m. By definition, for any cell c ∈M , we have∑
m∈M fc,m = 1.

Definition 2 (material assignment) LetM be a set of materials, M a mesh and a cell c ∈M then
the material assignment of c is a function that returns a material m ∈M.

2.1.2 The classi�cation relation between a mesh and a geometric domain

Defining a geometrical domain Ω can be done in many ways. For instance, it can be defined using
a function that indicates for any point p of the space whether p belongs to Ω. In 3D, it can also be
obtained as the result of a series of Boolean operations, which are unions, differences and intersec-
tions of solid primitives, or defined as a set of explicitly connected curves and surfaces defining the
boundary of Ω, denoted ∂Ω. The process of building Ω with Boolean operations is called CSG, for
Constructive Solid Geometry, while only representing ∂Ω as a set of connected geometrical curves
and surfaces is called BRep, for Boundary Representation.

Figure 2.2: Classi�cation of a mesh onto a geometrical model; cells assigned to the same geometrical boundary entity
are drawn with the same color.

In the case of Lagrangian meshes, we often need to know if a cell is inside Ω or outside. In 3D,
regions are by definition assigned to be inside or outside of Ω depending on whether they contain the

20

Ω material or not. But faces, edges and nodes can be inside, outside or on the boundary of Ω. When
we use a BRep representation GΩ for Ω, faces, edges and nodes of M are said to be classified on
surfaces, curves or points of GΩ or inside a material (see Figure 2.2). Such a classification is useful
in order to perform geometric smoothing operations that intend to move nodes in order to improve
the geometric quality of the adjacent cells. When moving a node classified on a surface or a curve, a
constraint is added, which is to remain as close as possible to this geometric entity.

2.1.3 Geometric quality of a mesh

In numerical simulation, defining "mesh quality" strongly depends on the simulation code require-
ments; however, a simple and frequently admitted criterion is related to the geometric quality of the
cells that compose the mesh: usually, cells with a negative volume are to be avoided. It is for instance
the case for numerical codes based on the finite element methods, or FEM. When discretizing the
problem with finite elements, shape functions are usually defined for each cell of the mesh. These
functions allow the connexion of any cell to a reference element, which is perfectly regular. For ex-
ample, the reference element for an hexahedron is the unit cube (see Figure 2.3). The resolution
settings are well-known for the reference element. For each cell c, a shape function Tc maps the ref-
erence element onto c, with a change of variables between the reference space and the real space.
In dimension 3, we note (x, y, z) (respectively (x, y) in dimension 2) the coordinates of a point in the
real space (or physical space) and (ξ, η, ζ) (respectively (ξ, η) in dimension 2) the coordinates in the
reference space (or logical space).

Figure 2.3: From the reference cube to a physical hexahedral element and vice versa.

Each shape function is bijective at any point on the reference element or on its boundary. To any
point of the reference element corresponds one and only one point of the physical element, and vice
versa. Similarly, each boundary part of the reference element corresponds to a boundary portion of
the real element. A shape function is bijective if the Jacobian matrix J corresponding to the change
of variables is not singular. It can be checked by verifying that the determinant of J is never equal to
zero for any point of the reference element. In other words, it is strictly positive. In dimension 2, the
Jacobian matrix J2 is defined by the following relationship:(

∂T
∂ξ
∂T
∂η

)
=

(
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

)(∂T
∂x
∂T
∂y

)
= J

(∂T
∂x
∂T
∂y

)
. (2.1.2)

Similarly, in dimension 3, we obtain the definition of J3:
∂T
∂ξ
∂T
∂η
∂T
∂ζ

 =

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

∂T

∂x
∂T
∂y
∂T
∂z

 = J

∂T
∂x
∂T
∂y
∂T
∂z

 . (2.1.3)

In dimensions 2 or 3, the Jacobian matrix of a triangle, respectively a tetrahedron, T , defined by
vertices {si(xi, yi, zi)}i∈[0,n], with n = 2 or 3 can be computed at the vertex s0 by respectively:

|J2| =
∣∣∣∣x1 − x0 y1 − y0

x2 − x0 y2 − y0

∣∣∣∣ and |J3| =

∣∣∣∣∣∣
x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0

x3 − x0 y3 − y0 z3 − z0

∣∣∣∣∣∣ (2.1.4)

21

To verify that a cell is regular, it is thus necessary to know if the associated shape function is bijective.
A cell is detected as irregular if the determinant of the Jacobian matrix is negative or zero for at least
one of its nodes. For a single hexahedron, there will be eight such matrices, one per corner of the
hexahedron (for additional discussion on elements with multiple Jacobian matrices see [P. M. Knupp
2001]). The minimal determinant of these eight matrices is known as the Jacobian metric of the
hexahedral element. The lengths of the sides of the hexahedron can be normalized to provide a
"scaled" version of this metric that will have values between -1 and 1 (see Figure 2.4). A scaled
Jacobian determinant between -1 and 0 indicates non-convexity of the element. A scaled Jacobian
value of 1.0 indicates an hexahedron with interior angles between common edges of 90 degrees.
Generally acceptable scaled Jacobian values range between 0.2 and 1.0.

Figure 2.4: Evolution of the scaled Jacobian value when progressively moving one corner of a perfect cube from right
to left. On the top row, the red corner is progressively moved to get to the blue one; on the bottom row, the red corner
moves to the opposite node in the hex (along the diagonal).

2.1.4 Hexahedral meshing : the issue of dealing with global constraints

Tetrahedral mesh generation, while still the subject of improvements on many aspects, such as cell
quality, constraints on cell sizing, edge length gradation control, mesh adaptation during simulations,
performances,. . . , can be considered feasible. Given an arbitrarily complex CAD model, software
like [Distene 2020; Si 2015; Geuzaine and Remacle 2009] are in most cases capable of producing
a good quality tetrahedral mesh. On the contrary, reliable automatic hexahedral mesh generation is
still an open problem. The main reason that explains such a difficulty is the topological structure of
hexahedral meshes that does not allow algorithms to be built based on local modification operations.
Let’s take a look at simple operations such as inserting a point or collapsing an edge in a mesh
that we can see in the 2D cases shown in Figures 2.5 and 2.6. In both cases, a triangular and a
quadrangular meshes are modified.

Figure 2.5: Example of point insertion for a triangular (top) and a quadrilateral meshes (bottom).

In Figure 2.5, a point is inserted in the mesh. A classical way to proceed in a triangular mesh
is to first detect the triangle the point belongs to, then traverse adjacent triangles while a certain

22

condition is met. This set of triangles (in red) defines a cavity, which will be made empty by removing
all the triangles it contains before being triangulated anew by creating one triangle for each of the
cavity boundary edge and the new point. In the case of quadrilateral meshes, after detecting the
quadrilateral that contains the point, we traverse the lines of quadrilaterals it belongs to (two lines
or one self-intersecting line). Those lines are inflated to insert two new lines of quadrilaterals in the
mesh. We can note that such an operation is not restricted to the local vicinity in the mesh and can
propagate far away. In Figure 2.6, another common operation is performed, the edge collapse. Again,
we can see that collapsing an edge in a triangular mesh is local. For the quadrilateral mesh, a direct
edge collapse would lead to creating two triangles in the mesh, so we have to propagate the edge
collapse along a complete line of quads in order to preserve the full-quadrilateral nature of the mesh.

Figure 2.6: Example of edge collapsing for a triangular (top) and a quadrilateral meshes (bottom).

In 3D, hexahedral meshes are structured in the same way as quadrilateral ones (see Figure 2.7).
Their dual structures are simple arrangements of curves (for quadrilateral meshes) and surfaces (for
hexahedral meshes). This structure was first introduced with the term spatial twist continuum [Mur-
doch et al. 1997]. As a consequence, modifying such meshes require to modify their structure. In
practice, in 3D, it can be done by performing operations on layers of hexahedral cells, i.e. a set of
hexahedral cells that corresponds to a dual surface, or columns of hexahedral cells, i.e. the set of
hexahedral cells that corresponds to the intersection of two dual surfaces.

Figure 2.7: The dual of a quad mesh (left) and an hexahedral mesh (right) are respectively structured as a simple
arrangement of curves and surfaces.

23

2.1.5 Why use hexahedral meshes?

Unlike tetrahedral meshes, two main benefits of hexahedral meshes are broadly accepted:

1. From a quantitative point of view, for the same edge size, the number of hexahedral elements
to partition a geometrical domain is far smaller than the number of tetrahedral elements;

2. From a qualitative point of view, hexahedral elements are preferred in many physics fields (struc-
ture mechanics, computational fluid dynamics – CFD) since the hexahedral structure allows the
alignment of the cells in the direction of the fluid displacement, or a wave shock, leading to min-
imizing some numerical diffusion issues. For this reason many finite-element solvers behave
better when hexahedral elements are used.

The first point is particularly important for simulations performed on a single computer where
memory is a limitation: for the same degree of accuracy, the memory footprint is lower with an hex-
ahedral mesh than with a tetrahedral mesh. Additionally, the execution time of the simulation is gen-
erally lower with hexahedral elements. Indeed, numerous approaches are based on Finite-Element
Methods (FEM), where n-cells (n = 2 or 3) are traversed numerous times, making the number of
cells crucial. Moreover, the time step used during the simulation often depends on the geometrical
size of cells (the smallest edge length for instance); again, the number of cells is an important factor.
Concerning the second point, it must be noted that the behavior of finite-element solvers strongly
depends on the applicative field. For CFD solvers, it can be motivated by the alignment of hexahedral
elements with fluid displacement direction [Ferziger and Peric 2002]. It also means that not every
hexahedral mesh is usable: it sometimes must respect alignment properties. For the same reasons,
in aerodynamics, structured hexahedral meshes are preferred to discretize thin layers, i.e. interface
areas between an object – an aircraft wing for instance – and a fluid in motion that surrounds it. In
fact, we will find mathematical approaches that best work with hexahedral meshes in several fields
like explicit dynamic [Zienkiewicz, Rojek, et al. 1998; Zienkiewicz, Taylor, et al. 2013; T. Hughes 2000]
or cardio-vascular simulations [Liu et al. 2004].

For these reasons, a lot of the simulation codes used in the industry rely on physical models that
can only be applied on or get better results with hexahedral meshes. An engineer who wants to
use those codes must then be able to provide such meshes. Unfortunately, generating hexahedral
meshes is very time-consuming; this task even dominates the overall simulation process. In [T. J. R.
Hughes 2004], the author stated that about one million finite element analysis was performed each
day in 2004. The meshing time was then about 80% of the full analysis process time. The importance
of the meshing step is underlined in the same proportions in [T. Blacker 2000; Boggs et al. 2005].

If a pure quantitative point of view can justify to use hexahedral meshes, the qualitative point
of view suggests that not all hexahedral meshes can be used for a specific applicative field. As
a consequence, we often require to have well-shaped elements along some geometrical domain
features (its boundaries), or simulation-specific features (fluid interfaces). The automatic generation
of hexahedral meshes is a very difficult task and, up to now, there does not exist a satisfying solution.
By satisfying we generally mean that the following criteria must be considered (see Figure 2.8 for an
illustration):

1. Individual quality of hexahedral elements - The shape of an hexahedron must often be
as close as possible to the shape of a cube or a block, i.e. it should have planar faces, with
opposite edges similar in size and adjacent edges forming 90 degree angles;

2. Global structure - The "perfect" structure of an hexahedral mesh is a regular grid. In other
words, each inner vertex should be adjacent to exactly eight hexahedral elements. Such a
vertex is said regular. Otherwise, it is said irregular or singular. It is often impossible to verify
both criterion 1 and this criterion, thus algorithms try to minimize the number of singular vertices;

3. Boundary alignment - Hexahedral elements must be aligned along the geometrical domain
boundary. It basically means that they should form layers of hexahedral elements that follow the
geometrical domain boundary. If we only consider the surfaces that compose the geometrical
domain boundary, generated quadrilateral elements must respect main curvature directions and
sharp features;

24

4. Respect of a size map - A size map should be considered in order to specify what the expected
size of a cell is in any location of the geometrical domain. When the expected size strongly
changes for close locations it is difficult to verify this criterion and criteria 1 and 2 at the same
time.

Figure 2.8: Example of a block-structured hexahedral mesh.

These criteria only consider the geometrical and topological quality of a mesh, but do not consider
the simulated physical phenomena. In fact, the prior criteria to satisfy is the adequacy of the mesh
and the simulation codes. The mesh can be very good from a geometrical and topological point of
view, but unusable in practice for a particular simulation code or study.
Still, these criteria are usually the ones that can allow us to determine if a mesh can actually be used
in practice. For instance, let us consider a simple way to generate an hexahedral mesh. It consists in
generating a tetrahedral mesh1, then splitting each tetrahedron into four hexahedra (see Fig. 2.13).
This approach is automatic and robust. Unfortunately, such a mesh does not fulfill most of the previ-
ously given criteria. For instance, it does not consider any global structure to get a regular mesh or
the boundary alignment constraint. For the same reasons, overlay grids are seldom used. The mesh
is well-structured inside the geometrical domain but not at all along the geometrical boundary. For
such algorithms, the insertion of hexahedral layers along the boundary improves the quality along
said boundary (criterion 3) but does not make for a better global structure (criterion 2).

Software like Cubit [Cubit 2019] or ICEM-CFD [ICEM 2013] propose solutions where the user
must prepare the geometrical domain to be meshable. It mainly consists in subdividing it into mesh-
able parts, where a basic algorithm can be applied. In Cubit, the underlying basic algorithm is the
sweeping one [T. D. Blacker 1997; Eloi Ruiz-Gironés et al. 2009] (see Fig. 2.11), while ICEM-CFD

relies on interactive tools to split the geometrical domain into hexahedral blocks (see Figure 2.10).
The obtained mesh is then heavily controlled by the user, but the time one has to dedicate to this
task can be prohibitive. The expertise level of the user is thus preponderant in order to get a good re-
sulting mesh. Moreover, these semi-automatic approaches do not take the physical properties of the
simulation into account, and can not be extended to be used in an adaptive loop during the simulation
itself.

2.2 State of the art in hex meshing

As seen previously, due to the lack of local operators on hexahedral meshes, the only shape that can
reliably be meshed using hexahedra is the block, or more precisely the hexahedral shaped block; it

1Numerous tetrahedral meshing algorithms are available [Frey and George 2008].

25

can be meshed with a grid mesh slightly deformed using a transfinite interpolation [Faux and Pratt
1979]. The current meshing process for preparing the input for numerical simulations does just that,
meaning that given a geometrical model, an engineer will process it and decompose it into elementary
hexahedral blocks that can then be meshed, as seen in Figure 2.9. One should note that this example
only shows one piece; when considering a whole assembly of CAD pieces and the fact that blocks
need to propagate through the pieces in order to obtain a conformal mesh, it comes as no surprise
that this phase can take several weeks to months of engineering time.

(a) (b) (c) (d)
29 blocks, 15 minutes 174 blocks, 2 hours

Figure 2.9: Example taken from [Ledoux 2018] where a CAD-model (a) is manually decomposed into blocks (b) with
the engineering time taken by an operator familiar with the software; (c and d) the same with a more complex model
that includes small details.

In the study [Boggs et al. 2005], the authors recognize that the geometric manipulation step – of
which one goal is often to make it easier to mesh – and the meshing step account for a large fraction
of the overall process time. As such some developments in industrial CAD-meshing software focus
on the ease of use of the software. An example of those capabilities is shown in Figure 2.10 where
a 2D CAD model is built and decomposed into quad blocks. The user can then automatically create
an axisymmetric 3D CAD and block structure and finally a mesh is obtained that is fit for purpose for
a simulation as seen in Figure 1.4 page 9.

Other developments have extended the range of shapes that can be meshed. The sweeping
algorithms [P. Knupp 1998] lift the limitation on hexahedral-shaped blocks; instead the requirements
are that a source and a target surface of similar topology have to be linked by a mappable surface or
surfaces (see Figure 2.11). The many-to-one and the many-to-many sweeping [Lai et al. 2000] were
then introduced to further expand the capabilities of this type of algorithm.

We have seen that, despite many improvements, generating a mesh is still a time-consuming
task as it requires a user to manually operate a somewhat complex software. In order to shorten this
step quite a few methods were and are still devised so as to automate the process. In the following
sections we will attempt to present those methods, thematically grouped but knowing that more than a
few of those are not really restricted to one group and could be part of several families. The following
surveys and courses [Sarrate et al. 2014; Owen 2005; Ledoux 2014] have guided our depiction of
those methods. The families we consider are depicted in Figure 2.12 and are the following ones:

• Geometry-�rst. In order to discretize a geometric domain Ω, those algorithms rely on the
geometrical properties of Ω. Starting from the boundary ∂Ω of Ω, they will for instance try to
discretize Ω by iteratively inserting cells, or extracting geometric pieces of information, like a
medial object, to help build the mesh.

• Mesh-�rst. In this case, a mesh is first built then adapted to Ω. The underlying intuitive idea is
that it is easier to modify a mesh than to create it from scratch. But it is often more complicated
to ensure the right cell quality near ∂Ω.

• Cartesian Idealization. Those methods are kind of a compromise where we are going to
“deform” the geometrical model Ω to get a model that is easier to mesh with quadrilateral (in
2D) or hexahedral (in 3D) cells.

26

(a) 2D CAD model (b) 2D block decomposition (c) 3D block decomposition

(d) close-up (e) mesh

Figure 2.10: Example of a laser target from [Ledoux 2018] similar to what can be used to run simulations and prepare
studies at experimental facilities [CEA 2020].

(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 2.11: Sweeping examples from [Owen 2005]. (c) is not sweepable without some additional manipulations because
of its multiple directions.

27

Figure 2.12: Three major types of hexahedral meshing algorithms.

2.2.1 Geometry-�rst

The approaches that consider the geometry first are the most numerous. They are either some
attempts (with or without success) to extend existing techniques or driven by natural ideas and de-
compositions that are used to split geometric domains in interactive commercial tools.

2.2.1.1 Automatic full domain hex-meshing

Indirect methods. The first methods we consider are based on tetrahedral meshing. We have
seen in Section 2.1.4 that it is possible to reliably generate a tetrahedral mesh, even on a complicated
domain, and we group in this family the methods that directly make use of this tetrahedral mesh.
Some other methods also make use of a tetrahedral mesh as a first stage, not directly but to help
with computations or to localize nodes in the domain.

• Tethex. The idea behind this method is to first generate a tetrahedral mesh and then to split
every tetrahedron into 4 hexahedra (triangles are split into 3 quads in 2D) as seen in Figure 2.13.

(a) (b) (c)

Figure 2.13: Example from [Ledoux 2018] of the tethex method applied on a CAD model (a) that is �rst meshed using
tetrahedra (b), which are each split in order to obtain an hexahedral mesh (c).

• Recombination. The recombination methods are in a sense the opposite of the tethex: starting
from an initial tetrahedral mesh, these methods assemble groups of tetrahedra in order to form
a single hexahedron. There are two main drawbacks to these methods: first, they do not
produce full hexahedral meshes, but hex-dominant ones instead. A lot of patches of tetrahedra

28

remain that could not be grouped together into hexahedra. Secondly, it is not possible to control
where in the domain those remaining tetrahedra are located; in [Baudouin et al. 2014], the
authors attempt to mitigate this by prioritizing the creation of hexahedra along the boundaries.
In [Pellerin et al. 2018] the authors extend the recombination so as to consider previously
missed possible groupings by not relying on predefined templates, then build a graph where
the vertices are the possible recombinations and are deemed neighbors when they conflict with
one another, typically when they share a tetrahedron. The recombinations that will effectively
be done are selected by extracting an independent set from the graph. Even so, the method’s
output mesh is hex-dominant with a number of non-hexahedron cells of the same order of
magnitude as the number of hexahedra.

Front propagation. As its name suggests, this family gathers the methods where the mesh gener-
ation starts from the boundary ∂Ω and propagates to the interior of the domain. They usually require
that the boundary of the domain be already meshed, and while it is in itself a limitation it is also a
selling point as these are the only methods capable of meshing a volume when its delimiting surfaces
are meshed or partially meshed. Those methods are mainly designed as extension of 2D algorithms
and they are driven by geometry or topology first.

In the paving algorithm [T. D. Blacker and Stephenson 1991] and its extension to 3D [T. D. Blacker
and Meyers 1993], new quadrilaterals and hexahedra are added incrementally starting from an al-
ready meshed boundary until there are only some inner cavities left. Decisions to add a cell are driven
by geometric considerations. The filling of the remaining cavities and the joining of fronts prove to be
where the method encounters robustness issues. In Q-Morph [Owen, M. L. Staten, Canann, et al.
1999] and H-Morph [Owen and Saigal 2000] the authors follow the same principle but start from a
first triangular or tetrahedral mesh and select the nodes of the original mesh that will serve as vertices
of the newly built cell; this is a way to both facilitate geometric computations and to prescribe a target
mesh size. The original mesh is then updated in order to insert the new edges and faces that were
not present initially (see Figure 2.14).

(a) (b) (c) (d)

Figure 2.14: The Q-Morph algorithm with the initial triangular mesh (a) and the mesh after a few iterations in (b).
Sub�gures (c) and (d) show the problem of front joining. Examples from [Owen, M. L. Staten, Canann, et al. 1999].

Some other methods, classified as topology-driven, also propagate from the boundary but choose
to avoid geometric computational issues and the handling of lots of special cases by making use of
the structured nature of hexahedral meshes that we talked about in Section 2.1.4. Instead of directly
adding cells to the mesh, they attempt to build the dual of an hexahedral mesh by inserting whole
sheets – which is akin to inserting a whole layer of hexahedra at a time – inside the domain. Working
on the topology of the mesh in place of its geometry is the basic principle of the Reliable Whisker
Weaving algorithm [Folwell and Mitchell 1999]. The authors of [Ledoux and Jean-Christophe Weill
2007] introduce back some measure of geometry in the decision process on the premise that not
doing so tends to produce meshes of too low quality.

29

Block decomposition. In an attempt to mimic the results of handmade meshes as seen at the
beginning of this section, and considering that having a block-structure is usually a sought after
property for the mesh, several methods aim to split the domain into simple meshable blocks.

• Medial axis. Medial axis methods [Tam and Armstrong 1991] consist in retrieving the set of
points that are equidistant from at least two points located on the boundary of the domain ∂Ω;
these points form a skeleton that subdivides the domain into simple blocks as seen in Fig-
ure 2.15. The problems with these methods reside in first the difficulty of building said skeleton,
secondly in the fact that the blocks that are obtained are not all quadrilateral or hexahedral and
thus cannot be meshed using a grid without an additional treatment and thirdly this decompo-
sition is not optimal in terms of mesh quality. These drawbacks could seem prohibitive, but the
medial object has the main benefit of being mathematically well-defined and even if it does not
provide the expected block decomposition, it could be very helpful to help build final blocks.
Some recent works as [Quadros 2014; Papadimitrakis et al. 2019] show how it could be used
in practice for getting blocks.

(a) (b)

Figure 2.15: Examples of a medial axis decomposition in 2D in (a) and a 3D model with its medial surface in (b),
from [Owen 2005; Quadros 2014]

• Frame fields. For about a decade, different works have tried and extended 2D approaches
based on cross-fields to 3D. The idea is to build a field of frames, which are a “simple” 3D basis
made of three orthogonal directions. Frame fields are built to be aligned along ∂Ω and be as
smooth as possible. Such fields bring an extra information to building hexahedral meshes : in
every location of Ω, hexahedral cells should be aligned along the three axis of the local frame.
Following this approach, several works like [Kowalski et al. 2016] produce the expected block-
decomposition of Ω. In many simple cases, as the one shown on Figure 2.16, a frame field is
computed on a tetrahedral mesh (a and b) then a topological skeleton is extracted (c), which is
necessary to compute a meshable block decomposition (d and e). The current limitation of those
approaches is to generalize to more complex domains where the topological skeleton of the
frame field does not correspond to a valid block-structured mesh. Some current works [Palmer
et al. 2020] focus on this limitation to try and go further.

