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Foreword
There is an ever-growing need to address both energy and environmental issues, prod-
uct of generations of over-exploitation of fossil fuel sources and the increased associated
industries, which represent one of the most beneficial and, at the same time, injurious
aspects of modern times. Solar energy emerges as a renewable and cleaner alternative
energy source, with still a lot of possible room for improvement. Photovoltaic (PV)
technology requires materials with high efficiencies, simple processability, low cost and
abundant availability on Earth. In the effort of developing new generation PV cells,
halide organolead perovskites (HOPs) represent a promising opportunity for incorpo-
rating all these requirements.

The general chemical formula for describing perovskite materials is ABX3, where
the A and B sites are occupied by two cations of different sizes and X is an anion. The
X-site anion coordinates with the B-site cation to form a corner-sharing network of BX6

octahedra, resulting in a three dimensional (3D) framework, in which the A-site cations
are located in its cavities. HOPs are a subclass of ABX3 perovskites, where the A, B and
X sites correspond to an organic cation, lead and an halide ion, respectively. The in-
corporation of organic components in the structure of these HOPs introduce additional
functionalities and structural flexibility that cannot be achieved in purely inorganic
perovskites. After just a decade of material engineering and device optimization, HOP
based solar cells already achieve power conversion efficiencies (PCE) of above 25%.

Despite their huge impact on photovoltaics and other optoelectronic applications,
only a handful of HOPs that have been discovered so far, are available for use, due to
stability requirements in crystal structure formation. The B-site cation is mainly lim-
ited to the group IVA metals lead (Pb) and tin (Sn), with divalent charge, and the X-site
anion is chosen from the halides Cl−, Br− and I−. The resulting BX−3 frameworks can
thus only accommodate the smallest organic cations, such as methylammonium (MA)
and formamidinium (FA), according to the Goldschmidt tolerance factors.

This project focuses on the study of such HOP compounds, namely MAPbBr3,
MAPbI3 FAPbBr3 and FAPbI3; from now on referred to as MAPB, MAPI, FAPB and
FAPI, respectively. For such a purpose, we heavily rely on inelastic neutron scattering
(INS) spectroscopy, as it allows to systematically probe intrinsic properties of these
HOPs, which have not been thoroughly investigated so far.

Purpose of the thesis

The structural and chemical variability of HOPs offers substantial opportunities for
tuning and modulating their physical properties by facile chemical modification. As
a result, besides low cost and low temperature processability, they benefit of various



optoelectronic features such as suitable optical band gap, superb optical absorption
across the visible spectrum, low exciton binding energies and long charge-carrier diffu-
sion lengths. These are the fundamental factors that have allowed such rapid success.
However, while significant progress on perovskite film synthesis and device architecture
engineering has been made, fundamental understanding of these underlying mechanisms
related to charge-carrier dynamics remains scarce. Furthermore, the origin of the soft-
ness that characterizes HOPs and its influence on the charge carrier dynamics is still
lacking a comprehensive understanding and systematic experimental studies.

Study of the lattice dynamics is indeed key in understanding the electron-phonon in-
teractions (EPIs) at play, which are strongly connected to the aforementioned optoelec-
tronic properties. The mobilities of charge-carriers are rather modest when compared
to classical inorganic semiconductors and the phonon scattering mechanism setting
the limit is still under debate. Besides, atomic-level description of these materials is
hindered by the hybridized nature of phonon excitations in the organic and inorganic
sub-lattices, which interact with each other via hydrogen bonding. Furthermore, the
optical phonon modes partially related to the organic cations seem to overlap with
acoustic modes and influence phonon up-conversion efficiencies of the reported hot-
phonon bottleneck effect in HOPs. Measurement of the full phonon spectrum becomes
then important to shine some light on some of these dynamics. Also, HOPs are
known to undergo successive phase transitions as a function of temperature, evolving
typically from a high temperature cubic phase, passing by a tetragonal phase down to
a low temperature orthorhombic symmetry, on cooling. Many important properties of
perovskites are a consequence of these phase transitions and the cooperative behaviour
of the A, B and X components. Although not an original goal of the project, we found
ourselves in the need to perform some temperature-based studies to complete our anal-
ysis.

We address this problems by employing not only INS, but also Raman and Brillouin
spectroscopy, to investigate lattice excitations (i.e. phonons) in the four of the most
technologically relevant HOP compounds. By measuring dispersion curves of acoustic
phonons we give a clear picture of the difference in softness between FA and MA based
compounds and how it relates to their structural stability and their ultralow thermal
conductivities. We also present here an extensive comparison of optical phonon ex-
citations in the four different hybrid compounds, in which we carefully discuss mode
attribution to the respective structural vibrations. In contrast to theoretical expecta-
tion and classical behaviour in standard semiconductors, the phonon modes show no
dispersion, suggesting strong anharmonic behaviour and localization effects. Our results
put into question the validity of the quasi-particle picture used for phonon simulation



and the present understanding of the Fröhlich interaction for carrier mobilities, and
may help solving the apparent paradox of acoustic-like temperature dependence of the
charge-carrier mobilities.

Organization of the thesis

The manuscript is composed by five chapters. In the first, we start by introducing
hybrid perovskites, specifically hybrid organolead halide perovskites (HOP), and the
evolution of perovskite based photovoltaic technology, since its first implementation in
2009, up to nowadays. Then we discuss the structural characteristics of HOPs, their
optoelectronic properties and how these two correlate, not only with each other, but
also with the efficiency of solar cell devices.

In the second chapter we go over the characterization techniques employed to study
our samples, namely neutron, Raman and Brillouin scattering spectroscopy. A big em-
phasis is given to neutron scattering. Then, we introduce the properties of neutrons and
the advantages of neutron scattering in material analysis, its underlying principles are
outlined. We present the main theoretical concepts and results on which our measure-
ments of phonons and analysis are based upon, such as elastic and inelastic scattering
and the response function. The end of the chapter consists on the explanation of the
instrumentation used and experimental setups.

The remaining half of the thesis concerns the obtained results and has been di-
vided in three chapters, regarding the high temperature (i), low temperature (ii) and
temperature-dependent (iii) data:

(i) In the first section we investigate the low frequency structural excitations in the
cubic phases of the four compounds, via neutron scattering and Brillouin spectroscopy.
By measuring dispersion curves of acoustic phonons we are able to present a complete
set of elastic constants for all four compounds and relate them, along with the corre-
sponding sound velocities, to properties such as thermal conductivity and hot carrier
relaxation, which are expected to be enhanced by lattice softness. Our results also
indicate that the charge-carrier mobilities in HOPs are governed by interactions with
optical phonons rather than acoustic ones, supporting previous claims.

(ii) Next, to better understand the electron-phonon interactions at play in the var-
ious optoelectronic properties of these HOPs, the optical phonon spectrum at 5 K
(and up to a certain temperature) has been measured, via both INS and Raman spec-
troscopy. In contrast to theoretical expectation and classical behaviour in standard
semiconductors, the phonon modes show no dispersion, attributed to the anharmonic-
ity and suggesting localization effects. These flat modes appear at energies as low as
2-5 meV, merging with the high part of the acoustic phonon branches. This overlap



could part of the explanation for the relatively low mobilities. The dispersionless nature
of these optical modes also implicates a glassy-like thermal conductivity, important to
the hot-phonon bottleneck effect in HOPs.

(iii) Lastly, we study the temperature behaviour of the four compounds. We fol-
low their temperature phases and we examine how their lattice dynamics evolve with
temperature. Room temperature spectra, both from Raman and INS, reveal strong
phonon overdamping in all momentum space, as a result of intrinsic lattice anhar-
monicity, which becomes overwhelming at temperatures as low as 80-100 K. Raman
response of the lowest frequency mode of each perovskite, as a function of temperature,
highlights a unified picture of the vibrational properties in all the four samples.

We end with the concluding remarks, where we briefly touch on the current state-
of-the-art and the obstacles/routes for improvement.



Resumé
Motivé par les questions environnementales et de l’énergie, les pérovskites hybrides
organo-plombiques (HOP) ont attiré beaucoup d’intérêt dans le domaine des cellules
photovoltäıques. Actuellement, l’état de l’art des cellules solaires HOP est basé sur des
alliages où le méthylammonium (MA) et le formamidinium (FA) sont tous deux présents
dans la même structure et environ 10% sont remplacés par des atomes de rubidium (Rb)
et de césium (Cs), ainsi que un alliage concomitant d’halogènes iode(I)/brome(Br), on
peut atteindre désormais des rendements de conversion de puissance supérieurs à 25.2%.
Ce projet se concentre sur l’étude de plusieurs composés HOP, à savoir MAPbBr3,
MAPbI3, FAPbBr3 et α-FAPbI3; dans ce manuscrit par MAPB, MAPI, FAPB et FAPI,
respectivement. Pour ce faire, nous nous appuyons beaucoup sur la spectroscopie de
diffusion inélastique de neutrons (INS), car elle permet de sonder systématiquement les
propriétés structurales de ces matériaux. Aucune étude systématique n’a été effectuée
précédemment.

La structure spécifique de ces composés de formule générique ABX3 est une struc-
ture péroskite qui consiste en un sous-réseau de PbX3−

6 octaédrique (X = I, Br ou
Cl) à partage de coin, avec une stoechiométrie globale PbX−3 et un sous-réseau de
cations A+ dans les vides cuboctaédriques. Ici, A = Cs, Rb, MA ou FA. Cette vari-
abilité chimique et structurelle des HOP offre de nombreuses possibilités d’ajuster et de
moduler leurs propriétés physiques par modification chimique. En conséquence, outre
leur coût limité de recyclage et leur aptitude au traitement à basse température, ils
bénéficient de diverses caractéristiques optoélectroniques telles que la bande interdite
optique appropriée, une excellente absorption optique dans le spectre visible, de faibles
énergies de liaison de l’exciton et une diffusion importante des porteurs de charge. Ce
sont les facteurs fondamentaux qui ont permis un succès aussi rapide. Cependant,
bien que des progrès significatifs aient été réalisés en matière de synthèse de film de
pérovskite et d’ingénierie d’architecture de dispositifs, la compréhension fondamentale
de ces mécanismes sous-jacents liés à la dynamique des porteurs de charge reste rare.
De plus, l’origine de la faible dureté qui caractérise les HOPs et de son influence sur
la dynamique des porteurs de charge manque encore d’une compréhension globale et
d’études expérimentales systématiques.

En utilisant la diffusion inélastique de neutrons (INS), les dispersions des phonons
acoustiques ont été mesurées autour des principales réflexions de Bragg dans MAPB,
FAPB, MAPI et FAPI. Des expériences complémentaires de diffusion de la lumière de
Brillouin (BLS) ont également été utilisées pour déterminer la vitesse du son dans les
composés à base de brome. Cela nous permet de déterminer les constantes élastiques
qui caractérisent leur structure dans la phase cubique. En prenant la position de



Bragg (200) à titre d’exemple, les modes de phonons acoustiques longitudinaux (LA)
et acoustiques transversaux (TA) ont été mesurés à différentes positions réciproques
Q = (200) + q en unités HKL, avec q le long de [200] en géométrie longitudinale (LA)
et perpendiculaire en géométrie transverse (TA) (pour TA, q est parallèle à [011]). Des
modes de phonons acoustiques sont clairement visibles sur un bruit fond important, qui
résulte d’une diffusion quasi-élastique provenant de la diffusion incohérente des atomes
d’hydrogène présents dans les molécules MA/FA. Tous les spectres de diffusion de neu-
trons de cette thèse ont été décrit en fonction de l’energie, ~ω, et pour chaque vecteur
d’onde Q avec un modèle d’oscillateur harmonique amorti (DHO).

A partir des spectres de neutrons et en faisant varier la distance q jusqu’au point
de Bragg le plus proche, on peut tracer les courbes de dispersion de phonons reliant la
fréquence/énergie ω en fonction de q. Pour les modes acoustiques, la pente de telles
courbes nous donne les vitesses de propagation des phonons, à partir desquelles on
peut obtenir les constantes élastiques correspondantes, via l’expression usuelle suivante
reliant la vitesse du son, V, avec la constante élastique effective, Ceff (ρ est la densité
du matériau): V =

√
Ceff/ρ. Ceff dépend de la direction de propagation en question.

On peut obtenir de Ceff , via certaines combinaisons, le module de Young (C11), la con-
stante élastique transverse (C12) et le module de cisaillement (C44). Ensuite, celles-ci
permettent également de déduire d’autres paramètres structurels tels que le module
d’élasticité isostatique (K) et l’indice d’anisotropie de Zener (A).

De cette façon, nous avons mis en place un ensemble complet fiable de constantes
élastiques, pour la première fois via INS, pour les quatre composés HOP les plus per-
tinents - avec un accent particulier sur FAPI, peu étudié dans la littérature en raison
de son caractère métastable. En fait, cela se reflète par une constante C12 négative et
un module d’élasticité très faible. Néanmoins, nous notons un module de cisaillement
faible C44 ∼4 GPa dans les quatre composés HOP et des paramètres C11 et K qui
diminuent sensiblement avec l’augmentation de la constante de réseau, conduisant à
une image de plus faible élasticité pour les composés à base de FA qu’avec MA.

De plus, on observe dans les HOPs un effet de “goulet d’étranglement des phonons”
(hot phonon bottleneck), un phénomène dans la thermalisation des porteurs de charges
qui consiste en la conversion des phonons acoustiques vers les modes optiques de basse
énergie, qui recycle l’énergie thermique (vibrationnelle). Cela a pour conséquence de
réchauffer les porteurs de charge et de prolonger la durée de vie de porteurs chauds.
Les mesures d’absorption transitoire ultra-rapide révèlent deux étapes du processus de
refroidissement des porteurs. La première est liée à l’émission intrinsèque de phonons
de Fröhlich mentionnée ci-dessous et ne varie pas de manière significative entre les
différentes pérovskites. Lors d’une deuxième étape de refroidissement, la dynamique



porteur chaud-phonon se produit. À la température ambiante, le taux de relaxation
porteur-phonon de la deuxième étape de refroidissement est généralement 3 à 4 fois
plus lent en FAPI, comparé au système MAPB. Ceci est tout à fait compatible avec
l’évolution de C11 et du module d’élasticité isostatique, mettant en relation directe le
phénomène du goulet d’étranglement des phonons et des porteurs chauds dans les HOP
avec leur faible rigidité élastique.

Par ailleurs, les courbes de dispersion des phonons acoustiques mettent également en
évidence une vitesse de groupe sonore systématiquement plus faible dans les échantillons
à base d’iode, ce qui devrait, en théorie, conduire à des mobilités de porteurs de charges
plus faibles. Toutefois, tel n’est pas le cas. En fait, en examinant la corrélation
entre la variation des constantes élastiques et la mobilité des porteurs (déterminée
expérimentalement), ainsi que les études par les résultats d’élargissement de la pho-
toluminescence (PL), il a été déduit que les phonons optiques, plutôt qu’acoustiques,
dominent la diffusion des porteurs et les mobilités près de la température ambiante. En
revanche, cette interprétation n’est pas cohérente avec l’observation d’une dépendance
en fonction de la température de la mobilité de type acoustique, c’est-à-dire µ ∝ T−3/2.
Nous discutons par la suite ce problème à partir de l’étude du spectre complet des
phonons optiques des HOP.

Pour ce faire, nous avons effectué des expériences systématiques d’INS à basse
température, où nous avons mesuré le spectre de phonons optiques au point
R (1/2, 1/2, 3/2) pour la plupart des composés excepté FAPB où il est mesuré au point
M (5/2, 1/2, 0), avec des balayages à Q constant en fonction de l’énergie. Dans ces spec-
tres, nous avons identifié trois gammes d’énergie différentes et rassemblé les modes ou
ensembles de modes de chaque composé en trois catégories (a, b et c). A partir de nos
données expérimentales et en accord avec la littérature, on en déduit les conclusions
suivantes: i) Les modes, a, dans la plage des basses énergies (inférieure à 10 meV) sont
associés aux vibrations du réseau PbX3, principalement des mouvements de bascule-
ment et de flexion. ii) En ce qui concerne la gamme d’énergie intermédiaire, modes b
entre 10 et 20 meV, on observe une série de modes couplés entre les deux sous-réseaux
organiques et inorganiques. Ils présentent donc une nature hautement hybride. iii)
Au-dessus de 20 meV, les modes c optiques sont principalement associés aux mouve-
ments moléculaires, bien qu’il puisse y avoir aussi des contributions inorganiques dans
ces librations des cations, au moins pour les pérovskites contenant du MA. En outre,
avec des mesures dans des directions de haute symétrie (Γ →M or Γ → R) obtenues
avec les spectromètres à trois-axes (TAS) et du facteur de structure dynamique S(q, E)
obtenu avec un spectromètre à temps de vol (ToF), nous observons peu ou pas du tout
de dispersion des modes de phonons optiques (ou ensembles de modes).



Les spectres révèlent un certain nombre de caractéristiques jusqu’au plus basses
énergies. Il a été récemment suggéré que la limite de mobilité imposée par la diffusion
électron-phonon (processus de Fröhlich) est définie par les modes optiques longitudin-
aux (LO) de plus basse énergie (3-20 meV). Par conséquent, la présence de tels modes,
observés systématiquement dans les quatre composés, semble favorisée cette explication
pour la mobilité des porteurs, qui est relativement faible comparée aux semi-conducteurs
inorganiques classiques, tels que Si et GaAs. De plus, il a été suggéré que les modes op-
tiques plats (comme ceux que nous avons observés ici) se mélangent fortement avec les
phonons acoustiques qui les croisent, conduisant à une conductivité thermique vitreuse.
Généralement, une forte hybridation entre phonons est associée à l’anharmonicité. Par
conséquent, non seulement la nature sans dispersion des modes optiques est respons-
able en grande partie du blocage de la propagation des phonons acoustiques, mais aussi
du fort couplage anharmonique acousto-optique. Cet ensemble constitue des facteurs
clés dans l’effet de goulet d’étranglement des phonons dans les HOPs, en facilitant la
conversion acoustique des phonons et en augmentant la durée de vie de la population
des porteurs chauds.

A partir des mesures en fonction de la température, on peut voir que cette an-
harmonicité se manifeste à des températures basses, bien inférieures à la température
ambiante, où les dispositifs optoélectroniques et les cellules solaires sont généralement
utilisés. Ces effets conduisent à un suramortissement plutôt rapide de certains modes
de phonon à des températures aussi basses que 80 K, ce qui rend difficile d’attribuer
correctement la contribution exacte de chaque mode de phonon au spectre global pour
des températures plus élevées. L’amortissement des phonons observé ici semble être
spécialement influencé par la transition tétragonale-orthorhombique, ce qui cadre bien
avec l’affirmation bien établie selon laquelle les transitions découlent du basculement
de la cage PbX3 et de l’ordre d’orientation des molécules organiques, entrâınée par des
instabilités aux points M et R de l’espace réciproque. L’évolution des spectres mon-
tre également l’absence de modes mous particuliers au point M ou R, ce qui signifie
qu’ils ne semblent pas se condenser avec la température et pointant vers une transi-
tion orthorhombique-tétragonale plutôt ordre-désordre. Alors que l’anharmonicité des
pérovskites aux halogénures conduit à des phonons acoustiques basse fréquence, car-
actéristiques d’un réseau pas très rigide, elle se révèle aussi dans les phonons optiques
par un comportement suramorti sur l’ensemble de la zone de Brillouin à la température
ambiante. Le caractère anharmonique prépondérant des phonons optiques spécifiques
aux pérovskites à halogénures est très probablement un point essentiel pour une de-
scription correcte de l’interaction porteurs-phonon de Fröhlich pour cette classe de
semiconducteurs “souples”.



A haute température, aucun mode phonon bien défini n’est observé par INS dans la
gamme mesurée, chaque mode étant suramorti dans tout l’espace réciproque. Nous
avons aussi utilisé la diffusion Raman pour mieux caractérise le comportement en
température des quatre HOP à travers la transition cubique-quadratique qui a lieu à
haute température (typiquement proche de la témpérature ambiante). Les spectres de
la réponse Raman conduisent à la une description similaire de la dynamique structurale
au centre de la zone de Brillouin des quatre composés, tout au long de leur transition
cubique-quadratique. Les phonons sont aussi décrits par une somme de DHO. En parti-
culier la fréquence, ω1, ddu mode observé à plus basse fréquence reste constante avec la
température, comme ce qu’on voit avec l’INS, suggérant à nouveau une transition non
displacive. Dans le même temps, bien que la transition cubique-quadratique soit claire-
ment marquée, elle est moins abrupte dans les échantillons contenant du Br, suggérant
moins d’effets de pré-transitionnels dans ce dernier. De tels effets pré-transitionnels
ont également été observés avec INS dans FAPB avec une tendance à une transition
ferroélastique naissante qui est favorisée par le ramollissement du mode acoustique
transversal associé à C44.

En conclusion, dans ce travail, nous présentons une étude détaillée des excitations
de réseau cristallin (phonons) dans les quatre composés HOP les plus pertinents sur le
plan technologique dans le domaine du photovoltäıque. En mesurant les courbes de dis-
persion des phonons acoustiques, nous donnons une image claire de la faible élasticité.
Nous présentons également ici une comparaison détaillée des excitations optiques dans
les quatre composés différents, dans laquelle nous discutons avec soin de l’attribution
des modes de vibrations structurales respectives. Contrairement aux attentes théoriques
et au comportement classique des composés semi-conducteurs classiques, les modes de
phonon ne montrent pas ou peu de dispersion, ce qui suggère un comportement anhar-
monique très fort et des effets de localisation. Ce comportement remet en question la
validité de l’image de quasi-particule pour décrire les phonons utilisée dans l’interaction
des porteurs de charges avec le réseau. Nos résultats mettent également en évidence le
rôle du fort couplage anharmonique acousto-optique (responsable de la faible élasticité)
dans la conductivité thermique faible, comme dans des phases vitreuses (glassy like) et
l’effet de goulet d’étranglement des phonons dans les HOP.
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Voc open-circuit voltage

BLS brillouin light scattering

BZ Brillouin zone

CB conduction band
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FA formamidinium

FF fill-factor

HOP halide organolead perovskites

HTL hole transporting layer

INS inelastic neutron scattering

LA longitudinal acoustic

LO longitudinal optical

MA methylammonium

PCE power conversion efficiency

PL photoluminescence

PV photovoltaic

QE quasi-elastic

RT room temperature

TA transverse acoustic

TAS triple-axis spectrometer

TO transverse optical
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ZB zone-boundary
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λ wavelength, Å
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bcoh | binc scattering length, fm

Cv specific heat, J/mol·K
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h | ~ Planck constant | reduced Planck constant, J·s or eV·s

LD diffusion length, nm
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Tc transition temperature, K
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Chapter 1

Hybrid halide perovskites and
photovoltaics

In this initial chapter, we will cover the implementation of hybrid halide perovskites
in photovoltaic (PV) devices and their rapid evolution since then, up to the current
state-of-the-art. Moreover, we introduce the general structural and optoelectronic
properties of halide perovksites systems (e.g. lattice dynamics, charge and thermal
transport, phase transitions) and how they correlate with each other and device per-
formance.

1



1.1 History of perovskites
The origin of perovskite solar cells can be traced back to 1839, when a German scien-
tist, Gustav Rose, during a trip to Russia, discovered a new calcium titanate-based
mineral in the Ural Mountains, which was named “perovskite” after the Russian
mineralogist Lev von Perovski [11]. Nowadays it applies as a description of the class
of compounds sharing the same general stoichiometry and connectivity found in
the mineral CaTiO3, being that the terms “perovskite” and “perovskite structure”
are often used interchangeably. This structure was first described by Victor Gold-
schmidt in 1926, in his work on tolerance factors [12], where the rules that govern
the formation of such crystals were formulated.

Approximately half a century later, in 1893, the first series of synthetic per-
ovskites, based on caesium and lead, was reported [13]. Unlike the naturally oc-
curring mineral, these were prepared by a simple reaction of PbX2 and CsX salts
in aqueous solutions, and in which Wells et al. introduced halides in the X sites.
Their RT tetragonal/orthorhombic and high-temperature cubic perovskite phases
were later confirmed by X-ray diffraction [14, 15].

Meanwhile, in the start of the 1940s, barium titanate BaTiO3, an oxide per-
ovskite, had been discovered from doping studies of TiO2 with BaO [16–20] and
soon after the first detailed observation of its crystal structure was reported from
Helen Megaw [21]. Research and development related to oxide perovskites flour-
ished, leading to the introduction of these materials in the fabrication of various
products, such as fuel cells, glass-ceramic articles, catalysts, gas sensors, heating
elements, lasers and superconducting devices, in addition to increasingly popular
multilayer capacitors [22–26].

In 1978, D. Weber at the University of Stuttgart in Germany developed the
first organic-inorganic halide perovskite, in which methylammonium ions (MA) re-
placed the caesium cations (Cs) in the original metal halide compound synthesized
by Wells [27, 28]. However, only in the early nineties, did the transition to perovskite
optoelectronics happened. In a series of high profile papers, Mitzi and co-workers
thoroughly described the optoelectronic properties of hybrid halide perovskites, em-
phasizing the opportunity of tuning the electrical properties by inserting an organic
modulation layer [29, 30]. As the unique optical and electronic properties of per-
ovskites became increasingly apparent, researchers began finding applications for
halide perovskites as active layer in light emitting diodes (LED) and as semicon-
ducting channels in thin film field-effect transistors (TFTs) [31–36].

As of today, it is their recent success as low-cost, tunable light absorbers in next-
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generation PVs that is propelling interest in halide organolead perovskitess (HOPs).
Their three-dimensional (3D) structures enabled the first low-cost PV components
to be fabricated with power conversion efficiencys (PCEs) that have started to rival
with the previous established technologies.

1.1.1 Perovskite based photovoltaics
Despite the long history of general research in perovskite materials, applying the
materials for PV usage only took place very recently, having took off ever since.
From the NREL efficiency chart in Figure 1.1, it is obvious the dramatic rise in
efficiency that perovskite based solar cells have seen, and in such a relatively short
period of time.

It is widely recognized that the first peer-reviewed perovskite solar cell (wwwwww)
paper was produced by Tsutomu Miyasaka and his co-workers in 2009 [37]. The de-
vice based on a dye-sensitized solar cell (DSSC) architecture using liquid electrolyte,
consisted of MAPbBr3 and MAPbI3 nanocrystalline self-assembled on mesoporous
TiO2 films, and yielded a conversion efficiency of 3.8% (MAPbI3/TiO2) (Fig. 1.2,
left side). However, the redox-active liquid electrolyte used in the titania scaffold
caused rapid perovskite degradation. With some adjustments in perovskite coating

//

Figure 1.1: NREL solar cell efficiency chart (October 2019). The most recent world record for each
technology is highlighted along the right edge in a flag that contains the efficiency and the symbol
of the technology.
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Figure 1.2: Different PSC architectures adopted since the first published report in 2009.

solution concentration, post-annealing conditions and TiO2 surface modification, in
2011 Park et al. were able to improve efficiency to 6.5% PCE [38], although still
using the same dye-sensitized concept.

A breakthrough came in 2012, with the first solid-state perovskite solar cell
devices [39, 40], whence it was realized that the perovskite did not require the meso-
porous TiO2 layer in order to transport electrons. By introducing a stabilizing hole
conductor spiro-OMeTAD, Nam-Gyn Park, Michael Gratzel et al. reported a 9.7%
PCE [40], but slightly higher efficiencies (10.9%) were attained by Henry Snaith and
his co-workers by additionally replacing the mesoporous TiO2 with an inert Al2O3

scaffold [39] (Figure 1.2, center). This also led to the hypothesis that a scaffold is
not needed for electron extraction, which was later proved correct. The realisation
was then closely followed by a demonstration that the perovskite itself could also
transport holes, as well as electrons [41]. Simple planar heterojunction solar cells,
with no mesoporous scaffold (Fig. 1.2, right side), yielding PCEs above 10% were
achieved soon after [42–44]. It should be noted that, nowadays, the line between
planar and mesoscopic cell architectures is often difficult to draw. On one hand, the
porous scaffolds in mesoscopic devices are much thinner than in initial designs. On
the other hand, planar embodiments frequently employ nanocrystalline oxide films
as an electron capture layer and the transparent electrodes are themselves highly
corrugated. Despite the simpler structure of planar PSCs, designs that incorporate a
mesoscopic scaffold still yield slightly higher efficiencies, mostly due to the improved
charge collection.

