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Cavity optomechanics: an
introduction

Cavity optomechanics explores the reciprocal interactions between an optical and a me-
chanical resonator. It forms a large and diversified field of Physics, whose applications
include both fundamental and applied research, with motivations as varied as quantum
manipulation of light, gravitational wave detection, and realization of high precision sen-
sors.

While cavity optomechanics was originally considered in the context of large scale interfer-
ometers, the strength of most optomechanical interactions actually tends to be inversely
proportional to the resonator dimensions. For this reason, the community has mainly
focused its recent research efforts towards the miniaturization of optomechanical cavities,
and many long-anticipated optomechanical phenomenons were demonstrated for the first
time in micro and nano-optomechanical cavities.

Following this trend, integrated photonics naturally became a privileged platform for cav-
ity optomechanics. Owing to its excellent optical and mechanical properties and to the
fabrication expertise provided by the micro electronic industry, silicon is a promising can-
didate for cavity optomechanics, that could pave the way towards on-chip optomechanical
systems. The aim of achieving optomechanical interactions in silicon integrated photonic
circuits is the underlying motivation of this thesis work.

We begin this discussion with an introductory overview to cavity optomechanics. An
historical introduction is given, followed by an intuitive description of important concepts,
realizations, and applications of cavity optomechanics. Finally, this work is put into
perspective in regard to the present state-of-the-art.

Historical introduction

In 1619, Keppler observed that the tail of comets bends away from the sun, and hypoth-
esized that light could exert forces on mechanical bodies. In 1873, Maxwell theorized
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transfer of momentum between light and matter and the existence of an optical force
known as radiation pressure. A few years later in 1901, the existence of this force was
verified experimentally by Lebedew [1] and Nichols and Hull [2].

In the late 1970s, Braginsky studied the effects of radiation pressure in the context of
astronomical interferometers exhibiting a harmonically suspended mirror. He predicted
a dynamic backaction effect of the optical force, that could be used to provide either
damping or anti-damping of mechanical motion, and demonstrated this result in the case
of microwaves [3]. He also derived the existence of the so-called “Standard Quantum
Limit” (SQL) on the accuracy at which the position of a free test mass can be measured
by interferometric means, because of the quantum fluctuations of radiation pressure [4].

Later on, the field of cavity optomechanics was extended to the quantum world. It
was theoretically proposed to use the quantum properties of radiation pressure to realize
quantum non-demolition measurements [5], to create non-classical states of the light field
[6], and to observe non-classical entangled states of light and mechanics [7].

In parallel to the discussion about radiation pressure in optical cavities, Ashkin studied
the possibility to manipulate small dielectric particles with optical forces. In 1970, he
demonstrated the possibility to accelerate and trap micro particles by means of radiation
pressure and optical gradient forces [8]. In 1978, he achieved laser cooling of the atomic
motion of micro particles [9]. His work laid the foundations for the realization of optical
tweezers, that are now widely used to control biological particles in a non-destructive
way, and of laser cooling, that became one of the major subfields of atomic, molecular
and optical physics [10].

In the early 2000s, these two sides of the somehow same field were brought together when
it was realized that radiation pressure and optical gradient forces1 could be used to couple
mechanical and optical modes of toroid microcavities[11, 12, 13]. As its actions are more
pronounced at the micro and nano-scale, cavity optomechanics was rapidly expanded to
various setups such as cantilevers [14], nanomembranes [15] or photonic crystals [16]. Over
the past years, the ever going progresses in micro and nano fabrications techniques have
enabled to increase the optical and mechanical quality factors of resonators and to reduce
the volumes down to a regime in which optical forces are routinely dominant over other
phenomenons.

Today, most teams working on the field of cavity optomechanics use micro or nano-scale
resonators. Although there is a large diversity of setups, they can all be compared to
a miniaturized version of a Fabry-Perot cavity with a moving back-end mirror, which
constitutes the paradigmatic optomechanical cavity.

1Often simply referred as radiation pressure in the community
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Figure 1 – Schematic of a Fabry-Perot cavity with a moving back-end mirror.
An input laser is coupled into the Fabry-Perot cavity through a fixed, motion-
less input mirror. The back-end mirror is by some way able to vibrate and to
modulate the cavity length.

Paradigmatic optomechanical setup, and important op-
tomechanical parameters

The paradigmatic optomechanical setup is a Fabry-Perot cavity with a moving back-end
mirror (see figure 1). Light is launched into the cavity by means of a laser, through
a motionless input mirror. In this geometry, the optomechanical coupling between the
optical and mechanical resonators is introduced by radiation pressure.

From the mechanical perspective, radiation pressure on the back-end mirror leads to
mechanical motion and modulates the cavity length. From the optical perspective, when
the input laser is slightly detuned from the resonance, any variation of the cavity length
will strongly modulate the intra-cavity field. Now, as radiation pressure corresponds to a
transfer of momentum between photons and phonons 2, its strength is proportional to the
energy stored within the cavity and is therefore impacted by mechanical motion. Hence,
the optical field depends on the position of the mirror, and in turn, the position of the
mirror depends on the optical field ; the two resonators are effectively coupled to each
other.

The Fabry-Perot setup has been extensively studied since the very beginning of the field,
and led to most optomechanical development to date. It constitutes a good starting point
when discussing optomechanical systems, as the majority of them can be described in
analogy to the Fabry-Perot cavity with a moving back-end mirror. The description of the
classical dynamics of this setup and its main implications are presented on section I.2.
Remarkably, we will show that the optical field can be used to modify the mechanical
properties of the mirror.

2A phonon is defined as the quantum of vibration of an elastic structure [17]
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Prior to this theoretical discussion, we next introduce the important parameters of op-
tomechanical resonators, give an overview of the state of the art, and present some selected
optomechanical experiments and applications.

Optomechanical parameters of interest

When trying to “quantify the quality” of an optomechanical cavity, it is usual to examine
the following parameters:

The mechanical frequency f , in Hz (or alternatively, the mechanical angular fre-
quency Ωm = 2πf). In optomechanical systems, high resonance frequency is desir-
able as it allows larger bandwidth and natural isolation from acoustic waves and
thermal noise [18, 19, 20].

The mass m, in kg. In mechanical resonators, the mechanical frequency is inversely
proportional to the square root of the mass. Hence, an efficient way to maximize
the mechanical frequency is to minimize the mass of the system. In mechanical
systems supporting multiple modes of vibrations, the effective mass meff associated
to a given mode is considered.

The mechanical damping rate Γm/2π, in Hz. Naturally, it is favorable to minimize
the mechanical dissipation rate. Often, a somehow equivalent parameter is used,
the mechanical quality factor Qm = Ωm/Γm.

The product of mechanical quality factor and frequency Q× f , in Hz. Mechan-
ical resonators are frequently compared based on the product Q × f , as these two
quantities are of paramount importance for the realization of many high perfor-
mance M&NEMS devices. This product is also a representation of the degree of
decoupling of the mechanical resonator from its thermal bath environment, which is
essential in cavity optomechanics [21]. In particular, the realization of optomechan-
ical resonators with large Q × f products is key for the development of quantum
optomechanics [22].

The optical decay rate κ/2π, in Hz. Similarly to the case of mechanical resonators,
the optical decay rate is linked to an optical quality factor Qopt = ω0/κ where ω0 is
the angular resonant frequency. In optomechanical systems, a high optical quality
factor confined within a small volume is desirable in order to enhance the overall
performances and to magnify light-matter interaction.

The sideband suppression factor κ/Ωm. This ratio determines the ability to real-
ize ground-state cooling and other quantum applications. This is detailed in the
following.

Single photon-phonon optomechanical coupling rate g0/2π, in Hz (also regu-
larly referred as “vacuum optomechanical rate”, or simply “optomechanical cou-
pling rate”). This quantity, described in section I.2, is a normalized measure of the
strength of the optomechanical interaction.
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In parallel to these quantitative parameters, two important qualitative factors also have to
be considered: the ease of realization and the ease of operation. Indeed, many historical
cavity optomechanics setups critically rely on the positioning and alignment of optical
and/or mechanical elements, and have experimentally been limited by these two points. In
this regard, the ability to precisely realize an optomechanical cavity with micro and nano-
fabrication techniques, and to operate it by means of photonic structures with relaxed
alignment constraints, is a major advantage.

Present State-of-the-art

Present optomechanical devices are really diversified, with a huge variety of optical forces
and optomechanical coupling schemes at play. A brief (and not exclusive) introduction to
these different geometries, and to the underlying motivation of each approach, is presented
in the following. A most comprehensive state-of-the art can be found in [22].

Suspended mirrors

Figure 2 – Examples of suspended mirrors realized with micro-scale reflecting res-
onators. From left to right: cantilever [23], micropillar [24], trampoline resonator
[25].

Suspended mirrors are the most straightforward way to realize a Fabry-Perot cavity with
a movable back-end mirror. This coupling scheme was originally envisioned in the context
of gravitational interferometers, with large-scale mirrors and optical cavities. With the
development of cavity optomechanics, because the strength of optomechanical interactions
is more pronounced under size reduction, this scheme is now realized at the micro-scale
with highly reflecting resonators. Non-exclusively, realization with microlevers [26], mi-
cropillars [24], or trampoline resonators [25] were reported.

High optical quality factors can be achieved with suspended mirrors. However, this setup
is hampered by the fact that the size of the resonator must be larger than the wavelength
of light to allow efficient optomechanical coupling. It results in practical limitations of
the mechanical properties (relatively low frequency - at most in the MHz range - and high
mass - microgram range) in comparison to other optomechanical devices. Nevertheless, it
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must be remembered that most milestones optomechanical experiments were conducted
on this geometry.

Mechanical resonator in the middle of an optical cavity:

Figure 3 – Left: Fiber-based Fabry-Perot cavity with a nanoresonator in the
middle (dotted box). Right: SEM image of the nanoresonator. Figures from
[22].

Instead of having the back-end mirror of the Fabry-Perot cavity vibrating, it is possible
to place a mechanical resonator in the middle of the cavity. Physically speaking, the
effective length of the cavity is modulated by the phase shift introduced with the motion
of the resonator. It also gives rise to a dissipative optomechanical interaction, in which
the absorption rate of the cavity is modulated.

The major motivation behind this setup originates from the separation between the optical
and mechanical degrees of freedom. As a result, most constraints imposed on the size and
mass of the mechanical resonator in the case of suspended mirrors are relaxed. This
way, the optical and mechanical parts can be optimized separately, without impacting
each other, and high optical and mechanical quality factors can be achieved, with no
limitation on the mechanical frequency and mass.

This scheme has been realized with nanorods [27] and nanomembranes of sub-wavelength
thickness [15]. It however remains extremely challenging to realize and manipulate, as
it critically depends on the experimental alignment and positioning of the mechanical
resonator and Fabry-Perot mirrors.

Suspended optical microcavities:

The Fabry-Perot scheme can be replicated in a monolithic and integrated setup, where the
structural vibration modes of a micro-sized optical cavity are excited by means of optical
forces. The optomechanical interaction is enhanced by the small size of the optical cavity
and by the existence of additional optical forces and coupling mechanisms, due to the
optical propagation in a dielectric medium (instead of free-space).

Essentially, four kinds of optical resonators are used: microtoroids [11, 12, 13], microdisks
[28], microspheres [29], and microrings [30].
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Figure 4 – Examples of suspended optical microcavities. From left to right:
microdisk [28], microsphere [29], double microring [30].

Suspended optical microcavities exhibit several appealing properties in regard to cavity
optomechanics: extremely small masses (down to the nanogram range), high mechanical
frequencies (up to the GHz range), high mechanical quality factors, really high optical
quality factors, small sizes, easy experimental operation (most constraint on optical align-
ment are suppressed) and compatibility with micro-fabrication techniques. Their major
drawback is that they can exhibit quite large non-linear optical effects due to the high
power densities confined in small volumes, which deeply complicate the behavior of the
system.

In this thesis, all our cavities belong to this family of optomechanical resonators.

Near field optomechanics:

Figure 5 – Near field optomechanics with mechanical paddles [31] (left) and
nanostrings [32] (right).

In this geometry, a micro or nano-resonator is placed at close proximity of an optical
cavity. Similarly to the case of “in-the-middle” cavity optomechanics, the optical and
mechanical resonators are distinct structures, interacting through the evanescent optical
field. In the context of integrated devices, the large advantage of this setup is the ability
to separately optimize the design of the optical and mechanical part, such that extremely
elevated optical and mechanical quality factors can be achieved at the same time. On the
other hand, the positioning of the mechanical resonator remains challenging in this setup,
even with micro and nano-fabrication techniques.
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Near field optomechanics can for example be realized with a disk resonator and mechanical
paddles [31] or with a microtoroid and nanostrings [32].

Optomechanical crystals

Figure 6 – Optomechanical crystals [16, 22].

In a thin dielectric medium, a photonic bandgap can be achieved by nano-patterning
of a periodic structure. When a defect is introduced in the lattice, wavelength-scale lo-
calization of the optical field is achieved, which is known as photonic crystals. On the
mechanical perspective, the same principle allows to create phononic crystals. In optome-
chanical crystals (often termed phoXonic crystals), the two approaches are combined into
the same entity [16].

Optomechanical crystals offer promising perspectives for the development of cavity op-
tomechanics, due to their high mechanical frequencies, low masses and small optical and
mechanical localization volumes, and some of the best optomechanical coupling rates to
date were reported with these geometries [33]. Last but not least, optomechanical crystals
are compatible with classical CMOS fabrication processes and can be included on-chip,
with integrated photonic architectures.

Comparison

A comparison of the previously presented optomechanical cavities is given on table 1,
based on the published data.

Selected applications of cavity optomechanics

In the following, we present a qualitative description of important applications of cavity
optomechanics. A more extensive presentation can be found in [22].
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f (Hz) Mass (kg) Qm Qopt g0/2π (Hz)
Suspended mirrors
Complicated fabrication and operation

Cantilever [23] 7× 103 – 2× 104 2.6× 108 –
Micropillar [24] 3.2× 106 725× 10−6 1.8× 106 5.1× 107 –
Trampoline [25] 250× 103 100× 10−9 4× 105 1.7× 1010 1
Nanoresonators in the middle
Complicated fabrication and operation

Nanorods [27] 1.9× 106 – 1× 104 7.25× 106

Nanomembranes [15] 134× 103 4× 10−8 1.1× 106 – –
Suspended optical microcavities
Easy fabrication and operation

Microdisk [28] 850× 106 20× 10−12 1× 103 1× 105 5.1× 104

Microsphere [29] 80× 106 – 5× 103 8× 107 –
Double microring [30] 600× 103 85× 10−12 2 6× 104 –
Near field optomechanics
Complicated fabrication and easy operation

Paddles [31] 50× 106 3.3× 10−12 3.7× 104 4× 104 500
Nanostrings [32] 10× 106 1× 10−12 1× 105 4× 107 50
Optomechanical crystals
Easy fabrication and operation

PhX. [33] 5.1× 109 127× 10−15 6.8× 105 1.2× 106 1.1× 106

Table 1 – Comparison between the experimental parameters of the previously
presented optomechanical cavities.

9



Cooling of mechanical modes

One of the major goals of cavity optomechanics is to achieve ground-state cooling of
the mechanical resonator and observe its quantum signature. This is approached with
two schemes, relying on radiation pressure3: dynamical backaction cooling, and feedback
cooling.

Figure 7 – (Resolved) Sideband picture. Green: laser field at ωL. Red: sideband
at ωL−Ωm. Blue: sideband at ωL+Ωm. a) The laser is driven at resonance, and
the two sidebands are identical. b) The laser is red-detuned from resonance by
an amount −Ωm. The imbalance between the two sidebands leads to mechanical
cooling (the mechanical energy is transferred towards the optical energy, in other
words, from phonons to photons). c) The laser is blue-detuned from resonance by
an amount +Ωm. The imbalance between the two sidebands leads to mechanical
amplification (optical energy is transferred towards mechanical energy).

Dynamic backaction cooling Dynamic backaction cooling can be understood in a
sideband picture. Due to the exchange of energy between photons and phonons, two
lateral sidebands are created at ωL−Ωm (red) and ωL + Ωm (blue) with a rate A± (ωL is
the angular laser frequency and Ωm is the angular mechanical frequency). When the laser
is detuned from the cavity resonance, it creates an imbalance between the two sidebands
(see Figure 7), leading to amplification (A+ > A−) or cooling (A− > A+) of mechanical
motion. This effect can be understood by analogy to Brillouin scattering in a solid crystal,
in which a photon is submitted to inelastic scattering after interacting with an optical
phonon. In this picture, amplification is compared to a Stokes process, and cooling to an
anti-Stokes process.

From this sideband picture, one of the reason why the sideband suppression factor κ/Ωm

determines the ability to realize ground-state cooling becomes more intuitive: when κ <
Ωm, it becomes possible to generate a blue sideband while suppressing the red sideband
that falls away from resonance. This case is known as the “resolved-sideband regime”.

3These approaches have also been conducted based on photothermal forces, with effective cooling [26].
The latter, however, can not ultimately be used for ground-state cooling, as it relies on absorption of
light and heat generation.
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Dynamic backaction cooling due to radiation pressure is a dynamic phenomenon, which
can qualitatively be described with classical equations, as presented in section I.2, but
has to be approached with a quantum description in order to get a proper estimation
of the achievable low temperatures [34, 35]. With this technique, cooling from room
temperature to 10K was first simultaneously observed on the 58 MHz radial breathing
mode of a microtoroid cavity [36], on the 814 kHz fundamental mode of a doubly clamped
beam with a coated micromirror upon its surface [14], and on a 280 kHz mode of a
high reflectivity doubly clamped cantilever [37] (in this last case, radiation pressure was
assisted by photothermal effects).

Feedback cooling Radiation pressure can also be used as a feedback mechanism in
order to cool down a resonator. In this scheme, a first laser is used as a probe to monitor
mechanical motion. The velocity of the resonator is calculated from the time derivative
of the signal, and is used to modulate the intensity of a second feedback laser. This way,
radiation pressure from the feedback laser counteracts mechanical motion, and effectively
cools the resonator.

Optical feedback cooling was first theoretically proposed in [38], with no hint on the
feedback mechanism. The first experimental demonstration was in the case of radiation
pressure [39], with a reduction of the effective temperature of the 2 MHz fundamental
resonance mode of a mm-sized mirror by a factor 40. Since then, cooling from room
temperature to 135 mK of the 12 kHz fundamental mode of an AFM cantilever with an
attached micromirror [40], and cooling from 2.2 K to 3 mK of the 3.9 kHz fundamental
mode of a silicon cantilever [41] were achieved.

Comparison of the two schemes in the prospect of ground-state cooling Fun-
damentally, feedback cooling is different from dynamic backaction cooling. In the first
case, radiation pressure is used as a way to induce a real-time viscous force counteracting
the mirror motion. In the second case, it is used as a retarded backaction to modify the
dynamics of the mechanical resonator and to “pump-out” its thermal energy.

The two schemes were compared in regard to their ability to reach ground-state cooling in
[42]. The comparison reveals that cooling with dynamical backaction is favorable in the
resolved-sideband regime κ < Ωm (accordingly with the sideband picture), while feedback
cooling is favorable in the unresolved-sideband regime κ� Ωm.

In this regard, a simplistic way to differentiate these two schemes is based on where it
is decided (and possible) to ease the problem. A scheme based on dynamical backaction
is experimentally easier to operate, but requires to reach the resolved-sideband regime.
A high quality optomechanical cavity (high frequency and low optical dissipation) is
necessary, or in other words, the efforts are focused towards the fabrication process. On the
other hand, a scheme based on feedback cooling is less constrained by the optomechanical
cavity, but is harder to experimentally operate.
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On-chip Nano-OptoMechanical Systems (NOMS)

While dynamical backaction can be used to cool the resonator when the laser is red-
detuned from resonance, it can alternatively be used to amplify its motion if the laser
is blue-detuned. Above a certain optical power threshold, the optomechanical amplifica-
tion can overcome the intrinsic mechanical damping, and self-sustained (or regenerative)
mechanical oscillations are generated. This parametric instability, first proposed by Bra-
ginsky [43], can be exploited to realize on-chip optomechanical oscillators, often referred
as NOMS by analogy to their electrical counterpart. On the following, we present some
of their applications.

Mechanical sensing Sensitive measurement of the deflection of a micro or nano-scale
cantilever is at the heart of many applications involving displacement, force and mass
sensing, such as inertial detection, environmental monitoring, mass spectroscopy and
biological metabolite detection and quantification [44, 45, 46]. Albeit M&NEMS devices
are the privileged platform for such measurements, the upper limit of their operation
bandwidth is limited by parasitic electric coupling and readout impedance mismatch [47],
and their ultimate sensibility is inferior to optical transduction, that furthermore suffers
from less theoretical bandwidth limitations [45, 48].

Free-space optical methods are already widely used and have demonstrated sensitivities
below the attogram/

√
Hz range [49], but are limited by the diffraction limit, i.e. by the

fact that the device dimensions must remain superior to the optical wavelength.

Alternatively, optomechanical devices can offer the same advantages as free-space meth-
ods, while avoiding the diffraction limit and the difficulties of optical alignment [45, 50].
Additionally, optomechanical oscillators also benefit from their natural immunity to elec-
tromagnetic fields, low operation power and low noise level [51, 52]. This makes on-chip
optomechanical devices an appealing platform for high precision mechanical sensing, and
several demonstrations have already been presented, with displacement resolutions down
to a few 10−18 m/

√
Hz [47, 53] and mass sensitivities down to the zeptogram level [54],

demonstrating that optomechanical architectures can be advantageously used to make
small, fast and of extremely sensitive mechanical sensors.

High-quality frequency reference NOMS can be used as high-quality frequency ref-
erences, as the optically induced mechanical oscillations are subsequently carried out in
the transmitted optical power.

Such photonic clock presents interesting advantages in comparison to other state-of-the-
art frequency reference sources [55, 52]. Notably, the optomechanical oscillator is powered
by a continuous optical source, is by essence simple to operate, and has a small footprint.
Additionally, optomechanical oscillators can be integrated on-chip and operate at high
frequency.
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By opposition, quartz crystal oscillators, the most widely used frequency reference source,
can be used as a way to modulate a laser diode. Quartz crystal oscillators exhibit remark-
ably low phase noise performances, but suffer from their incompatibility with CMOS
fabrication processes that hinder the integration of such sources on-chip.

Integrated silicon photonic clocks, based on optoelectronic oscillators, have also been re-
ported [56]. While the replacement of the quartz crystal oscillator by a MEMS device
allows on-chip integration and size reduction, this setup relies on more complex operation
schemes and higher power consumption than optomechanical oscillators. More impor-
tantly, the operation bandwidth remains degraded at high frequency by parasitic and
impedance mismatch effects, contrary to optical methods.

Signal processing NOMS can also be used in signal processing applications, such as
optical wavelength conversion and frequency downmixing.

Optical wavelength conversion involves two optical cavity modes (between which the con-
version occurs) that are coupled to the same mechanical resonator. Each mode is pumped
by a laser red detuned from the optical resonance by an amount equal to the mechani-
cal frequency [57]. The wavelength conversion is mediated by the shared resonator by a
relatively complex mechanism described in [58]. Depending on the optical power of each
pump, input signals can be up-converted or down-converted, with an efficiency close to
unity [57, 19].

Frequency downmixing can be achieved the following way: self-sustained oscillations at Ωm

are entertained in the optomechanical oscillator (with sufficient optical power), in which a
signal modulated at ΩRF is injected. Natural downmixing occurs between the mechanical
frequency and the signal frequency, that is converted down from ΩRF to ΩRF − Ωm [59].
This kind of downmixer is quite versatile, as it is possible to change the mechanical
frequency Ωm by detuning of the optical wavelength and selecting a new mechanical mode.
This way, ΩRF can be downmixed by multiple frequencies (the mechanical harmonics) with
the same optomechanical oscillator.

Optically induced synchronization between mechanical oscillators Synchro-
nization between mechanical oscillators is an attractive perspective in physical micro and
nano-systems, as it could provide additional control and increased performances in signal
processing, microwave communication and computation techniques [60]. Arrays of many
coupled optomechanical oscillators have been proposed has a way to realize collective
synchronization of mechanical oscillators by an optical field [61, 62] and demonstrated
[63, 64]. Practical important realizations, such as phase noise reduction by a factor N of
N synchronized nanoresonators have been accomplished [65] (N = 7 in this experiment).

Note that synchronization between mechanical oscillators can also be achieved based on
NEMS [66].
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Optomechanically induced transparency

Optomechanically induced transparency is analogous to atomic electromagnetically in-
duced transparency [67] ; in the presence of a strong pump laser and weak probe laser,
destructive interference of the two fields, mediated by the mechanical resonator, can cancel
the intracavity field and open a transparency windows in the probe transmission.

Figure 8 – Frequency configuration for optomechanically induced transparency.
Inset: Illustration of the transparency windows in the probe transmission.

More precisely, the two lasers are launched into the cavity with a relative detuning ∆pp =
ωprobe − ωpump and yield a time varying radiation pressure force at ∆pp. The pump
is launched with a detuning ∆ in regard to the cavity. If the detuning ∆pp matches
the mechanical resonant frequency Ωm (∆pp = Ωm), the mechanical resonator is driven
resonantly. In a resolved sideband regime (κ � Ωm), two lateral sidebands appear at
ωpump ± Ωm = ∆pp for the pump laser (assuming that the probe is weak, its lateral
sidebands are negligible). Thus, the upper sideband of the pump field appears at the
same frequency that the probe field (see figure 8). Because the two fields are naturally
phase-matched, they cancel each other due to destructive interference, which open-up a
transparency windows in the cavity transmission. Alternatively, when the interferences
are constructive, this can also lead to amplification of the intracavity field at resonance,
which is known as optomechanically induced amplification.

Optomechanically induced transparency was first proposed in [68] and first observed in
[69]. In the last decade, it has continuously attracted more and more attention from the
optomechanical community because of its attractive promises in regard to optical ma-
nipulation. Applications of optomechanically induced transparency include a wide range
of on-chip optical signal processing functions, precision measurement, Qbit manipulation,
and an alternative route for ground-state cooling, as illustrated in the recent review paper
[70]
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Aim of this work & overview of the manuscript

This doctoral work is part of on-chip silicon cavity optomechanics. The aim is to study,
theoretically and experimentally, optomechanical coupling arising within on-chip photonic
suspended structures, realized over silicon wafers. The underlying motivation is to pave
the way towards the realization of NOMS devices at CEA-Leti, as an alternative and
complementary approach to NEMS devices. In particular, integrated optomechanical
inertial sensors are targeted.

In this framework, we studied two approaches that could find practical applications as
NOMS devices: suspended ring resonators and sub-wavelength patterned waveguides.
Suspended ring resonators are a classical optomechanical cavity, similar to micro-toroids
or micro-disks. They offer a wide range of mechanical degrees of freedom, and could,
inter alia, find applications as optomechanical gyroscopes. On the other hand, the use
of Sub-Wavelength Grating (SWG) structures as photonic waveguides is already known,
but has not yet been considered in the context of cavity optomechanics. Among other
applications, they allow to replicate electrical accelerometers combs, but with a purely
optical operation.

The manuscript is organized around three main parts, each one being shared between
several chapters.

The first part aims at providing the necessary theoretical elements for the understand-
ing of the discussion. In a first chapter, we present the semi-classical theory of cavity
optomechanics, in the generic case of a Fabry-Perot cavity harboring a moving back-end
mirror. As we will see, this simple configuration already allows to introduce most impor-
tant effects associated to cavity optomechanics. In a second chapter, we briefly present
the theory associated to silicon photonic waveguides and introduce the notion of guided
optical mode. Finally, in a third chapter, we bring these two worlds together and con-
sider integrated silicon optomechanics. We show that due to the confined nature of light
in a dielectric medium, new optomechanical schemes and optical forces arise in silicon
waveguides.

In the second part, we focus on suspended ring resonators. The first chapter is centered
over the theoretical description of suspended ring resonators, while the second chapter
deals with practical realization, from fabrication to optical and optomechanical character-
izations. In this part, we notably discuss the existence of a possible rotational (or Sagnac)
optomechanical interaction, that to date and to the best of our knowledge is specific to
this setup.

In the third part, we propose to co-integrate SWG waveguides and on-chip optomechanical
devices, as a way to enhance the fundamental optomechanical interaction. We consider
two geometries: “ladder-like” SWG waveguides, that are classical SWG waveguides sus-
pended by means of two lateral beams, and SWG interdigitated-combs waveguides, a new
kind of SWG waveguide that mimics the principle of electrical combs.
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Part I

Silicon cavity optomechanics
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CHAPTER I

Classical theory of cavity
optomechanics

In this chapter, we present the classical (by opposition to quantum) theory of cavity
optomechanics.

On the first section, we present the classical equations of motion that describe the dy-
namics of the coupled optical and mechanical resonators. Both dispersive and dissipative
coupling are considered, respectively meaning that the optical frequency and optical decay
rate are modified by mechanical motion. The exact nature of the optomechanical system
is voluntarily not discussed, as the presented equations are canonical and can be applied
to any optomechanical device.

We next simplify the discussion by considering a Fabry-Perot cavity with a movable back-
end mirror, as most interesting properties of optomechanical systems can be derived from
this configuration. In particular, we show how the properties of the mechanical resonator
are modified by the optical dynamical backaction. Under linear behavior, it leads to
a modification of its resonance frequency (optical spring effect) and a modification of
its damping rate (optomechanical damping). Under non-linear behavior, it results in
optomechanical self-sustained oscillations.

It should be noted that the classical theory of cavity optomechanics is more qualitative
than quantitative, and that it notably fails to properly describe the lower limit of op-
tomechanical cooling. A more complete and precise description of cavity optomechanics
relies on the quantum theory, and can for example be found in [22]. Yet, the classical pic-
ture provides a simple and relatively intuitive description of the canonical optomechanical
cavity, that is sufficient in the scope of this work.
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I.1 Equations of motion

We begin the discussion from the classical equations describing the complex field ampli-
tude and the mechanical displacement. Only one mechanical and one optical mode are
considered, and it is assumed that both a large number of photons Nph and a large number
of phonons are present within the cavity, such that the classical picture is legitimate.

On a first section, we introduce the uncoupled equations describing separately the optical
and mechanical resonators. Next, we present the coupled equations of motion, in a very
general case including both dispersive and dissipative coupling. The calculation of the
optical force acting on the back-end mirror is conducted, and we show that it can be
separated between a dispersive contribution and a dissipative contribution.

I.1.1 Uncoupled equations of motion

Optical field: When an optical cavity is driven by a laser, the temporal evolution of
the complex field amplitude a(t), normalized such that Nph = |a(t)|2, can be described
by [71]:

da
dt =

[
i∆−

(
κi + κe

2

)]
a+√κesin (I.1)

where ∆ = ωL−ω0 represents the detuning of the laser angular frequency ωL with respect
to the cavity angular resonant frequency ω0. κi represents the intrinsic cavity decay rate,
and κe describes the power coupled to outgoing optical modes (the total cavity decay rate
is κ = κi + κe). Finally, |sin|2 is the incident photons flux, such that Pin = ~ωL|sin|2 is
the input power launched into the cavity.

Mechanical displacement: Very generally speaking, the mechanical resonator can be
described as a damped harmonic oscillator [72], such that its motion x(t) reads:

d2x

dt2 + Γm
dx
dt + Ω2

m(x− x0) = Fext(t)
meff

(I.2)

with Ωm the frequency of harmonic oscillation, Γm the mechanical damping rate, and
meff the effective mass. Fext(t) represents the sum of all forces acting on the resonator,
generally including a random Langevin force induced by thermal fluctuation FL(t).

We introduced an effective mass in the previous equation. Strictly speaking, this notion
is only defined in the case of multiple modes of vibration of a mechanical resonator, as
the mass that a given mode of vibration would have as a spring-mass system (in other
words, this is a way to take into account that only a portion of the matter participates
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to the vibration). In the case discussed here, the effective mass and the total mass are
equal. We use this notation for consistency with the other parts of the manuscript.

I.1.2 Coupled equations of motion

When we consider an optomechanical system, equations (I.1) and (I.2) are modified due to
the optomechanical interaction. In the most general case, both the detuning ∆ (dispersive
coupling) and the cavity decay rate κ (dissipative coupling) become functions of the
mechanical displacement in equation (I.1). The forces acting on the resonator include a
term Fopt(a) representing optical forces in equation (I.2).

Under optomechanical interaction, the equations of motion form a coupled system:



da
dt =

[
i∆(x)−

(
κi(x) + κe(x)

2

)]
a+

√
κe(x)sin

d2x

dt2 + Γm
dx
dt + Ω2

m(x− x0) = Fopt(a)
meff

+ FL(t)
meff

(I.3)

Note that here, we consider a case where both the intrinsic and extrinsic cavity decay
rate are modified with mechanical motion. In many dissipative systems, as κi represents
pure optical losses and κe represents coupling between the resonator and the input and
output fields, only the latter is modified: κ(x) = κi + κe(x).

Optomechanical coupling rate

We introduce the dispersive optomechanical coupling rate1 gom, and the dissipative op-
tomechanical coupling rate κom, defined as:

gom = ∂ω0

∂x
, κom = ∂κe

∂x
(I.4)

These two quantities are a measure of the strength of the dispersive and dissipative
interactions, as they represent by how much the optical frequency and decay rate are
modified under mechanical motion. We point out, however, that they are not a figure
of merit for optomechanical resonators, as their magnitude depends on the definition of
the displacement, that is somehow arbitrary ; for example, rescaling x to αx implies to
rescale gom to gom/α. In other words, gom and κom can not be used to compare two
different optomechanical systems. A true figure of merit of optomechanical resonators,
derived from them, is introduced in the following.

1Also referred as “frequency pull-parameter” in the literature
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From gom and κom, ∆(x) and κ(x) are expanded to:

∆(x) = ∆ + gomx+ ... , κ(x) = κ+ κomx+ ... (I.5)

Optical force

In order to calculate the optical force, we follow the results obtained with the Response
Theory of Optical Forces (RTOF) proposed in [73]. RTOF proposes to calculate analyti-
cally the optical forces acting on an open optomechanical system, i.e. an optomechanical
system that exchanges electromagnetic energy with the environment through input and
output ports. This is an important point, as most authors tend to lead the calculation of
the optical force considering a closed system with a constant number of photons within the
cavity, which has proven to be accurate in a dispersive coupling, but fails in a dissipative
one [73, 74, 75].

RTOF relies on optical energy and photon-number conservation arguments. In an open
optomechanical system with a unique mechanical degree of freedom x, the optical force
reads [73]:

Fopt = Φ~
dφ(x)
dx (I.6)

where Φ = Pin/~ωL is the incident photon flux and φ is the phase shift that an incident
wave experiences through the system at steady-state.

From equation (I.3), the steady-state solutions are of the form C×
(
κ(x)/2+ i∆(x)

)
with

C a constant, such that φ(x) reads:

φ(x) = arctan
(

2∆(x)
κ(x)

)
(I.7)

We can then calculate the optical force:

Fopt = −Pin
ωL

2
κ2 (x) + 4∆2 (x)

[
gomκ (x) + κom∆ (x)

]
(I.8)

= −Pingom
ωL

2κ (x)
κ2 (x) + 4∆2 (x) −

Pinκom
ωL

2∆ (x)
κ2 (x) + 4∆2 (x) (I.9)

= −1
2~gom

κ(x)
κe(x) |a(t)|2︸ ︷︷ ︸
Fdisp

−1
2~κom

∆(x)
κe(x) |a(t)|2︸ ︷︷ ︸
Fdiss

(I.10)

The total optical force is hence the sum of a contribution from the dispersive coupling,
and a contribution from the dissipative coupling. As κ is the optical cavity decay rate

22



and ∆ is the detuning from resonance, these two values will typically have the same
order of magnitude. Thus, the relative strength of the dispersive and dissipative forces
will be dictated by the relative strength of gom and κom. Their respective magnitude
strongly depends on the size and nature of the considered optomechanical device, and
purely dispersive, purely dissipative or mixed schemes can be engineered [74, 75].

To date, most optomechanical systems evolve in a purely dispersive scheme2, such that
the dissipative force is null. However, the introduction of a dissipative scheme present
interesting benefits for optomechanical applications [75] ; notably, ground state cooling
should be possible for any value of the sideband suppression factor κ/Ωm, while it requires
κ� Ωm with a purely dispersive scheme.

As a final remark, we note that under the critical coupling condition (κe = κ/2), the
dispersive force takes the “usual” form found in the literature: Fdisp = −~gom|a(t)|2.

Summary

Based on equations I.3, (I.4) and I.10, we obtain the equations of motion describing a
generic optomechanical system, with both dispersive and dissipative coupling:



da
dt =

[
i (∆ + gomx)−

(
κ+ κomx

2

)]
a+

√
κe + κomx sin

d2x

dt2 + Γm
dx
dt + Ω2

m(x− x0) = −~gom
2meff

κ(x)
κe(x) |a(t)|2 − ~κom

2meff

∆(x)
κe(x) |a(t)|2 + FL(t)

meff
(I.11)

I.1.3 “Normalization” of the optomechanical coupling rates

As already pointed out, the definition of the optomechanical coupling rates gom and κom
depends on the mechanical displacement x, that is not always well defined and may be
arbitrary chosen (as a way to ease calculations). This is ambiguous, as different definitions
of x can significantly change the magnitude of the coupling rates.

A true, unambiguous figure of merit for optomechanical resonators is the vacuum optome-
chanical coupling rate (or single photon-phonon optomechanical coupling rate), that is
defined as the product of the optomechanical coupling rate by the magnitude xZPF of the
Zero Point Fluctuations (ZPF) of the mechanical oscillator [76]:

g0 = gom × xZPF , κ0 = κom × xZPF (I.12)
2For many quantum applications, it is detrimental to have optical losses
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As it names implies, xZPF represents the non-zero mechanical fluctuations when the point
of zero energy of the oscillator is reached. In other words, this is the minimum achievable
displacement for a given mechanical mode. It is defined as:

xZPF =
√

~
2meffΩm

(I.13)

I.2 Fabry-Perot cavity with a moving back-end mir-
ror

We now restrict the discussion to the generic optomechanical setup: a Fabry-Perot cavity
with a moving back-end mirror, as depicted on figure 1. The optical resonator is a Fabry-
Perot cavity whose length and optical properties are modulated by the mechanical motion
of the back-end mirror, that is in turn modulated by radiation pressure. The coupling is
purely dispersive, so that we set κom = 0, and the dynamics of the optical and mechanical
resonators are described by:



da
dt =

[
i (∆− gomx)− κ

2

]
a+√κesin

d2x

dt2 + Γm
dx
dt + Ω2

m(x− x0) = −~gom
meff
|a(t)|2 + FL(t)

meff

(I.14)

Here, we used the form usually found in the literature for the optical force. While it relies
on some assumptions (notably critical coupling, see paragraph I.1.2), it has already proven
to be an extremely good approximation when comparing theoretical and experimental
results.

In the case of a Fabry-Perot cavity, the mechanical displacement corresponds to the
variations of the cavity length L, and one easily finds that gom = ω0/L. From this
formula and from the definition of g0, it is already evident that smaller cavities will lead
to increased optomechanical interactions.

When solving this system in a linear regime, we will show that the properties of the
mechanical oscillator are transformed as a result of the optomechanical interaction. Its
resonance frequency is shifted, which is known as the optical spring effect, and its damping
rate is modified, which is known as optomechanical damping or amplification.

In a non-linear regime, the system resolution reveals the appearance of optomechanical
self-sustained oscillations, beyond a certain optical power threshold.

Steady state solutions and static multi-stability: Prior to the discussion, we first
consider the static equilibrium position (by setting the temporal derivatives to zero).
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Resolution leads to a cubic equation on the steady state mirror position x̄, as a function
of the input power:

−~gomκe|sin|2 =
(
meffΩ2

mx̄− F̄L
)((κ

2

)2
+ (∆− gomx̄)2

)
(I.15)

For a given set of input intensity |sin|2 and detuning ∆, this equation admits more than
one unique solution. In other words, there are multiple equilibrium positions. This is
known as static bistability, and was first observed under the form of bistability using
harmonically suspended mirrors [77].

For a steady state solution x̄ of the mechanical displacement, the optical field is:

ā =
√
κesin

κ/2− i (∆− gomx̄) (I.16)

Steady-state behavior is hence described by a set of two coupled equations: equation
(I.15) and equation (I.16).

I.2.1 Optical spring effect & optomechanical damping

When only small fluctuations of the amplitude field and mechanical motion occur, one
can linearize the problem around its steady state solutions:

a(t) = ā+ δa(t) , x(t) = x̄+ δx(t) (I.17)

After linearization, the coupled equations of motion read:



dδa
dt =

[
i∆̄− κ

2

]
δa− igomāδx

d2δx

dt2 + Γm
dδx
dt + Ω2

mδx = −~gom
meff

(ā∗δa+ āδa∗) + FL(t)
meff

(I.18)

where we have introduced the effective detuning ∆̄ = ∆ − gomx̄, representing the static
modification of the detuning due to radiation pressure, and have dropped the non-linear
terms.

The system (I.18) is solved in Fourier space. We choose to define the Fourier transform
of f(t) as:

f(ω) =
∫
f(t)e−iωtdt (I.19)

25



All calculations considered, we obtain:



δa(ω) = igomā

i
(
∆̄ + ω

)
− κ/2

δx(ω)

δx(ω) = FL(ω)
meff (Ω2

m − ω2 − iΓmω) + Σ(ω)

(I.20)

Σ(ω) is referred as the “optomechanical self-energy” and contains all the terms related to
the optomechanical interaction. It reads:

Σ(ω) = 2meffΩmg
2
0|ā|2

 1
iκ/2 +

(
∆̄ + ω

) − 1
iκ/2−

(
∆̄− ω

)
 (I.21)

where g0 is the vacuum optomechanical coupling rate.