(a) (b) (c) (d) (e)

Figure 2.16: 3D block-decomposition pipeline using frame �elds. Starting from the shape meshed using tets (a) frames
are computed at each node (b). Interior singularity lines are identi�ed (c) and are completed on the boundary to form
an hexahedral block-decomposition (d), and �nally each block can be meshed using a grid (e). Example from [Kowalski
et al. 2016].

30

• User-guided hex-meshing. As previously mentioned, all the automatic hexahedral mesh-
ing methods have drawbacks and the current workflows for studies include a manual meshing
phase that can take several months of engineering time. As such, some of the research focuses
on mixed solutions where the algorithms will no longer be fully automatic but will instead assist
the engineer; they could also be seen as semi-automatic methods where the engineer will be
prompted to unstuck the program.

In [Lu et al. 2014], the authors propose a sketch-based user interface (see Figure 2.17) in
order to decompose a model into sweepable blocks. This can be seen as a complement to the
automatic sweepable volume decomposition [David R. White et al. 2004; Wu and S. Gao 2014]
where the methods are not only run to completion but a feedback is extracted and given to the
user, who can then improve upon the proposed solution or provide its input to make them work
in the case where they fail.

(a) (b) (c)

Figure 2.17: A sketch-based user interface is shown in (a) with the corresponding decomposition of the domain into
sub-volumes. In (b) the CAD model that is decomposed into three sub-volumes (c), each with a di�erent sweeping
direction. Example from [Lu et al. 2014].

Similarly, considering that generating a block-decomposition automatically based on frame
fields is nowhere near close at hand, especially in 3D, in [Takayama 2019] the authors im-
plemented a frame fields-based method where the user designs boundary loops from which
dual sheets are built, thus building the dual of the desired block-decomposition of a domain.
In [Calderan et al. 2019], the authors chose to skip this intermediary step and provide an inter-
active environment where the user can pick points on ∂Ω from which dual surfaces will spawn
directly (see Figure 2.18) and then build a block structure (see Figure 2.19).

(a) (b) (c) (d) (e)

Figure 2.18: The user picks the location of the seed (a) from which a dual sheet will grow (e). Example from [Calderan
et al. 2019].

2.2.2 Cartesian Idealization

The methods presented in this section are based upon the idea that since the only shape that can
reliably be automatically meshed is the block, it might be advantageous to deform the original shape
to a block-like one, which can then be meshed, and transform back the mesh onto the original shape.
Two such families of methods are discussed here: the submapping and the polycubes.

Submapping. This method meshes a CAD model by first transposing it as an axis-aligned compu-
tational domain, which is then discretized. Whiteley et al. [Whiteley et al. 1996] extended the purely

31

(a) (b) (c)

(d) (e) (f)

Figure 2.19: In [Calderan et al. 2019], the user interactively picks several dual surfaces (a to d) to build the dual of an
hexahedral block structure. This set of surfaces is converted into a set of dual zones (e) which is �nally derived into the
�nal block structure (f).

manual user input-based method [David Roger White 1996] by introducing an automated interval as-
signment solved using integer programming. Ruiz-Gironés et al. [E. Ruiz-Gironés and Sarrate 2010b;
E. Ruiz-Gironés and Sarrate 2010a] added the automatic classification of vertices and relaxed the
requirement that all angles should approximate multiples of π2 (see Figure 2.20). Their extension also
handles multiply connected domains, by considering them as simply connected with additional virtual
curves traversed twice. Tautges et al. [Cai and Tautges 2015] introduced the manual addition of vir-
tual vertices so as to prevent bad output meshes when encountering a few classic configurations in
the CAD.

Submapping methods suffer from a lack of robustness, in particular in 3D as the vertices classifi-
cation is done locally to each surface, which can result in conflicts during the interval assignment step,
i.e. the phase when the actual discretization is determined. Moreover the whole interval assignment
process is only based on the boundary classification and it loses some in-volume information.

Polycubes. Unlike the submapping algorithm, the polycube-based method relies on a whole vol-
ume deformation process, which keeps in-volume information available and pertinent. The main
works on polycube [He et al. 2009; Gregson et al. 2011; Yu et al. 2014] build a polycube, i.e. an
axis-aligned polyhedra, and define a transformation between said polycube and its original shape
(see Figure 2.21). In some cases, the polycube is adjusted in order to meet some requirements,
such as preserving the topology of the CAD.

Polycubes are sensitive to the model orientation: having angles of typically 45 degrees between
its curves or surfaces will make for a lot of badly shaped cells on the boundaries. Moreover, like
submapping, there exists a lot of classic models that cannot be meshed with a polycube and such
approaches do not insert singularities in the domain, potentially leading to distorted elements along
some boundary surfaces of Ω.

2.2.3 Mesh-�rst or overlay-grid methods

Mesh-first methods consider a starting mesh and adapt it so that it meshes the CAD input. The
starting mesh should be easy to generate, typically an axis-aligned grid. Starting from the pioneer
work of R. Schneiders [R. Schneiders 1996], several authors proposed different solutions to build
such type of meshes considering volume fraction inputs like [Owen and Shepherd 2009; Owen, M. L.
Staten, and Sorensen 2012; Owen, Brown, et al. 2017; Owen and Shelton 2015], CAD models where
sharp features must be preserved first [Maréchal 2009; Maréchal 2016; X. Gao, Shen, et al. 2019] or
smooth surfaces for medical applications [Zhang 2016]. In all those works, many improvements are

32

(a) (b)

(c) (d)

Figure 2.20: Example of the submapping method from [E. Ruiz-Gironés and Sarrate 2010b; E. Ruiz-Gironés and
Sarrate 2010a]. In (a) the 2D geometrical model where the vertices are classi�ed which allows for the shape to be
transformed into the computational domain as (b). (c and d) a 3D example.

(a)

Figure 2.21: Example from [Ledoux 2018] of a polycube-based approach. First the domain is "intuitively" deformed
to get all of its boundary faces X, Y or Z-axis aligned; this deformed domain is then easily meshed and �nally the mesh
is projected back onto the original shape.

33

done to handle sharp features, small features of the domain Ω that require to refine the input mesh,
and multi-domain input.

In practice, mesh-first methods are the most robust hexahedral meshing algorithms but they do
not provide expected features for many applications: worst cell quality along the boundary ∂Ω, un-
desirable patterns encountered inside the domain or on the boundary, loosely CAD capture for some
methods, non-alignment along the boundary and inability to get block structure.

2.3 Sculpt

We present here in detail the Sculpt algorithm, introduced in [M. L. Staten and Owen 2010; Owen,
M. L. Staten, and Sorensen 2012] and available in the Cubit software [Cubit 2019]. It takes a
mesh carrying volume fraction data as an input, assign a material to each cell and modify the mesh
with two goals in mind: first to match the input volume fractions (geometric modification by moving
the nodes), and secondly to produce a mesh with good quality cells (moving the nodes during a
smoothing phase and topological modifications by inserting layers of hexahedra to try to obtain better
quality cells). Contrary to some of the overlay grid methods presented previously that create a mesh
and manipulate its dual, it directly works on the primal mesh, which we can see having three main
advantages:

• as the input volume fractions are carried by the cells, manipulating those directly avoids the
need to compute volume fractions at the nodes using interpolation techniques that may or may
not offer guarantees in terms of volume preservation;

• the input mesh can be huge, especially when Sculpt is used in an intercode capacity after an
Eulerian simulation, and might already be distributed on several partitions; directly handling it
avoids the need to create a distributed dual mesh and having to partition the dual cells located
across partition boundaries;

• more simply, while the dual of a grid mesh is another full-hexahedral mesh – it is in fact another
grid – that is not true when the mesh is unstructured; not handling unstructured meshes would
limit the software functionalities.

The reasons stated above make this method a good fit for our objectives; the algorithm is illus-
trated in more detail in Figure 2.22 and is comprised of the following steps:

a) The Eulerian mesh, that is to say a mesh that carries volume fraction data, can be given as an
input or it could be manufactured using others means, such as imprinting a CAD model onto
a grid mesh; the authors introduced a refinement procedure to better represent the geometric
details in such a case [Owen, Shih, et al. 2017]. But whatever its origins, it is treated as an
input on which we do not have a say;

b) The cells of the mesh are assigned to materials on a majority basis: a cell is assigned to the
material of highest volume fraction inside the cell;

c) The assignment correction step is by nature optional; the initial assignment obtained in (b) can
conflict with the simulation code requirements or with assumptions that the mesh generation
implementation itself made, whether because it is a methodology requirement or because it was
easier to code. In the Sculpt case, this phase ensures that the assigned materials each form
an assembly of disconnected manifolds (necessary when for example one needs to compute
the normal vector at every node of its interface; it is undefined in Figure 2.23) by reassigning
the cells to different materials where necessary. When changing materials, cells are reassigned
around each problematic nodes to the second best (in the sense that it is closest to the volume
fractions) correct assignment and as it could lead to non-manifold configurations appearing in
the neighborhood of changed nodes this phase is executed again; the authors slightly modify
the volume fractions (this adjustment is only considered for this phase, the original volume
fractions are used for the rest of the method) when changing the assignment of a cell so as to
avoid an infinite loop scenario (see Figure 2.24);

34

(a) volume fractions (b) majority assignment (c) assignment correction

(d) compute gradients (e) compute position (f) move nodes

(g) pillowing (h) smoothing

Figure 2.22: Starting from the volume fractions given in (a), grid cells are assigned to each material in two stages (b
and c) before computing a new position (d and e) for the interface nodes and then moving those nodes (f); as the mesh
quality can end up degraded, a pillowing (g) is applied in order to provide the smoother (h) more degrees of freedom to
try and improve the quality.

35

(a) (b)

(c) (d)

Figure 2.23: Example of non-manifold con�gurations for a material (non-transparent cells) around the central node.

d) A gradient is computed for every material. It is not an end in itself, it is simply a means to an
end as it will be used in the computation of the position of the interface nodes;

e) A target position is computed for the interface nodes;

f) The nodes are moved to their expected new positions; up to this moment the mesh was never
modified, staying strictly the same as the input. We can see in Figure 2.22.f that several of the
quads are now degenerated, nearly triangle-shaped or even non-convex;

g) A pillow is applied on each side of the interfaces; it is the only step where the mesh is topolog-
ically changed. There are still the same degenerated cells in Figure 2.22.g as in the previous
figure; this operation’s goal is not to directly improve the mesh quality, it will instead provide
more degrees of freedom or leeway for the smoother to works with;

h) The mesh is then smoothed and Figure 2.22.h illustrates that in this example it indeed managed
to drastically improve the mesh quality.

As previously mentioned, the resulting mesh neither preserve the volume fractions2 nor does it
capture the geometric features when the starting input is a CAD model. Nonetheless, the authors
have shown [Owen and Shelton 2015] that in one linear and in one non-linear elastic-plastic cases,
running using meshes produced via Sculpt was not detrimental; they even included an orientation-
sensitivity study, as it has a huge impact on several meshing algorithms (see Section 2.2.2) and
particularly in overlay-grid methods (see Section 2.2.3).

2In [Owen, Brown, et al. 2017] the authors proposed an addition to step c, the assignment correction, that reassigns
the cells in order to avoid small isolated clusters of materials which will tend to produce perturbed interfaces and bad
quality elements; they called this option defeaturing. This goes to show that, depending on the user, volume fraction
preservation can be dropped in favor of mesh usability.

36

(a) (b)

(c) (d)

Figure 2.24: Example of non-manifold resolution and live-lock avoidance strategy. (a) the initial material assignment
with the non-manifold node highlighted; (b) the new assignment solves the non-manifold at the �rst node but causes
another to appear; (c) the new non-manifold node is solved but we are back to the initial assignment, which was
originally the best; (d) the non-manifold is solved again with another assignment because at some point the volume
fractions repeated adjustments will lead the algorithm to make another choice, thus avoiding an in�nite loop between
state (a) and (b).

37

Chapter digest – In the course of this chapter we have presented notions and definitions
that pertain to our problem. During the state of the art of hexahedral meshing we have
seen that there are methods aplenty, but that considering our input – namely a mesh
carrying material volume fractions – the number of methods available for us to use as is
becomes severely limited. We presented Sculpt, which is such a method and intend to
study and extend it in the next chapter.

38

Chapter 3

Sculpt evaluation and improvement

Data conversion between physics simulation codes requires to address some questions about the
preservation of physical quantities. Unlike some computer graphics application where we could focus
on frame rate optimization or getting something visually “close to reality” or “pleasing to the eye”, we
need here to preserve, or at least control, some relevant quantities. In the case of converting an
Eulerian mesh M I to a Lagrangian mesh MO, we intend to control that the volume of every material
of M I is the same in MO.

Figure 3.1: The discrepancy evaluation is performed as a post-processing stage in the ELG pipeline leading to a �nal
smoothing stage that is driven by �tting initial data location - the volume fractions in the initial mesh - as best as
possible.

Such a consideration is not directly taken into account in overlay-grid meshing algorithms. For
instance, the volume fractions are not preserved by the Sculpt algorithm (see Section 2.3). As it
is mandatory for our applications, we propose in this chapter to introduce a discrepancy criterion to
evaluate the difference between the output of this software and its input. This notion is introduced
in Section 3.1. It gives us locality information, on the meaning that locally to each input cell of M I

we know how well each material is preserved in terms of volume by the cells of MO. With such
an information, we have a feedback on whether cells of MO are too large or too small (meaning

39

that we locally have too much or too little of a material). It allows us to introduce in Section 3.2 a
discrepancy-controlled loop so as to reduce it by moving the interface nodes while ensuring that the
cell quality does not drop below a user-defined threshold. This procedure has been introduced as a
post-processing stage for evaluating the original Sculpt algorithm and to improve our ELG pipeline
at the end (see Figure 3.1 for a reminder of the ELG pipeline). It was run on a variety of meshes built
from STL models, simple and complex CAD assemblies and volume fraction grids, including outputs
of simulation codes; some of those experiments are presented in Section 3.3.

3.1 Discrepancy de�nition and evaluation

Our aim is to build an output Lagrangian mesh MO, made of pure cells, from an input Eulerian mesh
M I , made of pure and mixed cells, while preserving as best as possible the volume and locality of
each material during this process. In other words, the volume of a material m should be the same in
MO and M I and it should be at the same geometric location. It leads us to the definition of global
material volume differences.

Definition 3 (Global material volume di�erence). Let A and B be two meshes of the same
geometric domain Ω and M be the set of materials that disjointly fills Ω, the global difference of
material volumes between A and B is

∆V =
∑
m∈M

|∆Vm| =
∑
m∈M

|V A
m − V B

m | (3.1.1)

where V A
m and V B

m are respectively the volume of a material m in meshes A and B.

(a) (b) (c)

Figure 3.2: Given a grid mesh with the green material volume fractions represented in (a) ranging from 0 in blue to
1 in red, we can see that despite being of the same total volume for each material, the material mesh (b) �ts better the
volume fraction grid than (c).

Minimizing ∆V as defined in Definition 3 only ensures a global volume preservation, which proves
not to be sufficient as it can lead to unexpected results as seen in Figure 3.2. This shows that we need
to introduce locality in our comparison criterion. In order to introduce it, we propose to project back
each cell of MO onto M I to compute a discrepancy value localized in each cell of M I , as illustrated
in Figure 3.3. On this example, a Lagrangian mesh made of blue and yellow quadrilateral cells is
projected onto an Eulerian mesh shown in dashed red lines. Let us focus on cell cIj ∈ M I , which
contains 2 materials A and B with respectively the volume values1 fj,AV (cIj) and fj,BV (cIj). In order
to compute the discrepancy of a material m in cell cIj , we look for the pure cells of MO containing m
(noted MO

|m) that intersect cIj .

Definition 4 (Local discrepancy). Let MO and M I be two meshes of the same geometric domain
Ω andM be the set of materials that disjointly fills Ω. Let cIj be a cell of M I and m be a material of
M, we note dj,m the discrepancy of cIj relatively to material m and mesh MO and we define it as

dj,m = d(cIj ,m) = V (cIj ∩MO
|m)− fj,mV (cIj) (3.1.2)

1Computed as the product between the geometric volume of the cell cj and the volume fraction fj,m = f(j,m) of the
material m in cj .

40

=

+

+ +

-

-

=

Figure 3.3: Considering one input cell cIj of an Eulerian grid, we graphically illustrate the discrepancy computation for
materials A and B locally to the cell cIj .

where V (X) is the volume of any geometric space X, MO
|m is the output mesh restricted to the pure

cells of material m and cIj ∩MO
|m is the geometric intersection of cIj with the cells of MO

|m.

Let us note that in practice, we compute geometric intersections using2 [Herring et al. 2017].
Looking at the definition of the local discrepancy, it is interesting to note that:

• dj,m > 0 means that locally to cIj , we have too much of material m;

• dj,m < 0 means that locally to cIj , we do not have enough of material m.

In order to compare the whole meshes M I and MO, we finally get the following definition.

Definition 5 (Global discrepancy). Let MO and M I be two meshes of the same geometric
domain Ω andM be the set of materials that disjointly fills Ω. The total discrepancy of a cell cIj ∈M I

is defined as
dj = d(cIj) =

∑
m∈M

|dj,m|, (3.1.3)

and the global discrepancy on M I is defined as

d = dtot =
∑
cIj∈MI

dj . (3.1.4)

Incidentally, for every cell cIj ∈M I , we have the following inequality

dj ≤ 2V (cIj), (3.1.5)

which is obtained by replacing dj,m in Equation 3.1.3 by its expression from Equation 3.1.2 and
applying Minkowski’s inequality:

dj =
∑
m∈M

|V (cIj ∩MO
|m)− fj,mV (cIj)| ≤

∑
m∈M

|V (cIj ∩MO
|m)|+

∑
m∈M

|fj,mV (cIj)| ≤ 2V (cIj). (3.1.6)

3.2 Discrepancy improvement

The global discrepancy allows us to check how a material is preserved between an input mesh M I

and an output mesh MO. Considering that the global discrepancy is never equal to zero, the intent
of the volume-preserving adaptation process is to geometrically modify MO to best fit the volume of
each material defined in M I . The proposed procedure is an iterative method where each iteration
aims to reduce the global discrepancy (see Definition 5) on M I . The following points outline the
proposed structure of the algorithm, with line numbers refering to the specific lines enumerated in
Algorithm (1):

2The interested reader can directly use the open-source library portage [Herring et al. 2017] based on R3D [Powell
and Abel 2015].

41

1. At each iteration, we first improve the quality of MO by moving some inner nodes (line 3), which
are nodes adjacent to cells of the same material only. In practice we use the smart Laplacian
algorithm [Freitag 1997] or the GETMe agorithm [Vartziotis and Wipper 2012] to improve the
mesh quality.

2. Global discrepancy is computed (line 4) and stored to check potential regression during the
incoming stage (lines 14 to 17). A regression occurs when the discrepancy does not decrease
during two successive iterations.

3. We evaluate the expected target volume for each cell cOi ∈ MO individually (lines 5 to 7). This
process requires to compute the geometric intersection of cOi with cells of M I , and is described
in Section 3.2.1.

4. Nodes ofMO are then moved according to the algorithm 2 at page 44 described in Section 3.2.2
(line 9). If some movements induce poor mesh quality (computed at line 10), they are withdrawn
(lines 11 to 13 for the node update and line 8 for the previous node location storage).

5. Each iteration stage ends with computing the global discrepancy in order to measure potential
regression (line 14). If a regression occurs, it implies canceling the last stage (lines 15 to 17).

Let us now describe the main steps of this algorithm in the following subsections.

Algorithm 1: Global structure of the volume-preservation adaptation algorithm.

Data: M I , MO, maxIter, ε
Result: Geometrically modi�ed MO

1 iter ← 0; regression ← false;

2 while iter < maxIter & regression == false do
3 smoothInside(MO);

4 dIN ←computeDiscrepancy();

5 for cOj ∈MO do
6 TV [cOj]←computeTargetVolumes(cOj ,M

I) /* see Section 3.2.1 */;

7 end
8 prev←storeNodeLocations(MO);
9 moveNodes(MO, TV) /* see Section 3.2.2 */;

10 q← computeQuality(MO);

11 if q < ε then
12 updateSomeNodes(MO,q,prev);
13 end
14 regression← (computeDiscrepancy()> dIN);
15 if regression == true then
16 updateAllNodes(MO,prev);
17 end
18 iter ← iter + 1;

19 end

3.2.1 Target volume of output cells

For a cell cIj ∈ M I , the discrepancy dj indicates how well materials are preserved inside of cIj . For a
specific material m, the discrepancy dj,m indicates how accurately m is preserved locally to cIj . It is
this second quantity that we use for computing target volumes of the cells of the output mesh MO.
Let cOi ∈ MO

|m, as cOi is a pure cell, it contains a single material. Let m be this material, the target

42

volume of cOi is defined as:

TV (cOi) = V (cOi) −
∑
cIj∈MI

dj,m
V (cOi ∩ cIj)
V (MO

|m ∩ c
I
j)

(3.2.1)

= V (cOi) −
∑

cIj∈{cI∈MI | cI∩cOi 6=∅}

dj,m
V (cOi ∩ cIj)∑

cOk ∈{cO∈M
O
|m | cO∩c

I
j 6=∅}

V (cOk ∩ cIj)
(3.2.2)

where {cI ∈M I | cI ∩ cOi 6= ∅} are the cells of M I that intersect cOi and {cO ∈MO
|m | c

O ∩ cIj 6= ∅} are
the cells of MO

|m that intersect cIj . Figure 3.4 gives an illustration of Equation (3.2.1) where we look
at the output cell cOi , which intersects two input cells cI1 and cI2. For each of those cells, we compute
a volume contribution, which is one term of the sum in the right term in Equation (3.2.1). Let us
consider cell cI1 for instance. Discrepancy d1,m indicates the quantity of material m that is under (i.e.
d1,m < 0) or over (i.e. d1,m > 0) represented in cI1. For example, let us consider the first case when
d1,m < 0. It indicates that we do not have enough material m in cI1. Consequently we must inflate the
cells of MO that contain the material m and that intersect cI1. These are the cells cOi , cOp and cOq in our
example. The inflate weight given to each cell cOi , cOp and cOq by cIj is proportional to their geometric
intersection with cI1. For instance, for cOi , it is equal to

V (cOi ∩ cI1)

V (cOi ∩ cI1) + V (cOp ∩ cI1) + V (cOq ∩ cI1)
.

The same computation is also done for the input cell cI2. Finally, let us note that as the discrepancy
is negative when we do not have enough material in an input cell, the right term of Equation (3.2.1),
equal to TV (cOi), is greater than V (cOi).

Figure 3.4: Illustration of the di�erent geometric quantities used to compute the target volume of the cell cOi .

3.2.2 Interface node movements

Recalling that our aim is to retrieve as accurately as possible the volume of input materials, we try
and move nodes located along material interfaces.

3.2.2.1 Overview of the algorithm to move interface nodes

Considering the output mesh MO, where each cell is pure, the only degrees of freedom we have are
the location of the nodes that are on the interface between distinct materials. Let n be such a node
(see Figure 3.5). It is surrounded by four pure cells, denoted {cO1 , . . . , cO4 }, which are all assigned to a
specific material and have a target volume computed during the previous stage of the algorithm. The
procedure used to move nodes is described in Algorithm 2 and depicted on Figure 3.5. It consists in
three main stages:

1. First, we compute an ideal deformation factor for every cell cO having at least one face lying
on an interface between distinct materials (lines 1 to 9). Let {f1, . . . , fk} be those faces, the

43

deformation consists in defining one translation vector for each face fi, with 1 ≤ i ≤ k, which is
their normals multiplied by the deformation factor.

2. By construction, each interface face f receives two translation vectors v1 and v2 computed in
step 1, one per adjacent cells3 (except when the void material is not explicitly meshed in MO,
in that case there is only one vector). We assign the average translation vector tf = v1+v2

2 to f
(lines 10 to 13).