The barrier of 20% was eventually surpassed in 2015, by a South Korea
team [45]. Yang et al. achieved an efficiency of 20.2% using FAPbI3, mostly due
to its broader optical absorption as compared to MAPbI3. Thereafter, a few others
reported PCEs of >20% [46–52], which were achieved by tailoring the proportions of
MA, FA, I, and Br to improve electronic properties. Since then, a lot of perovskite
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solar cell research has been carried out all over the world, especially in Japan, South
Korea, England, Switzerland, China, Spain and U.S., and as of today, the record
stands at 25.2% for all-perosvkite based devices [53].
Currently, the state of the art of HOP solar cells is mainly based on alloys where
methylammonium (MA) and formamidinium (FA) are both present in the same
structure and ca. 10% are replaced by rubidium (Rb) and caesium (Cs) atoms, to-
gether with concomitant alloying of iodide (I)/bromide (Br) halogens [49]. Most pla-
nar PSCs are based on a transparent conducting oxide/ETL/perovskite/HTL/metal
structure, where ETL and HTL refer to electron-transport and hole-transport lay-
ers respectively. In the so-called ’inverted’ architecture, ETL and HTL layers po-
sitions are inverted. These HOP solar cell architectures exhibit somewhat lower
efficiencies [54] but are less prone to hysteresis and may be a good alternative
for monolithic HOP/Si tandem solar cells [55]. Typical hole-transport layers in-
clude Spiro-OMeTAD or PEDOT:PSS, and typical electron-transport layers in-
clude TiO2 or SnO2. In the case of mesoscopic architectures, a TiO2 or Al2O3

scaffold is incorporated in the ETL layer (e.g. glass/fluorine-doped ITO/compact
TiO2/mesoporous TiO2/perovskite/spiro-OMeTAD/Au). These architectures are
exemplified in Fig. 1.2.

1.2 Structure Overview
Perovskite lends its name to the class of compounds that adopts the same ABO3

three-dimensional (3D) structural framework as CaTiO3. As illustrated in Fig. 1.3,
the basic ABX3 HOP structure is rather simple, consisting of a corner-sharing net-
work of BX6 octahedra (i.e., BX3), with the “A” cations occupying 12-fold coordi-
nated voids within the cubo-octahedral cavity. In an ideal cubic unit cell, ion A sits
at cube corner positions (0, 0, 0); ion “B” sits at body center position (1/2, 1/2,
1/2) and ion “X” sits at face centered positions (1/2, 1/2, 0). However, deviations
from cubic symmetry can result from several factors, the first being size effects.

The Goldschmidt tolerance factor t [12], can be used to predict the stability of
3D perovskite structures given the ionic radii of components A(RA), B (RB), and X
(RX):

t = RA +RX√
2(RB +RX)

(1.1)

Empirically, the majority of 3D HOPs form in the approximate range 0.81 6 t 6 1.0.
A tolerance coefficient of 1.0 indicates the formation of an ideal ABX3-type per-
ovskite having a cubic crystal structure. If the tolerance coefficient is between 0.9

5



X

X

X X

X

X

A

B

B

B

B

BBB

B

B

B

A
X

A
X

X X

X

X

A

A

A

A

A

A

Equivalent structures

Figure 1.3: A generic perovskite crystal structure of the form ABX3. Note that the two structures
are equivalent – the left-hand structure is drawn so that atom B is at the (0, 0, 0) position while
the right-hand structure is drawn so that atom (or molecule) A is at the (0, 0, 0) position. Also
note that the lines are a guide to represent crystal orientation rather than bonding patterns.

and 1.0, the perovskite will form a cubic crystal structure. In the case of a t between
0.80 and 0.89, a distorted perovskite structure with an orthorhombic, tetragonal, or
rhombohedral crystal structure is most likely to be formed. Whereas, if the value of
t is less than 0.8, then the A cation is too small and a non-perovskite structure will
form. A second constraint known as the octahedral factor, given by µ = RB/RX

and can be used to estimate the stability of the BX6 octahedra. For a value in the
range of 0.44 6 µ 6 0.9, the metal halide perovskite has been found to be stable.

Cubic symmetry provides optimum electronic properties due to a high degree of
ionic bonding. However, on a number of occasions, the perovskites end up as dis-
torted variants of the ideal structure. In fact, even the CaTiO3 mineral, is pseudo-
cubic due to tilting of the octahedra caused by the mismatch of crystal components
outside of the ideal tolerance range. This is one of the factors involved in a defin-
ing characteristic of general perovskite structure: phase transitions. HOPs have a
propensity to undergo a series of crystallographic phase transitions [56–58], that
can be modulated by temperature, pressure, and/or chemistry, the first evidence of
which came from the X-ray investigations from Moller above mentioned, on CsPbCl3
and CsPbBr3 [14, 15]. The phase transitions are thermodynamically favoured, i.e.
the symmetry of perovskites decreases with temperature, starting with the highest
symmetry cubic phase (Pm3̄m), with sequential transitions lowering this symmetry
through octahedral rotations, typically passing by a tetragonal phase down to the
low temperature orthorhombic phase1.

Using t = 1 in equation 1.1, and essentially the largest values for RB and RX

(i.e., Shannon ionic radii RPb = 1.19 Å and RI = 2.20 Å) [59], the limit on RA is
found to be approximately 2.6 Å for traditional BX3 - frameworks with B = diva-

1More on phase transitions in section 1.3.2
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Figure 1.4: Tolerance factor of APbI3 perovskite with A cations that are too small (Na, K, Rb),
established (Cs, MA, FA), or too large [imidazolium (IA), ethylamine (EA), guanidinium (GA)].
The inset images depict the cation structures. Empirically, perovskites with a tolerance factor
between 0.8 and 1.0 (dotted lines) show a photoactive black phase (solid circles) as opposed to
nonphotoactive phases (open circles). Reprinted from [1].

lent metal and X = halogen. Besides ionic radii constraints, charge balance must
also be achieved; that is, if the “A” cation is monovalent, then the “B” cation
must be divalent if “X” is a halogen and all sites are fully occupied. So in fact,
only three A cations known to date are able to stabilize the perovskite structure
with heavy halides, namely caesium (Cs+), methylammonium (MA+) and formami-
dinium (FA+) (Fig. 1.4). Therefore, typical organic-inorganic halide perovkites will
be composed of a combination of the following elements:

· A = An organic cation - MA+ or FA+

· B = A big inorganic cation - usually lead (Pb+
2 )

· X3 = A slightly smaller halogen anion - usually chloride (Cl−), bromide (Br−) or
iodide (I−)

Aside from a clear difference in A species, inorganic versus organic, there is also
a change in symmetry of the A site component from spherical (inorganic) to non-
spherical (organic), which is particularly important in terms of orientational disorder
and polarization.

Many researchers have used such conditional parameters to determine whether a
combination of several ions can form a stable perovskite structure. Different types of
perovkites alloys, i.e. mixed A-site(A1−xA

′
xBX3), B-site (AB1−xB

′
xX3) and halide X

(ABX3−xX
′
x), and combinations of those have all been explored to improve not only

7



material stability but also optical and electronic properties. The ability to modify
the various components, that comprise the three lattice positions A, B and X, in
a vast number of permutations, provides a useful parameter not only for space for
engineering structure-property relationships, but also for facilitating development of
multifunctional compounds with tunable physical, chemical, optical, and electronic
properties. As a result, the range of electrical properties of perovskites is probably
the widest physical property exhibited by a single class of material2.

1.3 Structural stability and phase transitions

1.3.1 Born’s criteria for stability
The fundamental understanding of the conditions of mechanical stability of un-
stressed crystalline structures were first tackled thoroughly by Max Born and his
co-authors. In his 1954 book [60], the generic requirements for elastic stability of
crystal lattices have been laid down and nowadays the corresponding equations are
often called the “Born stability criteria”.

The elastic behaviour of a lattice are described by its matrix of second-order
elastic constants

Cij = 1
V0

(
∂2E

∂εi∂εj

)
(1.2)

where E is the energy of the crystal, V0 its equilibrium volume and ε denotes strain.
This elastic matrix (also called stiffness matrix) has a 6 × 6 size, is symmetric and
it is composed of 21 independent components. The crystal class of the material
considered yields additional symmetry constraints, further reducing the number of
independent elastic constants.

For a lattice to be stable (i) all its phonon modes need to have positive fre-
quencies for all wave vectors (dynamical stability), and (ii) the free energy must be
represented by a positive defined quadratic form (elastic stability criterion). From
these set of prerequisites, one can deduce some necessary and sufficient elastic sta-
bility conditions for the three more relevant crystallographic systems for the present
work.

Cubic system

The cubic crystal system has the simplest form of elastic matrix, with only 3 inde-
pendent constants: C11, C12 and C44. The three Born stability criteria for the cubic

2These will be discussed in section 1.4
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system are then the following

C11 − C12 > 0 ; C11 + 2C12 > 0 ; C44 > 0 (1.3)

The first condition can be also equivalently stated as C11 > |C12|.

Tetragonal system

Crystals of the tetragonal (I) class (4/mmm) have 6 independent elastic constants.
One derives the four necessary and sufficient conditions for elastic stability C11 > |C12| ; 2C2

13 < C33(C11 + C12)
C44 > 0 ;C66 > 0

(1.4)

The tetragonal (II) class (4/m) features an extra elastic constant, C16, bringing the
total of independent Cij’s to 7 and consequently, the necessary and sufficient Born
stability criteria for tetragonal (II) class slightly change to

 C11 > |C12| ; 2C2
13 < C33(C11 + C12)

C44 > 0 ; 2C2
16 < C66(C11 − C12)

(1.5)

Orthorhombic system

Finally, the stiffness matrix for an orthorhombic crystal has 9 constants and no
relationships between them. The necessary and sufficient Born criteria for an or-
thorhombic system are

C11 > 0 ; C11C22 > C2
12

C11C22C33 + 2C12C13C23

−C11C
2
23 − C22C

2
13 − C33C

2
12 > 0

C44 > 0 ;C55 > 0 ; C66 > 0

(1.6)

The conditions obtained are not all linear, but polynomial functions of the elastic
constants (because the largest non-diagonal block in the stiffness matrix has a 3 x
3 size and all coefficients are independent).

1.3.2 Structural phase transitions
A phase transition can be driven by many parameters - temperature, pressure, chem-
ical composition, magnetic or electric field, etc. If the driving parameter is tempera-
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ture, the high-temperature phase is almost always more disordered, i.e. has a higher
symmetry than the low-temperature phase. In such cases, phase transitions entail a
change in the entropy of the system. That change can be either continuous or dis-
continuous. In the first case, the phase transition is continuous across the transition
temperature (or other transition parameter). The thermodynamic quantities are
continuous, but their first derivatives are discontinuous. In particular, the specific
heat has a pronounced anomaly and the thermal expansion coefficient has a step
at the transition. In the latter case, the phase transition is accompanied by release
of heat (latent heat), and all the other thermodynamic quantities (internal energy,
entropy, enthalpy, volume, etc.) are discontinuous as well. Such a phase transition
is known as first-order transition.

Symmetry classification

The term distortive covers all the cases where the phases of a crystal are regarded
as derived from a certain super-group symmetry called the prototype [61], which
is the highest conceivable crystallographic symmetry from which a given phase can
result by a small distortion. Phase transitions in this classification are therefore
not always between two consecutive phases, but between the prototype and the
phase under consideration. All phase transitions in crystals can be divided into two
categories: isomorphous phase transtitions and non-isomorphous phase transtitions.
In the former, there is no change in the space-group symmetry of the crystal. In
a non-isomorphous phase transition the change of space-group symmetry can be
either nonferroic or ferroic. In a non-ferroic phase transition there is a change in
only the translational symmetry, but no change in the point-group symmetry [62].
Ferroic phase transitions involve a change of the point-group symmetry with or
without a change of the translational symmetry. If there is a change of the point-
group symmetry but no change of the crystal system the phase transition is defined
as non-ferroelastic. A change of crystal system becomes a necessary as well as a
sufficient condition for a phase transition to be called ferroelastic [63].

Order-disorder phase transitions

In the simplest case, an order-disorder phase transition occurs when the low tem-
perature phase of a system shows a regular (alternating) pattern of atoms with
long-range correlations, but the high-temperature phase has atoms arranged ran-
domly with no long-range correlation. As a measure of long-range correlation one
defines the order parameter η. This is usually normalised such that it is unity for a
maximally ordered state and zero for a totally disordered state. This can be under-
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stood most easily in the case of an AB alloy, for example, in which the structure can
be divided into two sub-lattices α and β. In such a framework all A atoms reside
on α sites and all B atoms reside on β sites, in the ordered ground state. As the
temperature increases, the phase becomes progressively disordered, with more and
more A atoms moving to the B sub-lattice and vice versa until, at the transition
temperature (Tc), the disordering becomes complete, with the A and B atoms dis-
tributed equally over both sub-lattices. At this point, the two sub-lattices become
indistinguishable, the long range order disappears, and the structure becomes a new
one.

Displacive phase transitions

Displacive phase transitions are, as the name suggests, transitions driven by the
continuous displacements of atoms or ions. Naturally, the relevant phonon modes
will be displacive, i.e. in displacive phase transitions the modes that drive the tran-
sitions are the same phonon modes driving the lattice dynamics. However, we are
discussing very different timescales: phase transitions typically occur in a matter
of seconds, whereas typical phonon frequencies are in the THz range. Nevertheless,
most displacive phase transitions have a dynamical character, and are caused by
softening and “freezing” of a particular phonon. This means that the frequency of a
particular phonon - either an optical zone-center (ZC) phonon or an acoustic zone-
boundary (ZB) phonon - starts to decrease as the phase transition is approached (the
phonon “softens”), until the frequency reaches zero at the phase transition. At this
point, the phonon is “frozen”, i.e., it is no longer dynamical. It has, in fact, trans-
formed into a static displacement pattern - exactly the mode we need to describe
a symmetry lowering through the phase transition. Close to the phase transition,
the phonons become highly anharmonic at the critical point Brillouin zone, but the
crystal as a whole remains rather harmonic, and the thermal expansion anomalies
are typically small. Below the phase transition, the quasi-harmonic character of all
lattice vibrations is restored through one the following ways:

· ZC phonons: in this case, the optical ZC phonon softens completely at the phase
transition, and then hardens again below it, as the system finds a new dynamical
equilibrium around the distorted structure. The periodicity of the structure is
unchanged through the phase transition.

· ZB phonons: When the distortion is driven by a ZB phonon, the distorted
structure will have a larger unit cell (the translational symmetry is broken).
The ZB point will then “fold” to the new ZC, and the soft phonon will harden
below the phase transition to become a new ZC phonon.
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Cubic Tetragonal Orthorhombic

Figure 1.5: Illustration of the possible crystal structures of HOPs.

1.3.3 Phase transitions in HOPs
HOPs typically assume one of three lattice structures: cubic, tetragonal and or-
thorhombic. These are illustrated in Fig. 1.5. The displacements of the A- and
B-sites, and the tilting of the BX6 octahedral units are the primary factors that
cause structural distortions [64, 65]. As the octahedral tilting usually has a much
greater effect on lattice parameters, it has been used to classify the allowed sym-
metry changes of perovskites [66]. For HOPs in which the X-sites are halides, it is
apparent that their octahedral tiltings are similar to those in pure inorganic per-
ovskites. Inevitably, the much larger X-sites in HOPs offer additional space for the
octahedra to distort. In some cases, adjacent octahedra can even distort along the
same orientation, adding new tilting possibilities that are inaccessible in perovskite
oxides [67, 68]. In addition to the octahedral tilting of the B-sites, the displace-
ments of the A-sites and the dynamic motions of the A-sites and/or X-sites need
to be taken into account for the symmetry description of HOPs. The displace-
ments usually involve off-centre motions, although the situation is complicated by
the presence of organic cations rather than single atoms on the A-sites. The dynamic
motion of the organic A-site (occasionally also occurring on the X-site) is defined
as stochastic, and switching from dynamic disorder to frozen orientations can in-
duce symmetry changes, as we explained. Free MA and FA cations do not have the
symmetry required for the cubic and tetragonal phases and, hence, often have to
be orientationally disordered to stabilize those particular symmetries [69, 70]. The
rotation of the A-site organic amine cations is more restricted in the lowest temper-
ature phases of each compound, rotating only around the C–N axis, if at all [71].
In contrast to their oxide counterparts, the MA and FA cations interact with the
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perovskite framework through N–H· · · I hydrogen bonding, in addition to the elec-
trostatic force, which consequently affects their phase transitions, octahedral tilting
and disorder.

Transition sequences

A general view of the temperature-dependent structures is given in Fig. 1.6. MAPbI3

and MAPbBr3 have been reported to undergo a phase transition from an orthorhom-
bic (Pnma) to a tetragonal structure (I4/mcm) between 140 and 165 K. A fur-
ther phase transition to the cubic phase (Pm3̄m) follows at higher temperatures at
∼330 K for MAPbI3 and ∼240 K for MAPbBr3 [56, 57, 72]. In fact, MAPbBr3

shows an additional intermediate tetragonal (P4/mmm) phase between 145-155 K.
FAPbBr3 undergoes the same sequence of phase transitions but these occur be-
tween 275-250 K (cubic to tetragonal) and 150-125 K (tetragonal to orthorhombic)
[73]. Now, FAPbI3 is a more complicated case where there is still some debate
about its structural phases. FAPbI3 crystallizes in a black α phase at high tem-
peratures, which then tends to spontaneously transform, with time, to a more sta-
ble, non-perovskite, yellow δ-phase structure (hexagonal)3 [74, 75]. There seems
to be an agreement that FAPI undergoes a α-β transition (2nd order) at around
150 K [70, 76–78]. Here, the α and β phases are either cubic (Pm3m) [74, 77, 79] and
trigonal (possibly P4/mbm [77]), or trigonal (P3m1) and trigonal (P3) [70, 76, 78].
Nevertheless, for experimental purposes, we have assumed a pseudo-cubic phase
structure. At lower temperatures it has been further postulated that a further γ
phase exists, although as of today, no structure has been determined [70, 78].

In general, the high-temperature phase transitions are of second-order, and the

MAPbBr3: Orthorhombic Tetragonal ITetragonal II Cubic
~145 K ~155 K ~235 K

MAPbI3: Orthorhombic Tetragonal I Cubic
~160 K ~330 K

FAPbBr3: Orthorhombic Tetragonal I Cubic
~260 K~140 K

FAPbI3
~150 K

Trigonal Cubic/Trigonal : ??( )
<100 K

Figure 1.6: Simplified overview of the structural phases adopted at different temperatures by
MAPbBr3, MAPbI3, FAPbBr3 and FAPbI3.

3This will pose some complications for the measurements (see section 2.6 in chapter 2)
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low-temperature transition to the orthorhombic phase below 140–160 K, more so for
MA- than FA-based compounds, is typically associated with larger energetic shifts
as it marks a strong reduction in the extent of rotational freedom of the organic
cation [66, 80–84].

The exact mechanisms of the above mentioned phase transitions are an extensive
topic and their correlations with the optoelectronic properties of HOPs is still a sub-
ject of debate. The temperature behaviour and phase transitions of the compounds
in question are addressed in chapter 5, where temperature-dependent measurements
from both neutron and Raman spectroscopy are presented.

1.3.4 Lattice vibrations
In a lattice structure, atoms can oscillate around their equilibrium positions as a
result of thermal energy. This leads to lattice vibrations. The position of the mov-
ing ion r(R) deviates from its average value R and we may write at any given time:
r(R) = R + u(R), where u(R) is the displacement from equilibrium of the ion. For
the description of the vibratory motions, a set of coordinates can therefore be in-
troduced, which are are linear functions of the displacements of the particles and
vary independently of one another, each as a sinusoidal function of time. Such co-
ordinates are known as the normal coordinates of the system and the corresponding
motions the normal vibrations (or modes).

In many ways, the vibratory system is completely equivalent to a collection of
independent simple harmonic oscillators with respective frequencies. Three major
approximations are made:

· It is assumed that displacements of atoms are small, i.e. u � a , where a is a
lattice parameter.

· Forces acting on atoms are assumed to be harmonic, i.e. proportional to the
displacements: F = −Cu. This is the same approximation which is used to
describe a harmonic oscillator.

· It is assumed that the adiabatic approximation is valid – electrons follow atoms,
so that the nature of bond is not affected by vibrations.

One-dimensional lattice

Consider, first, a monoatomic one-dimensional crystal lattice within the harmonic
approximation (Fig. 1.7.a). One might think about the atoms in the lattice as
interconnected by elastic springs. Therefore, the force exerted on n-th atom in the
lattice is given by

Fn = C(un+1 − un) + C(un−1 − un) (1.7)
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where C is the interatomic force constant between nearest-neighbour planes which
will differ for longitudinal and transverse waves. The equation of motion of the n-th
atom is

M
d2un
dt2

= C(un+1 + un−1 − 2un) (1.8)

where M is the mass of the atom. A solution of the type

un = Aei(qxn−ωt) (1.9)

will lead us to the dispersion relation for the frequency ω(q)

ω =
√

4C
M

∣∣∣∣sin1
2qa

∣∣∣∣ (1.10)

The solutions describing the actual ion displacements are given by the real or imag-
inary parts of Eq. 1.9, i.e.

un ∝

 cos(qn− ωt)
sin(qn− ωt)

(1.11)

The solutions of Eq. 1.11 describe waves propagating along the lattice chain with
group velocity

vg = dω

dq
(1.12)

and the phase velocity. i.e., propagation velocity of the plane wave, is defined by

vp = w

q
(1.13)

In other words, the group velocity of a wave is the velocity with which the overall
envelope shape of the wave’s amplitudes (known as the modulation or envelope
of the wave) propagates through space, while the phase velocity is the velocity at
which the phase of any one frequency component within the envelope travels. In
Fig. 1.7.c we show a schematic of a wave packet and the envelope of the wave
packet4. The frequency ω is plotted against the wave vector q yielding the so-called
dispersion curve, illustrated in Fig. 1.8.a. The significant range where q will have
independent values is limited to the first Brillouin zone, i.e. −π/a 6 q 6 +π/a. At
the boundaries qmax = ±π/a of the Brillouin zone the slope of the dispersion curve
is zero, meaning the solution does not represent a travelling wave but a standing
one. This situation is equivalent to Bragg reflection of x-rays: when the Bragg

4Here is a good animation illustrating this relationship well, where the red square moves with
the phase velocity, and the green circles propagate with the group velocity.
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condition is satisfied a travelling wave cannot propagate in a lattice, but through
successive reflections back and forth, a standing wave is set up5. The critical value
qmax = ±π/a satisfies the Bragg condition.

One-dimensional lattice with a basis

Considering now a one-dimensional lattice with two non-equivalent atoms in a unit
cell (Fig. 1.7.b), while treating the atom motions in an similar way, we obtain two
couple dynamical equations, i.e.

M1
d2un

dt2
= C(un+1 + un−1 − 2un)

M2
d2un

dt2
= C(un+2 + un − 2un+1)

(1.14)

Searching again for solutions, now for the two atoms, of the form un

un+1

 =
 A1e

iqna

A2e
iq(n+1)a

 e−iωt (1.15)

we get

ω2 = C
( 1
M1

+ 1
M2

)
± C

√( 1
M1

+ 1
M2

)2
− 4sin2qa

M1M2
(1.16)

which yields two different solutions corresponding to two different dispersion curves,
shown in Fig. 1.8.b. The lower curve is called the acoustic branch, while the upper
curve is called the optical branch. The acoustic branch corresponds to ω = 0 at
the Brillouin ZC, i.e. q = 0. Then with increasing q the frequency increases in a
linear fashion. This branch is called acoustic: it corresponds to elastic waves and

(a)

(b)

(c)

Figure 1.7: One dimension (a) monoatomic and (b) diatomic crystal lattices. The atoms are shown
in their undisplaced positions, connected by a force constant C and their displacements are denoted
by un−1, un, un+1. The lattice constant is a. (c) Schematic illustration of a wave packet (blue line)
and the envelope of the wave packet (red dotted line). The envelope moves at the group velocity.

5The animated example of a standing wave.
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(a) (b)

Figure 1.8: Illustration of a typical dispersion relation for a (a) monoatomic and (b) diatomic
linear chains. The lower branch in (b) is the acoustic branch (same as in (a) and the upper one is
the optical branch.
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Figure 1.9: Optical and acoustic waves in a diatomic linear lattice, illustrated by the particle
displacements for the two modes at the same wavelength.

sound propagation. Eventually this curve saturates at the edge of the BZ. On the
other hand, the optical branch has a non-zero frequency at zero q and it does not
change much with q. The distinction between the acoustic and optical branches
of lattice vibrations can be seen most clearly by comparing them at q = 0 (i.e.
infinite wavelength). In the acoustic mode, the two atoms in the cell have the same
amplitude and the phase, therefore, the molecule oscillates as a rigid body. For
optical modes, the centre of mass of the cell remains static and the two atoms move
out of phase, as shown in Fig. 1.9. Their vibrational frequency is such that they can
interact with infra-red radiation, hence the name optical.

Three-dimensional lattice

These considerations can be extrapolated to the three-dimensional lattice. Here is
convenient to adopt a matrix notation, writing the equation of motion as

M
d2un
dt2

(R) = −
∑
R′
D(R−R′)u(R′) (1.17)

where D(R−R′) is the second derivative of the associated harmonic potential energy
U , with respect to the displacement of ions at R and R’ at equilibrium. Once again,
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Figure 1.10: Dispersion curves for the NiO compound [2]. Note that the two transverse branches
are degenerate in the [100] and [111] directions.

we are seeking solutions to the equations of motion in the form of simple plane waves

u(R) = εei(q·R−ωt) (1.18)

Here, ε is the polarization vector of the normal mode and which describes the di-
rection in which the ion (or wave) moves. If we substitute Eq. 1.18 into Eq. 1.17 we
find a solution whenever ε is an eigenvector of

Mω2ε = D(q)ε (1.19)

where D(q) is know as the dynamical matrix and is given by

D(q) =
∑
R

D(R)eiq·R (1.20)

For each value of q there are 3N normal modes, where N is the number of ions in
the unit cell, and the frequencies ωs(q)(s = 1, ..., 3N) are all functions of q. The
indexing of the branches follows from the number of degrees of freedom of the atoms.
With N atoms in the primitive cell and p primitive cells, there are Np atoms. Each
atom has three degrees of freedom, one for each of the x, y, z directions, making a
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total of 3Np degrees of freedom for the crystal. The number of allowed q values in
a single branch is just p for one Brillouin zone. Acoustic branches account for 3p
modes and the remaining (3N – 3)p degrees of freedom are accommodated by the
optical branches. The acoustic branches may be classified, by their polarizations
as transverse acoustic (TA1 and TA2), and longitudinal acoustic (LA). The optical
branches can also be classified as longitudinal or transverse when q lies along a
high symmetry direction, and one speaks of LO and TO branches. A representative
example of such dispersion curves is shown in Fig. 1.10.

Phonons

It is known that the energy levels of the harmonic oscillator are quantized. Similarly,
the energy levels of lattice vibrations are also quantized. A quantum of vibrational
energy associated with a particular normal mode is known as a phonon, which
has energy ~ω and wave vector q. Phonons can interact with other particles such
as photons, neutrons and electrons. The reason is that the center of mass of the
crystal does not change its position under vibrations (except at q = 0).