Σ(ω) describes how the linear mechanical response is modified by the optomechanical
interaction. More precisely, the real part of Σ(ω) describes a shift in mechanical frequency
(optical spring effect), and its imaginary part describes a change in mechanical damping
(optomechanical damping).

Optical spring effect

Observation of equation (I.20) reveals that the real part of Σ(ω) can be interpreted as a
change in the mechanical frequency of the resonator, by an amount:

δΩm(ω) = 1
2ωmeff

Re
[
Σ(ω)

]
(I.22)

=Ωm

ω
g2

0|ā|2
 ∆̄ + ω

(κ/2)2 +
(
∆̄ + ω

)2 + ∆̄− ω
(κ/2)2 +

(
∆̄− ω

)2

 (I.23)

where we used δΩ2
m(ω) ≈ 2ωδΩm(ω).

This modification of the mechanical frequency due to the optical field is known as the
optical spring effect. Considering experimental parameters, δΩm is a function of the
optical effective detuning ∆̄, and of the average number of photons within the cavity |ā|2.
In other words, it can be changed by modifying the input laser angular frequency ωL or
power Pin = ~ωL|sin|2.

The optical spring effect, normalized by the optomechanical coupling rate and the photon
number, is presented on figure I.1, on both a resolved sideband regime (κ < Ωm) and an
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(a) Resolved sideband (b) Unresolved sideband

Figure I.1 – Illustration of the (normalized) optical spring effect in a resolved
sideband regime and in an unresolved sideband regime, at ω = Ωm. Note that
the scales differ by almost a factor 10, illustrating the fact that backaction effects
are more pronounced under resolved sideband.

unresolved sideband regime (κ > Ωm). We arbitrarily chose ω = Ωm = 10 kHz, which
only modifies the scale of the curves.

From these curves, the first remark is that the two scales differ by almost a factor 10,
indicating a more pronounced optical spring effect under resolved sideband. It is also
evident that the behavior is different between each regime. In the resolved sideband
regime, two opposed peaks appear around ∆̄ = ±Ωm with an abrupt sign change, and
dominate the dynamic. In the unresolved sideband, the transition is smooth and the
positions of zero, maximum and minimum optical spring are no longer fixed.

Optomechanical damping

Similarly, the imaginary part of Σ(ω) is interpreted as a change in the mechanical damping,
by an amount:

Γopt = − 1
ωmeff

Im
[
Σ(ω)

]
(I.24)

= Ωm

ω
g2

0|ā|2
 κ

(κ/2)2 +
(
∆̄ + ω

)2 −
κ

(κ/2)2 +
(
∆̄− ω

)2

 (I.25)

Note that the optomechanical damping rate Γopt is also a function of the optical effective
detuning ∆̄, and of the average number of photons within the cavity |ā|2. Notably,
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depending on the value of the detuning, Γopt can be either positive or negative, hence
respectively increasing or reducing the initial mechanical damping. This is known as
optomechanical damping.

(a) Resolved sideband (b) Unresolved sideband

Figure I.2 – Illustration of the (normalized) optomechanical damping in a re-
solved sideband regime and in an unresolved sideband regime, at ω = Ωm. Here
again, the scales largely differ.

The normalized optomechanical damping is illustrated on figure I.2, on both a resolved
sideband regime (κ < Ωm) and an unresolved sideband regime (κ > Ωm). We arbitrarily
set the scale by choosing ω = Ωm = 10 kHz.

From the difference between the scales in the resolved sideband and unresolved sideband,
one easily obtain that effective cooling or damping will only occur in the first case, around
∆̄ = ±Ωm. In accordance with the lateral sideband picture presented above (see figure
7), cooling occurs under red detuning (∆̄ < 0), and heating occurs under blue detuning
(∆̄ > 0).

We point out that this semi-classical approach fails to properly describe optical cooling at
really low temperature, and that a quantum description is necessary in this case. Indeed,
below a certain point, the random fluctuations of radiation pressure due to photon shot
noise set a lower limit to the achievable temperature [22]. This is known as quantum
backaction, by opposition to the classical backaction that we consider here.

I.2.2 Optomechanical self-induced oscillations

In the blue-detuned regime, Γopt is negative and the mechanical motion is amplified by
dynamical backaction. From equation (I.25), the magnitude of the heating scales with the
incident laser power. If we define an effective mechanical damping Γeff = Γm + Γopt, there
is a point where the effective mechanical damping vanishes. Beyond this threshold, any
small mechanical fluctuation (e.g. thermal fluctuation) becomes regenerative and harbor
a non-linear behavior: the fluctuation amplitude is first exponentially increased, up to
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a saturation point. The intra-cavity field is then described by a set of Bessel functions,
which is described in [22, 78, 79, 80]

This behavior is known as optomechanical self-oscillations, or parametric instability. Prac-
tically speaking, it enables to generate self-sustained oscillations by means of a continuous
laser source, and forms the basis of on-chip NOMS devices [55, 13]. In this regard, deter-
mining the threshold value is important as it defines the functioning point of the devices.

Interestingly, while optomechanical self-oscillations induced by radiation pressure were
theoretically predicted in the context of large-scale Fabry-Perot interferometers [43], they
were first observed in micro-toroids optomechanical cavities [13]. As we will show in the
following, this is mainly due to the strong dependence of the optical threshold power on
the inverse square of the optomechanical vacuum coupling rate, that is largely enhanced
in micro and nano-systems.

Threshold of optomechanically induced self-oscillations

While the previous linear picture fails to describe the non-linear dynamics of self-sustained
optomechanical oscillators, it can advantageously be used to find the threshold point,
simply defined by:

Γm + Γopt = 0 (I.26)

Before reaching this point, the linear description still prevails, and we can use equation
I.25 to describe Γopt. For a given effective detuning ∆̄, the value of the threshold in terms
of optical power is:

Pthr = ~ωL
Γm
g2

0

 1
(κ/2)2 +

(
∆̄− Ωm

)2 −
1

(κ/2)2 +
(
∆̄ + Ωm

)2


−1

(I.27)

Note that this expression corresponds to the optical power within the cavity. It can be
linked to the (experimentally accessible) input optical power by:

Pcav = κκe

(κ/2)2 + ∆̄2
× Pin (I.28)

If we use gom = ω0/L and the respective definitions of g0 and xZPF, we find that the
optical threshold power scale with:

Pthr ∝ L2Ωmmeff (I.29)

As most optomechanical figures, the threshold is hence strongly reduced under size re-
duction.
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(a) Resolved sideband (b) Unresolved sideband

Figure I.3 – Optical power threshold, on the input laser, for the observation of
optomechanical self-oscillations.

The value of the optical power threshold for the observation of optomechanical self-
oscillations is presented on figure I.3, on both a resolved sideband regime (κ < Ωm)
and an unresolved sideband regime (κ > Ωm). We used realistic parameters based on
our experimental results: λ = 1550 nm, Qm = 1000, Ωm = 106 Hz. We considered a
conservative vacuum optomechanical coupling rate of g0 = 1 Hz.

Again, we observe the resolved sideband regime to be more favorable that the unresolved
one. The laser power threshold is around 5 mW in the first case, but rapidly exceeds 20
mW in the second case (and even more as the ratio κ/Ωm is deteriorated). In practical
applications, our lasers are limited to a 20 mW power, such that we must aim for at least
κ ≡ Ωm. It is not necessary, however, to be in a “really good” resolved sideband regime
(i.e. κ� Ωm), as we observe that the minimal power does not vary much in this regime.

Conclusion

In this first chapter, we have presented the classical theory of cavity optomechanics. After
introducing the general form of the equations of motion describing the coupling between
one optical mode and one optical mode, we restricted the discussion to a Fabry-Perot
cavity with a movable back-end mirror. From this setup, we introduced the optical spring
effect, optomechanical damping, and optomechanical self-induced oscillations.

Several assumptions have been made along the analysis.

First, we only considered one optical mode and one mechanical mode. For optical modes,
this is justified by the fact that only one mode is excited resonantly by the sharp laser drive.
Regarding the mechanical modes, they are usually well separated in the RF spectrum, and
we will generally work only around one of those resonances through filtering operations.
Nevertheless, there are scenarios where this simple assumption does not stand, for example
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when the spacing between two optical modes matches the mechanical frequency, or when
the dynamics become non-linear.

Second, we considered only the linear terms in the optomechanical interaction. Generally
speaking, the quadratic terms can no longer be “safely” omitted when g0 > κ [22]. In the
scope of this thesis, κ is typically in the MHz range and g0 in the kHz range, such that
this approximation remains correct.

The free-space Fabry-Perot optomechanical cavity that we treated in this chapter is a
canonical setup, and every optomechanical cavity can be treated by analogy to this case.
The integrated silicon microcavities developed during this thesis work are no exception,
and can be described by the same equations, with little adaptation. This is presented in
the third chapter. Before that, we introduce theoretical elements on silicon photonics in
the second chapter, that will then be used to describe the silicon optomechanical cavities.
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CHAPTER II

Integrated silicon photonics

In this chapter, we introduce the notion of integrated photonics and present the general
properties of silicon waveguides.

First, the principle of optical guiding is exposed through the analytical example of a
symmetric planar waveguide. Important notions such as the effective index and the guided
mode profile, as well as the mode polarization, are discussed. Next, the description of a
directional coupler by means of coupled mode theory is given. Finally, the main sources
of optical losses in photonic waveguides are introduced.

All along the chapter, the discussion is focused around silicon photonics. However, many
of the results are applicable to other materials.

II.1 Introduction: from guided optics to silicon pho-
tonics

By opposition to traditional free-space optics, where light is manipulated and transmitted
in free-space (air, vacuum, water), guided optics confines light in a dielectric medium
surrounded by a second dielectric medium of smaller refractive index. By principle of total
internal reflection, it is possible to “trap” and guide the light inside the first dielectric
medium. This is the principle of optical fibers, that were developed in the seventies with
the growth of telecommunication and the need for always faster information transfer rate,
over long distances. Single mode optical fibers gradually replaced electrical transmission,
due to really low propagation losses, insensitivity to electromagnetic noise, and high data
carrying capacity.

In parallel to the development of optical fiber telecommunications, integrated optics, or
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photonics, was thought as a way to realize signal processing operations at the end of optical
fibers with optical circuits and components instead of electronic ones [81]. Integrated
photonic circuits allow to realize many functions such as wavelength multiplexing and
filtering, optical modulation, optoelectronic conversion, and signal splitting. They can
also be used as a transduction platform for inertial sensors, gas sensors and bio sensors.

Numerous dielectric media are suited for the realization of integrated optical circuits, such
as silica, glass, silicon, silicon nitride, III-V materials, and more [82]. Among them, silicon
has proven to be a promising integration platform for photonic applications in the last
decade. This success mainly resides in the double advantage of its interesting intrinsic
optical properties (notably transparency at telecom wavelength and high index contrast)
and its compatibility with CMOS fabrication technology, developed by the microelec-
tronic industry for more than 20 years. Silicon photonic circuits also benefits from a
footprint, enabling high density integration and reduced fabrication costs. Finally, due to
its electrical properties, silicon is naturally perfectly suited for the perspective of realizing
integrated active photonic devices such as modulators, photodetectors or reported/hybrid
light sources.

II.2 Principle of optical guiding

II.2.1 Introduction

Generally speaking, a dielectric waveguide is constituted of a core, of refractive index n1,
and of a cladding, of refractive index n2 < n1. The dielectric waveguide is invariant along
an axis (referred as z in this manuscript), named direction of propagation. In the most
generic case, the core cross section is of arbitrary shape (see figure II.1). In the case of
optical fibers, the cross section is circular. In the case of photonic waveguides, the cross
section is often rectangular, but not exclusively.

Figure II.1 – Schematic of a dielectric waveguide. From left to right: general
arbitrary case, step-index circular optical fiber, and step-index strip photonic
waveguide. Note that in the very general case, the core refractive index is function
of the spatial coordinates: n1(x, y).

Propagation of light in a dielectric waveguide is described in a modal way ; this means that
multiple waves of invariant field profile along the direction of propagation can propagate
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in the waveguide, with a propagation constant β. In most waveguides, the guided mode
is obtained by numerical simulation. However, an analytical resolution is possible in
some particular cases, such as optical fibers and symmetric planar waveguides. This last
geometry, treated in the next section, allows to introduce the main properties of dielectric
waveguides.

II.2.2 Propagation along a symmetric planar waveguide

We consider the case of a symmetric planar waveguide, represented on figure II.2. A
dielectric core layer of refractive index n1 and width d is sandwiched between two infinite
dielectric layers of refractive index n2 < n1. The geometry is invariant along the x and z
directions.

Figure II.2 – Principle of optical guiding along a symmetric planar waveguide,
based on geometrical optics.

Preliminary: Geometrical optics The most intuitive way to understand and describe
propagation in the symmetric planar waveguide relies on geometrical optics and Snell-
Descartes law. At the entrance of the waveguide, when light is injected in the core layer
with an angle1 inferior to the critical angle θc = arcsinn2/n1, it is totally reflected at
the interface between the two dielectrics and remains confined in the core (figure II.2).
By successive total internal reflections, it is hence possible to guide the light along the
direction of propagation of the waveguide, with theoretically no losses.

Electromagnetic theory The behavior of light in a dielectric medium is more precisely
described with electromagnetic theory and Maxwell’s equations [83, 71]. In the case of a
monochromatic wave at pulsation ω, a guided mode can be written under the form:

−→
E =−→E (x, y) ei(βz−ωt) (II.1)
−→
H =−→H (x, y) ei(βz−ωt) (II.2)

where β is the propagation constant and z is the direction of propagation.
1relative to the normal
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TE polarization and TM polarization Based on Maxwell’s equations, it is possible
to show that any guided mode can be described as a linear combination of two orthogonal
sets of solutions, referred as Transverse Electric (TE) and Transverse Magnetic (TM).

In the TE case, the field reduces to only three components: Ex, Hy and Hz. The electrical
field is parallel to the plane of propagation, and the magnetic field is perpendicular.

In the TM case, the field reduces to Hx, Ey and Ez, the electrical field is perpendicular
to the plane of propagation, while the magnetic field is parallel.

Dispersion equation of guided modes In order to maintain light propagation, there
must be constructive interference between the different optical paths followed by the wave.
Based on this argument, one shows that in the case of the symmetric planar waveguide,
β is solution of [83, 71]:

d
√
k2n2

1 − β2
m − 2 arctan

p
√
β2
m − k2n2

2√
k2n2

1 − β2
m

 = mπ, withm = 0, 1, 2, 3, ... (II.3)

where k = 2π/λ is the wavenumber, p = 1 for a TE polarization, and p = (n1/n2)2 for a
TM polarization.

Equation (II.3) is the characteristic equation of guided modes. It shows that optical
propagation is possible only for discrete values of the propagation constant β, whose
associated waves are called guided modes. Alternatively, it is usual to describe the prop-
agation in terms of an effective guided index, instead of the propagation constant. This
two quantities are linked by: β = kneff.

It is possible to show that a guided mode exists only if its effective index is included
between n1 and n2, and the number of guided modes is hence dependent on the width d
of the waveguide. When the waveguide is small enough such that only the fundamental
mode exists (m = 0), it is said to be single mode. On figure II.3, we represented the
evolution of the first effective indexes of a Si/SiO2 symmetric planar waveguide as a
function of its width, in both the TE and TM cases.

Guided mode profile The guided mode profile is calculated based on Helmohtlz equa-
tion. In the case of TE polarization, it reads:

(
∂2

∂y2 +
(
k2 − β2

m

))
Ex (y) = 0 (II.4)

Helmohtlz equation is solved separately inside and outside of the waveguide, and the
solutions are matched by considering electromagnetic boundary conditions.
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(a) TE polarization (b) TM polarization

Figure II.3 – Effective index as a function of the width of a Si/SiO2 symmetric
planar waveguide, for TE and TM polarizations.

Outside the waveguide (|y| > d/2), the guided mode profile has the form:

Ex(y) ∝ exp
[
− 2π
λ0

√
(n2

eff − n2
2) |y|

]
(II.5)

Inside the waveguide (−d/2 < y < d/2), it reads:

Ex(y) ∝ cos
[2π
λ0

√
(n2

1 − n2
eff)y

]
if m is even (II.6)

Ex(y) ∝ sin
[2π
λ0

√
(n2

1 − n2
eff)y

]
if m is odd (II.7)

From these equations, it appears that a part of the mode propagates outside of the core.
This is the evanescent part of the field, that rapidly vanishes due to its exponential
dependence.

Note that equations (II.5), (II.6) and (II.7) describe the same guided mode. Consequently,
their respective associated amplitude must verify electromagnetic boundary conditions at
the interfaces between the core layer and the substrate.

The first three normalized mode profiles of a symmetric planar waveguide are presented on
Figure II.4, under TE and TM polarization. In the second case, due to the electromagnetic
boundary conditions, we notice a strong discontinuity of the field at the interfaces between
the core and the cladding.
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(a) TE polarization, Ex component (b) TM polarization, Ey component

Figure II.4 – First three normalized mode profiles in a symmetric planar waveg-
uide, for TE and TM polarizations.

II.2.3 Silicon waveguides

In this work, we use rectangular silicon waveguides, either encapsulated in silica or stand-
ing in the air. An analytical description of the guided modes in the rectangular silicon
waveguides that we used during this thesis is not possible. However, some important
notions derived in the case of the symmetric planar waveguide still remains.

The description of light propagation through rectangular dielectric waveguides can be
studied based on approximate methods, such as the effective index method [84], or Mar-
catili’s approach [85, 86]. Alternatively (and more generally), the study is conducted by
means of numerical mode solvers [87].

Si SiO2 Air
3.476 1.444 1.0

Table II.1 – Optical indexes at a λ = 1550 nm wavelength.

Importantly, the major difference is that the field can no longer be distinguished between
TE and TM components: for each guided mode, the six components of the field are non-
zero and coupled. However, by analogy to the symmetric planar waveguide, it is possible
to separate “quasi-TE” and “quasi-TM” modes, where the major component of the field
is respectively Ex and Hy. It is usual for these modes to be referred as TE and TM modes
for the sake of simplicity, and we will follow this trend.

The guided effective index and mode profile of three dimensional rectangular waveguides
are obtained by numerical simulations. The mode profile of the TE and TM fundamental
modes of a 500 nm x 220 nm silicon waveguide are presented on figure II.6. For the TE
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Figure II.5 – SEM image of a silicon waveguide.

polarization, we observe a discontinuity of the major component Ex along the horizontal
direction. For the TM polarization, the major component Ey is discontinuous along the
vertical direction. Because silicon waveguides exhibit a high index contrast between their
core and cladding, there is a strong confinement of the optical field inside of the core for
the TE0 mode. This is less accurate in the case of the TM0 mode, as a consequence of
the shape ratio of the waveguide that favors TE modes.

Chromatic dispersion

A last important point regarding photonic waveguides is chromatic dispersion of light.
Photonic waveguides are fundamentally dispersive, and are constituted of dielectric media
that also are. As a result, because the laser pulse that are used to generate the guided
mode are not purely monochromatic, each wavelength constituting the laser pulse travels
at a different speed inside the waveguide. The wave packet tends to broaden and be
delayed during propagation, which is taken into account with the group index, representing
the velocity of the wave packet:

ng = neff − λ0
dneff
dλ (II.8)

Locally, dispersion properties in silicon waveguides are linear with a negative slope :
dneff/dλ < 0. The group index, around 1550 nm, is ng = 4.3.
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Figure II.6 – Ex and Ey mode profiles of the TE0 and TM0 fundamental guided
modes. Waveguide cross-section is 500 nm x 220 nm.

II.3 Optical coupling

By bringing two waveguides close together, it is possible to exchange optical power be-
tween them. This phenomenon is due to the spatial expansion of the evanescent field,
that excite the guided modes of the adjacent waveguide.

This exchange of light is the principle of a directional coupler, a fundamental building
block of photonic circuits, that is used in optical filters, ring resonators, optical multi-
plexers, and others.

The coupling of light between two waveguides can be calculated with a perturbative ap-
proach [83, 71, 88]. The total field in the system formed by both waveguides is considered
as the superposition of the degenerate field in each separate waveguide:

−→
E (x, y, z) = a(z)−→Ea (x, y) eiβaz−ωt + b(z)−→Eb (x, y) eiβbz−ωt + ... (II.9)

where the additional terms include all the propagation modes of the unperturbed struc-
ture. In practice, this equation is approximated (and simplified) by not considering these
additional terms.
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The two amplitudes obey the following system of equations:



da
dz = i

βa − βb
2 a+ κabb

db
dz = i

βb − βa
2 b+ κbaa

(II.10)

where κab and κba represents the evanescent coupling strength from one waveguide to the
other. Applying perturbation theory [83, 71, 88] (the adjacent waveguide is considered as
a small permittivity perturbation of the waveguide), it is possible to show that κab = −κ∗ba
and that:

κab = −iω4

∫∫
∆ε−→E a

−→
E ∗bdxdy (II.11)

where the integration is conducted over the cross section of waveguide a, −→E a (resp. −→E b)
is the normalized guided mode in waveguide a (resp. b), and ∆ε represents the relative
permittivity perturbation from one guide to the other. Practically speaking, ∆ε takes the
form of a mask with εa (resp. εb) on the cross-section of waveguide a (resp. b), and 0
elsewhere.

Solutions of equation (II.10) are of the form:


a(z) = a0 cos

(√
K + δz

)
+ a1 sin

(√
K + δz

)

b(z) = b0 cos
(√

K + δz
)

+ b1 sin
(√

K + δz
) (II.12)

where a0, a1, b0 and b1 are obtained based on initial conditions, and:

K = |κab|2 , δ =
(
βa − βb

2

)2

(II.13)

From equations (II.12), we obtain the optical power in each waveguide as a function of
the propagation distance z:

Pa(z) = 1− F sin2 (Sz)
Pb(z) = F sin2 (Sz)

(II.14)

where:

F = K

K + δ
, S =

√
K + δ (II.15)

41



Figure II.7 – Evolution of the transmitted optical power between two waveguides,
as a function of the normalized propagation distance Sz. Left: The two
waveguides are identical. All the optical power is transferred from waveguide a
to waveguide b. Right: The two waveguides are different. Only a portion of
the optical power is transferred.

Physically speaking, F represents the amount of optical power that can be transferred
from one waveguide to the other. Note that F reaches unity when the two waveguides
are identical (βa = βb) ; in other words, all the optical power can be transferred from
waveguide a to waveguide b.

On its part, S is related to the length Lb at which the maximal amount of optical power
is transferred. Lb is called the beat length and is given by:

Lb = π

2S (II.16)

Figure II.7 represents the evolution of the transmitted optical power between two waveg-
uides, for two identical waveguides (δ = 0, F = 1) and two different waveguides (δ 6= 0,
F 6= 1).

On the next chapters, we will see that suspended directional couplers can be exploited as
a cavity-less optomechanical structure, because of the strong optical gradient forces that
are generated between the two waveguides.

II.4 Optical losses in silicon waveguides

Propagation along a waveguide is limited by different loss mechanisms, that can be due
to fabrication imprecision, intrinsic properties of the medium, or necessary bending of the
waveguide. This losses are distinguished between absorption losses, radiation losses, and
scattering losses..
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II.4.1 Absorption losses

Absorption losses (i.e. a photon is absorbed) can occur because of deep defects in the
crystal lattice, intrinsic material absorption between two energy levels, Two Photons Ab-
sorption (TPA), and Free Careers Absorption (FCA) [89, 90].

Bulk Silicon wafers are of very high purity, and silicon is transparent in a large wavelength
window between 1.1 and 8 µm. The first two absorption mechanisms are negligible in
silicon waveguides.

TPA and FCA are non-linear effects, that respectively scale with the second and fourth
power of the intensity of the optical field. While negligible in strip waveguides, these
effects can become important in optical resonators (micro-rings and micro-disks), within
which high power densities are created. On our experiments, non-linear effects can become
significant at a typical laser power between 2 mW and 10 mW, depending on the device.
More discussion about non linear effects, TPA and FCA is provided in section IV.1.6.

II.4.2 Radiative losses

Radiative losses (i.e. the guided mode leaks towards the outside environment) include
leakage through the substrate and bending losses.

Radiation towards the substrate is negligible for the TE0 guided mode in our silicon
waveguides, that are isolated from the substrate by a 2 µm thick buried oxide layer.

Bending losses are a fundamental loss mechanism of photonic waveguides, that are only
purely lossless under straight propagation. This can be explained by the fact that there is
an intrinsic increase of the phase velocity along the bending radius in a curved waveguide.
To keep it up with the rest of the same wavefront, light has to travel a longer distance
when it is further away from the bending origin. Hence, phase velocity increases along
the radius, and passed a certain critical point, it exceeds the velocity of the wave in the
medium, which induce radiation towards the external medium. Under this perspective,
the use of high index contrast waveguides with a strong confinement of the field inside
the core is a way to strongly limit bending losses.

In silicon waveguides, bending losses are negligible above a 3 µm bending radius [91]. For
example, bending losses set a limitation around 1010 to the quality factor of a 3 µm radius
ring resonator, while state-of-the-art values for this quantity are in the 104 − 105 range,
which clearly indicates that bending losses are not the main source of optical leak.

Additionally to “pure” bending losses(and although not radiative losses), there two other
loss channels associated to bent waveguides: the mode-mismatch between guided modes at
the transition between straight and bent waveguides [92], and a possible coupling between
TE0 and TM0 guided modes [91]. For this reason, bending radii are generally kept above
the 5 µm mark. We respected this criterion in this thesis.
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II.4.3 Scattering losses

In photonic waveguides, any imperfection can induce scattering of the guided light. These
imperfections are encountered inside of the bulk (impurities, crystalline defects, ...) and at
the surface of the waveguide (roughness). Working with silicon, bulk imperfections have
become negligible with the amelioration of fabrication techniques (99.9999999 % purity).

Surface roughness is thus the dominant cause of scattering losses. It mainly happens at
the sidewalls, as a result of the lithography and etching patterning steps during fabrication
[91]. Specific surface treatment steps aiming to improve the surface quality are often used,
such as thermal oxidation and hydrogen annealing [93], sacrificial oxidation [94] or wet
chemical oxidation [95]. Typical roughness amplitude of several nanometers is typically
attained. In comparison, the top and bottom surfaces, which are kept intact during fab-
rication and benefit from well mastered polishing processes during wafer manufacturing,
exhibit a roughness amplitude down to 0.1 nanometers [96].

Scattering losses can be qualitatively investigated with perturbation theory: surface
roughness imperfections are considered as a small permittivity perturbation, and it possi-
ble to calculate a coupling strength coefficient towards radiative modes, that takes a form
analogous to equation (II.11). Such analysis evidences that scattering losses are propor-
tional to the square of the index contrast and to the square of the optical amplitude at
the surfaces [97].

Silicon waveguides present a high index contrast and a strong overlap of the field with
its lateral boundaries, due to the electromagnetic discontinuity. As a result, scattering
losses at the sidewall rugosity are the major dissipation channel in silicon waveguides,
with state-of-the-art propagation losses around 2 dB/cm at a 1550 nm wavelength. In
contrast, low index contrast silica waveguides exhibit losses around 0.04 dB/cm at a 1550
nm wavelength, and losses in optical fibers are inferior to 0.2 dB/km [98].

Dielectric medium Cross-section Losses
Lithium niobate on insulator [99] 1 µm × 270 nm 0.4 dB/cm
Silicon [100] (multimode) 1.8 µm × 500 nm 0.04 dB/cm
Silicon [101] 400 nm × 230 nm 2 dB/cm
Silicon nitride [102] 4.2 µm × 65 nm 0.03 dB/cm
Aluminum gallium arsenide [103] 2 µm × 220 nm 0.4 dB/cm
Silica [104] – 0.03 dB/cm

Table II.2 – Selected state-of-the-art propagation losses for various dielectric
media and waveguides cross-section, at a λ = 1550 nm wavelength.
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It is possible to reduce propagation losses in silicon waveguides by playing on the waveg-
uide cross-section and confinement. In both cases, the mode shape is engineered such
that it presents a smaller overlap of the field with its lateral boundaries. A comparison
between the propagation losses of waveguides of various dielectric media and cross-section,
at a λ = 1550 nm wavelength, is presented on table II.2. In this thesis, we worked with
500 nm × 220 nm silicon waveguides, such that we expect propagation losses around 2
dB/cm. The cross-section dimensions were chosen based on available wafers that fixed
the silicon height to 220 nm.

Even if propagation losses in photonic waveguides can seem to be elevated in regard
to optical fibers, the propagation length rarely exceeds the cm range, and actual losses
remain small. Similarly, because high index contrast waveguides enable to reduce the
footprint of photonic circuits, total losses in high index contrast and low index contrast
waveguides remain of the same order of magnitude.

Conclusion

In this chapter, we have quickly presented the principle of optical guiding in a dielectric
structure. We introduced the notions of effective index, group index and guided mode
profile in the analytical case of a symmetric planar waveguide, and extended these notions
to the non-analytical case of rectangular silicon waveguides. We also discussed evanescent
coupling between two photonic waveguides, and optical propagation losses resulting from
fabrication imperfections.

In the next chapter, we will extend the theory of cavity optomechanics to silicon waveg-
uides. In particular, we will discuss the new optical forces and optomechanical coupling
schemes that arise in such structures.
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CHAPTER III

Silicon optomechanics

In this chapter, the theory of cavity optomechanics is presented in the context of op-
tomechanical cavities constituted of silicon waveguides. To be completely correct, it must
be specified that the terminology “cavity optomechanics” is a little abusive in silicon
structures, because one can achieve significant optical forces without the need of an op-
tical cavity. Examples of two typical silicon optomechanics structures are presented on
figure III.1. In the left picture, two waveguides are brought close together and coupled
by means of strong lateral optical gradient forces. In the right picture, a more classical
disk resonator with an input waveguide is presented. The two main advantages of silicon
optomechanics are already apparent in these two pictures. On the one hand, cavity-less
optomechanics can lead to simpler geometries and dynamics, while totally mimicking the
targeted applications of cavity optomechanics. On the other hand, even in the context
of optical cavities, all the photonic tools (waveguides, grating couplers, modulators, ...)
can be exploited to address the optomechanical resonator, leading to easier experimental
manipulation (no longer relying one precise free-space optical alignment and less sensitive
to environmental perturbations).

The basis of the discussion remains the coupled equations of motion, whose previous
expression constitutes a very generic formalism and can still be used. However, the
expression of the coupling strength and optical forces must be reconsidered. Due to the
guided propagation of the field in a dielectric medium (by opposition to the free-space
propagation in the Fabry-Perot cavity), additional optical forces and coupling schemes
appear in photonic structures.
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Figure III.1 – Examples of silicon optomechanics structures. Left: Suspended
directional coupler [105]. Right: Suspended disk resonator and its input waveg-
uide [106].

III.1 Equations of motion

The approach relying on the equations of motion presented in the first chapter constitute
a general description of any optomechanical system, and can still be followed with pho-
tonic waveguides, under minor (yet important) modifications, when an optical cavity is
considered.

The major difference in regard to the description followed in chapter I originates from
the three dimensional nature of the structures. All the quantities are defined as three
component vectors (for each direction), defined at any point −→r of the structure.

The mechanical displacement is noted u(−→r , t). We assume separation of the spatial and
temporal variables, such that the displacement is expanded to:

u(−→r , t) =
+∞∑
n=0

ψn(−→r )un(t) (III.1)

where ψn is the mode shape, and the temporal oscillation un(t) of a given mode can still
be treated as a unidimensional damped oscillator. For the n-th mode:

d2un(t)
dt2 + Γm

dun(t)
dt + Ω2

mun(t) = Fn(t)
meff

(III.2)

The effective (or modal) mass for the n-th mode reads:

meff =
∫
ρ(−→r ) |−→q n(−→r )|2 dV (III.3)

where ρ(−→r ) is the material density and −→q n is the displacement vector, normalized such
that Max−→q n = 1.
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III.2 Optical forces in silicon waveguides

We distinguish three pure optical forces in silicon waveguides, namely the radiation pres-
sure force, the optical gradient force, and the electrostrictive force. Additionally, an
(indirectly) optical force is induced by absorption of light and thermal expansion.

In the following, after giving a physical insight on the nature of each force, we will present
two complementary ways of calculating optical forces in photonic waveguides, based on
an analytical and a numerical approach. Later on the manuscript, we will apply these
methods to our own geometries.

III.2.1 Qualitative description of optical forces in photonic waveg-
uides

Radiation pressure and optical gradient forces are described under the same formalism, by
Maxwell stress tensor. Electrostrictive forces are described by the electrostrictive tensor.
Finally, photothermal forces are described by thermal expansion.

Radiation pressure and optical gradient forces

The nature of radiation pressure and optical gradient forces is more easily understood
in the context of polarizable micro particles submitted to a focused laser beam (Figure
III.2).

Figure III.2 – Illustration of the radiation pressure force (left) and optical gra-
dient force (right) in the case of a polarizable micro particle, in a geometric
picture.

Radiation pressure physically corresponds to the transfer of momentum between an inci-
dent photon and the particle, after absorption, reflection or scattering of the light field.
When the particle is submitted to a uniform laser beam, the impulsion transfer (after
absorption, reflection or scattering of light) is unidirectionally conducted along the direc-
tion of light propagation. When the laser is not uniform (in regard to the center of mass
of the particle), the resulting force is off-axis and can either attract the particle towards
(or repulse the particle from) the strongest fields. Radiation pressure is hence not always
orientated along the direction of propagation.

49



In an electromagnetic picture, an additional force arise under optical gradients. When the
polarizable micro particle is placed in a laterally varying optical field, a dipole is induced
in the particle, whose positive and negative sides will experience slightly different forces
because of the field gradient. The dielectric particle is hence naturally attracted towards
the region with the stronger field.

Based on these two descriptions, the forces acting on a polarizable micro particle sub-
mitted to a focused laser beam can be separated between a longitudinal and a transverse
component. These components of intertwined origin are respectively referred as the radi-
ation pressure force and the optical gradient force (but, again, the optical gradient force
include a contribution from radiation pressure and these denominations are somehow
abusive). The same terminology is applied in photonic waveguides.

Electrostrictive forces

Electrostriction manifests itself as a deformation of any dielectric medium that is exposed
to an electric field. Deformation and stress are equivalent in the theory of elasticity, and
we can hence express electrostriction as an optical force. Contrary to radiation pressure
and optical gradient induced forces, electrostrictive forces are not present in the case of
the (free-space) Fabry-Perot cavity with a movable back-end mirror, and were absent of
the previous discussion. As we will see, both these forces are of the same magnitude in
photonic structures, and electrostrictive forces can not be neglected.

It is worth mentioning that piezoelectricity is similar to electrostriction, but does not
induce optical forces. Indeed, piezoelectricity evolves linearly with the optical field, that
oscillates between negative and positive value at optical frequencies. As a result, the
average1 piezoelectric deformation is nullified. By opposition, electrostriction evolves
with the square of the field, and the negative and positive values add up, leading to a non
zero average contribution.

Photothermal forces

When light is absorbed in a material, it generates heat that in turn induces a medium
deformation. Following the same argument than with electrostrictive forces, deformation
and stress are equivalent, and a photothermal force is hence generated.

The order of magnitude of photothermal forces is negligible at low optical powers, as opti-
cal absorption is negligible. However, when high power densities are created (typically in
a small radius ring resonator), non-linear effects are involved and result in non-negligible
optical absorption. In these cases, the photothermal force can totally surpass other con-
tributions. Silicon exhibits pronounced non-linear effects [89], such that we expect pho-
tothermal forces to be significant.

1Note that while not made explicit, we actually always consider the average temporal contribution of
optical forces, because optical frequencies are very high in regard to others.
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We also point out that the dynamic of photothermal forces is dictated by the thermal re-
sponse time and not by optical or mechanical processes. In our cases, thermal frequencies
fall in the GHz range, which is superior to our mechanical frequencies (typically in the
MHz range), and photothermal forces are relevant. This is not always the case, as the
thermal response strongly depends on the choices of material and resonator geometry.

III.2.2 Analytical estimation

In a photonic waveguide, the RTOF theory introduced in chapter I can be used to ana-
lytically calculate the optical forces:

Fopt = Φ~
dφ(x)
dx (III.4)

where Φ = Pin/~ωL is the incident photon flux and φ is the phase shift that an incident
wave experiences through the system at steady-state.

In a photonic waveguide, one easily finds that:

φ(λ, x) = ω0

c
neff (λ, x)L (x) (III.5)

with L the length of the waveguide, and the optical force reads:

Fopt(λ, x) = Pin
c

(
neff (λ, x) dL (x)

dx + L (x) dneff (λ, x)
dx

)
(III.6)

The optical force is hence the sum of a contribution from the waveguide length variation
and a contribution from the effective index variations. Typically, radiation pressure and
optical gradient forces will govern the first term, while optical gradient, photothermal
and electrostrictive forces will govern the second. However, this is not always true. For
example, in the case of a suspended directional coupler (discussed in chapters VI and
VII), only the effective index is affected by mechanical motion and optical forces, as all
mechanics rely on the variation of the gap between two waveguide submitted to attractive
and repulsive forces.

This last point evidences one (if not the) of the major drawbacks of this analytical method:
it requires to have a good understanding of the problem in order to properly identify the
mechanical variable. This is in some way similar to the problem encountered in the first
chapter when defining the optomechanical coupling rate.

From equation (III.6), the optical force is wavelength dependent, as a result of the intrinsic
dispersive nature of silicon waveguides. However, the derivative must be taken at a fixed
wave vector, and not at a fixed wavelength, the latter leading to a small error by a factor
ng/neff, as pointed out in [107].
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Figure III.3 – Components of the stress tensor. σij represents the component in
the direction j, acting on the surface i.

III.2.3 Numerical estimation

Preamble: On the following, we use the stress tensor formalism in order to express the
density of optical forces. The link between these two quantities is:

fi = −
(
∂σix
∂x

+ ∂σiy
∂y

+ ∂σiz
∂z

)

where ←→σ is the stress tensor.

Considering notations, σij represents the component in the direction j, acting on the
surface i (figure III.3).

Regarding optical simulations, the guided modes are obtained with a commercial finite
element mode solver. More information is given on appendix A.

Radiation pressure and optical gradient forces

In photonic waveguides, radiation pressure and optical gradient forces are described by
Maxwell stress tensor ←→T , whose components are:

Tij = ε0εr

(
EiEj −

1
2δij
−→
E ·
−→
E
)

+ µ0

(
HiHj −

1
2δij
−→
H ·
−→
H
)

(III.7)

with ε0 the vacuum permittivity, µ0 the vacuum permeability, εr the relative permittivity,
and δij the Kronecker’s delta. Note that Maxwell stress tensor is defined with an opposite
sign in regard to the “usual” stress tensor introduced in the preamble: Tij = −σij.
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Figure III.4 – Time averaged Maxwell stress tensor components and associated
force densities. Note that colorbars are truncated for easier visualization. Arrows
indicate the force direction.

Based on the knowledge of the optical field and on Maxwell stress tensor, one can calculate
the force induced by radiation pressure and optical gradients. Example of such calculation
in a 500 nm× 220 nm silicon waveguide, surrounded by air, is presented on figure III.4. We
can see that radiation pressure and optical gradient forces push outward the boundaries
of the waveguide in each direction.

Electrostrictive forces

The electrostrictive stress tensor is linked to the well-known photoelastic tensor and the
electrical field by [108].:

σELkl = −1
2ε0n

4pijklEiEj (III.8)

The photoelastic tensor is of rank 4, and should in principle have 34 = 81 coefficients.
For a material having cubic symmetry, it can however be reduced to a 6× 6 matrix with
only three independent coefficients p11, p12 et p44, by symmetry considerations [109]. It
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Figure III.5 – Time averaged electrostrictive stress tensor components and asso-
ciated force densities. Note that colorbars are truncated for easier visualization.
Arrows indicate the force direction.

relates the local material stress σkl to the electric field:



σELxx

σELyy

σELzz

σELyz = σELzy

σELxz = σELzx

σELxy = σELyx


= −1

2ε0n
4



p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44





E2
x

E2
y

E2
z

EyEz

ExEz

ExEy


(III.9)

The values of p11, p12 et p44 were measured 3.39 µm in silicon [110]. They are assumed to
vary only slowly with the wavelength, and we use these values at 1.55 µm: p11 = −0.09,
p12 = +0.017 et p44 = −0.051.

Figure III.5 shows the calculated densities of electrostrictive forces in a 500 nm × 220
nm silicon waveguide surrounded by air. Electrostrictive forces push outward the bound-
aries of the waveguide in the horizontal direction, but push them inward in the vertical
direction. Hence, radiation pressure / optical gradient induced forces and electrostrictive
forces add up constructively in the horizontal direction, but add up destructively in the
vertical direction. This is a consequence of the sign difference between the photoelastic
coefficients p11, p12 and p44. Other materials (such as GaAs [111]), with no sign difference
between their photoelastic coefficient, can add up constructively in every direction.

The net effects and magnitude of radiation pressure/optical gradient induced forces and

54



electrostrictive forces can be compared by means of the spatial averaged stress [109],
defined as:

σ̄ij = 1
W× H

∫
WG

σijdxdy (III.10)

The comparison between the spatial averaged stress of radiation pressure / optical gra-
dient induced forces and electrostrictive forces is presented on table III.1 (the associated
optical forces are also shown). The order of magnitude of both spatial averaged stress is
equivalent. As a result, we expect cancellation of both contributions along the vertical
direction.