3. Finally, each node n that belongs to the interface between distinct materials is moved according
to the translation vectors previously assigned to adjacent interface faces (lines 14 to 21). Let
{f1, . . . , fk} be those faces, then n is translated along κ(tf1+tf2+. . .+tfk)/k. The κ dampening
term is progressively increased to 1 until the maximum number of iterationsmaxIter is reached.
Nodes constrained to the domain boundary, usually the bounding box when M I is a grid and
the void material is explicitly meshed, are then projected back onto this boundary.

Figure 3.5: Illustration of the node movement procedure. Let n be an interface node and cO1 , c
O
2 , c

O
3 and cO4 its adjacent

cells. Ideal shape is computed for each cell cO1 , c
O
2 , c

O
3 and cO4 by moving interface nodes. We then de�ne one translation

vector for each interface face, which is averaged at interface nodes to �nally move the nodes of the interface all together.

Algorithm 2: Interface node movement

Data: MO, TV : M3 → IR
Result: v : M0 → IR3

1 t_map ← ∅ /*here map has the C++ STL container capabilities */;

2 for cO ∈MO do
3 VcO ← TV [cO];
4 {f1, . . . , fl} ← getMaterialInterfaceFaces(cO);
5 {tf1 , . . . , tfl} ← computeIdealShape(cO, VcO , {f1, . . . , fl});
6 for f ∈ {f1, . . . , fl} do
7 t_map[f].add(tf);
8 end
9 end
10 f_map ← ∅;
11 for e ∈ t_map do
12 f_map[e.first] = (e.second[0] + e.second[1])/2;
13 end
14 for n ∈MO do
15 {f1, . . . , fl} ← getMaterialInterfaceFaces(n);
16 n_map ← ∅;
17 for f ∈ {f1, . . . , fl} do
18 n_map.add(f_map(f));
19 end
20 v[n] ← computeAverageVector(n_map[n]);

21 end

3Which belongs to distinct materials by de�nition.

44

3.2.2.2 Ideal deformation of a single cell

We drive the computation of the ideal shape of a cell cO along its interface faces. It consists in
moving its interface nodes only using each face’s contribution to preserve their normals. To illustrate
the proposed approach, let us consider the 2D example of Figure 3.6 where we list the five topological
configurations we can encounter for a quad cell.

(a) (b) (c) (d) (e)

Figure 3.6: The �ve possible con�gurations to reshape a 2D cell to �t a speci�ed target volume; the remaining other
con�gurations can be obtained by rotation or symmetry of the node numbering in the 2D cell. Interface faces and free
nodes are both colored in red. In (a), only one face is on the interface leading to only two free nodes that can move
along the face normal. In (b) and (c), two faces are on the interface but in di�erent topological con�gurations. In (d)
and (e), respectively three and four faces are on the interface.

Those five configurations are the following ones:

1. In the first case (see Fig. 3.6.a), only one face is on an interface. As a consequence, only the
two red nodes can be moved and they are constrained to move along the face normal (shown
in black).

2. In the second case (see Fig. 3.6.b), two faces sharing a node are on an interface. The end
nodes can move along their adjacent face normal, while the common node has to move along
the sum of the faces’ normals.

3. The three last configurations are built in the same way (see Fig. 3.6.c, 3.6.d and 3.6.e): a node
adjacent to one interface face moves along this face normal, while a node adjacent to two
interface faces moves along the sum of their normal vectors.

Let us note that the configuration with only one node to move on an interface cannot occur due to the
pillowing process applied during the primal contouring procedure.

In practice, we compute the ideal deformation of a cell cO with the following process. First we
start by identifying the free nodes {n1, . . . , nl} of cO and computing their respective direction vectors
{u1, . . . ,ul} as in Figure 3.6. A deformation factor for the cell is then computed by deforming cO along
the u vectors towards a target volume TV (cO) using a bisection method. In case this computation
fails, a default factor of 3

√
TV (cO) − 3

√
V (cO) that tries to give a rough estimate of the distance the

nodes have to move for V (cO) to equal TV (cO), is chosen4.

Although the previous discussion illustrates the node movement procedure in 2D, the 3D exten-
sion is straightforward.

3.3 Volume preservation: some results

In this section we demonstrate and analyze the results of the proposed method applied to several
cases that have been initially meshed using the Sculpt algorithm. Our method, given in Algorithm 1,
uses several parameters, which are a maximum number of iterations maxIter and a quality thresh-
old ε. We fix the value of maxIter to 30 in the presented results while the ε value depends on the
cases. Indeed, since the MO meshes have different initial minimum scaled Jacobian values, the ε
value will be specific to each of them. For the test cases illustrated in Table 3.2 we used ε = 0.2,
and for those in Table 3.3 we used ε = 3

4scaledjacobianinit that will allow for a controlled decrease in
mesh quality by a quarter of its initial value. In all cases, the κ term, as introduced in Section 3.2.2,

4It would be the di�erence in edge length if cO and deformed cO were both cubes.

45

is equal to 0.1 + 0.9 iter
maxIter .

We first demonstrate the procedure using a simple CAD-based model that consists of the brick
and cylinder configuration shown in Figure 3.7.a. Even if this model is not representative of our
intercode issue, it will help us to show the mesh orientation sensitivity in Section 3.3.1. After that, we
list a set of models we used for evaluating our algorthim and we analyse the obtained results for all
of them.

3.3.1 Mesh orientation sensitivity

Figure 3.7.a shows a simple CAD-based model that consists of a brick and cylinder. Its correspond-
ing Sculpt output MO

init is shown in Figure 3.7.b, while Figures 3.8.a and b show the value of the
discrepancy ratio per cell of M I respectively before and after applying our algorithm. We can see
that in both the input and output the worst cells are located near the sharp geometric features and
that our method improved on that criteria. We note that the discrepancy decreases after applying our
method and is consistent with Figure 3.9.a that shows the evolution in the distribution of the discrep-
ancy ratio across the cells. The same is true for the computed target volume adjustment (defined as
TV (cO) − V (cO)) of the cells of MO (see Fig. 3.8.c and d). Our measures confirm the visual obser-
vations from comparing Figures 3.8.a and b with Figure 3.8.a where we can see that the discrepancy
is largest around the geometric sharp features, namely the curves and corners of the box and the
curves of the cylinder, both in our input and outputMO mesh. It is particularly true along the top curve
in (d) where the MO mesh seems jagged. If we can observe that our solution improves the overall
discrepancy, most notably around sharp features, it can also degrade mesh quality, because we are
moving the cells at the interfaces, which usually are the cells that have the lowest quality in overlay
grid methods. The user should chose a threshold depending on the requirements of the numerical
simulation that will be run using this mesh.

(a) (b) (c) (d)

Figure 3.7: Brick cylinder example. (a) CAD model with two materials. (b) Sculpt output used as our MO
init mesh

(MO
final can be seen in Figure 3.8.d). (c) 2D representation of CAD model with 0 rotation angle and (d) 10 degree

rotation angle with respect to the overlay Cartesian grid.

Overlay grid procedures can be particularly sensitive to the orientation of the overlay Cartesian
grid with respect to the reference geometry. In this example, we examine so the effect of the overlay
grid orientation on the results of the volume preservation procedure. The following cases use the
simple brick-cylinder configuration of the previous example while applying incremental rotations of 10
degrees to the geometry with respect to the initial overlay Cartesian grid. Tables 3.1 and 3.2 illustrate
results from varying orientations from 0 to 90 degrees. We observe that our method consistently
improves MO, and note that although discrepancy improvements vary, they are indeed improved in
all cases (see Fig. 3.9 and 3.10). In particular, the proposed method decreases the total discrepancy
as well as the maximum discrepancy ratio per cell (see columns 6, 7 and 8 in Table 3.2).

46

(a) (b) (c) (d)

Figure 3.8: Results for the brick-cylinder case. (a and b) initial and �nal discrepancy (cells cI ∈ MI that have
d(cI)

V (cI)
< 0.05 are not represented) represented with the same color scale; (c and d) initial and �nal absolute value of the

target volume adjustment

(a) (b)

Figure 3.9: Cell discrepancy ratio distribution in the initial and �nal MO mesh (cells cI ∈MI that have d(cI)

V (cI)
< 0.05

are not represented). Lower and narrower is better. (a) for the brick-cylinder with rotation angle 0, it con�rms the
di�erence seen between Figures 3.8.a and b. (b) same for the rotation angle 10 example.

(a) (b)

Figure 3.10: (a) Discrepancy evolution for the brick-cylinder cases compared with iteration. Note that a step in the
graph is indicative that node positions did not move due to elements reaching a minimum ε quality threshold. (b) Same

data but with the ratio
dfinal

dinit
.

47

Table 3.1: Volume survey for the brick cylinder cases (the void material is excluded). We are interested here in
evaluating the di�erence in material volume globally, as de�ned in Eq. 3.1.1, page 40. While volumes of the materials
were already well preserved in the initial mesh our method still improves upon that.

angle (degrees) ∆Vinit(brick)
V I(brick)

∆Vfinal(brick)

V I(brick)
∆Vinit(cyl)
V I(cyl)

∆Vfinal(cyl)

V I(cyl)
∆Vinit

V I
tot

∆Vfinal

V I
tot

0 8.79e-03 1.78e-05 -6.31e-03 -9.54e-06 8.25e-03 1.60e-05

10 2.26e-03 -1.39e-04 -2.07e-03 -5.27e-04 2.22e-03 2.24e-04

20 9.54e-04 -3.67e-04 -4.10e-04 -2.13e-04 8.34e-04 3.33e-04

30 7.99e-04 -5.49e-04 -9.21e-04 -6.77e-05 8.26e-04 4.43e-04

40 9.71e-04 -3.28e-04 -9.94e-04 3.81e-05 9.76e-04 2.65e-04

50 1.02e-03 -4.80e-04 -7.02e-04 9.02e-05 9.47e-04 3.94e-04

60 7.63e-04 -1.59e-04 -9.14e-04 -3.82e-05 7.96e-04 1.32e-04

70 9.62e-04 -2.39e-04 -1.61e-05 -1.97e-04 7.54e-04 2.30e-04

80 2.26e-03 -1.55e-06 -2.08e-03 -4.79e-04 2.22e-03 1.06e-04

90 -1.32e-03 -1.51e-04 4.19e-03 3.27e-04 1.95e-03 1.89e-04

Table 3.2: Discrepancy results for the brick cylinder cases. On the �rst row is indicated the columns' index. Columns
2 and 3 show the discrepancy as de�ned in Eq. 3.1.4. Columns 4 and 5 show the ratio of this discrepancy over the total
volume of the materials; it expresses how "far� the MO mesh is from the volume fractions carried by MI . Column 6 is
the ratio between the �nal and the initial total discrepancy where it is shown that our method has divided the initial
discrepancy by a factor 4 to 10 depending on the case. Between columns 7 and 8 can be seen the improvement of the
maximum discrepancy ratio per cell (the theoretical bound of those values is 2, as seen in Eq. 3.1.5). In columns 9 and
10 are the minimum scaled jacobian before and after applying our procedure.

1 2 3 4 5 6 7 8 9 10

angle dinit dfinal
dinit
Vtot

dfinal
Vtot

dfinal
dinit

max
c∈MI

(
dinit(c)

V (c)
) max

c∈MI
(
dfinal(c)

V (c)
) scaledJinit scaledJfinal

0 51.6792 5.36181 4.03e-02 4.18e-03 1.04e-01 4.03e-01 1.28e-01 0.39 0.40

10 44.2667 6.76245 3.45e-02 5.28e-03 1.53e-01 5.66e-01 3.97e-01 0.26 0.20

20 40.6279 6.07868 3.17e-02 4.74e-03 1.50e-01 5.68e-01 3.42e-01 0.33 0.20

30 40.0265 9.62336 3.12e-02 7.51e-03 2.40e-01 5.02e-01 3.90e-01 0.31 0.20

40 42.72 11.0175 3.33e-02 8.60e-03 2.58e-01 5.42e-01 5.37e-01 0.26 0.20

50 42.7854 9.51502 3.34e-02 7.43e-03 2.22e-01 5.42e-01 4.79e-01 0.28 0.20

60 39.7635 6.09284 3.10e-02 4.75e-03 1.53e-01 5.02e-01 3.81e-01 0.31 0.20

70 40.7345 6.10349 3.18e-02 4.76e-03 1.50e-01 5.68e-01 2.08e-01 0.28 0.20

80 44.256 6.20802 3.45e-02 4.84e-03 1.40e-01 5.66e-01 3.89e-01 0.26 0.20

90 50.5343 7.44741 3.94e-02 5.81e-03 1.47e-01 4.08e-01 2.38e-01 0.28 0.20

3.3.2 Our set of validation examples

For additional validation of the proposed method, we applied our approach on multiple types of input
data given to Sculpt. We give in Table 3.3 the results from several examples based on different types
of inputs, with timings for some of those in Table 3.4. Similar to the brick-cylinder case we note that
discrepancies are reduced in all of the cases. We give more details about all those examples in the
next paragraphs.

Simple CAD test cases

Anderson et al. [Anderson et al. 2010] 3D examples include two test CAD models depicted in Fig-
ure 3.11; a box with corner coordinates (0.2, 0.2, 0.2) to (0.6, 0.6, 0.6) intersected by a sphere of center
(0.6, 0.6, 0.6) and radius 0.2, with the space surrounding the two volumes being a third “void” mate-
rial, and another consisting of five concentric spheres of radii 1

13 , 2.25
13 , 3.5

13 , 4.75
13 and 6

13 centered on
(0.5, 0.5, 0.5). Our method was successfully applied on both cases and in the box-sphere example in
particular we can see in Figure 3.11.d when compared to Figure 10 in [Anderson et al. 2010] that our
resulting mesh appears sharper, less “bloated” around the box’s sharp curves and corners.

48

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11: Simple example CAD test cases, top is the box-sphere, bottom is the �ve concentric spheres. (a) and (e)
CAD models ; (b) and (f) Sculpt output MO initial meshes; (c) and (g) MO initial meshes with the absolute value of
the target volume adjustment represented ; (d) and (h) the MO �nal meshes after applying our method using the same
color scaling as in (c) and (g) respectively.

Smooth models

The asteroid and lumbar models seen in Figure 3.12.a and b are both single volume cases that were
given as STL files to Sculpt; they contain no sharp feature.

Microstructure models

The microstructure and the two_phase cases are shown in Figure 3.12.c and d. In the case of
two_phase there are no mixed cells, making the M I effectively a pure hexahedral mesh with perfect
volume preservation. The objective behind running the Sculpt framework in this case is to smooth
out the stair-like shape of the interfaces between materials.

CAD models single volume

The examples shown on Figure 3.13 are all comprised of a complex single volume which contains
sharp curves and corners. They are representative of real manufactured pieces of equipment.

CAD models assemblies

The CAD assembly examples shown in Figure 3.14 are multi-volume models, which are typically
formed by combining single volume CAD pieces such as those seen in Figure 3.13.

3.3.2.1 Simulation code output

These examples illustrate the usage of our method when applied in an intercode situation, where
the output of a first code (an hexahedral mesh carrying materials volume fraction data) is used as
the input of a second one (a full-hexahedral mesh with pure cells only). The first example shown in
Figures 3.15 and 3.16 is commonly called the "triple point problem” and frequently appears as a test
case in computational fluid dynamics; it shows the evolution of three fluids of different densities in a
boxed domain.

The second example seen in Figure 3.17 is a domain where there are also three fluids of varying
densities, this time laid in layers and stirred by two rotating blades.

49

(a) asteroid (b) lumbar

(c) microstructure (d) two_phase

Figure 3.12: Several input data. (a) and (b) are smooth models given as STL �les inputs ; (c) and (d) are microstructure
cases given as volume fractions carried by the grid.

(a) anc101 (b) bearing (c) bevel

(d) bracket (e) piston (f) pump

Figure 3.13: Several single volume complex CAD models. Except for bracket, they all contain numerous sharp features.

50

(a) v2_tweaked (b) assembly_1 (c) assembly_2 (d) lagerbock

Figure 3.14: Several multiple volumes CAD models.

(a) t = 0sec (b) t = 1sec (c) t = 2sec

Figure 3.15: The initial MO mesh displayed without the edges at di�erent time steps (t = 0, 1 and 2 seconds respec-
tively) for the triple point problem. (a) shows the initial setup with the three �uids, (b and c) the formation of the
vortex.

(a) (b) (c)

(d) (e) (f)

Figure 3.16: Close-up of the vortex in the triple point problem. (a) the output of Sculpt at t = 1sec, the MO initial
mesh ; (b) the discrepancy before applying our method ; (c) the discrepancy after, using the same color scale; (d, e and
f) are the same at t = 2sec.

51

(a) (b)

(c) (d)

(e) (f)

Figure 3.17: The doublebar simulation, at t = 0sec on the left and t = 0.5sec on the right. (a) and (b) the initial MO

mesh ; (c) and (d) the discrepancy on the cells of MI before applying our method ; (e) and (f) the discrepancy after,
using the same color scale.

52

The automatic nature of Sculpt and our volume preservation improvement method makes it pos-
sible to obtain pure hexahedral meshes at different time steps without user interaction, and in this
intercode situation to execute the second code on different inputs more easily.

3.3.3 Results analysis

We note several observations from the preceding results. We focus on four specific features that
required additional effort to apply or interpret the volume preservation procedures, namely: reloading
node positions, fuzzy volume fractions and cell contribution error. The last one, the invalid mesh
issue, led us to consider implementing our own pipeline in Chapter 5.

3.3.3.1 Reloading node position.

An initial implementation of our procedure reloaded nodal locations for all the nodes when minimum
mesh quality fell below a threshold ε scaled Jacobian. This implementation proved problematic,
particularly in cases such as illustrated in Figure 3.18.d, where relocating nodes towards an improved
discrepancy would result in a few badly shaped elements. When this occurred, the procedure would
reload the previous positions of all nodes of the mesh, negating the improvements where mesh quality
remained above ε just to accommodate those few elements.

This proved to be a limiting factor of our method. As a consequence, we chose to identify such
nodes and avoid moving them (see Algorithm (1) lines 11 to 13). This limits the amount of discrepancy
improvement at these nodes in favor of preserving a minimum cell quality ε.

(a) (b)

(c) (d)

Figure 3.18: The anc101 example. (a) CAD model ; (b) MI mesh, which is actually an adapted grid in this case ;
(c) �nal MO mesh ; (d) the two selected elements corner nodes should be moved outward in order to better follow the
cylindric hole, but cannot be else the elements become non-convex.

3.3.3.2 Fuzzy volume fractions.

In some cases, input volume fractions will not necessarily denote a sharp interface. Depending on the
technology used while acquiring the data or the way the volume fractions are procedurally generated,
the transition region between two materials may spread across several cells such as that illustrated
in Figure 3.19.b. We observe this phenomenon in the microstructure test case illustrated in Figure
3.19.a. While the proposed method can still decrease the discrepancy it is more difficult to interpret
the results since it will stay high whatever the changes brought to MO. (see results for microstructure

53

in Table 3.3) We note that this large transition between materials make for many additional non-zero
discrepancy cells reducing the reported effectiveness of the procedure (see Fig. 3.19.c).

(a) (b) (c)

Figure 3.19: The microstructure example. (a) MO mesh ; (b) close-up of the volume fraction of one material. The
cells represented are those with a volume fraction ranging from 0.1 to 0.9. In this case we observe that the transition

is more than 4 cells wide (c) the discrepancy (cells cI ∈ MI that have d(cI)

V (cI)
< 0.05 are not represented), which is not

limited to a width of one or two cells intersecting the interfaces between material, but spreads farther. The cells that
actually intersect the interfaces between materials can in fact have a lower discrepancy than their neighbors.

3.3.3.3 Cell contribution error.

We have observed that a cell of M I , despite having a fraction of its volume composed of material m
may have no part in moving the nodes of MO at the interface of material m. Let cIi be a cell of M I

and m be a material where fi,m 6= 0 and cIi ∩M0
|m = ∅, in this case cIi has no contribution to the target

volume of any cell of MO
|m according to Eq. 3.2.1. It is especially visible in the two-phase case : in

Table 3.3 the maximum discrepancy ratio per cell max
cI∈MI

(d(cI)
V (cI)

) is equal to the theoretical maximum of

2 (see Eq. 3.1.5) because some small areas of one material do not appear in MO.

3.3.3.4 Invalid mesh.

The discrepancy measurement and improvement rely on being able to compute the intersection vol-
umes between cells, which implies having no inverted cells in MO to begin with. While Sculpt per-
forms well on a wide range of cases it offers no guarantee of providing such a mesh. In particular we
were met with difficulties in obtaining a valid mesh in cases issued from hydrodynamics simulations
(see Table 3.5); this issue is addressed in Chapter 5.

Chapter digest – In the course of this chapter we defined a discrepancy criterion that
we used to measure the proximity of the output of Sculpt to its input; we then designed a
discrepancy-driven algorithm that we applied to a wide range of examples, from different
types of inputs, where we demonstrated its effectiveness in reducing this discrepancy by
usually a factor of 10. We also included an orientation sensitivity study, as the orientation
of the data compared to the axis can greatly impact the results of overlay-grid methods.