In crystals there exist selection rules for allowed transitions between quantum
states. The elastic scattering of an x-ray photon by a crystal is governed by the
wavevector selection rule kf = ki + G , where G is a vector in the reciprocal
lattice, ki is the wavevector of the incident photon and kf is the wavevector of the
scattered photon. This equation can be considered as condition for the conservation
of the momentum of the whole system, in which the lattice acquires a momentum
−~G. If the scattering of photon is inelastic and is accompanied by the excitation
or absorption of a phonon the selection rule becomes

kf = ki ± q + G (1.21)

where the sign (+) corresponds to creation of phonon and sign (-) corresponds to
absorption of phonon. The dispersion relation is periodic in the reciprocal lattice,
as ω(q) is unchanged when a reciprocal lattice vector is added to q. All possible
solutions are then obtained if q is restricted to a unit cell of the reciprocal lattice,
i.e. the first Brillouin zone.

The kinematics of the scattering of a neutron beam by a crystal lattice are
described by the same general wavevector selection rule. As we will see in the next
chapter (chapter 2), phonon dispersion relations ω(q) can, and are often, determined
by the inelastic scattering of neutrons with emission or absorption of phonons.
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1.4 Optoelectronic properties
As we said in section 1.2, with respect to PV and other optoelectronic applications,
HOPs benefit from various attractive optical and electronic properties (such as opti-
mal optical band-gap, low exciton binding energies and long charge-carrier diffusion
lengths). These properties are highly dependent on their structure and chemical
composition, which in this case, are highly flexible.

1.4.1 Photogeneration

Absorption

One of these advantages is the tunability of the crystal lattice and the ensuing
band-gap. The organic A cation does not play a direct role in determining the band
structure close to the band-gap (Wg) and acts to fulfil charge neutrality within the
lattice. Nevertheless, its size is important. A larger or smaller A cation can cause
the whole lattice to expand or contract, changing the B-X bond length and conse-
quently affecting the band-gap. In Fig. 1.11, different HOPs are shown, highlighting
both their versatility and their wide absorption range. An important feature of
3D HOPs is their relatively large absorption coefficient, which in part enables high
photocurrents using sub-micron (e.g. 500 nm) films of perokvskite compounds like
MAPbI3 and FAPbI3. The absorption coefficient of perovskites is even higher than
that of GaAs, which effectively reduces the required absorber layer thickness down
to 500 nm [15,18,76]. The absorption peak such materials are sharp and most have a
direct band-gap [6,7,15,18,27,56]. MAPbI3-based devices typically show absorption
up to the tail end of the red region of the spectrum, approximately 800 nm, whereas
MAPbI3−xBrx yields absorption onsets at increased energies, close to 700 nm. The
theoretical band-gap of MAPbI3 is predicted as ∼1.7 eV by many-body perturbation
theory, which is slight different from the value obtained from experimental optical
band-gap value of ∼1.6 eV. A very small Urbach energy6 of 15 meV for MAPbI3

is also obtained from the particularly sharp absorption onset, which suggests that
perovskite is a very pure semiconductor without deep trap states [18]. FAPbI3 has
reduced band-gap (1.48 eV) with absorption onsets near 850 nm. Based on the
prediction of Shockley-Queisser efficiency limit model [85], 1.48 eV is closer to the
“ideal” band-gap values (1.4 eV) for a single junction solar cell under AM1.5G solar

6Urbach energy EU characterizes the degree of the absorption edge smearing due to the crys-
talline lattice disordering caused by structural peculiarities, as well as induced by external factors.
The absorption coefficient at the photon energy below the optical gap (tail absorption) depends
exponentially on the photon energy: α(~ω) ∼ exp(~ω/Eu).
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Figure 1.11: Schematics of some perovskites highlighting their absorption tunability. The insets
show: (a) single crystal of FAPbI3 [3]; (b) single crystal of MAPbI3 [4]; (c) colloidal solutions of
CsPbX3 (X = Cl, Br, I) perovskites [5]; (d) solar cells of 49 different compositions in the MA/FA-
Pb-Br/I compositional space [6]; (e) single crystal of FAPbBr3 [3]; (f) single crystal of MAPbBr3 [4],
and (g) colloidal nanocrystals of MAPbX3 (X = Cl, Br, I) perovskites [7]. Reprinted from [1].

illumination. Incorporation of Br in FAPbI3−xBrx, can be used to tune the band-
gap, increasing up to 2.23 eV for x = 3 (i.e. 100% Br content) corresponding to
an absorption onset of approximately 550 nm. This illustrates the high level of
tunability of the band-gap in HOPs.

Excitons vs. free carriers

In Fig. 1.12.a,b the basic working principle of photogeneration in an perovskite
based solar cell is illustrated. Let us first consider the interaction of irradiation
with a semiconductor. For photon energy hν < Wg, the photon can be absorbed
by lattice or free carriers only, and absorption coefficient is low for wavelengths
longer than hc/Wg. If the photon energy hν > Wg, the band-to-band (interband)
absorption takes place and the absorption coefficient α increases rapidly with pho-
ton energy. The difference in energy (hν −Wg) is dissipated in the form of heat as
the excited electron relaxes to the bottom of the conduction band (CB) by losing
energy to lattice collisions (thermodynamic loss). In some materials (e.g. organic
semiconductors), after photon absorption an exciton can be generated, that is, an
excited electron/hole pair that is still in a bound state due to the Coulomb forces
between the particles. An exciton can slowly diffuse in material and it can disso-
ciate in an electron–hole pair after obtaining an additional energy higher than its
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Figure 1.12: Schematic representation of the charge generation and extraction processes in a (a)
mesoporous and (b) planar perovskite solar cell. Light is absorbed in the bulk of the film leading
to generation of free charges, which diffuse throughout the film to the electron transporting layer
(ETL) and hole transporting layer (HTL) and are then selectively collected by the respective
electrodes. (c) Illustration of a typical energy level relationship between materials used in PSCs.

binding energy, or recombine radiatively before carrier collection. Here, dielectric
constant ε is key in determining exciton binding energy. Depending on whether the
low (ε = 25.7) or high (ε = 5.6) frequency dielectric constant is used [86, 87], the
conventional Wannier–Mott hydrogenic model gives values for the excitonic binding
energy (R? = m?e4 / 2~2ε2, m? is effective mass) anywhere from 2 to 50 meV. After
an initial period of debate, Even et al. [88], based on the theoretical analysis of pre-
viously measured absorption spectra in MAPbI3, predicted R? to be 15 meV at low
temperature. This was soon confirmed by a direct experimental measurement also
in MAPbI3 [89], which reports a value of 16 ± 2 meV, contradicting in this way the
earlier values of 37-50 meV [90, 91], and suggesting therefore, a dielectric constant
of ε ≈ 9. From such theoretical work, together with the aforementioned report of
Miyata et al. [89] and another experimental study of temperature-dependent pho-
toelectronic responses, it was concluded that the exciton-binding energy decreases
continuously to 5-6 meV at RT. This is much lower than thermal energy kT at RT
(∼25 meV), confirming that HOPs are predominantly non-excitonic at this tem-
perature range. Such spontaneous generation of free electrons and holes following
photoabsorption helps minimize the losses due to exciton migration and exciton re-
combination.

As previously stressed, organic-inorganic perovskites provide ambipolar trans-
port. Also, as will be further discussed below (section 1.4.2), they show both elec-
tron and hole diffusion lengths exceeding 1 µm [92] and sufficiently high mobilities
of electrons and holes [3, 74]. These properties guarantee efficient carrier collection
for micrometer thick layers. Together with the non-excitonic nature, this is what
enables the high internal quantum efficiencies seen in PSCs. However, it is crucial to
select the electron transporting layer (ETL) and hole transporting layer (HTL) with
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favourable energy level alignment to the CB and valence band (VB), respectively,
in order to extract carriers from perovskite solar cells without loss (Fig. 1.12.c).
The open-circuit voltage (Voc) of a perovskite solar cell is mainly determined by
two effects, the radiative recombination of the perovskite and the energetics of the
transporting interface layers.

Recombination

Recombination is the process during which two charge carriers of opposite type an-
nihilate each other. Energy is released in the form of photons (radiative recombina-
tion) or heat (non-radiative recombination) during this process. Since in perovskites
photoexcitation results mainly in free charges at RT, the overall recombination rate
is the results of three different processes. There are schematically shown in Fig. 1.13
and consist in band-to-band, trap-assisted and Auger recombination. In band-to-
band recombination, an electron in the conduction band directly recombines with
a hole in the valance band (Fig. 1.13.a). Band-to-band recombination is typically
radiative, i.e. the energy difference is released in the form of a photon. Trap-assisted
recombination, i.e. Schockley-Read-Hall (SRH) recombination, is a two-step process
where a trap state captures an electron and a hole which recombine (Fig. 1.13.b).
Trapped carriers can recombine both radiatively and/or through phonon-assisted
nonradiative processes, although the latter is most commonly considered. Auger is
a non-radiative recombination process involving three bodies (carriers). In this case,
the energy released from recombination is transferred to another carrier, which is ex-
cited into a higher state and then relaxes to the bottom of conduction band through
thermalization (Fig. 1.13.c). However in nowadays growth of halide perovskite thin
films, such detrimental phenomena only result from shallow traps.

In general, the recombination processes can be considered to occur independently
and the resulting recombination rate is simply the sum of the individual rates. From
that it follows that the resulting carrier lifetime, τ , defines the time window in which
the charges can be extracted to the contacts before they recombine, can be given by
Matthiessen’s rule

1
τ

= 1
τB

+ 1
τT

+ 1
τA

(1.22)

where τB, τT and τA are the lifetimes associated with the band-to-band, trap-assisted
and Auger recombination processes, respectively.

The external radiative efficiency (ERE) of a PV cell - which is the fraction of
total dark recombination current that results in the emission of light - is a good
indicator of how close to perfection the cell is [93]. At present, the best perovskite
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Figure 1.13: Schematic diagram of the (a) band-to-band, (b) trap-assisted and (c) Auger recombi-
nation mechanisms.

solar cells have an ERE of 1–4%, while for isolated perovskite films ERE is as high
as 70% [94]. This indicates that when the perovskite active layer is integrated in a
solar cell device, recombination losses are introduced. In a real device, bulk defects,
surfaces, and interfaces introduce recombination centers that lead to fast nonradia-
tive losses. This is reflected in the Voc, currently approaching the radiative limit, but
there remains more than 100 mV to be gained, by minimizing these losses. Efforts
should be made in molecular passivation of the perovskite surface and improvement
of interfacial engineering. The latter implies more refined energetic alignment and
good lattice matching and/or continuous interfaces at the atomic level between per-
ovskite and carrier collectors.

1.4.2 Charge-carrier and thermal conductivity
Free charge-carrier transport in semiconductors involves two mechanisms: diffusion
and drift [95]. Carrier diffusion transport mechanism, occurs in any semiconductor
with the carriers moving from high carrier density regions to low carrier density re-
gions, even when no electric field is present due to thermal energy, kbT . The diffusion
length of a charge is simply the average distance that charge is able to travel because
of diffusion before recombination occurs. Carrier drift transport mechanism relates
to the carrier motion caused by an external electric field, with the characterized pa-
rameter of mobility (µ). The field-free diffusion coefficient D and the charge-carrier
mobility µ can be correlated with each other via the Einstein relation [96]:

µ = e

kbT
D (1.23)

where e is the electronic charge. Diffusion length, LD, can be calculated from the
diffusion coefficient and charge carrier lifetime, τ , using

LD =
√
Dτ (1.24)

24



LD is a critical parameter for solar cell operation because it directly influences the
efficiency of charge collection in a solar cell film. At present, it is commonly ac-
cepted that the extremely efficient charge collection in lead-based perovskite solar
cells strongly relies on the long charge-carrier diffusion lengths (in the micrometer
range) that normally result from the sufficient long carrier lifetimes in perovskites
[92, 97–100]. Carrier diffusion lengths up to 100 nm for both electrons and holes
in MAPbI3 and exceeding 1 µm in the mixed halide MAPbI3−xClx have been re-
ported via transient photo-luminescence (PL) measurements [92, 97]. However, it
has been demonstrated that holes are much more efficiently extracted than electrons
in MAPbI3 [101], thus explaining the necessity of a mesoporous ETM for MAPbI3-
based devices, whereas in MAPbI3−xClx, both electrons and holes have diffusion
lengths exceeding 1 µm and do not require a mesoporous ETM. Even more recently,
Dong et al. have demonstrated diffusion lengths over 175 µm in single crystals of
MAPbI3 under 1 sun illumination, owed to enhanced carrier mobility, lifetime and
reduced number of defects [98]. Moreover, FA-based devices have shown diffusion
lengths intermediate to those of MAPbI3 and MAPbI3−xClx.

On the other hand, the charge-carrier mobility in perovskites are not on par
with other PV relevant inorganic semiconductors. While the mobility of MAPbI3 is
high, as it relates to other solution-processed materials, such as organic semiconduc-
tors [102, 103], it has a relatively modest mobility compared to other PV-relevant
inorganic semiconductors which display similar effective masses. In fact, the mo-
bility of other PV relevant semiconductors is typically 1 to 2 orders of magnitude
higher than has been observed in the two most widely used PSC materials, MAPbX3

and FAPbX3 [104]. Moreover, even though one of the remarkable aspects of HOPs is
their ability to form high-quality semiconductor films from solution, morphological
effects hinder transport in these films. Not only that but, even within single crys-
tal samples of identical composition, a wide range of reported mobility values have
been reported. Such wide differences imply the strong influence of both the mate-
rial morphology and the applied measurement technique, on charge carrier mobility.
Regardless, reported values are mostly between 1-100 cm2V-1s-1, with some as high
as 600 cm2V-1s-1 [8, 70, 74, 75, 97, 98, 105–117]. Table 1.1 summarizes the charge
carrier mobility values experimentally determined by various methods for our four
relevant perovskites at RT.

It is known that scattering and recombination processes present the main hin-
drances to charge mobility. In the absence of extrinsic scattering by impurities or
interfaces, phonon scattering sets the fundamental intrinsic limit to charge-carrier
mobility. Therefore, in the rather defect tolerant HOPs, electron-phonon interac-
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Table 1.1: Experimentally determined charge-carrier-mobility values at RT for various HOPs.

Compound Architecture Carrier type Mobility cm2V-1s-1 Technique Ref.

MAPbI3 Thin film Electron (hole) 1.4 (0.9) PLQ [97]
Thin film Electron/hole) 2–3 TAM [108]
Thin film Electron + hole 35 TRTS [8]
Thin film Electron + hole 20 TRTS [112]
Thin film Electron + hole 11 TRTS [111]
Thin film Electron + hole 30 TRMC [113]
Thin film Electron + hole 71 TRMC [117]

Mesoporous matrix Electron (hole) 8 TRTS [105]
Mesoporous matrix Electron (hole) 9 TRMC [113]

Polycrystal Electron 66 Hall [70]
Single crystal Hole 105 Hall [109]
Single crystal Electron + hole 600 TRTS [109]
Single crystal Electron + hole 130 TRMC [116]
Single crystal Hole 67 SCLC [114]
Single crystal Hole 2.5 SCLC [107]
Single crystal Hole 24 TOF [98]

MAPbBr3 Thin film Electron (hole) 8.6 (9.0) PLQ [115]
Single crystal Hole 24 SCLC [114]
Single crystal Hole 38 SCLC [107]
Single crystal Hole 40 Hall [107]
Single crystal Hole 115 TOF [107]

FAPbI3 Thin film Electron (hole) 0.2 (3.5) PLQ [106]
Thin film Electron + hole 27 TRTS [110]

Single crystal Hole 35 SCLC [74]
Single crystal 4.4 SCLC [75]

FAPbBr3 Thin film Electron + hole 14 TRTS [110]
Single crystal Hole 62 SCLC [74]

tionss (EPIs) play the primary role. However, despite the importance of EPIs to
the optoelectronic properties of these materials, there is still no consensus on which
exact mechanisms are active. A number of studies [8, 118, 119] have observed an
acoustic-like temperature dependence of the mobility, i.e. µ ∝ T−3/2 (see Fig 1.14).
On the other hand, it has been shown that carrier scattering is dominated by Fröhlich
coupling7 between charge-carriers and LO phonon modes, rather than with acoustic
ones, at RT [120, 121]. The interaction with acoustic phonons is indeed expected to
be limited to deformation potentials thanks to the absence of piezoelectricity.

7In polar semiconductor materials, LO phonons produce a macroscopic electric field, which
interacts with the electrons. This coupling of long range is known as Fröhlich interaction. Due to
the interaction of an electron with LO phonons, a quasi-particle is formed known as polaron. The
strength of this coupling is expressed by a dimensionless Fröhlich coupling constant.
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Figure 1.14: Mobility in MAPbI3 as a function of temperature, determined from optical-pump–THz
probe measurements. The black dots represent data, and the dashed line is the theoretical T−3/2

dependence predicted for band-like transport. Reprinted from [8].

Furthermore, slow charge-carrier cooling following above band-gap photon ab-
sorption, is also governed by the interactions between charges and phonons [9, 99].
This effect is enhanced by the low thermal conductivities that HOPs are known
for, a result of slow propagation speed of acoustic phonons due to anharmonic
phonon–phonon scatterings.

Crystal-liquid duality

The coexistence of a crystalline-like response in coherent band transport of charge
carriers and a liquid-like response in phonon dynamics has prompted Zhu et al. [122]
to call HOPs “crystalline liquids” for the cubic and tetragonal phases. We can view
the sub-lattice of organic cations as a confined liquid, with each polar molecular
cation confined in a nanoscopic pore; thus, an HOP in the high-temperature cubic
phase is similar to a plastic crystal [121], which refers to a crystalline lattice with
long-range translational order but local rotational disorder [123]. More precisely, the
liquid-like behavior may generally represent the highly disordered and anharmonic
motions of the strongly coupled vibrational modes of both PbX−3 and A+ sublattices
[124]. The contrasting phonon and electron dynamics mean that HOPs belong to
the family of solids called phonon glass electron crystals (PGEC).

Phonon glass electron crystal refers to composite materials or multilayers where
the materials/components that contribute electrical conductivity are different from
the materials/components that are poor thermal conductors. The former metallic
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regions are prevented from causing a large thermal conductivity by keeping them
small. Skutterudites and clathrates, for example, are two types of crystal structures
that have “cages” that can host various guest atoms. The rattling in the nanocages
introduces efficient scattering for the phonons, particularly acoustic phonons that
are mainly responsible for thermal transport, diminishing then thermal conductiv-
ity. Halide organolead perovskites crystals belong to the PGEC material family.
Here, the PbX−3 sublattice forms the crystalline framework, whereas the A+ cations
“rattle” and/or “rotate” in the cuboctahedral cages.

In the upcoming chapters 3 and 4, we explore the correlation between low elastic
stiffness, low thermal conductivity and the so called hot-phonon bottleneck effect in
carrier thermalization.
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Chapter 2

Neutron Scattering and
experimental methods

Neutron scattering is a well establish technique and, naturally, its theory has already
been extensively covered in detail in textbooks [125, 126]. Therefore, the following
sections will focus on the main concepts and results that will be used within the
thesis. We also summarize all the synthesis of the perovskite single crystal samples as
well as the experimental conditions of the characterization techniques used (neutron,
Brillouin and Raman spectroscopy).
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2.1 Introduction
Neutron scattering is one of the most powerful and versatile experimental methods
to study the structure and dynamics of materials on the atomic and nanometer
scale. Quoting the Nobel committee, when awarding the prize to C. Shull and B.
Brockhouse in 1994 for their extensive contributions in the field of neutron scatter-
ing, these pioneers have “helped answer the question of where atoms are and (...)
what atoms do” [127]. As of today it is firmly established as an invaluable comple-
ment to x-ray scattering for the characterization in many areas of materials science,
chemistry and biology.

Although neutron scattering is a great technique, historically, its main limita-
tions in experimental practice is that neutrons are produced at low fluxes and high
costs. Neutron scattering experiments last from hours to days and are performed
only at a few handfuls of large international facilities. This makes the technique
time-consuming and rare. Hence, neutron scattering should be used only where
more accessible methods are inadequate. As an alternative, X-rays scattering is
usually the go to option: x-ray sources are by far more abundant and are, especially
for synchrotron x-ray sources, much stronger than neutron sources (i.e. fluxes of
1018 photon per s-1mm-2 versus 104 neutron per s-1mm-2). However, as we will see,
neutrons have a number of properties that make them extremely useful for purposes
where X-rays are not sufficient. The most relevant such properties are presented in
Table 2.1 [128].

As all other matter, neutrons have both particle- and wave-like nature and can
be described via the “de Broglie” relationship

λ = h

p
= h

mv
(2.1)

where h is the Planck constant and λ, p, m and v are the neutron wavelength,
momentum, mass and velocity respectively. The energy E of a neutron with a wave

Table 2.1: Properties of the neutron.

Quantity Value
Rest mass, mn 1.675 x 10-24 g
Charge 0
Magnetic moment, µn 1.913 nuclear magnetons, µN
Spin 1/2
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Figure 2.1: Different scattering interaction of neutrons, x-rays and electrons with matter.

vector k written through the Planck-Einstein relation is

λ = h2p2

2m (2.2)

Alternatively, equation 2.2 can be rewritten in terms of neutron wavelength

λ =
(

h2

2mE

)1/2

(2.3)

If one consider the mass of the neutron, m = 1.675 x 10-24 g, it is easy to see
that a neutron with an energy E = 25 meV has a wavelength λ = 1.81 Å, which
is compatible with inter-atomic spacings of crystal structures and their vibrations.
Neutron energies depend obviously on the neutron beam/source but, in scattering
experiments, are typically in the range of a few meV. It is their neutrality, however,
that makes neutrons uniquely useful in probing, from the standpoint of scattering
interactions. The zero net charge of the neutron means that it interacts very weakly
with matter and it also easily transmits through sample enclosures used to control
the environment. This is a very important experimental convenience. Even more
important is the fact that with zero charge there is no Coulomb barrier to overcome,
so that the neutrons are oblivious to the electronic charge cloud and interact directly
with the nuclei of atoms.

Fig. 2.1 illustrates the different scattering interactions of incident x-rays, elec-
trons and neutrons with matter. X-rays and electrons interact with electrons in the
material: with x-rays the interaction is electromagnetic while with an electron beam
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it is electrostatic. Both of this interactions are strong and neither type of beam pen-
etrates matter very deeply. Neutrons on the other hand, interact with atoms via
nuclear forces, which are very short range – on the order of a few femtometers.
Therefore, as far as the neutron is concerned, solid matter is not very dense since
the size of a scattering center (i.e. a nucleus) is typically 105 times smaller than
the distance between centers. Thus, neutrons generally penetrate different materials
much deeper than x-rays or electrons. If there are unpaired electrons in the system,
neutrons may also interact via a second mechanism: a dipole-dipole interaction be-
tween the magnetic moments of the neutron and the unpaired electron. Knowing
now that x-rays are scattered by electrons we can see how with the former it is easier
to see elements that have higher atomic number. Hydrogen, for example, which has
only one electron is hardly detectable with x-rays. With neutrons, however, since
they are scattered by nuclei, nearly all elements are visible. In scattering, this effec-
tive area presented by the nucleus to an incident neutron is defined as the scattering
cross section1. If the neutron hits this area it will be scattered with equal proba-
bility in any direction. Fig. 2.2 illustrates the comparison of varying cross section
of some materials for x-rays and neutrons. As compared with x-ray scattering cross
sections, which is directly proportional with the atomic number Z2, neutron scat-
tering cross sections show little systematic relationship with Z2. Neutron scattering
gives us then the possibility to probe different element isotopes, however, on the
other hand, this can bring some experimental hurdles such as unwanted incoherent
signal background, especially when dealing with organic samples.

Although the neutron carries no net charge, its internal structure an up quark
and two down quarks gives the neutron a magnetic moment. In fact the scattered
intensity associated with magnetic effects is comparable to the scattering from the
nuclei. With a spin angular momentum of ±1/2 per neutron, neutron beams can
be prepared which contain a single angular momentum state, either spin up (+1/2)
or spin down (-1/2). These spin-polarized neutrons have unique applications in
determining magnetic structures, separating magnetic from nuclear scattering, and
isolating incoherent scattering from the total scattering. This makes neutron scat-
tering the only technique that allows direct observation of magnetic excitations in
materials.

A summary of the advantages of neutron scattering are as follows:
· Energy and wavelength. Thermal neutrons have a wavelength (around 1.8 Å)

similar to inter-atomic distances, and an energy (around 25 meV) similar to
elementary excitations in solids. One can thus obtain simultaneous information

1More on neutron cross section in section 2.2.2
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Figure 2.2: Schematic comparison between neutron and x-ray cross sections.

on the structure and dynamics of materials and e.g measure dispersion relations
(energy-wavelength dependence) of excitations in crystalline solids.

· Isotopes and light elements. The neutron scattering cross section varies in a
seemingly random fashion between elements and even between different isotopes
of the same element. One can thus use neutrons to study light isotopes. In
particular, this is important for hydrogen, which is almost invisible to x-rays.
With neutrons, the large difference in scattering between usual hydrogen (H)
and deuterium (D) can be used in biological and soft matter sciences to change
the contrast in the scattering or even to “highlight” selected groups within large
molecules or aggregates.

· Quantitative experiments. The interaction between neutrons and (most)
matter is rather weak, implying that neutrons can probe the bulk of the sample,
and not only its surface. The weak interaction also diminishes higher order
effects. Hence, quantitative comparisons between neutron scattering data and
theoretical models can be performed to a high precision.

· Transparency. Since neutrons penetrate matter easily, neutron scattering can
be performed with samples stored in all sorts of sample environment: Cryostats,
magnets, furnaces, pressure cells, etc. Furthermore, very bulky samples can be
studied, up to tens of cm thickness, depending on their elemental composition.
The sample is left relatively unharmed by the neutron experiment, although
beam experiments should certainly not be performed on living organisms.

· Magnetism. The neutron magnetic moment makes neutrons scatter from mag-
netic structures or magnetic field gradients. Unpolarized neutrons are used to
learn about the periodicity and magnitude of the magnetic order, while scatter-
ing of spin-polarized neutrons can reveal the direction of the atomic magnetic
moments. Also, the dynamics of the magnetic moments can be revealed.
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2.2 Neutron scattering theory

2.2.1 Scattering diagram
As mentioned, neutrons have dual properties and behave as matter waves through
the de Broglie relationship. In neutron scattering experiments, we work in terms
of neutron plane wave propagation, described by the advancement of a wave front.
Perpendicular to this wave front, the neutron wavevector k has a vector of magnitude
2π/λ that defines the propagation direction. In the diffraction of a wave, an incoming
neutron with an initial wavevector ki will be scattered by the sample into a state
with a final wavevector kf . The difference in direction between the incoming and
the scattered neutron is defined by the angle 2θ. This leads us to the well known
conservation laws of momentum and energy

Q = ki − kf (momentum conservation) (2.4)

~ω = Ei − Ef (energy conservation) (2.5)

where Ei and Ef are the initial and final energies of the neutron and ~ω the energy
transferred to the sample. The three vectors ki, kf and Q form the scattering
triangle, as shown in Fig. 2.3. It is important to note the sign convention used for
the scattering vector Q, since it will have implications in the resolution function
(section 2.2.4). Applying some trigonometry to the scattering triangle, one obtains

|Q| = k2
i + k2

f − 2kikfcosθ (2.6)

and the energy conservation law can be written as

~ω = ~2

2mn

(k2
i − k2

f ) (2.7)

We can then see that, in a scattering experiment, knowing the neutron scattering
angle and the wavelength of the incident/final beam, one can easily deduce the
momentum and energy transferred to the sample via equations 2.4 and 2.7. Now,
in the event that energy is transferred between the neutron and the sample matter,
i.e. the neutron loses or gains energy during the process, then we are in the inelastic
scattering condition (Fig. 2.3.b). On the other hand, in elastic scattering the kinetic
energy of the neutron is conserved (Fig. 2.3.a). One can then obtain information
about the equilibrium structure (elastic scattering) and the collective motions of
the atoms (inelastic scattering), such as those that produce phonons or vibrational
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waves in a crystalline lattice.

