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Thèse présentée pour obtenir
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et F. Imbeaux. J’ai également eu le plaisir de travailler dans d’autres laboratoires, parmi
lesquels PPPL (Princeton, USA) et JET (Culham, UK). L’environnement stimulant que
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prendre une part active à l’opération des machines de fusion Tore Supra, WEST et JET
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Preamble

A successful magnetic fusion reactor must fulfill a certain number of prerequisites in terms
of physics and technology [1,2]. In its most simplified form, the main physics challenge can
be summarized in the form of the Lawson criterion which expresses the balance between
fusion power production and energy losses, i.e.

nTτE & 3 · 1021keV · s ·m−3, (1)

with n the plasma density, T the fuel ion temperature and τE the energy confinement
time. The cross-section of Deuterium-Tritium reactions has a maximum value, imposing
an optimal temperature which can only be attained by using external heating systems to
provide energy to the plasma. Stability and equilibrium constraints inherent to magneti-
cally confined plasmas dictate that the plasma pressure nT must not exceed a rather low
fraction of the magnetic energy B2/2µ0 with B the confining magnetic field [3]. Having al-
ready defined an optimal temperature, this places an upper limit on achievable densities n.
In this somewhat simplistic analysis, the remaining parameter is therefore τE , the energy
confinement time. Neoclassical theory, which describes collisional transport in toroidal
geometry, can be employed to predict τE [4]. However, it is well known that this estimate
is much larger, and thus optimistic in terms of performance, than the typically measured
values. Two main factors degrading the energy confinement with respect to neoclassical
predictions have been identified:

• MHD instabilities inherent to the equilibrium properties (kink and tearing modes. . . ),
destabilized by the presence of energetic particles (toroidal Alfvén eigenmodes. . . ),
or even created by these particles (fishbones. . . ),

• turbulence resulting from micro-scale instabilities.

The physics phenomena underlying these processes are complex, and their effects are
not additive. Magnetic fusion plasmas are self-organized system which exhibit a high level
of coupling between the processes at play: neoclassical transport, turbulence and MHD
instabilities. Some control can still be exerted on the plasma behavior, and ultimately on
the fusion performance, by using external systems. Neutral Beam Injection (NBI) allows
high density and temperature to be sustained by external matter and energy injection.
Electromagnetic field in the form of Radiofrequency (RF) waves allow electrical work to
flow from a generator to the plasma particles. Historically, they have been employed for
plasma non-inductive heating and current drive. In more recent applications, they are also
used to influence neoclassical transport, MHD activity, and also turbulence, with various
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levels of sophistication. In this manuscript, we focus on a mathematical model for the RF
wave propagation, damping, and resulting plasma response. This model and its numerical
implementation are required to simulate RF waves when they are employed in phase-space
engineering applications. Several of these advanced concepts are described.



Chapter 1

Introduction

1.1 Plasma waves

The physical description of an electromagnetic wave propagating in a given medium neces-
sitates a self-consistent handling of the particles comprising the medium (and their mutual
interactions) on the one hand, and of the electromagnetic field on the other hand. In the
case of a plasma, the generic problem is summarized in Fig. 1.1.

field
Electromagnetic

Charge,
current trajectories

equations
Maxwell’s force

Lorentz

(plasma model)
Particles statistics

Sources in

Particle

Figure 1.1: Self-consistent description of the electromagnetic field in a plasma.

The electromagnetic field, given by the Maxwell’s equations, influences the particle
trajectories. Since the handling of all individual particles is largely beyond the computa-
tional capabilities of available computers in the present, but also in any foreseeable future,
a plasma model is needed to derive statistical quantities, such as the charge and current
density. In turn, these quantities enter as sources in the Maxwell’s equations, and influence
the field. Depending on the problem under study, various approximations are introduced
to close this loop.