54

Table 3.3: Discrepancy results for several other examples. It is read the same way as Table 3.2.
1

2
3

4
5

6
7

8
9

1
0

ca
se

n
a
m
e

d
in
it

d
f
in
a
l

d
in

it
V
to

t

d
f
in

a
l

V
to

t

d
f
in

a
l

d
in

it
m

ax
c∈
M

I
(d

in
it

(c
)

V
(c

)
)

m
ax

c∈
M

I
(d

f
in

a
l(
c)

V
(c

)
)

sc
a
le
d
J
in
it

sc
a
le
d
J
f
in
a
l

S
im

p
le
te
st

ca
se
s

b
ox
sp
h
er
e

0
.0
0
3
0
8
5
7

0
.0
0
0
4
2
4
2

3
.3
2
e-
0
2

4
.5
7
e-
0
3

1
.3
7
e-
0
1

3
.7
0
e-
0
1

7
.0
9
e-
0
2

0
.2
7

0
.3
4

co
n
ce
n
tr
ic

0
.0
0
4
7
4
9
9

0
.0
0
2
0
7
0
2

1
.1
6
e-
0
2

5
.0
6
e-
0
3

4
.3
6
e-
0
1

1
.3
2
e-
0
1

1
.2
4
e-
0
1

0
.2
2

0
.4
1

S
m
o
o
th

m
o
d
el
s

a
st
er
o
id

1
2
.9
1
4

1
.8
7
4
7
1

5
.1
6
e-
0
3

7
.4
8
e-
0
4

1
.4
5
e-
0
1

6
.2
5
e-
0
2

9
.8
0
e-
0
2

0
.2
3

0
.1
7

lu
m
b
a
r

0
.4
8
0
7
7
3

0
.0
5
7
3
4
2

8
.1
8
e-
0
3

9
.7
6
e-
0
4

1
.1
9
e-
0
1

4
.3
6
e-
0
2

2
.0
9
e-
0
2

0
.2
0

0
.1
5

M
ic
ro
st
ru
ct
u
re
s

m
ic
ro
st
ru
ct
u
re

1
4
2
6
9
3

1
3
7
8
0
4

1
.6
1
e-
0
1

1
.5
6
e-
0
1

9
.6
6
e-
0
1

1
.4
4
e+

0
0

1
.4
0
e+

0
0

0
.1
1

0
.0
8

tw
o
-p
h
a
se

9
4
7
4
6
1
0
0

5
5
9
1
9
3
0
0

9
.4
7
e-
0
2

5
.5
9
e-
0
2

5
.9
0
e-
0
1

2
.0
0

2
.0
0

0
.1
9

0
.1
4

C
A
D
si
n
g
le
v
o
l

a
n
c1
0
1

8
8
9
7
5
.4

7
1
6
4
.9
6

1
.0
8
e-
0
2

8
.7
3
e-
0
4

8
.0
5
e-
0
2

5
.8
8
e-
0
1

4
.5
2
e-
0
1

0
.2
0

0
.1
5

b
ea
ri
n
g

3
0
7
9
.0
8

4
0
7
.6
4
1

1
.3
7
e-
0
2

1
.8
2
e-
0
3

1
.3
2
e-
0
1

6
.5
8
e-
0
1

5
.6
1
e-
0
1

0
.1
8

0
.1
4

b
ev
el

5
6
4
4
.8
7

7
4
0
.9
4
3

2
.2
1
e-
0
2

2
.9
0
e-
0
3

1
.3
1
e-
0
1

6
.2
2
e-
0
1

4
.8
2
e-
0
1

0
.2
3

0
.1
8

b
ra
ck
et

3
.5
1
1
1

0
.2
6
1
7
5
6

1
.6
3
e-
0
2

1
.2
1
e-
0
3

7
.4
6
e-
0
2

1
.3
1
e+

0
0

3
.3
6
e-
0
1

0
.2
5

0
.1
9

p
is
to
n

1
1
4
.1
2
8

8
.3
5
0
9
5

4
.3
2
e-
0
2

3
.1
6
e-
0
3

7
.3
2
e-
0
2

8
.1
9
e-
0
1

6
.6
0
e-
0
1

0
.2
1

0
.1
5

p
u
m
p

5
3
1
9
0
.9

6
0
1
5
.4
5

2
.3
4
e-
0
2

2
.6
5
e-
0
3

1
.1
3
e-
0
1

7
.9
7
e-
0
1

5
.6
7
e-
0
1

0
.1
7

0
.1
3

C
A
D
a
ss
em

b
li
es

v
2
_
tw
ea
k
ed

2
1
2
7
5
9

1
4
6
2
2
.9

2
.7
2
e-
0
2

1
.8
7
e-
0
3

6
.8
7
e-
0
2

1
.2
3
e-
0
1

5
.7
5
e-
0
2

0
.1
4

0
.1
1

a
ss
em

b
ly
1

2
6
7
4
.0
3

1
7
2
5
.0
6

1
.1
6
e-
0
1

7
.4
7
e-
0
2

6
.4
5
e-
0
1

9
.2
2
e-
0
1

9
.2
2
e-
0
1

0
.0
6

0
.0
4

a
ss
em

b
ly
2

3
9
7
0
.1
9

1
0
6
1
.2
7

1
.3
4
e-
0
1

3
.5
8
e-
0
2

2
.6
7
e-
0
1

7
.5
7
e-
0
1

7
.5
7
e-
0
1

0
.1
1

0
.0
8

la
g
er
b
o
ck

0
.1
3
1
7
2
2

0
.0
1
3
8
6
2
8

1
.9
4
e-
0
2

2
.0
5
e-
0
3

1
.0
5
e-
0
1

7
.4
8
e-
0
1

5
.1
4
e-
0
1

0
.2
1

0
.1
5

S
im
u
la
ti
o
n
co
d
e

tr
ip
le
p
o
in
t_

1
se
c

5
8
3
.9
8
3

2
4
8
.5
9
4

2
.5
3
e-
0
3

1
.0
8
e-
0
3

4
.2
6
e-
0
1

2
.0
0
e+

0
0

2
.0
0
e+

0
0

0
.2
7

0
.2
1

tr
ip
le
p
o
in
t_

2
se
c

1
2
0
4
.8
6

5
1
3
.3
8

5
.2
3
e-
0
3

2
.2
3
e-
0
3

4
.2
6
e-
0
1

2
.0
0
e+

0
0

1
.8
2
e+

0
0

0
.1
7

0
.1
3

d
o
u
b
le
b
a
r_

0
se
c

3
8
6
.8
3
4

1
8
8
.5
2
1

6
.2
6
e-
0
3

3
.0
5
e-
0
3

4
.8
7
e-
0
1

2
.0
0
e+

0
0

2
.0
0
e+

0
0

0
.2
8

0
.2
2

d
o
u
b
le
b
a
r_

0
.5
se
c

8
5
2
.6
8
7

3
5
1
.9
2
4

1
.3
8
e-
0
2

5
.6
9
e-
0
3

4
.1
3
e-
0
1

2
.0
0
e+

0
0

2
.0
0
e+

0
0

0
.2
1

0
.1
6

55

Table 3.4: Mesh size and execution time for several of the examples.

case name number of cells execution time (s)

microstructure 1277808 19484

two-phase 1392928 32372

anc101 383704 13640

v2_tweaked 503566 11596

assembly1 56848 870

assembly2 78690 749

triplepoint_1sec 238518 5450

triplepoint_2sec 240570 5593

doublebar_0sec 71124 2230

doublebar_0.5sec 75216 2267

Table 3.5: Discrepancy comparison with Sculpt and Sculpt + our add-on. Fail indicates that we were unable to
proceed due to the presence of inverted elements. We obtained our input mesh using Sculpt in Cubit v15.4b with the
defeaturing [Owen, Brown, et al. 2017] option activated. We do not claim to be exhaustive in testing Sculpt, which has
many options to drive the mesh generation.

case name grid resolution Sculpt Sculpt+ add-on

triplepoint 1s 420x180x3 583.983 248.594

triplepoint 2s 420x180x3 1204.86 513.38

doublebar 0.5s 200x100x3 852.687 351.924

doublebar 1.0s 200x100x3 fail fail

56

Chapter 4

Geometrical model and voxelated

interface reconstruction

In the previous section we defined a discrepancy criterion and used it to drive a method that modifies
the mesh by moving its nodes to better match our input volume fractions. While we have shown
that it is effective, including in improving the capture of sharp geometric details when available, it
still remains a roundabout way of dealing with the fact that we do not have an explicit geometrical
model. In this chapter, we present several methods that aim to produce such a model. As shown
on Figure 4.1, a model will be created at the beginning of the ELG pipeline in order to provide a
reference geometry to the next stages of the pipeline.

Figure 4.1: The geometrical model is built as the beginning of the ELG pipeline in order to provide a reference to the
next stages of the pipeline.

57

4.1 Discrete interface reconstruction

Up to now we have been using a technique similar to the one in [Owen, M. L. Staten, and Sorensen
2012]) for computing a new position for the interface nodes (the nodes adjacent to cells assigned to
different materials). This section focuses on building interfaces between materials that could help in
the computation of this prospective new position. Extracting such interfaces will also bring the added
benefit of producing a geometrical model.

Material interface extraction raises two main issues in our context: the desired interfaces should
be smooth, typically when the goal is to visualize them or to use them to generate a mesh, but at
the same time they should also fit the input data as best as possible, namely the volume fractions;
those two objectives can conflict with one another. To address these issues we consider that several
methods, coming from different fields, are relevant:

• ALE-simulation interface reconstruction.
A domain where material interface reconstruction is extensively studied and applied is Arbitrary
Lagrangian-Eulerian (ALE) CFD simulations. While those reconstructed interfaces have a built-
in volume fractions preservation, they are not smooth, as they are discontinuous across cells
as illustrated in Figure 1.7, page 12, taken from [Kucharik et al. 2010]. Most of these methods
also have the additional drawback of being material order-dependent;

• Original strategy
The position computed for the interface nodes in Sculpt [Owen, M. L. Staten, and Sorensen
2012], and that we reproduce in our original implementation, depends on the volume fractions
(and their gradient) and the material assignment. It gives us new positions for the nodes and a
geometrical model can be extracted that we have shown in Chapter 3 originally fits quite well
the input, but we have also shown that it can still be improved. It also does not capture at all
the materials that have no majority volume fractions in any of the mesh cells;

• Voxel decomposition
These methods decompose the mixed cells into sub-elements – typically an hexahedron will
be refined into a grid of voxels – on which a partitioning strategy is applied with respect to
the volume fractions inside each cell. The interfaces at the sub-elements level are aliased, and
since these methods originated from visualization purposes the interfaces are usually simplified
into smooth triangular surfaces.

Considering that the original strategy – that we have extensively evaluated – can become limited in
some cases, typically when the size of the material details is smaller than the mesh cells size, we will
further study voxel-based methods in this section. We can note that as we handle both 2D and 3D
cases in structured and unstructured cases, throughout this document we will use the term "voxel" as
a misnomer in place of pixel (in 2D), sub-cell or sub-element.

4.1.1 How to partition voxels, an overview

The discrete voxel-based interface reconstruction techniques stems from the need to visualize the
location of materials in the case where some of the cells are mixed and where the number of materials
is greater than two. In the case where the number of materials equals two, classic iso-contouring
methods provide a "clean" solution but with more materials small gaps or artifacts can appear that
are non-desirable. In [Hege et al. 1997], the authors introduced the decomposition of mixed cells into
subcells (or voxels) which are in turn assigned to the materials present in the mixed cells they were
spawned from; the work in [Anderson et al. 2008; Anderson et al. 2010] extends it to cases with more
than three materials per cell.

The voxel-assignment problem can be simply stated as :

“Considering a coarse mixed cell cc containing materials m ∈ M, with volume
fractions denoted fcc,m such that

∑
m∈M

fcc,m = 1, and cc discretized as a set Vcc

of nbsub voxels, assign one single material m to each voxel of Vcc while ensuring
material volume preservation”.

58

Figure 4.2: Example of the voxel-assignment problem and some unexpected valid results.

Figure 4.2 illustrates such a situation where in (a), a coarse mixed cell, made of 50% of material A,
35% of material B and 15% of material C, is split into 100 voxels. Results given in (b), (c) and (d) are
valid solutions for the voxel-assigment problem, as they all respect the volume fractions, but they are
wildly different from one another; it probably means that our problem could receive some additional
description in order to be appropriately formalized. The voxel-assignment should aim towards several
objectives:

• First, in order to enforce the volume preservation of each material, we need to favor solutions
having a low discrepancy (see in previous chapter Definition 5 at page 41), defined as the sum
over each coarse cell cc of the absolute difference between the volume of each material present
in cc (for material m it is fcc,mV (cc)) and the sum of the volumes of the voxels of cc assigned to
m. It expresses whether the voxels material assignment fits the volume fractions;

• Secondly, as is usual in partitioning algorithms, we want to favor connected components for
each material. It translates into minimizing the edgecut function, defined as the sum of the
number of pairs of adjacent voxels assigned to different materials;

• Thirdly, surrounding pure cells of cc provides the initialization to our problem. If a mixed cell is
bounded by pure cells, then we extend the “voxelization” process to the neighborhood of cc, i.e
all the mixed cells and their adjacent pure cells are subdivided into voxels, and voxels spawned
from pure cells are already assigned to the material of their corresponding pure coarse cell,
leaving those spawned from mixed coarse cells as "free" (see figure 4.3).

In order to solve this problem, we compare the four following methods:

• A mixed-integer linear programming definition, that gives us an optimal solution to the problem.
We introduce such a definition to get a formal description of the problem and also reference
results on simple toy examples. But it is too expensive in terms of computation time to be used
in practice;

• Simulated annealing was used in [Anderson et al. 2008] and can be found implemented in
Visit [Childs et al. 2012] to solve this problem for scientific visualization purposes;

• Considering the problem as partitioning a graph, techniques like graphcut can be used;

• Finally, we propose a greedy heuristic that is designed to fit our specific requirements.

4.1.1.1 Mixed-Integer Programming Formulation

The problem of voxel-assignment can be formulated as a linear problem, which is the following one:

min
∑

v∈V,m∈M
|mav,m − 1

|N(v)|
∑

w∈N(v)

maw,m|

constrained to
mav,m ∈ {0, 1} ∀v,m∑
m∈M

mav,m = 1 ∀v∑
v∈Vcc

mav,m = nbsub ∗ fcc,m ∀m,∀cc

59

Figure 4.3: Example of two mixed cells surrounded by pure cells which voxels must be partitioned into materials (left).
Considering adjacent pure cells and the objective of getting connected areas of same material could lead to the result
shown on the right.

where V is the total set of voxels of the whole domain, mav,m = 1 if voxel v is assigned to material m
and mav,m = 0 otherwise; N(v) is the set of voxels adjacent to v. The first two constraints indicate
that every voxel has one assignment and only one. The third constraint expresses that we want
to have a discrepancy equal to zero (nbsub being the number of voxels in a coarse cell cc). The
objective function that we want to minimize reflects the aim for voxels assigned to the same material
to be clustered together, i.e. having a low edgecut.

Since our variables are integers, we in fact have a mixed-integer linear problem. This type of prob-
lem can be solved using software such as GLPK [GLPK 2019], lp_solve [Berkelaar et al. 2004],
CPLEX [CPLEX Optimizer 2020] or Gurobi [Gurobi Optimization 2020].

4.1.1.2 Simulated Annealing

This method introduced in [Anderson et al. 2008] to be used for the specific problem of voxel-
assignment, consists in randomly assigning the voxels to materials with respect to the volume frac-
tions data. Pair of voxels spawned from the same coarse cell will then swap their assignment, as
described in Algorithm 3. Since the initial assignment to the voxels fit as best as possible the volume
fractions and that only swaps are performed, the resulting voxels material assignment fits just the
same. Note that this property does not hold when the mesh is unstructured, or more precisely when
the sub-elements are not really voxels because they have different sizes (see Figure 4.6). It is also
not so simple to devise a termination criteria; in the implementation depicted in Algorithm 3 available
in Visit, this issue is bypassed in favor of a user-specified timer.

4.1.1.3 Using the Graphcut algorithm

In [Boykov, Veksler, et al. 2001; Boykov and Kolmogorov 2004; Kolmogorov and Zabin 2004] the
authors identify classes of energy functions that can be minimized using a graphcut. They formulate
a voxel-labeling problem in this form, expressed as the sum of a so-called data (D)and smooth (V)
costs where voxels are graph nodes and adjacency connections between voxels are graph edges.
We use here our notations, with lv ∈ M being the label (or material assignment) of the voxel v ∈ V;
we want to find the labeling l that minimizes:

E(l) = λ
∑
v∈V

Dv(lv) + β
∑

{v,w}∈V2

Vv,w(lv, lw)

with basically the second term being the edgecut:

Vv,w(lv, lw) =

{
0. if lv = lw

1. otherwise

60

Algorithm 3: Voxels assignment via simulated annealing (as implemented in Visit version

2.13.3, a scienti�c visualization software).

Data: volume fraction V F , voxelated sub-mesh

Result: voxels assignment

1 /* temperature stays constant but it could decrease over time */

2 T ← 0.25
3 while time ≤ allotedtime do
4 iter ← 0
5 for iter ≤ 1000 do
6 /* randomly select a mixed (coarse) cell */

7 cc ← getMixedCell()

8 /* randomly select a pair of voxels of cc assigned to di�erent materials; give up after

ten tries */

9 v0, v1 ← cc.getSwapCandidates()
10 l0 ← label(v0)
11 l1 ← label(v1)
12 /* evaluate the energy with the current labeling and the prospective one where the

labels are swapped */

13 current_energy ← energy(v0, l0) + energy(v1, l1)
14 future_energy ← energy(v0, l1) + energy(v1, l0)
15 if future_energy < current_energy then
16 swap(v0,v1,l0,l1)
17 else
18 ∆E ← |future_energy − current_energy|
19 if rand(0, 1) < e−∆E/T then
20 /* randomly swap anyway depending on the temperature */

21 swap(v0,v1,l0,l1)

22 else
23 if future_energy = current_energy and rand(0, 1) < 0.5 then
24 /* when equal randomly swap */

25 swap(v0,v1,l0,l1)

26 end
27 end
28 end
29 iter + +

30 end
31 end

61

and the cost of assigning material m to a free voxel v (with cc(v) the coarse cell that spawned v and
nearest(m) the nearest voxel issued from a pure cell assigned to m):

Dv(m) = (1.− fcc(v),m)v.distance(nearest(m)).

We should note that the first term D does not enforce matching the volume fractions. In order to
apply the graphcut, this term has to be dependent on only v; the expression that we chose tries to
emulate that property (assigning material m to v costs less the higher the volume fraction from its
coarse cell fcc(v),m is and the nearer there is a voxel spawned from a pure cell assigned to m) but we
will see in the results (Figure 4.5-c) that it is far from being effective. A second issue comes from the
energy function itself that is the sum of two terms not related to one another, and the values chosen
for (λ, β) will impact the results obtained making this method difficult to use.

4.1.2 Our method - Greedy Heuristic

We have implemented a greedy heuristic (see Algorithm 4) where at each iteration the free voxels
are assigned volume fractions that depend on the values in their respective coarse cells adjusted
to take into account the voxels that were already assigned (see the evolution at several iterations in
Figure 4.4); 3D results are shown in Figure 4.7.

Algorithm 4: Voxels assignment greedy heuristic.

Data: volume fraction V F , voxelated mesh

Result: Voxels assignment

1 threshold ← 1.
2 freeVoxels ← allVoxels

3 �xedVoxels ← ∅
4 vf ← (V F , freeVoxels)
5 for freeV oxels 6= ∅ do
6 /* get the free voxels with a vf higher than the threshold for one material */

7 �xedVoxelsToAdd ← extractVoxelsAbove(freeVoxels, threshold)

8 �x(�xedVoxelsToAdd)

9 if fixedV oxelsToAdd 6= ∅ then
10 reduce threshold
11 end
12 /* update the vf while substracting the voxels already assigned */

13 vf ← update(V F , freeVoxels)
14 for iter ≤ maxNbIter||convergence do
15 /* kind of a vf smoothing */

16 vf ← average(vf) for voxels where < threshold
17 normalize(vf)

18 end
19 end

The underlying idea of this algorithm is to assign a material to each voxel following an advancing-
front strategy. We consider a set S of connected mixed cells as a starting point (orange cells on
Figure 4.4-a). Each cell cc of S is split into voxels that we have to assign to a specific material. The
material each voxel will be assigned to depends on the volume fractions of materials that compose its
parent cell in S. For example, on Figure 4.4, volume fractions of the central cell are given; the central
cell should be filled by 40% of green and 60% of grey voxels at the end.

In order to assign a material to a voxel v, we consider the materials that are already assigned in
its vicinity (the 8 surrounding pixels in 2D when the case is structured) and we diffuse those materials
into the voxel v. Voxel v is assigned to a material m if its newly computed volume fraction is higher
than a minimum threshold. The threshold value is iteratively decreased in order to avoid blocking
situations where the algorithm is unable to assign a material to any voxel during an iteration. At
the end of each iteration, the volume fractions to reach for each material in a cell are updated (see

62

Figure 4.4-a to e). With this strategy voxels on the boundary of S tend to be assigned first and we get
the expected advancing front assignment.

4.1.3 Comparative study

The four methods were applied on several examples, including a 5x5 2D example for which results
are given in Figure 4.5. The MIP implementation is impractical, as it does not return a solution in
an acceptable time; it can return a valid (meaning that it fits the constraints) but not optimal solution,
which is the case in Figure 4.5-a. The graphcut approach tends to return straight interfaces, resulting
in a good edgecut, but as we have mentioned is quite bad when considering the discrepancy. That
leaves us with the simulated annealing, which is a little better than our greedy heuristic regarding
the edgecut in the case of a grid, but fares badly concerning the discrepancy in unstructured cases,
as shown in Figure 4.6 and 4.8. All of those methods have the same memory limitation, as the
submesh, i.e. the set of voxels, can be quite large. In practice, we will use our heuristic to build the
voxelated interfaces (see Figure 4.7 for 3D results), as it is a good compromise between structured
and unstructured cases and does not rely on tuning parameters depending on the case.

4.1.4 Voxel assignment correction - Repartitioning

We have seen that on "real-life" examples our greedy heuristic fares quite well; on "toy-like" simple
examples it can exhibit some traits that may be deemed undesirable, such as a tendency to produce
a voxels assignment with a few isolated voxels, which leads us to believe that the edgecut could be
improved, as illustrated in Figure 4.9. Our approach tends to clump together voxels assigned to the
same material but we do not make it mandatory for a free voxel to be assigned a material one of its
neighbors is already assigned to.

In order to counteract this phenomenon we have devised and tested a post-process that can
be applied after our greedy algorithm and that spawns from a simple consideration: as the voxels
assignment can be seen as a graph partitioning problem, adjusting the obtained partitions can be
considered a repartitioning problem. We have thus experimented with two well-known repartitioning
algorithms that both start from an initial assignment1 and that we have adapted to our constraints, the
Kernighan-Lin algorithm in Section 4.1.4.1 and the Fiduccia-Mattheyes algorithm in Section 4.1.4.2.
The interested reader can find some more up-to-date references on the subject of graph partitioning
in [Morais 2016; Barat 2017].

4.1.4.1 Kernighan-Lin

The Kernighan-Lin [Kernighan and Lin 1970] graph bi-repartitioning algorithm takes as an input a
graph with its vertices split into two sets and proceeds to improve upon the initial partitioning by
exchanging vertices between the sets, two by two. The simulated annealing implementation (see
Section 4.1.1.2) is in fact based on the same principle, but the Kernighan-Lin algorithm drives the
swaps by determining the sequence of swaps that maximizes the gain2; incidentally it allows for "bad"
moves, or negative gain moves as long as they are compensated. Our implementation is depicted in
Algorithm 5 where our modifications are annotated: they first consist in having to contend with more
than two partitions and secondly to restrict the possible exchanges to the swaps between voxels
spawned from the same source cell; this is done so that starting from an initial assignment valid in
terms of volume fractions constraints the output will still be valid under those same constraints.

Results in Figure 4.9 show that it is quite effective in reducing the edgecut when there are isolated
assignment artifacts.

As the Kernighan-Lin method base operation is the swap, it has the exact same issue as the
simulated annealing when the coarse mesh is unstructured and the voxels do not all have the same
volume; it will preserve the number of voxels assigned to each material, and while it may improve on

1The initial voxels assignment need not be our greedy heuristic, it could come from another method entirely, including
a randomized assignment that respects the volume fractions similar to the starting stage of the simulated annealing
method.

2"gain" in terms of improving the edgecut.

63

(a) vf=0.40 , vf=0.60 (b) vf=0.43 , vf=0.57

(c) vf=0.62 , vf=0.38 (d) vf=0.58 , vf=0.43

(e) vf=0.53 , vf=0.47 (f)

Figure 4.4: Greedy heuristic applied to the 5x5 example where we can see the evolution of the volume fractions (see
Algorithm 4:13) assigned to the free voxels of the central coarse cell below each �gure. The wireframe black grid is the
coarse mesh and the voxels colored in orange are those not yet assigned.

64

(a) MIP (b) simulated annealing

d=0, edgecut=592 d=0, edgecut=536

(c) graphcut (d) greedy heuristic

d=2.18, edgecut=440 d=0, edgecut=568

Figure 4.5: Comparison of the voxelated interfaces reconstruction methods. Note that we stopped the MIP solver
execution after 5 minutes.

Algorithm 5: Kernighan-Lin.

1 while gain_cumul > 0 do
2 matAssign_tmp ← matAssign
3 compute costs for all vertices /* one cost per material */

4 free all vertices

5 while ∃ possible swap do
6 v0, v1 ← �nd best swap /* swaps between voxels of the same source cell */

7 store best swap in sequence

8 lock(v0), lock(v1)

9 swap(matAssign_tmp(v0),matAssign_tmp(v1))
10 update costs for v0, v1 and neighbors

11 end
12 gain_cumul ← �nd sequence of swaps with maximal cumulative gain

13 if gain_cumul > 0 then
14 matAssign ← execute swaps

15 end
16 end

65

(a) d=0.0768 (b) d=0.024

(c) d=0.264 (d) d=0.1444

(e) d=0.1344 (f) d=0.1254

Figure 4.6: Greedy heuristic (�rst row) versus simulated annealing (second and third rows) applied to unstructured
cases. Only the highlighted cell is mixed, and the respective volume fractions are (0.5,0.5) in the case on the left, (0.2,0.8)
on the right. Two di�erent results (c and e), (d and f) are shown for the simulated annealing method because some
cluster of voxels can appear due to the randomness of the initial voxel assignment and the swaps.