Elastic scattering

Supposing the scattering is elastic then |ki| = |kf | = |k| = k. In Fig. 2.3.c a
reciprocal lattice is represented, where each point corresponds to a reciprocal lattice
point. From a vector ki originating in some point A, a sphere with centre A and
radius |ki| = |kf | = k can be extrapolated. In other words, since ki and kf have
the same length, the scattering vector must lie on the surface of a sphere of radius
2π/λ. This sphere is called the Ewald sphere. For certain configurations of the
sample orientation and/or the incident beam ki, the sphere will be such that it passes
through two points, one of which is the origin of the reciprocal space. The reciprocal
lattice points are the values of momentum transfer where the Bragg diffraction
condition is then satisfied. We find that

Q = G = ki − kf (2.8)

or
|Q| = |G| = 2|k|sinθ = 4πsinθ

λ
(2.9)

To show that 2.9 corresponds to the Bragg Law we note that each reciprocal vector
G is perpendicular to a set of planes in the original lattice and has a magnitude that
is an integral multiple of 2π times the inverse of the the plane spacing, d = 2π/|G|.
Thus, using the relationship between Q, θ and λ obtained from Fig. 2.3 the condition

θ

ki

kf
|Q|
2

2θ

ki

kf Q

Neutron loses energy

(ki > kf)

kf

k'f

G
Q

ki

2θ

0

q

(a)

(b)

(c)

Figure 2.3: Scattering triangles are depicted here for both (a) elastic scattering in which the
neutron is deflected but does not gain or lose energy (|ki| = |kf |) and (b) inelastic scattering in
which the neutron exchanges energy with the scattering sample (|ki| 6= |kf |). (c) Two-dimensional
representation of reciprocal space showing the Ewald circle and the vector representation for elastic
and inelastic scattering. Here G is a reciprocal-lattice vector and q the momentum transfer within
the first Brillouin zone.
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above is easily rewritten as
nλ = 2dsinθ (2.10)

which is the more familiar form of the Bragg’s Law.
We now see how the magnitude of Q is simply controlled by adjusting the angle

2θ between ki and kf . Hence, as mentioned, Bragg scattering may occur for any set
of planes in a crystal, provided the neutron wavelength λ and the angle 2θ satisfy
Eq. 2.10. In practical terms, any point in reciprocal space can be measured by an
appropriate choice of ki, 2θ and the orientation of the sample relative to ki.

Inelastic scattering

Atoms are not actually frozen in fixed positions inside a crystal structure, as is
assumed in the description of elastic scattering.. Thermal energy causes them to
oscillate about their lattice sites, thereby reducing the elastic contribution. As a
result, there is a transfer of energy and momentum between the incident neutron
and the sample, and a change of both the direction and magnitude of the neutron
wavevector. In other words, |ki| 6= |kf | is observed for inelastic neutron scattering
(INS).

Atomic and molecular motions in a crystal lattice behave in a wave-like man-
ner, leading to a superposition of waves with different frequencies and wavelengths
and which propagate in different directions. The quantum quasiparticles related to
lattices waves are known as phonons. Each phonon has an energy hν, where ν is
the frequency of the motion which depends on the wavelength of the distortion, the
masses of the atoms and the binding forces that connect them. Basically then, the
variation of energy that is being measured in inelastic scattering corresponds to the
phonon energy. To represent the dispersion of phonon energies in the first Brillouin
zone, the relative momentum transfer ~q to Eq. 2.9 is defined

Q = G + q (2.11)

as also illustrated in Fig. 2.3. Experimentally, to determine the phonon energy, a se-
quence of measurements is made where one can either hold constant the momentum
transfer or the energy transfer. The resulting peak obtained from the constant-Q
and/or constant-E scans yields the amplitude of the phonon2.

2For more on phonon measurement please refer to section 2.2.3.
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2.2.2 Neutron cross section
The neutron fluence rate (Φ), or flux of a neutron beam, is the number of neutrons
that pass through a specified area per unit time.

Φ = number of incident neutrons on a surface per second
surface area perpendicular to the neutron beam direction (2.12)

Commonly employed units for this quantity are mm-2s-1 or cm-2s-1, being the direction
here irrelevant. The neutron scattering cross section, σ, of a system is defined by
its ability to scatter neutrons

σ = 1
Φ · number of neutrons scattered per second (2.13)

which as units of area. For a single nucleus, σ can now be seen as the effective area
of the nucleus perpendicular to the neutron beam. The scattering cross section used
here is the total cross section, which depends on the sample volume, V. For thin
samples, σ can be described by the volume specific cross section, Σ, through

σ = V Σ (2.14)

For thicker samples, beam attenuation must be taken into account.
The angular dependence of the scattered neutrons is a most important aspect of

all neutron scattering. This dependence is described by the differential cross-section

dσ
dΩ =

number of neutrons scattered per second into
the solid angle dΩ in the direction θ, φ


ΦdΩ (2.15)

where dΩ is the unit of solid angle and (θ, φ) are polar coordinates defining the
direction of the scattered beam. The geometry of the event is illustrated in Fig. 2.4.
The total number of scattered neutrons is then the integral of neutrons per solid
angle over all of the 4π solid angle

σ =
∫ dσ

dΩdΩ (2.16)

However, for describing inelastic scattering, one needs to take into account the en-
ergy dependence of the scattered neutrons. This is described by the partial differen-
tial cross-section, which is the basic quantity measured during a neutron scattering
experiment and one that represents the fraction of neutron of incident energy Ei

scattered into an element of solid angle dΩ with a final energy between Ef and Ef
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Figure 2.4: An illustration of the scattering geometry.

+ dEf . The partial differential cross-section is then defined as

d2σ

dΩdEf

=

 number of neutrons scattered per second into the solid angle dΩ
in the direction θ, φ with final energy between Ef and Ef + dEf


ΦdΩdEf

(2.17)
Analogously to Eq. 2.16, the total neutron cross section comes from the following
double integration

σ =
∫∫ dσ

dΩdEf

dΩdEf (2.18)

When a neutron scatters, it can cause a transition of the sample from one quantum
state to another, but it does not modify the nature of the states themselves. There-
fore, we consider the probability of a transition of the neutron-target system from
an initial state λi to a final one λf . One can then use Fermi’s Golden Rule to cal-
culate the transition probability and obtain an expression to the partial differential
scattering cross section. Furthermore, because the effective interaction in neutron
scattering is weak, the Born approximation can be applied which assumes that both
the incoming and scattered beam are plane waves

(
d2σ

dΩdEf

)λi

λf

= kf
ki

(
mn

2π~2

)2
|〈kfλf |V̂ |kiλi〉|2δ(Ei − Ef + ~ω) (2.19)

Here V̂ is the interaction potential that causes the transition. The only form of V̂ (r)
that, using the Born approximation, gives isotropic scattering is a delta function.
Considering a rigid array of N nuclei, where the jth nucleus is denoted by rj, the
Fermi pseudo-potential is then defined as

V̂ (r) = 2π~2

mn

b δ(r − rj) (2.20)
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where δ(r) is a Dirac delta function which takes the value unit at position r, and
b is the nuclear scattering length. There are different scattering lengths depending
on both atomic type and isotope. It can be complex and the real part may be ei-
ther positive or negative depending on the energy of the incident neutron and the
particular nucleus involved in the scattering. The imaginary part of b represents
absorption and in most cases is small.

Coherent vs. incoherent

The scattering cross section can be subdivided into coherent and incoherent scat-
tering, which is caused by the spin dependence of the scattering cross-section and,
as mentioned in section 2.1, the different isotopes in the sample. For unpolarized
neutrons, it is then convenient to express the partial differential cross section (2.17)
as a sum of its coherent and incoherent parts

d2σ

dΩdEf

= d2σ

dΩdEf

∣∣∣∣∣
coh

+ d2σ

dΩdEf

∣∣∣∣∣
inc

(2.21)

Coherent scattering results from interference effects between the nuclei and provides
information about the cooperative effects among different atoms, such as elastic
Bragg scattering or inelastic scattering by phonons or magnons. Incoherent elastic
scattering is the same in all directions, so it usually appears as unwanted isotropic
background in neutron scattering experiments, so we neglect this term. Incoherent
inelastic scattering, on the other hand, results from the interaction of a neutron with
the same atom at different positions and different times, thus providing information
about atomic diffusion.

If in Eq. 2.20 the position rj = 0, we find that the total cross section is

σ = 4π|b|2 (2.22)

In a real lattice however, i.e. a lattice where the nuclei is not strictly bound, the
neutron does not see a crystal of uniform scattering potential but one in which the
scattering varies from one point to another. If there are no correlations between
nuclear position and scattering length, then only the average scattering potential
can give interference effects, and thus coherent scattering. This average potential is
proportional to b̄, which is given by

b̄ =
∑
r

cr br (2.23)
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with cr as the fractional concentration of r amount of isotopes. On the other hand,
incoherent scattering will be proportional to the mean-square deviation,
|b− b̄|2 = |b|2 − |b̄|2. Eq. 2.18 is then rewritten as

σ = 4π |b|2 (2.24)

and the average coherent cross section per atom is

σcoh = 4π|b̄|2 (2.25)

Therefore, for the incoherent cross section per atom, being σ = σcoh+σinc, we arrive
at the following expression

σinc = 4π|b− b̄|2 (2.26)

There are a few examples for which the incoherent scattering is dominant. A typical
strong source of incoherent scattering is hydrogen, where the incoherence is due to
a strong spin dependence of the interaction between the neutron and the proton,
and which in fact presents the main source of background signal in neutron spectra
presented throughout the thesis3.

2.2.3 Response Function S(Q, ω)
As mentioned before, in a neutron scattering experiment, one is essentially mea-
suring the scattered intensity (per incident neutron) as a function of Q or E. Such
intensity is typically referred to as the response function and is defined

S(Q, ω) = 1
2π~N

∑
i,j

∫ ∞
−∞

dt 〈e−iQ·ri(0) eiQ·rj(t)〉 e−iωt (2.27)

where N is the number of nuclei, with the nucleus labelled i at position ri at time
zero, while the nucleus labelled j is at position rj at time t. The response function
is also often called the scattering law or dynamic structure factor. S(Q, ω) depends
only on the momentum and energy transferred from a neutron to the sample, and not
on the absolute values of ki and kf . It contains information on both the positions
and motions of the atoms comprising the sample. In 1954, Van Hove [129] showed
that the response function can be written in terms of time-dependent correlations
between the positions of pairs of atoms in the sample. Van Hove’s result implies
that S(Q, ω) is proportional to the Fourier transform of a function that gives the

3A table of the coherent and incoherent scattering lengths and cross sections for different
elements can be found in the NIST Center for Neutron Research
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probability of finding two atoms a certain distance apart.
For coherent, elastic nuclear scattering, in the more typical case where the lattice

has more than one atom per unit cell, the differential cross section generalizes to

dσ

dΩ

∣∣∣∣∣
el

coh
= N

(2π)3

υ0

∑
G
δ (Q−G) |FN(G)|2 (2.28)

where υ0 is the unit cell volume and

FN(G) =
∑
j

b̄j e
iG·dj e−Wj (2.29)

is the nuclear structure factor that contains information over all nuclei at positions
dj within one unit cell. The exponent component W is an additional pre-factor that
arises from the thermal motion of atoms about their nominal positions. Since an
atom can contribute to the constructive interference of Bragg scattering only when
it is located exactly at its official position at a lattice site, this scattering becomes
weaker the more the atoms vibrate. The factor W by which Bragg scattering is
attenuated due to thermal motion is called the Debye-Waller factor. For small
displacements

W = e−Q2〈u2〉 1
2 (2.30)

where 〈u2〉 is the mean square displacement and Q the scattering vector. This means
that the intensity of the Bragg peaks decreases for increasing Q.

Phonons

In section 2.1.2, we discussed phonon dispersion curves, where it was said that if
we have a lattice with N atoms per cell, there will be a total of 3N distinct phonon
branches with frequencies ωj(q), the index of j having three values. Well, to each
ωj(q) there corresponds a polarization vector ξj(q), two components of which are
perpendicular and another one is parallel to q. The typical way to measure a
phonon is to work at a fixed wave vector Q = G+q and vary the frequency through
a branch at +ωj(q) or −ωj(q). In a neutron scattering measurement, if one creates
or destroys a phonon, the one-phonon inelastic coherent cross section will be given
by

d2σ

dΩdEf

∣∣∣∣∣
inel

coh
= kf

ki
(2π)3

υ0

∑
G

∑
jq
δ (Q + q −G) |Hj

q(Q)|2 × Sj(q, ω) (2.31)
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Here we define the dynamic structure factor H(Q) with the polarization vectors

Hj
q(Q) =

∑
j

b̄j e
[−Wj(Q)+iQ·dj ]

[
Q · ξjd(q)

]
M
−1/2
j (2.32)

where Mj and dj are the mass and position of the jth atom, respectively. Embedded
in the dynamic structure factor is also the so called form factor

Fq(Q) = b̄j e
[−Wd(Q)+iQ·dj ] (2.33)

which by itself gives us information about the scattering amplitude of a wave by an
isolated atom. In the last term of the one-phonon inelastic coherent cross section,
we have the response function for each individual nucleus inside a unit cell

Sj(q, ω) = 1
2ωj(q) [nj(q) δ{ω + ωj(q)}+ {1 + nj(q)}δ{ω − ωj(q)}] (2.34)

where nj is the Bose factor. The two expressions containing the delta functions
correspond to the creation and annihilation of phonons. In the limit T → 0 only
the first process occurs, since at absolute zero there are obviously no phonons to be
annihilated.
Within the same harmonic approximation, the incoherent cross section for phonon
scattering can be written as

d2σ

dΩdEf

∣∣∣∣∣
inel

incoh
= kf

ki
∑
d

(bdinc)2 1
Md

e−2Wd(Q)∑
jq
|Q · ξjd(q)|2Sj(Q, ω) (2.35)

During a standard triple-axis experiment, the measured integrated intensity of
the phonon scattering basically amounts to Eq. 2.31.

2.2.4 Resolution Function
While probing a sample with a computer-controlled spectrometer, one can easily opt
between either scan the energy transfer while sitting at a specific point in reciprocal
space, or scan along a particular direction in reciprocal space while maintaining
a constant energy transfer. However, the energy and momentum transfers of the
neutrons are distributed within some small region about the average values (Q0,
ω0). Therefore, the spectrometer is characterized by a resolution function R(Q−Q0,
ω − ω0), which peaks at (Q0, ω0) and decreases for deviations (∆Q, ∆ω). As a
result, to properly describe the measured signal, a convolution of the spectrometer
resolution function and the scattering function S(Q, ω) is required. The resolution
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function is defined by [130]

R(Q, ω) = ~2

mn

∫
dkidkfPi(ki)Pf (kf )δ (Q− kf + ki)× δ

[
ω −

(
~2

mn

) (
k2
i − k2

f

)]
(2.36)

where Pi and Pf are distribution functions of the neutron wavevectors ki and kf
transmitted by the collimators. The constant-amplitude contours for the resolution
function form a set of nested ellipsoids in (Q, ω) space, with a certain inclination.
Note that, up until now we have set Q equal to ki−kf . Changing from one convention
to the other has an important consequence for the orientation of the resolution
ellipsoid in (Q, ω) space: it results in a reflection about ω = 0. The effective
measured signal becomes

I(Q0, ω0) =
∫ ∞
−∞

d3Qdω S(Q, ω) •R(Q−Q0, ω − ω0) (2.37)

meaning that what one actually measures is not S(Q, ω) but rather a 4-dimensional
convolution of S(Q, ω) with the resolution function.

2.2.5 Damped harmonic oscillator model
In real systems, phonon–phonon and electron-phonon interactions tend to give single
phonons a finite lifetime. A way to incorporate this dissipation is through the
damped harmonic oscillator (DHO) model, in which the effect of phonon damping
is accommodated by the replacement of the delta functions with lorentzians ones,
along with re-normalization of the phonon frequencies.

The experimental neutron spectra can be described by a sum of phonon terms
on top of a flat background (Bg). Each phonon is typically accounted for by a
DHO [131]. The spectra can then be described by the following expression

I(Q, ω) = Bg +
[
1− exp(− ~ω

kbT
)
]−1∑

j

|Fj(Q)|2 ωΓj
(ω2 − ωj2)2 + (ωΓj)2 (2.38)

where ωj represents the energy, Γj the damping and Fj(Q) is the dynamical struc-
ture factor of the j-th phonon. The number of mode depends on how many peaks
are visible. The prefactor of DHOs is the phonon population factor. For acoustic
phonons, the dynamical structure factor can be written F (Q) = Q.ε where ε repre-
sents the phonon polarization.

In all cases, the full scattering function, I(Q, ω), is next convoluted by the 4D
spectrometer resolution function of the instrument (Eq. 2.36), and used to fit the
experimental data. The presence of several phonon lines in a given phonon bundle
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would have the effect to increase the damping when fitted by a DHO due to the
energy resolution function.

2.3 Neutron sources
Neutrons can be produced in a number of ways, e.g. as by-products of cosmic
radiation or radioactive decay of heavy nuclei. The intensity of a neutron source,
which depends on the type of process employed, is usually described by the fluence
rate and presents an important factor for research purposes. Currently, neutron
sources created for the purpose of materials investigation by scattering are either
based upon chain reaction in a nuclear reactor or upon accelerator-driven spallation
processes. Nuclear research reactors, as opposed to power reactors, incorporate
beam ports that allow neutrons to escape the reactor core. These ports also permit
samples to be inserted into the core. In such reactors, neutrons arise from the
spontaneous fission of 235U

235U + n(th)→ 2−3 neutrons + fission products + ∆E (2.39)

where the released energy ∆E is of the order of 200 MeV. During operation, there is
an in-growth of plutonium that will also fission. In the case of a spallation source, a
pulsed production of neutrons is obtained by bombarding a target of heavy elements
with high-energy particles, typically accelerated protons.

At the Laboratoire Léon Brillouin (LLB, spectrometers are located around the
reactor Orphée, which is a “pool” type 14 MW reactor operated by the Commis-
sariat a l’Energie Atomique et aux Energies Alternatives (CEA) (see Fig. 2.5.a). The
compact, light-water moderated core provides up to 3 x 1014 cm-2s-1 thermal flux in
the surrounding heavy water reflector tank. The heavy water tank is equipped with

Figure 2.5: Pictures of (a) the Orphée at LLB and (b) the High-Flux reactor at ILL.
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Table 2.2: Terminology and kinetic energy of free neutrons moderated in different mediums.

Energy range [meV]
Cold neutrons 6 10

Thermal neutrons 10 - 100
Hot neutrons 100 - 500

Epithermal neutrons > 500

three local moderators: two cold sources (liquid hydrogen at 20 K) and one hot
source (graphite at 1400 K). The experimental areas are located either in the reac-
tor building or along the neutron guides of a guide hall in an adjacent section of the
building.

Similarly to Orphée, the high-flux reactor (HFR) at the Institut Laue-Langevin
(ILL) is also a pool type reactor, cooled and moderated by heavy water (see Fig. 2.5.b).
The reactor block houses two cold sources and one hot source, thus guaranteeing a
wide range of neutron energies. However, the HFR provides the most intense contin-
uous neutron flux in the world in the moderator region with 1.5 x 1015 neutrons per
cm-2s-1, producing a power output of 58.3 MW. Fifteen horizontal beam tubes and
four vertical beam tubes direct the neutrons towards the experimental areas and
equipments.

The produced free neutrons can be classified according to their kinetic energy,
which is typically given in electron volts (eV) or milielectron volts (meV). Neutrons
produced in nuclear reactions typically have energies in the MeV regime, so, to be
useful in materials research, they must have their energies reduced. This is done via
the so called “moderation process” which is performed by a large number of succes-
sive collisions with a material that scatters strongly, but absorbs weakly. Because
of this moderation process, the energy of the free neutrons is also called neutron
temperature, in relation to the temperature of the medium in which they are mod-
erated. There are wide number of classifications of free neutrons according to their
kinetic energies. However, for practical purposes in neutron based experiments con-
ducted in reactors such as the ones above mentioned, neutrons are roughly divided
into four energy ranges. In Table 2.2 we present the typical classifications used and
the terminology employed in this work, noting that different ranges with different
names can be used.
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(a) Triple-axis spectrometer

(b) Time-of-flight spectrometer

Figure 2.6: Schematic diagrams the two types of spectrometers employed: (a) triple-axis spectrom-
eter (TAS) and (b) time-of-flight (ToF) chopper spectrometer.

2.4 Neutron instrumentation and experimental
setup

A wide range of instrumentation has been developed to apply produced neutrons
to various different research purposes. Some instruments deal with the study of the
crystal structure of materials, others with excitations in materials, others again with
the structure of biomolecular aggregates, with properties of thin films, and so forth.

Inelastic neutron scattering spectroscopy measurements were conducted using
both Triple-axis spectrometer (TAS) and Time-of-flight (TOF), at two different
neutron sources: the LLB and the ILL, both of which are reactor sources. Here
I briefly describe the instruments utilized at such locations, namely the TAS and
ToF spectrometers. Further information on the instruments used here can be found
on the LLB and ILL websites [132, 133], and a more comprehensive discussion of
neutron scattering using TAS can be found in the textbook by Shirane et al. [134].
The particular experimental setups for the measurements performed are covered
below, in the sections regarding the relevant technique.

2.4.1 Inelastic Neutron Scattering Spectroscopy

2.4.2 Triple-axis spectrometer (TAS)
Developed by Bertram Brockhouse [135], the TAS is arguably the most versatile
and useful instrument for both elastic and inelastic scattering since it allows for a
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controlled measurement of the scattering function S(Q,ω) at essentially any point
in momentum (~Q) and energy space (~ω).

The name “triple-axis” refers to the three axes of the monochromator, sample
and analyser. The monochromator and analyser axes house single crystals (dummy
samples) with well known structures. Each crystal can be rotated so that when used
in conjunction with Bragg law, these crystals enable selection of a particular neutron
wavelength for transmission to the sample or to a detector as appropriate. In other
words, the monochromator controls incident energy of neutrons on the sample and
the analyser controls the final energy of neutrons that reach a detector. The path of
the neutron beam is kept in the same horizontal plane, also denoted the scattering
plane. This way, the monochromator and analyser enable complete control over
both Q and the incident final energies of neutrons used to study a sample. The
instruments are large, mainly because of the necessary shielding which keeps the ra-
diation levels low in the neighbourhood of the instrument and keeps the background
measured by the detector at the lowest possible level.

A schematic diagram of a TAS is shown in Fig. 2.6.a, and the individual com-
ponents are highlighted below:

· Source. TheTAS uses a beam of cold or thermal neutrons. Most usually, a
neutron guide is used to transport the beam to areas far from the source where
the stray background is lower.

· Monochromator. The beam is diffracted by a monochromator, which selects
the neutron energy, Ei, typically in the range 14-100 meV at a thermal modera-
tor, or 2.5-14 meV for a cold moderator.

· Filter. The monochromatised beam is almost always polluted with higher order
scattering, from n > 1 in Bragg’s law. Filters are typically placed in the beam
after the monochromator to remove higher order harmonics which also satisfy
the Bragg condition of the monochromator, but which would contaminate the
measurements.

· Collimator. Control of the beam divergence within the horizontal scattering
plane is typically achieved through the use of Soller collimators, positioned typi-
cally between the monochromators. Collimators may also be inserted before the
monochromator (rarely) and after the analyser (sometimes).

Experimental conditions

On all TAS instruments, monochromators and analysers were made from the 002
reflection of Pyrolithic graphite (PG). Cold (below ∼ 15 meV) and thermal TAS
have been used to cover the full energy range of the phonon spectrum in the four
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hybrid lead halide perovskites, MAPI, MAPB, FAPB and FAPI.
On 4F1/4F2 and IN12 TAS located (on cold-neutron sources), respectively, at

LLB and at the ILL, a constant final neutron wave vector of kf = 1.55Å−1 was
utilized with a beryllium (Be) filter to remove high-order neutrons in the beam.
In addition for the measurement on IN12, a velocity selector was used to remove
neutrons with high order harmonics from the incident beam. For the particular
case of the measurement of acoustic phonons at the (220) Bragg reflection in α-
FAPbI3, the neutron wave vector was changed to kf = 1.70Å−1 and the Be filter
was removed. At the thermal TAS 1T at LLB, a constant final neutron wave vector
of kf = 2.662Å−1 was used with a PG filter to remove neutrons with high order
harmonics. The energy resolution of cold TAS goes from ∼ 0.25 to 0.5 meV for an
incident energy ranging from 5 to 16 meV, while for the thermal TAS (1T) it goes
from ∼ 1 to 3 meV for an incident energy ranging from 15 to 50 meV.

For the study of elastic constants (chapter 3), all samples have been analysed in
their cubic phase, corresponding to RT, except for MAPbI3 which has been warmed
up to 340 K, above its tetragonal-cubic phase transition. Samples were mounted in
a scattering plane such that the high symmetry reciprocal directions [100] and [011]
were within the horizontal plane. Throughout the present manuscript, the indices
refer to the high temperature cubic phase of the HOP lattice.

For the temperature-dependent measurements, all samples have been attached
to the cold head of cryogenerator at LLB or a cryostat at ILL. In specific, for the
low temperature measurements, temperatures of 5 K were reached where all these
hybrid organolead perovskites (HOP) are in the orthorhombic phase. However,
throughout the present manuscript, the indices refer to the high temperature cubic
phase of the HOP lattice. Samples were mounted in a scattering plane such that
the high symmetry reciprocal directions [100] and [011] were within the horizontal
plane. When necessary, goniometers were used to reach out-of-plane momentum
position, such as M=(5/2,1/2,0). It should be stressed that MA and FA molecules
were not deuterated giving rise to a large incoherent neutron scattering from the
various hydrogen atoms from the organic part of the compounds. The samples
are also fixed to a vanadium sheet (see below, Fig. 2.8) which results in additional
incoherent elastic scattering.

2.4.3 Time-of-flight (ToF)
While TAS’s measure one point in Q-E space at a time, ToF spectrometers allow
a large coverage of Q-E space to be studied in a single measurement. This is be-
cause in neutron ToF spectroscopy the determination of S(Q, ω) is achieved through
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measuring the neutron energy by way of its flight time over a known distance. The
interaction between the neutron and sample causes a change in the flight time of
the neutron and this is used to infer the energy exchanged with the sample. To
achieve this it is necessary to have a pulsed beam, which, in order to be adjustable
and controllable, is preferably obtained by the use of choppers. A disk chopper is a
rotating disk of some neutron absorbing material with a window that is transparent
to neutrons. By changing the phase and the rotation speed of the chopper it is
possible to tailor the neutron pulse to the experiment. Mathematically speaking,
substituting Ef from Eq. 2.5, leads to the following expression:

E = Ei −
mnD

2

2t2 (2.40)

where Ei is chosen by the chopper frequency and phase, D is the distance from
sample to detector and t is the time-of-flight of the neutrons from the same sample
and detector. It is clear from Eq. 2.40 how the scattering vector is dependent on
the time-of-flight and how the energy transfer is obtained from the latter. Fig. 2.6.b
shows a schematic illustration of the IN5 ToF spectrometer at ILL used for this
work.

Experimental conditions

Measurements with the ToF instrument IN5 were performed with an incident neu-
tron wavelength of λ = 2Å (≡ 3.14 Å−1), corresponding to an energy resolution
which varies from 1.15 meV at elastic position to 0.8 meV at 15 meV energy trans-
fer. The measured four-dimension S(q, ω) data were reduced and visualized using
the Horace software suite. Cuts shown in chapters 3 and 4 were made along [hh2]
direction, with an integration over -0.1 < l < 0.1 (i.e. [002+l]) and -0.1 < η < 0.1
in [η,-η, 0].