In the case of radiofrequency (RF) wave, there exists a clear timescale separation in the
problem. The wave period (τ) is always much smaller than the collisional time (τcoll) which
itself is comparable to the typical time it takes for the secular evolution of the distribution
function to take place (τQL), so that τ � τcoll ∼ τQL. Even relatively low frequency
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heating waves, at f ∼ 10MHz, are such that τ = 0.1µs� τcoll, τQL. Practically, this means
that the problem of the wave field evaluation on the one hand and of the plasma response
evaluation on the other hand are handled independently: the former is obtained by solving
the Maxwell’s equations assuming the distribution functions are known, whereas the latter
is obtained from the Fokker-Planck equation, evaluated assuming the wave electromagnetic
field is given. This simplification is illustrated in Fig. 1.2.

Maxwell’s equations Fokker-Planck equation 

Wave propagation / 
damping 

Plasma 
response 

Figure 1.2: Simplified description of the coupled wavefield and plasma response evolution.

1.1.1 Maxwell’s equations

The macroscopic electromagnetic field in the plasma is described by the Maxwell’s equa-
tions, which we can choose to write in the form:

∇ ·D = ρfree + ρext, (1.1)

∇ ·B = 0, (1.2)

∇×E = −∂B
∂t
, (1.3)

∇×H = jfree + jext +
∂D
∂t

. (1.4)

In these relations, E is the electric field, D is the electric displacement, H is the
magnetic intensity, B is the magnetic induction (which we shall refer to as the magnetic
field). jfree is the current carried by the free charges flowing in the medium, and ρfree
is the corresponding charge density. jext and ρext are the current and charge densities
from external sources, such as antennas. It is important to notice that in this form, the
polarization and magnetization currents are included in D and H. Formally, it is possible
to solve these equations as long as we are able to describe the medium response to a given
electromagnetic excitation. In other words, we need to establish the constitutive relations
of the medium:

D ?= D[E,B], (1.5)

and
H ?= H[E,B]. (1.6)

In classical electromagnetism [5], it is usual to introduce a polarization vector P, and
also a magnetization vector M to write

D ≡ ε0E + P, (1.7)
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and
H ≡ B/µ0 −M, (1.8)

with ε0 = 1/36π×10−9F/m the vacuum dielectric permittivity and µ0 = 4π×107H/m
the vacuum magnetic permeability. We can then manipulate Eq. 1.4 to obtain the perhaps
more familiar form

∇×B = µ0(jfree + jmag + jpol + jext) +
1
c2

∂E
∂t
, (1.9)

with ∂tP ≡ jpol, and ∇ ×M ≡ jmag. jpol and jmag are respectively the polarization
and magnetization currents.

So far, we have followed the exact same method employed, e.g., in solid state physics.
However, in plasma physics, it is impractical to separate the polarization, the magnetiza-
tion and the free charges currents. Indeed, all charges are free (at least in a fully ionized
plasma), yet all do contribute to the polarization of the medium. Therefore, we choose to
rewrite Eq. 1.9 in the microscopic form

∇×B = µ0(j + jext) +
1
c2

∂E
∂t
, (1.10)

where j is the total current flowing in the plasma in response to the wave perturbation.
It is now straightforward to deduce the wave equation from Eqs. 1.3 and 1.10

∇×∇×E +
1
c2

∂2E
∂t2

= −µ0
∂(j + jext)

∂t
. (1.11)

Despite its apparent simplicity, this relation is extremely complicated, firstly because of
its non-linear nature (in all generality, j is a non-linear function of E) and secondly because
of the plasma properties. In all this work, we will always assume that the relation between
j and E is linear in essence, restricting ourselves to waves of moderate amplitude, which
can therefore be treated as perturbations. This will allow us to retain the self-consistent
nature of the problem within acceptable computational requirements.