Spatial averaged stress (mPa/mW)
σ̄Mxx σ̄Myy σ̄ELxx σ̄ELyy σth

31.96 57.59 6.59 -52.12 114.22
Optical force (nN/µm/mW)

fMx fMy fELx fELy f th

7.031 28.80 1.450 -26.06 57.11

Table III.1 – Comparison between the spatial averaged stress (and power normal-
ized force per unit length, acting on the lateral boundary) associated to radiation
pressure/optical gradient induced forces, electrostrictive forces and photothermal
force (for the last one, only in the case of an optical cavity, and beyond the optical
power threshold for non-linear and thermal effects).

Photothermal forces

Here again, we can use the tensor formalism to describe photothermal forces. The pho-
tothermal stress tensor is:

σthkl = Cijklαij∆T (III.11)

where Cijkl are the components of the stiffness tensor, αij are the components of the
thermal expansion tensor, and ∆T is the change in temperature, that we suppose uniform
in the waveguide.

55



In silicon, it is a usual approximation to consider the thermal properties to be isotropic.
Under this assumption, the photothermal stress tensor reduces to a scalar:

σth = E

2(1− ν)αth∆T (III.12)

with E is the Young modulus and ν is Poisson’s ratio.

Photothermal and non-linear effects (the link between these two quantities is explained
in section IV.1.6) are small in silicon waveguides, such that photothermal forces usually
remain negligible. However, when an optical cavity is formed, high power densities are
created and these forces become significant. Typical values of ∆T can reach 1.4 mK/mW
(where “/mW” refers the input laser power) during experiments (see section V.2.3). In
this case, we find σth = 114.2 mPa / mW. This value is a little higher than the ones
associated to other optical forces, but remains of the same order of magnitude (see table
III.1).

Photothermal forces are an inherently non linear process. By working at sufficiently low
optical power (typically below a laser drive at 2 mW in our experiments), non-linear pro-
cesses are negligible and photothermal forces are null. On the other hand, they quadrat-
ically increase with optical power, and should surpass all other optical forces beyond a
certain point (not precisely evaluated, but based on experimental knowledge, around 10
mW).

Conclusion

Stress tensors are a very powerful calculation tool, that allows to calculate the force
density at any point of the waveguide, based on the knowledge of the six components of
the guided mode profile. However, it comes with a computational cost and the drawback
of a relative loss of physical insight regarding the general parameters of the system. On
the other hand, while an approach such as the RTOF method do not give access to the
force profile but only to its magnitude, it represents a simple analytical alternative that
can offer supplementary information over the physical parameters of the system.

These two methods are hence complementary, and their equivalence was verified by dif-
ferent authors [73, 112, 113].

III.3 Coupling schemes in photonic structures

In the previous section, we presented the optical forces acting in silicon waveguides. In
the following, we discuss how the optomechanical coupling rates gom and κom are also
modified.
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III.3.1 Dispersive coupling rate gom

In a dielectric medium, dispersive coupling is separated between a geometric and a pho-
toelastic contribution. This separation is evidenced by rewriting the definitions of the
dispersive coupling rate gom and the resonant frequency ω0:

gom = ∂ω0

∂x
, ω0 = 2πc

neffL
m with m ∈ N (III.13)

Under mechanical deformation, both the cavity length L and the effective index will be
modified. While the first point was already encountered in the case of the free-space
Fabry-Perot cavity with a moving back-end mirror, the contribution from the effective
index is particular to dielectric media. It originates from the so-called photoelastic effect:
under mechanical stress, the refractive index (and equivalently, the dielectric tensor εij)
of dielectric media is modified.

Under these considerations, we can rewrite:

gom = ∂ω0 (L, neff)
∂x

(III.14)

= ∂ω0

∂L

∂L

∂x
+ ∂ω0

∂neff

∂neff
∂x

(III.15)

= −ω0

L

∂L

∂x︸ ︷︷ ︸
ggeom

− ω0

neff

∂neff
∂x︸ ︷︷ ︸

gpe

(III.16)

Note that in the case of a free-space Fabry-Perot cavity with a moving mirror, x is simply
defined such that L(x) = L + x and we effectively find gom = −ω0/L, as advanced in
chapter I.

Calculation of ggeom and gpe

On the following, we assume that the total electromagnetic energy is normalized to unity:

N =
∫∫∫

Vol.
εr
−→
E ∗ ·

−→
E dV = 1 (III.17)

where εr = n2 is the relative permittivity.
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Geometric contribution: The geometric contribution can be analytically calculated
by applying perturbation theory to Maxwell’s equation in the case of shifting material
boundaries, as derived in [114]. In the limit of a small displacement of the boundaries,
the optomechanical coupling strength is expressed as a surface integral relating the un-
perturbed optical field and the displacement of the dielectric boundaries:

ggeom = ω0

4
1
N

∫∫
Bound.

(−→q · −→n )
[
∆ε

∣∣∣−→E (0)
‖

∣∣∣2 −∆ε−1
∣∣∣−→D (0)
⊥

∣∣∣2] dA (III.18)

where ω0 is the unperturbed angular frequency, −→q is the normalized mechanical displace-
ment vector, −→n is the unit vector normal to the surface, ∆ε = ε − 1 is the difference
in the permittivity, −→E (0)

‖ is the normalized unperturbed electric field parallel to the sur-
face, ∆ε−1 = ε−1 − 1, and −→D (0)

⊥ is the normalized unperturbed electric displacement field
orthogonal to the surface.

Photoelastic contribution: Under strain, the dielectric tensor εij is modified accord-
ing to [108]:

ε−1
ij (Skl) = ε−1

ij + ∆
(
ε−1
ij

)
= ε−1

ij + pijklSkl (III.19)

where Skl is the material stress tensor and pijkl is the photoelastic tensor, already defined
in the discussion of the electrostrictive force.

Similarly to the geometric contribution, the small perturbations of the dielectric tensor
can be estimated formally from perturbation theory, and the photoelastic contribution to
optomechanical coupling reads [33]:

gpe = ω0n
4

2
1
N

∫∫∫
Vol.

1
|−→q |

[ ∣∣∣−→E x

∣∣∣2 (p11Sxx + p12 (Syy + Szz))+
∣∣∣−→E y

∣∣∣2 (p11Syy + p12 (Sxx + Szz)) +

∣∣∣−→E z

∣∣∣2 (p11Szz + p12 (Sxx + Syy))+2Re (E∗xEy) p44Sxy+2Re (E∗xEz) p44Sxz+2Re
(
E∗yEz

)
p44Syz

]
dV

(III.20)

where −→E is the normalized unperturbed electric field. Note that here, the integral is
conducted over the volume.

Actual calculation: The calculation of ggeom and gpe is generally conducted by means of
the Finite Elements Method (FEM), from which the normalized mechanical displacement
vector −→q , the material stress tensor Skl and the field components of complex geometries
can easily be obtained.
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FEM solvers also allow to conduct the calculation for each optical and mechanical modes
supported by the optomechanical cavity. This is important, as large variations of the
coupling strength can be found between each resonance.

We used FEM calculations to evaluate ggeom and gpe on our own systems.

III.3.2 Dissipative coupling rate κom

In photonic waveguides, interesting dissipative coupling2 will occur under evanescent cou-
pling between multiple waveguides. When two waveguides a and b are attracted towards
(or repulsed from) each other, the evanescent coupling strength is modified.

In chapter II, we showed that the evanescent coupling strength from waveguide a to
waveguide b is given by:

κba = −ω4

∫∫
b
∆ε−→E b

−→
E ∗adxdy (III.21)

where the integration is conducted over the cross section of waveguide b, ∆ε represents
the relative permittivity perturbation from one guide to the other, and −→E a (resp. −→E b)
is the unperturbed field in waveguide a (resp. b). Note that contrary to chapter II, the
imaginary complex is omitted, which is done to be consistent with the notations of chapter
I.

An equivalent formula for κe is obtained in the case of the coupling between a waveguide
and an optical cavity (such as a ring resonator) [88], with the difference that in this case
the integral is conducted over the entire volume of the cavity. From this expression, we
can then directly derive:

κom = −ω0

4
1
N

∫∫
RR bound.

(−→q · −→n ) Re
[−→
E RR,‖∆ε

−→
E ∗WG,‖ −

−→
DRR,⊥∆ε−1−→D ∗WG,⊥

]
dA
(III.22)

with the same notations than previously.

Conclusion

In this chapter, we have presented the approach that is to be followed when theoretically
considering silicon optomechanical devices.

More specifically, we have first proposed an analytical and a numerical way to calculate
optical forces in silicon waveguides, that are distinguished between radiation pressure,

2In the sense that no optical energy is lost towards the outside environment ; the “loss” occurs from
one optical element to an other.
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optical gradient, electrostrictive and photothermal forces. The first three of them con-
structively add-up along the horizontal direction, but destructively cancel each other in
the vertical direction. The fourth only occur at high optical power, when optical non-
linear effects become non-negligible, but surpass all other forces under this condition.

Second, we studied the optomechanical coupling rates in silicon optomechanics devices.
In the dispersive case, there are two contributions to optical resonant shifts: a geometric
one and a photoelastic one, that are respectively sensitive to the motion of surfaces and
to internal motion within the device. In the dissipative case, the evanescent coupling
strength is modified under motion of the motion of adjacent waveguides.

In the next chapters, we will apply these notions to two silicon optomechanics devices:
suspended ring resonators, in chapters IV and V, and sub-wavelength grating suspended
waveguides, in chapters VI and VII.
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Part II

Suspended ring resonators
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Introduction

In this part, we focus the discussion around the use of silicon-based suspended ring res-
onators as optomechanical cavities. It is organized in two chapters. In the first chapter,
we provide the theoretical background associated to suspended ring resonators. Using
the notion introduced in the first part, both the optical, mechanical, and optomechani-
cal aspects are considered. In the second chapter, we discuss the practical realization of
suspended ring resonators. We present the technological fabrication of our devices, their
experimental optical characterization, and their experimental optomechanical characteri-
zation.

In the following, we introduce a general description of Suspended Ring Resonators (SRR).
The geometry of SRR is presented, along with the optomechanical interactions that can
occur in this device. Finally, SRR are compared to other similar optomechanical cavities,
highlighting strengths and weaknesses of this optomechanical resonator.

Presentation of suspended ring resonators

A generic suspended ring resonator is presented on figure III.6. It is constituted by a thin
and narrow ring attached to a central disk by means of several supporting arms. The
central disk stands above a pedestal, and the ring is suspended in the plane above the
substrate, standing in the air. In this work, we focus on single mode3 SRR fabricated
from a Silicon On Insulator (SOI) wafer. The wafer consists of a stack of a 220 nm silicon
layer and a 2 µm buried oxide layer, over a thick silicon layer. Hence, the ring, the arms,
and the central disk are made of silicon, and the pedestal is made of silica.

The SRR is at the same time an optical resonator and a mechanical resonator, and
consequently, constitutes an optomechanical resonator. Optical and mechanical degrees
of freedom are decoupled to a good extend (but not entirely !), which allows a separate
design of each part.

3In the sense of the guided mode.
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Figure III.6 – SEM image of a suspended ring resonator and of its input waveg-
uide.

From the optical perspective, the SRR behaves like a classical ring resonator, with optical
resonances similar to Whispering Gallery Modes (WGM) [115]. Light is trapped inside of
a loop, and can constructively self-interfere after each lap, leading to optical resonances.
Because of the high index contrast between silicon and air (∆n ∼ 2.476 at λ = 1.55 µm),
small bending radii can be achieved, allowing to store large quantities of light inside of a
small volume at resonance. Light is injected into (and extracted from) the ring through
a suspended bus waveguide.

From the mechanical perspective, the SRR is a circular ring resonator of rectangular cross-
section. Being suspended in the air, it experiences in-plane and out-of-plane mechanical
vibrations. Mechanical excitation is mediated by optical forces and thermal agitation.
Due to its small size and effective mass, the SRR vibrates at relatively high frequency
(beyond the MHz range). In addition, the SRR presents a high number of mechanical
design parameters, and the shape and frequency of vibrational modes can be engineered
with a good level of flexibility.

Optomechanical interactions in suspended ring res-
onators

Similarly to a Fabry-Perot cavity with a movable back-end mirror, the optical field and
mechanical vibrations of the SRR are coupled to each other by optical forces. We identified
four contributions to the optomechanical interaction.

Variation of the cavity length: Similarly to a Fabry-Perot cavity with a movable
free-end mirror, the cavity length4 and the optical path are modulated by mechanical

4Defined as the length of the center line of the deformed ring
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motion. This is referred as the geometric contribution to optomechanical coupling..

Photoelastic effect: Under mechanical deformation, there is a modification of the
optical refractive index of any dielectric media. This is known as the photoelastic effect.

Dissipative coupling: The evanescent coupling strength between the ring and the bus
waveguide is modulated by mechanical motion. This leads to a variation of the optical
losses with movement, and is known as dissipative (also named reactive) coupling.

Sagnac contribution: SRR present certain mode of vibration where the ring shape is
not deformed, but experiences rotational motion instead. In presence of clockwise and
counter-clockwise optical modes, there is a phase shift between the two waves, propor-
tional to the angular velocity. This is known as the Sagnac effect.

The strength of these four contributions depends on the shape and frequency of the
vibrational mode that is considered, and is not always significant. This will be further
discussed in section IV.3.3.

Comparison between SRR and other closed-loop op-
tomechanical cavities

In the large and diverse world of optomechanical cavities, SRR can be classified as a
closed-loop optomechanical cavity, where the WGM of the resonator are perturbed by its
vibrational contour modes. Inside this family, micro toroids and micro disks resonators
are emblematic optomechanical cavities that have been extensively studied.

While similar to these two geometries, SRR distinguish from them in some important
points, with advantages and drawbacks.

First, it is important to make a distinction between silica-based micro toroids and micro
disks, and silicon-based micro disks and SRR. Silica-based micro resonators are stand-
alone devices, with large bending radii, and can involve non conventional fabrication
steps such as serial CO2 laser reflow. On the other hand, silicon-based micro resonators
are monolithic integrated devices, with small bending radii, and are compatible with
silicon fabrication processes of high-yield industrial facilities. In other words, silicon-
based optomechanical resonators can be seen as the photonic integrated version of their
silica-based counterpart.

This comes at the cost of poorer optical performances. Typically, the optical Q factor of
silicon-based micro resonators is in the 104− 106 range, while state-of-the-art silica-based
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(a) Silica micro toroid [116] (b) Silicon micro disk [117]

(c) Hollow disk [118]

Figure III.7 – Example of other silicon- and silica-based closed-loop optomechan-
ical cavities.

micro resonators can attain values in the 108 − 109 range [116, 119]. However, silicon-
based micro resonators benefit from all the on-chip photonic tools. In particular, it makes
it possible to use Grating Couplers (GC) and waveguides to inject and collect the light,
instead of tapered optical fibers. This experimental scheme is easier to manipulate as it
does not critically rely on optical alignment and is less sensitive to its environment. It
also eliminates various noise sources and can lead to an increased sensitivity [120].

This distinction being made, SRR also differentiates from others closed-loop optomechan-
ical cavities on more fundamental points.

From the mechanical perspective, SRR present interesting particular features. While
mechanical frequencies and quality factors are not significantly different between each of
the three geometries, SRR offer more degrees of freedom over the mechanical mode shapes
and frequencies. For example, the resonance frequency can be controlled by adjusting the
length of the supporting arms, which only requires simple lithographic adjustment from
one ring to an other, and can be varied over the same sample. In the case of micro
toroids or micro disks, the same control requires to change the pedestal radius and the
etching time, which cannot be modified from one resonator to an other over the same
sample. Despite not having yet attained this kind of regime in practice, SRR should also
ultimately suffer from less mechanical dissipation than micro toroids or micro disks, as
they exhibit smaller surfaces and volumes.

Independent control over the mechanical properties is also found to some extent in hollow
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disks resonators, a particular class of micro disk resonator which are obtained by removing
central quadrants while leaving intact four supporting arms and the external boundary
of the disk [121, 122, 123].

An other particularity of our SRR design is that they are single mode optical resonators
(the waveguide design is chosen to only allow the existence of a TE0 guided mode). On the
opposite, micro toroids and micro disks are multimodal resonators. Their optical spectrum
is quite complicated, with the presence of peaks for all supported resonant modes. The
correct identification of optical modes requires additional post-process operations [28],
and can be difficult - if not impossible - due to a lot of uncertainties about the exact
resonator geometry, refractive index, or experimental conditions (temperature, pressure,
...). The existence of numerous optical modes can also lead to optical coupling from the
fundamental mode to higher order modes (either directly at the injection from the bus
waveguide/fiber, or as a result of mechanical deformation). At best, this will strongly
complicate the dynamics of the system. At worst, this coupling to higher order modes
ends up as an additional source of optical losses, when the given optical modes are of no
interest for the considered application.

At the end, the relative strength and weaknesses of each geometry will benefit certain
applications while disadvantaging others. They are summed-up in table III.2. Note
that we restricted the discussion to silicon and silica based optomechanical resonators,
fabricated over classical SOI wafers. There is actually a larger variety of materials used
in cavity optomechanics (SiN, GaAs, InP, AlN, etc...).

SiO2 disks SiO2 toroids Si disks Si hol. D. Si SRR
Typical Radius 100 µm 100 µm 10 µm 10 µm 10 µm
Qopt up to 109 up to 108 105 − 106 105 − 106 104 − 105

Qm – 104 − 106 104 − 105 105 − 106 104 − 105

CMOS compatible No No Yes Yes Yes
Single mode No No No No Yes
Easy Mech. design No No No Yes Yes

Table III.2 – Summary of the comparison between silica-based and silicon-based
closed-loop optomechanical cavities. The values are extracted from the previous
references and are not always chosen from the same realization.
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Optomechanical coupling with the bus waveguide

In the above, we only considered the ring motion, and did not take into account the
fact that the bus waveguide is suspended and is also a mechanical resonator (namely, a
doubly clamped silicon beam). The waveguide displacement can lead to both dispersive
and reactive optomechanical coupling, which was first proposed and observed between a
suspended waveguide and a micro disk [74].

This kind of scheme can actually be ignored when considering a SRR, because the mechan-
ical frequencies of the beam are spectrally well isolated from the ones of the mechanical
ring (kHz range against MHz range). In other words, motion of the waveguide and motion
of the ring do not happen under the same experimental conditions, and we chose to focus
our study to the second case.
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CHAPTER IV

Theoretical description of suspended
ring resonators

In this chapter, we present a theoretical description of the optical and mechanical behavior
of suspended ring resonators, before considering their coupled optomechanical dynamics.

IV.1 Optical description of suspended ring resonators

In this section, we discuss the optical properties of suspended ring resonators. The an-
alytical description of the optical spectrum is provided, along with its characteristics at
resonance and figures of merit. Optical losses are detailed, with an emphasize on the influ-
ence of the suspension arms. Finally, a rapid description of thermo-optic and non-linear
effects is given.

A schematic of the ring resonator, of radius R, is depicted on figure IV.1. The ring
resonator is coupled to a single waveguide, by means of an unidirectional evanescent
coupler. This case is know as the all-pass configuration, by opposition to the add-drop
configuration, where a second waveguide is present [124]. Note that we did not represent
the supporting arms.

Within the ring resonator, light is circulating in a closed-loop. After one round-trip,
light can constructively interfere with itself, leading to a resonance phenomenon and the
storage of the optical power inside of the ring volume.

Optical resonance occurs if the light acquired an additional phase that is a multiple of 2π
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Figure IV.1 – Schematic top-view of an All-pass Optical ring resonator of radius
R.

after one round trip. It reads:

2π neffP
λr

= 2π × p (IV.1)

where p = 1, 2, ... is an integer, neff is the guided effective index, P = 2πR is the perimeter
of the ring, and λr is the resonance wavelength. The guided effective index is related to
the propagation constant β by: β = k neff, where k is the wavenumber.

IV.1.1 Optical spectrum

The coupler parameters are noted t and κ, and we restrain our discussion to the case of
single mode waveguides with a lossless coupler, which brings:

|t|2 + |κ|2 = 1 (IV.2)

We also only consider the π/2 radians phase shift from one arm of the coupler to another,
with no additional phase effects induced by the coupler.

Under the above assumptions, the optical spectrum (circulated power or transmitted
power, against wavelength) of the ring resonator can be calculated analytically. For
example, see [125, 124].

The normalized transmitted power and circulating power are Airy functions, of the form:

Pout

Pin
= |Aout|2

|Ain|2
= α2 + |t|2 − 2α |t| cos (θ)

1 + α2 |t|2 − 2α |t| cos (θ)
(IV.3)
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Pcirc

Pin
= |Acirc|2

|Ain|2
=

α2
(
1− |t|2

)
1 + α2 |t|2 − 2α |t| cos (θ)

(IV.4)

where α is the (real) inner circulation factor representing propagation losses (for no in-
ternal losses, α = 1), and θ is the phase mismatch after one round trip.

For a given set of parameters α and |t|, and for a given effective index, the Optical
spectrum can be calculated based on equations (IV.3) and (IV.4) and on θ = 2π neffP/λ.
We plotted on figure IV.2 a typical normalized transmission spectrum. On this figure, we
also represented three important parameters that are experimentally measured: the Free
Spectral Range (FSR), the Full Width at Half Maximum (FWHM) δλ, and the Contrast
Cr. These parameters are closely related to the figures of merit of the ring resonator (see
section IV.1.3).

Figure IV.2 – Typical normalized transmission spectrum, with α = |t| = 0.9.

IV.1.2 Resonance of a ring resonator

At resonance, the phase θ is a multiple of 2π and equations (IV.3) and (IV.4) become:

P r
out = (α− |t|)2

(1− α |t|)2 × Pin (IV.5)

P r
circ =

α2
(
1− |t|2

)
(1− α |t|)2 × Pin (IV.6)
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A special case happens when α = |t|, i.e. when the internal losses are equal to the coupling
losses. In this case, known as critical coupling, the optical power transmitted through
the bus waveguide drops to zero, due to destructive interference between the optical field
coupled from the ring resonator and the optical field transmitted through the waveguide.

Experimentally, critical coupling is favorable, because it leads to sharp & visible optical
resonances, and good sensitivity. On the other hand, it is also highly beneficial to max-
imize the amount of Optical power stored inside of the cavity, as most optomechanical
figures of merit tend to scale with it.

We represented on figure IV.3, the resonant circulating and transmitted powers, nor-
malized by the optical power in the bus waveguide, as a function of α and |t|. Critical
coupling is plotted as a dashed line. The choice α = |t| −→ 1 appears to be a way to
achieve critical coupling and maximum circulating power.

(a) Circulating power (b) Transmitted power

Figure IV.3 – Evolution of the circulating and transmitted powers at resonance,
normalized in regard to the optical power in the bus waveguide. The dashed white
line represents critical coupling: α = |t|. The colorbar scale of the circulating
power is truncated.

Importantly, the scales of the colorbar are not identical. The left scale is truncated at 10,
and actually takes values approaching infinity1. The right scale ranges from 0 to 1. This
is an evidence of the storage of optical power at resonance. The intensity enhancement
parameter Br (sometimes abusively referred as field enhancement parameter), that quan-
tifies how much the intensity is higher in the ring than in the bus waveguide, is simply
extracted from equation IV.6:

Br =
α2
(
1− |t|2

)
(1− α |t|)2 =

c.c.

α2

1− α2 (IV.7)

where c.c. stands for critical coupling.
1In the ideal case α = |t| = 1.
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IV.1.3 Figures of merit of a ring resonator

The quality of a ring resonator is quantified by four figure of merits: the Free Spectral
Range (FSR), the finesse F , the quality Factor Qopt, and the contrast Cr. This quantities
are easily measurable from the experimental spectrum of the transmitted optical power
(see Figure IV.2). They are also closely related to the propagation losses α and coupling
coefficient κ, that can be calculated based on the figures of merit.

On the following, we assume δλ� λ and κ� 1 (which is verified in practice). Based on
equation (IV.3), the FWHM can be approximated to [124]:

δλ ≈ κ2λ2

πPneff
(IV.8)

Without directly being a figure of merit, δλ is linked to F and Qopt.

Free Spectral Range (FSR)

The free spectral range corresponds to the spacing between two consecutive resonant
wavelengths (or alternatively, frequencies). By derivation of equation (IV.1):

FSRλ = λ2

ngP
(IV.9)

FSRν = c

ngP
(IV.10)

where ng is the group index, defined by equation (II.8), which takes into account the
wavelength dispersion of the media, and c is the speed of light. The FSR is of practical
importance for applications where a resonance shift is measured, as it limits the accessible
dynamic range.

From the physical perspective, the FSR is related to the round-trip time TR of a photon
inside of the ring:

TR = P ng
c
⇒ FSRν = 1

TR
(IV.11)

The finesse F

The finesse F is a measure of the sharpness of the successive resonances in regard to their
spacing. It is analogous to the number of round trips of a photon inside the cavity, before
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being lost by external coupling or internal losses. The finesse is defined by:

F = FSR
δλ
≈ π

κ2 (IV.12)

The intensity enhancement parameter Br and the finesse are related by: Br ≈ F/π. In
other words, F is analogous to the amount of circulating light at resonance.

Quality factor Qopt

The quality factor Qopt is a measure of the sharpness of a resonance in regard to its
position. It represents the amount of stored energy divided by the power loss after one
turn, and is defined by:

Qopt = λr
δλ
≈ neffP

λ
F (IV.13)

Because of the analogy with mechanical and electrical resonators, the optical Q factor is
often used as the main spectral characteristic in order to compare the quality of different
ring resonators. It should be noted, however, that the finesse is in our case a more relevant
figure. Smaller rings lead to higher finesses, but lower quality factors (see Figure IV.4).
As our applications rely on storing large quantities of energy into small volumes, it is then
doubly advantageous to reduce the ring radius, even if it leads to a smaller Qopt.

Figure IV.4 – Evolution of Qopt and F with the radius, for linear losses of 2
dB/cm and |κ|2 = 0.01. We can see that a smaller radius leads to an increase of
F and a decrease of Qopt.
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Contrast Cr

Finally, the contrast Cr represents the relative height of the resonance peak:

Cr = Pmax − Pmin

Pmax
= 1− (α− |t|)2(1 + α2 |t|2)

(1− α |t|)2(α2 + |t|2)
(IV.14)

Maximum depth is attained under critical coupling, when Cr = 1.

IV.1.4 Optical losses in suspended ring resonators

In a theoretical and asymptotic case α = 1 and the amount of stored Optical power
reaches infinity at resonance. In practice, however, there are optical losses that limit how
much light can be stored into the ring. These losses are distinguished between intrinsic
and extrinsic losses.

Intrinsic losses are “true” optical losses, with direct dissipation of optical power toward
the environment. They are represented by α in our model 2.

Extrinsic losses correspond to the the amount of light that is coupled from the ring to
the bus waveguide, with coupling strength κ. While it is a loss channel for light within
the ring, it is not from the experimental point of view. Light is not dissipated towards
the environment, but rather transferred from one element to another. The presence of κ
is also a necessity: a stand-alone ring resonator without coupling to the outer world is
useless.

Intrinsic losses

Intrinsic losses comprise classical losses of photonic waveguides and losses due to the
curved geometry. In the case of suspended ring resonators, the presence of a mechanical
anchor perturbs the guided mode and induce additional losses.

Intrinsic optical losses are hence separated between radiation losses, scattering losses,
linear & non-linear absorption losses, and losses due to the mechanical anchor. This last
point is discussed in section IV.1.5.

According to the previous discussion (see section II.4.3), radiation losses and linear ab-
sorption losses are negligible in silicon waveguides and ring resonators of radius superior
to 3 µm. Scattering losses are the dominating loss channel in these geometries.

Actually, we expect scattering losses to be even higher in suspended ring resonators that
in classical ring resonators. SRR present a larger index contrast, which naturally in-
creases the field intensity at the sidewalls and the scattering losses. Furthermore, SRR
require additional fabrication steps, which can induce a supplementary degradation of the

2Note that α here represents all propagation losses, including linear and non-linear contributions
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waveguides facets. Due to the high energy density at resonance, we also expect non-linear
optical effects to induce additional absorption of the optical power. This is discussed
theoretically in Section IV.1.6 and observed experimentally in section V.2.3.

Extrinsic losses

Extrinsic losses are governed by the coupling strength κ, which represents the amount
of light that is coupled from the ring to the bus waveguide. κ is formally described
by equation (II.11), as a function of the overlap integral between the field on the bus
waveguide and the field on the ring. The two geometries are aligned in the horizontal
(xz) plan, and the evanescent field decay along the x direction is generally assumed to
be exponential (by analogy to the planar waveguide), such that κ is approximated to an
exponential dependence over the gap G between the ring and the bus waveguide:

κ = a exp (−b×G) (IV.15)

where a and b are fitting parameters depending on the waveguide geometry, dimension,
material and bending radius.

In practice, a convenient way of conception is to calculate κ for a small set of parameters
(either via equation (II.11) or by direct simulations), and to extract the parameters a and
b by exponential fit. The design of κ can hence be controlled by playing on the value of
the gap G.

Note that experimentally, κ is entirely determined by the position, FWHM and contrast
of the resonance peaks on the spectrum, and is perfectly known.

Optical losses and quality factor

The quality factor was defined in equation IV.13 in regard to the wavelength. Alterna-
tively, it can be regarded in the frequency domain:

Q = ω0

δω
(IV.16)

δω is the FWHM of the resonance peak in the frequency domain. From the physical
perspective, δω corresponds to the decay rate of a photon inside the cavity and is directly
related to optical losses. For that reason, it is current in the literature to distinguish
the intrinsic quality factor, the extrinsic quality factor, and the total (also called loaded)
quality factor, following the same picture as optical losses:

1/Qtot = 1/Qint + 1/Qext (IV.17)
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IV.1.5 Influence of the suspension on the optical losses

On fabricated samples, the measured quality factors of SRR was always poorer than the
ones of classical rings. It suggests the appearance of additional optical losses after sus-
pension. We identified three potential channels. First, the presence of the mechanical
anchor results in a local perturbation of the guided mode. This can lead to diffraction
on the perturbation, or even leaking of the field through the silicon arms. Second, after
suspension, there is an increased higher index contrast at the the silicon / air interface,
that should increase scattering losses on the sidewall rugosity. Finally, the etching pro-
cess could degrade the waveguides facets and increase the flanks rugosity or reduce the
waveguide dimensions, both also leading to additional scattering losses.

The last two points are fabrication dependent, and are investigated and discussed more
specifically based on experimental results, on section V.2.3.

The perturbation of the mechanical anchor is generally successfully dealt by using a
waveguide wide enough to repel the local perturbation far away from the guiding outer
boundary of the ring [120, 47]. A more exotic strategy relies on using particular opti-
cal supermodes. For example, a“Wiggle” mode is excited, which presents a vanishing
intensity field at proximity of the ankles [126]. However, both of these approaches rely
on multimodal ring resonators, and are not applicable to single mode ring resonators.
We followed an alternative method, consisting on working on the geometry of the anchor
itself, in order to minimize its influence on the optical behavior.

Reducing optical losses at the mechanical anchor

The mechanical anchor induces a perturbation of the guided mode, that can either diffract
on or leak through the anchor.

We treated the influence of the mechanical anchor similarly to a waveguide crossing prob-
lem. At proximity of the arm, the waveguide is adiabatically widened, which increases the
effective guided index, reduces its index difference with the silicon arm, and minimizes
the effect of the perturbation [127]. In practice, this is done by adding a straight segment
of length Lstr in place of the inner ring boundary, at the junction with the mechanical
arm (see figure IV.5). This straight segment naturally widens the waveguide locally.

In parallel to this approach, we also narrowed down the arm width at proximity of the
waveguide, which reduces the size and effect of the silicon perturbation. This approach
was recently shown to be effective [128], but remains limited by the minimal dimensions
allowed during fabrication (notably lithographic resolution) and by the mechanical ro-
bustness of the ring. We note Wtip the width of the mechanical arm at the junction with
the ring (see figure IV.5).

Additionally, the most efficient and straightforward way to reduce optical losses due to
the mechanical arms is to simply reduce the number of mechanical arms.
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Figure IV.5 – Schematic of the junction between the ring resonator and its me-
chanical anchor, with a narrowed arm and a straightening of the inner ring
boundary.

Simulations

In order to verify our design strategy, we conducted 2D-FDTD simulations, with an
effective index method applied along the vertical direction. Typical simulation results
are presented on figure IV.6, where we observe the optical field propagating across one
junction. On the left picture, we simulated a wide arm with no straightening of the ring
(Wtip = 200 nm and Lstr = 0 µm). On the right picture, we used a narrow arm with a
small straightening of the ring (Wtip = 50 nm and Lstr = 1.5 µm). The ring has a 10 µm
radius and a 500 nm x 220 nm cross section. We calculated a 96.26 % transmission rate
in the first case, and a 99.55% transmission rate in the second case, which indicates fewer
losses due to the anchor and is coherent with our design strategy3.

The transmission after one arm for various sets of parameters (Wtip, Lstr) is presented on
Figure IV.7. Generally speaking, we observed that the influence of the mechanical arm
width, Wtip, is a more important parameter than the straight waveguide length Lstr. This
can be explained by the fact that the resulting widening is in fine quite small and does
not change that much the guided effective index. Nevertheless, the simulated behavior is
consistent with our theoretical predictions.

It must be kept in mind that this study is really qualitative. It is based on the approxima-
tion of a 2D-FDTD simulation, and do not take into account the resonant behavior of the
ring. Notably, we expect the transmission losses at proximity of the arm to be dependent
on the optical azimuthal number of the resonant mode. A proper choice will place nodes
of the optical intensity at proximity of the arms and reduce optical losses [128], which is
a perspective for future work.

3While 2D-FDTD simulations are not precise enough to put an accurate number on these losses, the
relative comparison between simulation results gives an accurate indication
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(a) Wide Arm ; T=96.26% (b) Narrow Arm ; T=99.55%

Figure IV.6 – 2D-FDTD simulation of the propagation of the electromagnetic
field at proximity of the mechanical anchor, and calculation of the transmission
rate. The field leaking through the silicon arm is visible in the wide case, but
almost suppressed in the narrow case. The normalized amplitude is given by the
colorbar.

IV.1.6 Thermo-optic and non-linear effects in silicon ring res-
onators

Silicon exhibits quite large non-linear and thermo-optic coefficients (see table IV.1), and
the large intensity enhancement at resonance can lead to high optical powers circulating
in the ring, even with relatively small input optical powers. For example, for a 5 µm
ring, the finesse is typically F > 700, which leads to an intensity enhancement of around
220. Hence, for a 10 mW input laser power, and with inclusion of the 3 dB loss at the
input grating coupler, the circulating power at resonance can reach values as high as 1 W.
While this large power is desirable for strong optomechanical interactions, is also results
in significant thermo-optic and non-linear effects.

The goal of this section is to give a simplistic description of the non-linear and thermo-
optic effects, that helps to understand some of the phenomenons that we observed ex-
perimentally. Giving a comprehensive and exhaustive description of non-linear effects in
silicon ring resonators is out of the scope of this thesis, and can be found in [89, 90].

Non-linear effects

We consider three non-linear effects: the optical Kerr effect, two-photons absorption
(TPA), and free-carrier effects.

The optical Kerr effect manifests itself as a variation of the refractive index with the
intensity of light. It is quantified by the non-linear Kerr coefficient n2, that relates the
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Figure IV.7 – 2D-FDTD calculation of the transmission rate after propagation
of the electromagnetic field at proximity of one mechanical anchor, for various
sets of parameters (Wtip, Lstr).

variations of refractive index to the intensity:

n(I) = n0 + n2I (IV.18)

Two-Photons Absorption (TPA) corresponds to the non-linear simultaneous absorption of
two photons, at a combined energy superior to the band gap, resulting in the absorption
of both photons and in the creation of a free carrier. It is quantified by the TPA coefficient
β, and is proportional to the square of the optical intensity.

Additionally to direct absorption of light, the free carriers generated by TPA (electrons
and holes) also lead to two additional non-linear effects: Free Carrier Index changes (FCI)
and Free Carrier Absorption (FCA). They are respectfully quantified by the parameters
σn and σa. These two effects are proportional to the fourth power of the optical intensity.

When these three non-linear effects are considered, the evolution of the amplitude of the
field A obeys the following equation [138, 90, 89]:

1
A

dA
dz = −α2 −

(
β

2 − ikn2

)
|A|2 − τβ

4~ω

(
ωr
ω

)2
(σa − 2ikσn) |A|4 (IV.19)

where α represents linear losses, β is the TPA coefficient, n2 is the non-linear Kerr pa-
rameter, τ is the effective free carrier lifetime, 2πc/ωr = 1.55 µm, σa = 1.45× 10−17 cm2,
and σn = −5.3× 10−21 cm3 (in silicon).

Near and at resonance, non-linear effects and high optical power result in an increase of
optical losses and in a change of refractive index.
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αth (K−1) κth (K−1) n2 (m2/W) β (cm/GW)
Si 2.57× 10−6 1.86× 10−4 4× 10−18 0.5
SiO2 0.5× 10−6 1.09× 10−5 2.7× 10−20 0.04
SiN 2.6× 10−6 2.44× 10−5 0.2× 10−18 –
GaAs 5.73× 10−6 2.3× 10−4 1.59× 10−19 10 - 15

Table IV.1 – Principle coefficients associated to thermo-optic and non-linear ef-
fects, for the main dielectric media used in photonic waveguides, at λ = 1.55
µm. β: TPA coefficient ; n2: Nonlinear Kerr coefficient ; αth: Thermal
expansion coefficient ; κth: Thermo-optic coefficient. References for silicon:
[129, 130, 90, 89, 131] ; for GaAs: [132, 133, 131] ; for SiO2: [134, 135, 136]
; for SiN: [135, 137]

A signature of TPA and FCA can be observed on the experimental spectrum, as the
contrast becomes a function of optical power. For an over-coupled resonance, at low
optical power, there is more light injected than lost at each turn (κ > α). At high
optical power, optical losses increase due to non-linear effects, which brings the resonance
closer to the critical coupling condition and enhances the contrast. For an under-coupled
resonance, by similar arguments, the resonance is brought further from critical coupling,
and the contrast is degraded.

The optical Kerr effect and the FCI change are more difficult to observe. On the experi-
mental spectrum, there is a shift of the resonant wavelength, but it is largely dominated
by the thermo-optic effect. The latter is particularly important in our case, because of a
poor heat outflow.

Thermo-optic effect

Additionally to non-linear effects, there is a variation of the refractive index with tem-
perature, know as thermo-optic effect. It comes as a result of the heat generation due to
linear absorption, TPA and FCA, and is hence closely related to non-linear effects.

Silicon ring resonators are known to be highly sensitive to thermal fluctuations [139, 130,
140]. Additionally, because suspended ring resonators are standing in the Air with only
a small number of arms and a silica pedestal to insure thermal conduction, they present
a very poor heat outflow toward the environment, which emphasizes thermal effects.

Formally, the modification of the temperature in the ring resonator actually results in two
phenomenons:

1. Thermal expansion of the ring, responsible of both a photo-elastic effect and a
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modulation of the cavity length.

2. Change of thermal energy, responsible of the thermo-optic effect.

However, the thermal expansion of silicon is two order of magnitude smaller than its
thermo-optic coefficient4 (see table IV.1), and we only consider the second effect. For a
guided wave, it results in a modification of the effective refractive index, which in turn
modifies the resonant wavelength:

∂λr
∂T

= λr
ng

∂neff
∂T

(IV.20)

and the resonant wavelength temperature dependence is simplified to the first terms of
its Taylor expansion:

λr(T ) = λr(T0) + (T − T0)∂λr
∂T

(T0) (IV.21)

where T0 is the ambient laboratory temperature, and T is the temperature inside the
optical cavity.

Combining equations (IV.20) and (IV.21), the temperature shift is related to the resonant
wavelength shift by:

∆T = ∆λr
ng
λr

(
∂neff
∂T

)−1

(IV.22)

On the following, we note κeffth the thermo-optic coefficient associated to the effective index.

On the other hand, at steady state, the amount of circulating optical power that is
converted to heat is equal to the heat flow towards the substrate, and the variation of
temperature reads:

∆T = A

G
Pcirc (IV.23)

where A is the fraction of circulating optical power that is absorbed and turned into heat
within the ring, and G is the thermal conductance between the ring and the substrate,
in W/K. In the previous equation, we did not consider heat outflow from the ring to the
air environment. This assumption is reasonable when working in a vacuum environment
(which is the case in all our optomechanical experiments), but maybe less when working
in an air environment. Also, certain models consider a different temperature between the
substrate and the environment [135], but we believed it was not necessary to apply in our
case.

4The thermal expansion coefficient must actually be multiplied by the effective index (i.e. by ≡ 2) to
give sense to this comparison.
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Calculation of A, G, and κeffth in the SRR

Optical power turned into heat: A is the fraction of optical power that is absorbed
and turned into heat. It includes linear absorption, TPA, and FCA. To the best of our
knowledge, A is difficult to properly calculate, and is often rather obtained experimentally,
by measuring ∆λr and using equations (IV.23), (IV.22), (IV.27), and (IV.26).