66

(a) (b)

Figure 4.7: Greedy heuristic applied on two 3D cases with three materials. The third material is hidden. (a) an
extruded case; (b) a 3D case from a CFD simulation.

CAD model d=13902.1, e=19317638 d=26057.4, e=18525868

voxels view dmax=8.57 dmax=49.1
greedy heuristic simulated annealing

Figure 4.8: Example in a real-life unstructured case. The results show that while our greedy heuristic (left) is a little
worse edgecut-wise than the simulated annealing (right), it fares better by a factor of 2 and 5 in terms of discrepancy,
the total sum and its cell maximum respectively.

67

the edgecut it may lead to an increase of the discrepancy (see Figure 4.10). In order to address this
issue we applied to our problem the Fiduccia-Mattheyes repartitioning algorithm in Section 4.1.4.2.

4.1.4.2 Fiduccia-Mattheyes

Contrary to the Kernighan-Lin algorithm, the Fiduccia-Mattheyes [Fiduccia and Mattheyses 1982]
method only changes the part to which a vertex is assigned instead of swapping two vertices at a
time. In particular it means that in the case where the initial partitions are perfectly balanced the
algorithm will need to be allowed some wiggle room, i.e. the possibility to increase the imbalance
between partitions, to be able to operate. In our problem it translates into our adaptation seen in
Algorithm 6 line 6 where a material change for a voxel will only be considered if it does not degrade
too much the discrepancy of the coarse cell this voxel is issued from. And again, negative gain moves
can be performed, as long as they are compensated afterwards.

Algorithm 6: Fiduccia-Mattheyes.

1 while gain_cumul > 0 do
2 matAssign_tmp ← matAssign
3 compute costs for all vertices /* one cost per material */

4 free all vertices

5 while ∃ possible material change do
6 v, m ← �nd best material change /* change has to be allowed under volume

fractions constraints */

7 store best material change in sequence

8 lock(v)

9 matAssign_tmp(v)← m
10 update costs for v and neighbors

11 end
12 gain_cumul ← �nd sequence of material changes with maximal cumulative gain

13 if gain_cumul > 0 then
14 matAssign ← execute material changes

15 end
16 end

In Figure 4.10 is shown the benefits of being able to change the material assignment of the
voxels – as is done in the Fiduccia-Mattheyes algorithm – instead of only proceeding by swapping
in unstructured cases. The Kernighan-Lin implementation greatly reduces the edgecut at the cost of
increasing the discrepancy, while the Fiduccia-Mattheyes manages to reduce both, albeit a little less
concerning the edgecut.

The experiments that we have presented here show that formulating the problem as a graph or
mesh partitioning problem and using techniques coming from this field can be worthwhile in extracting
better discrete interfaces. The relationship between the coarse cells that carry volume fractions
and their spawned voxels implies that compared to classic algorithms additional constraints must be
enforced.

68

(a) e=186 (b) e=144

(c) e=222 (d) e=178

(e) e=568 (f) e=532

Figure 4.9: KL algorithm (right) applied after the greedy heuristic (left). The edgecut is reduced in all the cases, in
particular the algorithm changed the assignment of the highlighted isolated voxels.

69

(a) d=0.048, e=444 (b) d=0.0038, e=276

(c) d=0.264, e=84 (d) d=0.1444, e=76

(e) d=0.0128, e=86 (f) d=0.001, e=96

Figure 4.10: Example of re-partitioning applied on two unstructured cases that shows the limits of only swapping the
assignments (Kernighan-Lin) instead of changing the assignment (Fiduccia-Mattheyes). (a and b) the initial random
assignment similar to the one before applying the simulated annealing; (c and d) after applying the Kernighan-Lin
algorithm, where we can see that while the edgecut is reduced, the discrepancy increases; (e and f) after applying the
Fiduccia-Mattheyes, which reduces both.

70

4.2 Geometrical model projection

Starting from our input mesh carrying volume fractions, we have built a finer submesh made of cells,
which we called "voxels" and assigned those to materials; we now get the opportunity to extract the
interfaces between materials from which we can build an explicit geometrical model. This model
can be built at two different levels of discretization (see Figure 4.11): either on the fine mesh made
of voxels (top row) or on the coarse mesh (bottom row). By construction, the first one provides
high-fidelity to the reconstructed interfaces and preserves material volumes, while the second one
is coarser, making it easier to handle (smaller memory footprint, easier to visualize and to use for
mesh-to-geometry projection and smoothing). Considering our goal of getting a pure full-hexahedral
mesh starting from an Eulerian mesh, we want to build the coarser model.

(a)

(b) (c)

(d) (e)

Figure 4.11: Example of explicit geometrical models built from a 3 materials case in a 3 × 3 × 3 grid. (a) volume
fractions for each of the three materials, ranging from 0 in blue to 1 in red; (b and c) the voxels assignment and its
corresponding geometrical model; (d and e) the same after the assignment of the coarse cells.

Both models (the finest and the coarsest) can be built by first extracting the faces – the edges in 2D
– between cells assigned to different materials (see Figure 4.11-c and e), then building a geometrical
model G = (S,C, V). Starting from an hexahedral mesh M = (H,Q,E,N), where H are hexahedral
cells, Q are quadrilateral faces, E are edges and N are nodes, G can be extracted using the following
rules:

• A multi-surface of S is a set of faces of Q that are adjacent to the same 2 materials. We get 3
such distinct multi-surfaces in the example on Figure 4.11;

• A multi-curve of C is defined as a set of edges bounding the quad of a surface s ∈ S. Con-
sidering all the faces forming s, we get the set of edges Es ⊆ E that bounds those faces. This
set of edges is then partitioned into multi-curves as follows: two edges of Es are assigned to
the same multi-curve if they are adjacent to the same set of materials assigned to the cells. For
instance, let us consider the green surface on Figure 4.11-c and e; this surface is bounded by 2
curves: the first one corresponds to the intersection between the three surfaces – all the edges
are then adjacent to exactly the 3 same materials; the second one is made of the remaining
edges, which are adjacent to only 2 materials and located on the boundary of the domain –
here the bounding box of the input grid;

71

• A multi-vertex of V corresponds to all the nodes of N that are adjacent to the same multi-
curves in C, or in other words, to the same set of materials assigned to the cells of H. Consid-
ering the example of Figure 4.11, the two nodes highlighted in (e) define a single multi-vertex.

Characterizing entities of the geometrical models using the material assignment of adjacent cells
leads to form multi-entities that are potentially non-connected – in particular a vertex can have
several spatial locations. For our purpose, this definition is sufficient and we do not further differentiate
by splitting those entities into connected parts. In the example of Figure 4.11, the geometrical models
extracted are both made of 3 multi-surfaces, 4 multi-curves and 1 multi-vertex with two positions.

Now that we have those two models we will draw the correspondence between them and adapt
the coarser representation by constraining it onto the finer model as seen in Figure 4.12. Considering
a fine model Gf and a coarse model Gc extracted from compatible data (see Figure 4.12-a and b),
multi-entities of Gf and Gc are defined from the same set of materials and so can be identified and
associated through this material correspondence. In Figure 4.12, both models are superposed on
the left while on the right only the multi-entities of Gc are represented. To adapt Gc to fit Gf as best as
possible, we first project each node of the coarse mesh that corresponds to a multi-entity of Gc onto
the corresponding multi-entity of Gf (see Figure 4.12-e and f), then we smooth the node positions
while keeping them projected onto the corresponding multi-entity of Gf (see Figure 4.12-g and h).

The proposed solution has been widely used on several examples including those shown on
Figure 4.13 where the coarse and fine models are similar, and some others on Figure 4.14 where they
differ. Those examples are built using a testbed program that assign volume fraction of material on a
simple sample grid. This program is used for doing unit-testing and non-regression verifications. Note
that the topological differences between the coarse and fine model, that we encounter in Figure 4.14,
does not prevent our approach to get a result. However, it can be an issue in the meaning that the
materials are not consistent between the two levels of resolution. This is why in Section 5.2 we will
present a strategy that addresses this issue by use of mesh refinement and also by use of the voxels
material assignment that was presented in this section.

We have also applied our approach on more realistic data, such as the result of a CFD simulation
case that is shown in Figure 4.15 where our input is a grid mesh carrying the volume fractions at
t = 1sec and t = 2sec of the simulation.

Chapter digest – In this chapter we designed, implemented and compared several
techniques over the extraction of discrete interfaces. We have shown that having an
unstructured mesh heavily influences the choice of the method one may use, and we
have demonstrated that applying post-processes inspired from graph re-partitioning al-
gorithms can correct some artifacts in the voxels assignment when they occur. We have
also demonstrated how a geometrical model built from those interfaces can be used to
constrain the model built from the coarse mesh.

72

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.12: Illustration of how the �ner geometrical model is used as a support to project and smooth the coarser
geometrical model. (c and d) the initial models; (e and f) the coarser model is projected onto the �ner one; (g and h)
the coarser model is smoothed while being constrained.

73

Figure 4.13: Examples where the �ner models (middle) are similar to the coarser models (right). On the left are the
coarser meshes after material assignment.

74

Figure 4.14: Examples where the �ner models (middle) di�er from to the coarser models (right). On the left are the
coarser meshes after material assignment.

75

F
ig
u
re

4
.1
5
:
C
o
a
rs
e
g
eo
m
et
ri
ca
l
m
o
d
el
(m

id
d
le
)
p
ro
je
ct
ed

a
n
d
sm

o
o
th
ed

(r
ig
h
t)
o
n
to

th
e
v
ox
el
a
te
d
o
n
e
(l
ef
t)
in

th
e
tr
ip
le
p
o
in
t
p
ro
b
le
m

a
t
t

=
1
se
c
(t
o
p
)
a
n
d
t

=
2
se
c

(b
o
tt
o
m
).

76

Chapter 5

Guaranteed quality and topological

operations

In our context, intercode usage means to generate a Lagrangian meshML with smooth surfaces from
an Eulerian mesh ME while preserving as best as possible the geometry and the volume fractions
of ME locally to each cell of ME (see the discrepancy definition in Section 3.1, page 40). In prac-
tice, getting an acceptable result, that is to say a mesh ML that fits previous requirements and that
provides cells with good-enough quality for the simulation code, requires to perform topological mesh
modifications. Such modifications are performed at two levels in the ELG pipeline (see Figure 5.1).

Figure 5.1: Performing topological modi�cations is required to get a �nal mesh that both �ts the geometrical model -
stage 3 on top - and allows us to get a mesh usable by a simulation code - stages 4 and 5 on the right.

An example of topological issues we could meet occurs on the example of Figure 5.2, where cells
of ME are assigned to 3 materials in (a). In (b) a voxel-based geometrical model gives a consistent
geometrical model: each material is connected similarly to (a) and located in the same area. On
the contrary, in (c), the grey material is made of 2 connected components and the green one has a
hole. In the latter situation, if necessary classic overlay grid methods can adapt their mesh to capture
overlooked details, but they do have the CAD model on hand. We will explore the possibilities that we

77

have in Section 5.2; it corresponds to the stage 3 of the ELG pipeline when the topology consistency
is not obtained (see Figure 5.1).

(a) (b) c)

Figure 5.2: Mesh assignement and geometry de�nition can provide a compatible decomposition - between (a) and (b)
- or an incompatible one - between (a) and (c). Volume fractions slightly di�er between (b) and (c), but in both cases
the material assignment on the coarse mesh is (a).

In Chapter 3 we have evaluated and improved, by means of a post-process, our ELG pipeline and
the Sculpt procedure. Several limitations were identified and discussed, among which the fact that
since we rely on computing the volume of intersection between cells, not having inverted cells is a
prerequisite to our post-process, and more importantly, to the simulation code. In some cases, we did
not manage to obtain such a mesh using Sculpt, particularly in cases issued from hydrodynamics
numerical simulations. The basic overlay grid pipeline (see Figures 5.3 and 5.4) does not consider
the cell quality until the very last smoothing step; basically in such an algorithm we move the nodes
(see Figure 5.3.a and b), change the mesh topology (see Figure 5.3.c and d) and hope for the best
(see Figure 5.3.e and f) with the smoother. In our context, where our input can be the output of a
simulation code, we have shown in [Le Goff, Ledoux, and Owen 2018; Le Goff, Ledoux, Janodet,
and Owen 2019] that depending on the mesh resolution the code ran with, we can end up with a
good quality mesh (no inverted cells) or a bad quality one. It is unrealistic to ask engineers to run
their simulations again with different resolutions at random, assuming it is even feasible. This exhibits
the need for an algorithm that consistently works. We proposed in [Le Goff, Ledoux, Janodet, and
Owen 2019] an alternative pipeline to apply, where we control the mesh quality at each step (see
Figure 5.4). More specifically, enforcing a quality control led us to act on three stages (see the right
side of Figure 5.1):

1. Node movement: instead of simply moving the nodes to their computed position, we iteratively
move them and stop if the adjacent cells quality drops below a user defined threshold (see
Section 5.1.1). One side effect is that our nodes can end up not at their expected position;

2. Node position computation: altering the node movement shows the need to take into ac-
count the quality of material interfaces, particularly in 3D where the previous nodes computed
locations (done similarly to [Owen, M. L. Staten, and Sorensen 2012]) could lead to low quality
quadrangles on the material interfaces (which is a 3D surface). It means that by design the
interface nodes can never reach their destination if the nodes are moved with our controlled
movement. We propose to modify the computed locations by projecting and smoothing the ex-
pected interfaces onto a geometrical model built following the techniques we have implemented
in the previous Chapter 4;

3. Pillowing: we no longer apply a global pillowing for each material, which we show can have
adverse effects, and instead favor a localized one. We apply our geometrical and topological
mesh modifications inside submeshes, or cavities, that we insert back into the mesh if the cavity
quality meets the requirements (see Section 5.1.2).

In the first part of this chapter, in Section 5.1, we detail the process involved in the "quality-driven
mesh projection" stage. While the method can still be improved, it fulfills the goal of keeping the cell
quality above a user-specified threshold.

78

(a) basic move (c) pillow (e) smooth

(b) minSJ = 0.036 (d) minSJ = 0.046 (f) minSJ = 0.588

Figure 5.3: Evolution of the cell quality during the base algorithm. In (a) and (b) the node movement causes a sharp
decrease of the cell quality; in (c) and (d) the pillowing does not really improve the cell quality; in (e) and (f) the
smoothing is e�cient in this example.

5.1 Quality-driven mesh projection

material assignment

assignment correction

compute

position

basic

move

global

pillow

smooth

material assignement

assignement correction

compute

position

smooth

controlled

move

controlled

move

cavity pillow

cavity smooth

cavity insertion

extract

geom model

project &

smooth

(a) original pipeline (b) with quality control

Figure 5.4: In green the part where we have a guaranteed
cell quality, and in orange the part where there is no control
over this.

In this section, we try and explain the “quality-
driven mesh projection” stage that appears in
the ELG pipeline. As previously said, the aim
of this stage is to adapt the mesh to fit the ge-
ometry as best as possible under the constraint
of getting a mesh that can be used by a La-
grangian simulation code. In order to get such
a mesh, the most important constraint to satisfy
is to ensure that each cell of the resulting mesh
is above a minimal quality threshold, prescribed
by the Lagrangian code. In Figure 5.4 on the
right, we detail the “quality-driven mesh projec-
tion” stage and we highlight the parts of the al-
gorithm that keep the mesh quality under control
(green boxes) and the ones that do not (orange
boxes).

As the two main algorithms of this stage are the
node movement and the local pillowing opera-
tions, we first show how we try and control mesh
quality when moving material interface nodes,
and after we introduce the local pillowing oper-
ation before showing obtained results in 2D and
3D.

5.1.1 Guarantee by controlled node

movement

As seen in Figure 5.3-b, the first phase that may
decrease quality is the basic node movement.

79

Considering that the input mesh meets the qual-
ity requirements, our strategy is to avoid moving the nodes when the quality is degraded below a
prescribed threshold. For that purpose, we progressively move each interface node n towards their
expected location pideal on the computed interfaces. At each small movement of n, we check the
quality of cells surrounding n. In our implementation, a small movement corresponds to 1/16th1 of
the distance between the location of n and pideal. The impact of this controlled movement can be
seen in Figure 5.5, and the guarantee over the quality now extends and reaches just before the
pillowing stage (see Figure 5.4).

(a) basic move (b) minSJ = 0.036

(c) controlled move (d) minSJ = 0.387

Figure 5.5: Example of controlled movement. (a) and (b) basic move and the corresponding mesh quality; (c) and (d)
controlled move, the marked node could not move all the way and was stopped at a distance of 0.118 from its expected
location and the cell quality remains above 0.3.

A direct side effect of this controlled movement is that some of the nodes do not reach their expected
position. Let N be those nodes, we introduce an additional modification to the base algorithm to
allow those nodes to move further. After applying the topological modifications (the pillowing), the
algorithm enters into a move-smooth loop (see Figure 5.4) so that the nodes of N can progressively
keep moving towards the geometrical interfaces, eventually reaching it in the best cases. In this
move-smooth loop, the smoothing stage has two prerequisites: it must not decrease the quality, and
the nodes that have reached the geometrical interfaces are fixed. At the end of this stage, the set
N is not necessarily empty, meaning that there could remain nodes that did not reach their expected
destination.

So far we have tried to move the nodes towards a location computed using the input volume fractions
and the cells material assignment, but it considers each nodes independently and not the interfaces
as a whole; in particular no care was taken for the expected interfaces quality. It becomes especially

1This fraction was chosen arbitrarily. Directly trying to move to the expected positions and reverting the position of
nodes with adjacent faces that became of bad quality had the e�ect that a lot of nodes stayed in place.

80

relevant in 3D where the mesh entities forming the interfaces are no longer 1-cells (or edges) but
are now 2-cells (or faces). Moving the nodes to their computed ideal location can by-design lead to
bad quality faces, hence severely limiting our nodes controlled movement. Figure 5.6-a illustrates
it in the asteroid case, where the surface mesh we would obtain by moving the interface nodes at
their expected locations has very bad-quality quadrilateral elements. This causes our algorithm to be
stuck after the first controlled move, with a mesh still fairly stair-shaped (see Figure 5.6-b). Such a
resulting mesh could be considered satisfactory, quality-wise, still we want the interface nodes to be
located as close as possible to where the material interfaces were determined to be.

(a) (b)

(c) (d)

Figure 5.6: Motivation behind the geometrical model extraction and projection smoothing illustrated in the asteroid
case in 3D. (a) close-up of the expected surfacic interface mesh where the marked quad has a low quality of 0.068; (b)
the mesh after the �rst controlled move towards the original computed position. We can see that the cells assigned to
the asteroid are still fairly stair-shaped, and our algorithm can not go further because by-design we want to move the
nodes to bad positions; (c) the voxelated interface between the asteroid and the exterior as obtained using the techniques
we developed in Chapter 4 and on which we will smooth the expected interfaces to remove problems such as those seen
in (a); (d) the coarse geometrical model obtained using the techniques of the same chapter; it replaces (a) as the new
expected positions of the interface nodes.

In order to counteract this we modify the computed nodes locations by employing the methods we
introduced in Chapter 4. As the original interface nodes expected positions form a surface with
bad faces, we want to apply a surfacic smoothing to avoid those. So as not to stray too far from
the input volume fractions data and reduce the impact on the volume preservation of the materials,
the positions are constrained on a geometrical model, which in our case is the model that can be
extracted from interfaces reconstructed (see Figure 5.6-c) as we have discussed in Section 4.1. This
is in fact the technique we introduced in Section 4.2, and it leads to the coarse surfacic model shown
in Figure 5.6-d), which becomes the new expected positions for our interface nodes.

5.1.2 Cavity pillowing

In the original pipeline, as in many other overlay grid methods, a pillowing phase is applied, where
each material is wholly pillowed without taking cell quality into account, and eventually a final global

81

(a) controlled move (b) pillow (c) smooth

(d) minSJ = 0.307 (e) minSJ = 0.089 (f) minSJ = 0.237

Figure 5.7: Global pillowing quality problem on a 5x5 two materials case. (a and d) mesh and its cell quality after the
controlled move with the marked node stopped at a distance of 0.04 from its desired position; (c and d) global pillowing;
(e and f) the smoothing makes good use of the additional edge added to the marked node in the green material area to
improve quality but cannot improve it at the tip.

smoothing stage is executed so as to improve the overall cell quality. The intermediate pillowing
phase usually does not in itself improves quality, but it provides more degrees of freedom for the
smoothing algorithm to work with. The example of Figure 5.3 illustrates that such a pipeline can lead
to good results. While the cell quality is not strongly controlled, the mesh quality is improved during
the process.

The example of Figure 5.7 shows the exact opposite. The mesh quality worsens because of a global
pillowing technique that does not take into account some local geometrical features. In this case,
performing a pillowing around the right tip of the green area leads to strongly decreasing the inner
angle of each quadrilateral cell around this node. Note that the worst cell after proceeding with the
pillowing (in red in Figure 5.7-e) was the one hampering the displacement of the marked node. The
subsequent smoothing applied does improve the situation (it goes up from 0.089 to 0.237) but the
quality of the worst cell is eventually lower than at the beginning (0.237 against 0.307) before applying
the pillowing. Note that the worst cells are now the two newly created ones at the tip. In [Cherchi
et al. 2019] the authors seek to avoid a global pillowing and improve mesh quality by first identifying
a hard set of faces that they want padded, extend this set so as to connect the patches they form and
solve a binary problem they formulated to obtain a valid set of faces for sheet insertion.

In the ELG pipeline, we avoid indiscriminately performing a global pillowing by following a new pro-
cedure. It aims to help moving nodes of N by providing more leeway for the smoothing algorithm to
work with. The idea is to apply pillowing operations in the vicinity of N while avoiding to change the
mesh topology where not necessary, that is to say where the quality is already good (higher than the
threshold) and interface nodes reached their destination. The process we propose can be summa-
rized as follows: for each node n of N and each material m adjacent to n, we extract cell groups that
we are going to pillow. Each cell group is called a cavity. In theory, the idea would be to build many
sets of cavities {ci}i>0 for (n,m), pillow and smooth each cavity ci independently and keep the one
that gives the best quality. If this quality is higher than the quality threshold Sq then the pillowing of
this “best” quality is plugged in the mesh.

As there is a huge number of potential cavities, we consider in practice a maximal distance to the
node n to build cavities. This distance corresponds to a node-based traversal of the mesh starting
from n. For instance, for distance 1, the cavity of (n,m) contains all the cells of material m that are

82

(a) (b)

(c) (d)

Figure 5.8: Cavity de�nition for the green material. (a) the node n that could not reach its destination is marked
and assigned a range (here it is 3); (b) the adjacent cells are also selected and a reference to n is kept; (c) the selection
is extended to the adjacent nodes, a reference to n is kept and the range is decreased; (d) we continue until the range
reaches zero or all the cells assigned to the material are selected.

adjacent to n. In all our examples, a maximal distance of 3 is chosen. As an illustration, Figure 5.8
shows our process to create cavities whenN is reduced to a single node. Our implementation choice
is to have a greedy approach where we do not perform the pillowing for all the cavities; for a couple
(n,m), we publish the first one that provides a quality above Sq. This greedy algorithm is done by
progressively decreasing the cavity distance, starting with 3, until we obtain a satisfactory mesh in
the cavity. We chose this value because the cavities of several nodes of N are more likely to merge
when they are big enough. Such merging reduces the number of topological changes and provides a
big enough cavity for the smoother to work with. Figure 5.9 shows how we can end up with potentially
several large-size cavities.

As previously said, our greedy algorithm stops when we encounter a situation with a cavity quality
that is above Sq. This is illustrated by Figures 5.10 and 5.11. In Figure 5.10, we first extract a cavity
of range 3 for the marked node (in a) and then we pillow and smooth it (in b and c). As the quality
is below the 0, 3 threshold, we decrease the cavity range to 2 and start a second iteration (in e, f , g
and h) where we get the expected quality. In Figure 5.11, we see the local pillowing made on both
materials adjacent to the marked node. Our overall algorithm is summarized by Algorithm 7).