2.5 Optical spectroscopy techniques

2.5.1 Raman Scattering Spectroscopy
Raman spectroscopy, named after Indian physicist Sir C. V. Raman, is a spectro-
scopic technique used to observe vibrational, rotational, and other low-frequency
modes in a system. Raman scattering relies on inelastic scattering. The laser light
interacts with molecular vibrations, i.e. phonons or other excitations in the system,
resulting in energy loss or gain during the scattering process, and therefore an in-
crease or decrease in wavelength, respectively. If the molecule is promoted from a
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ground state to a virtual one and then drops back down to a (higher energy) vi-
brational state, then the scattered photon has less energy than the incident photon,
and therefore a longer wavelength. This is called Stokes scattering. If the molecule
is in a vibrational state to begin with and after scattering is in its ground state then
the scattered photon has more energy, and therefore a shorter wavelength. This is
called anti-Stokes scattering. This process is illustrated in Fig. 2.7.a. The shift due
to the Raman effect is determined by the spacing between the vibrational states and
the ground states i.e. by the phonons of the system. The Stokes and anti-Stokes
scattered light will be shifted an equal distance on opposite sides of the Rayleigh
scattered light. Therefore the spectrum is symmetrical about the wavelength of light
used, apart from the difference in intensities. Typically one uses the Stokes half of
the spectrum due to its greater intensity.

Experimental conditions

Raman scattering in MAPB has been performed under an optical microscope and
a T64000 Jobin-Yvon double pass diffractometer working with 18000 trts/mm grat-
ings. The radiation of a krypton laser emitting at 647 nm was tightly focused into
the sample with a ×100 objective. In order to avoid photo-induced effects, the in-
cident power was always kept lower than 2 mW. The spectra have been obtained in
the backscattering geometry with the incident light parallel to the [001]-cubic crys-
tallographic direction of the sample. The incident polarization was parallel to the
[110] direction and the results shown in the main text correspond to the polarized
spectra (i.e. scattered light // [11̄0]).

All the spectra have been fitted using slightly modified version the DHO used
in INS (Eq. 2.38). The model accounts for ω1, ω2, ω3, whose scattering spectral
function for a given mode i reads

I(ω) = SQE(ω)IQE +
∑
i

IiSiω +Bg (2.41)

where Bg is the background. Here Siω represents the response function of the mode
i which is can be described as

Siω = n(ω) + 1
1/(ω2

0i − ω2 − iΓiω) (2.42)

n(ω) is the Bose-Einstein population factor while ω0i and Γi are the DHO frequency
and damping of the mode submitted to a driving force (the incident electric field),
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respectively. The analysis also required a central component (in black in Fig. 5.3)
of spectral form

SQE(ω) = n(ω) + 1
ω/(ΓQE − iω) (2.43)

where ΓQE is the half width at half maximum of the quasi-elastic (QE) peak.

2.5.2 Brillouin light scattering (BLS)
Brillouin light scattering, named after Léon Brillouin, refers to the interaction of
light with the material waves in a medium. Brillouin spectroscopy is similar to Ra-
man spectroscopy in many ways; in fact the physical scattering processes involved
are identical. However, the type of information gained is significantly different.
While Raman scattering, involves interactions with high frequency molecular ro-
tational and vibrational modes, in BLS on the other hand, photons are scattered
by interactions with low-frequency phonons, providing information regarding elastic
properties. As a result, BLS spectroscopy is typically used to measure the elastic
behaviour of a sample using an interferometer and Raman spectroscopy to deter-
mine the chemical composition and molecular structure of a material using either an
interferometer or, for example, a dispersive (grating) spectrometer. Fig. 2.7.b shows
a typical spectrum of spontaneous scattering from solid state matter, as measured
by different light spectroscopy techniques.

Experimental conditions

Brillouin light scattering spectroscopy experiments have also been used to study the
angular dispersion of acoustic phonons in MAPbBr3 and FAPbBr3 (measurements
in the iodide-based samples were not possible with the current set-up as they are not
transparent to the laser light). Spectra were recorded at 647.1 nm by using a krypton
ion laser and a tandem of Fabry-Perot interferometers where each interferometer is
triple passed giving a contrast larger than 10−12.

2.6 Sample Preparation
Single crystals of four different hybrid lead halide perovskites have been studied by
INS and Raman spectroscopies: MAPbBr3, FAPbBr3, MAPbI3, and α-FAPbI3. MA
and FA stand for methylammonium and formamidinium molecules, respectively. All
single crystals, of typical size of 200 mm3 for all compounds (except for FAPI where
only a volume of ∼50 mm3 could be achieved), were synthesized at the Institut des
Sciences Chimiques de Rennes (ISCR) and the King Abdullah University of Science
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Figure 2.7: (a) Energy-level diagram showing the states involved in Raman spectra. (b) Illustrative
comparison of the typical wavelength, i.e. energy, shifts involved for each technique.

and Technology (KAUST) Solar Center. These can be seen in Fig. 2.8.

Methylammonium Lead Bromide

MAPbBr3 single crystals were grown by ITC [114]. A solution of MAPbBr3 was
prepared in DMF with 1 M concentration and was filtered with a 0.2 µm pore size
PTFE filters. 3 ml of the obtained solution were then placed into a 5 ml beaker
which was introduced in an oven at 80 °C and kept for 3 h. To increase their size, the
formed crystals were extracted from the first beaker and place into another beaker
containing fresh filtered solution at the same temperature overnight.

Methylammonium Lead Iodide

MAPbI3 single crystals were grown by ITC [74]. A solution with 1 M concentration
of MAPbI3 was prepared in GBL and was filtered with a 0.2 µm pore size PTFE
filters. Then 3 ml of the obtained solution were placed into a 5 ml vial which was
placed in an oven at 60 °C. The temperature was gradually increased to 110 °C and
kept for 1 days to further increase the size of the crystals.

Formamidinium Lead Bromide

FAPbBr3 single crystals were grown by ITC [114]. After the filtration using PTFE
filters with a 0.2 µm pore size, 3 ml of 1 M solution of FAPbBr3 in DMF:GBL (1:1
v/v) were placed into a 5 ml beaker which was introduced in an oven at 40 ° C. The
temperature was then gradually increased to 52 °C and kept for 5 h and at 60 °C for
3 h. The size of the crystal can be further increased through the gradual increase of
temperature.
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(a) (b) (c) (d)

Figure 2.8: Photos of the HOP crystal samples used in the experiments: (a) MAPB, (b) FAPB,
(c) MAPI and (d) FAPI. In the case of the Br-containing compounds, we also show the vanadium
support sheets where the crystals were attached for the neutron scattering experiments.

Formamidinium Lead Iodide

FAPbI3 single crystals were grown by ITC [74]. A solution of FAPbI3 was prepared
in GBL with 1 M concentration and was filtered with a 0.2 µm pore size PTFE
filter. Then 3 ml of the obtained solution were placed into a 5 ml vial which was
immersed in an oil bath at 80 °C. The temperature was slowly increased to 105 °C.
Subsequently a fresh filtered solution can be added on one formed crystal in a vial
to increase the size through the gradual increase of temperature.

Metastable nature of FAPbI3

The α-phase of FAPbI3, i.e. the photoactive phase, is metastable and only lasts a
maximmum of 7 days at RT. In this work we were able to measure optical phonons on
a fresh sample within that first period of 7 days, mainly due to the low temperature
(5 K) working conditions. Only once we started heating up the sample, for the
temperature dependent measurements, did it start showing signs of degradation into
the yellow phase (δ-phase), which presents no particular physical interest. The α-
phase can, however, be restored back into the black α-phase upon heating/annealing,
which was indeed demonstrated in small single crystals [74]. However, on large single
crystals such as ours, only part of the sample is restored to a single grain and most
of the sample remains as a powder.
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Chapter 3

Elastic softness of hybrid lead
halide perovskites

Here we investigate by coherent inelastic neutron scattering spectroscopy and Bril-
louin light scattering, low frequency acoustic phonons in four different hybrid per-
ovskite single crystals: MAPbBr3, FAPbBr3, MAPbI3 and α-FAPbI3. We report
a complete set of elastic constants characterized by a very soft shear modulus C44.
We observe a systematic lower sound group velocity in the technologically important
iodide-based compounds compared to the bromide-based ones. The findings suggest
that low thermal conductivity and hot phonon bottleneck phenomena are expected to
be enhanced by low elastic stiffness, particularly in the case of the ultrasoft α-FAPbI3.
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3.1 Introduction
In this chapter, we have investigated low frequency structural excitations in the cubic
phases of the most relevant compounds implemented in HOPs, namely MAPbBr3,
FAPbBr3, MAPbI3 and α-FAPbI3, in their single crystal form; from now on referred
to as MAPB, FAPB, MAPI and FAPI, respectively. We report a complete set of
elastic constants, via the corresponding sound velocities, and we relate the results
to the lower thermal conductivity found in HOP compounds and the hot phonon
bottleneck hypothesis proposed for such systems. For that purpose, dispersions of
the acoustic phonons have been measured around main Bragg reflections using INS.
Complementary BLS experiments have also been used to determine sound velocities
in the bromide-based compounds. The experimental conditions and procedure of
both techniques are detailed in sections 2.4.2 (INS) and 2.5.2 (BLS).

3.2 Results
Fig. 3.1 show the low energy INS spectra of acoustic phonons in MAPB, FAPB,
MAPI and FAPI, at around main Bragg reflections, where both constant energy
and Q scans were performed. Using the (200) position as an example, longitudinal
acoustic (LA) and transverse acoustic (TA) acoustic modes were measured at dif-
ferent reciprocal space positions Q = (200) + q in HKL units, with q along (LA)
and perpendicular (TA) to [200] (for TA q is parallel to [011])1. Clear acoustic
phonon modes are observed on top of a strong background. As shown by constant
Q-scans, the background results from large QE signals, likely coming from incoher-
ent scattering of hydrogen atom excitations present in the MA/FA molecules, as
it has been previously studied on powder samples in MAPB [136]. Energy scans
performed at various momentum vectors around the Bragg positions revealed that
the QE signal occurring in the energy window of the acoustic phonons is almost
independent of the sample orientation and weakly dependent of the longitudinal
momentum. In constant-energy scans (e.g. Fig. 3.1.j), this incoherent QE corre-
sponds to a flat contribution, whereas acoustic phonons show up as a double peak
structure at symmetric positions of the Bragg reflection. As a result, even though
the background is relatively large, one can easily separate it from the dispersing and
symmetric phonon modes. The reason for opting with either energy or Q scans is
mostly connected to the signal to noise ratio, which in this case can be thought of as
a structure factor/QE ratio. The dynamic structure factor (see Eq. 2.32), varies for

1At any time, the reader is welcome to refer to Appendix A for a quick refresher on crystal
lattices and reciprocal spaces.
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(g) (h) (i)
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Figure 3.1: TA phonon spectra measured by INS TAS spectra measured in the cubic phase of
the four HOPs. With the exception of MAPI (340 K), all other compounds were studied at RT.
transverse acoustic (TA) phonons in (a) MAPB, (d) MAPI and (g) FAPB for different Q positions
going away from the (002)≡(200) Bragg peak (i.e. Q = (k k 2)); and of (j) FAPI for different
energy values. longitudinal acoustic (LA) phonons in (b) MAPB, (e) MAPI and (h) FAPB for
different Q positions going away from the (002) Bragg peak (i.e. Q = (0 0 2+k)), and (k) FAPI for
different energy values. transverse acoustic (TA) phonons in (c) MAPB, (f) MAPI and (i) FAPB
for different energy values around the the (111) Bragg peak and (l) longitudinal acoustic (LA)
phonons for FAPI different energy values at the (220) Bragg reflection.
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different reciprocal points. Therefore, when we have a favourable form factor for a
specific Bragg point (i.e. (002)), its best to perform constant Q scans. Conversely,
for (111) we find it necessary to perform constant energy scans to improve the signal
to noise ratio. This becomes even more relevant in the case of FAPI, since due to its
unstable nature (see section 2.6), we were loosing scattering intensity by the hour
as the sample gradually degraded.

All neutron spectra has been fitted with the DHO model described in section 2.2.5
(Eq. 2.38), from which the phonon energy can be extracted. Some constraints were
imposed during the refinements of the data so to avoid correlations between param-
eters. In particular, within each dispersing phonon branch group, the dynamical
structure factor and the damping Γj have been constrained in order to have a con-
sistency within each branch. This way the error bars of the fitted phonon positions
are noticeably reduced since the only remaining free parameter is then the phonon
energy in constant Q-scans or its position in momentum in constant energy scans.
In the constant Q-scans, a QE centered at zero energy was also necessary to include
to achieve a proper fit, while for constant energy scans a constant background was
used.

By varying the distance q to the nearest Bragg peak, Γ point (not to be con-
fused with the phonon damping Γj), one can draw the dispersion curves, which are
reported in Fig. 3.2. Each sub-figure represents measurements at a different Bragg
position or propagation direction. We derive the phonon sound velocity v from
linear regressions along most directions and then, with simple rules of elasticity in
cubic systems [137], readily determine the corresponding elastic constants for the
four perovskite compounds.

The elastic constant tensor C relates the strain and stress tensors in a linear
fashion, so that

σij =
∑
kl

Cijklεkl (3.1)
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Figure 3.2: Acoustic phonon dispersion curves for the four HOPs, as measured by INS. (a) TA and
(b) LA phonons at (002); (c) TA phonons at (111) in MAPB, MAPI and FAPB and LA phonons
at (220) in FAPI.
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Table 3.1: Sound velocities of the four different compounds, measured by INS and BLS, along
various directions. For purposes of comparison, we also present sound velocities obtained by
Ultrasonic Scattering (US), from other recent studies [10].

VTA1 q‖[110] VTA2 q‖[110] VTA q‖[111] VLA q‖[100] VLA q‖[110]

MAPB
INS 1030±30 1320±20 3000±50

BS 955±15 1742±20 2910±10

US ∼34002

FAPB
INS 900±20 1400±100 1300±20 2700±80

BS 620±20 1700±20 2870±30

MAPI
INS 1330±30 1200±50 2300±70

US ∼36501

FAPI INS 800±50 1650±150 1150±30

1 at 330 K.
2 at RT.

which is a general form of the Hooke’s law (F = −Cu). The tensor C has 3 × 3 ×
3× 3 = 81 components. However, due to the symmetrical form of σij and εij, each
of them has 6 independent components and, therefore, we need only 36 elastic con-
stants. In a cubic system, such as our four crystals, there are only three independent
elastic constants, namely C11, C12 and C44. These correspond to Young’s modulus
(C11), transverse expansion (C12) and shear modulus (C44), respectively. One can
deduce them from the phonon dispersion curves ω(q), depending on the propagation
direction, by using the following expression

V =
√
Ceff
ρ

(3.2)

where Ceff is an effective elastic constant, given for cubic crystals as indicated in
Table 3.2. Fig. 3.2.a and 3.2.b specifically show the sound velocities of the (002) TA
and LA acoustic phonons, respectively, which respectively yield C44 and C11 in a
rather direct way (C = ρv2). Knowing C44 and C11, it is possible to determine C12,
by measuring either LA phonons at the (110) position [1/2(C11 + C12 + 2C44)] or TA
phonons at (111) [1/3(C11 − C12 + C44)]. These are shown in Fig. 3.1.c,f,i and 3.1.l,
and the corresponding dispersion curves in Fig. 3.2.c. Changing the diffraction plane
from [110][001], to e.g. [100][010], one can then access the T2 mode while measuring
TA phonons at the (110) Bragg reflection. We have done this only in FAPB (see
supplementary Fig. B1, Appendix B). A summary of the determined sound veloci-
ties by INS for all four HOP compounds and the extracted elastic constants is given
in Tables 3.1 and 3.3, respectively.

Considering the obtained elastic constants, one can also calculate the bulk mod-
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Mode q‖[100] q‖[110] q‖[111]

L C11 1/2(C11 + C12 + 2C44) 1/3(C11 + 2C12 + 4C44)

T1 C44 C44 1/3(C11 − C12 + C44)

T2 C44 1/2(C11 − C12) 1/3(C11 − C12 + C44)

Table 3.2: Effective elastic constant Ceff , given for cubic systems, depending on the propagation
direction.

ulus [137]
K = 1

3(C11 + 2C12) (3.3)

the Zener anisotropy index [138]

A = 2C44

C11 − C12
(3.4)

and longitudinal/transverse (L/T ) ratio for all systems. In MAPB and MAPI, the
sound velocities or bulk modulus recently obtained from high-resolution inelastic
X-ray scattering measurements [84, 139], although with less accuracy, agree with
our findings.

Immediately we note that C12 in FAPI is negative, however this still fulfils
the necessary Born elastic stability criteria, mentioned in section 1.3.1, for cubic
systems [140, 141]:

C11 − C12 > 0 ; C11 + 2C12 > 0 ; C44 > 0 (3.5)

A negative C12 simply implies that a cubic material, when uniaxially compressed
along a [100] direction, will contract in the other two directions ([010] and [001]) and
in that way, try to maintain an isotropic structure. However, we originally deter-
mined a value of C12 = −5.7±3.6 GPa. The problem here was that upon calculating
the associated bulk modulus, we had a range of impossible, non-physical values, re-
sulting from the relative standard error. Therefore, we proceeded to eliminate the
non-physical range of values to arrive at C12 = −4.3± 2.2 GPa, by considering ex-
treme values of C11 and C44 within their error and cross check it with the physically
acceptable range of values for C12. Nonetheless, the negative C12 together with
the very low bulk modulus, confirms the very unstable nature of α-FAPI (whose
metastable single crystals last less than a week in the α phase [74]) and why it
has actually been paired with MA, Rb and Cs for better performing photovoltaic
devices. As shown in Table 3.3, the four perovskite compounds exhibit an overall
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sizeable elastic anisotropic nature (A 6=1), which can be mostly attributed to the
very low shear modulus C44. MAPI stands out with its relatively higher (around
double) C44 which results in a discrepant, although still anisotropic, Zener index.
However, it should be noted that the measurements were performed at 340 K, just
above the transition to the cubic phase [72], resulting in an additional anharmonic
effect. The remarkably low shear moduli are much more obvious when compared
to the ones of classical semiconducting photovoltaic materials such as Si, GaAs or
AlAs, where the elastic constants are on the order of 102 GPa [142]. It is believed
that the rotation/tilts of the corner sharing PbX6 octahedra [143] could be respon-
sible for the particularly low shear modulus and large anisotropy in HOPs.

As evidenced in Fig. 3.3, C11 and K decrease noticeably with increasing lattice
constant. These two quantities are, therefore, lower in iodide-based systems com-
pared with bromide ones, especially in FAPI where they are a third of its bromide
counterpart. This indicates a structural instability when the lattice parameter ex-
ceeds ∼6.4 Å. The relatively higher bulk modulus in MA-based compounds should
be related to a steric effect, where the more symmetric and rotating MA molecules
lead to more compact structures, which in turn results in larger binding elastic in-
teractions. It is worth emphasizing that, by construction, the acoustic branches are
defining the lowest ZB phonons and thus, related to the lowest peaks of the phonon
density of states. That also implies that the Debye temperature is very small (i.e.
about 30 K). Moreover, as a function of lattice constant, this quantity exhibits the
same trend as for C11 and the bulk modulus. The observation that iodide materials
are softer than bromide materials, as well as FA-based compounds versus MA-based
ones is consistent with recent static nano-indentation measurements of the Young
modulus [144, 145], though FAPI was not explored there (see Table 3.1 for com-
parison). In contrast, recent pulse-echo ultrasonic measurements at low frequency
(10 MHz) and in the 140 - 350 K temperature range [10], show larger sound veloci-

Table 3.3: Summary of the elastic properties at RT for MAPB, FAPB and FAPI and at 340 K for
MAPI, as measured INS and BLS.

MAPB FAPB MAPI FAPI

Elastic Constant INS BS INS BS INS BS INS BS

C11[GPa] 34.5±1.2 32.2±0.2 27.7±1.6 31.2±0.2 21.8±1.3 n/a 11.1±2.0 n/a

C44[GPa] 4.1±0.2 3.4±0.1 3.1±0.1 1.5±0.1 7.3±0.3 n/a 2.7±0.3 n/a

C12[GPa] 18.5±2.0 9.1±0.8 11.5±2.4 9.4±0.5 11.3±3.1 n/a -4.3±2.2 n/a

Bulk modulus [GPa] 23.9±1.3 16.8±0.1 16.9±1.7 16.7±0.3 14.8±1.7 n/a 0.0±2.4 n/a

Anisotropy, A 0.52±0.005 0.29±0.01 0.38±0.03 0.14±0.01 1.38±0.22 n/a 0.4±0.2 n/a

L/T ratio 8.7±0.5 9.5±0.3 8.9±0.7 20.8±1.4 3.0±0.2 n/a 4.3±0.9 n/a
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Figure 3.3: Elastic constants C11 and C44 as well as the bulk modulus K behaviour as a function
of the cubic lattice constant of each compound.

ties for MAPI than for MAPB. However, the results of Anusca et al. [10] are also in
disagreement with other ultrasonic studies [146, 147]. Yet it should be noted that
the sound velocity attenuation is very large at 10 MHz and strongly affected by the
structural phase transitions.

BLS on the other hand, allows exploring the same properties in the GHz range,
intermediate between ultrasonic and neutron scattering measurements. Sound ve-
locities were measured in both bromides compounds at RT using BLS, with a set-up
in the [100][010] plane [146]. Five different incidence angles between the normal
(0°) and the Brewster angle (25°) are reported in Fig. 3.4.a with the observation of
quasi longitudinal and quasi TA modes. A measurement along the cubic diagonal
[110] is also shown. For both bromide compounds, a good agreement between INS
and BLS longitudinal sound velocities is observed (see Table 3.1). The same ap-
plies for the transverse mode in MAPB [146], within a 5% difference. In contrast,
a 30% difference is observed for the same mode in FAPB. This is emphasized in
Fig. 3.4.b where the sound velocity is presented as a function of q. One can clearly
observe the phonon softening of the transverse mode at lower q, in the BLS regime,
which indicates a tendency towards a ferroelastic phase transition [148]. Recording
that this specific sound velocity is related to the C44 elastic constant as C44 = ρv2

(where ρ = 4087 kg/cm3 is the density of FAPB), it means that a 30% softening
of the sound velocity corresponds to a 60% re-normalization of C44. Interestingly,
the values obtained by laser ultrasonics [147], where a set of elastic constants was
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Figure 3.4: (a) Sound velocity diagram for FAPB and MAPB, as determined by BLS. The velocity
is given as a function of the angle between the direction of measurement and the [100] direction.
(b) Softening of C44 in FAPB as function of q, comparing phonon velocity as measured from BS
and INS. The bare elastic constant, C0

44, represents the elastic properties without the influence of
the (incipient) phase transition. Note that the q scale is logarithmic to underline the broad q-range
covered by both experimental techniques.

also given for MAPB, are in good agreement with our BLS results and a similar
softening of C44 is observed too.

3.3 Discussion
HOPs are characterized by high electron/hole free charge carrier mobility at RT. At
high temperature ranges such as RT (10 times the Debye temperature), the electronic
mobility, µ, is typically governed by phonon scattering, via electron-phonon coupling
(Fröhlich phonon emission). The whole phonon spectrum will then contribute to
the electronic scattering rate, 1/τ (µ is proportional to the electronic relaxation
time τ). However, for intra-valley electron bands of direct gap semiconductors like
the 3D HOP, the scattering rate should also be enhanced by collisions with low
energy LA phonons. When the acoustic phonon contribution is considered, the
electronic scattering time, τ , is expected to be proportionnal to the average squared
longitudinal sound velocities [149], i.e. proportional to the average elastic constants
such as C11 or the bulk modulus K that are shown in Fig. 3.3. The contributions to
the carrier mobilities related to interactions with acoustic phonons are thus predicted
to be strongly different between iodide- and bromide-based compounds, but such a
large difference in carrier mobilities is not experimentally observed [3, 74]. Instead,
it rather shows that the carrier mobilities are limited by other processes, namely
interactions with optical phonons. Such conclusion is corroborated by emission line
broadening results [120, 150], pointing to scattering from longitudinal optical (LO)
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Figure 3.5: Thermal conductivity κ as a function of (a) longitudinal phonon sound speed vLA, (b)
v2

LA, (c) C11 and (d) bulk modulus K. The dashed line is a linear fit intercepting at y = 0.

phonons, as the dominant source of electron-phonon coupling near RT. However,
there are other implications to be considered.

Low thermal conductivity

A direct consequence of the lattice softness is the ultralow thermal conductivities
reported in perovskites [151–153]. In any electric semiconductive or insulating ma-
terial, thermal conductivity κ is directly affected by the phonon properties. More
specifically, the kinetic theory of phonon transport yields [149, 151]

κ = 1
3Cvv

2
sτ (3.6)

where Cv, vs and τ are the phonon specific heat, group velocity and the scattering
rate. In fact, we took the κ values from the frequency-domain thermoreflectance
(FDTR) data of Elbaz et al.[145] and plotted it as a function of the longitudinal
sound speed vLA (Fig. 3.5.a), v2

LA (Fig. 3.5.b), C11(Fig. 3.5.c) and the bulk modulus
K (Fig. 3.5.d), that we measured and calculated. The approximate linear relation-

63



ship observed in general in Fig. 3.5 signifies that the APbX3 perovskites have similar
phonon mean free paths/scattering rates and that the differences in κ result mostly
from variations in phonon group velocity (i.e. elastic constant). One can then asso-
ciate lower thermal conductivity to lower elastic stiffness. As a result, although there
FAPI is not featured in Fig. 3.5, the thermal conductivity of MAPB is predicted
to be higher than FAPI due to the higher elastic moduli, i.e. a stronger acoustic
phonon localization is expected in FAPI compared with MAPB.

Hot phonon bottleneck

In lead halide perovskites it has also been reported a significant hot-phonon bottle-
neck effect in carrier thermalization [9, 154]. The effect consists in the up-conversion
of acoustic phonons into optical modes, which recycles thermal (vibrational) energy,
reheating charge carriers and prolonging the cooling period of the carrier-optical
phonon system. This helps maintaining a hot carrier population, something that
is vital to achieve hot carrier photovoltaic devices and break the Shockley-Queisser
limit [85]. Yang et al. [9] proposed phonon bottleneck and up-conversion process is
illustrated in Fig. 3.6.a.

1. First, the Fröhlich interaction occurs predominantly between the hot carriers
and inorganic sub-lattice, exciting the high-energy lead-halide LO phonons;

2. Decay of LO phonons to acoustic modes (and local lattice heating). During
this stage, the co-vibration between organic and inorganic sub-lattices can also
be excited via phonon–phonon scattering;

3. Propagation of acoustic phonons is blocked by anharmonic phonon–phonon
scatterings;

4. The up-transition probability of phonons is then increased, especially when
organic cations appear in the lattice. The organic cation introduces lots of low-
energy co-vibrational optical modes, which overlap well with acoustic branches
and facilitate the phonon up-transition;

5. The recycled thermal (vibrational) energy reheats charge carriers and prolongs
the overall cooling period of carrier-phonon system.

A strong anharmonic phonon–phonon scattering corresponding to a low thermal
conductivity in general can localize acoustic phonons by blocking their propagation
and increase the probability of an up-transition. In turn, an efficient up-conversion
of acoustic phonon can also impede thermal propagation in the lattice [155].