Thermal conductance: We respectively noteGA, GD andGP the thermal conductance
of the arms, of the silicon disk above the pedestal, and of the pedestal, such that:

1/G = 1/GA + 1/GD + 1/GP (IV.24)

The thermal conductances are functions of the thermal conductivities of silicon and silica,
κSi = 149 W/(m.K) and κSiO2 = 1.4 W/(m.K), and of the geometry parameters [141]:

1
G

= 1
κSi

LA
NAWAH

+ 1
κSi

H

π(Ri − LA)2 + 1
κSiO2

HP

πR2
P

(IV.25)

where H is the silicon height (H = 220 nm in all our designs), Ri = R−W/2 is the inner
ring radius, NA is the number of arms, WA is the width of the arms, LA is the length of
the arms, RP is the pedestal radius, and HP is the pedestal height.

In practise, because κSiO2
th � κSith, the contributions from the ring and the silicon disk

vanish in front of the contribution of the silica pedestal. The contribution from the
silicon arms is however quite significant and cannot be ignored. Under this assumption,
the thermal conductance reduces to:

G = κSiO2
th κSithNAWAHπR

2
P

κSiO2
th πR2

PLA + κSithHPNAWAH
(IV.26)

Effective thermo-optic coefficient: Based on a FEM mode solver and on the thermo-
optic coefficient of silicon, we calculated:

∂neff
∂T

= 0.973× 10−4 K−1 (IV.27)

This value is almost two times smaller than the thermo-optic coefficient of silicon (see
table IV.1), which is attributed to the fact that the evanescent field propagating in the
air.
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Figure IV.8 – Observation of Optical bistability.

Optical bistability

Non-linear and thermo-optic effect result in a contrast modification and a shift of the res-
onance wavelength. Additionally, they induce a modification of the form of the resonance
peak, evolving from a Lorentzian shape to a triangular shape. This is a manifestation of
optical bistability [142, 140].

IV.2 Mechanical description of suspended ring res-
onators

In the previous section, we described the optical properties of the suspended ring res-
onator. We now consider its mechanical vibrational modes.

The exact description of mechanical oscillations is a rather complicated problem, solved
with numerical simulations. Yet, we begin the discussion with an analytical (and sim-
plified) description of the vibrations of cantilevers and free circular ring. The suspended
ring resonator can be seen, in a simplistic description, as a combination of these two
systems, and that hence provide a “feeling” about the modes shapes and the scaling of
their mechanical resonant frequencies.

We next provide numerical simulation results of the vibrations of various suspended ring
resonators geometry, with discussion of the influence of the available design parameters.
Finally, we investigate the origin of mechanical losses in suspended ring resonators.
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L

H

u(x, t)

(a) Lateral view, in the (xz) plane

W

H

(b) Cross section,
in the (xy) plane

Figure IV.9 – Lateral and cross section schematics of a thin and homogeneous
simply clamped cantilever. L is the length of the beam, H its thickness, W its
width. u(x, t) is the displacement in the (xz) plane.

IV.2.1 Analytical description of mechanical vibrations

Cantilever theory

Silicon cantilevers, first proposed by Kurt Petersen [44] in the early ’80s, are widely used
in sensing applications such as mass sensing, chemical sensing or biological sensing [46].
The case of small deflections of thin, homogeneous cantilevers, is accurately described
with Euler-Bernoulli beam theory [143]. In the following, we provide a rapid analytical
description of the vibrations of such beam, based on this theory.

A schematic of the beam, with principal notations, is presented of figure IV.9. We note
L the length of the beam and S = W ×H its cross-section. The beam is described by the
displacement of its center of line. The displacement in the (xz) plane is noted u(x, t) and
is associated to a momentum of inertia I = H×W 3/12. It is described by Euler-Bernoulli
equation [143, 46]:

EI
∂4u(x, t)
∂x4 + ρS

∂2u(x, t)
∂t2

= 0 (IV.28)

where E is the Young modulus, and ρ is the material density. The deflection in the (xy)
plane can be obtained from the previous equation with an adapted momentum of inertia
(the cross-section remains the same).

We assume separation of the spatial and temporal variables, and the solution is expanded
with respect to the orthonormal basis (ψn)n∈N of its mode shapes. The coefficients (un)n∈N
describe the temporal oscillation of the beam, at frequency fn = ωn/2π.

u(x, t) =
+∞∑
n=0

un(t)ψn(x) =
+∞∑
n=0

Une
−iωnt ψn(x) (IV.29)
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Equation (IV.28) becomes, for the n-th mode, an eigenvalues problem:

∂4ψn(x)
∂x4 − λ4

nψn(x) = 0 where λ4
n = ω2

n

ρS

EI
(IV.30)

The general form of the solutions of equation (IV.30) is:

ψn(x) = An sinh λnx+Bn cosh λnx+ Cn sin λnx+Dn cosλnx (IV.31)

where An, Bn, Cn and Dn are obtained from the boundary condition of the beam. The
boundary conditions for a simply clamped cantilever and for a doubly clamped cantilever
are presented on Table IV.2.

Simply clamped Doubly clamped
ψn(0) = 0 : There is no deflection at
the base of the beam.

ψn(0) = 0 : There is no deflection at
the left-end of the beam.

ψ
′
n(0) = 0 : The base of the beam is

horizontal, and the derivative of the de-
flection is zero.

ψn(L) = 0 : There is no deflection at
the right-end of the beam.

ψ
′′
n(L) = 0 : There is no bending mo-

ment at the free-end of the beam.
ψ

′
n(0) = 0 : The left-end of the beam

is horizontal, and the derivative of the
deflection is zero.

ψ
′′′
n (L) = 0 : There is no shearing force

at the free-end of the beam.
ψ

′
n(L) = 0 : The right-end of the beam

is horizontal, and the derivative of the
deflection is zero.

Table IV.2 – Boundary conditions for a simply clamped and a doubly clamped
cantilever.

The eigenvalues λn are obtained by solving a transcendental equation on λnL. This equa-
tion is derived by setting to zero the determinant of the system formed by the boundary
conditions. For a simply clamped cantilever and for a doubly clamped cantilever, the tran-
scendental equation is presented on Table IV.3, along with the numerically calculated first
four solutions.
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Simply clamped Doubly clamped
cosλnL cosh λnL+ 1 = 0 cosλnL cosh λnL− 1 = 0

λ1L = 1.875 ; λ2L = 4.694 λ1L = 4.730 ; λ2L = 7.853

λ3L = 7.854 ; λ4L = 10.995 λ3L = 10.996 ; λ4L = 14.137

Table IV.3 – Transcendental equation for a simply clamped and a doubly clamped
cantilever, and the associated first four solutions.

From the transcendental equation on λnL and from the definition of λn, the resonant
frequencies of the beam are deduced to be:

fn = (λnL)2

4πL2

√
E

ρ

I

S
(IV.32)

where the λnL values are given on table IV.3.

Finally, the mode shapes (ψn)n∈N only depend upon the parameter An, whose value is
numerically calculated based on the λnL values and one the fact that the mode shape is
normalized to unity. For a simply clamped and for a doubly clamped cantilever, expres-
sions of (ψn)n∈N are given on table IV.4, along with the first four values of An. They are
also plotted on figure IV.10.

(a) Simply clamped cantilever (b) Doubly clamped cantilever

Figure IV.10 – Mode shapes of the first four modes of vibrations of a simply
clamped and a doubly clamped cantilever, against normalized length.
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Simply clamped ψn(x) = An

(
sinh λnx− sin λnx−

sinh λnL+ sin λnL
cosh λnL+ cosλnL

(coshλnx− cosλnx)
)

A1 = −0.3671 ; A2 = 0.5093 ; A3 = −0.5000 ; A4 = 0.5003

Doubly clamped ψn(x) = An

(
sinh λnx− sin λnx−

sinh λnL− sin λnL
cosh λnL− cosλnL

(coshλnx− cosλnx)
)

A1 = −0.6186 ; A2 = 0.6631 ; A3 = −0.6611 ; A4 = 0.6612

Table IV.4 – Analytical expression of the first four mode shapes for a simply
clamped and a doubly clamped cantilever.

Vibrations of a circular ring

We now consider the vibrations of a circular, thin and narrow ring, of rectangular cross-
section. With an approach similar to cantilever theory, the vibrational mode shapes and
frequencies can be obtained analytically. For example, see [143, 144, 72, 145]. To keep it
brief, we only provide the results of such an analysis.

The vibrational modes can be distinguished between four families: extensional, inexten-
sional (or flexural), and torsional, which are both in the plane of the ring5, and flexural
out of the plane of the ring. From axial symmetry arguments, one can show that each
mode of vibration occurs in degenerate doublets.

Extensional vibrations This kind of mode is analogous to the longitudinal vibrational
modes of a beam: the ring experiences longitudinal elongation and contraction along
its own center line. If i denotes the number of wavelengths to the circumference, the
frequencies of the modes of vibration of the ring are given by:

fi = 1
2πR

√
E

ρ

√
1 + i2 (IV.33)

where R is the ring radius, E is the Young modulus, and ρ is the material density.

5In the sense that the center line of the ring remains in the same plane
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In the case i = 0, the center line of the ring forms a circle of periodically varying radius.
There is only purely radial displacement, with no rotation. This is known as the radial
breathing mode.

(a) i = 0 (b) i = 1 (c) i = 2

Figure IV.11 – Mode shape of the i = 0, 1, 2 extensional vibrational modes.

Inextensional vibrations Inextensional modes are flexural in-plane flexural vibra-
tions, with little to no longitudinal elongation or contraction along the center line of
the ring. Their vibration frequencies are given by:

fi =
i≥2

1
2πR2

√
E

ρ

Iy
S

i(i2 − 1)√
1 + i2

(IV.34)

where Iy is the moment of inertia of the cross section along vertical axis.

Equation (IV.34) begins at i ≥ 2. i = 0 corresponds to a pure rotation of the ring,
and i = 1 corresponds to translation of the solid ring with no deformation of its shape.
There is no vibration in this two cases, and the fundamental mode of flexural vibration
is therefore i = 2. Interestingly, however, this kind of mode appears in the case of SRR,
as they couple with vibrations of the arms. This will be discussed in section IV.2.2.

(a) i = 0 (b) i = 1 (c) i = 2

Figure IV.12 – Case i = 0 and i = 1, and mode shape of the i = 2 fundamental
inextensional vibrational mode.
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Torsional vibrations In this case, the cross section of the ring itself rotates around
the center line of the ring. The vibration of the i-th mode occurs at frequency:

fi = 1
2πR

√
E

ρ

Ix
Ip

√
1 + i2 (IV.35)

where Ix is the moment of inertia of the cross section along the x axis, and Ip is the polar
moment of inertia of the cross section.

(a) i = 0 (b) i = 1 (c) i = 2

Figure IV.13 – Mode shape of the i = 0, 1, 2 torsional vibrational modes.

Out-of-plane flexural vibrations The resonance frequency of out-of-plane flexural
modes is given by:

fi =
i≥2

1
2πR2

√
E

ρ

Ix
S

i(i2 − 1)√
(1 + ν)β + i2

(IV.36)

where Ix is the moment of inertia along horizontal axis, ν is Poisson’s ratio, and β ≈
0.286/3 is a parameter depending on the ratio between W and H, whose value is taken
from [72]. Similarly to in-plane flexural vibrations, the fundamental out-of-plane flexural
mode is i = 2.

(a) i = 0 (b) i = 1 (c) i = 2

Figure IV.14 – Case i = 0 and i = 1, and mode shape of the i = 2 fundamental
flexural out-of-plane mode.
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Discussion

Spectrally, the in-plane and out-of-plane flexural modes have much lower frequencies
than the torsional and extensional ones. This is a reminiscence of a beam behavior,
whose stiffness approximately scale according to EI/L3, E/(1− ν) and E for a flexural,
torsional and extensional mode, that consequently appear at relative low, medium and
high frequency.

IV.2.2 Numerical modeling of vibrational modes

Complementary (and more rigorously) to the “feeling” that we can get from the analyt-
ical models, we used 3D FEM mechanical simulations in order to study the mechanical
behavior of SRR. The exact theoretical6 design of the ring can be taken into account, as
well of the fact that the pedestal and ring are not composed of the same material (respec-
tively, silica and silicon). The eigenfrequency response can be calculated for various set
of parameters in a reasonably fast time (generally less than 10 minutes, even for really
small mesh elements and large number of modes). The commercial software COMSOL
Multiphysics R© was used to perform the simulations [146].

A sample of the large variety of mode shapes and frequencies that can be obtained is
presented on figure IV.15, for the first three modes and frequencies of vibrations of SRR
of various designs (higher order modes up to n = 11 can be found on appendix B). Between
two geometries, similar mode shapes are found, but at different mechanical frequencies,
and certain mode shapes are sometimes absent.

Comparison with the analytical model

The comparison between the analytical and numerical models reveals that similar mode
shapes are found, but rather different resonant frequencies.

More precisely, the numerical mode shapes can be seen as a coupling between the mode
shapes found with the analytical description of of a cantilever and of a circular ring. For
example, figure IV.15a corresponds to the first in-plane flexural mode of vibration of the
beam, coupled with the case i = 0 of flexural in-plane vibration of the ring. Figure IV.15b
corresponds to the first out-of-plane flexural mode of vibration of the beam, coupled with
the case i = 0 of flexural out-of-plane vibration of the ring. And so on ... Interestingly,
the cases i = 0 and i = 1 encountered with flexural vibrations of the ring are now true
vibrational modes.

The divergence between the analytical and numerical models in regard to the resonant
frequencies is easily explained. With the analytical model, we consecutively considered
the case of a free standing beam and of a free standing ring (without mechanical arms),
but without coupling these two elements. It is hence expected to find erroneous resonant

6To be distinguished from the actually fabricated design
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frequencies, as the stiffness of a suspended ring resonator is modified by the presence of
the mechanical arms.

Influence of the design parameters

Between each SRR, we varied 5 mechanical parameters: the ring radius, the pedestal
radius, the arms width, the number of arms, and the number of rings. Providing an exact
description of the influence of each parameter is difficult. However, some tendencies can
be identified from the analytical results.

First, as a result of the 1/R and 1/R2 dependency of the vibration frequency of the ring,
and of the 1/L2 dependency of the vibration frequency of the beam, the ring and pedestal
radii can be used as a way to control the vibration frequency of the SRR. Depending on
the target, a wide control can be achieved. By only changing the ring radius, we mainly
influence the ring oscillations. By only changing the pedestal radius, we mainly influence
the beam oscillations. Finally, by changing both the ring and pedestal radii (i.e. by
conserving the arm length), we influence both the ring and the beam oscillations.

The arms width can be used as a way to favor vibrational modes involving in-plane flexural
vibration of the beam over vibrational modes involving out-of-plane flexural vibration of
the beam, and vice-versa. Indeed, in-plane and out-of-plane flexural vibration frequencies
of the beam only differ by the momentum of inertia that is considered (see equation
IV.32). This momentum of inertia is H ×W 3/12 in the first case, and H3 ×W/12 in the
second case. Hence, by changing the arms width, we can rapidly modify the ratio of the
momentums of inertia, and favor one direction over the other.

Finally, the number of arms and the number or rings is mainly a way to improve the
mechanical solidity of the structure, and to reduce the risks of breaking or collapsing of
the SRR during fabrication (see section V.1.3 for some examples). As a consequence,
they can also result in the appearance or extinction of particular modes. For example,
the addition of a supplementary ring also introduces new (and not really interesting in
this case) mechanical modes, where the internal ring is put into motion.

Note that the addition of a second ring must be done far enough from the first ring,
in order to avoid optical coupling between the internal and external ring, which would
drastically increase optical losses. While we did not conduct such study, we also believe
that the second ring could be used to isolate the outer ring from the substrate and reduce
mechanical loses, in a way similar to the use of destructive interference elastic waves
discussed in references [31, 147].

As a practical example of mechanical engineering, it is possible to control the resonant
frequency of torsional modes (such as the ones presented on subplots (d) and (h) of figure
IV.15), at a fixed ring radius, by playing on the pedestal radius. By taking a larger
pedestal, it is possible to keep the arms short and to achieve a high mechanical frequency.
Inversely, it can be reduced by decreasing the pedestal radius.
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(a) Ω0 = 0.0416
MHz

(b) Ω1 = 0.91236
MHz

(c) Ω2 = 0.91254
MHz

(d) Ω0 = 0.029559
MHz

(e) Ω1 = 0.14196
MHz

(f) Ω2 = 0.14779
MHz

(g) Ω0 = 0.14437
MHz

(h) Ω1 = 0.15752
MHz

(i) Ω2 = 0.6067
MHz

Figure IV.15 – 3D-FEM simulation of the first three mechanical modes of a 10
µm radius SRR, with various design parameters.
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Choice of design parameters

Typical design parameters of our suspended ring resonators are presented on table IV.5.
While there is a large number of design parameters, we only explored a limited amount
of designs7. We chose to vary the ring radius, the number of mechanical arms, and the
number of rings. The pedestal and mechanical arms (in the sense of its cross section) are
kept constant between each design. This (relatively) limited set of design parameters is
justified by the exploratory nature of this work. Our aim was to demonstrate optome-
chanical interaction on suspended ring resonators integrated on a silicon chip. In this
regard, a really precise engineering of the mechanical frequency and shape is not neces-
sary. This should however be further explored in future work, when practical applications
with targeted mechanical frequencies will be considered.

The design parameters choice is based on the numerical study and on the characteristics
of our optomechanical test bench. Experimentally, our photodetector performances are
improved below 14 MHz, and our measuring bandwidth is anyway limited to 50 MHz.
Consequently, we took care to have a good number of mechanical modes falling below
14 MHz. By varying the number of arms, we also ensured to have a large variety of
mechanical modes.

Ring radius (µm) 5, 15 or 25
Pedestal radius (µm) 2
Arms length (µm) 3, 13 or 23
Arms cross section 500 nm × 220 nm
Number of arms 2, 3 or 4
Number of rings 1 or 2
Waveguide width 500 nm
Waveguide height 220 nm

Table IV.5 – Typical design parameters of our suspended ring resonators.

IV.2.3 Mechanical losses in suspended ring resonators

We now briefly discuss the main sources of mechanical losses in suspended ring resonators,
and some of the strategies that can be used to reduce them. Similarly to optical resonators,
mechanical losses degrade the overall mechanical quality of the resonator and ultimately
limit its performances, leading to a reduced sensitivity, a shorter coherence time, an
increased power consumption, poorer phase noise performances, etc ... [147, 148, 149].

7Nevertheless, we still realized about 200 variations.

94



Dissipation in mechanical resonators can be separated between five distinct mechanisms,
that are considered to be independent of each other [150]:

1. Radiation towards the substrate.

2. Damping and squeezed-film losses, due to the surrounding environment.

3. Surface-related losses.

4. Thermo-elastic damping.

5. Akhiezer effect.

Within this mechanisms, the last two are intrinsic to the medium and will always impose
a limitation, will the others can be suppressed by proper design, fabrication and experi-
mental choices. We expect radiation towards the substrate to be the dominant channel
of mechanical dissipation in SRR.

(a) Exemple of a FEM simulation. The
colorbar range (not shown) have been
truncated in order to emphasise the ra-
diations.

(b) Associated Lorentzian response,
when including PMLs. Anchor losses
are obtained from the FWHM of the
peak.

Figure IV.16 – The strength of radiations losses towards the substrate can be
estimated from mechanical numerical simulations including PMLs.

Radiation towards the substrate (anchor losses) One of the (if not the) major loss
channel in micro- and nanomechanical resonators is the radiation of elastic waves towards
the substrate, occurring at the anchor points [31, 147].

Anchor dissipation can be estimated via a FEM simulation including PML boundaries.
Example of such a simulation is presented on figure IV.16. The mechanical spectrum is
calculated by varying the excitation frequency of the system. Because the substrate is
included on the simulation with PML boundaries, the radiation loss is effectively taken
into account, and the anchor losses are extracted from the FWHM of the Lorentzian
response.
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These simulations provide a general idea about the order of magnitude, but can be out of
touch from reality and should be considered with care. They are highly dependent on the
choice of the PML parameters, that should and must be reasonably chosen, and actual
radiation losses will also greatly depend on the real fabricated geometry of the supporting
pedestal, which is hard to take into account in the simulations.

In the literature, several strategies have been proposed to reduce anchor dissipation.
Phononic shielding was proven to be really effective [151], but it relies on sup-µm pitch
lattices, that are not compatible with our µm sized resonators. Alternatively, mesa isola-
tion [152] and “tuning fork-like” strategies [147, 118] exploit interference between several
elastic waves. In the first case, the elastic wave is (partially) reflected back by the mesa
onto the resonator. Depending on the distance between the two objects, constructive or
destructive interference can happen, respectively decreasing or increasing radiation losses
(for a given mechanical mode). This strategy is particularly efficient with out-plane modes.
In the second case, the principle of a tuning fork is replicated. In a tuning fork, both
arms are anti-symmetrically excited, such that the radiated elastic waves destructively
interfere and cancel out at the anchor point. The same principle is used in double-disk
resonators [147] and hollow-disk resonators [118]. In arm supported structures, it can be
implemented by choosing a beam length equal to an odd multiple of a quarter wavelength
of the selected mechanical mode [153].

We did not have time to implement this kind of solutions8, but they should be investigated
in future work in order to increase the resonator performances. In parallel, it must be
pointed-out that the right selection of the mechanical mode is primordial to minimize the
energy loss through the anchors. In particular, choosing a mode with an attaching point
located at a nodal point will consequently mitigate this kind of losses.

Additionally, the radiation of elastic waves can occur between distinct mechanical modes
vibrating at similar frequencies. This coupling between mechanical modes can be avoided
by selecting mechanical modes well isolated in the mechanical spectrum, with an anti-
crossing behavior [19, 118].

Viscosity of the environment (gas or liquid) The viscosity of the environment
results in direct damping of the oscillator, with a (major) normal force exerted against
surfaces perpendicular to the direction of propagation, and a (minor) shear force exerted
against surfaces parallel to the direction of propagation. This damping is also amplified
by a “squeezed-film” effect, because of the proximity of the substrate [154]. Considering
that we are working under vacuum, viscous damping can safely be neglected.

We also point out the difference between ring resonators and disk resonators regarding
this source of losses. It is expected that the out-of-plane modes of disk resonators will
experience significantly larger damping than the in-plane modes, due to their larger area
(πR2 against 2πRh). For ring resonator, in-plane and out-of-plane modes have similar
areas, and both should experience small damping, even outside vacuum.

8At some point, we preferred to begin the fabrication rather to focus on all the design aspects.
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Surface losses The exact nature of the mechanisms behind surface-induced mechanical
losses is not always well identified, and only scaling relations for beams and membranes
are available, suggesting a linear increase of these losses with decreasing thickness [155].
We believe surface losses to be of small importance in our resonators, because the overall
silicon surface quality is relatively good, with a roughness down to the order of the nm-
scale, and because they are not considered to be a major dissipation channel in disk
resonators of thickness similar to our geometries. Additionally, the surface to volume
ratio of suspended ring resonators is really small, which will decrease the phenomenon
even more.

In the future, it could yet be interesting to incorporate to our process flow a surface treat-
ment step, that will benefit to both the optical and mechanical quality factors. Typically
annealing at 1100o C for an hour is included after encapsulation [156]. At the end of the
thesis, we tried to incorporate thermal annealing in a different manner (800o C for 10
seconds after the final etching step), principally in order to reduce optical losses due to
the rugosity, but could not investigate its impact on mechanical surface losses.

Thermo-elastic damping (TED) and Akhiezer damping Thermo-elastic damping
(TED) results from strain gradient inducing temperature gradients in the material. Under
deformation, tensile stress regions cool down and compressive stress regions heats up. As
a result, there is a thermal flow between these two regions, considered as a damping (the
mechanical energy is converted to thermal energy). TED is an intrinsic loss mechanism:
it is independent on the geometry and is only governed by the thermodynamic properties
of the material [157]. For silicon, TED is expected to limit the quality factor to an upper
value above the 104−105 range, for µm scale thin beams [157, 158]. Because the measured
quality factors on our devices are at most of 103, it is safe to neglect TED.

Akhiezer damping also relates to strained-induced perturbations of the thermal phonon
equilibrium, but is a local process. Akhiezer damping is an intrinsic channel loss, inde-
pendent on the geometry. The limitation it sets on the mechanical Q factor reads [156]:

QAkh = 1
f

ρc2C2
D

2πγ2
effκT

(IV.37)

where f is the mechanical frequency, ρ is the density, c is the velocity of the acoustic
wave, CD is the Debye velocity, γeff is the effective GrÃĳneisen free parameter, κ is the
thermal conductivity, and T is the temperature. From this formula, estimation of the
f ·Q products are around 1013 for silicon [158], which is way above our current values. It
is also notable that Akhiezer damping can be reduced by working at low temperature.
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IV.3 Optomechanical description of suspended ring
resonators

On the previous sections, we considered separately the optical and mechanical behaviors
of suspended ring resonators. In the following, we consider their coupled optomechan-
ical behavior. The coupling between a single optical and a single mechanical modes is
described by the generic optomechanical equations of motion introduced in the first chap-
ter, with the necessity to properly define the coupling mechanisms and optical forces (that
depend on the considered mechanical mode).

IV.3.1 Optical forces

Optical forces in the SRR are similar to the optical forces in straight waveguides presented
in chapter III, with the exception of two differences.

First, the magnitude of optical forces is multiplied by the intensity enhancement parameter
Br, defined by equation (IV.7) (or in a analogous picture, by the finesse of the cavity).
Typically, Br can reach a value around 200, such that optical forces can reach values in
to the µN / µm / mW range (compared to a few nN / µm / mW for a single waveguide).

The second minor difference resides on the slightly different field profile due to the bending
of the waveguides constituting the ring, that “pushes” outward the optical field and creates
a little imbalance between forces at the inner radius and forces at the outer radius.

As a result, the same general behavior is encountered: radiation pressure and optical
gradient forces push the waveguides boundaries outward in the vertical and horizontal
directions, while electrostrictive forces push them outward in the horizontal direction and
inward in the vertical direction. These two forces are of the same order of magnitude,
and they will principally excite in-plane mechanical modes, because their respective out-
of-plane components consequently cancel each other.

We also expect a strong contribution from photothermal forces beyond the optical power
threshold for non-linear behavior (typically beyond 10 mW at the laser input). Under
this regime, photothermal forces should overcome all other forces and isotropically excite
the mechanical modes. This is however difficult to access experimentally, because as we
will see, the ring optical response is strongly modified under non-linear behavior, which
effectively detunes the input laser far from resonance.

IV.3.2 Contributions to optomechanical coupling

Both dispersive and dissipative optomechanical coupling schemes are anticipated in a
SRR.
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Regarding dispersive coupling, we expect a geometric contribution and a photoeslatic
contribution, which were introduced in chapter III. Additionally, we discuss the possible
existence of a third contribution, arising in rotational mechanical modes from the optical
Sagnac effect.

A dissipative coupling is also likely to happen in SRR. The motion of the ring regarding
the bus waveguide will impact the relative overlap between the guided mode in each
structure, and modify the evanescent coupling strength. In other words, the extrinsic
cavity decay rate is a function of displacement, as discussed in chapter I.

There are hence four different contributions to the optomechanical coupling:

1. A geometric contribution, of coupling strength ggeom.

2. A photoelastic contribution, of coupling strength gpe.

3. A dissipative contribution, of coupling strength κom.

4. A Sagnac contribution, of coupling strength grot.

Here, we stress again that the values of the coupling strengths depends on the mechanical
mode under consideration. In particular, we only expect a Sagnac contribution in the
case of a in-plane flexural mode of the circular ring (noted with i = 0 in the analytical
model).

The first three contributions are discussed in the following. The Sagnac contribution is
discussed in a separate section.

Geometric contribution

ggeom is calculated from equation (III.18). To do so, both the mechanical and optical mode
shapes are computed. The mechanical displacement vector is calculated with a 3D-FEM
simulation, and normalized such that Max−→q = 1. The electrical field is calculated with
a 2D-FEM simulation assuming rotational symmetry.

Photoelastic contribution

gpe is calculated from equation (III.20). Here, additionally to the optical mode, the
internal strain must be computed. It is calculated during the same 3D-FEM simulation
than the mechanical displacement.

Dissipative contribution

κom is calculated from equation (III.22), based on the results of the mechanical 3D-FEM
simulation and on the knowledge of the guided modes in the ring and in the bus waveguide,
obtained by optical 2D-FEM simulation.
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Results & discussion

Typical optomechanical vacuum coupling strengths (i.e. after multiplication by the am-
plitude of mechanical zero point fluctuations) for the 8 first mechanical modes of a 10
µm ring with 3 arms and an internal mechanical ring are presented on table IV.6. This
choice of illustration corresponds to a ring actually measured (in the next chapter). We
find that the geometric contribution is largely dominant in comparison to the photoelastic
and dissipative contributions.

Ωm/2π xZPF g0
geom/2π g0

pe/2π κ0
om/2π

(MHz) (pm) (kHz) (kHz) (kHz)
0.199 4.860 ×10−2 3.019 ×10−2 -1.047 ×10−2 -3.512 ×10−8

0.947 3.757 ×10−2 2.435 -3.082 ×10−2 -1.047 ×10−5

1.490 1.931 ×10−2 -1.454 ×101 -1.048 ×10−3 1.970 ×10−4

2.434 2.056 ×10−2 -0.993 -1.930 ×10−1 -7.624 ×10−5

2.470 1.773 ×10−2 0.869 -1.754 ×10−2 -2.100 ×10−7

3.402 1.780 ×10−2 0.192 -3.846 ×10−2 1.693 ×10−6

4.300 2.641 ×10−2 -1.386 -2.846 ×10−1 -4.625 ×10−5

5.053 1.321 ×10−2 1.173 ×101 -3.339 ×10−1 -3.753 ×10−5

Table IV.6 – Typical angular mechanical frequency, zero point fluctuations and
optomechanical vacuum coupling strengths for a 10 µm radius SRR. The mode
shapes are illustrated on figure IV.17.

Figure IV.17 – Mode shapes of the mechanical modes presented on table IV.6
(from left to right, and from top to bottom).

Regarding the photoelastic contribution, its relatively weak value can be explained by the
fact that most of the strain is contained in the supporting arms and not in the ring itself,
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so that the field overlap with mechanical strain is relatively weak for most mechanical
modes. Additionally, because the components of the photoelastic tensor p11, p12 et p44
are of opposite signs in silicon, they tend to cancel each other out.

Regarding the dissipative contribution, a simple comparison of equations (III.18) and
(III.22) explains the large difference between the orders of magnitude. In the geometric
contribution, the product of the optical guided mode in the ring with itself is integrated
within the ring. In contrast, in the dissipative contribution, the product is also integrated
within the ring, but between the optical guided modes in the ring and in the waveguide.
The latter is naturally weak within the ring, such that the integral is smaller than the
previous one.

From the previous discussion and simulations, it appears that geometric contribution
to optomechanical coupling is largely dominant. The obtained orders of magnitude, in
the kHz range, which is consistent with state-of-the-art values on similar geometries. In
particular, we observe that two mechanical modes (at 1.490 and 5.053 MHz) exhibit an
optomechanical coupling rate one order of magnitude above the others. These two modes
are rotationally invariant around the center of the ring and all radial displacements add
up constructively, efficiently modulating the ring perimeter. In contrast, the cavity length
remains almost unchanged with other modes that do not exhibit this rotational symmetry,
and the coupling rate is weaker (see figure IV.18).

Note that we did not observe a radial breathing mode with our suspended ring resonators
in the frequency range that we considered (below 50 MHz - chosen in line with our
experimental setup). The radial breathing mode of suspended ring resonators will fall at
higher mechanical frequency, as it implies in-plane elongation modes of the mechanical
arms. It should exhibit a large geometric contribution to the optomechanical coupling
rate, as already observed several times in suspended disk resonators. For example, in GaAs
disks, the coupling strength of the first radial breathing mode is in the GHz range, while
other coupling strengths are in the kHz range, similarly to our device [132]. In the future,
an adaptation of the experimental setup and/or of the mechanical design, allowing higher
mechanical frequency monitoring or for this mode to fall at lower mechanical frequencies,
should be an axis of research.

Variation of the index profile due to the vertical movement Actually, an addi-
tional fifth effect could also occur. When the waveguide is subject to vertical movement,
it gets closer and further from the substrate. Hence, the vertical index profile changes,
which could lead to an optomechanical contribution. This kind of coupling have already
been demonstrated with low confinement waveguides [159]. We do not expect this kind of
coupling to be significant in our case, because we use highly confined TE0 guided modes,
with a substrate placed 2 µm below the ring. As a matter of fact, we verified by numerical
simulations that the effective guided index is not modified when we reduce the distance
between the ring and the substrate down to 1 µm. Accordingly, this effect can safely be
neglected.
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Figure IV.18 – From left to right: visualization of the mechanical modes at
0.199 MHz, 2.434 and 1.490 MHz, with exaggerated deformation. The surface
color indicates normalized total displacement between -1 (blue) and +1 (red).
In the first case, there is no ring deformation (pure rotation), and the cavity
length remains unchanged. In the second case, the positive and negative out-of-
plane deformations compensate each other and the cavity lengths is only slightly
changed. In the third case, all the radial displacements add up constructively
and the cavity length is more efficiently changed.

IV.3.3 Sagnac contribution

Qualitative description

The first mechanical mode at 200 kHz, presented on table IV.6 and figure IV.18, is a
rotational mode. According to the perturbation approach and equation (III.18), only
variations of the boundaries normal to the direction of propagation should shift the reso-
nant frequency. By opposition, a rotation is conducted along the direction of propagation,
and should not induce optomechanical coupling on its own. This is verified on table IV.6:
this mode presents weak coupling rates, with g0 around 10 Hz.

While this is true for a stand alone wave, the situation is different when we consider a
situation where Clock-Wise (CW) and Counter Clock-Wise (CCW) waves are propagating
in the ring. In this case, a Sagnac effect happens, leading to a phase mismatch Θ between
the two opposite waves, proportional to the angular velocity Ωrot [160]:

Θ = ±P
2Ωrot

cλ
(IV.38)

In the case of two CW and CCW waves, rotation of the ring could therefore induce
optomechanical coupling. The presence of two opposite waves actually occurs in practice.
While an ideal ring is unidirectional, actual rings present a coupling between their CW
and CCW waves due to fabrication imperfections. This manifests itself on the Optical
spectrum by the presence of double peaks (see Section V.2.3). Under rotation, as the
phase mismatch between the CW and CCW waves is modified by the Sagnac effect, the
spacing between the two resonances will be modified, as represented on figure IV.19.
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Figure IV.19 – The blue curve presents a double peak resonance, due to coupling
between CV and CCW waves propagating in the SRR, with no rotation. The
green curve presents the same geometry, under rotation at Ωrot. The phase
mismatch due to Sagnac effect is Θ 6= 0, which modifies the spacing between the
two peaks. For the sake of clarity, the parameters used to draw the curves are
chosen in order to emphasize the phenomenon

Analytical description

We consider a purely rotational case where the ring is not deformed, so that we can
ignore the “non Sagnac” contributions to optomechanical coupling. Hence, the mechanical
oscillator is know described as a torsional pendulum (see below).

Here, we are interested in the effect of the angular velocity Ωrot on the dynamics. As a
result, we define a rotational optomechanical coupling strength parameter by:

grot = ∂ωr
∂Ωrot

(IV.39)

Note that grot is here in units of Hz/(rad/s), while other optomechanical coupling strength
are in units of Hz/m. In other words, these quantities are not comparable as such, as a
natural result from the fact that their intrinsic origin is different. However, their associated
optomechanical vacuum coupling strengths, in Hz, can be used for comparison.

In our case, the Sagnac shift of the optical frequency due to rotation is expressed by
[161, 162, 160]:

∆ωSag = P
λ0neff

Ωrot (IV.40)
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where P = 2πR is the perimeter and λ0 is the wavelength in vacuum. It simply follows:

grot = P
λ0neff

(IV.41)

This is really different from usual optomechanical contributions, where the coupling in-
versely scale with the cavity dimensions. Hence, the optomechanical coupling strength
arising from a rotation will benefit from larger cavities, which is at first sight not favorable
in our case.

Equations of motion: Using grot and describing the mechanical oscillator as a torsional
pendulum, the equations of motion read:



da
dt =

[
i

(
∆− grot

(
Ωrot + dθ

dt

))
− κ

2

]
a+√κesin

d2θ

dt2 + Γm
dθ
dt + Ω2

m(θ − θ0) = −~grot
Jeff
|a(t)|2 + FL(t)

Jeff

(IV.42)

where θ is the torsional angle, Ωrot is an external angular velocity applied to the system,
Jeff ≡ meffR

2 is the effective moment of inertia, and all the influence of Ωrot on the
mechanical motion is effectively included on FL(t). In the following, we note ∆r =
∆− grotΩrot.

Following the same linearization approach that in the first chapter, we obtain:



dδa
dt =

[
i∆r −

κ

2

]
δa− igrotā

dδθ
dt

d2δθ

dt2 + Γm
dδθ
dt + Ω2

mδθ = −~grot
Jeff

(ā∗δa+ āδa∗) + FL(t)
Jeff

(IV.43)

It follows:



δa(ω) = ωgrotā

i (∆r + ω)− κ/2δθ(ω)

δθ(ω) = FL(ω)
Jeff (Ω2

m − ω2 − iΓmω) + Σr(ω)

(IV.44)

where the optomechanical self-energy Σr(ω) contains all the optomechanical interaction
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and reads:

Σr(ω) = ~ωg2
rot|ā|2

Jeff

(
1

i (∆r + ω)− κ/2 + 1
i (∆r − ω) + κ/2

)
(IV.45)

Optical spring: The optical spring effect is determined by:

δΩm(ω) = ~g2
rot|ā|2

2Jeff
κ

2

(
1

(∆r − ω)2 + (κ/2)2 −
1

(∆r + ω)2 + (κ/2)2

)
(IV.46)

Optomechanical damping: The optomechanical damping rate is:

Γopt = ~g2
rot|ā|2

Jeff

(
∆r − ω

(∆r − ω)2 + (κ/2)2 + ∆r + ω

(∆r + ω)2 + (κ/2)2

)
(IV.47)

Application: an optomechanical gyroscope

Traditionally, optical gyroscopes operate by measuring the Sagnac shift ∆ωSag (equation
(IV.40)) with two CW and CCW waves propagating in an optical cavity. Because ∆ωSag
scales with R, a size reduction is unfavorable as it strongly limits the sensitivity.

Alternatively, with an optomechanical resonator, we can change the picture and decide to
monitor the variations of the mechanical frequency δΩm rather than the optical Sagnac
shift ∆ωSag. Indeed, because of the optomechanical interaction, the optical spring is
related to the rotation by ∆r = ∆− grotΩrot, so that any change in the external angular
velocity Ωrot is reflected on the mechanical spectrum.

Optomechanical gyroscopes could be interesting because their sensitivity inversely scale
with the ring radius, contrary to purely optical ones. It can be intuited from the obser-
vation of the fact that the prefactor of the optical spring does not depend on the size of
the resonator, because the effective moment of inertia scales with R2 and grot scales with
R. 9

This point is illustrated on the left subplot of figure IV.20, where we plotted the optical
spring δΩm for different ring radii, in a resolved sideband regime. For each radius, we
observe that the sidebands of maximal and minimal optical spring effect appear at higher
intensity and angular velocity when the radius is decreased. This subplot is at zero
optical detuning, i.e. ωL = ωr. On the right subplot of figure IV.20, we plotted the
optical spring δΩm at a fixed 5 µm ring radius, but with various detuning. We observe
that as the detuning is increased, the sideband intensity is kept constant but appears at

9Note that this is only a preliminary observation ; other parameters such as ∆r, Ωm, and κ also
depend on the radius
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lower angular velocity. This shows that the targeted angular velocity can be switched by
means of a precise control of the optical detuning.

An obvious comment about these figures is that the observed value of δΩm, in the nHz/mW
range, is extremely small and is impossible to assess under these conditions. For instance,
the resolution bandwidth of commercial spectrum analyzers is at best at 1 Hz, which
could be attained with an optical quality factor Qopt ≡ 5× 108. This order of magnitude
is 500 times higher than state-of-the-art realizations, and is not conceivable with present
fabrication techniques. While not explored during this work, an other way to enhance the
sensitivity could be to realize more complex anchor geometries. For example, curved arms
are a strategy already used in integrated microelectromechanical gyroscopes [163, 164],
that could easily be adapted to an optomechanical design.

(a) The radius is varied, the detuning
is zero.

(b) The detuning is varied, the radius
is 5 µm.

Figure IV.20 – Evolution of the optical spring effect. We chose state-of-the-art
(yet realistic) values Ωm = 1 GHz, meff = 5 fg, Qopt = 106, for the 5 µm radius,
and considered a R3 and R dependence of the effective mass and optical quality
factor with increasing radii. We suppose that the mechanical frequency is kept
constant by playing on the arm length between two radii..

Despite the previous propositions, it seems difficult to efficiently increase the theoretical
value of δΩm with stand-alone silicon suspended ring resonators at time of writing. Among
other ways to improve their performances, the use of arrays of optomechanical gyroscope
has been shown to increase the Sagnac shift in optical gyroscopes [165, 166] and could also
be advantageous in optomechanical gyroscope. An other way could be to select an other
photonic platform (such as SiN or GaAs), allowing further size reduction and/or better
photonic performances. This is however highly hypothetical and more precise work needs
to be done in order to validate or refute these options. Yet, the fact that the sensitivity
of the optomechanical gyroscope inversely scales with its size appears interesting enough
to be worth mentioning.