5.1.3 Results

In this section, we demonstrate and analyze the results of the proposed method on several cases,
both 2D and 3D; the metrics on the results are shown in Table 5.1 where distinit and distfinal are
defined as the sum of the distances between the interface nodes and their expected position, respec-
tively after the first controlled move and at the end of our algorithm. Admittedly those values heavily
depend on the size of the mesh, so comparisons between cases might not be relevant, but the ratio
distfinal

distinit
represents the improvements (the lower the better) our modified pipeline brings to counteract

the drawback of the controlled node movement. We also compare our method with Sculpt on some
examples regarding execution time and a discrepancy metric (see Definition 5 at page 41).

83

Figure 5.9: Cavity extracted for the green material in the triple point example (see Figure 5.12) where we can see the
cavities spawned from di�erent nodes merged to form bigger cavities. Note that marked nodes at the interface between
the yellow and grey materials are ignored and do not spawn cavities, as we currently consider one material at a time.

(a) cavity of range 3 (b) pillow (c) smooth (d) minSJ = 0.237

(e) cavity of range 2 (f) pillow (g) smooth (h) minSJ = 0.494

Figure 5.10: Cavity pillowing and smoothing loop. (a, b, c and d) a �rst iteration with a cavity of size 3 does not give
the expected quality; (e, f , g and h) a second iteration with size 2 meets the requirements.

84

(a) (b) (c) (d)

Figure 5.11: Cavity pillowing insertion back into the mesh. (a and c) the pillowed cavity for the green material and
its insertion inside the mesh; (b and d) the same for the yellow material.

Algorithm 7: Cavity loop.

Data: marked Nodes N
Result: mesh

1 for m ∈Materials do
2 /* we initially assign the same user-input range to all the marked nodes */

3 R ← initRange()
4 /* cavity extraction (see Figure 5.8) */

5 cavity ← extractCavity(N , R, m)
6 while cavity 6= ∅ do
7 /* we will apply modi�cations to the cavity and reduce it size until it meets the quality

threshold (see Figure 5.10) */

8 cavity.pillow()
9 cavity.smooth()
10 qual ← cavity.getQuality()
11 if qual > threshold then
12 /* the mesh modi�cations inside the cavity meet the quality requirements, we can insert

it back into the mesh (see Figure 5.11) */

13 mesh.insert(cavity)
14 break

15 end

16 /* cells of the cavity keep a reference to the node that marked them, we decrease the range of
such nodes for cells of quality below threshold */

17 R ← updateRange()
18 cavity ← extractCavity(N , R, m)

19 end

20 end

85

2D cases. We applied our approach in an intercode context, where our inputs are grid meshes car-
rying volume fractions data taken from a CFD simulation code at several time steps (see Figure 5.12)
for two cases, the triple point and the double bar problems. They came from simulations run on grids
of two different resolutions. The results in Table 5.1 highlight the motivations behind our approach:
taking the triple point case at 1 second, we can see that for one grid resolution the base algorithm
returns with a mesh containing no inverted cells (but still lower than the 0.3 minimum scaled jacobian
threshold chosen by the user). That is not the case for the other resolution, making it unreliable. It is
unrealistic to ask users to rerun their simulations with different resolutions at random, assuming it is
even feasible, hence the need for an algorithm that consistently works.

Our method was applied on two additional hydrodynamics simulations issued from [Toro 2009] (see
Figure 5.13); in all those cases it improves the distance by at least an order of magnitude.

3D extruded cases. The same cases from Figure 5.12 were extruded2 and run in 3D.

While our method does indeed result in meshes meeting the quality requirements the ratio of distfinal
over distinit remains much higher than in the 2D cases.

(a) t = 1sec (b) t = 2sec

(c) t = 0.5sec (d) t = 1sec

Figure 5.12: Examples of CFD simulations in 2D. Our algorithm was also applied to 3D cases extruded from the 2D.
(a and b) triple point problem where three �uids of di�erent densities lead to the formation of a vertex; (c and d) double
bar problem where three �uids of di�erent densities are stirred by two rotating blades.

"Real" 3D cases. Fully 3D cases were studied, one of which input is a grid where the volume
fractions data were computed by imprinting an asteroid model into the grid (see the example in
Figure 5.6). Other examples are Eulerian meshes from hydrodynamic simulations run using [Guy
2019], a ball of liquid that drops in a box taken at several time steps in Figure 5.14, a dam that breaks
and a three material case where a liquid is poured onto a concrete pillar in Figure 5.15.

These cases really highlight the need for our updated interface nodes positions, as without it we
ended up with stair-shaped meshes. We should also note that in these cases, the first controlled
move was executed with a threshold Sq = 0.3 which was decreased to 0.2 for the remainder of the
algorithm. Without this intermediate threshold the cavity adaptation never manages to produce a
good enough one to insert back into the mesh, which means our output mesh would have been the
mesh obtained after the first controlled move. The distance distinit and distfinal are illustrated in
Figure 5.16, and an example of our decreasing cavity-size strategy is shown in Figure 5.17.

We compared our approach with Sculpt (using Cubit version 15.4b) and Sculpt with our post-
process developed in Chapter 3 aiming to reduce the discrepancy; the results can be seen in Ta-

2The 3D mesh is created from a 2D quad mesh, lying in the XY plane, by creating successive layers of hexahedral
cells along the Z direction. Volume fractions are simply derived for each hexahedral cell from their origin quadrilateral
cell.

86

(a) (b)

(c) (d)

Figure 5.13: Other examples of hydrodynamics simulations in 2D [Toro 2009]. (a) and (c) the two cases; (b) and (d)
close-ups on our resulting meshes shown respectively.

(a) time step 10 (b) time step 15

(c) time step 20 (d) time step 25

Figure 5.14: Resulting meshes from our algorithm applied to the balldrop case.

87

Table 5.1: Quality and distance metrics for the examples.

case name minJS minJS distinit distfinal
distfinal

distinit

base algo our algo

2D

triplepoint 1s 420x180 0.215 0.322 0.0676 0.0071 0.105

triplepoint 1s 518x222 -0.071 0.310 0.0856 0.0061 0.071

triplepoint 2s 420x180 -0.031 0.311 0.165 0.0138 0.084

triplepoint 2s 518x222 0.097 0.308 0.186 0.0163 0.088

doublebar 0.5s 200x100 0.074 0.306 0.5915 0.0163 0.027

doublebar 0.5s 214x107 0.091 0.301 0.5950 0.0121 0.020

doublebar 1s 200x100 -0.177 0.300 0.5768 0.0319 0.055

doublebar 1s 214x107 -0.109 0.301 0.6146 0.0411 0.067

hydro_toro_a -0.104 0.300 116.70 6.0177 0.051

hydro_toro_b -0.994 0.300 1902.3 104.34 0.055

3D

triplepoint 1s 420x180x3 0.067 0.300 34.048 21.587 0.634

triplepoint 2s 420x180x3 -0.157 0.300 74.5847 44.388 0.595

doublebar 0.5s 200x100x3 0.043 0.300 134.47 26.025 0.193

doublebar 1s 200x100x3 -0.159 0.300 122.24 44.576 0.365

(a) time step 10 (b) time step 40 (c) in_out_�ow

Figure 5.15: Resulting meshes from our algorithm applied to the dambreak and in_out_�ow cases. The mesh size is
between 450000 and 500000 cells in these examples while execution time ranges from 5 minutes to 2.5 hours.

ble 5.3. We do not claim to be exhaustive in testing Sculpt, which has many options to drive the
mesh generation.

We can see that our robustness comes at a price, our method being approximately twenty times
slower (Sculpt was run on a single MPI process, and our algorithm on a single thread). In Table 5.3
is shown that for the doublebar cases, which have the same grid size, the execution time varies
significantly: our method is not only sensitive to the grid size, but also to the carried data.

We can also see that our method fits better the volume fractions, even after applying the add-on. It
could be explained by the fact that in order for Sculpt to return an output mesh with no negative scaled
Jacobian elements in those cases the defeaturing [Owen, Brown, et al. 2017] option was activated,
favoring mesh quality by sacrificing the volume fractions preservation (see the impact in Figure 5.18
where some small clusters of material were wiped out). Even with this option on, we were not able to
obtain a mesh without inverted elements in the double bar 1.0s example. In Figure 5.19 we can see
that an aggressive smoothing makes the rotating bar loose its shape.

This defeaturing option can be quite useful in order to help produce good-quality meshes and sim-
pler, smoother material interfaces; by reassigning the cells it basically consists in filtering out small
details and clumps of materials. Some simulation codes might not even be able to handle those
slivers of materials, or maybe could but at a high computational cost, for example by reducing the
timestep. But a user might be interested in capturing those details as they can be relevant for the sim-

88

(a) (b)

(c) (d)

(e) (f)

Figure 5.16: 3D cases measuring the impact of our algorithm. (a and c) the distance in the asteroid case between
the interface nodes after the �rst controlled move and their computed position, and the same after applying our whole
algorithm; (b and d) the same for the balldrop case at step 25; (e and f) a clipped view of both cases in order to exhibit
the exterior.

89

(a) nbCells = 9548 (b) nbCells = 4115

Figure 5.17: Cavity downsizing for the pillow on the balldrop case at step 25. (a) �rst cavity on which the pillow was
tried for the �uid material, it is practically the whole �uid; (b) cavity where the pillow and smoothing phases managed
to produce a submesh of acceptable quality that was inserted back into the mesh.

(a) (b)

(c) (d)

Figure 5.18: Comparison for the triplepoint 2sec case. (a) and (b) output meshes from Sculpt and ELG pipeline; (c)
and (d) their respective per-cell discrepancy.

90

Table 5.2: Quality and distance metrics for the examples.

case name minJS minJS distinit distfinal
distfinal

distinit

base algo our algo

asteroid -0.13 0.200 319.874 31.148 0.097

balldrop_10 0.274 41.426 5.5029 0.133

balldrop_15 0.209 35.243 6.3432 0.18

balldrop_20 0.221 35.824 18.149 0.506

balldrop_25 0.200 75.346 39.089 0.519

damnbreak_10 0.200 34.444 17.638 0.512

damnbreak_40 0.200 112.73 67.012 0.594

in_out_�ow 0.200 132.75 75.079 0.565

Table 5.3: Discrepancy and execution time comparison with Sculpt, Sculpt + add-on and our approach.

case name metric Sculpt Sculpt+ add-on our algo

triplepoint 1s 420x180x3 discrepancy 583.983 248.594 205.699

time (s) 24.57 505.2

triplepoint 2s 420x180x3 discrepancy 1204.86 513.38 433.458

time (s) 26.5 540.6

doublebar 0.5s 200x100x3 discrepancy 852.687 351.924 270.238

time (s) 9.14 187.9

doublebar 1.0s 200x100x3 discrepancy fail fail 546.159

time (s) 84 334.8

ulation one builds the mesh for; we present in the next Section 5.2 techniques dedicated to preserving
those.

91

(a) (b)

(c) (d)

Figure 5.19: Comparison for the doublebar 0.5sec case. (a) and (b) output meshes from Sculpt and ELG pipeline;
(c) and (d) their respective per-cell discrepancy.

92

5.2 Mesh re�nement for getting usability

In addition to maintaining a minimum cell quality – we showed in the previous section how we enforced
it – a user might have expectations on the mesh related to what it features. In our intercode case
between an Eulerian code and a Lagrangian one it is especially true; as two separate codes they
will most likely differ on what they modelize and consider of interest. Being Eulerian, by definition
the mesh cells will not have followed the material interfaces, and a material of interest for the second
code could have been neglected and misrepresented by the first one.

Our method, with its cell assignment based on the material with the highest volume fraction, might
inaccurately capture some parts of the domain and miss certain geometric features that the user
wants to retrieve because they are relevant for the second simulation code.

(a) (b) (c) (d)

Figure 5.20: Topology comparisons between our �nal mesh and the voxelated interfaces on close-ups of the case in
Figure 5.13 page 87; the black wireframe is the original grid mesh carrying volume fractions data. (a) and (b) both
return the same topology for the green material; (c) and (d) the topology di�ers.

In Figure 5.20 is shown a case where the voxelated geometrical model topologically differs from the
coarser one, due to the cell material assignment filtering out the smaller areas where one material is
not present enough. Had the Eulerian code run with a finer mesh it might have been captured. . . or
not. In Figure 5.21 an example with a thin layer of one material illustrates the issue where, depending
on the resolution of the Eulerian mesh, the volume fractions associated to the thin layer will allow or
not our algorithm to extract a geometrical model that matches the initial CAD model; in this example
it actually ranges from not being represented at all to being adequately captured. This experiment3

is made possible here precisely because we have the CAD model as a reference, which we do not
have in a real case scenario.

As the expectations on the geometrical model depend on the user and what one plans to do with
the resulting mesh, we can provide functionalities that would bias the cell material assignment in
order to favor a hierarchical list of materials established by the user; when a material tagged with a
higher priority is present in a cell, this cell would be assigned to the material. Such results could be
welcomed in the case of thin layers, as seen in Figure 5.22 on the first row where the thin layer which
was previously captured in disconnected parts now forms one component, but could make things
worse as shown in the second row where the two thin layers4 were adequately captured without the
bias and where the grey thin layer becomes disconnected when the yellow material is favored. It
shows that we need to devise another method to ensure the correct representation when needed
because simply tweaking the cell assignment is unreliable.

In our problem, as we start from the input mesh and its carried volume fractions we are not at liberty
to change the mesh resolution or refine it locally to capture some details of the CAD – which we
actually do not have – as is done in many other overlay grid methods. Nevertheless, we propose to
mimic this capability by use of our voxel-based interface reconstruction we presented in Chapter 4.

3The example is a square domain of size 7 composed of:

• a green material which is a quarter of a disk of radius 5;

• a yellow thin layer of 0.3 thickness;

• an orange material that takes the rest of the domain.

We used grid sizes of 8× 8, 12× 12 and 32× 32 cells.
4The example with two thin layers is the same as the previous example, with an additional grey thin layer also of

thickness 0.3.

93

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 5.21: Example of the representation of a thin layer of the yellow material in a CAD-based case with di�erent
grid sizes; the volume fractions presented on the left column are those of the yellow material, ranging from 0 (blue) to 1
(red). (a) the CAD model; (b and c) the volume fractions and the results of the cell material assignment in our overlay
grid method, where the yellow material is not present at all; (d and e) with a �ner grid size the yellow material appears
but does not match the shape of the CAD; (f and g) with an even �ner grid the yellow material matches the CAD.

94

(a)

(d)

(b) (c)

(e) (f)

Figure 5.22: Comparison in two cases (left column) between the majority volume fraction cell assignment (middle
column) and the assignment where the yellow material was enforced (right column). (a to c) the thin layer example a
where the yellow material went from forming small isolated components in b to one single component in c, thus matching
the CAD; (d to f) two thin layers example where the cell assignment accurately captured the two layers in e but enforcing
the yellow material led to fragment the captured grey layer in f .

5.2.1 Our user-guided process

The overlay grid methods with mesh adaptation capabilities that we want to emulate are based on
the principle that when the base mesh would not give satisfactory results, it is adapted to better
fit the CAD model and the method is then executed on this new mesh. Our overlay grid method
takes as an input a mesh and volume fractions carried by that mesh. While this input mesh can be
manipulated and modified, or a whole new mesh could be produced using altogether other means,
the input volume fractions are not easily transferable to this new mesh as it does not make sense to
average those in the destination cells.

We propose to solve this issue by extracting the material interfaces in the mixed cells; in this doc-
ument we use our discrete interface reconstruction method based on assigning voxels to materials
presented in Section 4.1. Any method that locates the materials inside those cells would do, but
the tendency of our discrete interface reconstruction method to produce connected components is a
plus as it will avoid spreading isolated trace amount of volume fractions of materials in the destina-
tion mesh. We reapply the techniques we presented in Section 3.1 – that we used to compute the
discrepancy – to project the voxels assigned to materials onto the new mesh, thus computing new
volume fractions. An illustration of our proposed solution can be seen in Figure 5.23: from left to
right, starting from the input mesh with volume fractions, our voxels interfaces are built then projected
onto a new refined mesh – here it is three times finer – in order to compute volume fractions on that
new mesh; finally, our overlay grid method can run on this new data.

We can see that Figure 5.23.d better matches the CAD than what we would obtain initially in Fig-
ure 5.21.e, but the yellow material is still extracted in two parts in the single thin layer case; the same
goes for the grey material in the two layers case. As it happens during the discrete interface recon-
struction phase (see Figure 5.23.b and f), we investigate for a way to compel the voxels material
assignment to produce those connected layers. We can make the observation that so far we have
formulated and treated the voxel-assignment problem as a graph partitioning problem, and while it is
accurate we do have additional data available: since the graph we partition is spawned from a mesh
the vertices of the graph do have spatial coordinates. Instead of simply considering reducing the
number of pairs of adjacent vertices assigned to different materials, it becomes possible to make use
of their spatial positions to compute a weight on the edges of the graph that will introduce a bias in the

95

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.23: Example with thin layers where the mesh is re�ned. (a) volume fractions of the yellow material on the
input mesh ranging from 0 (blue) to 1 (red); (b) the voxels assigned to materials; (c) newly computed volume fractions
on a re�ned grid; (d) cell material assigned by our overlay grid method. (e to h) the same in the two thin layers case
with the volume fractions of the yellow and grey materials respectively on the top and the bottom rows.

algorithm guided by some spatial or directional considerations. This bias could be specified by the
user; in the thin layer cases that we exhibit here, as we aim for the voxels assigned to the yellow (and
grey) material to form a continuous component in the shape of said layer we rely on the gradients of
the volume fractions to provide us with a direction orthogonal to which we want our yellow component
to spread. In practice we compute the weight carried by the edge between two vertices v and w, with
v ∈ cc its coarse cell and m the material considered as:

weight =
1.1− | ~(v, w).gradcc,m|

1.1
.

The impact of this weight-based variation on the voxel-assignment problem can be seen in Fig-
ure 5.24 where the previously split thin layer materials in our two cases now form connected compo-
nents that reach across the domain.

Those improved reconstructed interfaces are used to again compute new volume fractions on a
refined mesh in Figure 5.25 where the cell material assignment now also produces single components
for the thin layers, contrary to what was obtained without this directional bias.

Results presented in Figure 5.26 and 5.27 show the effectiveness of our process in 3D cases where
our overlay grid, when directly executed on the input mesh (a 3× 3× 3 grid), produces a geometrical
model topologically different from the one extracted from our voxel material interfaces. In both of
those 3D cases with two materials we used a refined mesh of size 9×9×9 on which volume fractions
are computed and our overlay grid algorithm run anew.

We have proposed a method that allows us to mimic the mesh adaptation capabilities of other overlay
grid algorithms despite not having a CAD model as an input. we make use of techniques we pre-
viously employed across this document that allow us to compute volume fractions on a new mesh,
and we have shown the impact of some bias one can use to steer the material capture when one has
additional knowledge on how they should appear.

96

(a) (b) (c)

(d) (e) (f)

Figure 5.24: Impact of our proposed weighted voxels material assignment. (a) the input volume fractions for the yellow
material and the computed associated gradient; (b) our basic voxel assignment where the yellow layer happens to be
split into two components; (c) voxel assignment weighted by the gradient orientation that produces a single component
for the yellow material. (d to f) the same in the two thin layers case where the grey layer ended up split.

97

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.25: Example with thin layers where the mesh is re�ned but this time with our weighted voxels material
assignment. Compared to Figure 5.23 the thin layers are preserved.

(a) (b) (c)

(d) (e) (f)

Figure 5.26: 3D example of our process designed to handle mesh re�nement. (a) our base overlay grid algorithm; (b)
the voxels material assignment; (c) overlay grid algorithm run after computing volume fractions on a �ner mesh; (d to
f) the respective extracted geometrical models where we can see the f matches e.

98

(a) (b) (c)

(a) (b) (c)

Figure 5.27: Another 3D example of our mesh re�nement handling process.

5.2.2 Automatic re�nement

We have proposed a method that allows for the transfer of volume fractions carried by one mesh to
another so that our overlay grid method can be applied on this new mesh; we will now present a
method for obtaining said new mesh. We will here build a new mesh by adapting the original one;
we rely on a classic 3-refinement template (see Figures 5.28 and 5.29), as it can easily be applied in
unstructured cases, rather than the 2-refinement template where one has to alternate refinement in
two directions. Cells that should be refined are marked, as are their nodes, and refinement templates
are applied to the cells adjacent to marked nodes; since not all configurations are handled in 3D, the
marks are propagated until we end up with only valid configurations.

(a) (b) (c) (d) (e)

Figure 5.28: Re�nement templates in 2D. The marked nodes are those around which the re�nement will be done.

In the examples we have provided in Figures 5.23, 5.24, 5.25, 5.26 and 5.27 the finer mesh we
used was a refinement of the whole grid which allowed for a demonstration of our capability to run
our overlay grid implementation by computing new volume fractions on this adapted mesh. As seen
in the thin layers examples, only the area containing the thin layers is actually of interest as there is
no benefit in refining the rest of the domain.

While the user can always select individual cells or areas to refine, we propose the following strategy
to identify cells that could benefit from the refinement: drawing inspiration from the defeaturing option
present in Sculpt, we infer that isolated cells assigned to a material are likely to indicate areas where
we want to increase the resolution, or refeature the domain. We also consider cells that contain
a fraction of a material but where none of the adjacent cells were assigned said material; such a
selection is illustrated in Figure 5.30 where the cells identified as explained previously, in addition to
their adjacent cells, are highlighted. In this example the adapted mesh is twice as small as when
refining indiscriminately (668 vs 1296 cells).

99

(a) (b) (c) (d)

Figure 5.29: Re�nement templates in 3D. The marked nodes are those around which the re�nement will be done; in
case of a cell where the marked nodes do not match one of the above templates, additional nodes are marked.

(a) (b)

Figure 5.30: Example of a targeted re�nement. (a) the highlighted cells are to be re�ned; (b) the adapted mesh after
re�nement and its cells assigned to materials according to the volume fractions computed on this new mesh.

100

Chapter digest – In this chapter we have designed a new pipeline for an overlay grid
method that guarantees a minimum cell quality. It relies on the simple notion that if the
starting mesh is good enough, not moving a node is always an option; as we have shown
it can easily lead to stair-shaped meshes we provided solutions to mitigate this drawback.
Additionally to individual cell quality, one has to consider the difference in how two simula-
tion codes modelize the domain and what they consider of interest. As such, we demon-
strated some solutions to refeature the domain by mimicking mesh adaptation strategies
encountered in other overlay grid algorithms, with the twist in our case that our input is
not a CAD model but a mesh carrying volume fraction data.

101

Chapter 6

Conclusion and future works

We conclude this document by giving first a brief recap about this work. Starting from an industrial
requirement, which is to design and implement an intercode component that could be used in an HPC
toolchain for 3D numerical simulations, we designed the ELG pipeline. But this work is not over, it
even raised several questions and some future work that we should explore in a short, medium or
long term.

6.1 The current ELG pipeline

In the work presented in this document, we tried and addressed the issue of intercode data transfer,
at the level of the discrete representations that are meshes. This issue occurs quite often in practice:
a physical study using a numerical simulation toolchain can make use of several different simulation
codes, chained one after another, with each its own requirements. More precisely, in our case we en-
deavored to convert the output of an Eulerian simulation code, an hexahedral mesh carrying volume
fractions, into the input of a Lagrangian one, an unstructured hexahedral mesh with its cells assigned
to materials.

Automatic mesh generation is not a given, more so when a user needs to generate an hexahedral
one; a classic way of producing a simulation-grade mesh is to use a CAD-meshing software into which
the geometrical model is imported and an engineer interactively prepares it for meshing (usually by
decomposing it into meshable blocks). As our data is coming from a simulation code we do not have
such a model, thus we pursued two objectives: we aimed at extracting a geometrical model that could
be used for meshing, and we also tried to directly obtain a usable mesh.