In order to assess the level of realism of this hypothesis, we consider the problem of
heating a plasma with RF waves. In a magnetic fusion reactor such as ITER, the maximum
electric field in the plasma associated to waves in the ion cyclotron range of frequencies
is estimated to be of the order |E| ∼ 30kV/m (see, e.g., Ref. [6]). The propagating
wave in this case belongs to the compressional branch, for which the refraction index is
approximately given by [7]

ε ≈ ε0 c
2

v2
a

, (1.12)

with va the Alfvén velocity. If we consider a deuterium plasma with a density ne ∼ 1020m−3

confined by a magnetic field B ∼ 5T, we obtain ε ∼ 1.3 × 10−8F/m. The corresponding
electromagnetic energy density is thus given by

w = ε
|E|2

2
∼ 6J/m3. (1.13)
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The thermal energy contained in the plasma if we assume a uniform temperature
Te = Ti ∼ 5keV is given by

wth ≡ 2neTi ∼ 160J/m3. (1.14)

We see that w � wth, so that the linear hypothesis is legitimate. Of course, the electric
field can be locally stronger in some situations but a more subtle analysis shows that a
linear assumption is usually quite adequate to describe plasma waves excited by auxiliary
systems [8].

1.1.2 Properties of a magnetized plasma

In an isotropic dielectric medium, the fact that j is a linear function of E can be written
as

j(r, t) = σ(r, t)E(r, t). (1.15)

σ is the linear conductivity. Eq. 1.15 is local, both spatially (i.e., the response at
location r only depends on the excitation at location r) and temporally (i.e., the response
at instant t depends only on the excitation at instant t). However, several properties of
the plasma make the description more complicated than in this ideal dielectric medium.

Anisotropy: In many situations, plasmas are immersed in strong magnetic fields (mag-
netic fusion plasmas, space plasmas. . . ). In this case, the response will obviously
differ depending on the direction of the excitation. The relation between j and E
thus becomes tensorial in essence, as in a crystal for instance. Hence, we write

j(r, t) = σ ·E(r, t), (1.16)

where σ is now a tensor.

Time dispersion: The plasma comprises electrons and ions, which evidently have dif-
ferent weights. Depending on the wave frequency, due to their inertia, the heavy
ions may respond to the excitation with a delay compared to the lighter electrons.
In this case, the response of the plasma at instant t is determined by the excitation
at all previous instants t′. Taking into account the causality principle, we obtain a
relation which is non-local in time:

j(r, t) =
∫ t

−∞
dt′ σ(r, t, t′) ·E(r, t′). (1.17)

Due to the non-local character of the relation between j and E, it is usual to refer
to σ(r, t, t′) as the conductivity kernel.

Space dispersion: In a plasma, the finite temperature of the species induces a ther-
mal agitation, and the particles have erratic displacements superimposed to their
integrable motion. This means that the particles at position r are influenced by
the electromagnetic field in the domain they explore due to this non-deterministic
part of their motion. Space dispersion is therefore a consequence of thermal effects.
We can thus expect a cold plasma to be non-dispersive in space (but not in time).
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In general, the relation between j and E must therefore be written in a spatially
non-local form:

j(r, t) =
∫
d3r′ σ(r, r′, t) ·E(r′, t). (1.18)

Gathering these three essential properties, it is clear that the functional j(E) must be
written in the form

j(r, t) =
∫ t

−∞
dt′
∫
d3r′ σ(r, r′, t, t′) ·E(r′, t′). (1.19)

If the plasma is stationary, the conductivity can only depend on the time elapsed
between the excitation (t′) and the response (t). In other words, the conductivity kernel
must verify σ(r, r′, t, t′) = σ(r, r′, t− t′). Furthermore, if the plasma is homogeneous, the
conductivity can only depend on the difference between the excitation location (r′) and
the response location (r), which simply reflects the fact that the medium is invariant by
translation. We obtain σ(r, r′, t, t′) = σ(r− r′, t, t′).

When both conditions are fulfilled, Eq. 1.19 then becomes

j(r, t) =
∫ t

−∞
dt′
∫
d3r′ σ(r− r′, t− t′) ·E(r′, t′). (1.20)

It is useful to to perform a Fourier analysis of the oscillating quantities and write the
electric field and the current density as superpositions of plane waves. It is readily seen
that in Fourier space, Eq. 1.20 takes a local character:

jk,ω = σk,ω ·Ek,ω, (1.21)

where jk,ω, Ek,ω and σk,ω are respectively the Fourier transforms of the current, electric
field and conductivity kernel.