Aside from the gyroscopic application, one can also notice that the expression for the
optical spring and optomechanical damping rate of a rotational optomechanical resonator
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are very similar to what we found in chapter I in the case of a vibrational optomechanical
resonator (equations (I.23) and (I.25))10, with the difference that the dependence of the
fractions numerators towards the parameters ∆ − ω and κ are switched. In chapter I,
optical spring was governed by ∆ − ω and optomechanical damping was governed by κ.
Here, it is the opposite. While we are not sure how this could be used, it is interesting
enough to be worth mentioning.

Conclusion

In this chapter, we have studied the optical, mechanical, and optomechanical behavior of
suspended ring resonators, from a theoretical point of view.

On the optical part, we have presented the general properties of suspended ring resonators,
before discussing the influence of the mechanical suspension arms on optical losses, and
of thermal and non-linear effects, that affect the optical lineshape at high optical power.

On the mechanical part, we have presented the large variety of mechanical modes that
can be engineered with suspended ring resonators, based on analytical and numerical
modeling. We also briefly discussed mechanical losses.

Finally, on the optomechanical part, we showed that the optomechanical interactions are
mainly dominated by cavity length variations, and discussed a possible optomechanical
interaction due to the Sagnac effect that arises between two opposite traveling waves. The
latter could find applications as an integrated on-chip optomechanical gyroscope, with the
advantage of not suffering from size reduction.

In the next chapter, we will discuss the realization of suspended ring resonators, along
with optical and optomechanical measurements.

10Where we had used ~g2
om/meff = 2Ωmg

2
0
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CHAPTER V

Realization of suspended ring
resonators

In this chapter, we report on the realization of suspended ring resonators, from fabrication
to characterization. At the beginning of this work, while there was a heavy baggage of
photonic knowledge and tools in the team, we had no experience with cavity optome-
chanics. As a consequence, multiple fabrication runs, conducted all along the thesis, were
necessary in order to properly achieve the suspension step. This is discussed in the first
section of this chapter.

Photonic experiments are presented on the second section. While they are supposed to
only be a preliminary experimental step to select the best devices, they also allowed us
to investigate optical losses, thermo-optic effects and non-linear effects in SRR, and to
achieve a better knowledge about their general optical behavior.

In parallel to fabrication and photonic experiments, a dedicated test bench was built in
order to perform optomechanical characterization under vacuum. Unfortunately, due to
fabrication difficulties and the novelty of the experiment in regard to the team, we had
not enough time to conduct in-depth optomechanical experiments on SRR. In the third
section, we present preliminary optomechanical results, that will be further investigated
in the future.
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V.1 Fabrication of suspended ring resonators

V.1.1 Introduction

In this section, we present the technological fabrication of SRR. It was conducted at the
CEA-Leti cleanroom, a silicon-oriented facility with almost industrial fabrication pro-
cesses. This last point comes at both a profit and a cost. On the one hand, it allows to
rely on well-mastered, reproducible & state-of-the-art processes and recipes. On the other
hand, there is slow inertia associated to the development of new processes and recipes,
which turns unfavorable when dealing with exotic geometries.

The fabrication is conducted over a 200 mm SOI wafer. The general idea underlying the
fabrication process is quite straightforward. General steps to be followed are:

1. Patterning of the Grating Couplers (GC).

2. Patterning of the photonic and optomechanical structures.

3. Encapsulation of the photonic structures.

4. Release of the optomechanical structures.

For SRR, most of the work was focused on the fourth step. The main problem that we
faced was collapsing and/or sticking of the free standing waveguides and rings after the
release.

It should be noted that we realized suspended ring resonators and sub-wavelength grating
optomechanical cavities (discussed in part III) over the same wafers. Because the latter
exhibit really small dimensions (down to 50 nm) some of the choices that were made here
are a result of a compromise between these two families of devices. In particular, we used
shape e-beam lithography in order to pattern the waveguide level, instead of classical UV
photo-lithography.

The mask layout that we drew is presented on appendix C.

V.1.2 Process flow

The detailed fabrication steps are:

1. Partial etching of the Grating Couplers (figure V.1):

(a) Resist deposition.

(b) Resist insulation & development (UV photo-lithography).

(c) 70 nm partial etching of the Si layer.

(d) Resist removal.
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2. Waveguide etching (figure V.2):

(a) Resist deposition, insulation & development (e-beam lithography).

(b) Complete etching of the Si layer.

(c) Resist removal.

3. Waveguide encapsulation (figure V.3):

(a) Deposition of a 1100 nm thick SiO2 layer, by HDP (High Density Plasma).

(b) CMP (Chemical Mechanical Polishing) of the SiO2 layer, down to 700 nm above
the waveguide level.

4. Waveguide release (figure V.4):

(a) Deposition of a 1800 nm thick SiO2 layer, by HDP.

(b) Resist deposition, insulation & development.

(c) 2300 nm dry etching of the SiO2 layer, down to 200 nm above the waveguide
level.

(d) Resist removal.

(e) Wet etching of the BOX and SiO2 layers.
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(a) Resist deposition

(b) Resist insulation & development

70 nm

(c) 70 nm partial etching of the Si layer

(d) Resist removal

Si SiO2 Res. > 0

Figure V.1 – Partial etching of the Grating Couplers. Here and in the following,
we do not represent the whole SOI wafer, but only the two top silicon and silicon
dioxide layers.

(a) Resist deposition, insulation & development

(b) Etching of the Si layer

(c) Resist removal

Si SiO2 Res. < 0

Figure V.2 – Waveguide etching.
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1100 nm

(a) Deposition of a 1100 nm thick SiO2 layer, by HDP

700 nm

(b) CMP down to 700 nm

Si SiO2 SiO2

Figure V.3 –Waveguide encapsulation. Note that we used different colors in order
to differentiate the thermal SiO2 from the substrate, and the SiO2 deposited by
HDP.

113



2500 nm

(a) Deposition of a 1800 nm thick SiO2 layer, by HDP

(b) Resist deposition, insulation & development

200 nm

(c) Dry etching of the SiO2 layer, down to 200 nm above the
waveguide level

(d) Resist removal

(e) Wet etching of the BOX and SiO2 layers

Si SiO2 SiO2 Res. > 0

Figure V.4 – Waveguide release.
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V.1.3 Discussion on the process flow

Initial wafer: Fabrication is realized over a 200 mm Silicon-On-Insulator (SOI) wafer
consisting of a 220 nm layer of Si, a 2 µm layer of Burried OXide (BOX) SiO2, a 725 µm
Si substrate, and a 1.5 µm BOX layer. Note that we only represented the Si layer and
the upper BOX layer on the previous Figures.

Patterning of the grating couplers: The first fabrication step is the realization of
the Grating Couplers (GC) (figure V.1), that are used to inject light into the photonic
waveguides, and to collect it out of them (see paragraph V.2.1). The design of the GC
relies on 150 nm thick silicon trenches, and hence implies partial etching of the 220
nm thick silicon layer. The thickness of the trenches is related to their width, and was
calculated taking into account the minimal dimensions allowed by the UV lithography
equipment. Because we use e-beam lithography latter in the fabrication (patterning of the
waveguide level), which allows smaller minimal dimensions, we could have used a design
with fully etched trenches, and merged the patterning of the GC and of the waveguide
level into a single step. However, we had no experience with the design and fabrication
of fully etched GC, and could not be certain that their performances would be good. As
this is a critical component, without which experimental characterization is impossible,
we chose to rely on the partially etched design, that was already well-mastered by the
team.

Patterning of the waveguide level: Next, the waveguide level is realized (figure V.2).
Due to the presence of SWG structures with dimensions down to 50 nm, shape e-beam
lithography is used. The developments associated to this part of the process are presented
on section VII.1.

Encapsulation of the photonic structures: Thirdly, the wafer is encapsulated by a
silica superstrate (figure V.3). This step was not mandatory, and could have been merged
with the final step. It was introduced as an intermediate step, from which we could
investigate variations of the final release step. It also enables to end the fabrication of
some wafers at this step, in order to investigate the impact of the release on the SRR
optical performances (see section V.2.3).

Release of the optomechanical structures: During the final step, the optomechan-
ical structures are released (figure V.4). The structures that are to be suspended are
500 nm wide. At the end of the process, they are either supposed to be doubly clamped
between silica walls or standing on a silica pedestal. In the second case, the pedestal is
protected by a 2 µm wide silicon disk. The idea is to use an anisotropic etching process,
that will equally attack silica in all directions, but leave intact silicon. With a proper
choice of the etching time, all the silica below the silicon waveguides and mechanical arms
can be removed, while keeping a silica foot below the silicon disks.
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During release, it is necessary to protect the other structures. We used a hard mask strat-
egy in order to do so, because appropriate resists are not allowed inside of the equipment
that we initially intended to use for the final liberation step. This is the first step of the
release process. We tried to use a thin HfO2 layer, a thin AlN layer, and a thick silica
layer as hard masks. While the first two approaches are commonly used as protective
layers, we encountered difficulties with their adherence to the silica superstrate and their
protective efficiency was somehow poor. The last approach revealed to be the more ef-
fective in practice. We deposited a 2.5 µm thick silica layer over the whole wafer, that
was etched above the structures to be released. This first etching was an isotropic dry
process, stopped 200 nm above optomechanical structures. During this first etching, the
structures that would not be released were protected by a resist layer (which is possible
in this case). After etching, photonic structures are hence protected by the 2.5 µm thick
silica layer, acting as a hard mask, while optomechanical structures are only topped by a
thin 200 nm silica layer, that will be rapidly consumed during the final etching.

Apart from the right choice of the duration, the right choice of the etching attack type was
also critical during the final anisotropic liberation step. We first tried to use a classical
HF vapor etching, with mitigated results. The majority of the structures ended bonded
to the substrate or broken, which we think is a consequence of strong forces exerted by
the HF vapor process. After a few tries, we finally opted for a chemical HF etching, that
proved to be more efficient.

Problems encountered during fabrication

We faced two main difficulties during fabrication, at the waveguide patterning step and
at the release step. Difficulties encountered during the patterning of the waveguide level
are consequence of the presence of really small SWG structures, and are discussed in part
III. The second difficulty, as mentioned above, was the release step. Note that because a
process flow is sequential, it was necessary to solve the patterning problem first, before
even acknowledging the release problem, which took a subsequent time.

Some of the most frequent failures that we encountered after release are presented on
Figure V.5: bonding of the SRR or of the bus waveguide to the substrate, breaking of the
SRR at the junction between the arms and the ring, and breaking of the bus waveguide.
Generally speaking, we observed that the rings with smaller radii and the highest number
of arms were easier to suspend. Adding a second mechanical ring was also verified to be
effective in order to avoid breaking and or collapsing. This is easily explained due to the
resulting higher rigidity of the structure.

It must be noted that some of these failures are a consequence of the design itself, and not
of the fabrication process. Most notably, it was retrospectively an obvious mistake to try
to suspend the bus waveguide over a 100 µm length, as it dangerously favors bonding to
the substrate. On our new designs (unfortunately not fabricated at time of finishing this
work), we used a modified version of the mask, that reduces the length of the waveguide
(see figure V.6).
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(a) Bonding of the ring and of the
bus waveguide to the substrate

(b) Collapsing of the ring after
breaking at the junction with the
arms

(c) Breaking of the bus waveguide
(view at proximity of the ring)

(d) Breaking of the bus waveg-
uide (view at the silica wall)

(e) Bonding of the ring to the
substrate, and bonding of the bus
waveguide to the ring

(f) Bonding of the bus waveg-
uide to the substrate, and partial
bonding of the ring

Figure V.5 – Non-exhaustive selection of the most frequent failures encountered
after attempting to suspend the optomechanical structures.
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(a) Old design (b) New design

Figure V.6 – New version of the mask, that reduces the risks of bonding of the
bus waveguide to the substrate. The green patterns correspond to the waveguide
level. The blue patterns correspond to the opening window during release.

V.2 Integrated optics measurements

In this section, we present photonic experiments on classical ring resonators and suspended
ring resonators. By using Grating Couplers (GC) and an optical probing station mounted
with optical fibers, full-scale wafers can be tested during a relatively short time.

During a preliminary step, the efficiency of the GC and the propagation losses in photonic
waveguides are measured, which gives a good estimation of the overall quality of the wafer.
Based on these measurements, the best dies are selected.

More precise optical characterization was conducted on these dies. By comparison between
classical and suspended ring resonators, and by confronting the results from different
fabrication recipes, the influence of the suspension on optical losses was investigated. We
also studied the doublet splitting phenomenon between clock-wise and counter-clockwise
propagating waves, and the non-linear & thermo-optic effects.

V.2.1 Experimental setup

We use a probe station to perform the photonic measurements. Grating Couplers (GC)
are used to couple light in and out of the wafer. A tunable fiber laser centered around
1550 nm is used to measure optical spectra.

Grating couplers: The injection and collection of light into the photonic waveguides is
realized by means of a grating coupler. It consists of a periodic pattern of partially-etched
trenches, above which an optical fiber is aligned (see figure V.7a). For a given angle of
the fiber with respect to the normal (8o with a silica superstrate to 12o when the GC is
in the air), the incident light coming from the optical fiber is “forced” to enter a planar
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(a) Optical fiber aligned above a
Grating Coupler.

(b) Optical probing station.

Figure V.7 – On the probing station, the optical fiber are aligned above the
grating couplers by means of two multi-axis piezo-controllers, and the wafer is
mounted on a movable chuck.

waveguide by constructive interference, and is slowly transferred into the strip waveguides
through an adiabatic taper.

Contrary to edge coupling, GC technology does not require to cleave the wafer, and the
alignment of the fiber above the GC is less hazardous and time-consuming. However, the
coupling efficiency is a little poorer and is bandwidth limited, usually over a 100 nm range
around the target wavelength. It is also polarization dependent (TE in our case).

Additionally to easier manipulation, the main advantage of the GC resides in the resulting
possibility to conduct automatized optical experiments over full-scale wafers, by using an
optical probing station.

Probing station: Optical characterization is conducted with an automatized optical
probing station, analogous to an electrical probing station, with the difference that elec-
trical probes are replaced with optical fibers (see figure V.7b). The wafer is mounted on
a movable chuck. Between two successive measurements, the selected dies and subdies
are coarsely aligned under the optical fibers by moving the chuck. The optical fibers are
then precisely aligned above the GC by means of a three-axis piezo-controller. The whole
process is controlled by means of a LabVIEW R© routine [167].

The use of a probing station allows to make easy and fast measurement of multiple devices
over full-scale wafers. Cleaving is not necessary, and optical alignment is not critical.
The measurement of a full spectrum takes less than one minute, and statistical data over
numerous dies can be provided. The use of Polarization Maintaining Fibers (PMF) insures
that polarization is not modified over time (as the GC are polarization-dependent).
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Figure V.8 – Optical test bench. DUT: Device Under Test. SMF: Single Mode
Fibre. PMF: Polarization Maintaining Fiber.

Experimental setup: The complete experimental setup is presented on figure V.8. The
light source is a polarized Tunable Laser Source (TLS), centered around 1550 nm, mounted
with a polarization maintaining fiber. Light is first sent to a polarization maintaining
50/50 optical coupler, from which half the light is sent as a reference wavelength and
power signal to the PhotoDetector (PD), and half the light is sent to the wafer. Light
is coupled in and out of the photonic structures by means of GC. Once extracted, it is
sent to the PD. By comparison to the reference signal, we directly obtain the value of the
optical power lost at the DUT, in decibels. The wavelength is scanned step by step, with
increasing wavelength, at a speed of 10 nm/s. A full spectrum can be measured in less
than 10 seconds1.

V.2.2 Preliminary measurements: efficiency of the grating cou-
plers and linear propagation losses

We first measure the GC efficiency (at the point of maximum transmission), based on
the optical spectrum of the simplest device: a 1 mm long waveguide with GC facing each
other at its ends. We consider the waveguide to be short enough to add only negligible
losses2, and after subtraction of the reference spectrum that accounts for the losses due to
the setup, the GC efficiency is simply obtained by dividing by the number of GC. Appart
from the estimation of the GC efficiency, these spectra are also used as normalization
spectra when measuring other devices.

We next calculate the linear propagation losses. The optical spectra of spiral-shaped
waveguides of various lengths (1 to 6 cm) are realized. The linear propagation losses at a
given wavelength are then calculated by linear regression between the spirals lengths and
their output powers.

1In comparison, the complete alignment of the optical fibers takes between 1 to 2 minutes, and is the
limiting step.

2This is actually quite reasonable considering the measured linear propagation losses.
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GC efficiency (dB) GC λMax. (nm) Prop. losses (dB/cm)
Median -5.60 1556.43 -4.05
Average -5.43 1556.28 -4.08
Standard deviation 0.38 2.13 0.71
Best result -4.55 – -3.09

Table V.1 – Statistical results over 25 identical dies of the same wafer: unitary
GC efficiency, wavelength of maximal transmission, & linear propagation losses
at λ = 1550 nm. This data corresponds to typical results with an optimized
process flow, at the end of the thesis. Multiple runs aiming to improve these
values have been conducted.

Typical results calculated over the 25 identical dies of one wafer are presented on table V.1
and figure V.9. The losses associated to the GC are a little high in comparison to other
results in the team (we expect ≡ −4 dB), but remain totally acceptable. We believe that
the unusual thickness of the silica superstrate (the design is adapted to a thinner layer)
and the possible degradation of the surface after the chemical HF vapor (in comparison
to a “clean” CMP) are responsible for the small additional losses.

In contrast, linear propagation losses are quite high compared to state-of-the-art silicon
photonic waveguides (by almost 2 dB/cm). We believe that this is due to the use of
non-classical e-beam lithography, which is further discussed in Section VII.1.2. This is
a detrimental point for ring resonators, as the quality factor is limited by propagation
losses.

The systematic statistical measurement of this two figures gives a good estimation of the
overall quality of a wafer, and allows to establish a comparison basis between different
fabrication runs. It also allows to establish a cartography of the dies and to investigate
fabrication variations over a wafer. For example, on Figure V.9d, we can see that linear
propagation losses are decreasing between each successive rows, which is a signature of the
fact that we used an increasing insulation dose between rows during e-beam lithography.

Note that at the end of this thesis, the part of the process related to GC and photonic
waveguides is well-mastered, and the results from one wafer to an other (or from one die
to an other) are reproducible.

V.2.3 Experiments on suspended ring resonators

We now present our experimental results on suspended ring resonators. Based on the
optical spectrum, our first focus was on the calculation of the figures of merit of SRR,
and on comparison to classical ring resonators. The calculation of these values revealed
the presence of doublet splitting at resonance, thermo-optic effects, and non-linear effects.
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(a) Experimental spectra of the trans-
mission of a straight waveguide with
input and output GC (all dies)

(b) Experimental transmission spectra
of spirals with increasing length (one
die)

(c) Wafer cartography of the GC, in
dB

(d) Wafer cartography of the linear
loses, in dB/cm

Figure V.9 – Typical results of the GC and Spirals characterization.

Figures of merit: statistical data, and comparison with classical rings

We first measured the four figures of merit of ring resonators (defined in section IV.1.3):
the Free Spectral Range (FSR), the finesse F , the quality factor Qopt, and the contrast
Cr.

Establishment of statistical data Calculation of the FSR, F , Qopt and Cr requires to
extract, for each peak, the FWHM, the position, and the upper and lower values. While
this can be easily done by hand for a few spectra, it is not an option to realize this task
by hand for all the spectra. For a single wafer, there are 25 dies, each dies contains 94
rings, and each ring harbors 11 resonance peaks in average, which represents almost 26
000 resonance peaks.

Given the large numbers, we developed a routine that automatically fits each reso-
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nance peak with a Lorentzian shaped function, using Levenberg-Marquadt method. The
Lorentzian function is really convenient, as its fitting parameters naturally are the FWHM,
the position, and the upper and lower values. Alternatively, we also developed a version
of the algorithm in which the whole spectrum is fitted all at once with an Airy function
(equation (IV.3)), rather than locally fitting each peak. While this approach is theo-
retically more rigorous, it is harder to implement and fails more often (due to a larger
number of fitting parameters), and the final results differ from less than 1% between the
two approaches.

In practice, the accuracy of the statistical data obtained by this method is highly limited.
This is mainly due to the presence of double peaks on the spectra, and to the modification
of the shape of the peaks because of non linear effects and optical bistability, which are
difficult to account for in an automatized routine. Additionally, the ability of the algorithm
to correctly detect the presence of each peak can be undermined if the envelope of the
signal is poor (which happens when the alignment of the optic fibers above the GC is not
precise enough), and even in the best case scenario, the accuracy of the Lorentzian fit itself
will induce some error. For this reason, we eliminate poor fits based on their coefficient of
determination R2 and consider a set of statistical data created after removing outliers in
the 30th percentile. While this treatment is classical when removing outliers from a set of
statistical data, it remains an arbitrary choice that will falsify the results to some extent.
The statistical results must be considered with care, and need to be hand proofed when
considering a given spectrum. In other words, we consider the whole set of statistical data
as a global indicator, with results becoming inaccurate when we consider a spectrum in
particular.

Classical ring resonators We first consider classical ring resonators, i.e. without me-
chanical arms and encapsulated in silica. If we anticipate that SRR will present additional
losses due to the release process and the mechanical anchors, classical ring resonators can
be seen as their ideal case, and constitute a basis of reference. Typical results of statistical
data established over a complete wafer are presented on table V.2.

Over the 25 dies of the same wafer, a given resonant wavelength occurs in a 10 nm window
(see figure V.10). This is just a little more than half the FSR of 5 µm radius rings, which
allows to properly differentiate each order of resonance (in the sense of the integer p in
equation (IV.1)). For larger rings, the FSR is smaller than 10 nm, and the resonance
orders can not be accurately distinguished.
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(a) Superposition of the 25 spectra of a
ring resonator of radius 5 µm and gap
240 nm.

(b) High quality factor resonance with
critical coupling. The ring radius is 15
µm and the gap is 240 nm.

Figure V.10 – Wavelength reproducibility and high quality factor resonance for
classical ring resonators.
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Radius 5 µm 15 µm 25 µm
Gap 230 nm 240 nm 250 nm

Qopt

Median 20 600 44 400 65 400
Average 24 800 43 700 61 800
Std 12 600 8 400 13 300
Best 57 600 65 300 89 400

Cr

Median 0.938 0.980 0.989
Average 0.937 0.978 0.970
Std 0.021 0.017 0.033
Best 0.993 0.999 0.999
F
Median 254 169 150
Average 307 166 141
Std 157 32 30
Best 717 249 203

FSR (nm)
Median – 5.893 3.546
Average – 5.891 3.539
Std – 0.061 0.037

Table V.2 – Typical figures of merit of classical ring resonators of various radii.
Quality factor and finesse values are at the state-of-the-art level [168], despite
elevated liner propagation losses. The increase of optical quality factor and
decrease of finesse with a radius increase is respected. Large fluctuations in the
statistical data for the 5 µm radius rings are due to enhanced non-linear and
thermal effects for smaller radii. Critical coupling is achieved.
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Radius 10 µm 10 µm 10 µm 10 µm 10 µm 10 µm
Gap 300 nm 300 nm 300 nm 300 nm 300 nm 300 nm
Nb. Arms 2 3 4 2 3 4
Materials Si/SiO2 Si/SiO2 Si/SiO2 Si/Air Si/Air Si/Air

Qopt

Median 37 300 17 900 17 800 17 300 10 600 21 900
Average 33 600 18 700 17 300 18 900 12 500 24 100
Std 15 600 12 700 11 100 3 200 4 500 9 500
Best 53 500 47 700 39 900 31 600 19 600 38 000

Cr

Median 0.577 0.513 0.444 0.877 0.868 0.292
Average 0.592 0.476 0.443 0.732 0.893 0.273
Std 0.130 0.089 0.123 0.317 0.069 0.037
Best 0.808 0.581 0.676 0.986 0.998 0.308
F
Median 226 108 105 93 55 110
Average 204 113 107 98 67 122
Std 95 77 67 56 16 52
Best 333 287 244 163 106 202

Table V.3 – Typical figures of merit of encapsulated and released SRR of various
number of arms. Large fluctuations make the statistical data irrelevant, and the
best value is a better figure of comparison.

Suspended ring resonators Results for encapsulated (Si/SiO2) and released (Si/Air)
SRR are presented on table V.3. The ring radius is 10 µm, the gap is 300 nm, and the
number of arms is varied between 2, 3 and 4. From observation of the standard deviation,
which is of the same order of magnitude than the median and average values, it is obvious
that statistics are not really relevant here. As mentioned above, this is due to difficulties
encountered during the automatic fitting of the spectra because of peaks with significant
deviation from the ideal Lorentzian shape.

In this case, a more relevant figure of comparison is the best value. This quantity is more
likely to be correct, as the algorithm mainly tends to return underestimated values3, and
it can easily be hand-proofed during a post-processing step.

3Corresponding to a fit conducted on a flat portion of the spectrum.
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From observation of the optical quality factor and finesse of encapsulated SRR, we denote
a strong correlation between the number of arms and the optical performances. Qopt
(resp. F) is degraded by almost 6 000 (resp. 50) with each additional arm. From the
theoretical model of section IV.1.1, by incorporating a parameter corresponding to the
losses associated to one arm, we obtain that this degradation corresponds to a transmission
rate T = 0.998 at each arm. This value is in the upper range of the results obtained by
2D simulation in section IV.1.5. Note that the design of each arm in regard to the design
parameters (Wtip, Lstr) is always the same in this set of data, respectively 50 nm and 1.5
µm.

Proper experimental investigation of the respective influence of Lstr and Wtip should be
the focus of future work aiming to improve the quality factors of SRR. In this regard, it
is not necessary to make the measurements on SRR. An experimental strategy based on
cascaded bends with an arm junction can be followed.

The behavior of released SRR is even more contrasted. A clear tendency based on the
number of arms is difficult to extract. However, the results are clearly poorer than encap-
sulated SRR. Higher losses after release can have two origins. First, because of the higher
index contrast, we naturally expect a higher influence of the rugosity and higher propaga-
tion losses. Second, it is also possible that the rugosity was increased during the release
process. This last point actually tends to be verified by indirect measurements of the
rugosity from observation of doublet splitting, presented on the next Section. However,
it is difficult to determine the relative importance of each origin.

Observation of doublet splitting of resonance peaks

On the optical spectrum, we often observe two closely spaced peaks at resonance (for
example, see Figure V.11). This is a manifestation of contradirectional coupling between
the clockwise (CW) and counter-clockwise (CCW) waves and of the breaking in rotational
symmetry due to surface-roughness and to the presence of the bus waveguide.

By opposition to the ideal unidirectional case, there are in practical cases two CW and
CCW waves propagating in the ring. The existence of the CCW wave comes from back-
scattering on the surface-roughness [169], back-scattering on the mechanical anchors, and
back-scattering at the coupling region [170]. Additionally, these effects also result in
a lifting of degeneracy of the two resonant wavelength, as they degrade the rotational
symmetry of the structure.

In silicon ring resonators, it is generally assumed that surface-roughness is the main source
of contradirectional coupling [168]. Under this assumption, the spacing ∆λ between two
resonances can be linked to surface scattering by [171]:

∆λ = λ0K(n)Vs
Vr

(V.1)

where λ0 is the degenerate resonant wavelength, K(n) is a function of the refractive
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Figure V.11 – Observation of a two closely spaced peaks due to contradirectional
coupling and a lifting of degeneracy. This typical doublet splitting was observed
on a 5 µm ring resonator.

indexes, Vr = π(R2
o − R2

i )H is the physical volume of the ring, and Vs =
√
RLcHσr is

a parameter that appears in the calculation of scattering losses, has the dimension of a
volume, and is often regarded as the effective volume of a typical scatterer [171].

Figure V.12 – Correla-
tion length Lc and stan-
dard deviation σr. Re-
produced from [171].

Lc and σr are the statistical roughness parameters, re-
spectively the correlation length and the standard devi-
ation. An informal and simplistic description of these
parameters is that Lc corresponds to the length of the
roughness, and σr corresponds to its “height”, i.e. by
how much it varies from the ideal value.

Experimentally, we observe that the magnitude of the
doublet splitting varies among the same spectrum. It can
be explained by the fact that each resonance order has a
slightly different field profile along the ring, and due to
the randomness of the rugosity distribution, some modes
will “feel” it more than others, depending on where the
nodes and antinodes of the field are positioned in regard
to defects. This argument is developed in [172], where a theoretical analysis based on
the statistical properties of the sidewall roughness shows that mode splitting between
resonant modes of different orders are uncorrelated.

On table V.4, we present the value of the product of the rugosity parameters, obtained
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from experimental values of doublet splitting and equation (V.1). We consider encapsu-
lated classical ring resonators (CRR), encapsulated SRR, and released SRR.

CRR, encaps. SRR, encaps. SRR, released
∆λ (nm) 0.01 – 0.05 0.03 – 0.10 0.05 – 0.12
√
Lcσr (nm3/2) 27.27 – 136.3 51.73 – 172.4 91.46 – 219.5

Table V.4 – Rugosity values measured from the doublet splitting.

For classical ring resonators, the product is a little more elevated than previous measure-
ments on waveguides fabricated at our cleanroom facility [93], but remains at the same
order of magnitude, indicating that (or at least, not refuting that) surface-roughness is
probably the main source of contradirectional coupling. This is expected given the high
linear propagation losses that we measured.

We obtain higher values for encapsulated SRR than for encapsulated CRR, and higher
values for released SRR than for encapsulated SRR. This suggests that the rugosity is at
the same time increased by a degradation of the quality of the surfaces after the release
step, and by an additional back-scattering at the mechanical anchors. Note that the latter
is conveniently counted as an increase of rugosity here, but should be formally described
separately, as it is not a random process.

Summary on the optical losses due to the mechanical anchor and the release
step

From the discussion of the previous sections, it appears that:

1. Mechanical anchors degrade the optical quality factor and the finesse of the SRR,
with a linear dependence on the number of arms.

2. The sidewall rugosity of the SRR is increased after the release.

3. The optical quality factor and the finesse are strongly undermined after the release.
It is not possible to say yet how much the higher rugosity and the higher index
contrast contribute to the deterioration.

Observation of thermo-optic and non-linear effects

Figures V.13 and V.14 represent the optical spectra of a classical ring resonator and a
suspended ring resonator, of 5 µm radius, for various optical powers. Also represented is
the evolution of the resonance position and of the extinction ratio (that is, the contrast,
but expressed in dB). Note that similar yet less pronounced results are obtained with 10
µm radius ring resonators, due to the finesse reduction (and hence power density within
the ring) with increasing radii (see figure IV.4).
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The first straightforward observation is that there are thermo-optic and non-linear effects
in both cases: we observe the typical resonance shift and triangular optical instability
due to thermo-optic effects, and in the case of the classical ring resonator, we observe a
strong variation of the contrast with optical power, a signature of TPA and FCA.

These effects, introduced in section IV.1.6, are more pronounced in the classical ring
resonator, because of their larger finesse compared to those of suspended ring resonators
; with superior losses in the second case, less power builds up within the cavity.

Heat generation and the resulting thermo-optic effects are a consequence of optical absorp-
tion within the ring, that is mainly governed by TPA and FCA. These two phenomenons
respectively square with the power 2 and 4 of the optical power, and one could expect the
resonance wavelength shift to be at least quadratic (because TPA is predominant over
FCA). Yet, we observe a linear shift. When more optical power is stored in the cavity,
total optical absorption naturally increases, and so does the heat generation. As a result
of the thermo-optic effect, the resonance is shifted to higher wavelengths, and the ring is
slightly detunned, which counterbalances and slows down the increase of optical power
and optical absorption, leading to an almost linear thermo-optic shift.

As we already argued in section IV.1.6, modification of the contrast with increasing laser
powers is a signature of TPA and FCA and of an increase of intrinsic losses in the ring.
We observe that the contrast of the classical ring resonator quadratically drops from 95%
at 1 mW to 50% at 15 mW, which suggests that optical losses in the ring effectively evolve
quadratically, in accordance with theory.

From the variation ∆λr of the resonance wavelength, we can calculate the raise of temper-
ature in the ring, based on equation (IV.22). We find ∆T = 20 mK/mW in the classical
ring, and ∆T = 1.4 mK/mW in the suspended ring. As already pointed out in chapter I,
this heat generation could lead to important photothermal forces.
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(a) Optical spectra for increasing laser
powers.

(b) Observation of the shift of the res-
onant wavelength (green) and decrease
in extinction ratio (blue) with increas-
ing laser powers.

Figure V.13 – Observation of thermo-optic and non-linear effects on a 5 µm
radius ring resonator.

(a) Optical spectra for increasing laser
powers.

(b) Observation of the shift of the res-
onant wavelength (green) and decrease
in extinction ratio (blue) with increas-
ing laser powers.

Figure V.14 – Observation of thermo-optic and non-linear effects on a 5 µm
radius suspended ring resonator.
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V.3 Cavity optomechanics measurements

Based on the results of optical characterization, the best dies and rings are selected
and undergo optomechanical measurement. Experiments are conducted on a custom
optomechanical bench, operating under vacuum.

V.3.1 Optomechanical test bench and principle of measure

Test bench presentation

Optomechanical experiments are conducted under vacuum, on a custom dedicated test
bench, developed during the thesis. Under vacuum experiments allow to reduce damping
of the mechanical oscillations due to the viscosity of the environment, and to exacerbate
the optomechanical effects. Typically, the mechanical quality factor of cantilevers remains
limited by air damping while the pressure exceeds 10−3 mbar.

The optomechanical test bench is separated between two parts: the vacuum chamber,
where the samples are characterized, and an experimental table, where the optical exper-
imental equipments are placed.

Presentation of the vacuum chamber: The vacuum chamber is presented on figure
V.15. The basic concept is to fix an optical fiber to a motorized stage, and to displace
the fiber between each GC, such that the principle of the optical prober is reproduced.

Inside the vacuum chamber, there are two three-axis miniature linear stages (x, y, z), on
which single mode optical fibers are mounted. The angle of the optical fibers is fixed at
11.5o in order to correspond to the design of the GC, but can easily be replaced. The
range of motion of the linear stages is large enough to cover a complete die (2.2 cm ×
2.2 cm), with a displacement precision down to 2 nm. This resolution precision is smaller
that the one we use on optical probers (1 µm), such that the the optical fibers can finely
be aligned above the grating couplers.

During alignment, the position of the optical fibers is verified through a glass viewport and
an extra-long distance work camera positioned above the vacuum chamber. The latter is
fixed on a three-axis manual linear stage, such that the whole sample can be observed.

The vacuum chamber and the pump are designed to attain a pressure of 10−5 mbar. The
pump system is composed of a primary diaphragm pump and a secondary turbomolecular
pump. Typically, the chamber is pumped down to 1 mbar with the primary pump, and
the secondary pump is switched on beyond this point. Depending on the level of impurity
in the chamber (in other words, on how long the chamber had been set off vacuum), the
pumping time down to the 10−5 mbar range can take between one hour and half a day.
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(a) View of the inside of the chamber. 1: Optical fiber feedthrough. 2: Sub-D15
feedthrough. 3: Three-axis miniature linear stage. 4: Die, placed under two
optical fibers.

(b) View of the outside of the chamber. 1: Extra-long distance working cam-
era. 2: Polarization controller. 3: Optical fiber feedthrough. 4: Pump. 5:
Laser source. 6: Lock-in amplifier. 7: Optical spectrum analyzer. 8: Sub-D15
feedthrough.

Figure V.15 – View of the vacuum chamber and of the test bench.
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(a) Cold finger, with an adaptation
piece allowing wire bonding with the
die under test

(b) Cryogenic cane

Figure V.16 – A planned upgrade is to add a cryogenic cane and the cold finger
of a cryostat.

At time of writing, the die is placed on a metallic support. A planned upgrade is to
replace this support by the cold finger of a cryostat, with the added possibility to realize
an electrical activation based on wire bonding between the tested sample and an adapted
support. This upgrade is adapted from the cryogenic cane presented on figure V.16.
The chamber is realized in a way that allows the addition of a cane either vertically or
horizontally.

One of the advantages of low-temperature operation is that it allows to eliminate thermo-
elastic damping and Akhiezer damping that limit the mechanical quality factor. As a
matter of fact, an increase of the mechanical quality factor from 7 600 at room temperature
to 37 000 at 22K was reported on [31]. Another advantage is that it should also reduce
thermo-optic effects and improve the stability at high optical powers.

In order to limit external, which are detrimental for the alignment of the optical fibers
above the grating couplers, the chamber stands on an anti-vibration table.

Optical fibers are brought inside and outside the chamber by mean of a low-loss single
mode feedthrough, mounted with FC/APC connectors. There are six sub-D15 feedthroughs,
used to control the linear stages, and three remaining passages that could allow additional
inputs or outputs (for example, electrical connections).

Rapid presentation of the measurement equipments: Multiple measurement equip-
ments can be installed alongside the vacuum chamber. The link between these equipments
and the vacuum chamber is assured by means of two feedthrough for single mode optical
fibers. The simplest experimental arrangement is described in the following section, and
schematically presented on figure V.17.

Generally speaking, a tunable laser source, a polarization controller, a photodetector and
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a lock-in amplifier are used. Besides these fundamental elements, the optical setup can
easily be modified, as all optical components are fibered. For example, an additional
laser source, electro-optic modulators, or wavelength filters can easily be added when
performing more complex measurements.

Setup for thermomechanical noise measurement

Because all components are fibered, the experimental setup outside of the chamber can
easily be modified between two measurements. On the following, we present the setup
used for the measurement of the thermo-mechanical noise of SRR.

Figure V.17 – (Slightly) simplified schematic of the experimental setup used for
thermomechanical noise measurement. DUT: Device Under Test. SMF: Single
Mode Fibre. PMF: Polarization Maintaining Fiber.

The schematic of the setup is presented on figure V.17. This is the simplest version of the
optomechanical setup. In order to measure the thermomechanical noise, we use a Tunable
Laser Source (TLS), a low noise PhotoDetector (PD) with integrated transimpedance
amplifier, and a Lock-In Amplifier (LIA).

The mechanical modes are probed by setting the input laser at the point of maximum
slope of an optical resonance (on the blue side), and recording the noise spectrum of
the optical transmission. The optical resonant wavelength is shifted with mechanical
fluctuations, resulting in an amplitude modulation of the optical transmission at the
mechanical frequency. The signature of mechanical motion is hence present on the noise
spectrum of the optical transmission.

In this configuration, the optical power is kept low enough to induce only negligible op-
tomechanical gain and optical forces (which are proportional to optical power), such that
the measured motion is assumed to be entirely due to thermomechanical noise. This
hypothesis is verified by doing the measurement at two distinct wavelength. According
to the general theory presented in the first part of this manuscript (in particular equa-
tions (I.23) and (I.25)), optomechanical effects are a function of the detuning between
the laser wavelength and the cavity resonance wavelength. In this regard, by doing the

135



measurements at two distinct wavelengths, we can assume that optomechanical effects are
negligible if the results are comparable.

Additionally, keeping a low enough optical power (typically in the milliwatt range at the
input laser) is a way to avoid non-linear effects. As pointed out in photonic experiments,
we observe significant thermomechanical and non-linear effects in silicon suspended ring
resonators, which modify the shape and position of the resonance peaks. In the context
of cavity optomechanics, where all effects are a function of the laser detuning in regard
to the cavity, this is a real experimental complication, as this means that the detuning is
not kept constant under non-linear effects.

On the other hand, we can not either work at a too low optical power, to which the
efficiency of the transduction scheme is proportional. Below a certain optical power (de-
pending on experimental conditions), the optomechanical transduction is weaker than the
background noise, and mechanical motion can not be resolved.

The exact compromise between an optical power strong enough to surpass the background
noise and low enough to limit optomechanical gain and non-linear effects is not directly
quantifiable, as it depends on the experimental setup, the experimental conditions, and
the quality of the device under test. As a general and phenomenological rule, powers
between 0.5 mW and 1 mW at the tunable laser source were used.

V.3.2 Thermomechanical noise measurement

Theory

In this configuration, we aim to measure the mechanical spectrum of the mechanical
ring by monitoring its thermomechanical noise. We expect to observe several peaks on
the spectrum, corresponding to the vibrational modes identified in the previous chapter.
Thermomechanical noise originates from thermally driven random motion of the mechan-
ical resonator, that can be seen as a stochastic force acting in every direction, such as
the force noted FL in equation (I.3). From the fluctuation-dissipation theorem, the Power
Spectral Density (PSD) associated to this force is:

SF (ω) = 4kBT
ω

Im
[

1
χ(ω)

]
(V.2)

where SF (ω) is in units of N2/Hz, kB is the Boltzmann constant, T is the temperature
of the heat bath, χ is the mechanical susceptibility, and there is a factor 4 instead of 2
because we consider one-sided spectral densities.

The mechanical susceptibility is defined by δx(ω) = χ(ω)FL(ω), such that using the results
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from chapter I:

χ(ω) = 1
meff (Ω2

m − ω2 − iΓmω) + Σ(ω) (V.3)

The link with the PSD of the thermally driven oscillations is Sth(ω) = SF (ω)×|χ(ω)|2. On
the following, we will consider very weak optomechanical interaction such that Σ(ω) ≡ 0
and:

Sth(ω) = 4kBTΩm

meffQm

1

(ω2 − Ω2
m)2 +

(
ωΩm

Qm

)2 (V.4)

where Sth(ω) is in units of m2/Hz, kB is the Boltzmann constant, T is the temperature of
the heat bath, Ωm is the angular mechanical resonant frequency, meff is the effective mass
of a given mode, and Qm is its mechanical quality factor.