We began our work by identifying an overlay grid method that almost fits our initial requirements,
which are to at least take the same input. It is the case with the Sculpt algorithm. We defined
then a criterion that allowed us to evaluate how close to the input its output is. Indeed an important
feature of the intercode processing is to conserve some quantities (the volume in our case). We also
devised a post-process we showed manage to reduce that discrepancy by an order of magnitude,
consistently over a wide range of cases. This first part of our work was presented in Chapter 3 and
it is the starting point that led us to design the ELG pipeline we presented in the remainder of this
document.

In order to drive our process to convert an Eulerian mesh into a Lagrangian one, we consider that
it would be useful to have a reference geometrical model as a CAD model can be for other types
of applications. That is why we designed and implemented an algorithm to reconstruct the material
interfaces from our Eulerian data; by subdividing the input cells into voxels and assigning them to the
materials, we obtain a geometrical model. Our method is inspired from the scientific visualization field,
but we devised it so as to lift some limitations, mainly when the input mesh is unstructured, and we
showed that graph re-partitioning techniques could be used to avoid the appearance of undesirable
artifacts. It was the purpose of Chapter 4.

Using this geometrical model as a reference, we proposed in Chapter 5 a complete overhaul of the
original pipeline in order to control mesh quality. In order to directly generate a mesh that meets cell
quality requirements, our new solution guarantees that the resulting mesh quality does not go below
a user-defined threshold (see Figure 6.1). We provided alternatives to some of the topological and

103

material assignment

assignment correction

compute

position

basic

move

global

pillow

smooth

material assignement

assignement correction

compute

position

smooth

controlled

move

controlled

move

cavity pillow

cavity smooth

cavity insertion

extract

geom model

project &

smooth

(a) original pipeline (b) full �nal pipeline

Figure 6.1: From our initial redesign of the Sculpt algorithm (left) to the full ELG pipeline where the �nal mesh
quality is controlled (rigtht). Green boxes ensure cells quality control while orange ones do not.

geometrical modification steps that could degrade the mesh quality, and made use of our extracted
geometrical model to still capture the input data and not diverge too much from it.

But usability is not only defined by mesh quality, but also by other criteria; depending on what phe-
nomenon the study will be conducted on, the mesh can be expected to have certain traits related
to the input data. We have implemented in Chapter 5 mesh adaptation capabilities that mimic the
features available in other overlay grid methods that start from a CAD model and refine the initial
mesh to capture details, despite not having said model in our case. We have illustrated how those
functionalities can be used in cases where one wants to preserve, or erase, thin layers of materials.

6.2 Future works

In the course of our work, we have identified several areas the study of which could benefit our
proposed solution, whether by improving the results (pillowing in 6.2.1), extending the usefulness of
our method (cell size control in 6.2.2), potentially making maintenance and developing extensions
easier (mesh representation and component-based programing in 6.2.3), and finally making it more
practical to use (performances in 6.2.4).

6.2.1 Extending pillowing capabilities

In Section 3.3.3.1, we identified a limitation to our discrepancy improvement algorithm; as it only
moved the nodes with no change in the mesh topology some supplementary improvements to the
discrepancy could not be reached as can be seen in Figure 6.2.a where the movement of the nodes
of the highlighted cells – the nodes at the tip would move outward so as to end up with a cylinder-
shaped hole – is limited in favor of keeping a minimum cell quality. One way of allowing for further
movement would be to provide more degrees of freedom for those nodes, i.e. to create adjacent
edges by use of a pillowing operation that goes across both the CAD piece and the exterior; so far
we have implemented pillowing capabilities restricted to one material only.

104

An issue that we can have with our cavity pillowing is that while we have shown that not blindly
executing a global pillowing avoids degrading quality unnecessarily, we could still go further in cases
such as the one illustrated in Figure 6.2.b and c; the highlighted node will be the seed of a cavity pillow,
but the cell quality shows that this pillow does not in fact need be applied in the yellow material, as
it is the green adjacent cell quality that limits the node movement. Our current strategy is to apply a
pillow around those nodes in all the adjacent materials and we do not discriminate further, which can
lead to problems as we have seen in Section 5.1.2 page 81 where pillowing when not necessary can
have adverse effects on mesh quality.

(a) (b) (c)

Figure 6.2: Illustrations of improvements that could bene�t our current pillowing strategy. (a) edges should be added �
via a cross material pillow � to the nodes on the tip of the highlighted cells so that they could be pushed further back to
form a cylinder hole without degrading the cell quality too much; (b) a pillow need to be applied around the highlighted
node in the green material but there is no need for that in the yellow one as it can be seen in the cell quality display (c),
where blue is good and red is bad, that it is the adjacent cell in the green part that limits the node movement.

In addition to improving the mesh quality pillowing, and other hex mesh operators such as sheet
collapsing, could also be used to control the cell size.

6.2.2 Extending cell size control capabilities

In Section 5.2 we have demonstrated that it is possible in our intercode case to provide mesh adap-
tation capabilities usually available in overlay grid algorithms that take a CAD model as an input.
Benefits include the representation of details in the data, and when the output mesh is used in a
simulation code cell size is also of importance (when not directly using the output mesh, but instead
extracting a geometrical model and importing it into a CAD meshing software controlling the cell size
in our algorithm is not important).

In addition to the 3-refinement scheme that we used, it is possible to use pillowing as a way to
locally refine the mesh. So far we have only used pillowing in order to improve the mesh quality; our
implementation could be used as is, but there remains the problem of identifying where it would be
applied.

Coarsening the mesh will prove more difficult; chords and sheets collapsing are not local operations,
and while the prescribed cell size might be larger in one part of the domain it could be smaller in
another part. Techniques such as [M. Staten et al. 2016] retrieve a block-structure from an unstruc-
tured mesh, while repeated collapsing is done in [X. Gao, Panozzo, et al. 2017] to the point that
again, a block-decomposition is obtained. Those techniques are not simple to implement and are rife
with issues. Most importantly, obtaining an arbitrary block-decomposition, while a huge achievement
in itself, is not entirely desirable: as the purpose is to then mesh each block with a grid, producing
a conformal mesh will lead to constraints on the subdivisions of the edges and faces of the blocks
propagating across the whole domain, meaning that meeting the cell size prescription in some area
of the domain can conflict with the prescription in another area.

We feel that the most robust solution in our case would be to reuse the same principles we put in
place in Section 5.2, but instead of modifying the input mesh by refining it, use an altogether other
mesh that roughly meets the cell size prescription (the easiest would be to use a refined grid), project
the volume fractions onto this mesh and run our overlay grid algorithm with this new data as an input.

105

6.2.3 From graph-based representation to combinatorial maps

As briefly explained in Appendix A, the ELG pipeline used a graph-based mesh data structure for
implementing all the proposed software components involved in the pipeline. At the beginning of
the PhD, an attempt was done to consider a combinatorial map mesh representation [Damiand and
Lienhardt 2014] but we decided to focus on some other parts of the work.

Compared to combinatorial maps, our adjacency-based mesh representation usually has a lower
memory footprint, but this does not hold true when nearly all the connectivities are needed (admittedly
in our case they are not all needed at the same time; they could be deleted and their occupied
memory freed when no longer in use, which would lower the peak memory consumption). We have
implemented a combinatorial map data structure but have yet to use this variation apart from a few
tests. It would be interesting to compare the two representations, not only memory-wise but also
in ease-of-use terms and performances: as our explicit connectivities are not updated on-the-fly,
topological mesh modifications such as the pillowing phase seen in Figure A.1 makes most, if not
all, of the existing ones invalid, i.e. not coherent with the current mesh. In order to be used by latter
components they have to be deleted and built anew.

6.2.4 Improving performances and parallel implementation

The current implementation of theELG pipeline was done using thread-based parallelism with shared
memory. This choice was done considering that most of the studies we have to lead involve Eulerian
meshes having several hundred of millions of hexahedral cells. But this number will get larger in the
near future and a parallel distributed version of the pipeline must be investigated. Moreover, looking
at the current parallelism in ELG (see Appendix B), several observations can be made in order to
improve the efficiency of our implementation:

• A cheap way to decrease the overall execution time of our current implementation would be
to run with an optimal number of threads, different for each step. This is assuming that the
performance profile is roughly invariant with the input data;

• An adjacency connectivity can be seen as a graph or sparse matrix; as our implementations of
the connectivities building do not scale well, it should be fruitful to investigate or directly use the
implementations of the Kokkos kernels that deal with those objects;

• There are many different ways of writing meshing components, in particular in our case where
we do not have a fixed specialized data structure but one where the connectivities can be built
on-demand. Identifying costly kernels is of course relevant, but so is considering whether it is
beneficial or not to explicitly build and store a connectivity, especially when said connectivity is
used in only one algorithmic component. We can also consider radically altering the code by
switching from an adjacency-based to a combinatorial map-based mesh representation, making
the total execution time the most practical indicator.

106

Appendix A

Mesh representation using combinatorial

maps and a component-based

implementation

The implementation of the ELG pipeline relies on our mesh data structure GMDS [Ledoux, Jean-
Claude Weill, et al. 2008] that we intensively use. GMDS stands for Generic Mesh Data and Services
and it represents any 2D or 3D mesh as an adjacency graph with the connectivities between mesh
entities built and stored on-demand. We can handle any type of cells such as triangles, quadrilaterals,
polygons, tetrahedra, hexahedra, prisms, etc.

A component-based approach to the algorithm pipeline was adopted due to issues encountered with
some of our previous meshing algorithms implementations. By explicitly expressing the data used by
each step (so-called components), we keep track of the data modifications and inconsistencies that
appear inside a component and do not carry along every possible piece of data as global variables
or as attributes to an overblown class. We feel that it also provides better re-usability and unit testing.

In Figure A.1 is depicted the pipeline of our initial solution, where algorithmic components are dis-
played in black and data components in green. Among all the data components we only show the
connectivities in order to illustrate the benefits of having written GMDS with a non-fixed connectivity
model, as different steps require different sets of connectivities, depending on how they were imple-
mented. In orange are selection components, as some steps only apply to a mesh subset. On this
figure, a X2Y connectivty means we store the connectivity from X cells to Y cells. We use X=N for
nodes, or 0-cells, X=E for edges, or 1-cells, X=F for faces, or 2-cells, and eventually X=R for regions, or
3-cells.

assign

materials

solve non-manifold

compute

gradients

compute

nodes pos
move nodes

pillow

smooth

getInterfaceNodes

getInterfaceFaces
N2RR2R_byN F2RN2F

buildFandF2R

N2N

N2R

N2R

Figure A.1: Our base pipeline displayed as components. In red is shown that the N2R connectivity needed by the
smoother is rendered inconsistent by the pillowing step (topological modi�cations) and needs to be generated anew. The
2D pipeline is similar, with edges in place of faces.

107

This approach proved helpful, especially when one is not only developing a known fixed algorithm
but designing the algorithm itself by trial and error and experimenting with modifications and differ-
ent assemblies (see the amount of modifications we introduced to the base pipeline in Figure 6.1
page 104).

Figure A.2 also illustrates the many adjacency connectivities needed across our pipeline. While
our individual steps implementations each require a limited set of connectivities, the union of all the
necessary connectivities is practically the complete set of all the possible ones 1. One should also
note that changing the implementation of one of the steps, or inserting another step, could lead to
having to add or remove some of those connectivities.

non-manifold gradients position pillow smooth total

Figure A.2: Adjacency connectivities required for the di�erent steps of the pipeline, with the aggregate on the right.

1Some adjacencies are ambiguous; R2R usually stands for the regions that share a face while in our case we denote
it R2R_byN because we needed this adjacency to be the sharing of a node. N2N here is when two nodes are linked
by an edge (which we do not explicitly represent in our algorithm).

108

Appendix B

A few words about our parallel

implementation

So as to help develop the ELG pipeline, we enriched our mesh data structure GMDS [Ledoux,
Jean-Claude Weill, et al. 2008] by providing a set of thread safe functionalities in order to be able
to run parallel algorithms. We limited ourselves to a shared-memory implementation, and chose the
Kokkos [Carter Edwards et al. 2014] framework as an abstraction layer to work with.

The parallelism strategy we used is of type BSP1 [Valiant 1990], where when necessary the concur-
rency between tasks is expressed as edges in a graph from which we extract an independent set, or
a coloring when relevant, to work on.

A performances analysis of the base pipeline (see Figure A.1) was realized on three different hard-
ware setups. The hardware used was composed of nodes equipped with "classic" CPUs (Haswell
and Skylake) and one manycore setup with a lot of cores at low frequency (KNL):

• Haswell : Intel Xeon E5-2698 v3 (2× 16 cores at 2.3ghz, 2HT/core);

• KNL : Intel Xeon-Phi (68 cores in total, 64 available, at 1.4ghz, 4HT/core), with MCDRAM
configured in “flat” mode;

• Skylake : Intel Xeon Platinum 8168 (2× 24 cores at 2.7ghz, 2HT/core).

This study was presented in [Le Goff, Ledoux, and Janodet 2018] and a few points deserve to be
highlighted here. In Figure B.1 are presented the overall execution time and acceleration of our
implementation2 where we obtained a maximum acceleration of 5 for the total execution time on the
Haswell and Skylake setups and 10 on the KNL.

But the total acceleration displayed hides huge discrepancies; despite being part of the same pipeline
the phases that compose it are wildly different in nature, and so is the acceleration obtained. In
Figure B.2 is shown the results of a computationally intensive step, the computation of the gradients,
where the acceleration reaches 10 and 30 depending on the setup.

The lower overall acceleration can be explained by measuring phases of the pipeline with a less
favorable ratio of computations over data accesses. In Figure B.3 is displayed the time spent during
the gradients computation, the same as Figure B.2.a, in addition to the time spent in building the
connectivities necessary for this computation in lighter greens, the N2R and R2R_byN adjacency
connectivities (see Figure A.1; note that the usage of theN2R connectivity is not limited to computing
the gradients and appears in other components). Those three steps all have different performance
profiles and sweet spots attained at a different number of threads, and our measurements highlight
the fact that some inexpensive steps can become preponderant depending on the number of threads
(compare the time spent building N2R at 2 and 256 threads).

1Bulk-Synchronous Parallel
2 We excluded the non-manifold resolution phase from the measurement because, contrary to the other steps where

there is roughly always the same amount of computations, our implementation of it makes its execution dependent
on the order in which the nodes are treated, and as treating a node can cascade into producing other non-manifold
con�gurations the total number of resolutions and iterations �uctuates a lot between executions.

109

1 2 4 8 16 32 48 64 96 128 256
number of threads

0

50

100

150

200

250

300

350

e
x
e
cu
ti
o
n
 t
im

e
 (
s)

Execution without non-manifold correction

haswell
knl
skylake

1 2 4 8 16 32 48 64 96 128 256
number of threads

0

2

4

6

8

10

12

a
cc
e
le
ra
ti
o
n

Execution without non-manifold correction

haswell
knl
skylake

(a) (b)

Figure B.1: Execution time and acceleration of the base pipeline (excluding the non-manifold resolution step).

1 2 4 8 16 32 48 64 96 128 256
number of threads

0

2

4

6

8

10

12

14

16

e
x
e
cu
ti
o
n
 t
im

e
 (
s)

Gradients computation

haswell
knl
skylake

1 2 4 8 16 32 48 64 96 128 256
number of threads

0

5

10

15

20

25

30

a
cc
e
le
ra
ti
o
n

Gradients computation

(a) (b)

Figure B.2: Execution time and acceleration of the computation of the gradients step.

110

Figure B.3: Execution time of the gradients computation (bottom green) plus building the connectivities N2R (middle
green) and R2R_byN (top green).

111

Appendix C

French summary � résumé en français

Construction d'un maillage hexaédrique conforme à partir d'une grille de fractions
de présence: étude et applications

Les codes de simulation numérique reposent sur la discrétisation du domaine de calcul en élé-
ments simples, appelés cellules ou mailles, qui forment un maillage. Ces codes peuvent imposer des
contraintes sur les maillages afin de pouvoir tout simplement fonctionner, améliorer les résultats ou
les obtenir plus vite en réduisant le temps de simulation : ces contraintes concernent classiquement
le type de mailles (triangles, quadrangles, hexaèdres,...), la qualité des mailles (principalement leur
forme), l’alignement aux interfaces, leur taille,... La génération du maillage est souvent un proces-
sus long et réalisé à la main à l’aide d’outils intéractifs, très consommateur en temps ingénieur, ce
d’autant plus lorsque l’objectif est de produire des maillages composés de mailles quadrangulaires
en 2D, ou hexaédriques en 3D. Étant donné un volume de forme quelconque et des contraintes
souhaitées sur le maillage, il n’existe pas de méthode automatisée permettant de générer ce type de
maillages à coup sûr [Sarrate et al. 2014].
Une étude industrielle peut mener à étudier le comportement d’un système soumis à plusieurs
phénomènes physiques distincts, et ainsi parfois faire appel successivement à plusieurs codes de
calcul différents, chacun avec ses propres particularités. Notre travail poursuit l’objectif de fournir
un service de type intercode, qui est de convertir les données issues d’un premier code de calcul
eulérien en entrées pour un second code lagrangien. Plus précisément, à partir d’un maillage hex-
aédrique portant des fractions volumiques nous avons deux sous-objectifs :

1. Extraire un modèle géométrique permettant d’être importé dans un logiciel de CAO-maillage,
ou bien de faire tourner des algorithmes de génération de maillage hexaédrique dessus. Il
doit être le plus simple possible (pas de petites surfaces isolées) et lisse afin de pouvoir être
utilisable ;

2. Éventuellement directement générer automatiquement un maillage valide. Bien que les con-
traintes concernant le maillage soient propres à chaque code, un critère de qualité commun est
d’avoir des mailles qui ne soient pas trop déformées géométriquement [P. M. Knupp 2001].

Une contrainte sous-jacente est que notre résultat ne soit pas trop "éloigné" des données passées
en entrée.

Nous nous sommes alors tournés vers des méthodes d’intersection de grille (ou overlay grid) [R.
Schneiders 1996]. Comparées aux autres techniques de génération de maillages hexaédriques
(méthodes de recombinaison de tétraèdres, avancée de front, champ d’orientation, axe médian, ...)
celles-ci ont l’avantage d’être totalement automatisées et de fonctionner sur un large panel de mod-
èles, en n’ayant besoin que d’un nombre restreint de paramètres fixés par l’utilisateur. Le principe
de ces méthodes est de commencer par créer un maillage hexaédrique "facile" à générer, habituelle-
ment une grille, qui recouvre le domaine à mailler. Les étapes suivantes consistent à sélectionner
et garder les cellules qui feront parties du volume, puis à modifier (topologiquement et géométrique-
ment) ce sous-ensemble du maillage initial pour capturer les éléments du modèle géométrique, pour
au final obtenir le maillage demandé.
Mais ces méthodes ont des incompatibilités avec le but poursuivi. Premièrement, les méthodes par
intersection de grille comme [Maréchal 2009; Zhang 2016] prennent en entrée un modèle géométrique,

113

ce qui n’est pas ce dont nous disposons. Deuxièmement, la plupart de ces méthodes ne considèrent
qu’un seul volume, et non pas un modèle géométrique qui soit un assemblage de plusieurs pièces.
Troisièmement, la robustesse de ces méthodes repose sur la capacité à créer un maillage initial
adapté, généralement raffiné par endroit pour mieux capturer le modèle de CAO ou bien pour s’en
approcher au mieux [X. Gao, Shen, et al. 2019], ce qui est en conflit direct avec le fait que notre
maillage d’entrée est pour nous un paramètre qui nous est donné, qu’il convienne ou pas.

Il y a néanmoins parmis ces méthodes l’algorithme Sculpt [Owen, M. L. Staten, and Sorensen
2012; Owen, Brown, et al. 2017] qui prend en entrée un maillage eulérien; nous l’avons adapté et
étendu afin qu’il répondre à nos besoins, ce qui nous a conduit à un nouvel algorithme que nous
avons appelé ELG pour Euler to LaGrange remeshing qui fonctionne à la fois en dimension 2 et 3.

Les principales contributions de cette thèse sont :

• Mesure et amélioration de la préservation du volume. Nous avons introduit en post-traitement à
Sculpt un critère appelé discrepancy mesurant l’écart entre le maillage eulérien d’entrée et le
maillage lagrangien, ainsi qu’un algorithme piloté par cet écart et permettant de le réduire; ces
travaux sont abordés dans le Chapitre 3. Nous avons montré sur un large panel d’exemples
venant de modèles STL, de modèles de CAO simples et complexes, de modèles générés procé-
duralement ainsi que de cas issus de simulations numériques, que notre post-traitement était
capable de réduire cette discrepancy en général d’un ordre de grandeur ;

• Reconstruction d’interfaces discrètes et utilisation du modèle géométrique extrait. Nous com-
parons dans le Chapitre 4 des méthodes permettant de reconstruire les interfaces entre matéri-
aux à partir d’une voxelisation du maillage eulérien. avons élaboré une méthode qui se com-
porte bien à la fois sur la discrepancy et le edgecut (tel que défini dans les problèmes de parti-
tionnement de graphes) y compris dans des cas où le maillage d’entrée est non-structuré. Nous
montrons également comment en extraire un modèle géométrique et l’utiliser pour poursuivre
notre objectif ;

• Garantie de qualité sur le maillage. Nous avons modifié notre algorithme dans la Section 5.1
afin que le maillage résultant ait une qualité minimale garantie et ne passe jamais en-dessous
d’un seuil choisi par l’utilisateur. À cette occasion nous mettons à profit le modèle géométrique
extrait dans le chapitre précédent, et présentons une méthode permettant de faire du pillowing
localisé, ce qui nous permet ainsi d’éviter certains des problèmes pouvant survenir lorsqu’il est
appliqué de manière globale comme il est couramment pratiqué ;

• Adaptation du maillage. Dans la Section 5.2 nous proposons certaines fonctionnalités d’adaptation
du maillage, similaires à ce que d’autres méthode de cette famille fournissent, mais dans
notre cas sans disposer du modèle de CAO. En réutilisant notre méthode de reconstruction
d’interfaces, cela donne la possibilité pour l’utilisateur de piloter les phases initiales de notre
algorithme afin d’impacter la manière dont certains des matériaux peuvent être capturés, pour
par exemple préserver des couches minces de matériaux d’intérêt pour la simulation.

114

References

Ahrens, J., Berk Geveci, and Charles Law (2005). “ParaView: An End-User Tool for Large Data Visualization”.
In: Visualization Handbook.

Anderson, J. C., C. Garth, M. A. Duchaineau, and K. I. Joy (2008). “Discrete Multi-Material Interface Recon-
struction for Volume Fraction Data”. In: Computer Graphics Forum 27.3, pp. 1015–1022.

— (2010). “Smooth, Volume-Accurate Material Interface Reconstruction”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 16.5, pp. 802–814.

Bangerth, W., R. Hartmann, and G. Kanschat (2007). “deal.II – A general-purpose object-oriented finite ele-
ment library”. In: ACM Transactions on Mathematical Software 33.4, 24–es.

Barat, Remi (2017). “Load Balancing of Multi-physics Simulation by Multi-criteria Graph Partitioning”. These de
doctorat. Bordeaux.

Baudouin, Tristan Carrier, Jean-François Remacle, Emilie Marchandise, François Henrotte, and Christophe
Geuzaine (2014). “A frontal approach to hex-dominant mesh generation”. In: Advanced Modeling and Sim-
ulation in Engineering Sciences 1.1, p. 8.