The homogeneous/stationary plasma assumption is quite convenient, as it opens the
way to the very useful notions of dispersion relation, dielectric tensor. . . However, an anal-
ysis of its range of validity shows that the homogeneous plasma assumption is often not
justified. Another major drawback of the plane wave decomposition is that a plane wave
in a uniform medium contains infinite energy by construction, and is thus not adapted to
the description of energy exchanges [8, 9]. The solution to this is to refine the plane wave
decomposition by using a WKB form for all oscillating quantities [10]. The electric field
is then written as

E(r, t) =
1
2
[
E0(r, t)eiφ + E∗0(r, t)e−iφ

]
. (1.22)

Assuming that the wave properties vary slowly both spatially and temporally with
respect to the wavelength and wave-period respectively, the eikonal function can be ap-
proximated as1

φ(t) = k · r− ωt. (1.23)

The WKB form allows one to describe the plasma as quasi-local, i.e. local from the
wave point of view, while retaining the possibility of describing a slowly varying medium.

1Owing to the validity conditions of the WKB approximation, it must be noted that this derivation
is not adapted to describe abrupt space or time changes in the medium properties, such as cut-offs or
resonances.
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1.1.3 Energy transfers

The description of energy transfers taking place between the medium and the wave is
obviously contained in the Maxwell’s equations. Dotting Eq. 1.3 with H, Eq. 1.4 with E
and using the vector relation ∇ · (E×H) = H · ∇×E−E · ∇×H, the Poynting theorem
can be expressed as a conservation relation:

∇ · S + E · ∂D
∂t

+ H · ∂B
∂t

= −(jfree + jext) ·E, (1.24)

with the Poynting vector defined as

S ≡ E×H. (1.25)

This form has the advantage of clearly showing the energy flow of the electromagnetic
wave (S), the power required to establish the electric field in the medium (E · ∂tD) and
the power required to establish the magnetic field in the medium (H · ∂tB). On the right
hand side is the dissipated power, caused by the Joule effect.

Another possibility is to use Eqs. 1.3 and 1.9 to write the energy conservation in the
form

∂W

∂t
+∇ · S + (jpol + jmag) ·E = −(jfree + jext) ·E, (1.26)

with the vacuum energy density

W ≡ ε0
2
|E|2 +

1
2µ0
|B|2, (1.27)

and the Poynting vector defined as

S ≡ 1
µ0

E×B. (1.28)

The two relations (1.24) and (1.26) are written with the intention of keeping the re-
versible processes on the left hand side, whereas the irreversible energy exchange (dissipa-
tion) is on the right hand side. In a solid, for instance, the two first terms of Eq. 1.26 can
be identified respectively as the electromagnetic energy variation and the power flowing
in the electromagnetic wave. The third and fourth term represent the work exerted by
the polarization and magnetization current, caused by the displacement of atoms or nuclei
around their equilibrium positions in response to the applied electromagnetic field. This
energy exchange is reversible: when the excitation is switched off, the power is transferred
back from the medium to the wave. On the right hand side appears the power dissipated
by the Joule effect. This energy transfer is irreversible and contributes to the heating of
the medium. Indeed, in a solid, it is generally safe to assume that the mean free path is
much smaller than the wavelength2. This means that the equilibrium between the elec-
tromagnetic field and the medium is practically instantaneous. In a plasma, as discussed
previously, the situation is more complicated: there is no clear separation between the free

2If we assume that the distance between two atoms is 1nm, and that this constitutes the average mean
free path of a current carrier, we see that the wave frequency needed to have a wavelength comparable to
this mean free path is f & 1017Hz, which is in the X-rays range of frequencies.
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carrier current, the polarization and magnetization currents. In other words, j ·E contains
reversible and irreversible contributions which can not be separated in a straightforward
way. Another crucial point is that the mean free path is usually much longer than the
wavelength: there is no equilibrium between the electromagnetic field and the medium
on a single wave period. Therefore, we will need to work with quantities averaged over
a number of wave periods to describe the exchanges of energy between the plasma and
the wave: an analysis on the timescale of the wave period does not yield much useful
information.