At resonance, ω = Ωm, and the PSD of thermomechanical noise is:

Srth = 4kBTQm

meffΩ3
m

(V.5)

Torsional modes: The previous derivation was (implicitly) conducted for vibrational
mechanical modes. It can easily be adapted to torsional mechanical modes, which leads
to the PSD for rotational thermal fluctuations:

Srth,θ = 4kBTQm

JeffΩ3
m

(V.6)

Note that Srth is in units of m2/Hz, while Srth,θ is in units of rad2/Hz. The PSD for angular
velocity is Sth,rot(ω) = ω2Sth,θ(ω), such that:

Srth,rot = 4kBTQm

JeffΩm

(V.7)

that is in units of (rad/s)2/Hz, consistently with the unit of angular velocity.

Optomechanical transduction:

The mechanical motion results in resonance wavelength variations, which are in turn
converted to optical power variation. The PSD of the transmitted optical signal is hence
linked to the PSD of thermomechanical noise, as we derive on the following.
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Beneath Lorentzian approximation, the optical power transmitted by the optomechanical
chain reads:

Pout =
(

1− Crγ
2

(λ− λr)2 + γ2

)
Pin (V.8)

where Pin and Pout are the optical power at the entrance and exit of the bus waveguide
(hence not the optical powers at the laser source and on the photodetector).

Under small fluctuations (∆λ� γ), we can write:

Pout (λ+ ∆λ) = Pout (λ) + ∆λ∂Pout

∂λ
+ ... (V.9)

which leads to:

∆Pout = ∆λ× 2PinCr
γ2(λ− λr)[

(λ− λr)2 + γ2
]2 (V.10)

Experimentally, Cr, λr and γ are known from optical characterization. λ is fixed by the
laser, and the only unknown is ∆λ. We are interested in the mechanical fluctuations, so
that we rewrite:

∆λ ≈ ∂λ

∂x
×∆x = − λ2

2πcgom ×∆x (V.11)

where the −λ2/2πc term comes from the fact that gom is defined in terms of angular
frequency ω = 2πc/λ.

Combining equations (V.10) and (V.11), we obtain:

∆Pout = −PinCrλ
2

πc

γ2(λ− λr)[
(λ− λr)2 + γ2

]2 × gom ×∆x (V.12)

Alternatively, in terms of spectral densities, we can write:

Sout(ω) =

∣∣∣∣∣∣∣
PinCrλ

2

πc

γ2(λ− λr)[
(λ− λr)2 + γ2

]2 × gom
∣∣∣∣∣∣∣
2

× Sth(ω) (V.13)

And we have effectively linked the PSD of the transmitted optical signal to the PSD of
thermomechanical noise Sth(ω). In particular, based on the amplitude

√
Sout(Ωm) of the
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peak at mechanical resonance, we will be able to extract gom:

gom =

PinCrλ
2

πc

γ2|λ− λr|[
(λ− λr)2 + γ2

]2

−1

×

√
Sout(Ωm)√
Srth

(V.14)

where Srth is given by equation (V.5).

Torsional modes: The same procedure can be derived for torsional modes, by replacing
gom and Srth by grot and Srth,rot

Measurements:

We work on a SRR of radius 10 µm, with 2 rings and 3 arms. The first step consists
of measuring the optical spectrum and extract the optical parameters of interest. The
optical spectrum is presented on the inset of Figure V.18. We observe double peaked
resonances, due to CW and CCW waves co-propagating within the ring. The associated
optical parameters are summed-up on Table V.5.

Plaser (mW) Cr λrs (nm) λbs (nm) λr (nm) γ (nm) Qopt

0.8 0.87 1549.555 1549.523 1549.540 0.05 30 000

Table V.5 – Optical parameters of interest. λr refers to the position of the first
peak, along which we conducted the optomechanical transduction. λbs and λrs
respectively correspond to the laser wavelength during blue side and red side
experiments (in other words, at the left and right side of the resonance peak).
Note that Plaser is linked to Pin by Plaser = αinputPin where αinput represents the
losses due to the 50/50 coupler and the GC: αinput ≡ −7 dB.

We next process to measure the power spectral density of thermomechanical noise. On
the LIA, the signal magnitude is:

VLIA(f) = RGpd ×
√
Spd(f)

[
V/
√
Hz
]

(V.15)

where R is the sensitivity of the photodetector (R = 0.95 A/W @ 1550 nm), Gpd is
the (variable) gain of the photodetector (Gpd = 107 V/A in the following measurements),
Spd(f) = α2

outSout(f) is the PSD on the photodetector, with αout the optical losses between
the exit of the bus waveguide and the photodetector, including contributions from the GC
and a 50/50 coupler. The DC component of the signal is filtered out by the photodetector.
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Figure V.18 –Right: Optomechanical transduction of the first mechanical mode,
by monitoring of the thermomechanical noise. Dots: experimental data. Lines:
analytical fit. Inset: Associated optical spectrum. Left: Shape of the mechan-
ical fundamental mode, obtained by FEM simulation.

Fundamental mode: We begin by acquiring a mechanical spectrum around the first
mechanical mode, which corresponds to a torsional mode. The recorded spectrum is
presented on figure V.18.

Measurement were conducted on both the red and blue sides of the optical resonance
(shown as an inset), with little to no variations between the measured mechanical fre-
quencies and quality factor, as shown in table V.6. Because there is little variation, we
can safely assume that the optomechanical actuation is negligible in comparison to the
thermomechanical noise (i.e. Σ(ω) ≡ 0). The amplitude of the peak, however, is different
between the two measurement. This is because the laser detuning was different during
the measurements. As we will see, the measured amplitudes lead to the same grot which
is also consistent with the hypothesis of a negligible optomechanical gain.

Blue side Red side Deviation
fm (kHz) 208.1718 208.2153 99.98 %
Γm (kHz) 2.0820 2.0839 99.91 %
Qm 993 999 99.60 %
Ampl. (mV/

√
Hz) 0.573 0.418 –

Table V.6 – Comparison of the mechanical parameters obtained by blue side and
red side optomechanical transduction.

We find the mechanical frequency at 208 kHz, which considering fabrications uncertainties
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is in reasonable agreement with the value 199 kHz found with FEM simulation.

While we qualify the mechanical mode as torsional, we must also consider that there is
a little deformation of the ring. As the ring rotates, the length of the support arms is
slightly modified, and the ring shape is mildly deformed. In this regard, we consider the
optomechanical interaction to be the sum of a torsional and a vibrational contributions,
of respective coupling strengths grot and gom.

From the theoretical model introduced in section IV.3.3, the torsional contribution is gov-
erned by a Sagnac effect, while the vibrational mode is (mainly) governed by a geometric
contribution (i.e. by the variation of the cavity length).

Based on fm and Qm, the values at mechanical resonance of the angular velocity and
mechanical motion PSD are:

Srth,rot = 1.08× 101 (rad/s)2/Hz
Srth = 4.03× 10−22 m2/Hz

(V.16)

where we used Jeff = 1.17 × 10−24 kg .m2 and meff = 1.83 × 10−14 kg, obtained by FEM
simulation.

We next calculate grot and gom. We use:

grot =

PinCrλ
2

πc

γ2|λ− λr|[
(λ− λr)2 + γ2

]2

−1

×

√
Sout(Ωm)√
Srth,rot

= R×

√
Sout(Ωm)√
Srth,rot

(V.17)

and the equivalent formula for gom.

The value measured on the LIA is linked to Sout(Ωm) by equation (V.15) and Spd(f) =
α2
outSout(f), such that we find:


√
Sout(Ωm) = 8.80× 10−11 W/

√
Hz, On the red side√

Sout(Ωm) = 1.21× 10−10 W/
√

Hz, On the blue side
(V.18)

From table V.5, we calculate:

R = 2.23× 1014 Hz/W, On the red side
R = 2.06× 1014 Hz/W, On the blue side

(V.19)
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From which we finally find:


grot = 5.99× 103 Hz/(rad/s), On the red side
grot = 7.59× 103 Hz/(rad/s), On the blue side
gom = 0.98 kHz/nm, On the red side
gom = 1.24 kHz/nm, On the blue side

(V.20)

Discussion: The values of grot and gom that we find experimentally are respectively a
factor 100 and 5 more elevated than the values that we find with theoretical and numerical
modeling.

We can make two hypothesis to explain this (large) discrepancy. What we believe to be
the most likely explanation is that due to the reality of fabrication and its associated
imperfections, the mechanical mode deviates from its simulated behavior and presents
an increased deformation of its shape, which increases the magnitude of the geometric
contribution4 to gom.

An other straightforward explanation could be that we in fact do not observe a mechanical
mode. We have a number of clues that tend to refute this theory. First, we observed
similar results with other suspended ring resonators of different design and hence different
mechanical resonant frequencies. Second, the peak disappears when not operating under
vacuum (which strongly degrades the mechanical quality factor), suggesting that this is
indeed a mechanical mode. Example of these two points are presented on figure V.19).

Nevertheless, we can not conclude on these measurements. Both additional measurements
on new samples and additional theoretical modeling considering the possibility of a cou-
pling between the geometric and rotational contributions need to be done to validate or
refute these results.

Higher order modes: The higher order modes are more “classical” vibrational modes,
with pure deformation of the ring. We were not able to address them with our present
experimental setup. This can be explained based on the noise evaluation of the experi-
ment. Because the thermomechanical noise scale with Ω−3

m , it rapidly decreases at high
frequencies, and the optical output after optomechanical transduction is at the same level
than the background floor noise due to instrumentation (laser, PD and LIA).

The voltage noise density background value is the sum of the decorrelated laser shot noise
and instrumental noise due to the LIA and photodetector. It reads:

Sfloor = R2G2
pd ×

(
α2Sshot + NEP2

)
+ SLIA

[
V2/Hz

]
(V.21)

4Note that we still do not consider the photo-elastic and dissipative contributions, which according to
table IV.6 are systematically at least two orders of magnitude smaller than the geometric contribution.
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(a) Observation of the torsional mode
of a 5 µm ring

(b) Superposition of the measurements
under and off vacuum

Figure V.19 – Left: Observation of the torsional mode of a 5 µm radius sus-
pended ring resonator, with 2 rings and 3 arms. We find: Qopt = 9 000, Qm = 100
and fm = 2.24 MHz. Right: Superposition of measurements under and off vac-
uum on the previously presented 10 µm radius suspended ring resonator. In the
air, the resonance peak disappears.

Figure V.20 – Noise performances of our photodetector (Femto OE300).

where R, Gpd and NEP are the responsitivity, transimpedance gain and Noise Equivalent
Power of the photodetector. α represents optical losses along the circuit due to optical
couplers and GC, Sshot is the laser shot noise, and SLIA is the LIA noise.

The noise performances of the photodetector are dependent on the experimental band-
width and transimpedance gain. They are presented on figure V.20.

The PSD associated to the laser shot noise, Sshot, is given by [173]:

Sshot = Plaser
2hc
λ

[
W2/Hz

]
(V.22)

where Plaser is the laser power, h is Planck constant, c is the speed of light, and λ is the
vacuum wavelength.
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The voltage noise density for the LIA is also dependent on experiment parameters. Typ-
ically,

√
SLIA = 10 nV/Hz, which is negligible in front of other noise contributions.

Based on the LIA and PD datasheet, we calculated the expected voltage noise density
background value Sfloor for various bandwidths. The results are presented on table V.7.

Cut-off Sfloor, high PD gain Sfloor, low PD gain
220 kHz 3.80× 10−1 mV /

√
Hz 3.80× 10−2 mV /

√
Hz

1.8 MHz 3.81× 10−2 mV /
√
Hz 3.81× 10−3 mV /

√
Hz

3.5 MHz 3.82× 10−3 mV /
√
Hz 3.82× 10−4 mV /

√
Hz

14 MHz 4.03× 10−4 mV /
√
Hz 4.33× 10−5 mV /

√
Hz

80 MHz 7.16× 10−5 mV /
√
Hz 2.35× 10−5 mV /

√
Hz

Table V.7 – Voltage noise density background with Plaser = 1 mW

Cut-off Sout, high PD gain Sout, low PD gain
220 kHz 5.80× 10−1 mV /

√
Hz 5.80× 10−2 mV /

√
Hz

1.8 MHz 2.80× 10−2 mV /
√
Hz 2.80× 10−3 mV /

√
Hz

3.5 MHz 6.31× 10−4 mV /
√
Hz 6.31× 10−5 mV /

√
Hz

14 MHz 5.35× 10−6 mV /
√
Hz 5.35× 10−7 mV /

√
Hz

80 MHz 5.65× 10−8 mV /
√
Hz 5.65× 10−9 mV /

√
Hz

Table V.8 – Output voltage noise density after optomechanical transduction with
Plaser = 1 mW

The voltage noise density background must be compared to the optical voltage noise
density after optomechanical transduction Sout (converted in units of µV2/Hz). For the
calculation of Sout, we used the values simulated in section IV.3.3 for gom, meff, Ωm and
Srth, and typical experimental values for R. The results are presented on table V.8

From comparison of the two tables, we observe that Sfloor and Sout are of similar magnitude
until 1.8 MHz, and that beyond this bandwidth the noise floor exceeds the transduced
thermomechanical noise. As already pointed out, this is a consequence of the fact that
thermomechanical noise scales with Ω−3

m . Based on this observation, the fact that we
could not assess mechanical modes around and below 1 MHz is more understandable.

There are three ways around which future work could be conducted in order to enhance
the noise performances (other than selecting experimental instruments with better noise
performances).

First, we can work on the optical chain, which will increase R−1 and the efficiency of the
optomechanical transduction. The main objective here should be to reduce optical losses
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due to sidewall rugosity and the suspension arms, and to achieve critical coupling such
that the contrast is maximal. The product of the contrast and the optical quality factor
is a good quantity to maximize.

Second, we can work on the mechanical part. Generally speaking, we want to reduce
mechanical losses to increase the mechanical quality factor. In particular, the strategies
presented on the theoretical section aiming to reduce radiation towards the substrate
could be followed.

Third, we could select a mechanical mode with a larger optomechanical coupling strength.
In particular, aiming for the radial breathing mode seems to be a prospective lead, as
already discussed.

A note on optomechanical self-oscillations: Based on the measured experimental
parameters, we can calculate the power threshold for optomechanical self-oscillations,
defined by equation (I.27). We use: Qopt = 30 000, gom = 1 kHz/nm, Qm = 1 000,
fm = 200 kHz, Plaser = 0.8 mW, λ = 1550 nm. The value xZPF = 4.860 × 10−14 m, used
to calculate g0, is extracted from numerical simulations.

Based on this set of parameters, we find Pthre ≈ 1015 W, at the laser source. This extremely
elevated value is, among other, a consequence of the unresolved sideband regime of our
optomechanical oscillator: using notations from part I, we have κ ≈ 40 GHz � Ωm ≈
1.25 MHz (where κ is hence the cavity decay rate).

Realistically, we can expect to improve the optical quality factor and mechanical quality
factor to Qopt = 100 000 and Qm = 10 000 in future fabrication runs, and obtain an
optomechanical coupling rate in the hundred of kHz/nm range. Yet, the power threshold
would still be in the MW range, which remain totally unrealistic for practical applications
(as a reminder, our laser sources are limited to a 25 mW input power). It highlights the
necessity to work in a resolved sideband regime, which should be pursued by working at
higher mechanical frequency.

Practically speaking, it again leads to targeting the radial breathing mode in the me-
chanical spectrum. As already discussed, this mode should present a coupling rate in the
MHz/nm range, and a mechanical frequency in the GHz range (based on the comparison
to similar published geometries [174, 128, 132]). With this set of parameters, we find a
power threshold in the mW range, which is now realistic.

Conclusion

In this chapter, we have discussed the technological realization of suspended ring res-
onators, as well as our photonic and optomechanic experiments.

Regarding technological realization, we have presented the process flow realized in our
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clean-room, and its associated critical steps ; in particular, the release of the optomechan-
ical resonator was a complicated yet crucial part of the process.

The optical characterization was realized on probing stations mounted with optical fibers.
We showed a strong correlation between the number of supporting arms and the optical
losses within the suspended ring resonator. We also evidenced that the latter are increased
after the release step, because of higher rugosity and index contrast. In parallel, we
evidenced thermo-optic and non-linear effects in classical and suspended ring resonators,
that can strongly perturb the shape of the optical resonance at high optical power.

Finally, we conducted preliminary optomechanical measurements on a dedicated test
bench, under vacuum, that was developed during the thesis. We could observe the ther-
momechanical noise of the fundamental mechanical mode of a suspended ring resonator.
This mode is mainly rotational, which is an exotic configuration for optomechanical oscil-
lators, and that has not been extensively studied yet. These experimental results remain
preliminary. Notably, improving the test bench, devices performances and the theoretical
understanding of the optomechanical interaction in torsional modes are still a work in
progress in the team.

Among other solutions to upgrade the optomechanical transduction, the test bench could
be modified to realize optomechanical downmixing of the mechanical frequency, which is
presented on the perspective part at the end of the manuscript. Without giving details
about the procedure, this could be a way to realize the optomechanical transduction of
high order modes at an arbitrary low frequency. This way, we could in particular target the
radial breathing mode, from which we expect the best optomechanical coupling strength.
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Part III

Sub-wavelength grating cavity
optomechanics
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Introduction

In this part, we focus the discussion on a new approach to cavity optomechanics, centered
around Sub-Wavelength Grating (SWG) waveguides. In particular, we point out how the
use of SWG waveguides, by introducing a new form of optomechanical coupling, could be
beneficial to the field of cavity optomechanics. The discussion is organized around two
chapters. In the first chapter, we present the modeling and design of the two different
approaches that we studied during this thesis: interdigitated combs SWG waveguides and
optomechanical “ladder-like” SWG waveguides. In the second chapter, we discuss the
realization and characterization of these structures.

In the following, we introduce the underlying concept of SWG waveguides, and briefly
introduce how they could benefit the field of cavity optomechanics.

Introduction to SWG photonic waveguides

A dielectric sub-wavelength grating medium is a periodic material of alternative dielectric
layers n1 and n2, with a pitch Λ way smaller than the optical wavelength:

Λ� λ

2neff
(V.23)

where neff is the guided effective index. Under this condition, the pitch is small enough to
suppress any diffraction or interference effect arising from the periodicity of the medium,
that can be considered as a uniform and lossless one, with an anisotropic averaging effect
over the refractive index.

SWG medium were initially used in free-space non-linear optics due to their birefrin-
gent behavior [175]. More recently, with the progresses of e-beam lithography, SWG
medium started to be used as constituting parts of photonic waveguides. The core (and/or
cladding) of the waveguide is patterned into periodic segments small enough to respect
the SWG condition (V.23), as shown on figure V.21. The resulting SWG structure is
lossless, supports quasi-guided optical modes, and can be considered as a wire waveguide
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Figure V.21 – SEM image of a SWG waveguide [176].

with an equivalent core refractive index n̄ (this is explained in section VI.1.1). It is hence
referred as a SWG waveguide.

SWG waveguides were first proposed and demonstrated in 2010 [177, 178], as a new way
to both easily engineer the effective guided index through a simple lithographic process,
and to reduce linear propagation losses. Since then, they have been exploited to improve
the performances of many photonic components, such as filters [179], waveguide crossing
[180], optical true delay lines [181], and fiber to chip grating couplers [182]. Recently, it
was also realized that SWG waveguides can be used to manipulate the dispersion profile
of light, notably to provide a flat profile with zero dispersion [183, 184].

In parallel, SWG waveguides have found applications in the field of Mid InfraRed (MIR)
photonic [185]. With a proper design of the SWG media, it is possible to avoid the use of
silicon dioxide, that absorbs light beyond the 4 µm wavelength, and to fully exploit the
silicon transparency window up to 8 µm [186, 187].

SWG waveguides are also used in photonic bio-sensors [188], where the interaction of a
molecule with the evanescent field of an optical cavity is tracked down through interfer-
ometric detection. Because the field of SWG waveguides presents a better overlap with
its surrounding environment than classical waveguides, the sensor sensitivity and per-
formances are improved. Additionally, in a fully-etched SWG waveguide, this (already)
higher sensitivity is even further improved by the fact that the analyte can directly interact
with the field at the gap between two consecutive pads.

Cavity optomechanics with SWG photonic waveguides

During this thesis, we studied the application of SWG waveguides to the field of cavity
optomechanics. Our interest came from the realization that the equivalent refractive
index n̄ of a SWG waveguide is modified under displacement (see section VI.1.1). As
a result, strong optomechanical interactions should naturally appear in suspended SWG
waveguides.
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Formally speaking, the displacement dependence of the refractive index of SWG waveg-
uides is similar to the photo-elastic effect, such that we can describe the optomechanical
interaction as the sum of three contributions: the geometric and photo-elastic contribu-
tions, already presented on the previous parts, and the additional SWG contribution, that
adds-up with the others. We tried to exploit the SWG ability to enhance the optomechan-
ical coupling strength with what we call optomechanical “ladder-like” SWG waveguides,
presented on section VI.3.

In parallel to this approach, we also studied optomechanical structures where the SWG
properties allow to replicate interdigitated combs MEMS inertial sensors. Contrary to
classical optomechanical schemes, neither the refractive index nor length of SWG interdig-
itated combs photonic waveguides are modified with mechanical displacement. However,
the width of an equivalent waveguide is. This is presented on section VI.2.
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CHAPTER VI

Optomechanical “ladder-like” &
interdigitated combs SWG photonic
waveguides

In this chapter, we present the two geometries that we studied during this thesis: SWG
interdigitated combs waveguides and “ladder-like” SWG waveguides.

Prior to the discussion, we introduce a general description of SWG photonic waveguides.
An analytical model is proposed, whose description is verified with rigorous numerical
simulations. This model is then used to describe our optomechanical SWG waveguides.

SWG interdigitated combs waveguides are described on section VI.2. They rely on clas-
sical interdigitated combs structures, but with sub-wavelength dimensions. Apart from
optomechanical applications, this waveguide could also be also find applications in MIR
photonics or as a bio-sensing platform.

“Ladder-like” SWG waveguides are described on section VI.3. The pads constituting this
suspended SWG waveguide are supported by two thin lateral beams. The waveguide
can either be integrated inside a directional coupler, a Fabry-Perot cavity, or both at the
same time. The resulting optomechanical coupling will be, respectively, either dissipative,
dispersive, or both.
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VI.1 Modeling of SWG waveguides

VI.1.1 Analytical description of SWG waveguides

We consider a periodic medium of alternative dielectric layers n1 and n2, with a pitch Λ
that satisfies the SWG condition:

Λ� λ

2neff
(VI.1)

As already mentioned above, the SWG medium can be considered as a uniform and
lossless one, with an anisotropic averaging effect over the refractive index. The equivalent
refractive indexes can be expressed by Rytov’s formula [189]:

n̄2
‖ = n2

2 + FF
(
n2

1 − n2
2

)
(VI.2)

1
n̄2
⊥

= 1
n2

2
+ FF

(
1
n2

1
− 1
n2

2

)
(VI.3)

for a polarization parallel or perpendicular to the layers interfaces, where FF = a/Λ is
the Filling Factor (FF) ; a is the first layer length, and Λ− a is the second layer length.

From formulas (VI.2) and (VI.3), the refractive indexes n̄‖ and n̄⊥ are a function of the
filling factor. This is the reason why the refractive index of SWG waveguides is sensitive
to mechanical motion and particularly suited to cavity optomechanics ; under elongation
or shrinkage of the waveguide, the two layers will respond differently to the mechanical
stress, and the filling factor is modified.

Following Rytov’s equivalent picture, a waveguide whose core is made of SWG material
can be treated as a strip waveguide with an adapted refractive index n̄‖, which is depicted
on figure VI.1, with the main notations that we use. In the following, we will always be
in the case of a parallel polarization, and we simply write n̄‖ = n̄.

Figure VI.1 – Schematic of a SWG waveguide and its equivalent strip waveguide.
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Side comment - Influence of the pitch Λ and comparison to photonic crystals

At first sight, SWG waveguides are very similar to a classical photonic crystal. If we
consider a segmented waveguide such as the one of figure VI.1, based on the pitch Λ, we
can identify three regimens:

SWG regimen: Λ � λ/2neff. This is the case we discuss all along. The pitch is small
enough to suppress diffraction and interference effects arising from the periodicity
of the medium, and lossless propagation of light occurs.

Bragg regimen: Λ ≈ λ/2neff. In this case, destructive interference of light occurs,
preventing propagation of light. This is the regimen of photonic crystals.

Dissipative regimen: Λ� λ/2neff. In this last case, the pitch is large enough to avoid
the Bragg zone, but at the cost of large diffraction losses between each segment.

These three regimens are illustrated on figure VI.2.

Figure VI.2 – From left to right: SWG regimen, Bragg regimen, and dissipative
regimen.

VI.1.2 Modeling and simulation of SWG waveguides

The modeling and design of a SWG waveguide can conveniently be conducted with the
analytical model based on Rytov’s formulas. From the calculated equivalent refractive
index n̄, the Effective Index Method (EIM) [84] or a numerical mode solver is used in order
to calculate the optical properties of the waveguide and chose a set of design parameters.
Example of such approach can for example be found on [83, 71].

While this analytical approach is easy to implement and almost instantaneous, it is not
highly accurate. As a matter of fact, Rytov’s formulas are only valid for infinite struc-
tures with a wavelength to pitch ratio λ/Λ −→ ∞. In a more rigorous approach, we
can rely on numerical simulations. However, mode solving in SWG waveguides is not a
straightforward problem ; because a SWG waveguide is not invariant along the direction
of propagation (z axis), we can not use classical Finite Element Method (FEM) or Beam
Propagation Method (BPM) mode solvers. To overcome this problem, we tried to develop
a method based on 3D FDTD simulations, which is accurate, but at the expense of heavy
computational time.
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The driving idea of this method is to let a wave propagate far enough in the SWG
waveguide such that only the guided mode remains. In order to do so, the simulated
structure is excited along the z-direction, with an arbitrary launch field. The field profile
in the (xy) plane is periodically recorded, and the overlap integral between two successive
profiles is calculated. Once this integral attains unity and remains constant, we assume
to have reach steady state behavior and that only the guided mode profile remains. From
this stationary state, the guided mode field profile is extracted from a cut in the (xy)
plane, and the guided mode effective index is extracted from the field oscillations along
the z direction.

The drawback of this approach is that it requires large simulation domains (because of
the “far enough” condition on the propagation length) with small meshes (because SWG
waveguides are by essence small), which resulted in very time and material demanding
simulations. They were typically conducted over a 7 × 3 × 40 µm3 domain, with a grid
size of 10 × 10 × 10 nm3, PML boundaries, and a time step satisfying the Courant-
Friedrichs-Lewy condition, and one full simulation could take up to one week, even with
cluster calculations.

As a result, we chose to conduct the design of SWG waveguides with the analytical model,
and to only use 3D simulations as a way to verify our results. As a matter of fact, we
actually obtained good agreement between the two schemes. Typically, we found an
85% overlap between the calculated guided modes and a 10% error between the effective
indexes, in good agreement with previous results from the literature [177].

Despite its somewhat poorer accuracy, we again stress out that the analytical model
is almost instantaneous to solve. This way, it provides a good starting point for the
general understanding and design of SWG structures, as it allows to rapidly investigate
the behavior of the waveguide for large sets of parameters.

VI.2 SWG interdigitated combs as photonic and op-
tomechanical waveguides

VI.2.1 Presentation

A SWG interdigitated combs photonic waveguide is presented on figure VI.3. Two rows of
teeth are facing each other, out of phase. They overlap at the middle of the device. Each
row of individual combs bears a pitch small enough to form a SWG material, such that so
does the interlocking region, and light can be guided in the middle overlap, perpendicularly
to the beams.

Along the direction of propagation, each comb is periodic with a pitch Λcl chosen to
respect the SWG condition (Λcl � λ/(2neff)). Following Rytov’s picture, the comb can
be considered as a homogeneous medium of equivalent refractive index n̄co. At the combs
overlap, the pitch is reduced to half is value Λco = Λcl/2, which automatically respects the
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Figure VI.3 – SEM image of a released SWG interdigitated combs waveguide.

SWG condition, and has an associated equivalent refractive index n̄cl. The filling factor
is by essence higher at the combs overlap, which assures n̄co > n̄cl. Hence, the overlap
region behaves as the core of a waveguide, and the external regions behave as a lateral
cladding for this waveguide. The width of the core, denoted W , corresponds to the width
of the combs overlap. The equivalent waveguide is presented on figure VI.4.

(a) Schematic top
view of the SWG
interdigitated combs
waveguide.

(b) Schematic top
view of the associated
equivalent waveguide.

(c) Schematic cross
view of the associated
equivalent waveguide.

Figure VI.4 – Schematics of the equivalent waveguide associated to SWG in-
terdigitated combs. Typically: W = 500 nm, H = 220 nm, L = 3 µm,
Λco = Λcl/2 = 150 nm, a = 75 nm, n1 = 3.476 and n2 = 1.

A drawback of the SWG interdigitated combs waveguide can already be pointed out from
the previous description. Because we want the lateral regions to be SWG materials, and
because Λco = Λcl/2, the pitch at the middle of the structure has to respect half the SWG
criterion: Λco � λ/(4neff). We can thus expect really small pitches at the middle of the
structure, that could be difficult to fabricate.

Although not necessary, SWG interdigitated combs waveguides can easily be suspended
into an air media, after complete etching of the substrate (in the following, we actually only
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consider the case of suspended SWG interdigitated combs waveguides). With a proper
opening window, a released SWG interdigitated combs waveguide remains anchored to the
substrate at the back-end of the beams. There is no risk of collapsing of the SWG pads
constituting the waveguide, and there is no need for additional anchoring mechanism,
which function is fundamentally included in the design of the waveguide, and will by
essence not perturb the optical behavior.

Easy suspension makes SWG interdigitated combs waveguides particularly suited for MIR
photonic applications, bio-sensing applications, and optomechanical applications, in which
the release of the SWG structure is particularly beneficial (if not necessary), but can be
challenging when not intrinsically included in the design of the waveguide.

It is noteworthy that SWG interdigitated combs waveguides are in principle easily inte-
grable into already existing photonic circuits, and can be fabricated with (almost) classical
CMOS fabrication processes.

VI.2.2 Modeling & design

Guided mode

We are first interested by the guided mode effective index and field profile. Ideally, we
want a single mode waveguide with a TE polarization, in order to match the other strip
waveguides on the wafer. Additionally, single mode behavior has also been shown to
strongly limit losses due to jitter effects on fabricated SWG waveguides [190], and the
confinement of the TE0 mode in the (yz) plan makes substrate leakage losses negligible,
as already investigated in [191]. There are 4 parameters that can be engineered: the core
filling factor FFco, the core pitch Λco, the overlap width W, the beam length L. The last
4 parameters are fixed: the height H is 220 nm, the cladding filling factor and pitch are
linked to the values in the core: FFcl = 2FFco and Λcl = Λco/2, and the beam width is
a = FFco × Λco. Regarding the materials, we consider silicon beams standing in the air.

We conducted the design based on Rytov’s formulas and a FEM mode solver. The SWG
waveguide varying along z is simplified into its equivalent waveguide invariant along z of
refractive indexes n̄co and n̄cl:

n̄co =
√
n2

2 + FFco (n2
1 − n2

2) (VI.4)

n̄cl =
√
n2

2 + FFcl (n2
1 − n2

2) (VI.5)

The only design parameter on this formulas is FFco = 2FFcl. Typically, we chose FFco =
0.5, which sets n̄co = 2.5576 and n̄cl = 1.9418. This choice was made with fabrication in
mind, as a compromise between the ease of lithography patterning and etching.

The choice of the filling factor sets the values of the equivalent refractive indexes, and the
design of the equivalent waveguide can be conducted following the same principles that
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(a) Effective index of the three first
modes, against width. We set FFco =
0.5. Note that given the fixed FF, the
behaviour does not depend on a.

(b) SWG criterion for various comb
widths (in regard to the z direction)
and filling factors. Comb width values
are, from top curve to bottom curve:
200 nm, 150 nm, 100 nm, 75 nm, 50
nm, 40 nm & 30 nm.

Figure VI.5 – Evolution of the guided effective index for various sets of parameters

for a classical strip waveguide. In order to ensure TE single mode behavior, we chose a
conservative width W = 500 nm, based on the results presented on figure VI.5a. This
value is slightly lower than the cut-off (around 600 nm), but presents the advantage to
match the width of our strip waveguides and to ease the realization of the taper between
the two waveguides (see section VI.2.2).

At this point, having chosen the filling factor and the width, if the condition Λco �
λ/(4neff) is respected, the entire behavior of the waveguide is determined. The simulated
field profile is presented on figure VI.6, and is as expected a TE0 mode. The effective
index is neff = 1.6197, which gives an estimate of the maximum pitch that we can use
while still respecting the SWG criterion: Λco � 240 nm. Accordingly, we take an upper
limit Λco < 200 nm for the pitch.

The lower limit for the pitch is set by the limitations of fabrication technology. Minimal
reachable dimensions are dictated by the lithography equipment and the etching process,
the later being highly dependent on the etching ratio between horizontal and vertical
directions and on the filling factor. After discussions with the lithography and etching
teams, we chose to use e-beam lithography and a (challenging) lower limit Λco > 100 nm
for the pitch.

The last design parameter is the beam length. On the one hand, because the beams will
be anchored to large silicon pads with high refractive index, they must be long enough
to prevent any field leakage towards the silicon pads at the boundaries. On the other
hand, it is also favorable to keep the beams as short as possible, to avoid collapsing or
sticking during fabrication, and insure mechanical solidity in general. As a compromise
between these two contradictory requirements, we chose the point from which more than
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Figure VI.6 – Guided mode profile of the equivalent waveguide, obtained by
FEM simulations and an equivalent media approach. The simulated domain
corresponds to the schematic cross-view of figure VI.4c

99.99% of the field energy is localized as the minimum beam length. This corresponds to
a L = 3 µm beam length. Note that the calculation was conducted on the field obtained
by 3D-FDTD simulations (see next section), as it is more accurate.

The whole set of design parameters is presented in table VI.1.

Core filling factor FFco 0.5
Cladding filling factor FFcl 0.25
Core pitch Λco 100 - 200 nm
Cladding pitch Λcl 200 - 400 nm
Overlap width W 0.5 µm
Height H 0.22 µm
Beam length L 3 µm
Beam width a 50 - 100 nm
Beam material Silicon
Beam cladding Air

Table VI.1 – Design parameters of a single mode TE0 SWG interdigitated combs
waveguide.
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3D simulation of the guided mode

We verified the previous design with 3D FDTD simulations of the guided mode, following
the procedure described in section VI.1.2. In the case of SWG interdigitated combs,
these simulations are of particular importance, as they take into account the alternating
symmetry of the combs, which totally disappears when we apply Rytov’s formula. In
particular, within a comb, the field profile is transferred towards the beam boundary, as
illustrated on figure VI.7 for a right comb.

Figure VI.7 – Typical guided mode profile of a SWG interdigitated combs waveg-
uide, in a right comb, obtained by 3D FDTD simulation. Note that the field
profile within a left comb is axially symmetric to this picture, with respect to
the vertical direction.

The three main components Ex, Hy and Hz are transverse to the wafer plane, and consis-
tently with the previous model, this mode can be identified as the first transverse electric
guided mode. Similarly to a strip waveguide, we observe a discontinuity and enhancement
of the field at the boundary of the comb. This is evidenced in figure VI.8a, that represents
the Poynting vector of such field.

Due to the alternating axial symmetry, the field profile quickly evolves from right to
left between each left and right successive comb (this is visible on figure VI.8b). Such
axially symmetric variation of the field with a sub-wavelength period is an interesting
particularity of SWG interdigitated combs waveguides.

The field profile amid two combs (at) the gap between two beams), is presented on fig-
ure VI.9. It is reasonably similar to what is obtained with Rytov’s formula and FEM
simulations, but less confined inside the core of the waveguide, as already observed with
other SWG waveguides. Interestingly, while this field is standing in the air, there is a
field enhancement at each “virtual” boundary, as a reminiscence of the silicon beams.
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(a) Normalised Poynting vector associ-
ated to the field of figure VI.7

(b) Top view of the amplitude of the
Ex component of a guided mode prop-
agating in a SWG interdigitated combs
waveguides, obtained by 3D FDTD
simulation.

Figure VI.8 – There is a large enhancement of the field at the boundary, that
quickly evolves from left to rigth between successive combs.

Figure VI.9 – Typical guided mode profile of a SWG interdigitated combs waveg-
uide, at the gap between two combs, obtained by 3D FDTD simulation.
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Taper

For practical integration of SWG interdigitated combs waveguides inside photonic circuits,
it is mandatory to insure minimum losses at the junction with classical waveguides.

When trying to directly inject the guided mode of a strip waveguide into a SWG inter-
digitated combs waveguide, the difference between the mode profile and effective index in
the two structures results in transition losses. In particular, the difference in symmetry1
tends to induce additional losses if not taken into account.

In order to reduce the transition losses, we designed an adiabatic taper within which
the field smoothly evolves from the symmetric mode profile of a strip waveguide to the
asymmetric and quickly oscillating mode profile of a SWG interdigitated combs waveguide.

An example of a fabricated taper is presented on figure VI.10. At the middle of the
structure (see figure VI.10b), the classical waveguide gradually tightens into a very narrow
tip (50 nm width at the end ; see figure VI.10c), while left and right alternative combs of
increasing length are progressively added along the direction of propagation.

(a) Full View.

(b) Zoom at the middle. (c) Zoom at the right extremity.

Figure VI.10 – SEM image of the suspended asymmetric taper.

1The mode profile in a strip waveguide is symmetric in regard to the vertical direction. It is not in a
SWG waveguide. See figures II.6 and VI.7.
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Figure VI.11 – Collapsing of the taper between the strip waveguides and SWG
interdigitated combs waveguides.

A constraining problematic associated to this structure is to maintain the mechanical
solidity after release (i.e. to avoid collapsing). At the waveguide extremity, the beam is
clamped to the silica substrate. At the SWG extremity, the structure is supported by the
silicon beams linked to the middle narrow tip (see figure VI.10c). Due to the increasing
length of the beams, it is necessary to wait till the end of the taper to fix them, so that
they are long enough (> 3 µm) to not perturb the optical field. In this end, while this
condition is not attained, the middle tip is also used as a mechanical support all along
the taper. Even with these precautions, collapsing could still occur, as shown in figure
VI.11).

The taper design was verified with FDTD simulations, reduced to a 2D geometry by
application of the effective index method along the vertical direction. We simulated an
entire geometry, with input and output strip waveguides, input and output taper, and
a 10 µm long SWG interdigitated combs waveguide. Varying length of the taper were
tested, with always a linear evolution profile. Based on these simulations, we chose the
generic taper to be 20 µm long. The taper could probably be shorter, notably by using
non-linear evolution profiles [192], but we preferred to keep a simple & safe design, as the
footprint was not our first concern.

SWG taper Classical taper Abrupt
0.99 0.7 0.3

Table VI.2 – Comparison of the transmission at the junction among the strip
and SWG waveguides, between a SWG taper, a classical taper, and an abrupt
transition (orders of magnitude).

The taper was also compared to an abrupt junction (directly passing from the strip waveg-
uide to the SWG waveguide), and to a “classical” adiabatic taper: the input waveguide is
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gradually tightened to a targeted width that was designed in order to match the effective
index of both guided modes. These two designs resulted in higher transition losses, as
presented in table VI.2. The three transition schemes are schematically represented on
figure VI.12.

Figure VI.12 – From left to right: schematic of an asymmetric taper, a classical
adiabatic taper, and an abrupt junction, at the transition between SWG and
strip waveguides.

SWG interdigitated combs waveguides and optical cavities

Like most photonic waveguides, applications of SWG interdigitated combs waveguides
often rely on optical cavities. More specifically, the co-integration of a SWG interdigitated
combs waveguide and a ring resonator is a way to increase the effective length of the
SWGwaveguide (“multi-passage” behavior) and to realize an interferometric measurement
(which is used when the measurand modifies the effective index ; for example in biosensors
or inertial sensors).

In order to realize such co-integration, we followed two schemes: the integration of the
SWG interdigitated combs waveguide within a racetrack resonator, and the realization of
ring-shaped SWG interdigitated combs waveguides. These two structures are schemati-
cally presented on figure VI.13.

In the first scheme, a SWG structure comprised of an input SWG taper, a SWG waveguide,
and an output SWG taper is included at the middle of a racetrack resonator. The racetrack
resonator is assessed by evanescent coupling through a straight waveguide.

In the second scheme, a SWG interdigitated combs waveguide is looped back into itself
in order to form a ring structure. The major problematic associated to this geometry is
to couple light into the SWG ring resonator. Because of the lateral footprint of SWG
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Figure VI.13 – Co-integration of a SWG interdigitated combs waveguide and a
ring resonator. Left: SWG interdigitated combs waveguide within a racetrack
resonator. Right: Ring-shaped SWG interdigitated combs waveguide, with a
zoom on the coupling region.
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interdigitated combs waveguides, it is not possible to realize the evanescent coupling by
bringing a second SWG interdigitated combs waveguide at direct proximity of the ring.
The coupling region is shown on figure VI.13. A narrow wire waveguide surrounded on
each side by a SWG media (identical to the combs) is brought at close proximity of the
ring. The narrow waveguide is designed such that its effective index matches the effective
index within the ring resonator. The efficiency of the coupling function was verified by
means of 2D FDTD simulations with the effective index method.

VI.2.3 Applications of SWG interdigitated combs waveguides

Released SWG interdigitated combs waveguides find applications in cavity optomechanics,
MIR photonics and bio-sensing. In a nutshell, the last two points benefit from the usual
advantages of suspended SWG waveguides ; respectfully the use of silicon dioxide is
avoided, and sensitivity towards the analyte is increased.