Berkelaar, Michel, Kjell Eikland, and Peter Notebaert (2004). lp_solve. Version 5.1.0.0.
Blacker, Ted (2000). “Meeting the Challenge for Automated Conformal Hexahedral Meshing”. In: 9th Interna-

tional Meshing Roundtable, pp. 11–20.
Blacker, Ted D. (1997). “The Cooper Tool”. In: Proceedings of the 5th International Meshing Roundtable,

pp. 217–228.
Blacker, Ted D. and Ray J. Meyers (1993). “Seams and wedges in plastering: A 3-D hexahedral mesh genera-

tion algorithm”. In: Engineering with Computers 9.2, pp. 83–93.
Blacker, Ted D. and Michael B. Stephenson (1991). “Paving: A new approach to automated quadrilateral mesh

generation”. In: International Journal for Numerical Methods in Engineering 32.4, pp. 811–847.
Boggs, Paul T., Alan (Exagrid Engineering) Althsuler, Alex R. (Exagrid Engineering) Larzelere, Edward J.

Walsh, Ruuobert L. Clay, and Michael F. (Sandia National Laboratories Hardwick (2005). DART system
analysis. Report. Library Catalog: digital.library.unt.edu Number: SAND2005-4647 Publisher: Sandia Na-
tional Laboratories.

Boykov, Y. and V. Kolmogorov (2004). “An experimental comparison of min-cut/max- flow algorithms for energy
minimization in vision”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 26.9, pp. 1124–
1137.

Boykov, Y., O. Veksler, and R. Zabih (2001). “Fast approximate energy minimization via graph cuts”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 23.11, pp. 1222–1239.

Cai, Shengyong and Timothy J. Tautges (2015). “Optimizing Corner Assignment of Submap Surfaces”. In:
Procedia Engineering. 24th International Meshing Roundtable 124, pp. 83–95.

Calderan, Simon, Guillaume Hutzler, and Franck Ledoux (2019). “Dual-Based User-Guided Hexahedral Block
Generation Using Frame Fields”. In: Proceedings of the 28th International Meshing Roundtable. Library
Catalog: Zenodo Publisher: Zenodo.

Carter Edwards, H., Christian R. Trott, and Daniel Sunderland (2014). “Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns”. In: Journal of Parallel and Distributed
Computing. Domain-Specific Languages and High-Level Frameworks for High-Performance Computing
74.12, pp. 3202–3216.

CEA (2020). Première expérience de fusion nucléaire au Laser Mégajoule.
Cherchi, G., P. Alliez, R. Scateni, M. Lyon, and D. Bommes (2019). “Selective Padding for Polycube-Based

Hexahedral Meshing”. In: Computer Graphics Forum 38.1, pp. 580–591.
Childs, Hank, Eric Brugger, Brad Whitlock, Jeremy Meredith, Sean Ahern, David Pugmire, Kathleen Bia-

gas, Mark Miller, Cyrus Harrison, Gunther H Weber, Hari Krishnan, Thomas Fogal, Allen Sanderson,
Christoph Garth, E. Wes Bethel, David Camp, Oliver Rübel, Marc Durant, Jean M. Favre, and Paul Návratil
(2012). “VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data”. In: High Performance
Visualization–Enabling Extreme-Scale Scientific Insight, pp. 357–372.

CPLEX Optimizer (2020).
Cubit (2019). Sandia National Laboratories: CUBIT Geometry and Mesh Generation Toolkit.
Damiand, Guillaume and Pascal Lienhardt (2014). Combinatorial Maps: Efficient Data Structures for Computer

Graphics and Image Processing. A K Peters/CRC Press.

115

Distene (2020). Distene’s MeshGems suite | Meshing Software Components for CAD and CAE applications
from Distene.

Faux, I. D. and M. J. Pratt (1979). Computational Geometry for Design and Manufacture. USA: Halsted Press.
329 pp.

Ferziger, Joel H. and Milovan Peric (2002). Computational Methods for Fluid Dynamics. 3rd ed. Berlin Heidel-
berg: Springer-Verlag.

Fiduccia, C. M. and R. M. Mattheyses (1982). “A linear-time heuristic for improving network partitions”. In:
Proceedings of the 19th Design Automation Conference. DAC ’82. IEEE Press, pp. 175–181.

Folwell, N. and Scott Mitchell (1999). “Reliable Whisker Weaving via Curve Contraction”. In: Engineering With
Computers 15, pp. 292–302.

Freitag, Lori A. (1997). “On Combining Laplacian And Optimization-Based Mesh Smoothing Techniques”. In:
Trends in Unstructured Mesh Generation, pp. 37–43.

Frey, Pascal and Paul George (2008). “Mesh Generation: Application to Finite Elements: Second Edition”. In:
Mesh Generation: Application to Finite Elements: Second Edition.

Gao, Xifeng, Daniele Panozzo, Wenping Wang, Zhigang Deng, and Guoning Chen (2017). “Robust structure
simplification for hex re-meshing”. In: ACM Transactions on Graphics 36.6, 185:1–185:13.

Gao, Xifeng, Hanxiao Shen, and Daniele Panozzo (2019). “Feature Preserving Octree-Based Hexahedral
Meshing”. In: Computer Graphics Forum 38.5, pp. 135–149.

Geuzaine, Christophe and Jean-François Remacle (2009). “Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities”. In: International Journal for Numerical Methods in Engineering
79.11. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579, pp. 1309–1331.

GLPK (2019). GLPK - GNU Project - Free Software Foundation (FSF).
Gregson, James, Alla Sheffer, and Eugene Zhang (2011). “All-Hex Mesh Generation via Volumetric PolyCube

Deformation”. In: Computer Graphics Forum. Special Issue of Symposium on Geometry Processing 2011
30.5. Publisher: Wiley, pp. 1407–1416.

Gurobi Optimization, LLC (2020). Gurobi Optimizer Reference Manual.
Guy, Ryan (2019). A PIC/FLIP fluid simulation based on the methods found in Robert Bridson’s "Fluid Simula-

tion for Computer Graphics": rlguy/GridFluidSim3D. original-date: 2015-04-07T05:54:12Z.
He, Ying, Hongyu Wang, Chi-Wing Fu, and Hong Qin (2009). “A divide-and-conquer approach for automatic

polycube map construction”. In: Computers & Graphics. IEEE International Conference on Shape Mod-
elling and Applications 2009 33.3, pp. 369–380.

Hege, Hans-Christian, Martin Seebass, Detlev Stalling, and Malte Zöckler (1997). “A Generalized Marching
Cubes Algorithm Based on Non-Binary Classifications”. In:

Herring, Angela, Ondrej Certik, Charles Ferenbaugh, Rao Garimella, Brian Jean, Chris Malone, and Chris
Sewell (2017). (U) Introduction to Portage. Los Alamos National Laboratory (LANL), p. 9.

Hughes, Thomas (2000). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
Vol. 78.

Hughes, Thomas J. R. (2004). Consider a Spherical Cow - Conservation of Geometry in Analysis: Implications
for Computational Methods in Engineering | Institute for Mathematics and its Applications. URL: https:
//www.ima.umn.edu/2003-2004/SW5.11-15.04/23254 (visited on 08/19/2020).

ICEM, CFD (2013). Computational Fluid Dynamics (CFD) Simulation | Ansys.
Kernighan, B. W. and S. Lin (1970). “An efficient heuristic procedure for partitioning graphs”. In: The Bell

System Technical Journal 49.2. Conference Name: The Bell System Technical Journal, pp. 291–307.
Knupp, Patrick (1998). “Next-Generation Sweep Tool: A Method For Generating All-Hex Meshes On Two-And-

One-Half Dimensional Geomtries”. In: 7th International Meshing Roundtable, pp. 505–513.
Knupp, Patrick M. (2001). “Algebraic Mesh Quality Metrics”. In: SIAM J. Sci. Comput. 23.1, pp. 193–218.
Kolmogorov, V. and R. Zabin (2004). “What energy functions can be minimized via graph cuts?” In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 26.2, pp. 147–159.
Kowalski, N., F. Ledoux, and P. Frey (2016). “Smoothness driven frame field generation for hexahedral mesh-

ing”. In: Computer-Aided Design. 23rd International Meshing Roundtable Special Issue: Advances in Mesh
Generation 72, pp. 65–77.

Kucharik, Milan, Rao V. Garimella, Samuel P. Schofield, and Mikhail J. Shashkov (2010). “A comparative
study of interface reconstruction methods for multi-material ALE simulations”. In: Journal of Computational
Physics 229.7, pp. 2432–2452.

Lai, Mingwu, Steven Benzley, and David White (2000). “Automated hexahedral mesh generation by generalized
multiple source to multiple target sweeping”. In: International Journal for Numerical Methods in Engineering
49.1, pp. 261–275.

Le Goff, Nicolas, Franck Ledoux, and Jean-Christophe Janodet (2018). “A Parallel Shared-Memory Implemen-
tation of an Overlay Grid Method”. oral talk. Symposium on Trends in Unstructured Mesh Generation.

— (2019a). “An Overlay Grid Driven Geometric Model Extraction”. oral talk. Symposium on Trends in Unstruc-
tured Mesh Generation.

— (2019b). “Hexahedral Overlay Grid Method with Guaranteed Element Quality”. oral talk. International Con-
ference on Adaptive Modeling and Simulation.

116

https://www.ima.umn.edu/2003-2004/SW5.11-15.04/23254
https://www.ima.umn.edu/2003-2004/SW5.11-15.04/23254

Le Goff, Nicolas, Franck Ledoux, Jean-Christophe Janodet, and Steven J. Owen (2019). “Guaranteed quality-
driven hexahedral overlay grid method”. In: Proceedings of the 28th International Meshing Roundtable.

Le Goff, Nicolas, Franck Ledoux, and Steven J. Owen (2018). “Hexahedral mesh modification to preserve
volume”. In: Computer-Aided Design 105, pp. 42–54.

Ledoux, Franck (2014). “Hexahedral meshing for numerical simulation: representations and algorithms”. habil-
itation à diriger des recherches. University of Poitiers: University of Poitiers.

— (2018). “Paving the Path Towards Automatic Hexahedral Mesh Generation”. keynote. 27th International
Meshing Roundtable, IMR27. Albuquerque.

Ledoux, Franck and Jean-Christophe Weill (2007). “An Extension of the Reliable Whisker Weaving Algorithm”.
In: Proceedings of 16th International Meshing Roundtable, pp. 215–232.

Ledoux, Franck, Jean-Claude Weill, and Yves Bertrand (2008). “GMDS: A Generic Mesh Data Structure”. In:
17th International Meshing Roundtable. United States, ??

Liu, Yutong, Kerem Pekkan, S. Casey Jones, and Ajit P. Yoganathan (2004). “The Effects of Different Mesh
Generation Methods on Computational Fluid Dynamic Analysis and Power Loss Assessment in Total
Cavopulmonary Connection”. In: Journal of Biomechanical Engineering 126.5. Publisher: American So-
ciety of Mechanical Engineers Digital Collection, pp. 594–603.

Lu, Jean Hsiang-Chun, Inho Song, William Roshan Quadros, and Kenji Shimada (2014). “Geometric reason-
ing in sketch-based volumetric decomposition framework for hexahedral meshing”. In: Engineering with
Computers 30.2, pp. 237–252.

Maréchal, Loïc (2009). “Advances in Octree-Based All-Hexahedral Mesh Generation: Handling Sharp Fea-
tures”. In: Proceedings of the 18th International Meshing Roundtable. Ed. by Brett W. Clark. Springer
Berlin Heidelberg, pp. 65–84.

— (2016). “All Hexahedral Boundary Layers Generation”. In: Procedia Engineering. 25th International Mesh-
ing Roundtable 163, pp. 5–19.

Morais, Sébastien (2016). “Etude et obtention d’heuristiques et d’algorithmes exacts et approchés pour un
problème de partitionnement de maillage sous contraintes mémoire. (Study and obtention of exact, and
approximation, algorithms and heuristics for a mesh partitioning problem under memory constraints)”. PhD
thesis. University of Paris-Saclay, France.

Murdoch, Peter, Steven Benzley, Ted Blacker, and Scott A. Mitchell (1997). “The spatial twist continuum: A
connectivity based method for representing all-hexahedral finite element meshes”. In: Finite Elements in
Analysis and Design 28.2, pp. 137–149.

Owen, Steven J. (2005). “An introduction to mesh generation algorithms”. short course. 14th International
Meshing Roundtable. San Diego.

Owen, Steven J., Judith A. Brown, Corey D. Ernst, Hojun Lim, and Kevin N. Long (2017). “Hexahedral Mesh
Generation for Computational Materials Modeling”. In: Procedia Engineering. 26th International Meshing
Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain 203, pp. 167–179.

Owen, Steven J. and Sunil Saigal (2000). “H-Morph: an indirect approach to advancing front hex meshing”. In:
International Journal for Numerical Methods in Engineering 49.1, pp. 289–312.

Owen, Steven J. and Tim R. Shelton (2015). “Evaluation of grid-based hex meshes for solid mechanics”. In:
Engineering with Computers 31.3, pp. 529–543.

Owen, Steven J. and Jason F. Shepherd (2009). “Embedding Features in a Cartesian Grid”. In: Proceedings of
the 18th International Meshing Roundtable. Ed. by Brett W. Clark. Springer Berlin Heidelberg, pp. 117–138.

Owen, Steven J., Ryan M. Shih, and Corey D. Ernst (2017). “A template-based approach for parallel hexahe-
dral two-refinement”. In: Computer-Aided Design. 24th International Meshing Roundtable Special Issue:
Advances in Mesh Generation 85, pp. 34–52.

Owen, Steven J., Matthew L. Staten, Scott Canann, and Sunil Saigal (1999). “Q-Morph: an indirect approach
to advancing front quad meshing”. In: International Journal for Numerical Methods in Engineering 44.9,
pp. 1317–1340.

Owen, Steven J., Matthew L. Staten, and Marguerite C. Sorensen (2012). “Parallel Hex Meshing from Volume
Fractions”. In: Proceedings of the 20th International Meshing Roundtable. Ed. by William Roshan Quadros.
Springer Berlin Heidelberg, pp. 161–178.

Palmer, David, David Bommes, and Justin Solomon (2020). “Algebraic Representations for Volumetric Frame
Fields”. In: ACM Transactions on Graphics 39.2, 16:1–16:17.

Papadimitrakis, Dimitrios, Cecil G. Armstrong, Trevor T. Robinson, Alan Le Moigne, and Shahrokh Shahpar
(2019). “Building Direction Fields on the Medial Object to Generate 3D Domain Decompositions for Hexa-
hedral Meshing”. In: Proceedings of the 28th International Meshing Roundtable. Publisher: Zenodo.

Pellerin, Jeanne, Amaury Johnen, Kilian Verhetsel, and Jean-François Remacle (2018). “Identifying combina-
tions of tetrahedra into hexahedra: A vertex based strategy”. In: Computer-Aided Design 105, pp. 1–10.

Powell, Devon and Tom Abel (2015). “An exact general remeshing scheme applied to physically conservative
voxelization”. In: Journal of Computational Physics 297, pp. 340–356.

Quadros, William Roshan (2014). “LayTracks3D: A New Approach to Meshing General Solids using Medial
Axis Transform”. In: Procedia Engineering. 23rd International Meshing Roundtable (IMR23) 82, pp. 72–87.

117

Ruiz-Gironés, E. and J. Sarrate (2010a). “Generation of structured hexahedral meshes in volumes with holes”.
In: Finite Elements in Analysis and Design 46.10, pp. 792–804.

— (2010b). “Generation of structured meshes in multiply connected surfaces using submapping”. In: Ad-
vances in Engineering Software 41.2, pp. 379–387.

Ruiz-Gironés, Eloi, Xevi Roca, and Josep Sarrate (2009). “A New Procedure to Compute Imprints in Multi-
sweeping Algorithms”. In: Proceedings of the 18th International Meshing Roundtable. Ed. by Brett W. Clark.
Berlin, Heidelberg: Springer, pp. 281–299.

Sarrate, J., E. Ruiz-Gironés, and X. Roca (2014). “Unstructured and Semi-Structured Hexahedral Mesh Gen-
eration Methods”. In: Computational Technology Reviews 10, pp. 35–64.

Schneiders, R. (1996). “A grid-based algorithm for the generation of hexahedral element meshes”. In: Engi-
neering with Computers 12.3, pp. 168–177.

Schneiders, Robert, R. Schindler, and F. Weiler (1999). “Octree-based Generation of Hexahedral Element
Meshes”. In: Proceedings of the 5th International Meshing Roundtable.

Si, Hang (2015). “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator”. In: ACM Transactions on
Mathematical Software 41.2, 11:1–11:36.

Staten, Matt, Brian Carnes, Corey Mcbride, Clint Stimpson, and Jim Cox (2016). “Mesh Scaling for Affordable
Solution Verification”. In: Procedia Engineering. 25th International Meshing Roundtable 163, pp. 46–58.

Staten, Matthew L. and Steven J. Owen (2010). Parallel octree-based hexahedral mesh generation for eu-
lerian to lagrangian conversion. Report. Library Catalog: digital.library.unt.edu Number: SAND2010-6400
Publisher: Sandia National Laboratories.

Takayama, Kenshi (2019). “Dual Sheet Meshing: An Interactive Approach to Robust Hexahedralization”. In:
Computer Graphics Forum 38.2. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13617, pp. 37–
48.

Tam, T. K. H. and C. G. Armstrong (1991). “2D finite element mesh generation by medial axis subdivision”. In:
Advances in Engineering Software and Workstations 13.5, pp. 313–324.

Toro, Eleuterio (2009). “Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction”.
In: Riemann Solvers and Numerical Methods for Fluid Dynamics.

Valiant, Leslie G. (1990). “A Bridging Model for Parallel Computation”. In: Commun. ACM 33.8, pp. 103–111.
Vartziotis, Dimitris and Joachim Wipper (2012). “Fast smoothing of mixed volume meshes based on the ef-

fective geometric element transformation method”. In: Computer Methods in Applied Mechanics and Engi-
neering 201-204, pp. 65–81.

White, David R., Sunil Saigal, and Steven J. Owen (2004). “CCSweep: automatic decomposition of multi-sweep
volumes”. In: Engineering with Computers 20.3, pp. 222–236.

White, David Roger (1996). Automatic, Quadrilateral and Hexahedral Meshing of Pseudo-Cartesian Geome-
tries Using Virtual Subdivision. Google-Books-ID: p91MtwAACAAJ. Brigham Young University. Department
of Civil and Environmental Engineering. 130 pp.

Whiteley, M., D. White, S. Benzley, and T. Blacker (1996). “Two and three-quarter dimensional meshing facili-
tators”. In: Engineering with Computers 12.3, pp. 144–154.

Wu, Haiyan and Shuming Gao (2014). “Automatic Swept Volume Decomposition based on Sweep Directions
Extraction for Hexahedral Meshing”. In: Procedia Engineering. 23rd International Meshing Roundtable
(IMR23) 82, pp. 136–148.

Yu, Wuyi, Kang Zhang, Shenghua Wan, and Xin Li (2014). “Optimizing polycube domain construction for hex-
ahedral remeshing”. In: Computer-Aided Design. 2013 SIAM Conference on Geometric and Physical Mod-
eling 46, pp. 58–68.

Zhang, Yongjie Jessica (2016). Geometric Modeling and Mesh Generation from Scanned Images. 1 p.
Zienkiewicz, O. C., J. Rojek, R. L. Taylor, and M. Pastor (1998). “Triangles and tetrahedra in explicit dynamic

codes for solids”. In: International Journal for Numerical Methods in Engineering 43.3, pp. 565–583.
Zienkiewicz, O. C., R. L. Taylor, and J. Z. zhu (2013). The Finite Element Method: its Basis and Fundamentals.

Elsevier.

Titre: Construction d’un maillage hexaédrique conforme à partir d’une grille de fractions de
présence: étude et applications

Mots clés: maillage, hexaédrique, intersection de grille, intercode, fractions volumiques, Euler vers
Lagrange

Résumé: Ces travaux abordent le problème de
la génération automatique de maillages hexaé-
driques pour des codes de simulation, à partir d’un
maillage portant des fractions volumiques, c’est-
à-dire dont les mailles peuvent contenir plusieurs
matériaux. La solution proposée doit construire
un maillage hexaédrique dans lequel chaque maille
correspond à un seul matériau, et dont les in-
terfaces entre matériaux doivent former des sur-
faces lisses. D’un point de vue théorique, nous
cherchons à adapter et étendre des solutions ex-
istantes, et à les appliquer sur une large var-
iété d’exemples : certains issus de modèles de
CAO (plaqués sur un maillage pour obtenir des

fractions volumiques), d’autres générés procédu-
ralement et enfin d’autres utilisés dans un rôle
d’intercode, récupérés en sortie de codes de sim-
ulation. Nous définissons une métrique permettant
d’évaluer notre (et d’autres) méthodes, ainsi qu’un
post-traitement pour améliorer ces résultats; nous
introduisons également une méthode de recon-
struction d’interfaces discrètes inspirée de méth-
odes issues du domaine de la visualisation sci-
entifique, et nous proposons un algorithme ap-
pelé ELG avec garantie sur la qualité du maillage,
faisant intervenir des modifications géométriques et
topologiques sur ce maillage.

Title: Construction of a conformal hexahedral mesh from volume fractions: theory and appli-
cations

Keywords: mesh, hexahedral, overlay grid, intercode, volume fractions, Eulerian to Lagrangian

Abstract: This thesis addresses the problem
of the automatic generation of purely hexahedral
meshes for simulation codes when having a mesh
carrying volume fraction data as an input, meaning
that there can be several materials inside one cell.
The proposed approach should create an hexahe-
dral mesh where each cell corresponds to a single
material, and where interfaces between materials
form smooth surfaces. From a theoretical stand-
point, we aim at adapting and extending state-of-
the-art techniques and we apply them on examples,
some classically issued from CAD models (and im-

printed onto a mesh to obtain volume fractions),
some procedurally generated cases and others in
an intercode capacity where we take the results of
a first simulation code to be our inputs. We first de-
fine a metric that allows the evaluation of our (or
others’) results and a method to improve those; we
then introduce a discrete material interface recon-
struction method inspired from the scientific visu-
alization field and finally we present an algorithmic
pipeline, called ELG, that offers a guarantee on the
mesh quality by performing geometrical and topo-
logical mesh adaptation.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

119

	Introduction
	From Euler to Lagrange intercode
	Proposed solution and main contributions
	Manuscript structure

	Hexahedral meshing: definitions and main algorithms
	Notions and definitions
	Meshes and cells
	The classification relation between a mesh and a geometric domain
	Geometric quality of a mesh
	Hexahedral meshing : the issue of dealing with global constraints
	Why use hexahedral meshes?

	State of the art in hex meshing
	Geometry-first
	Automatic full domain hex-meshing

	Cartesian Idealization
	Mesh-first or overlay-grid methods

	Sculpt

	Sculpt evaluation and improvement
	Discrepancy definition and evaluation
	Discrepancy improvement
	Target volume of output cells
	Interface node movements
	Overview of the algorithm to move interface nodes
	Ideal deformation of a single cell

	Volume preservation: some results
	Mesh orientation sensitivity
	Our set of validation examples
	Simulation code output

	Results analysis
	Reloading node position.
	Fuzzy volume fractions.
	Cell contribution error.
	Invalid mesh.

	Geometrical model and voxelated interface reconstruction
	Discrete interface reconstruction
	How to partition voxels, an overview
	Mixed-Integer Programming Formulation
	Simulated Annealing
	Using the Graphcut algorithm

	Our method - Greedy Heuristic
	Comparative study
	Voxel assignment correction - Repartitioning
	Kernighan-Lin
	Fiduccia-Mattheyes

	Geometrical model projection

	Guaranteed quality and topological operations
	Quality-driven mesh projection
	Guarantee by controlled node movement
	Cavity pillowing
	Results

	Mesh refinement for getting usability
	Our user-guided process
	Automatic refinement

	Conclusion and future works
	The current ELG pipeline
	Future works
	Extending pillowing capabilities
	Extending cell size control capabilities
	From graph-based representation to combinatorial maps
	Improving performances and parallel implementation

	Mesh representation using combinatorial maps and a component-based implementation
	A few words about our parallel implementation
	French summary – résumé en français