At the same time, ultrafast transient absorption measurements reveal two stages
of the carrier cooling process [9]. These have been highlighted in Fig. 3.6. The first
one is related to the intrinsic Fröhlich phonon emission mentioned above and does
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Figure 3.6: (a) Proposed phonon dynamics of the bottleneck effect in FAPI. The solid black
line shows the total phonon DOS, in which the contributions from the inorganic and organic
sub-lattices are shown by the blue region on the bottom with the pink region stacked on top,
respectively. The labelled phonon dynamic process are: (1) Fröhlich interaction of carriers pri-
marily on the lead-halide framework; (2) relaxation of lead-halide LO phonon, organic sub-lattice
can be excited by phonon–phonon scattering; (3) propagation of acoustic phonon is blocked due
to anharmonic phonon–phonon scatterings; (4) up-conversion of acoustic phonons; and (5) carrier
reheating. Time-dependent carrier temperature under different incident fluence, in (b) FAPI and
(c) MAPB. We have circled the two cooling stages of the carrier-phonon system mentioned in the
text. Reprinted from [9].

not vary significantly among the various different perovskites. On the other hand, in
the second cooling stage, hot carrier-phonon dynamics occur, corresponding to the
phonon bottleneck effect [9, 154]. The four HOP materials studied in the present
work show, in fact, very different acoustic phonon densities of states that might
affect hot phonon energy relaxations. At RT, the carrier-phonon relaxation rate of
that second cooling stage is typically 3-4 times slower in FAPI, compared with the
MAPB system [9]. This is fully consistent with the difference in elastic constants
reported in Fig. 3.3. This apparent correlation between C11 and carrier relaxation
rates, together with the above observations regarding thermal conduction, suggest
lower elastic stiffness to be, therefore, an important factor to enhance the hot carrier
effect in hybrid perovskites.

In conclusion, our quantitative study of low energy acoustic phonons provides a
complete set of elastic constants of four of the more technologically relevant hybrid
perovskites, in their cubic phases. We highlight the overall very low shear modulus
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C44 and the significant variation of elastic bulk modulus among them. This way we
give a clear picture of the difference in softness between FA and MA based com-
pounds, as well as Br− vs. I−, and how it relates to their structural stability and
ultralow thermal conductivities. Moreover, the data presented here strongly sup-
ports the hypothesis of the hot phonon bottleneck phenomena, reported by other
authors to explain hot carriers relaxations. Both processes are expected to be en-
hanced by low elastic stiffness, especially in the case of the ultrasoft FAPI.
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Chapter 4

Direct evidence of weakly
dispersed optical phonons at low

temperature

Here, we investigate the low temperature optical phonon spectrum below 40 meV
- via inelastic neutron scattering and Raman spectroscopy - in single crystals of
four different hybrid lead halide perovskites: MAPbBr3, FAPbBr3, MAPbI3, and α-
FAPbI3. The spectra reveal weakly dispersive optical phonons, at energies as low as
2-5 meV, which seem to be the origin of the limit of the charge carrier mobilities in
these materials.
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4.1 Introduction
We have seen in the previous chapter that, carrier scattering is dominated by
Fröhlich coupling between charge-carriers and LO phonon modes, rather than with
acoustic phonons at RT [120, 121], which was reinforced by our analysis of elastic
constants. It has also been stressed in the introduction (section 1.4.2) that this goes
against the apparent acoustic-like temperature dependence of mobilities in HOPs.
As a result, the absence of a clear picture remains, with regards to the phonon
scattering mechanism setting the limit of charge-carrier mobility. Furthermore, it
was also made evident the importance of the coupling between acoustic and opti-
cal phonons in the hot-phonon bottleneck effect. However, atomic-level description
of these materials is hindered by the hybridized nature of phonon excitations in
the organic and inorganic sub-lattices, which interact with each other via hydrogen
bonding. Therefore, a direct measurement of optical phonons branches with the
same methodology as for the acoustic modes, becomes a necessary step to address
carrier-phonon coupling dynamics and to assess the fundamental intrinsic limit to
the mobility of charge carriers in these materials.

In this chapter, we then proceed to employ both neutron ToF and TAS tech-
niques to investigate the same four hybrid perovskite single crystals. Complementary
Raman scattering spectroscopy is also used. INS allows for direct measurement of
the optical phonon spectrum over the reciprocal space that covers the full Brillouin
zone (BZ), thus offering the most complete approach. Raman spectroscopy is also
a very powerful and precise technique to measure optical phonons and quasielastic
contributions, but restricted to the center of the BZ (Γ-point) and limited by specific
selection rules.

In our low temperature measurements, we are able to observe well-defined optical
phonons. Mode attribution of the latter to the respective structural vibrations has
been carefully discussed and a comparison is made between the four compounds.
We also find the optical excitations to be non-propagating as they show little to no
dispersion in momentum space (particularly in MA-based compounds), suggesting
a localized character in real space.

4.2 Results

4.2.1 Lack of dispersion in momentum space
Due to the complicated interplay between organic and inorganic sub-lattices, where
molecules perform stochastic motions at ambient temperature [156], it makes more
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sense to start with low temperature measurements. At the most ordered structural
phase of the HOPs, the orthorhombic one, the organic molecules are frozen in place
and overall motions are reduced, presenting a more ideal condition to probe their
lattice dynamics.

Indeed, at 5 K, neutron spectra show well-defined energy resolution-limited
phonon features (Figures 4.1 and 4.2). With ToF, the dynamic structure factor
S(q, E) in MAPI was obtained by varying the incident energy of neutrons in the
direction of [ζ,ζ,2] (i.e. [hk0]). For the scattering conditions, having an incident
neutron wavelength of λ = 2Å (≡ 3.14 Å−1), we were limited to a range of 15 meV.
Within this energy range, we observe three different modes. Interestingly, all optical
phonon modes (or mode bundles) seem to have little to no dispersion. The obser-
vation of dispersionless phonon is opposed to what has been previously predicted
using density functional perturbation theory in MA-based HOP [52, 139], where dis-
persive phonon branches were computed. We then performed TAS measurements
also at 5 K, in all four perovskites. These were constant-Q scans along high sym-
metry directions (Γ → M or Γ → R). Likewise, these show no dispersion, within
a 0.1 meV error, and only the amplitudes of the modes vary (Fig. 4.2). However,
we need to temperate this observation, due to the question of incoherent scattering
from hydrogen atoms.

As pointed out in the introduction to neutron theory (section 2.2), the neu-
tron intensities correspond to the sum of coherent and incoherent cross-sections
(Eq. 2.21). The coherent cross section corresponds to the correlations of atomic
displacements of all nuclei at different times whereas the incoherent cross section
represents self-correlations only at different times of the same nucleus. The latter
includes interference effects which are absent in the incoherent scattering. All nuclei
are characterized by two different neutron scattering lengths, bcoh and binc. The
value of bcoh of nuclei present in our HOPs is ranging between 9.4 fm for Pb, to
5.28 fm for I. The incoherent scattering length of hydrogen, binc = 25.27fm, is much
larger than the ones of all other atoms (Pb, I, Br, C ,N) present here (binc ≤ 2fm).
Therefore, as it is well-known for organic compounds, the incoherent cross section
is mostly controlled by the hydrogen contribution. We also remind that the MA,
CH3NH3, and FA, (CH2)2NH, molecules in our samples were protonated, giving rise
to a large incoherent neutron scattering from the 6 hydrogen atoms in MA (or 5 in
FA), per formula unit of the HOP compounds.

We showed that the coherent cross section can be separated in two terms: a
dynamic structure factor, H(Q), and an energy dependent spectral weight function,
Sj(q, ω), corresponding to Equations 2.32 and 2.34, respectively. In the structure
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Figure 4.1: (a) Full ToF contour plot of MAPbI3, at 5 K, and zoomed in plots at (b) low (below
6 meV) and (c) high (10-14 meV) energy range.

factor, d, bdcoh, Md and ξd are respectively the position of the d-th atom in the unit
cell, the scattering length, the molar atomic mass and the polarization vector for
the j-th phonon of the atom labelled d within the unit cell. Wd(Q) is the Debye-
Waller factor of d-th atom in the unit cell. V0 is the volume of the unit cell of
the crystal. Conversely, though still within the harmonic approximation, the inco-
herent cross section was defined in Eq. 2.35, where last section corresponds to a
phonon density of states (sum in momentum space of phonon modes). In contrast
to the coherent cross section, the specific q dependence of the j-th atom is lost.
In principle, no information can therefore be obtained for the phonon dispersion
from the incoherent cross section, which, typically, has the shape of a broad contin-
uum if the optical phonons are dispersive (examples of such situations are multiple
in the literature [126]). However, it exhibits sharp features in case of dispersion-
less optical phonons. We are facing this last situation in our HOPs, especially for
the MA-based compounds, where the low temperature phonon spectra show energy
resolution-limited peaks.

Therefore, in case of incoherent scattering, the phonon momentum informa-
tion is lost. Since the hydrogen atom has a large incoherent scattering length bHinc,
the phonon peaks involving hydrogen will basically correspond to the incoherent
cross-section. In contrast, the phonon peaks from the PbX3 cage will correspond
to coherent cross-section and those amount to the lowest energy bundle a (as dis-
cussed below), showing no dispersion (see e.g. the ToF data in MAPI, Fig. 4.3.b).
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Figure 4.2: At 5 K, TAS measurements along high symmetry directions, going through a BZ,
in (a) MAPB, (b) MAPI, (c) FAPB and (e) FAPI. The insets of each show the correspondent
measurement trajectories in momentum space.

Further, even for incoherent scattering, some information can be obtained from the
sharpness of the measured peaks. Energy resolution-limited peaks, as we observed
for MA-based HOPs, can only be accounted for by dispersionless phonons even
for incoherent scattering. It is interesting to compare our data with the neutron
scattering studies of HOP powder samples where the q dependence is also lost by
averaging over all orientational directions. We notice that the powder sample spec-
trum of MAPB [136] and MAPI [157] exhibit as well sharp phonon modes at the
same energy than ours, suggesting as well the dispersionless nature of these phonon
modes. Further, the lowest energy mode at 5 meV in MAPB does not change in
position when comparing a deuterated sample to a protonated one [136], showing
that it is not related to a molecular vibration. The lowest energy mode is then nec-
essarily associated to the coherent neutron cross section as the incoherent neutron
cross section is predominantly dominated by hydrogen vibration. Neutron powder
sample spectrum observed in MAPbCl3[157] exhibits no sharp features, which is
indicative of phonon dispersion, in clear contrast with MAPI. However, the obser-
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vation of broader phonons modes in FA-based HPO (see below) may question the
dispersionless nature in FAPB and FAPI (for instance for the modes above ∼7 meV
in Fig. 4.3.e-g involving molecular vibrations). The origin of broader phonon peaks
can be either due to a larger damping or related to moderately dispersive phonons
in FA-based HOPs. It is worth to emphasize that this lack of dispersion concerns
both LO and transverse optical (TO) phonons. Finally, Figures 4.1 and 4.2 show as
well that each optical phonon mode can be defined by almost the same energy for
any Q-point of the BZ.

4.2.2 Low temperature INS spectra
Systematic low temperature INS experiments were performed with medium and high
energy resolutions, from, respectively, thermal and cold beams. The difference in
neutron energies and experimental conditions will have an impact on the energy
resolution of the INS measurements (section 2.4.2).
Being in the orthorhombic phase (possibly trigonal for FAPI), each compound
has undergone structural distortions (octahedral tilting and ordering of organic
molecules), giving rise to atomic superstructures at either or both the M and R
point. For that reason, we have focused on these two Bragg reflections, the spectra
of which, as we have just seen, has no noticeable difference1. We therefore report the
phonon spectrum at the R point (1/2, 1/2, 3/2) for most compounds except for FAPB
where it is shown at the M point (5/2, 1/2, 0).

The specific (h, k, l) coordinates of the M and R points are chosen taking
into account the scattering intensity of each reciprocal point, which is affected by
the dynamical structure factor. As exemplified in the neutron scattering study of
CsPbCl of Y. Fuji [158], the structure factor will be essentially zero for R and M
points with h = k = l or h = k, respectively. On the other hand, they will typically
be maximized for 1

2(h, h, h + 2) (R point), where h = 1, 3 and 1
2(h, h − 2, 0) (M

point), where h = 3, 5. Besides, it is not possible to access both points, for a single
specific scattering plane configuration. We also have to keep in mind the experi-
mental logistics at the spectrometer. There are points in reciprocal space that are
problematic to reach due to the physical space constraints of the equipment, mean-
ing that components of the spectrometer could collide with one another depending
on the sequence of points to be measured.

The obtained optical phonon spectra for all four compounds are presented in
Fig. 4.3. As already stated, a series of prominent optical phonon modes (or ”bun-
dles” of modes) are observed at different energy ranges. We utilize here the expres-

1Related to the lack of dispersion of the phonon modes; see also supplementary Fig. B2.
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Figure 4.3: INS spectra measured at 5 K, at the R Bragg reflection (1/2, 1/2, 3/2) of (a,b) MAPB,
(c,d) MAPI and (g) FAPI and (e,f) at the M point (5/2, 1/2, 0) of FAPB. For each system, we show
in each row the measurements using a thermal (left) and a cold source (right), with the exception
of FAPI. The experimental INS data (black scatter points) is fitted (red line) with a sum of DHOs
(Eq. 2.38) and is presented with a removed background. Individual fitted peaks are labelled (filled
coloured area).
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Table 4.1: Energies of the optical phonon modes measured at 5 K by INS and 20 K by RS. Phonon
lines (or bundles of modes for INS) are fitted by a DHO. Energies are given in meV.

MAPB MAPI FAPB FAPI

Energy INS Raman INS INS INS

Low

<10 meV
5.1

4.1, 4.8, 5.1, 5.5

5.9, 7.2, 8.4, 8.9

2.3

3.8
5.5 3.9

Medium

10-20 meV

11.6 , 13.5

16.9

11.9, 12.6, 13.5

16.3, 17.3, 18.3

10.8, 11.7, 12.8

15.5, 18.3
13.1

9.8

∼15.1

High

>20meV

23.2, 27.5

36.6

21.8

40.8

23.5, 28.5

38.3
22.2

sion of bundles since some of these features, as we will see, are a superimposition
of two or more phonon modes. To describe the neutron spectra, we use again the
DHO model of Eq. 2.38, where only a DHO for each phonon mode and a constant
background were necessary (no quasi-elastic signal). The obtained phonon energies
are summarized in Table 4.1.

For a first analysis, we define three energy ranges where the different optical
modes are located. We have labelled them arbitrarily as low (2-10 meV), medium
(10-20 meV) and high (> 20 meV). More specifically, in MAPB we find a low-energy
mode at 5 meV; an intense peak at 11.6 meV followed by two smaller shoulders
at 13.5 and 16.9 meV; and relatively broader bands at 23.2, 27.2 and 36.6 meV
(Fig. 4.3.a,b). These results match well with a previous INS experiment on a MAPB
powder sample [136].

Similarly in MAPI, we obtained two low-energy modes located at 2.3 and 3.8 meV,
an intense peak centered at 11.7 meV surrounded by two smaller shoulders at 10.8
and 12.8 meV. From one-dimensional cuts at ζ = 2 (i.e. Q = (002)) of the ToF
mapping in Fig. 4.1 (see Supplementary Fig. B3), there could be 4 or 5 bands in
the 2-5 meV range and the feature around 12 meV may host up to 4 bands as well.
These are followed by two bundles at 15.5 and 18.3 meV, and at higher energy range,
other ones at 23.5, 28.5 and 38.3 meV (Fig. 4.3.c,d). Our MAPI spectra and the
detected bands are directly comparable with previous INS studies of K. Druzbicki
et al. [159] and B. Li et al. [160].

In FAPB we note a broader central feature dominating the medium energy range
(Fig. 4.3.e,f), while, at the same time, identify three distinct bundles at 5.5, 13.1
and 22.2 meV. These results on FAPB are in line with the ones observed in MAPB,
although much broader phonon bundles are systematically observed in FAPB, com-
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pared to the more numerous (and narrower) modes that appear for MAPB. These
two compounds share the same space group (Pnma) at low temperature although
the static structural distortions characteristic of the orthorhombic phase are smaller
in FAPB [73]. This may be connected to a different dynamics of the FA cation
and its coupling to the perovskite lattice, by comparison to the MA cation (vide
infra) [161].

Finally in FAPI - a problematic sample and, therefore, scarcely studied at such a
low temperature in the literature - we could only perform measurements on the 4F2
cold neutron spectrometer (Fig. 4.3.g). Nevertheless, in the accessible energy range,
we detect large optical phonons at 3.9, 9.8 and ∼15.1 meV. Photoluminescence
(PL) studies on single CQDs [162] have identified exciton side-bands at 3.2, 7.8 and
15.4 meV, which match rather well with our TAS results on FAPI. The intermediate
mode seemingly exhibits a slight discrepancy, but as reported in [162], it undergoes
temporal fluctuations under high energy excitation, and is roughly spread between
7.5 and 12.5 meV. Again, our TAS results on FAPI show a significantly broad profile,
as in FAPB.

According with nuclear magnetic resonance (NMR) measurements [163], the
broader nature of the optical modes of FA-based compounds, compared to their
MA-based counterparts, may be attributed to the fact that the FA reorientation
in FA-containing materials is faster than that of MA in the MA-based perovskite,
despite the fact that FA is larger than MA. This has an impact on the charge carrier
lifetime in these compounds. In addition, the acoustic density of states is located
at lower energy in FA-based compounds as compared to the MA-based [164], thus
leading to enhanced scattering between acoustic and optical phonons and related
increased anharmonicity.

The importance of phonon broadening is made even more clear by the compar-
ison with Raman measurements. Raman scattering spectroscopy has been as well
performed in the MAPB single crystal at low temperature. Fig. 4.4 shows side by
side the low temperature (20 K) spectra of MAPB, from INS (on the thermal 1T) and
Raman scattering. The Raman spectra is also fitted with a slightly modified version
of the (DHO) model (Eq. 2.38), and the obtained modes have also been included in
Table 4.1, results which agree with a previous Raman scattering report [165]). Ra-
man spectra are recorded at very low q, whereas the INS experiments are measured
at a Bragg peak position Q = (0, 0, 2), both are therefore probing optical phonons
at the Γ point in the BZ. Contrary to INS, the modes below 10 meV in Raman
scattering benefit from a favourable scattering efficiency as compared to those at
higher energy. The energy positions of the optical phonon modes here identified
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Figure 4.4: Comparison of the INS using the thermal beam instrument 1T at LLB (5 K) and Raman
scattering (20 K) optical phonon spectra in MAPB, at the Γ point (≡ (0, 0, 2) Bragg position for
INS). Inset shows a magnification of the Raman scattering spectra in the 10-20 meV range. The
energy resolution of Raman scattering is here 0.125 meV compared to the energy resolution of
∼1-2 meV (over the scan energy range) for a thermal TAS.

from INS and Raman are consistent, especially the Raman mode bundles around
5 meV, 12 meV and 18 meV (inset). However, a few of the Raman modes around
9 meV do not appear clearly in INS2. This discrepancy may be attributed either to
the different scattering factors of both techniques, or poorer INS energy resolution
(0.125 meV of Raman vs. 0.2-0.5/1-2 meV at 4F/1T), hiding the mode fine struc-
ture. Mode broadening related to instrumental resolution will, therefore, be more
important for neutron scattering than for Raman scattering.

Unfortunately, we do not have Raman measurements at low temperature for
the other 3 compounds since the Raman study was focused on higher temperatures,
around the tetragonal to cubic transition, which will be shown in the next chapter.
It is clear nevertheless, from a qualitative comparison between the spectra from INS
and Raman (ours and other from literature), on MA-based compounds, that with
INS we are not detecting all modes. However, we should also note, that there is
in fact, a number of predicted phonon modes from symmetry analysis [166], for the
orthorhombic phase, which even with Raman have not been revealed.

Overall, one can then see a commonality between the different perovskite sys-

2Even a more generous fitting of the INS spectra (see supplementary Fig. B4), where we include
more visible “bumps” from the spectra, only yields some of the modes from Raman - namely at
3.6, 4.7 5.9 7.4 and 8.5 meV.
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tems. By cross-referencing our results with the above mentioned previous works
and other literature on the subject, we can assign the identified features of the low
temperature spectra to the respective vibrational modes. In recent lattice dynamics
calculations, Ponce et al. [167], predict five modes for MAPI at 3, 4.3, 10.2, 14.4
and 21 meV. A-site displacement (i.e. rattling of the organic molecule within the
cage) is said to be responsible for the peak at 10.2 meV, while scattering at 21 meV
results from libration motions of the organic cations. On the other hand, the modes
at 3, 4.3 and 14.4 meV are claimed to be related to the inorganic sub-lattice and
arise from the rocking, bending and stretching motions of the PbI3 network, re-
spectively, the latter one involving hybridization with organic cation motions. The
calculated modes match well with our measurements, the already mentioned INS
studies [157, 159, 160] and the identifications made based on associated DFT calcu-
lations [159].

Regarding MAPB, one is compelled to draw parallel conclusions of those about
MAPI. Besides, in the work by Swainson et al. [136] on MAPB, the 5 meV mode
is again associated to vibrations of the PbX3 network. Furthermore, their compar-
ative study between non-deuterated and deuterated samples clearly evidenced the
influence of the organic cation motions on the modes at 11.5 and 13.7 meV.

In the PL study on FAPI CQDs [162], the authors compare their study with the
theoretical predictions and near-infrared spectroscopic measurements on MAPI [166]
and, as a result, ascribe the observed side-bands to LO phonon modes related to
bending (3.5 meV) and stretching (15 meV) motion of the PbI3 cage and to rigid-
body motions of FA cations (11 meV). All these data point towards the participation
of molecular vibrations in the low energy modes of the hybrid perovskites.

As it pertains to the mode at ∼37 meV, there is a consensus that it originates
from organic molecular vibrations [159, 168, 169], although there is a debate about
the exact nature of the involved atomic motions. Park et al. [168] describe MA vibra-
tions involving MA wagging, MA rotation and MA-MA stretch. Quarti et al. [169]
as well as Dru̇zbicki et al. [159], suggest a torsional MA vibration (also called disro-
tatory vibrations) that involves the terminal NH3 and CH3 moieties, which is also
in line with the vibrational mode found near 300 cm−1 (i.e. 37.2 meV) in isolated
MA calculations [169, 170].

4.3 Discussion
The low temperature INS (and Raman) optical phonon spectra in our four HOP
single crystals, reveal a number of characteristic features down to very low energy.
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We have identified three different energy ranges in the spectra and gathered the
modes or bundles of modes for each compound in three categories (a, b and c), as
can be seen in Fig. 4.3. From our experimental data and based on earlier literature,
the following conclusions are drawn. Modes in the low-energy range (below 10 meV)
are associated with vibrations of the PbX3 network, mainly rocking and bending.
As for the intermediate energy range, between 10 and 20 meV, a series of mutu-
ally coupled modes are observed which arise from both the organic and inorganic
sub-lattices and, therefore, show a highly hybridized nature. Here, a prominent
feature is the stretching of Pb-X3, which is predicted to be coupled with the or-
ganic sub-lattice. Also, a mode related to the A-site displacement, is identified at
least in MAPI. Additional evidence of this coupling comes from the comparison
between non-deuterated and deuterated samples [136]. This further corroborates
the increased broadening observed in FA-based systems, especially in this medium
energy range. This enhanced broadening is consistent with the difference in the
dynamics of the FA and MA cations previously reported by NMR [163], and molec-
ular dynamics simulations [161]. It has also been shown by PL studies that the
phase transition down to the lowest temperature is much smoother (weaker dis-
tortion) in FA-based systems [73, 78] than in MA-based ones [171]. However, it
should be stressed that the broadening in the FA compounds can be affected by the
possible dispersion of bundles b and c due to the likely incoherent nature of these
peaks in INS experiments. Above 20 meV, optical features are essentially a result
of molecular motions, although there could be some inorganic contributions to the
cation librations of bundle c, at least for MA-containing perovskites. Meanwhile,
direct comparison between the MAPB and FAPB spectra leads us to believe that
the same mechanisms are possibly at play in the latter. It is apparent at least, that
in FA-based compounds, as a result of the hybridized nature of the lowest energy
modes, there is significantly more contribution stemming from the coupling between
inorganic and organic sub-lattices.

In Fig. 4.5, the relative energy shifts of the labelled phonon bundles, between
the four compounds, is presented. One can see that the low-energy bundles a have
lower energy in compounds that contain I− as opposed to Br−. Analogously, there
is a significant decrease in energy in the medium/high energy bundles when coming
from MA-based compounds to FA ones. Recalling the harmonic approximation3,

3For a simple harmonic oscillator, where a mass m which experiences a single force F , which
pulls the mass in the direction of the point x = 0 and depends only on the position x of the
mass and a constant k, Newton’s second law dictates that F = md2x

dt2 = −kx. Solving this
differential equation we find that the motion is described by the function x(t) = Acos(ωt + ϕ),
where ω =

√
k/m.
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the phonon energy is proportional to the square root of the atomic mass, M , of
the halide atom/organic molecule involved in that vibration [126]. Therefore, one
expects on general grounds

ωj ∝
1√
M

(4.1)

The atomic masses of each nucleus or molecule can be easily estimated:
MFA = 45.1 g/mol; MMA = 32.1 g/mol; MPb = 205.0 g/mol; MI = 126.9 g/mol;
MBr = 79.9 g/mol. One can then estimate relative energies of a given phonon when
changing the molecule MA to FA or the halide I to Br when assuming the same
atomic interactions. So, for a phonon where only the halide atom is involved, one
expects:

ωj(iodides)
ωj(bromides)

=
√
MBr

MI

= 0.79. (4.2)

In case the lead atom also participates to the vibration, one expects instead:

ωj(iodides)
ωj(bromides)

=
√
MPb + 3MBr

MPb + 3MI

= 0.87. (4.3)

In both cases, the phonon energy of iodides will be lower than for bromides. In
Fig. 5 of the main text, this corresponds to the bundle a, where one can estimate:
ωa(MAPI)
ωa(MAPB)=0.6 and ωa(FAPI)

ωa(FAPB)=0.7. One notices that the measured effect is even
larger than the estimated one. That suggests that the interactions responsible for
that phonon bundles are weaker for bromides than iodides as the phonon energy is
ωj ∝

√
k
M

, where k represents atomic forces. For a given phonon where only the
organic molecule is involved, one expects:

ωj(FA)
ωj(MA) =

√
MMA

MFA

= 0.84. (4.4)

The phonon energy is lower for the heavier FA molecule compared to MA. That cor-
responds to the bundle c where one can estimate ωc(FAPB)

ωc(MAPB)=0.96 and ωc(FAPI)
ωc(MAPI)=0.64.

Here again, one sees that the experimental trend does not exactly match the pre-
diction from the above relationship from atomic masses.

There is however an observable trend relating the total atomic mass of the el-
ements and the respective mode attribution. Actually, the relative shifts observed
here, i.e. lower energy in FA+ and I− based compounds when comparing with MA+

and Br−, are consistent with the smaller elastic constants obtained in Chapter 3.
It is now known, as we have established, that carrier scattering in HOPs is

dominated by Fröhlich coupling between charge carriers and optical phonon modes.
This phonon scattering is believed to be the key fundamental factor in establishing
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Figure 4.5: Optical phonon bundles a, b and c in MAPB, FAPB, MAPI and FAPI, illustrating the
relative energy positions between compounds.

the intrinsic limit of the charge carriers mobility. More specifically, it has been re-
cently suggested that this limit is set by the lower energy LO modes (3-20 meV) [167].
Therefore, the here observed presence of such modes, common in all four compounds,
seems to be part of the reason for the relatively low mobilities compared to classical
inorganic compounds like Si and GaAs. Furthermore, this also ties back with the
hot phonon bottleneck, outlined in chapter 3, in which the Frölich interaction is said
to occur mainly between the hot carriers and LO phonons of inorganic sub-lattice.