We rewrite the Poynting theorem (Eq. 1.26) in the form

∂W

∂t
+∇ · S + j ·E = −jext ·E. (1.29)

We define the time average of a given quantity A as

〈A〉 ≡ 1
τ

∫ τ

0
dtA(t), (1.30)

with τω � 2π, where ω/2π is the wave frequency. If we consider the product of
two quantities A and B written in the WKB form (1.22), it is readily shown that the
time-average operation yields

〈A ·B〉 =
1
2
<(A0 ·B∗0). (1.31)

The time-average of the first term of (1.29) leads to〈
∂

∂t

[ |B|2
2µ0

+
ε0|E|2

2

]〉
=

1
2µ0

∂

∂t
|B0|2 +

ε0
2
∂

∂t
|E0|2. (1.32)

For the second term, we obtain〈
∇ ·
(

E×B
µ0

)〉
=

1
2µ0
∇ · <(E0 ×B∗0). (1.33)

Obviously, the complexity of our problem lies in the third term on the left hand side
of Eq. 1.29, because of the dispersive nature of the plasma. Assuming that the plasma is
stationary and locally uniform, the current can be written as

j(r, t) =
1
2

[
ei(k·r−ωt)

∫ t

−∞
dt′
∫
d3r′ σ(r−r′, t−t′)·E0(r′, t′)ei

(
k(r′−r)−ω(t′−t)

)
+c.c.

]
, (1.34)

where c.c. means “complex conjugate”. We can use the fact that the envelope of the
electromagnetic field varies slowly to perform the Taylor expansion:

E0(r′, t′) ≈ E0(r, t) + (r′ − r) · ∂E0

∂r′

∣∣∣∣
r′=r

+ (t′ − t) · ∂E0

∂t′

∣∣∣∣
t′=t

. (1.35)

In the obtained expression, the Fourier transform of σ and its derivatives with respect
to k and ω can be readily identified. This gives

j(r, t) =
1
2

{
ei(k·r−ωt)

[
σk,ω ·E0(r, t)− i∂σk,ω

∂k
· ∂E0

∂r
+ i

∂σk,ω

∂ω
· ∂E0

∂t

]
+ c.c.

}
. (1.36)
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Dotting the latter expression with E and averaging over time yields

〈j ·E〉 =
1
4

{
E∗0 ·

[
σk,ω ·E0 − i∂σk,ω

∂k
· ∂E0

∂r
+ i

∂σk,ω

∂ω
· ∂E0

∂t

]
+ c.c.

}
. (1.37)

We introduce the dielectric tensor [11]

ε = ε0

(
1 +

i

ωε0
σk,ω

)
, (1.38)

which may be decomposed as
ε = εh + iεa, (1.39)

where the Hermitian part εh is defined as

εh ≡ ε + ε†

2
, (1.40)

and the anti-Hermitian part as

εa ≡ ε− ε†

2i
, (1.41)

where the † symbol designates the adjoint, i.e. (ε†)ij = (ε)∗ji.
Using this decomposition, one obtains

〈j ·E〉 =
ω

2
E∗0 · εa ·E0− ω2∇·

(
E∗0 ·

∂εh

∂k
·E0

)
+

1
2
∂

∂t

(
E∗0 ·

∂

∂ω
(ωεh) ·E0− ε0|E0|2

)
. (1.42)

Finally, the time-average of the right-hand side of Eq. 1.29 corresponds to the power
dissipated on the wave-exciting device. In the context of an antenna aimed at heating a
plasma, it makes sense to define the power coupled by the antenna to the ionized medium
as

Pant ≡ −jext ·E. (1.43)

Eventually, the energy conservation can be written as

∂W

∂t
+∇ · (S + T) = Pant − Pabs, (1.44)

where W represents the electromagnetic energy density:

W ≡ 1
2

[
|B0|2
µ0

+ E∗0 ·
∂

∂ω
(ωεh) ·E0

]
. (1.45)

S, the Poynting vector, describes the power transported by the wave field:

S ≡ 1
µ0
<(E∗0 ×B0). (1.46)

T is the kinetic flux:

T ≡ −ω
2

E∗0 ·
∂εh

∂k
·E0. (1.47)
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It corresponds to the electromagnetic power transport caused by the coherent motion
of the particles. It is clear from the latter expression that in the case of a cold plasma,
where the absence of space dispersion implies ∂ε/∂k = 0, this quantity is zero.