Regarding applications in the field of cavity optomechanics, three schemes can be realized,
either by exploiting the collective lateral motion of multiple beams, or by exploiting the
flexural motion of individual or multiple beams.

In the first case, the overlap between the interlocking teeth is varied, which modifies
the equivalent waveguide width and the effective index of the guided mode. This is the
configuration that we mainly considered in this work, and it is further discussed in the
following paragraph. The two other schemes are briefly discussed in the conclusion of this
section.

Exploiting the lateral motion as an optomechanical mechanism

We consider a configuration in which multiple successive combs are laterally moving, as
shown in figure VI.14a. This situation can for example be realized by anchoring part of
the combs to a movable proof mass, as shown on figure VI.15.

We note x the amplitude of the lateral displacement (along the x direction). After dis-
placement, the new overlap (and waveguide width) is W ± x. Because the guided effective
index is a function of the waveguide width, the optical phase at the end of the waveguide
is modified by lateral motion, by an amount:

∆ϕ = 2π
λ

∆neffL (VI.6)

where L = NbΛcl is the length of the movable portion, constituted of Nb beams. Under
the limit of small displacement, we consider a linear variation2 of the effective index with
the waveguide width: ∆neff ≡ α∆W = α∆x, where α is a free parameter, obtained by
simulations or experimentally.

2Which is verified by numerical simulations.
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On figure VI.14b, we plotted the effective index of SWG interdigitated combs waveguides
for diverse filling factors, against the width of the equivalent waveguide (as the local
variation are quite small, we used a large range of width values to emphasize the phe-
nomenon). α corresponds to the slope of each curve, which we observe to be increasing
with higher filling factors. We chose FFco = 0.5 when designing the waveguides, favoring
easy fabrication. We can see that this is not the best choice in terms of sensibility, and
remains a compromise.

From the previous formulas, the measurement of the variations of the optical phase gives
access to the displacement x. This can be done by co-integrating the SWG interdigitated
comb waveguide with an optical interferometer, such as a Mach-Zehnder Interferometer
(MZI) or a ring resonator. This second solution is particularly appealing, because the
optical phase is also proportional to the length L, which will be magnified by the multi-
passage behavior of the cavity.

(a) Schematic of the effect of lateral
motion x. The amplitude of the dis-
placement is amplified for visualisa-
tion purposes.

(b) Effective index against width,
using Rytov’s formula, for various
values of the Filling Factor FFco.

Figure VI.14 – The lateral motion on an assembly of successive combs modifies
the waveguide width and the effective index.

Integration within a ring resonator When the SWG interdigitated combs waveguide
is integrated within a ring resonator, the variations of the optical phase ϕ with mechanical
motion will modify the optical angular resonant frequency ω0, in a manner completely
analogous to any optomechanical cavity. We can therefore use the optomechanical cou-
pling strength to describe the optomechanical interaction:

gom = ∂ω0

∂x
= − c

neffP
∂ϕ

∂x
= − c

neffP
2π
λ
L × α (VI.7)

where we used equation (VI.6), P is the total length of the optical cavity, and L is the
length of the SWG waveguide.
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For FFco = 0.5, we calculated α = 0.596 µm−1 with our numerical model. Typical values
for other parameters are neff = 2.35, P = 300 µm and L = 50 µm, such that we can
estimate:

gom ≈ 10 GHz/nm (VI.8)

As it stands, this value of gom is in the upper range of state-of-the-art cavity optomechanics
devices. However, one must consider that the anchoring mechanism for such structure is
also relatively large.

Typically, an anchor such as the one described in the next paragraph, has a zero point
fluctuations amplitude around xZPF ≈ 0.1 fm, such that the vacuum optomechanical
coupling strength is g0 ≈ 1 MHz, which in the end is in a relatively low range among
optomechanical cavities.

Example: SWG interdigitated combs waveguide-based accelerometer

We continue the discussion by considering the example of an accelerometer based on SWG
interdigitated combs waveguides. The latter is linked to a proof mass, as shown on figure
VI.15, and is used as a transduction scheme of the mechanical motion of the proof mass.

Figure VI.15 – Schematic of a SWG interdigitated combs waveguide-based ac-
celerometer. Grey parts are fixed to the substrate and unable to move. Blue
parts are released and sensitive to mechanical motion. Orange parts denote in-
put and output waveguides. Transition tapers are not represented and scales are
not respected.

More precisely, any inertial force applied on the released device induces a variation of the
combs overlap and of the equivalent waveguide width. This will alter the optical phase of
the propagating wave, along with its effective index. Hence, the mechanical motion can
be assessed with an interferometric method, such as a ring geometry (in this case, the
waveguide on figure VI.15 is simply lopped back on itself).
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We follow a typical MOEMS approach [193], in which the mechanical part is a thick layer
that is grown upon the photonic thin layer. We consider a proof mass supported by four
springs, with mass m ≡ 0.1 µg and mechanical resonance angular frequency of Ωm ≡ 20
kHz.

We use an approach similar to what we used with suspended ring resonators (section V.3)
in order to calculate the Limit Of Detection (LOD) at three-sigma, which reads:

LOD = 3Pngom/R (VI.9)

where Pn and R are the overall noise and optical response of the system. Specifically, Pn
is the quadratic sum of uncorrelated noise power spectral densities:

Pn =
√(

S2
pd + S2

el + S2
γ + S2

th

)
BW (VI.10)

where Spd, Sel, Sγ and Sth are respectively the photodetector noise, the electronic noise,
the photonic noise and the thermomechanical noise, and BW is the integration bandwidth.

When the SWG waveguide is included inside a ring resonator cavity, R is given by:

R =

PinCrλ
2

πc

γ2|λ− λr|[
(λ− λr)2 + γ2

]2

−1

(VI.11)

We use gom = 10 GHz/nm which we found with our model. For our typical experimental
parameters on R, the calculation leads to:

LOD = 20 µg/
√
Hz (VI.12)

Even if we considered one of the simplest mechanical design, this value is at the range of
other state-of-the-art accelerometers based on MEMS or MOEMS technology. Although
very basic, this calculation points out the potential of SWG interdigitated combs waveg-
uides as optomechanical transducers.

Conclusion

On this section, we have presented the analytical and numerical modeling of a new kind of
SWG waveguide comprised of interdigitated combs. Compared to other SWG geometries,
SWG interdigitated combs waveguides are by design easy to release, and could find appli-
cations in MIR photonics, bio-photonic sensing and cavity optomechanics. In particular,
their collective lateral motion can be used as an optomechanical transduction platform,
as they allow to replicate some of the already well-known architectures used in MEMS
and MOEMS capacitive sensing.
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Although not discussed in this manuscript, we also believe that the flexural motion (i.e.
in the y or z direction) of individual or multiple beams could be exploited.

For example, by letting a single beam longer than the others, it is possible to isolate the
frequency of its movement from the others, and to create a configuration where only one
beam is excited. This is a way to reproduce the optomechanical “in-the-middle” setup,
where a sub-wavelength sized nanomechanical resonator (generally a beam or a membrane)
is placed in the middle of an optical cavity [194]. While this scheme is traditionally
hazardous to manipulate experimentally, the integrated nature of SWG interdigitated
combs waveguides should ease its realization, as it allows to release the constraints on
optical alignment and resonator positioning.

In another approach, the individual flexural motion of multiple beams could be excited
by the optical forces lying in the waveguide, giving raise to a complicated yet interesting
dynamic of large arrays of beams coupled by an optical spring. In particular, this could be
a way to realize optomechanically induced synchronization between multiple mechanical
resonators.

We did not have time to investigate these last options neither experimentally nor theo-
retically during the thesis, and focused our work on the lateral collective scheme. It is
difficult to state whether or not it is actually possible to go beyond their concept, but
we believe they emphasize some interesting perspectives about the applications of SWG
interdigitated comb waveguides and SWG waveguides in general to the field of cavity
optomechanics.

Next, we turn the discussion around an other SWG optomechanical geometry, that we
call “ladder-like” SWG waveguides.

VI.3 Optomechanical “ladder-like” SWG waveguides

VI.3.1 Presentation

On section VI.1.1, we introduced the fact that the refractive index of a SWG waveguide
is a function of its filling factor:

n̄2 = n2
2 + FF

(
n2

1 − n2
2

)
(VI.13)

Based on this observation, it appears that if we are able to suspend a SWG waveguide,
optomechanical coupling should naturally appear, as the filling factor will be modified
under displacement. We propose to do so on the following. We realize the suspension of
the SWG waveguide by adding two thin lateral beams along the waveguide, as depicted
on figure VI.16. We call this king of geometry a “ladder-like” SWG waveguide.

More precisely, the core of the waveguide is constituted of periodically spaced small rect-
angular silicon pads, supported by two lateral beams. The pitch Λ is chosen in order
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Figure VI.16 – Schematic of a “ladder-like” SWG waveguides: two thin lateral
beams are added in order to support the SWG segments.

to respect the SWG criterion, and each beam width is chosen really small in regard to
the waveguide width, so that they can be neglected in an analytical model. This way,
the “ladder-like” SWG waveguide behaves like an equivalent waveguide whose refractive
index n̄ is calculated based on Rytov’s formula. Apart from the two lateral beams, this
is a classical silicon SWG waveguide, for which we expect the SWG cut-off to fall around
400 nm [177].

The “ladder-like” SWG waveguide is suspended and stands in the air. This way, it is
also a mechanical oscillator. On a first simplistic description, it is possible to consider
the released geometry as a perforated doubly clamped cantilever, whose mechanical mode
shapes and vibration frequencies can be described with an analytical approach.

The “ladder-like” SWG structure is hence both a photonic waveguide and a mechanical
oscillator. In order to exert optomechanical interactions, it can either be integrated inside
a directional coupler, a Fabry-Perot cavity, or both at the same time. This is depicted on
figure VI.17.

Figure VI.17 – “Ladder-like” SWG waveguides. Left: Two “ladder-like” SWG
waveguides are brought at close proximity of each other in order to form a direc-
tional coupler. Right: The SWG waveguide is placed between two Direct Bragg
Reflectors, such that is stands at the middle of a Fabry-Perot cavity.

In the first case, two “ladder-like” SWG waveguides are brought close enough from each
other to exchange light by mean of evanescent coupling. This setup is analogous to the
one studied by Povinelly et al.[113] in their work on the optical gradient force: the two
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waveguides are attracted or repelled by an optical force that depends on their separation
distance. The situation is somewhat similar to a dissipative coupling scheme, with the
difference that there is no optical cavity here.

In the second case, a “ladder-like” SWG waveguide is clamped between two Direct Bragg
Reflectors (DBR). This way, a Fabry-Perot cavity is created, and a dispersive optome-
chanical coupling scheme emerges. The classical configuration of cavity optomechanics is
hence reproduced, with an additional contribution to optomechanical coupling due to the
SWG nature of the medium constituting the cavity.

Finally, both cases can be associated: two “ladder-like” SWG Fabry-Perot cavities are
brought close enough from each other to exchange light by mean of evanescent coupling.
This way, both dissipative and dispersive coupling are exploited.

VI.3.2 Modeling & Design

Optical design

We conducted the design following the same approach as for SWG interdigitated combs
waveguide. The design parameters were obtained using Rytov’s formulas and a FEM
mode solver, and were latter verified with 3D FDTD simulations. For this reason, we
only present the general results of this study. There again, we aimed for a single mode
waveguide with a TE polarization.

We chose the waveguide cross section dimensions to be 500 × 220 nm2, identical to the
ones of strip waveguides. This choice does not exactly correspond to the higher limit for
the existence of a unique TE0 mode, but was made to ease the transition between the
classical waveguides and the SWG waveguide. Similarly to SWG interdigitated combs
waveguides, the filling factor is chosen at FF = 0.5, in order to facilitate the fabrication.
The width of each lateral beam is 100 nm. A typical mode profile (obtained with the
analytical model) is presented on figure VI.18, presenting a strong similarity to the TE0
mode of a strip waveguide. The associated effective index is neff = 1.615, which brings
Λ� 480 nm in order to verify the SWG criterion. Accordingly, we chose an upper limit
Λ < 400 nm for the pitch. The lower limit, set by fabrication, remains Λ > 100 nm.

The whole set of design parameters is presented in table VI.3.

Finally, we point out that we did not design (nor used) a transition taper between the
SWG and strip waveguides. We were initially mainly interested in the second and third
optomechanical configurations, where a DBR stands between the two waveguides. The
physical phenomenon of interest occurs inside of the Fabry Perot cavity, where light is
stored and progressively builds up, with no regard for the fact that some losses occur at the
junction with classical waveguides. For that reason, it appeared not necessary to insure a
lossless transition. Retrospectively, given the fact that we only obtained optomechanical
results with the first configuration (directional coupler geometry), where there is no DBR,
it appears that the presence of a taper would have been beneficial to reduce transition
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Figure VI.18 – Optical mode profile of a “ladder-like” SWG waveguide, obtained
using Rytov’s formula and a FEM mode solver. Left: Ex field component.
Right: Schematic of the equivalent waveguide that was simulated.

Filling factor FF 0.5
Pitch Λ 100 - 400 nm
Waveguide width W 500 nm
Height H 220 nm
Lateral beams width 100 nm
Lateral beams height 220 nm
Beam material Silicon
Beam cladding Air

Table VI.3 – Design parameters of a single mode TE0 “ladder-like” SWG waveg-
uide.

losses (which fortunately remained acceptable even without a taper). On future designs,
it is planned to add a transition taper between the “ladder-like” SWG waveguides and
the strip waveguides.

Mechanical design

We now focus the discussion around the mechanical behavior and modeling.

The released “ladder-like” SWG waveguide is considered as a perforated doubly clamped
cantilever. An analytical model for the vibrations of such cantilever can be found on [195].
We use the results of such study.
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The resonant frequencies of the beam are given by:

fn = 1
2π

√√√√E Ieq Zn(γ)4

meqL4 (VI.14)

where E is the Young modulus, Ieq is the equivalent moment of inertia, Zn(γ) are solutions
of a transcendent equation, γ is a free-parameter dependent on the geometry, meq is the
equivalent mass, and L is the beam length.

The precise expressions for these parameters can be found in [195] (equations 16, 20, 23
and 30, and table 1). They are functions of the number of holes N along the section
(N = 1 in our case) and of the filling factor α along the section (α = 0.6 in our case).

The equivalent mass per unit length of the perforated beam is:

mequiv = ρWH(1−N(α− 2))α
N + α

(VI.15)

which is calculated by integration over a beam segment [195]. The effective mass of a
given mode is calculated by multiplying the equivalent mass by the factor presented on
table VI.4.

Mode number 1 2 3 4 5 6
mn

eff/mequiv 0.3959 0.4381 0.4358 0.4353 0.4357 0.4339

Table VI.4 – Values of mn
eff/mequiv for the first five modes of a doubly clamped

beam with uniform rectangular cross section. n refers to the mode number.
Table reproduced from [196].

In parallel to the analytical approach, we also conducted 3D mechanical FEM simulations
of released “ladder-like” SWG waveguides. Typical results are presented on figure VI.19.

From observation of figure VI.19, it appears that the first mechanical modes mainly are
flexural in-plane and out-of-plane modes. The fifth mode, however, is a torsional mode.
This kind of mode is not taken into account by the analytical model.

The frequencies of the analytical and numerical model are compared on table VI.5. Gener-
ally speaking, we observe that the analytical model provides relatively satisfactory orders
of magnitude, but remains distant from the FEM simulation.

VI.3.3 Optomechanics with “ladder-like” SWG waveguides

Integration within a directional coupler

We first consider two released “ladder-like” SWG waveguides that are brought at close
proximity of each other and form a directional coupler, as depicted on the left panel of
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Figure VI.19 – Typical shape of the first six mechanical modes of a released
“ladder-like” SWG waveguide. The first, third and fourth modes are flexural in
plane, the second and sixth modes are flexural out of plane, and the fifth mode
is torsional.

FEM (MHz) 22.87 – Ip 61.03 – Op 62.64 – Ip 121.80 – Ip 133.96 – T
Analytical (MHz) 25.54 – Ip 54.93 – Op 69.83 – Ip 133.45 – Ip 141.90 – Op

Table VI.5 – Comparison of the resonant mechanical frequencies obtained by
FEM simulation and with the analytical model. Ip: In plane. Op: Out of plane.
T: Torsional.

figure VI.17.

When the two SWG waveguides are getting closer, their respective degenerate guided
modes will couple and form symmetric (S) and antisymmetric (AS) modes, whose effective
guided indexes is a function of the gap x between the two waveguides. In this configu-
ration, an optical gradient force, function of the gap, arises between the two waveguides
[197, 113, 198, 30, 199].

Two springs model Mechanically speaking, the system can be modeled by two coupled
springs, where the coupling is assured by the optical gradient force. We note m1, m2, k1
and k2 the masses and elastic constant of each spring. In this picture, the optical gradient
force is assumed to be a third spring of elastic constant kc: Fgrad(x) = kc × x (see figure
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Figure VI.20 – The directional coupler is mechanically modeled by two spring
coupled by the optical gradient force Fgrad(x) = −kc × x.

VI.20). The dynamic of the system reads [200, 201]:

 m1ẍ1 + (k1 + kc)x1 − kcx2 = F1

m2ẍ2 + (k2 + kc)x2 − kcx1 = F2
(VI.16)

where we neglected mechanical damping (i.e. a mΓmẋ term), and F1 and F2 represent
external forces applied on the system (typically, the thermal Langevin force).

If we consider two identical springs (k1 = k2 = k and m1 = m2 = m), the coupling
between the two springs breaks the degeneracy of the uncoupled springs, and we find two
eigenfrequencies [200, 201]:

fS = 1
2π

√
k

m
, fAS = 1

2π

√
k + 2kc
m

(VI.17)

In the symmetric (S) case, the two springs are oscillating in phase. In the antisymmetric
(AS) case, they oscillate out-of-phase. From the previous equations, we calculate:

kc = k

2

(fAS
fS

)2

− 1
 (VI.18)

Calculation of the optical gradient force Leaving aside the two spring model, the
optical gradient force can be derived from RTOF theory (see sections I.1.2 and III.2.2).
It reads:

Fgrad(λ, x) = PinL

c

∂neff (λ, x)
∂x

(VI.19)

where L is the length of the coupling zone. The term ∂neff/∂x is calculated using first
order perturbation theory [71]. Note that this force can be either attractive (if negative)
or repulsive (if positive).

A comparison between the optical gradient force (per unit length and power), between
two SWG waveguides and two strip waveguides, is presented on figure VI.21. Provided
that the gap is not too small (which is the case in practice), the optical force is stronger
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Figure VI.21 – Optical gradient force per unit length and power, between two
SWG waveguides and two strip waveguides.

between the two SWG waveguides, and spawns over a larger range of gaps. This is a
direct consequence of the increased optomechanical interaction due to the SWG nature
of the waveguide. Here, we considered a very basic geometry for the SWG waveguides.
We believe that the magnitude of the optical gradient forces could be further increased
by proper engineering of the geometrical parameters of the SWG waveguides (notably the
filling factor and waveguide cross-section). It can also be enhanced by an optical cavity
(the field in enhanced by the finesse), which is explored in the next sections.

Following the previous remark, we point out that this geometry does not strictly fall
within cavity optomechanics, as there is no optical cavity. It remains however really close
to the field, and find the same kind of applications than on-chip nano-optomechanical
systems. In fact, the absence of an optical cavity can be seen as a promising alternative,
because it allows to avoid the requirement of finding a resonance peak to work on, and to
follow its variation along time (mainly due to temperature changes).

Integration inside of a Fabry-Perot cavity

We now consider a “ladder-like” SWG waveguide integrated within a Fabry-Perot cavity,
as depicted on the right panel of figure VI.17. At the input and output ends of the cavity,
two Direct Bragg Reflectors (DBR) are directly encapsulating the SWG waveguide. The
whole cavity is suspended by etching of the substrate, and is free to mechanically oscillate.
In order to avoid collapsing, both the DBR and the SWG waveguide are supported by a
left and a right doubly clamped cantilever.

This optomechanical cavity is totally analogous to the Fabry-Perot cavity with a movable
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back-end mirror studied in the first chapter: the mechanical oscillation modulates the
cavity length and the optical power stored in the cavity, which in turn modifies the optical
forces and their action on mechanical motion. Hence, the geometry can be described with
the same equations of motion:



da
dt =

[
i∆(x)−

(
κi + κe

2

)]
a+√κesin

d2x

dt2 + Γm
dx
dt + Ω2

m(x− x0) = −~gom
meff
|a(t)|2 + FL(t)

meff

(VI.20)

Here, the optomechanical coupling strength takes the form:

gom = ∂ω0 (L, neff)
∂x

(VI.21)

= ∂ω0

∂L

∂L

∂x
+ ∂ω0

∂neff

∂neff
∂x

(VI.22)

which is the sum of a contribution from the cavity length variations (the so-called ge-
ometric contribution), and of a contribution from the variations of the effective index.
Accordingly to the discussion in part I, this last contribution is separated between the
classical photo-elastic contribution and a contribution from the SWG nature of the waveg-
uide. We can rewrite:

gom = ggeom + gpe + gSWG (VI.23)

The first two contributions are formally calculated with equations (III.18) and (III.20),
based on the precise knowledge of the optical, mechanical and strain fields. Although
not explored during the thesis, the same perturbation approach that was used to formally
calculate these two quantities should be applicable to the calculation of a formal expression
for the SWG contribution to optomechanical coupling.

Alternatively, the variations of the effective index can be approximated to ∂neff/∂x ≡
neff/n× ∂n/∂x, such that:

gSWG ≡
ω0

n̄

∂n̄

∂x
(VI.24)

where n̄ is the equivalent refractive index given by:

n̄ =
√
n2

2 + FF (n2
1 − n2

2) (VI.25)
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where only the filling factor is function of x:

∂n̄

∂x
= 1

2n̄
∂FF
∂x

(VI.26)

We make the assumption that the displacement is equally distributed between the N pads
constituting the SWG waveguide, which leads to:

∂n̄

∂x
≡ 1

2n̄
1
L

1− FF0

1 + x/L
(VI.27)

where FF0 is the unperturbed filling factor and we used N × Λ = L. Provided that
1� x/L, the approximated SWG contribution to optomechanical coupling finally reads:

gSWG ≡
ω0

L

(1− FF0)
2n̄2 (VI.28)

For comparison, the geometric coupling strength is approximated to ggeom ≡ ω0/L in
a Fabry-Perot cavity. We can hence realistically expect a factor of χ = 25 between
the magnitude of the two contributions with our current design parameters, the SWG
contribution being weaker than the geometric one. Note that the factor χ can be reduced
to 5 under reduction of the filling factor.

From the previous calculation, the additional SWG contribution to optomechanical cou-
pling seems relatively small in the Fabry-Perot configuration. However, one must consider
that the mass of the SWG waveguide (and hence its effective mass) is reduced in compar-
ison to a similar strip waveguide. This is evidenced by our analytical model and equation
(VI.15). Roughly speaking, the mass of the SWG waveguide is 80% the mass of a strip
waveguide of identical footprint. Consequently, the zero point fluctuations xZPF, defined
by equation (I.13), and the vacuum coupling strength g0, defined by equation (I.12), are
enhanced by a 12% factor because of the SWG nature of the photonic waveguide.

Last, we point out that we considered a purely dissipative coupling scheme here. In
practice, the pitch of the two DBR constituting the cavity will also be modified, which
will modulate their transmission and reflection rates, and give rise to a dispersive coupling.

Two closely spaced Fabry-Perot cavities

We now briefly discuss the case of two “ladder-like” FP cavities closely spaced, as depicted
on figure VI.22. This geometry is a combination of the two previous approaches.

We did not derive the full resolution of this problem, that is quite complicated. We
can however make some qualitative observations. In this kind of configuration, even
if the dispersive optomechanical coupling strength is not much enhanced by the new
SWG contribution, the dissipative contribution (i.e. evanescent coupling between the
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Figure VI.22 – SEM image of two closely spaced Fabry-Perot cavities with SWG
“ladder-like” waveguides.

two waveguides) should be, as a consequence of the weaker field confinement of SWG
waveguides in comparison to strip waveguides. Additionally, because we are here in a
cavity configuration, the optical gradient force will be enhanced proportionally to the
cavity finesse, which should also benefit optomechanical interactions.

Conclusion

On this section, we have presented the analytical and numerical modeling of released
SWG waveguides, suspended by means of two thin lateral beams, that we call “ladder
like” SWG waveguides.

Initially, we were interested in this geometry because we expected an additional contri-
bution to optomechanical coupling in such waveguides, arising from the dependence of
the effective index on mechanical motion. While this additional contribution seems to be
relatively small, the effective mass of SWG waveguides is reduced in comparison to classi-
cal waveguides of the same footprint. Hence, the amplitude of the mechanical zero point
fluctuation and the vacuum optomechanical coupling strength g0 are naturally enhanced
in SWG waveguides.

Additionally, we demonstrated that the optical gradient force between two SWG “ladder-
like” waveguides is larger than the one between two strip waveguides. This last point could
be exploited in optically tunable microphotonic devices and nanomechanical systems.
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CHAPTER VII

Realization of SWG cavity
optomechanics

In this chapter, we report on the realization of SWG waveguides. We first present the
specificities of the process flow that were specifically developed for the fabrication of SWG
waveguides. We next present photonic experiments on SWG interdigitated combs waveg-
uides, and photonic and optomechanics experiments on SWG “ladder-like” waveguides.

VII.1 Fabrication of SWG waveguides

The fabrication of SWG waveguides is conducted following the same process flow that
suspended ring resonators. Briefly:

1. Patterning of the Grating Couplers (GC).

2. Patterning of the photonic and optomechanical structures.

3. Encapsulation of the photonic structures.

4. Release of the optomechanical structures.

A general presentation of the process flow is given on section V.1. On the following, we
limit the discussion to the second step, namely the patterning of photonic and optome-
chanic devices.
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VII.1.1 Patterning of the photonic and optomechanical struc-
tures

As already mentioned, our SWG structures involve the realization of periodic patterns
with small pitches, below the 100 nm mark. As a consequence, we could not use our
standard DUV photolithography equipment, and instead worked with a shape e-beam
lithography equipment, which implied adaptations of our regular photonic flow.

Our objective is to pattern lines of width Λ/2 spaced by Λ/2, with Λ in the 100 – 400 nm
range. In the more challenging case, we are hence trying to etch lines of 50 nm width and
220 nm height, spaced by 50 nm. There are two critical steps: the lithographic definition
of the lines, and the etching. At the end of the thesis, while we were able to properly define
pitches down to Λ = 120 nm (see figure VII.1), there is still work that could be done on
the process. In particular, the photonic performances (i.e. the propagation losses) remain
quite elevated, and could benefit from new developments.

Figure VII.1 – SEM image of SWG interdigitated combs waveguides, for increas-
ing pitches. From left to right: Λ = 100, 120, 140, 160 nm. The 100 nm pitch
suffers from lithographic edge effects (the combs tend to curve towards each
other) and poorer etching quality (degraded beam definition and homogeneity).
As the pitch is increased, these effects are diminished. The picture is taken after
etching of the waveguide level.

The lithographic patterning is first realized. The choice of the right resist and insulation
dose is important at this step, to insure a proper patterning of the resist (by limiting
edge effects and respecting the targeted design) and efficiently protect the lines during
the etching step (even when we were able to properly pattern the resist, it could still fail
to protect the silicon layer during etching). We tried several approaches, with different
resist types and thicknesses, with and without a hard mask, and with different insulation
doses.

Once the lithography step is conducted, the etching can be realized. We used Inductively
Coupled Plasma Reactive Ion Etching (ICP-RIE) with HBr chemistry. While this step
was less critical that the lithography, as it is already part of our regular photonic flow, it
remained challenging to properly etch structures with an almost 5:1 aspect ratio.

In the end, while we were able to tolerably pattern and etch most of our structures, we
had to find a compromise between nano-realization and photonic performances. This is

184



Figure VII.2 – Under (left picture) and over (right picture) etching of the SWG
interdigitated combs waveguide (the right picture is taken at the taper level ; see
figure VI.10 for comparison).

discussed in the following.

VII.1.2 Effect on photonic performances

The patterning of the SWG waveguides degrades photonic performances in two ways.

First, the resist that we use during e-beam lithography is different from our standard
resist on DUV photolithography equipments. As already stated, propagation losses are
mainly impaired to the waveguides sidewall rugosity. The latter may originate from the
line edge corrugations of the resist, that are afterwards transferred to the waveguides, or
from the etching process itself. Minimizing sidewall rugosity is done by choosing the right
combination and optimization of lithography, resist and etching process. Consequently,
when we use a new lithography equipment and a new resist, we naturally expect higher
sidewall rugosity and propagation losses.

Second, we must consider the fact that propagation losses rapidly increase with decreasing
waveguides width [202]. During the etching process, in order to achieve the desired
pitches on the SWG waveguides, we had to over-etch a little our classical waveguides.
Typically, even after trying to optimize the process, a 500 nm width waveguide would
still be fabricated with a 470–490 nm width (depending on the fabrication parameters).
This effect is evidenced on figure V.9d, which depicts a cartography of propagation losses
over a full wafer on which we used variable resist insulation dose between each rows.
As the insulation dose is increased (from left to right), the waveguide is wider and the
propagation losses are reduced.

At the beginning of the process runs, the first fabricated waveguides presented propagation
losses as high as 20 dB/cm (against 2 dB/cm with our standard photonic flow), because
of the absence of process optimization. At the end of the thesis, propagation losses
are reduced to 3–4 dB / cm. We believe that it is possible to improve the photonic
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performances following three guidelines.

First and straightforwardly, the process flow can still be generally optimized by working
conjointly on the lithographic and etching parameters. For example, as already stated, it
seems that increasing our insulation dose is an efficient way to reduce propagation losses.
Following the same idea, we also started a fabrication run on a 300 mm immersion pho-
tolithography equipment (that was not part of our cleanroom facility when we realized the
first designs). Results are not available yet, but we expect an improvement in comparison
to e-beam lithography, as this equipment is more specifically adapted to our designs.

Second, a new drawing of the lithographic mask, with application of a bias on the SWG
pitch, could be realized. For example, this means drawing 70 nm lines spaced by 30
nm, that we know will be fabricated as 50 nm lines spaced by 50 nm. When the bias
is applied with several dilatation factors over the same mask, this is a way to focus the
fabrication process developments towards the realization of the targeted waveguide width
; as different SWG pitches will naturally be realized, the targeted one can be selected
afterwards.

Finally, post-etch processes aiming to reduce the sidewall rugosity can be developed.
Regarding this last point, we already started exploring the use hydrogen annealing and
thermal oxidation as a post-etch smoothing step. While results are not satisfactory yet (in
our opinion mainly because we had not enough time to properly optimize each strategy),
the efficiency ot these two approaches have already been demonstrated [203, 204].

VII.2 Experiments on SWG interdigitated combs waveg-
uides

We now discuss photonic experiments that were conducted on SWG interdigitated combs
waveguides. We begin by verifying the waveguide behavior of the SWG interdigitated
combs ; in order to do so, the experimental cut-off pitch and propagation losses are
measured and confronted to theory. Next, the SWG taper efficiency is compared to other
taper structures. Finally, we investigate the integration of SWG interdigitated combs
waveguides inside closed-loop optical cavities, which is the first step towards practical
application of SWG interdigitated combs waveguides.

All measurements on SWG interdigitated combs waveguides were conducted over full
scale wafers, on the optical probing station that was described in section V.2.1. When
not specified, the given measured value correspond to the best value obtained over the dies
of the wafer ; most results presented on this section are obtained on wafers with a variable
insulation dose between dies, such that statistical data is not particularly relevant.
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Figure VII.3 – Simulated (dashed) and experimental (boxplot) transmission rate
of the SWG interdigitated comb waveguides, for increasing pitches. The boxes
extend from lower to upper quartile, with a black line at the median. The
whiskers show the full range of the data (measured on 25 identical dies over the
same wafer). Inset: SEM images for increasing pitches. a) Λco = 100 nm. b)
Λco = 120 nm. c) Λco = 140 nm. d) Λco = 160 nm.

VII.2.1 Guided mode behavior

Cut-off pitch

In order to identify the cut-off pitch of the SWG regime, we first measured the opti-
cal transmission of SWG interdigitated combs waveguides of increasing pitches Λco. By
comparison to a reference structure, the losses due to the SWG structure are calculated
at λ = 1550 nm. The results are presented on figure VII.3, along with the 2D-FDTD
simulated behavior of the same structure (dashed line).

For pitches smaller than 200 nm, almost no transmission losses are measured after the
SWG interdigitated combs structure. According to theory, this is the SWG regime, where
Λco � λ/(4neff) and no diffraction nor interference effects arise from the periodicity of
the medium, hence resulting in lossless light propagation.

On the SWG regime, we observe that transmission losses are kept constant for pitches
between 120 nm and 180 nm, but drop again at 100 nm and below. This is a direct
result of our difficulty to pattern such small pitches (as discussed in section VII.1) ; for
pitches smaller than 100 nm, the lithographic and etching quality are poorer and the
beam definition is degraded, which naturally impairs the guided mode behavior. While
this is a limitation of our process flow, the SWG regime is already reached with a 180 nm
pitch, and it is not necessary to go below this resolution for most targeted applications.

From and above Λco = 200 nm, we observe a high transmission drop of more than 40
dB, that rapidly out-passes the dynamic-range of the photodetector. It reveals transition
towards the Bragg regime, where destructive interferences prevent the propagation of
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light.

We observe a large dispersion of experimental data around Λco = 200 nm. It can be
attributed to fabrication inhomogeneity over the wafer, slightly changing the cut-off pitch
from one die to another. A cut-off around 200 nm is in reasonably well agreement with the
condition Λco � 250 nm found with our 3D semi-analytical model, but a few nanometers
higher than the 2D-FDTD simulation displayed on figure VII.3. This can be explained by
a general tendency of 2D simulations to over-estimate guided mode indexes, resulting on
an under-estimation of the pitch at which optical destructive interferences begin to occur.

Propagation losses in SWG interdigitated combs waveguides

Next, we further investigate the guided mode behavior by measuring the (theoretically
nil) propagation losses along SWG interdigitated combs waveguides. Measurements of the
optical transmitted power of spiral-shaped SWG waveguides of variable lengths (up to a
few centimeters) are realized, and propagation losses are calculated by mean of a linear
regression between the spiral length and the experimental transmission.

On the best dies, losses of -5 dB/cm were measured at λ = 1550 nm. While this is
extremely elevated in comparison to a theoretical lossless propagation, two points must
be considered. First, there are propagation losses in any real waveguide (because of
fabrication uncertainties), and we do not expect the SWG interdigitated combs waveguide
to be an exception to the rule. Second, the classical 500 x 220 nm silicon waveguides
propagation losses on the same photonic circuits were measured to be around -3 dB/cm.
It can thus be considered that the additional propagation losses induced by the SWG
interdigitated combs waveguides are around -2 dB/cm. This last value is small enough
(considering the total length) to ensure that we are not in a radiative regime and that no
diffraction effects are occurring. Additional propagation losses in the SWG waveguides
in regard to strip waveguides are a consequence of fabrication impressions such as facets
rugosity, but do not question the guided mode behavior.

VII.2.2 Tapper efficiency

As already mentioned, the realization of an efficient taper, insuring as few losses as possible
between SWG and strip waveguides, is mandatory to allow practical integration of SWG
structures inside already existing photonic circuits. As we will discuss in the next section,
this is also important when SWG interdigitated combs waveguide are integrated inside
racetrack resonators.

The taper losses are calculated by cascading numerous tapers (0, 10, 15, 20 and 25)
and realizing a linear regression between the number of tapers and the experimental
transmission. The pitch is constant for all structures: Λco = 150 nm.

We first compared the losses of the SWG taper to a classical adiabatic taper, and to
an abrupt junction (following the same principle that in the design section, when the
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comparison was conducted by means of numerical simulations - see section VI.2.2 and
figure VI.12). Here, the taper length is 10 µm. Experimental losses were of -0.22 dB /
taper, which corresponds to a transmission rate of 95%. By comparison, the losses were
of -2 dB / taper with the classical adiabatic taper, and of -5 dB / junction in the abrupt
junction case. Considering fabrication uncertainties, these results are in well agreement
with the simulated orders of magnitude obtained by numerical simulation (see table VI.2).

Second, we investigated the influence of the taper length on the transmission rate. We
observe that the total losses by taper tend to increase with the taper length (see table
VII.1), which is somehow contradictory ; (really) qualitatively speaking, longer tapers are
smoother and should induce less transition losses. However, the losses normalized to the
length of the taper tend to be reduced when the taper length is increased. This is an
indication of (undesired) propagation losses occurring within the taper.

Length 10 µm 20 µm 30 µm 40 µm 50 µm
Median -0.35 -0.43 -0.70 -0.99 -1.08
Best result -0.22 -0.32 -0.55 -0.65 -0.78
(in dB / taper)
Median -0.035 -0.0215 -0.0233 -0.0248 -0.0216
Best result -0.022 -0.016 -0.0183 -0.0163 -0.0156
(in dB / µm)

Table VII.1 – Losses of SWG tapers of various length.

We have hence evidenced the efficiency of our transition taper, that efficaciously reduces
transition losses between SWG structures and classical waveguides. At time of writing,
the taper losses are still strongly correlated with the taper length, which can be associated
to propagation losses in SWG interdigitated combs. With future runs aiming to reduce the
propagation losses in SWG interdigitated combs waveguides, the taper efficiency should
be further increased.

VII.2.3 Integration of SWG interdigitated combs waveguides
within optical cavities

Many of the targeted applications of SWG interdigitated combs waveguides imply their
integration within an optical cavity. Among other advantages, the optical cavity is a multi-
passage interferometric detector, allowing to monitor changes in the close environment of
the cavity (bio-photonic sensing applications) or in the shape of the cavity (optomechani-
cal applications). We explored two approaches: the integration of the SWG interdigitated
combs waveguide within a racetrack resonator, and the realization of ring-shaped SWG
interdigitated combs waveguides.
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Figure VII.4 – Integration of SWG interdigitated combs waveguides within a
racetrack resonator. Left: Setup schematic. Right: Typical experimental spec-
trum, for a setup of gap 240 nm, taper length 20 µm, SWG waveguide length 50
µm, with Λco = 100 nm.

Integration within a racetrack resonator

We first discuss the integration of SWG interdigitated combs waveguides within a race-
track resonator, as schematically represented on figure VII.4.

Typical dimensions are the following ; the straight part of the racetrack resonator is 100
µm long, its curvature radius is 20 µm. The SWG interdigitated combs waveguide is 50
µm long, and the input and output SWG taper are 20 µm long. The pitch is Λco = 100
nm. The gap between the bus waveguide and the racetrack resonator is 240 nm.

At best, we measured quality factors up to 30 000, with an extinction ratio around 2
dB. While such quality factor value remains acceptable, we measured quality factors up
to 100 000 on simple racetrack resonators (without the SWG waveguide). This is an
indication of the intrinsic limitation of this design. Even if the input and output tapers
limit transition losses between strip and SWG waveguides, these limited losses are still
suffered multiple times within the optical cavity (at each turn), and rapidly build-up.

Ring-shaped SWG interdigitated combs waveguides

The integration of SWG interdigitated combs waveguides within a racetrack resonator is
relatively straightforward, but present the double drawback of poor footprint and inherent
losses because of the presence of transition tapers within the cavity. Alternatively, one
can design ring resonator-shaped SWG interdigitated combs waveguides, where the whole
cavity is formed with SWG waveguides, as depicted on figure VII.5.
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Figure VII.5 – Ring resonator-shaped SWG interdigitated combs waveguide, of
radius 35 µm and pitch Λco = 140 nm. Left: Top view. Middle: Zoom over the
coupling region. Right: Zoom on the interdigitated combs. The regularly spaced
holes that can be seen on each picture are photonic crystal that were added to
enhance the isolation of the optical guided mode within the SWG waveguide.

Figure VII.6 – Typical experimental spectrum of a 35 µm radius ring resonator-
shaped SWG interdigitated combs waveguide, with Λco = 140 nm.

The typical experimental spectrum of a SWG ring resonator is depicted on figure VII.6.
At best, quality factors up to 5 000 were measured, with extinction ratios exceeding -30
dB. Albeit the quality factor value remains quite poor, we foresee a large improvement
by reducing the propagation loses of the waveguides in future work. From the measured
free spectral range, we calculate a refractive group index of ng = 2.35, in good agreement
with our model.

An application of this geometry is to realize a bio-photonic sensor, in which the variations
of the analyte surrounding the optical resonator are tracked-down by monitoring the
position of the optical resonances. The expected sensitivity of the ring resonator-shaped
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SWG interdigitated combs waveguides towards its environment is given by:

S = ∂neff
∂n2

λr
ng

(VII.1)

Based on our semi-analytical model and on the experimental refractive group index, we
calculate S = 350 nm/RIU, a value in the upper range of state-of-the-art bio-photonic
sensors.

A second application is to exploit the radial breathing mode of the internal disk-shaped
silicon support. This way, the inner combs collectively move towards or away from the
outer combs, and the middle overlap is modified in a way similar to the one described in
section VI.3.3.

Conclusion

On this section, we have presented photonic experiments on SWG interdigitated combs
waveguides.

First, we identified the cut-off pitch of the SWG interdigitated combs, around 200 nm, in
well accordance with our theoretical predictions. We also measured propagation losses on
SWG interdigitated combs waveguides. While they remain quite elevated, we believe that
further fabrication developments should pave the way towards a regime where propaga-
tion losses within SWG interdigitated combs waveguides are equivalent to state-of-the-art
propagation losses within silicon strip waveguides.