The lack of dispersion of such low optical modes overlapping with the upper part
of the acoustic phonon dispersions has further implications in the proposed bottle-
neck effect. In 3D hydrid perovskites, substantial interactions between the organic
and Pb-halogen neighbouring networks are typically expected, however, besides be-
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ing located at low energy range, the optical lattice excitations measured here appear
to be basically non-propagating (Figures 4.1 and 4.2), exhibiting nearly no disper-
sion in the BZ, thus contradicting existing reports on phonon simulations based on
the harmonic approximation. This will be further expanded upon in the coming
chapter. What is more relevant is the fact that, similarly to phonon modes in ther-
moelectric chlarates [172], strong anharmonic phonon–phonon scattering processes
may lead to a series of anticrossings flattening phonons dispersions. For instance,
this strong hybridization between phonons would typically involve rattling of the
organic molecule within the PbX3 cage. Moreover, rattling phonon modes are gen-
erally associated with anharmonicity and lower thermal conductivities [173, 174] as
it has been proposed through a crystal-liquid duality of HOPs [175]. Interestingly,
it has been suggested that optical flat modes (as the ones we here observed) highly
scatter acoustic phonons leading to glassy-like thermal conductivity [176]. There-
fore, not only the dispersionless nature of the optical modes - responsible in great
part for the low thermal conductivities, through the blocking of propagation of the
acoustic phonons - but also the overlap of these same acoustic and optical phonons,
constitute key factors in the hot phonon bottleneck effect in HOPs, since they fa-
cilitate acoustic phonon up-conversion and increase the lifetime of their hot carrier
population [52, 154, 177, 178]. However, in the bottleneck process proposed by Yang
et al. [9], they point to the organic cations as the source of the overlapping optical
phonons. From our results, it appears rather, that these originate from the PbX3

inorganic sublattice.
In conclusion, we present here an extensive comparison of optical phonon exci-

tations in four different hybrid organolead perovskite compounds. INS and com-
plementary Raman scattering measurements revealed various features at low tem-
perature spectra, which we then discussed in terms of the corresponding structural
vibrations. The dispersionless nature of these optical modes implicates a glassy-like
thermal conductivity, important to the hot phonon bottleneck effect in HOPs. These
experimental results could serve as a solid base in future theoretical calculations and
modelling, for improved mode assignment and understanding of the electron-phonon
interactions, especially for FA-based compounds where measurements of their opti-
cal phonon spectrum have been lacking.
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Chapter 5

Temperature behaviour of lattice
dynamics and phase transitions

Here, we perform temperature studies on the four hybrid perovskites. Ramnan spec-
tra reveal a common behaviour across the cubic-tetragonal transition, which does
not seem to be controlled by a soft mode (i.e. non-displacive transition). A pre-
transitional effect in FAPB is manifested in the softening of its shear modulus. We
also note substantial phonon overdamping, as a result of intrinsic lattice anhar-
monicity. This may have an important influence in phonon scattering dynamics
and, consequently, in charge carrier transport in HOPs.

82



5.1 Evolution of lattice dynamics by INS

5.1.1 Anharmonicity
It has been made clear that intrinsic anharmonicity of the perovskite lattice is ex-
pected to play an important role in the electron-phonon interactions of HOPs and we
already see some evidence of the first on the FA-based samples in chapter 4. Besides,
we still need to try and address the apparent discrepancy between the experimental
acoustic-like temperature dependence of carrier mobilities and the expected domi-
nant Fröhlich process. We then proceeded to measure optical phonon spectra as a
function of temperature and look at how the anharmonic effects evolve with it. A
temperature range of 5-300 K was covered, in which the same R point in MAPB,
MAPI and FAPI (Fig. 5.1.a,b,d) and M point in FAPB (Fig. 5.1.c), were followed.

Anharmonicity manifests itself strongly already at low temperatures well be-
low RT, where optoelectronic devices and solar cells are usually operated. Already
above ∼30 K, increased phonon damping is observed across the board in Fig. 5.1,
together with an increased low energy signal and reduced phonon intensity. Con-
sistent DHO fitting of the temperature data has proven difficult due to the strong
anharmonic behaviour. With increasing temperature, the increase of atomic dis-
placement amplitudes results in a decrease of the Debye–Waller factor (Eq. 2.30,
section 2.2.3), larger contribution from the quasi-elastic low energy components and
broader phonon modes. These effects lead to a rather quick overdamping of certain
phonon modes at temperatures as low as 80 K, making it difficult to properly assign
the exact contribution of each phonon mode to the overall spectra at higher tem-
peratures.

5.1.2 Overdamping at high temperature
This phonon overdamping is highlighted in Fig. 5.2. At RT, with a maximum energy
range of 13 meV, the full contour plot of S(q, E), for MAPI is provided in Fig. 5.2.a.
The TOF mapping shows no well-defined phonon modes within the measured range,
which is in line with the already referenced neutron scattering report on MAPI by
Li et al. [160]. In Fig. 5.2.b we have put together the highest temperature TAS
scans for each compound (where MAPI alone is in the tetragonal phase, the other
three being in the cubic one). We remind that scans in MAPI, MAPB and FAPB
were measured in a thermal neutron source (1T), allowing us to extend the energy
range up to 44 meV. However, due to the different reciprocal space configuration
used to access the M point on FAPB, a slightly lower energy is reached. Similarly,
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Figure 5.1: Temperature dependence of the INS optical spectra at the R point of (a) MAPI, (b)
MAPB and (c) FAPI and (d) at the R point of FAPB. (a), (b) and (d) are measured at LLB
on the thermal TAS (1T) and (c) on the cold TAS at LLB (4F2).

these show mainly a big quasi-elastic signal, centered at zero energy. Accordingly,
broad optical phonons around 12 meV were hardly visible in MAPB at RT [146] in
a previous work of our group.

In agreement with the observed broadening of the acoustic branches at the ZB
in MAPbCl3 [179], at high temperature, only low energy acoustic phonons can be
identified (see supplementary Fig. B5)1. The dispersive optical phonon modes re-
ported at RT by inelastic X-Ray scattering [139], with its broader energy resolution
(i.e. ∼1.5 meV), are then put into question.

The phonon damping here observed seems to be specially affected by the
orthorhombic-tetragonal structural transition, which relates well with the fairly es-
tablished claim that transitions originate from the tilting of the PbX3 cage and the
orientational ordering of the organic molecules [66, 80–84], driven by instabilities at
the M and R Bragg points. The evolution of the spectra shows as well the absence
of any particular soft modes at the M or R Point, meaning that they do not seem
to condensate with temperature. Only a large increase of the phonon damping is

1These are the same type of phonons we report in chapter 3 and in publications [146]
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TAS spectra of optical phonons at the M (5/2, 1/2, 0) and R (1/2, 1/2, 3/2) points of the BZ, in MAPB,
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observed. This points towards a non-displacive tetragonal to orthorhombic phase
transition. Based on Fig. 5.1, the main bundles identified at low temperature, are
expected to be present at the same respective energies at high temperature, although
overdamped. This is further supported by the Raman measurements at high tem-
perature range (vide infra).

While the anharmonicity of HOPs leads to low frequency acoustic phonons,
which are characteristic of a soft lattice (as seen in chapter 3), it shows off for op-
tical phonons through an overdamped behaviour over the entire BZ at RT. The ap-
parent discrepancy between the experimental acoustic-like temperature dependence
of carrier mobilities and the expected dominant process (Fröhlich interaction) may
be an unexpected consequence of the HOPs lattice softness, making the overriding
anharmonic character of optical phonons specific to this class of halide perovskite
materials, most probably an important missing link in current models. The size of
the cation and the nature of the halogen are additional features known, to strongly
influence softness of the lattice. They also have a direct consequence on the damping
of the optical modes. Therefore, this suggests that the coupling between acoustic
and optical phonons may play a role in the harmonicity of the lattice, besides non-
linear coupling between optical phonons.

5.2 Cubic to tetragonal phase transition
Just now we saw that with INS, we are not able to properly follow the optical phonon
features in our HOPs, above a certain temperature. Remembering the point that
we made regarding mode broadening related to instrumental resolution being less
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critical in Raman then in neutron scattering, we then used Raman spectroscopy to
better investigate the low frequency vibrational response of each compound, across
their cubic to tetragonal phase transition. These experiments were conducted in
Montpellier by the L3C team in the context of a joint project.

The collected Raman spectra are shown in Fig. 5.3. Four scattering geometries
have been explored in MAPB, FAPB, and MAPI, i.e. with the wave vector q //
[001] and the polarization of the laser beam parallel to either [110] and [100] direc-
tions, and the scattered beam polarized parallel (polarized spectra) or perpendicular
(depolarized spectra) to it. The polarized and depolarized spectra (selection rules)
provides infomation on the symmetry of the modes (i.e. if they are T2g, A1g, Eg, ...)
However, the intensity of the modes are not the same in polarized and depolarized
spectra. The spectra presented in Fig. 5.3 corresponds to polarized spectra with
incident polarization parallel to [110], as this is the configuration where the low
frequency mode offers the most favourable contrast and easiest to fit in the cubic
phase. They have been recorded at the same position into the sample in order to
avoid modifications due to the formation of structural domains below the transition
temperature, Tc.

A direct observation already suggests that the responses in the cubic phase very
much look like a smeared-out version of that of the tetragonal phase, identical to
what one appertained from the INS data. In MAPB where the modes are almost
spectrally resolved, the lowest frequency bundle (red in Fig. 5.3.a) is comprised by
the modes ω1, ω2 and ω3. They are broad but still resolved in the tetragonal phase.
However, increasing temperature, they undergo further broadening, leading to the
rather overdamped Raman response in the cubic phase. The situation is analo-
gous in FAPB and MAPI. In FAPI on the other hand, mentioned several times to
be a challenging compound to perform spectroscopy on, the spectra are limited to
one single set obtained along an arbitrary crystallographic direction and performed
without polarization analysis. Luckily, ω1 clearly develops in the tetragonal phase
and could be followed with temperature. It was however impossible to choose the
scattering conditions that emphasize its scattering in the cubic phase, and we had to
satisfy with the spectra of Fig. 5.3 showing an almost monotonous intensity decay
of the Raman signal.

All the spectra have been fitted using slightly modified version the DHO model
used for INS (see Eq. 2.41, section 2.5.1), which accounts for ω1, ω2, ω3. A fourth
DHO (ω4), at frequency just above the three other modes, was also required to en-
sure a good fitting quality. In order to extract the individual spectral line shapes
underlying these complex Raman responses, we fitted all the spectra collected in

86



Figure 5.3: Polarized Raman spectra (symbols) in the tetragonal and cubic phases of the four
HOPs, with their respective fits (plain lines). For each compound, the individual spectral line
shapes Si(ω) (i = 1 in red, i = 2 in blue, i = 3 in green, i = 4 in gray) are shown for the lowest
temperature spectra (bottom, tetragonal phase) and for the highest temperature spectra (top,
cubic phase).

the four scattering geometries. Since the modes are more or less active depending
on the scattering geometry, this is a clear asset for separating the bands when they
are strongly overlapping, in particular at the onset of the cubic phase. For example,
it is easier to follow ω2 in the depolarized spectra of MAPB because, in contrast
with the polarized one, ω1 is significantly weaker and can hardly be distinguished
within the other ones (supplementary Fig. B6). In FAPB and MAPI however, it was
not necessary to consider it during the spectral analysis, as shown in Fig. 5.3. In
the next section we proceed to explore the behaviour of this lowest frequency (LF)
Raman mode ω1, across the tetragonal-cubic transition.

Lowest frequency Raman mode

As opposed to a soft mode behaviour, the frequency ω1 is fairly constant with
temperature in MAPB, FAPB, and MAPI (Fig. 5.4.a). The data in FAPI in the cubic
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phase were very difficult to analyse, and to help the fit converging to a reasonable
solution we fixed its frequency ω1 to a constant value extrapolated from the low-
T data (dashed line in Fig. 5.4.a). Contrary to the frequencies, the four spectral
dampings exhibit a clear drop down at the onset of Tc (Fig. 5.4.b). One has however
Γ1 > ω01, and it is known that the experimental determination of ω0 and Γ from
the spectral lineshape of an highly damped oscillator is quite problematic.

When phonons become highly damped, the width and the frequency of their
spectral response becomes strongly correlated. In the extreme situation where a
mode is overdamped, several couples {ω0, Γ0} may produce the same spectral shape.
The most reliable spectral quantity in that case, is then given by the relaxational
frequency

ωRel = ω2
0

Γ (5.1)

corresponding to the half width at half maximum of the full spectral response of
S1(ω) (Stoke and anti-Stoke). This can be seen as the inverse characteristic time of
the relaxational dynamics associated to the mode in question. It only has physical
meaning when the mode is close to overdamping, i.e. at the frontier between a
relaxator and a vibrator. The results are shown in Fig. 5.4.c as a function of T −Tc
and after a normalization by the value of ωRel in the cubic phase. In all the samples,
the cubic to tetragonal phase transition is marked by a clear narrowing of the mode
below Tc and the curves overlap very nicely, emphasizing a common dynamical
behaviour. The statistical error on ωRel is smaller than that on ω01 and Γ1, allowing
thereby to refine the values of the transition temperatures. From the Raman analysis
we find the following Tc’s: MAPB ∼245 K, FAPB ∼270 K and FAPI ∼275 K.
These agree with the literature mentioned in section 1.3.3. For MAPI, we took the
literature data Tc ∼345 K [56]. A similar normalization also works for the width
(Fig. 5.4.d), however, with a higher uncertainty in the definition of Tc.

Another reliable quantity that can be extracted from the DHO model of lattice
modes with large dampings is the overdamp frequency

ωOD = ±
√
ω2

01 − Γ2
1/4 (5.2)

defining the frequency of the temporal response u1(t) of the oscillator in the absence
of a driving force

u(t) = u01e
−tΓ1/2 cos(ωODt+ φ) (5.3)

where ωOD = 0 (dashed line in Fig. 5.5.a) defines the overdamp limit, corresponding
to the transition from a vibrational regime (ω01 > Γ1/2), towards a relaxational
one (ω01 < Γ1/2). Within this model, the atomic displacements u1(t) plotted in
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Figure 5.4: Vibrationnal parameters of the Raman mode of lowest frequency in MAPB, FAPB,
MAPI, and FAPI: (a) Temperature dependence of the frequencies ω01 and (b) dampings Γ1. (c)
Normalized relaxational frequencies ωRel(T-TC)-ωRel(cubic) and (d) normalized dampings Γ1(T-
TC)-Γ1(cubic).

Fig. 5.5.a are all harmonic oscillators. Although strongly damped the vibration is
therefore vibrational-like rather than relaxational-like. Another interesting quantity
is the maximum of the phonon response S1(ω) at ωMAX = ±

√
ω2

01 − Γ2
1/2. The

limit ωMAX = 0 (i.e. ω01 = Γ1
√

2), is reached when the Stoke and anti-Stokes
maxima of S1(ω) merge into one single peak centered at ω=0. S1(ω) are plotted
in Fig. 5.5.b using the fitted values of ω01 and Γ1 obtained in the cubic phase and
averaged over all the data. The responses of MAPB and FAPB are very similar and
almost superpose. Considering the large errorbars on FAPI data, the responses of
MAPI and FAPI are also very similar but stand at lower frequency than the two
former. The response function of a vibration at the crossover towards a relaxational
regime (ωOD = 0) is shown for comparison (dashed line).

The renormalization of the vibrational responses into master curves Γ1(T-Tc)
and ωRel(T-Tc) (Fig. 5.4.c,d) strongly supports a unified description of the vibra-
tional properties in the four compounds. In particular, the frequency ω01 of the
low frequency mode is constant when passing through the cubic-tetragonal transi-
tion (Fig. 5.4a). The constant value of ω0 in the cubic phase goes against a ZC
displacive transition and indicates that this vibration cannot be considered as a
soft-mode. At the same time, the non-normalized version of the relaxational fre-
quencies ωRel (supplementary Fig. B7 shows that, although the cubic-tetragonal
transition is again clearly marked, it is less abrupt in Br-containing samples, sug-
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Figure 5.5: (a) Temporal responses of the atomic displacements and (b) spectral line shapes in
the cubic phase of MAPB, FAPB, MAPI, and FAPI.

gesting pre-transitional effects in the latter). In section 5.2.2, we further investigate
pre-transitional effects in FAPB.

The two bromide samples exhibit similar frequency and damping in the cubic
phase, and same is observed in the two iodine ones (Fig. 5.4.a,b). Furthermore,
analogously to what was seen with INS for orthorhombic phase, their frequency
is inversely proportional to the square root of the mass of the halide atom, i.e.
ω01 ∝ 1/

√
M , so that ω01(bromides) / ω01(iodines) =

√
MI/MBr. This can be seen

in Fig. 5.6, where the linewidth Γ01 and the frequencies ωMAX , ωOD, ωRel and ω01,
in their cubic phases, are summarized for the four compounds. Here, we are forced
to note the striking similarity with Fig. 4.5. These observations regarding ω01, re-
inforce the attribution of the motions of the PbX6 halide octahedra as the origin of
the phonon mode.

One observes that, overall, the vibrational dynamics are of lower frequency in
the two iodine-containing samples, where FAPI is clearly the softest of the four
samples. The energy of its low-frequency mode is significantly lower than the other
three but, despite reaching the critical regime (ωMAX = 0), the mode conserves
its vibrational character, as shown by the sinusoidal shape its temporal response
in Fig. 5.5.a (ωOD ≥ 0). The above conclusions, based solely on the frequency of
ω1, apply to all of its fitting parameters, confirming the consistency of the spectral
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Figure 5.6: Characteristic frequencies and linewidth of the low frequency Raman mode in MAPB,
FAPB, MAPI and FAPI, in their cubic phase (290 K, 353 K, 296 K and 343 K, respectively).

analysis.

5.2.1 Intermediate tetragonal phase of MAPbBr3

In MAPB, Raman spectroscopy was performed across a wider temperature range,
covering the totality of its phase transitions. The low temperature spectra (20 K)
in Fig. 5.7, reveals additional features below 80 cm−1 in the orthorhombic phase.
More specifically, eight modes are identified, which compose the lowest frequency
bundle of MAPB, shown in red in Fig. 5.6. Among them, three main responses
can be followed up to high temperatures from the direct inspection of the raw data.
These are the ω1, ω2 and ω3 modes identified in the previous section 5.2. They are
identified by square symbols in Fig. 5.7 and again, we can see that their frequency
has an almost flat temperature dependence (Fig. 5.7.a) while the linewidths are all
strongly affected by the structural instabilities (Fig. 5.7.b). These exhibit a steep
narrowing at the tetragonal-orthorhombic transition, dropping down (more contin-
uously) close to the cubic-tetragonal transition. It was said in the introductory
chapter, that MAPB has an additional intermediate tetragonal (P4/mmm) phase
between ∼145-155 K. Our Raman data confirms the existence of the intermediate
phase, in our case happening between ∼141 K and ∼147 K, combining the tetrago-
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Figure 5.7: Raman spectroscopy in MAPB across the three phase transitions : cubic (C), tetragonal
(T), Intermediate (I), and orthorhombic (O). a) phonon frequency and b) phonon linewidth (zoom
in the inset) resulting from a fit with damped harmonic oscillators. c) Low-frequency Raman
responses at the tetragonal-orthorhombic transition and d) same spectra in the medium and high
frequency domain, as defined in the text. The main phonon bands are identified by black, green
and red filled squares (panels a,b,c) and double arrows (panel c).

nal structure and an intermediate one characterized by very sharp bands (cyan dots
in the region I in Fig. 5.7). We have also observed an hysteresis effect on cooling
and heating, and therefore the temperature interval of the cubic phase (C ) may
slightly move downward in temperature, depending on the thermal route.

We take this opportunity to further compare Raman scattering spectra in
MAPB, above and below the orthorhombic to tetragonal first order transition∼150 K,
as shown in Fig. 5.8. When passing the phase transition and on cooling down to
20 K one notices a considerable narrowing of the phonons lines below 10 meV, while
higher frequency vibrations evolve much more smoothly and continuously. Further-
more, phonon modes are split at low temperature below 10 meV (Fig. 4.4). We can
now see that the additional Raman scattering modes, not easily seen with INS (see
Fig. 4.3 and/or Fig. 4.4), result from the band folding in the low temperature phase,
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Figure 5.8: Comparison of the Raman responses in MAPB, above (170 K) and below (20 K) the
orthorhombic-tetragonal transition.

induced by the structural distortion caused by the phase transition.
When examining the low temperature INS spectra of the four HOPs, we drew

attention to an increased broadening of the phonon bundles of FA-based compounds
compared to the MA counterparts. This apparent broad nature can be simply due
to the incoherent scattering from the modes, which, in FA-based systems, seem to
be packed together in a narrower energy range, magnifying their hydrized nature.
However, the difference in broadening between the compounds relates well, not only
with the re-orientational dynamics of the FA and MA molecules, but also with the
claims of weaker distortion across phase transitions in FAPI compared to MA-based
systems. In fact, we also observe a smooth evolution of the lattice parameter of
FAPB with temperature (vide infra). If that is the case, the band folding of the
modes (as seen in MAPB) should be noticeably reduced in FA-based HOPs. Un-
fortunately, as it was said already, we do not have the Raman spectra on FA-based
compounds at low temperature, to verify this hypothesis.

5.2.2 Phonon softening in FAPbBr3

As we have just seen from the analysis of the lowest frequency optical mode in
Raman, there is some indication of pre-transitional effects in Br-based samples. Be-
sides, when investigating the acoustic phonons in our HOP compounds, we noticed
a discrepancy between BLS and INS, which highlighted a softening of the transverse
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mode C44 in FAPB, as a function of q. The softening of the shear modulus is typi-
cally related to the proximity of a ferroelastic transition [148], however such is not
reported for these systems. To better understand this pseudo-ferroelastic behaviour
we proceeded to look at how C44 evolves with temperature, across the phase cubic-
tetragonal transition.

We started by looking how the elastic behaviour of the different Bragg reflec-
tions evolved with temperature across full temperature range. As mentioned in the
introduction (section 1.3.3), FAPB is reported to undergo a 1st order transition at
Tc ∼160 K and a 2nd order one at TC ∼260 K. We verify this in Fig. 5.9, where INS
measurements of the elastic response of the (110), (002), R (1/2 1/2 3/2) and M (3/2
1/2 0) points as a function of temperature are shown. In these measurements we
are simply measuring the intensity of the Bragg peak via Q-scans with zero energy
transfer. The cubic to tetragonal phase transition is driven by structural distortion
originating at the M point, e.g. Q = (3/2, 1/2, 0), reflected by the marked increase
of its scattering intensity, right above 250 K, which prolongs until 160 K (green
data points in Fig. 5.9), when the tetragonal-orthorhombic transition is supposed
to happen. This transition is mainly driven by the R point, e.g. Q = (1/2, 1/2, 3/2)
and, being a 1st order transition into the most ordered phase, where the molecular
orientations are frozen, it leads to the most significant change in terms of structural
re-ordering, clearly seen in the overall fluctuations in scattering intensity from all
four measured Bragg reflections. However, curiously, the “activation” of the R point
is happening at around 180 K, before the expected transition is reached. This is
also where the gradual increase of the elastic responses of the (110) and (002) Bragg
reflections that had accompany the rise of the M point, suffer an oscillation (Fig. 5.9,
yellow and orange). So, although the steep intensity drop of not only the R point,
but also the other measured Bragg peaks, seems to signalize the consummation of
a 1st order transition, it appears that, like it is observed in MAPB, an intermediate
phase might be present.

From the inset of Fig. 5.9, we can also observe that, throughout the phase
transitions, the average lattice parameter2 of FAPB evolves very smoothly, showing
an absolute variation of simply ∼0.007. This suggest that the crystal maintains a
pseudo-cubic unit cell [73] tying back with the already mentioned PL studies claim-
ing that transitions in FA-based compounds, implicate relatively weaker distortion
comparing to MA-based ones [73, 78, 171].

Next we performed the temperature study of the C44 acoustic branch in

2Due to the presence of phase domains in HOPs, one has to consider an average lattice param-
eter.
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Figure 5.9: Elastic scattering intensity from the 002, 110, R and M Bragg reflections in FAPB, as
a function of temperature. The structural phase transitions are marked with vertical lines. Inset
shows the evolution of the (pseudocubic) lattice parameter of FAPB within the same temperature
range.

FAPbBr3, using INS at constant Q = (2, 0.025, 0.025). This reciprocal point was
chosen since, as explained in chapter 3, one can obtain the shear modulus by mea-
suring phonons transverse to the 002 Γ point.

In Fig. 5.10.a, one can indeed observe that C44 is drastically reduced as soon as
we start to cool down the sample below RT. However, that effect is blocked once
we reach ∼260 K. As we have said, at around 265 K, FAPbBr3 undergoes a cu-
bic to tetragonal 2nd order phase transition, characterized by the doubling of the
unit cell of the crystal, revealed by the appearance of a Bragg reflection at the M
point (Figures 5.9.a and 5.10.a). It is known that lead perovskites exhibit structural
instabilities at both the M and R points [158]. However, such anti-ferrodistorsive
instabilities cannot generate any softening of the elastic constants, in the disordered
phase (here above 265 K) [148]. Therefore, the softening of C44 at high temperature
is due to an independent tendency towards a ferroelastic instability, which is blocked
by the cubic to tetragonal phase transition, limiting ferroelastic pre-transitional ef-
fects compared to what would be expected for a full phase transition [148]. In
Fig. 5.10.a, one can easily see how the two processes coincide. By linearly extrapo-
lating the softening rate at high temperature (before it is blocked), one can estimate
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Figure 5.10: (a) Softening of C44 and (b) phonon width in FAPbBr3 as function of temperature,
between 230 and 300 K, at around the (002) Bragg reflection. Also in (a) the Bragg M point
intensity (red) across a similar temperature range.

that such a ferroelastic transition would occur around 240±20 K. Consistent also
with an aborted ferroelastic instability, a very modest phonon broadening is observed
with decreasing temperature from 300 to 230 K (Fig. 5.10.b). Down at 100 K, C44

is then restored to its original value (see supplementary Fig. B8).
Again unfortunately, due to beam-time constraints, where we had to give prior-

ity to other studies presented in this manuscript, we do not have a cohesive set of
measurements for the other three systems, of the elastic constants as a function of
temperature.

5.3 Conclusion
We have employed Raman scattering to investigate vibrational dynamics at ZC
across the cubic-tetragonal transition. The analysis focuses on the accurate descrip-
tion of lowest frequency mode in the Raman response spectra of the four HOPs.
With INS, a wider temperature range was covered (5-300 K), in which main Bragg
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reflections and the evolution of their optical phonon spectra were followed. The
temperature-dependent measurements of optical excitations across both the struc-
tural phase transitions, show that these are not controlled by a soft mode, indicative
of non-displacive structural phase transitions. Additionally, we observe indications
of pre-transitional effects in FAPB, with INS. More specifically, the softening of the
transverse acoustic mode C44, points towards an incipient ferroelastic transition.
The Raman study also confirms the existence of an intermediate tetragonal phase
structure in MAPB, between ∼141 K and ∼147 K, which agrees within some slight
deviation with previous literature reports.

Our experimental study of optical phonons clearly indicates that a missing in-
gredient of nowadays attempt to reproduce the observed temperature dependence
of charge carrier mobilities in HOPs, is related to the underlying harmonic or quasi-
harmonic assumptions of phonon modelling. Both the INS and Raman spectra
show significant phonon overdamping at high temperatures. This large damping of
phonons is a signature of substancial anharmonicity, which results from the disper-
sionless nature of optical phonons and the ensuing strong acoustic-optical phonon
coupling. More, this coupling shows off as well in the anharmonicity of the upper
part of the acoustic phonon branches. This is further enhanced by the mutually
coupled organic and inorganic sub-lattices and the resulting hybridized nature of
various phonon modes. This damping of the phonons seems to be particularly
affected by the tetragonal-orthorhombic transition. However, the anharmonic be-
haviour, is even observed at temperatures well below the ones used for operating
optoelectronic devices and solar cells, which makes it questionable defining opti-
cal phonons as well-defined quasi-particles above 80-100 K. So, together with an
apparent correlation between lattices softness (i.e. elastic constants) and optical
phonon energy/frequency, our results point to the influence of the acoustic and
optical phonon coupling on the harmonicity of the lattice and the Fröhlich inter-
action between charge carriers and optical phonons. The low thermal conductivity
and the phonon bottleneck, promoting hot carrier effects in HOPs, are additional
manifestations of the strong acousto-optical anharmonic coupling.
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Chapter 6

Final remarks and outlook
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In recent years, research into halide perovskite PVs has flourished, drawing a
lot of attention from the scientific community. The advent of this new technology
resulted in a sustained research effort, yielding rapid advances of understanding and
ever improving record efficiencies. However, most of the progress has been through
empirical device improvements. A number of key fundamental questions regarding
the interaction of charge-carriers with lattice vibrations (i.e. phonons) remains a
subject of intense debate.

This project aimed to shine a light on some of these EPIs and the correlations
between structural and optoelectronics properties in HOPs. For that purposed we
have performed a number of neutron scattering experiments, along with optical
spectroscopy measurements such as Raman and Brillouin, on four different HOP
compounds. MAPbBr3, MAPbI3, FAPbBr3 and FAPbI3 constitute the most rele-
vant set of perovskite samples in the current landscape and the probing of single
crystals via neutron scattering provides the ideal platform to uncover their funda-
mental characteristics.

By measuring low frequency excitations, we are able to determine, for the first
time, a complete set of experimentally measured elastic constants, in four of the
technologically important HOP compounds. The lattice softness of these materials
is evidenced by their overall very low C44 constant and bulk modulus, especially in
the case of α-FAPbI3 resulting in its structural instability and metastable nature
at RT. The dispersion curves of acoustic phonons also highlight a systematic lower
sound group velocity in the iodine-based samples, which should, theoretically, lead
to lower charge-carrier mobilities. However, such is not the case. In fact, looking
at the relationship between experimentally determined elastic constants and car-
rier mobilities, together with PL lineshape broadening studies, it has been deduced
that optical phonons, rather than acoustic ones, dominate carrier scattering and
mobilities at RT. On the other hand, this interpretation is not consistent with the
observation of an acoustic-like temperature dependence of the mobility. We try to
address this issue via the study of the full phonon spectrum of the HOPs.

In the low temperature spectra we identify a number of different optical features,
the origin of which we then proceeded to thoroughly discuss. These flat modes ap-
pear at energies as low as 2-5 meV, merging with the high part of the acoustic phonon
branches and could be part of the reason for the modest charge-carrier mobilities
in HOPs, comparing to classic inorganic semiconductors. Generally speaking, the
low- and high-energy range modes arise from the PbX6 network and the organic
cations, respectively. In the medium range (10-20 meV), the modes have a highly
hybridized character. The low thermal conductivity and the hot-phonon bottleneck
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effect in HOPs are further manifestations of the strong acousto-optical anharmonic
coupling. In fact we observe an apparent correlation between, not only carrier
thermalization and lattice softness, but also between the latter and optical phonon
energy/frequency. We conclude that the dispersionless nature of the optical modes,
responsible for the anharmonicity of the acoustic modes in HOPs, leads to their
characteristic low elastic stiffness, which in turn implicates a glassy-like thermal
conductivity. The hot-phonon bottleneck is then expected to be enhanced by elastic
softness.

Temperature-dependent measurements accentuate the highly localized and an-
harmonic nature of the optical phonon modes. Such anharmonicity becomes over-
whelming above 80-100 K, manifesting itself mainly through phonon overdamping.
It is particularly affected by the tetragonal-orthorhombic transition but can be even
seen at temperatures as low as 30 K, questioning, therefore, the current modelling
of charge carrier mobilities based on a quasi-particle picture for low-energy optical
lattice modes. Lattice softness in HOPs, and the underlying anharmonic nature of
the mutually coupled acoustic and optical phonons, seems to be a missing compo-
nent for a proper description of the carrier mobilities in these materials.

Moreover, both INS and Raman temperature-dependent measurements of op-
tical spectra, indicate that the vibrational dynamics at the Brillouin zone-center,
across the orthorhombic-tetragonal and tetragonal-cubic transitions, do not appear
to be displacive (i.e. driven by a soft mode). The results from the Raman mea-
surements also indicate pre-transitional effects in the Br-containing samples. This
is reinforced by an observed tendency towards an incipient ferroelastic transition
in FAPbBr3 (manifested in the softening of the shear modulus C44), which is in-
terpreted as further evidence of the influence of plasticity in hybrid perovskites.
Further measurement of the temperature dependence of the elastic constants should
be made in the remaining three compounds.

Although we present here an extensive comparison of optical phonon excitations
in the four different HOPs, additional experiments in deuterated samples are nec-
essary in order to better isolate and determine the contributions from the organic
and inorganic sub-lattices. By reducing incoherent scattering we will also be able
to verify if the optical phonon modes that involve the organic cations are indeed
essentially non-didispersive. Nevertheless, our experimental work can provide not
only a reference for the on-going experimental studies dedicated to exciton-phonon
coupling in hybrid nanostructures, such as quantum dots, but also a solid starting
point for further theoretical calculations to understand the fundamental properties
of these materials.

100



Future perspectives

The Shockley–Queisser limit (SQ limit) sets the maximum solar conversion efficiency
around 33.7% for a single p-n junction PV cell, assuming typical sunlight conditions
(unconcentrated, AM 1.5 solar spectrum). The limit for organic-inorganic halide
perovskite solar cells is believed to also be around 30%, however, some reports
predict a more practical maximum PCE to be in the 25–27% range regardless of
actual chemical composition, provided optimal band alignment is satisfied [180].
More, record efficiencies (>25.2%) are usually obtained on lab cells with small area
(1 cm2), therefore industrial upscaling is now a very active field. In fact in Septem-
ber of 2019, CEA-INES in Chambery announced a new world record of 20.3% for a
11.5 cm2 perovskite PV module [181].

A substantial efficiency boost will be obtained by moving to advanced concepts
beyond single-junction PV cells. These may include multi-exciton generation, sin-
glet fission, hot-carrier collection and even intermediate band-gap cells [182]. In
a tandem configuration, two materials with band-gaps Eg1 and Eg2 are combined,
thus enabling the overall tandem cell to cover a wide spectral range. The tun-
ability of the band-gap and high open-circuit voltages (Voc) make perovskite solar
cells ideal to combine with silicon in a multi-junction/tandem architectures, and to
achieve efficiencies higher than 30% [183]. Naturally, all-perovskite tandem solar
cells are equally feasible where the bottom cell is replaced with a perovskite ab-
sorber [184, 185].

On the other hand, we have also mentioned the hot-phonon bottleneck effect in
HOPs. Cooling of photo-generated hot carriers in a classical semiconductor mate-
rial dissipates the absorbed optical energy as lattice heat via LO phonon emission
and decay. Thermalization by this mechanism leads to about 50% of the energy
losses in a traditional single junction solar cell [186]. This mechanism is expected
to be affected by the unique lattice structure and phonon properties of lead-halide
perovskites, especially in the organic–inorganic hybrid types. Material engineering
with the purpose of introducing overlapping acoustic and optical modes is likely be
more important than opening a large phonon band gap. A strong phonon bottleneck
effect is proposed in HOPs as a key mechanism to establish a long-lived hot carrier
population, which is critical to achieve a working hot carrier PV device [187–189]
and break the Shockley–Queisser limit [85] for PV energy conversion.

Furthermore, future research should focus on the reduction of parasitic non-
radiative carrier recombination through strategies such as passivation and reduction
of defects, as well as boosting efficiency through better-optimised interface materials.
This is in big part because regardless of device configuration, solution-processed per-
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ovskite films are polycrystalline and thus cannot avoid the formation of grain bound-
aries, which is an important factor influencing PV performance through the accel-
eration of electron–hole recombination. The deposited perovskite films tend also to
have also high densities of crystalline defects, leading to ion migration through the
perovskite film. Moreover, stronger J–V hysteresis was observed at grain bound-
aries than in grain interiors because of faster ion migration at the boundaries [190].
Typically, the active layer of a perovskite solar cell is deposited via spin coating
of a precursor solution. A post-treatment with an antisolvent method is also com-
mon [191, 192]. However, solution-processed perovskite films are polycrystalline
and the grain boundaries are believed to accelerate the electron–hole recombina-
tion. Some solutions have been explored based on the development of methods to
control the crystal growth of perovskite films. For example, additives can be used to
control cluster size in the precursor solution and modulate the nucleation rate. By
slowing nucleation, the growth of large perovskite grains with higher crystallinity
is facilitated [193–195]. Utilization of solvent annealing facilitates the diffusion of
precursors and coarsening of small grains to form larger grains [196]. Other ad-
ditives can also provide scaffold structures or nucleation sites to aid in producing
uniform films or reducing external penetration [197]. Alternative deposition meth-
ods (e.g. vacuum flash-assisted deposition [198] and the Lewis acid–base adduct
approach [199]) have also shown to allow high quality perovskite films to be pre-
pared and recombination reduced.

However, the biggest issue for market implementation of perovskite based de-
vices is still long-term instability and degradation. This has been shown to be due
to external pathway factors, such as water, light, and oxygen [200] and also as a
result of intrinsic instability, such as degradation upon heating because of the prop-
erties of the material [201]. The organic cations used in perovskite solar cells are
very hygroscopic and ambient humidity can cause rapid degradation of perovskite
films. Several strategies have been proposed in order to improve stability, a central
one being material engineering. As mentioned before, many of the highest-efficiency
systems published recently use mixed-cation and/or mixed halide perovskite sys-
tems. Lattice contraction by incorporating inorganic cations such as rubidium or
caesium has been shown to improve both stability and efficiency [49]. Combin-
ing 2D-layered (Ruddlesden-Popper) perovskites with conventional 3D perovskites
has enabled PCEs as high as 22% while showing enhanced operational stability,
mainly due to improved resilience to moisture-induced degradation, over pure 3D
perovskites [202–205]. Another key element of improving stability is device en-
capsulation. The rate of deterioration due to humidity increases when the latter
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is combined with UV light, high temperatures, or the application of an electric
field [206]. Movement towards UV-curable epoxies, photopolymer that downshift
UV, hydroscopic and UV-stable interlayers and glass cover slips [207, 208] have sig-
nificantly improved stability. These efforts have vastly improved the stability of
perovskites since their initial introduction, and lifetimes are well on their way to
meeting industrial standards.
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[109] D. A. Valverde-Chávez, C. S. Ponseca, C. C. Stoumpos, A. Yartsev, M. G. Kanatzidis,
V. Sundström, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single
crystal CH3nh3pbi3,” Energy & Environmental Science, vol. 8, no. 12, pp. 3700–3707, 2015.

[110] W. Rehman, R. L. Milot, G. E. Eperon, C. Wehrenfennig, J. L. Boland, H. J. Snaith, M. B.
Johnston, and L. M. Herz, “Charge-carrier dynamics and mobilities in formamidinium lead
mixed-halide perovskites,” Advanced Materials, vol. 27, pp. 7938–7944, sep 2015.

[111] C. L. o vorakiat, T. Salim, J. Kadro, M.-T. Khuc, R. Haselsberger, L. Cheng, H. Xia,
G. G. Gurzadyan, H. Su, Y. M. Lam, R. A. Marcus, M.-E. Michel-Beyerle, and E. E. M.
Chia, “Elucidating the role of disorder and free-carrier recombination kinetics in CH3nh3pbi3
perovskite films,” Nature Communications, vol. 6, jul 2015.

[112] C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Har-
lang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundström, “Organometal
halide perovskite solar cell materials rationalized: Ultrafast charge generation, high and
microsecond-long balanced mobilities, and slow recombination,” Journal of the American
Chemical Society, vol. 136, pp. 5189–5192, mar 2014.

[113] E. M. Hutter, G. E. Eperon, S. D. Stranks, and T. J. Savenije, “Charge carriers in planar
and meso-structured organic–inorganic perovskites: Mobilities, lifetimes, and concentrations
of trap states,” The Journal of Physical Chemistry Letters, vol. 6, pp. 3082–3090, jul 2015.

[114] M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng,
I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed, and O. M.
Bakr, “High-quality bulk hybrid perovskite single crystals within minutes by inverse tem-
perature crystallization,” Nature Communications, vol. 6, jul 2015.

[115] R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, and M. A. Green, “Methylam-
monium lead bromide perovskite-based solar cells by vapor-assisted deposition,” The Journal
of Physical Chemistry C, vol. 119, pp. 3545–3549, feb 2015.

[116] O. E. Semonin, G. A. Elbaz, D. B. Straus, T. D. Hull, D. W. Paley, A. M. van der Zande, J. C.
Hone, I. Kymissis, C. R. Kagan, X. Roy, and J. S. Owen, “Limits of carrier diffusion in n-
type and p-type CH3nh3pbi3 perovskite single crystals,” The Journal of Physical Chemistry
Letters, vol. 7, pp. 3510–3518, aug 2016.

[117] D. H. Kim, J. Park, Z. Li, M. Yang, J.-S. Park, I. J. Park, J. Y. Kim, J. J. Berry, G. Rumbles,
and K. Zhu, “300% enhancement of carrier mobility in uniaxial-oriented perovskite films
formed by topotactic-oriented attachment,” Advanced Materials, vol. 29, p. 1606831, apr
2017.

[118] H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved understanding of the elec-
tronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility,
reduced recombination, and extremely shallow traps,” Journal of the American Chemical
Society, vol. 136, pp. 13818–13825, sep 2014.

[119] M. Karakus, S. A. Jensen, F. D’Angelo, D. Turchinovich, M. Bonn, and E. Cánovas,
“Phonon–electron scattering limits free charge mobility in methylammonium lead iodide
perovskites,” The Journal of Physical Chemistry Letters, vol. 6, pp. 4991–4996, dec 2015.

111



[120] A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Pérez-Osorio, H. J. Snaith,
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low thermal conductivity in organic–inorganic hybrid perovskite CH3nh3pbi3,” The Journal
of Physical Chemistry Letters, vol. 5, pp. 2488–2492, jul 2014.

113



[153] A. Kovalsky, L. Wang, G. T. Marek, C. Burda, and J. S. Dyck, “Thermal conductivity
of ch3nh3pbi3 and cspbi3: Measuring the effect of the methylammonium ion on phonon
scattering,” The Journal of Physical Chemistry C, vol. 121, no. 6, pp. 3228–3233, 2017.

[154] Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Van De Lagemaat, J. M. Luther, and
M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nature
Photonics, vol. 10, no. 1, pp. 53–59, 2016.

[155] A. Caretta, M. C. Donker, D. W. Perdok, D. Abbaszadeh, A. O. Polyakov, R. W. A.
Havenith, T. T. M. Palstra, and P. H. M. van Loosdrecht, “Measurement of the acoustic-
to-optical phonon coupling in multicomponent systems,” Physical Review B, vol. 91, feb
2015.

[156] C. Katan, A. Mohite, and J. Even, “Entropy in halide perovskites,” Nature Materials, vol. 17,
pp. 377–379, April 2018.

[157] G. Schuck, F. Lehmann, J. Ollivier, H. Mutka, and S. Schorr, “Influence of chloride substitu-
tion on the rotational dynamics of methylammonium in mapbi3−xclx perovskites,” J. Phys.
Chem. C, vol. 213, pp. 11436–11446, 2019.

[158] Y. Fujii, S. Hoshino, Y. Yamada, and G. Shirane, “Neutron-scattering study on phase tran-
sitions of cspb cl 3,” Physical Review B, vol. 9, no. 10, p. 4549, 1974.
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Appendix A

Crystal lattices and reciprocal space

The atoms in a crystal can be mathematically represented as points in a three-dimensional
(3D) real space lattice. If these lattice points are arranged in a periodic fashion, then one
can define real space unit cell in terms of three non-coplanar basic vectors a, b and c
and the angles α, β, and γ (see Fig. A1). In diffraction experiments using crystalline
samples, atoms are arranged in a highly ordered fashion with specific periodic positions
and symmetry. All atoms are equivalent when they follow the periodicity. For a reference
or origin located at any of these atoms, the crystal is exactly the same. Their relative
position can then be described by the translational vector T defined as

T = n1a + n2b + n3c (A.1)

where the integers n1, n2 and n3 are also known as cell indices and frequently denoted
for brevity by the single letter n. If the unit cell contains just one lattice site, so that
the lattice vectors n give every lattice site in the crystal, then we have a Bravais lattice.
There are in total 14 Bravais lattices [209] which come from 7 different lattice systems.
The simple cubic, face-centered cubic (FCC) and the body-centered cubic (BCC), which
are represented in Fig. A1.b,c,d, make up the cubic lattice system. The remaining six
are the hexagonal, triclinic, trigonal, monoclinic (two Bravais types), orthorhombic (four
types) and tetragonal (two types) systems. See Table A.1 for all 14 Bravais lattices and
their basic properties. In general crystal lattices have more than on atom per unit cell

Figure A1: (a) The three basic vectors a, b and c and the angles between a pair of vectors, α, β, and γ.
Three lattices of the cubic system, namely the (b) simple cubic, (c) face-centered cubic (FCC) and (d)
body-centered cubic (BCC).
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Table A.1: The 14 bravais lattices.

System Cell axes and angles Number of lattices

Cubic a = b = c
α = β = γ = 90◦ 3

Hexagonal a = b 6= c
α = β = 90◦, γ = 120◦ 1

Triclinic a 6= b 6= c
α 6= β 6= γ

1

Trigonal a = b = c
α = β = γ > 120◦, 6= 90◦ 1

Monoclinic a 6= b 6= c
α = γ = 90◦ 6= β

2

Tetragonal a = b 6= c
α = β = γ = 90◦ 2

Orthorhombic a 6= b 6= c
α = β = γ = 90◦ 4

and are constructed from several interpenetrating identical Bravais lattices. The positions
of the r atoms within a unit cell are denoted by the vectors d, which can be defined in
terms of the basic a, b and c vectors

d = d1a + d2b + d3c (A.2)

with 0 6 di 6 1, i = 1, 2, 3, the site d = 0 coinciding with the corner of the unit cell. The
position vector Rtd of an atom in the crystal will then be given by

Rtd = T + d (A.3)

A lattice plane of a given Bravais lattice is any plane containing at least three noncollinear
Bravais lattice points. Alternatively, it can be interpreted as a plane (or family of parallel
planes) whose intersections with the lattice are periodic and intersect the Bravais lattice.
One can easily define a lattice plane by taking a lattice point as a reference and then
choosing the lattice vector joining a point away from the reference and along the line in
a direction T = n1a + n2b + n3c. The direction of a plane being the integral triplet
[n1n2n3]. For example, if we choose 0 as the reference and a lattice point at 1a, 1b, and
1c, then T = 1a + 1b + 1c and the direction is [111]. The most typical notation system
in crystallography for planes in crystal lattices is the Miller index. The orientation of
a plane can be specified by the Miller indices (hkl). Fig. A2 illustrate the examples of
(002), (110), (011), and (111). All planes, even non-parallel ones, that through rotational
symmetry are equivalent to the plane (hkl), are represented by {hkl}, which defines the
(hkl) family of planes. Again as an example, the (1̄00), (01̄0), (001̄) planes are parallel
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Figure A2: Various planes in a cubic lattice: (a) The (001) plane; (b) (001̄) plane; (c) (002) plane; (d)
(110) plane; (e) (011) plane and (f) (111) plane.

to (100), (010), and (001), respectively, and so these six planes can be labelled as {100}.
This is important because most diffraction experiments involve the scattering of waves
from a family of equivalent planes, not just one single plane. In Fig. A1, a unit cell in
real space was illustrated, with basic vectors a, b, and c. Analogously, we can also define
a reciprocal lattice vector G(hkl) as

G(hkl) = ha∗ + kb∗ + lc∗ (A.4)

where h, k, and l are the Miller indices of a crystal plane (hkl) and a∗, b∗, and c∗ are the
reciprocal unit vectors. One can then show that G(hkl) • T is always an integer

(ha∗ + kb∗ + lc∗) • (n1a + n2b + n3c) = integer (A.5)

From vector algebra, when the previous equation is satisfied, one obtains the reciprocal
lattice vectors

a∗ = 2πb× c
V

, b∗ = 2πc× a
V

, c∗ = 2πa × b
V

, (A.6)

Where V = a · (b × c) is the volume of a unit cell in real space. This means, for example,
that vector a∗ is perpendicular to the plane consisting of b and c. At the same time, the
magnitude of a∗ is inversely proportional to the magnitude of a, implying that the size
of a reciprocal lattice unit cell is inversely proportional to the size of the real space unit
cell.

Basically, the reciprocal lattice corresponds to the Fourier transform of a Bravais
lattice. While the Bravais lattice exists in real-space and is what one would commonly
understand as a physical lattice, the reciprocal lattice exists in reciprocal space, or Q-
space. This symmetry relationship between both spaces will is also described via the
basics of scattering theory in Chapter 2.
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Appendix B

Results: supplementary figures

B.1 Elastic softness of hybrid lead halide perovskites
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Figure B1: (a) TA phonon spectra in FAPbBr3, for different energy values around the (110) Bragg peak.
To access the T2 branch, measurements were made along [11̄0] with a scattering plane of [100][010]. (b)
Dispersion curve for the same phonons.
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B.2 Direct evidence of weakly dispersed optical phonon at low temperature
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Figure B2: Optical phonon spectra, measured by TAS inelastic neutron scattering at low temperature
(5 K), in FAPbBr3 at the R (1/2 1/2 3/2) and M (5/2 3/2 0) Bragg points. Only a small negligible
difference (in amplitude) is seen between the spectra of both points, illustrating the weak dispersion
nature of the phonon modes.

Figure B3: 1D cuts of the ToF mapping of MAPI, at Q = (002), between (a) 1.5-4.6 meV and (b) 8-
14.5 meV. The data (green scatter points) is fitted (orange line) with a sum of a sum of DHOs (Eq. 2.38,
section X).

123



13.7

8.57.4
5.94.7

MAPB | R point  @ 5K

 

 

 INS data (4F2)
 DHO fit

In
te

ns
ity

 [C
ou

nt
s]

Energy [meV]

3.6 

11.5

(16.9) 

Figure B4: Optical phonon spectra, measured by TAS inelastic neutron scattering at low temperature
(5 K), in MAPbBr3 at the R (1/2 1/2 3/2). The experimental INS data (black scatter points) is fitted
(red line) with a sum of DHOs (Eq. 2.38, section 2.2.5) and is presented with a removed background.
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B.3 Temperature behaviour of lattice dynamics and phase transitions

Figure B5: ToF neutron spectra measured at room temperature in MAPbI3. Longitudinal acoustic (LA)
phonons around the 002 Bragg reflection are clearly seen up to energies of ∼2 meV. The slope (dashed
line), corresponding to the sound velocity from the previously reported dispersion curves of the same LA
phonons (Fig. 3.2), is also plotted for comparison.
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Figure B6: Comparison between the polarized and depolarized Raman spectra at room temperature for
(a) MAPB and (c) FAPB, and at 353 K for (b) MAPI. The red square indicates approximately the
position of the lowest frequency mode ω1.
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Figure B7: Relaxational frequencies ωrel = ω2

0/Γ of the lowest frequency Raman mode ω1, in MAPbBr3,
MAPbI3, FAPbBr3 and FAPbI3, as a function of temperature. The cubic-tetragonal transitions are
marked (arrows), appearing to be of a less abrupt nature in Br-based samples, suggesting pre-transitional
effects.
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Figure B8: (a) TA phonon spectra in FAPbBr3 at 100 K, for different Q positions going away from the
(002) Bragg peak, along the [010]. (b) Dispersion curve for the same phonons.
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Resumé : Ce projet se concentre sur l’étude de pérovskites 

hybrides organo-plombiques (HOP), à savoir MAPbBr3, 

MAPbI3, FAPbBr3 et α-FAPbI3. Pour ce faire, nous nous 

appuyons beaucoup sur la spectroscopie de diffusion 

inélastique de neutrons (INS), car elle permet de sonder 

systématiquement les propriétés structurales de ces 

matériaux. Avec ça, nous pouvons présenter une étude 

détaillée des excitations de réseau cristallin (phonons) 

dans les quatre composés HOP les plus pertinents sur le 

plan technologique dans le domaine du photovoltaïque. En 

mesurant les courbes de dispersion des phonons 

acoustiques, nous donnons une image claire de la faible 

élasticité, qui montre une réduction des constantes 

élastiques dans les composés avec le FA par rapport au 

MA, et aussi avec l’iode par rapport au brome. 

L’évolution des paramètres d’élasticité avec le paramètre 

de réseau permet aussi d’expliquer leurs conductivités 

thermiques ultra-basses, et de comprendre l’instabilité 

structurale de FAPI. Nous présentons également ici une 

comparaison détaillée des excitations optiques dans les 

quatre composés différents, dans laquelle nous discutons 

avec soin de l'attribution des modes de vibrations 

structurales respectives. 

 

Contrairement aux attentes théoriques et au 

comportement classique des composés semi-conducteurs 

classiques, les modes de phonon ne montrent pas de 

dispersion, ce qui suggère un comportement 

anharmonique très fort et des effets de localisation. Ce 

comportement remet en question la validité de l'image de 

quasi-particule pour décrire les phonons utilisée dans 

l’interaction des porteurs de charges avec le réseau, c’est-

à-dire la compréhension de l'interaction de Fröhlich pour 

la mobilité des porteurs. Par ailleurs, le recouvrement des 

modes acoustique avec les modes optiques de basses 

énergie peut aider à résoudre le paradoxe apparent de la 

dépendance en température de type phonons acoustiques 

de la mobilité des porteurs de charge et des processus 

directs dominants supposés être liés aux phonons 

optiques. Nos résultats mettent également en évidence le 

rôle du fort couplage anharmonique acousto-optique 

(responsable de la faible élasticité) dans la conductivité 

thermique faible, comme dans des phases vitreuses 

(glassy like) et l’effet de goulet d’étranglement des 

phonons dans les HOP. Cette étude expérimentale 

pourrait également fournir un solide point de départ pour 

des calculs théoriques permettant de mieux comprendre 

les propriétés fondamentales de ces matériaux 

Abstract : This project focuses on the study of halide 

organolead perovskite (HOP) compounds, namely 

MAPbBr3, MAPbI3, FAPbBr3 and α-FAPbI3. To do this, 

we rely heavily on neutron inelastic scattering 

spectroscopy (INS), because it allows to systematically 

probe the structural properties of these materials. As a 

result, we are able to present a comprehensive 

investigation of lattice excitations (i.e. phonons) in the 

four of the most technologically relevant HOP compounds 

in the photovoltaics field. By measuring dispersion curves 

of acoustic phonons we give a clear picture of the 

difference in softness between FA and MA based 

compounds and how it relates to their structural stability 

and their ultralow thermal conductivities. We also present 

here an extensive comparison of optical phonon 

excitations in the four different hybrid, in which we 

carefully discuss mode attribution to the respective 

structural vibrations.  

 

In contrast to theoretical expectation and classical 

behavior in standard semiconductor compounds, the 

phonon modes show no dispersion, suggesting strong 

anharmonic behavior and localization effects. This 

behaviour puts into question the validity of the quasi-

particle picture used for phonon simulation and the 

present understanding of the Fröhlich interaction for 

carrier mobilities. This may help in solving the apparent 

paradox of acoustic-like temperature dependence of the 

charge carrier mobilities and dominant direct processes 

expected to be related to optical phonons. Our results 

also highlight the role of the strong acousto-optical 

anharmonic coupling (responsible for the characteristic 

low elastic stiffness) in the glassy-like thermal 

conductivities and hot-phonon bottleneck effect in HOPs. 

This experimental study could also provide a solid 

starting point for further theoretical calculations to 

understand the fundamental properties of these materials. 
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