Second, we investigated the efficiency of the SWG taper insuring the junction between
SWG waveguides and strip waveguides. We first compared the taper to a classical taper
and an abrupt transition, and obtained results in agreements with our predictions. Next,
we studied the influence of the taper length. At time of writing, the losses are still
dominated by propagation losses within the taper, and a compromise have to be found
between smoothing the transition (hence, lengthen the taper), and reducing propagation
losses (hence, shortening the taper). Here again, we hope to solve this issue with next
fabrication runs and reduced propagation losses.

Finally, we integrated SWG interdigitated combs waveguides inside closed-loop optical
cavities. We followed two approaches, with a SWG waveguide integrated within a race-
track resonator, and with a ring-shaped SWG interdigitated combs waveguide. While
the second approach is most promising in terms of practical applications, it also remains
limited by propagation loses.

192



VII.3 Experiments on SWG “ladder-like” waveguides

We now discuss photonic and optomechanic experiments that were conducted on “ladder-
like” SWG waveguides.

Photonic experiments are realized on SWG directional couplers and on SWG Fabry-Perot
cavities. They were conducted over full scale wafers, on the optical probing station that
was described in section V.2.1.

Optomechanic measurements are only realized on SWG directional couplers. They were
conducted on single dies, on the dedicated test bench described in section V.3.1.

VII.3.1 Photonic experiments

Cut-off pitch

We first investigate the cut-off pitch of SWG “ladder-like” waveguides ; the transmission
of SWG “ladder-like” waveguides of increasing pitches is measured. Results are presented
on figure VII.7. Depending on the wavelength, we find a cut-off pitch between 400 nm
and 450 nm, which is in agreement with our theoretical prediction (Λ� 480 nm).

The wavelength dependence of the cut-off pitch, related to the SWG condition Λ �
λ/2neff, is evidenced on the right part of figure VII.7. We plotted a typical transmission
spectrum between 1520 nm and 1580 nm, for increasing pitches. For a 400 nm pitch, we
observe no transmission below λ = 1560 nm, and optical transmission above this mark,
which corresponds to the transition between the SWG and Bragg regime.

Finally, one can notice that the transmitted power in the SWG regime is relatively low
(between -20 and -30 dB). As already explained on section VI.3.2, this is a consequence
of the absence of transition taper between the segmented and strip waveguides.

Fabry-Perot cavity

We next realize the experimental characterization of a SWG “ladder-like” Fabry-Perot
cavity. The experimental spectrum of a 4 µm long Fabry-Perot cavity (20 SWG pads
with Λ = 100 nm) and a 5 layers DBR (with a pitch ΛDBR = 420 nm) is presented on
figure VII.8. The experimental spectrum is quite unusual, and we make several hypothesis
to explain its shape.

We observe two unusual features on the experimental spectrum: a clear cut-off effect
below the λ = 1550 nm wavelength, and a pronounced deterioration of the interference
fringes (in their width and height) beyond this wavelength.

We believe that the cut-off effect is a consequence of the absence of transition taper in
our design. The effective guided indexes inside and outside the cavity are different, and
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Figure VII.7 – Investigation of the cut-off pitch of SWG “ladder-like” waveguides.
Left: Transmission against pitch, at λ = 1520, 1550 and 1580 nm. The dot
indicates the median, the errorbar indicates the whole range of data, over 25
dies. Right: Typical transmission spectrum of one die, for pitches between 100
and 500 nm.

the two DBR are not working in the same regime for the SWG waveguide (i.e. inside the
cavity) and the strip waveguide (i.e. outside the cavity). As a result, the input wave is
submitted to the same cut-off effect that we evidenced in the previous section (plotted as
a gray line on the experimental spectrum), and all optical wavelengths below this mark
are filtered out, resulting in zero transmission.

Regarding the interference fringes, we observe a first narrow peak at λ = 1550 nm (Q-
factor around 10 000), followed by a series of peak of increasing width and decreasing
height. This kind of behavior is similar to what is observed in a Coupled-Resonators
Optical Waveguides (CROW) configuration, i.e. when multiple ring resonators or Fabry-
Perot cavities are coupled [205].

Qualitatively speaking, the hypothesis of coupled Fabry-Perot cavity is plausible if we
consider the fact that as the wavelength is increased, the DBR reflectivity is decreased.
Consequently, the wave propagates further in the layers and experiences additional reflec-
tions, hence mimicking a CROW behavior. Yet, we remain cautious with such affirmation,
as we did not have time to conduct a proper study of this conjecture.

Note that we also observe small power oscillations all along the spectrum (more visible
at the top and bottom parts of the interference fringes - for example at 1560 nm). These
oscillations are the signature of a parasitic Fabry-Perot cavity formed between the input
and output grating couplers, that is identified by means of the interfringe and cavity
length, based on FSR = λ2/ngL.
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Figure VII.8 – Suspended Fabry-Perot cavity constituted of a SWG “ladder-
like” waveguide placed between two DBR mirrors. Left: SEM image Right:
Experimental spectrum, between 1520 and 1580 nm.

VII.3.2 Optomechanic experiments

We now consider optomechanics experiments, on a directional coupler formed with two
SWG “ladder-like” waveguides, such as the ones presented on figure VI.17 (left figure).

The test bench is the one that was previously described. The experimental parameters
are the following: the directional coupler is 20 µm long, with a 100 nm gap between the
two SWG “ladder-like” waveguides, of pitch Λ = 100 nm. The measurement is conducted
under vacuum, with a pressure in the 10−5 mbar range. The wavelength is set constant
at λ = 1550 nm 1, and the laser optical power is varied between 1 and 25 mW. The
mechanical spectrum is presented on figure VII.9. A comparison of the mechanical quality
factor, maximal amplitude and mechanical frequency against optical power is presented
on figure VII.10.

We observe a double resonance peak at Ωm = 3.92 MHz and Ωm = 3.98 MHz. This double
resonance peak can be attributed to little fabrication inhomogeneities between the two
arms and to the coupling by means of the optical spring kc (see section VI.3.3), that lift
the degeneracy of the (theoretically identical) mechanical frequencies. For comparison,
we expect a mechanical frequency Ωm = 4.19 MHz with the analytical model of section
VI.3.2, and Ωm = 3.69 MHz with numerical FEM simulations.

When the optical power is increased, we observe a quadratic diminution of the quality
factor, a linear augmentation of the maximal amplitude, and a linear augmentation of
the mechanical frequency (figure VII.10). In other words, the mechanical damping and
mechanical frequency are modified with optical power, which can be compared to an
optomechanical damping effect and an optical spring effect, respectfully. This is not
however “true” optomechanical damping or optical spring, which are defined in the context

1Contrary to SRR, the wavelength position is not critical, as there is no interference peak to target.
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Figure VII.9 – Optomechanical transduction of the thermomechanical noise of
the first mechanical doublet and zoom on the first peak. Dots: experimental
data. Lines: analytical fit.

of cavity optomechanics. In contrast, there is no optical cavity here.

From the two springs model presented on section VI.3.3 and formula (VI.18), we calculate
the spring constant associated to the optical gradient force:

kc = 0.059 N/m (VII.2)

Note that in our experimental results, kc is constant with regard to the optical power. This
is not consistent with the simple hypothesis Fgrad = kc×xopt, as Fgrad is a linear function of
the optical power. We believe it is a consequence of the variations of mechanical damping
with optical power, which is not taken into account in our simplified model [206, 201].

Based on the analytical approach of section VI.3.3, we calculate the value of the optical
gradient force, for a 20 µm long coupling zone with a 100 nm gap:

Fgrad = 0.068 pN/mW (VII.3)

Based on equations (VII.2) and (VII.3), and on Fgrad = kc × xopt, we estimate the value
of the displacement xopt induced by the optical gradient force, at increasing laser powers.

Laser power (mW) 1 5 10 15 20 25
xopt (nm) 0.19 0.95 1.91 2.86 3.82 4.77
〈xth〉 (fm) 27.2 18.2 16.1 14.9 16.8 15.6

Table VII.2 – Comparison of the displacements induced by the optical gradient
force, xopt, and by the thermomechanical noise, xth.
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Figure VII.10 – Mechanical quality factor, maximal amplitude, and mechanical
frequency, as a function of the optical power, for each mechanical mode.

Additionally to the optical gradient force, we must consider the fluctuations induced by
thermomechanical noise. Based on the discussion of section V.3.2, the root mean square
(RMS) of the amplitude of thermomechanical fluctuations is given by:

〈xth〉2 =
∫

BW
Srth(ω) dω = BW× 4kBTQm

meffΩ3
m

(VII.4)

where BW is the experimental bandwidth, set by the lock-in amplifier, equal to 100 Hz in
this case. Qm and Ωm are extracted from experimental results, while meff = 1.5 × 10−15

kg is obtained with the analytical model of section VI.3.2.

The values of the displacements induced by the optical gradient force, xopt, and by the
thermomechanical noise, xth, are compared on table VII.2, at increasing laser powers.

We calculate the RMS amplitude of thermomechanical noise fluctuations 〈xth〉 to be
around 15 fm, with the exception of the value at a 1 mW laser power that is 27 fm.
From observation of formula (VII.4) and figure VII.10, we explain this slightly more el-
evated value by the increased mechanical quality factor at this laser power, or in other
words, by the reduced mechanical losses. As already stated, the dependence of mechani-
cal losses with the laser power is not qualitatively nor quantitatively understood yet. In
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future work, it could be included in the two springs model following the approaches of
[206, 201].

The displacement xopt induced by the optical gradient force increases linearly with the
input laser power. Even at low laser power, it is two orders of magnitude higher than
〈xth〉. Although the above calculation is simplified and a more rigorous analysis needs to
be conducted, this difference in magnitude suggests that the measured motion is driven
by optical forces.

Conclusion

In this chapter, we have discussed the technological realization and experimental char-
acterization of suspended SWG interdigitated combs waveguides and SWG “ladder-like”
waveguides.

Regarding technological realization, we have focused the discussion around the pattern-
ing of the waveguide level. Due to small dimensions down to 50 nm, the process flow
had to be adapted and the lithographic step was realized with an e-beam lithography
equipment instead of our standard DUV photolithography equipment. While we achieved
the realization of our SWG waveguides, the process flow can still be optimized to reduce
propagation losses, which remain quite elevated at the end of the thesis.

We experimentally verified the guided behavior of SWG interdigitated combs waveguides,
identified a cut-off pitch in well agreement with our theoretical predictions, and demon-
strated the efficiency of the asymmetric taper at the transition between SWG and strip
waveguides. We also demonstrated the realization of optical cavities based on SWG inter-
digitated combs waveguides, either by integrating the SWG waveguide within a racetrack
resonator, or by realizing a ring-shaped SWG interdigitated combs waveguides. On both
designs (taper, racetrack resonator and ring-shaped resonator), we evidenced the detri-
mental impact of propagation losses, and expect to improve general performances with the
optimization of future fabrication runs. A second major objective will also be to realize
optomechanical experiments on these geometries, that could not be conducted during the
thesis.

On SWG “ladder-like” waveguides, we also identified the cut-off pitch, here again in well
agreement with our modeling. We next characterized a Fabry-Perot cavity constituted of
suspended SWG “ladder-like” waveguides and DBR. The experimental spectrum presents
a shape similar to the one of multiple coupled optical resonator, but it lacks a proper the-
oretical model to validate this theory. The addition of a SWG taper, that is not included
in the current design, is a perspective for future work, that should improve our theoretical
understanding of the optical cavity. In parallel, we conducted optomechanic experiments
on SWG “ladder-like” directional couplers. We realized optomechanical transduction of
the mechanical motion and observed a doublet splitting due to fabrication inhomogeneities
and the optical spring between the two arms, induced by optical gradient forces. We also
observed a dependence of the damping rate and mechanical resonant frequency, in a way
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somewhat similar to optomechanical damping and the optical spring effect. Finally, our
calculations suggest that the mechanical motion driven by optical forces is two orders of
magnitude superior than the thermomechanical motion of the system, revealing an all
optical actuation and detection of mechanical motion.
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Conclusion & perspectives
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The aim of this doctoral work was to study theoretically and experimentally the optome-
chanical interactions arising in suspended silicon photonic structures. Beyond the scien-
tific interest of this work, one of the underlying motivation of this thesis, in the context
of the CEA-Leti, was to pave the way towards the realization of on-chip optomechanical
inertial sensors as an alternative to electrical-based devices.

In the first part of the manuscript, we have presented a theoretical approach to on-chip
silicon optomechanics, i.e. to cavity optomechanics applied to suspended silicon photonics
structures. We have introduced the notion of dissipative and dispersive optomechanical
coupling, and have discussed the nature of optical forces in photonic waveguides.

Based on this theoretical description, we have studied two optomechanical setups: sus-
pended ring resonators, and SWG-based optomechanical waveguides.

Suspended ring resonators offer a large number of design parameters that can be used
to engineer a broad variety of mechanical mode shapes and resonant frequencies. We
identified the geometric contribution (i.e. the variations of the cavity length) to be the
main optomechanical interaction in suspended ring resonators, above the photoelastic and
dissipative contributions.

We studied two kinds of SWG-based optomechanical waveguides: SWG interdigitated
combs waveguides, and SWG “ladder-like” waveguides. In SWG interdigitated combs
waveguides, light is guided along the overlap of two interdigitated comb structures, whose
pitch is small in regard to the optical wavelength. This structure is an appealing per-
spective for the realization of on-chip optomechanical accelerometers, as the operation
principle of electrical combs is directly replicated. In SWG “ladder-like” waveguides,
a SWG waveguide is suspended by means of two thin lateral beams. We realized two
configurations: a Fabry-Perot cavity where a SWG “ladder-like” waveguide is placed be-
tween two DBR, and a directional coupler in which two SWG “ladder-like” waveguides
are brought at close proximity of each other.

All along the thesis, the work has been balanced between theoretical, technological, and
experimental developments.

On the theoretical part, we improved our understanding of suspended ring resonators by
studying the influence of the suspension arms on optical losses, by introducing a simple
analytical model for the modeling of mechanical modes, and by developing simulation
codes allowing to estimate the optomechanical coupling rates for a given geometry. In
addition, we also considered the possibility of an optomechanical coupling arising from a
Sagnac effect. In parallel, we entirely designed two new kind of SWG waveguides, based
on theoretical and numerical modeling. We pointed out the existence of an additional
optomechanical interaction in presence of SWG waveguides, which although relatively
weak, could give rise to significant optical gradient forces between photonic structures.

On the technological part, we adapted our standard photonic process flow to the speci-
ficities of SWG waveguides and optomechanical devices. In particular, the patterning of
the waveguide level and the release step have been critical and required multiple trials
and efforts. At the end of the thesis, while the process flow can still be improved (es-
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pecially regarding propagation losses), we established a functional process flow for SWG
waveguides and optomechanical devices, on an (almost) industrial fabrication line.

Finally, regarding the experimental part, we successfully verified most of our optical pre-
dictions, and a dedicated test bench for optomechanical measurement, under vacuum,
have been developed. This test bench is an adapted version of our automatized optical
probers: inside a vacuum chamber, two optical fibers are aligned above the grating cou-
plers of the sample under test. The whole test bench is fibered, such that a large variety
of measurement schemes can be realized. In the simplest configuration (measurement of
the thermomechanical noise), a laser signal is sent through the sample and is measured
by a photodetector and a lock-in-amplifier.

While we are satisfied by the theoretical and technological developments, and by the
optical measurements, our experimental results are mitigated on the optomechanical part.
Generally speaking, we are still at an early process stage, with a limited number of
successful measurements, that sometimes lack of consistency in regard to the theory. We
foresee several leads to improve optomechanical experimental results in the future.

First, we evidenced a few design misconceptions that will be corrected. Mostly, the bus
waveguide of suspended ring resonators was released over a too long distance, which often
resulted in the collapsing of the bus waveguide and inhibited optical coupling because of
horizontal misalignment. Additionally, the absence of a transition taper between SWG
“ladder-like” and strip waveguides unnecessarily complicates the optical behavior, and is
retrospectively a mistake.

In parallel to these design misconceptions, we also identified the limitations of our fabri-
cation process. The most important point is that a lot of our SWG designs were realized
with an ambitious pitch of 100 nm (hence with the goal of achieving lines of 50 nm spaced
by 50 nm). Based on experimental results, this pitch is at the lower edge of our fabrication
capacities, while we can actually use pitches up to 180 nm and still remain in the SWG
regimen. In future work, the use of a less challenging pitch should allow to relax the
constraints on critical dimensions and achieve an overall better quality for our devices.
As already mentioned, this will also be conducted by working on the optimization of the
process flow.

An important experimental limitation is set by the photodetector and lock-in-amplifier
bandwidths. Even in the best case scenario, our lock-in-amplifier is limited to a 50 MHz
frequency, and higher mechanical modes can not be addressed with the simplistic setup
that we used until now (not to mention that the noise performances of our photodetector
are degraded with increasing frequencies). This can be solved by using an alternative (and
more complex) setup, presented on figure VII.11. Without going into the specifics (see
the figure caption for more details), this scheme allows to scale the mechanical frequency
down to an arbitrary lower frequency. This way, it is possible to assess mechanical modes
that are beyond the bandwidth of the lock-in-amplifier (that is limited to 50 MHz) and
to benefit from better photodetector performances.

At the end of the thesis, I personally think that silicon is a good platform for the realization
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Figure VII.11 – Experimental setup for optomechanical downmixing. A high
intensity laser (pump) at wavelength λ1 is modulated at f (the targeted me-
chanical resonant frequency), and a low intensity laser (probe) at wavelength λ2
is modulated at f +∆f . The pump excites the optomechanical oscillator at f by
means of optical forces. The probe is weak enough to induce negligible excita-
tion. When the probe signal passes through the excited optomechanical device,
an harmonic at ∆f is created, as a result of the mixing between the probe fre-
quency and the optomechanical frequency. This way, the optomechanical signal
is downmixed at the arbitrary chosen low frequency ∆f . A lowpass filter is used
to eliminate all frequencies above ∆f , and a wavelength bandpass filter is used
to eliminate the pump signal and reduce noise. High order harmonics are not
represented. The lock-in amplifier is used to monitor the oscillation frequency of
the two electro-optic modulators.

of suspended ring resonators, but is not necessarily the best one. The main reason is the
important non-linear effects that we observed at (not so) high optical power, making it
difficult to properly track the position and shape of resonance peaks. In the context
of cavity optomechanics, where one wants to properly control the detuning between the
input laser and the resonant frequencies, this is a major drawback. In this regard, a
material such as silicon nitride, which exhibits virtually no TPA, seems to be a better
alternative. Alternatively (and/or additionally), the Pound-Drever-Hall (PDH) technique
[207] could be implemented, as an experimental method to stabilize the laser frequency
on the resonant frequency of the cavity and to follow its variations. Regarding suspended
ring resonators in general, they offer a large number of mechanical degrees of freedom
and are easily integrated within photonic circuits, and I think that they are an interesting
setup for cavity optomechanics.

With regard to SWG waveguides and structures, I believe that they constitute a really
promising candidate for cavity optomechanics applications (and even more generally, for
photonic applications). Even if their fabrication remains difficult, we evidenced strong
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gradient optical forces, that can be simply engineered by controlling the filling factor.
In my opinion, this is an interesting perspective for on-chip signal processing based on
optomechanical devices and NOMS in general.

Cavity optomechanics is a really diversified field and is experiencing fast growth. Until
now, the majority of research efforts have been motivated by fundamental considerations,
such as the measurement of the quantum ground state of a macroscopic oscillator. Today,
there is a growing interest for more “applied” developments with the perspective of on-
chip optomechanical devices integrated alongside photonic and electric components. In
this regard, this doctoral work is a first step towards such developments at CEA-Leti.
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APPENDIX A

A note on numerical simulations

On this appendix, we give the general guidelines that we followed to conduct numerical
simulations.

For optical simulations, we used finite difference time domain (FDTD) simulations and
finite element method (FEM) simulations based on the commercial solver RSoft [208].
For mechanical simulations, we used FEM simulations based on the commercial solver
COMSOL [146].

Optical FDTD simulations

Optical FDTD simulations are used to perform a full-vector simulation of light propaga-
tion within photonic structures. 2D or 3D simulations can be conducted. When a 2D
simulation is conducted, the effective index method (EIM) is used to reduce a 3D problem
to a 2D problem [209], and the polarization (TE or TM) has to be chosen accordingly to
the problem.

Typically, we used a uniform rectangular 10 nm × 10 nm × 10 nm mesh, chosen such
that no cell falls at the junction between two different medium (in other words, every
mesh cell is homogeneous in terms of physical properties). The dielectric dispersion, non-
linear, thermal and anisotropic effects can be considered when necessary. The boundary
conditions are set to perfectly matched layers (PML), i.e. artificial absorbing layers
designed to eliminate the reflection of incident waves [210]. For a given mesh size, the
time step is automatically chosen to respect the Courant-Friedrichs-Lewy condition [211].
The stop time is chosen to insure that steady-state was reached. The launch field is
calculated from the associated FEM mode solver, described below. The excitation type
can be either continuous or pulsed.
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Optical FEM simulations

Optical FEM simulations are used as a full-vector mode solver, to calculate the complex
effective guided indexes and field profiles of a given waveguide. Leaky and cavity modes
can also be found.

The waveguide is assumed to be invariant along te direction of propagation, such that it is
a 2D calculation. The mesh is hybrid triangular and rectangular one, with typically a 25
nm2 footprint. First and second order elements are used, with PML boundaries. Bending
modes can be computed either via a direct formulation, of via conformal transformation
[212].

Mechanical FEM simulations

Mechanical FEM simulations are used as a mode solver, to calculate the resonant fre-
quency and deformation of a mechanical structure. The commercial software COMSOL
is used, with the structural mechanics module.

210



APPENDIX B

Selected mechanical modes of
suspended ring resonators

On the following, we present a sample of the broad range of mechanical shapes and
eigenfrequencies that can be engineered with suspended ring resonators.

The design parameters are selected among fabricated geometries.

The mechanical shapes are obtained by FEM numerical simulations, presented on ap-
pendix A.
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(a) Ω0 = 0.14437 MHz (b) Ω1 = 0.15752 MHz (c) Ω2 = 0.6067 MHz

(d) Ω3 = 0.77166 MHz (e) Ω4 = 1.1071 MHz (f) Ω5 = 1.1535 MHz

(g) Ω6 = 1.935 MHz (h) Ω7 = 2.073 MHz (i) Ω8 = 2.3678 MHz

(j) Ω9 = 2.581 MHz (k) Ω10 = 3.5938 MHz (l) Ω11 = 5.152 MHz

Figure B.1 – First mechanical modes of a Silicon suspended ring resonator, with
R = 10µm, RPed = 2µm, Narms = 2, Warms = 0.15µm, and Nrings = 2.
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(a) Ω0 = 0.029559
MHz

(b) Ω1 = 0.14196 MHz (c) Ω2 = 0.14779 MHz

(d) Ω3 = 0.84809 MHz (e) Ω4 = 0.90075 MHz (f) Ω5 = 2.363 MHz

(g) Ω6 = 2.468 MHz (h) Ω7 = 5.0149 MHz (i) Ω8 = 6.5807 MHz

(j) Ω9 = 6.6034 MHz (k) Ω10 = 8.0913 MHz (l) Ω11 = 8.2277 MHz

Figure B.2 – First mechanical modes of a Silicon suspended ring resonator, with
R = 10µm, RPed = 2µm, Narms = 2, Warms = 0.15µm, and Nrings = 1.
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(a) Ω0 = 0.0416 MHz (b) Ω1 = 0.91236 MHz (c) Ω2 = 0.91254 MHz

(d) Ω3 = 1.1948 MHz (e) Ω4 = 2.3792 MHz (f) Ω5 = 2.5642 MHz

(g) Ω6 = 4.9797 MHz (h) Ω7 = 6.5927 MHz (i) Ω8 = 6.5928 MHz

(j) Ω9 = 7.5686 MHz (k) Ω10 = 7.5687 MHz (l) Ω11 = 8.262 MHz

Figure B.3 – First mechanical modes of a Silicon suspended ring resonator, with
R = 10µm, RPed = 2µm, Narms = 4, Warms = 0.15µm, and Nrings = 1.
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(a) Ω0 = 0.035 MHz (b) Ω1 = 0.779 MHz (c) Ω2 = 0.780 MHz

(d) Ω3 = 1.065 MHz (e) Ω4 = 2.465 MHz (f) Ω5 = 2.466 MHz

(g) Ω6 = 3.058 MHz (h) Ω7 = 3.058 MHz (i) Ω8 = 6.569 MHz

(j) Ω9 = 6.626 MHz (k) Ω10 = 8.113 MHz (l) Ω11 = 8.156 MHz

Figure B.4 – First mechanical modes of a Silicon suspended ring resonator, with
R = 10µm, RPed = 2µm, Narms = 3, Warms = 0.15µm, and Nrings = 1.
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APPENDIX C

Description of the mask layout

The entire mask layout is displayed on figure C.1. The cell is 2.2 cm × 2.2 cm large, with
4 levels: the grating coupler level (in pink), the photonic level (in violet), the release level
(in blue), and the metal level (hatched).

In a nutshell, the grating coupler level is used during the partial etching of the grating
coupler, the photonic level is used during the patterning of the photonic and optomechanic
devices, the release level is used during the release of optomechanical structures, and the
metal level is used on some particular devices that we did not describe.

The mask is divided between several subcells (see figure C.1):

1. SWG interdigitated combs straight waveguides.

2. SWG interdigitated combs waveguides within all-pass racetrack resonators.

3. SWG interdigitated combs waveguides within Mach-Zehnder interferometers.

4. Classical ring resonators.

5. SWG interdigitated combs waveguides within add-drop racetrack resonators.

6. SWG interdigitated combs waveguides within all-pass racetrack resonators, with
electrical drive.

7. Spiral-shaped SWG interdigitated combs waveguides.

8. SWG “ladder-like” waveguides.

9. Suspended ring resonators.

10. Test cell for the asymmetric taper between strip and SWG interdigitated combs
waveguides.
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Figure C.1 – View of the entire mask layout. The cell size is 2.2 cm × 2.2 cm.
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11. Ring-shaped SWG interdigitated combs waveguides.

12. Test cell for photonic devices.

SWG interdigitated combs straight waveguides

This subcell is presented on figure C.2. It is divided between:

1. SWG interdigitated combs straight waveguides with an asymmetric SWG taper
between the SWG and strip waveguides.

2. SWG interdigitated combs straight waveguides with an abrupt junction between the
SWG and strip waveguides.

3. SWG interdigitated combs straight waveguides with a classical, adiabatic taper
between the SWG and strip waveguides.

The goal of this subcell is to explore the influence of the SWG pitch, to compare released
and non-released structures, and to compare structures with an asymmetric SWG taper,
with an abrupt junction, and with a classical adiabatic taper between the SWG and strip
waveguides.

This subcell is exploited for the measurements presented on sections VII.2.1 and VII.2.2.

Figure C.2 – Subcell for SWG interdigitated combs straight waveguides.
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SWG interdigitated combs waveguides within all-pass
racetrack resonators

This subcell is presented on figure C.3. It is divided between:

1. SWG interdigitated combs waveguides within all-pass racetrack resonators.

2. Released SWG interdigitated combs waveguides within all-pass racetrack resonators.

The goal of this subcell is to demonstrate the integration of released and unreleased
SWG interdigitated combs waveguides within all-pass (i.e. with a unique bus waveguide)
racetrack resonators. Multiple waveguide lengths, gaps (between the bus waveguide and
the racetrack resonator) and SWG pitches are explored.

This subcell is exploited for the measurements presented on section VII.2.3.

Figure C.3 – Subcell for SWG interdigitated combs within all-pass racetrack
resonators.

SWG interdigitated combs waveguides within Mach-
Zehnder interferometers

This subcell is presented on figure C.4. It is divided between:

1. SWG interdigitated combs waveguides within a Mach-Zehnder interferometer (MZI).

2. Released SWG interdigitated combs waveguides within a MZI.

More precisely, both arms of the MZI are constituted with SWG interdigitated combs
waveguides. The left waveguide is kept constant, while the right waveguide presents a
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variable overlap. Released and unreleased waveguides of various SWG pitches are ex-
plored.

The goal of this subcell was to measure the phase shift under mechanical motion. As
the overlap is varied between each geometry, the effect of mechanical motion is statically
reproduced. This way, the relation between the phase shift and the mechanical motion
can be calibrated.

In practice, experimental results on these geometries were too noisy to be exploitable.

Figure C.4 – Subcell for SWG interdigitated combs waveguides within Mach-
Zehnder interferometers.

Classical ring resonators

This subcell is presented on figure C.5. Multiple ring radii and gaps were explored.
This subcell is exploited all along section V.2 when experimental results on classical ring
resonators are presented.

Additionally, this subcell was a way to compare our different fabrication runs, based on
the measured figures of merit of the ring resonators.
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Figure C.5 – Subcell for classical ring resonators.

SWG interdigitated combs waveguides within add-drop
racetrack resonators

This subcell is presented on figure C.6. It is divided between:

1. Released SWG interdigitated combs waveguides within add-drop racetrack resonators.

2. SWG interdigitated combs waveguides within add-drop racetrack resonators.

The goal of this subcell is to demonstrate the integration of released and unreleased
SWG interdigitated combs waveguides within add-drop (i.e. with two bus waveguides)
racetrack resonators. Multiple waveguide lengths, gaps (between the bus waveguides and
the racetrack resonator) and SWG pitches are explored.

Figure C.6 – Subcell for SWG interdigitated combs waveguides within add-drop
racetrack resonators.
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SWG interdigitated combs waveguides within all-pass
racetrack resonators, with electrical drive

This subcell is presented on figure C.7.

Figure C.7 – Left: Subcell for SWG interdigitated combs waveguides within all-
pass racetrack resonators, with electrical drive. Right: Zoom on one structure

On this subcell, the SWG interdigitated comb structure is linked to a capacitive actua-
tor with three metallic vias, and a holey suspended supporting structure. Released and
unreleased SWG interdigitated combs waveguides are integrated within an all-pass race-
track resonator. Multiple waveguide lengths, gaps (between the bus waveguides and the
racetrack resonator), SWG pitches and supporting structures are explored.

We did not have time to measure these structures, that were not present on the majority
of our wafers, as we skipped the realization of the metal level (which includes lithographic,
etching and doping steps) in order to accelerate the fabrication.

Spiral-shaped SWG interdigitated combs waveguides

This subcell is presented on figure C.8.

Figure C.8 – Subcell for Spiral-shaped SWG interdigitated combs waveguides.
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The goal of this subcell is to measure propagation losses in released and encapsulated
SWG interdigitated combs waveguides. Multiple SWG pitches are realized.

This subcell is exploited for the measurements presented on section VII.2.1.

SWG “ladder-like” waveguides

This subcell is presented on figure C.9. It is divided between:

1. SWG “ladder-like” waveguides integrated within directional couplers of multiple
length and gap.

2. SWG “ladder-like” waveguides integrated within Fabry-Perot cavities of multiple
length and number of DBR layers.

3. SWG “ladder-like” waveguides of variable pitch.

4. SWG “ladder-like” waveguides integrated within coupled Fabry-Perot cavities of
multiple length, number of DBR layers and gap.

Figure C.9 – Subcell for SWG “ladder-like” waveguides.

This subcell is exploited for the measurements presented on section VII.3.

Suspended ring resonators

This subcell is presented on figure C.10. Multiple ring radii, gaps, number of arms and
number of rings were explored. This subcell is exploited all along sections V.2 and V.3.
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Figure C.10 – Subcell for suspended ring resonators.

Test cell for the asymmetric taper between strip and
SWG interdigitated combs waveguides

This subcell is presented on figure C.11. Multiple SWG asymmetric tapers of variable
length are cascaded. This subcell is exploited all along section VII.2.2.

Figure C.11 – Subcell for the asymmetric taper between strip and SWG inter-
digitated combs waveguides.
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Ring-shaped SWG interdigitated combs waveguides

This subcell is presented on figure C.12. It is divided between:

1. Encapsulated ring-shaped SWG interdigitated combs waveguides, without the me-
chanical supports.

2. Encapsulated ring-shaped SWG interdigitated combs waveguides, with the mechan-
ical supports.

3. Released ring-shaped SWG interdigitated combs waveguides.

Figure C.12 – Subcell for Ring-shaped SWG interdigitated combs waveguides.

Multiple radii and gaps are explored. Experimental results based on this subcell are
presented on section VII.2.3.

Test cell for photonic devices

This subcell is presented on figure C.13. It is divided between:

1. Bent waveguides of variable radii, for the measurement of bent losses.

2. Directional couplers of variable radii and gaps.

3. Suspended waveguides.

4. Spiral-shaped waveguides, for the measurement of propagation losses.

5. Used for technological verification.
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6. Cascaded MMI.

Figure C.13 – Test cell for photonic devices.
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APPENDIX D

Silicon nitride suspended ring
resonators

Introduction

All results presented along the thesis were obtained on silicon-based structures. In parallel
to this work, we also briefly studied silicon nitride-based ring resonators as a way to realize
suspended optomechanical cavities.

Silicon nitride is a good candidate for photonic integration. It exhibits a large trans-
parency window at both visible and infra-red wavelengths, and displays negligible two-
photons absorption at telecom wavelengths [137]. Propagation losses in fabricated waveg-
uides are relatively low, and ring resonators with quality factors superior to 106 have
already been demonstrated [213, 214].

Mechanically speaking, silicon nitride is a high tensile stress material, which allows to
achieve unusually elevated mechanical quality factors [215, 216].

As a good candidate for photonics and nanomechanics, silicon nitride is hence a good
candidate for cavity optomechanics. On the following, we present early results that we
obtained on silicon nitride.

Fabrication

Briefly, the fabrication steps are the following:

1. Grating couplers and waveguides etching (figure D.1 ; steps 4 to 7):
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Figure D.1 – Grating couplers and waveguides etching. Contrary to Silicon
wafers, the GC we use here are totally etched, such that both GC and photonic
waveguides are patterned during the same single etching step.

(a) Resist deposition, insulation & development.

(b) Complete etching of the SiN layer.

(c) Resist removal.

2. Waveguide encapsulation (figure D.2 ; steps 8 and 9):

(a) Deposition of a 2600 nm thick SiO2 layer.

(b) CMP of the SiO2 layer, down to 600 nm above the waveguide level.

3. Waveguide release (figures D.2 and D.3 ; steps 10 to 16):

(a) Deposition of an AlN layer.

(b) Resist deposition, insulation & development.

(c) Etching of the AlN layer.

(d) 1800 nm dry etching of the SiO2 layer, down to 200 nm above the waveguide
level.

(e) Resist removal.

(f) Wet etching of the BOX and SiO2 layers.
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Figure D.2 – Waveguide encapsulation and patterning of a AlN hard mask.

Figure D.3 – Waveguide release.
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Optical experiments on SiN ring resonators.

Optical experiments are conducted on optical probers. The experimental setup and the
measurement protocol are the same that in section V.2.

Preliminary measurements: grating couplers efficiency, linear
losses and bending losses

We begin optical experiments by measuring the GC efficiency. The results are presented
on table D.1

Loses (dB) λMax. (nm)
Median -11.25 1510.36
Average -11.48 1513.70
Standard deviation 1.17 11.81
Best result -9.71

Table D.1 – GC losses

Next, we measure propagation losses. The optical transmission spectrum of spiral-shaped
waveguides of various lengths (few centimeters) is realized. A linear regression between
the lengths and the output powers directly gives access to the linear losses. The results
are presented on table D.2.

Wavelength 1530 nm 1550 nm 1570 nm
Median (dB/cm) -3.24 -1.91 -0.65
Average (dB/cm) -3.41 -2.16 -0.90
Standard deviation (dB/cm) 0.84 0.97 0.77
Best result (dB/cm) -2.05 -0.56 -0.02

Table D.2 – Propagation losses in 1400 nm × 420 nm silicon nitride waveguides,
with a TE0 polarization.

Bending loses are measured with numerous bent waveguides and a linear regression be-
tween the number of bends and the output powers. The results are presented on table
D.3.

Discussion: The waveguide design was conducted with numerical FEM simulations.
The silicon nitride height of 420 nm was imposed by available wafers, such that we chose
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Radius (µm) 15 25 50
Median (dB/90o) -0.314 -0.173 -0.040
Average (dB/90o) -0.292 -0.139 -0.073
Std (dB/90o) 0.077 -0.109 -0.105
Best result (dB/90o) -0.049 -0.146 -0.321

Table D.3 – Bending losses in 1400 nm × 420 nm silicon nitride waveguides, with
a TE0 polarization, at a 1550 nm wavelength.

Figure D.4 – Typical experimental spectrum of an encapsulated SiN ring res-
onator of radius 15 µm and gap 500 nm.

a 1400 nm width, in order to ensure a single mode TE0 behavior. The waveguide cross-
section is hence 1400 nm × 420 nm.

Propagation losses and bending losses are at the state-of-the-art level [217]. Grating
couplers are a little less efficient, but remain at a totally appropriate level.

Ring resonators

Encapsulated ring resonators of various gaps and radius were designed, fabricated, and
measured. A typical experimental spectrum is presented on figure D.4.

For each spectrum, the position, contrast and quality factor of each peak are calculated.
Statistical values over an entire wafer are summarized on figure D.5.

We globally observe an increase of the quality factor with the ring radius, as well as with
the gap. These results are coherent with theory: when the gap is increased, the coupling
between the bus waveguide and the cavity decreases, and so do the intra-cavity losses.
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Figure D.5 – SiN ring resonators quality factors, for various radii and gaps. The
dot (resp. errorbar) corresponds to the median (resp. lower and upper range) of
the data.

Suspended ring resonators

Suspended ring resonators of various design were fabricated. At time of writing, we could
not however observe resonance peaks on the optical spectrum. The reason is evidenced
on figure D.6. On the right SEM image, we see that the bus waveguide and suspended
ring are not aligned at the coupling region. Consequently, light is not coupled into the
ring.

We believe the misalignment to be a consequence of pressure forces exerted during the
fabrication. The mastery of this step is an on-going work.

Conclusion

In this appendix, we have presented preliminary results on silicon nitride suspended ring
resonators and photonic waveguides in general. We measured promising photonic perfor-
mances, with state-of-the-art propagation and bending losses, and attained optical quality
factors above 100 000 on encapsulated ring resonators.

The next step is now to master the release of suspended ring resonator, from which cavity
optomechanics experiments could be conducted.

Silicon nitride suspended ring resonators are appealing for cavity optomechanics appli-
cations, because they exhibit negligible TPA effects. In this regard, it is possible to use
high optical powers (and hence benefit from more “practical signal”) without suffering
from thermo-optic and non-linear effects, whose negative impact was evidenced on silicon
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Figure D.6 – Left: SEM image of a SiN suspended ring resonator. Right:
Zoom at the coupling region. The bus waveguide and ring are not aligned.

suspended ring resonators. Additionally, silicon nitride also offer interesting mechanical
properties, as a high tensile stress material.
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Abstract
In this work, we study ring shaped suspended optomechanical resonators, and Sub-
Wavelength Grating (SWG) based optomechanical resonators.
The first approach presented - suspended ring resonators - serves as an introduction over
general equations and experimental techniques.
On a second approach, we propose to co-integrate SWG waveguides inside of a Fabry-
Perot cavity. The refractive index of a SWG waveguide is periodic with a pitch way
smaller than the wavelength that results in a lossless propagation with no diffraction
effects. The medium can be approximated as uniform, with an averaging effect over its
refractive index. In particular, we evidence new optomechanical mechanisms arising from
the SWG waveguide, and expect a strong optomechanical coupling strength.
All along the thesis, a systematic optical, mechanical, and optomechanical study of each
structure is conducted, with both simplified analytical models and numerical simulations.
The technological realization of the structures over 200 mm silicon wafers is presented,
along with optical and optomechanical experimental characterizations.
Keywords: Cavity optomechanics – photonics – optical forces – sub-wavelength grating
– suspended waveguide – ring resonator – silicon – analytical – experimental – fabrication.

Résumé
Dans ce travail, nous étudions les résonateurs optomécaniques en forme d’anneaux sus-
pendus et les résonateurs optomécaniques à base de guide d’onde sub-longueur d’onde
(SWG - pour Sub-Wavelength Grating).
La première approche présentée - les anneaux suspendus - sert d’introduction aux notions
générales et aux techniques expérimentales.
Dans une deuxième approche, nous proposons de co-intégrer des guides d’ondes SWG à
l’intérieur d’une cavité Fabry-Pérot. L’indice de réfraction d’un guide d’ondes SWG est
périodique avec un pas beaucoup plus petit que la longueur d’onde, ce qui permet une
propagation optique sans perte et sans effet de diffraction. Le milieu peut être considéré
uniforme, avec un effet de moyennage sur son indice de réfraction. En particulier, nous
mettons en évidence de nouveaux mécanismes optomécaniques issus du guide d’ondes
SWG, et attendons un fort taux de couplage optomécanique.
Tout au long de la thèse, l’étude systématique des propriétés optiques, mécaniques et op-
tomécaniques de chaque structure est menée, sur la base de modèles analytiques simplifiés
et de simulations numériques. La réalisation technologique des structures sur wafers sili-
cium de 200 mm est présentée, ainsi que des caractérisations expérimentales optiques et
optomécaniques.
Mots clés : Optomécanique en cavité – photonique – forces optiques – sub-longueur
d’onde – guide d’onde suspendu – anneau résonnant – silicium – analytique – expérimental
– fabrication.
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