Finally, the dissipated power can be written as

Pabs ≡ ωE∗0 · εa ·E0, (1.48)

and directly involves the anti-Hermitian part of the dielectric tensor. It should be kept
in mind that∇·T and Pabs have different natures: the first one corresponds to power which
is reversibly exchanged between the electromagnetic wave and the plasma and therefore
does not contribute to its heating. The latter, on the other hand, corresponds to power
irreversibly transferred to the plasma. In general, the separation of these two terms is
quite difficult to achieve unambiguously [12–14].

1.2 External heating of magnetic fusion plasmas

Here, “heating” must be understood in a broad (and historical) sense. Auxiliary systems
are mostly used for plasma heating by transferring electrical work to the plasma in the
form of heat, but they also generally have the capability to drive non-inductive current,
plasma rotation, generate energetic populations. . .

1.2.1 Radiofrequency waves

Radiofrequency waves are electromagnetic perturbations induced by external antennas. If
wave damping is weak, eigenmodes tend to develop and the electromagnetic field has a
global structure typically occupying the whole plasma volume, which is usually a trou-
blesome situation in real experiments. On the other hand, if the wavelength is short
compared to the plasma size and the damping mechanisms are sufficiently efficient, then
in a typical “WKB” representation, the wave propagates away from the antenna in the
plasma until a resonant damping mechanism takes place and allows energy to flow from
the RF generator to the plasma particles. In modern experiments, waves in three distinct
domains of frequencies are used:

Electron Cyclotron Waves: At frequency in the 100GHz range, their propagation is
quasi-optical and they are damped by the electrons at the electron cyclotron res-
onance or its harmonics. They can be used to heat the plasma (ECRH) or drive
non-inductive current with a somewhat modest current drive efficiency (ECCD).
Also usable in this domain of frequencies are the Electron Bernstein Waves (EBW)
which are employed to heat overdense plasma in stellarators or spherical torii.

Lower Hybrid Waves: Injected by couplers, their frequencies is of the order of a few
GHz. They are Landau-damped by electrons, and have the capability to create en-
ergetic electron populations. With an asymmetric toroidal spectrum, it is possible
to drive non-inductive current with a high efficiency. In some situations, they can
be damped by energetic ions, including alphas (usually considered a parasitic phe-
nomenon). Another difficulty is the fact that they cannot easily propagate or drive
current in dense plasmas, making their relevance to future reactors uncertain.
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Ion Cyclotron Waves: In the range of 10-100MHz, the fast magnetosonic wave is ex-
cited by metallic straps and propagates until it is damped mostly by ions at the ion
cyclotron resonance frequency or its harmonics, typically generating energetic ion
populations. They can also be used in alternative schemes to heat the electrons by
Landau damping/Transit Time Magnetic Pumping or linear mode conversion to Ion
Bernstein Waves (IBW). The physics of these waves is rather rich, and their effect in
terms of fluid moment generation, flow drive. . . is even richer and not fully explored
nor understood despite their early role in magnetic fusion research.

1.2.2 Energetic particles

Energetic3 electrons or ions are loosely defined as particles of a given species s with
velocities largely in excess to the thermal velocity vth,s for this species characterized by
its temperature Ts and the mass ms of its elements, i.e.

v � vth,s ≡
√

2Ts
ms

. (1.49)

Since the cross-section of fusion reactions is maximal at fairly large energies, the pos-
sibility to sustain out-of-equilibrium populations among which fusion reactions occur and
transferring the resulting energy to a thermal plasma or even to a converted wave has
received significant interest. However, it has been rigorously shown that valid concepts
of fusion plasma confinement by magnetic fields must first and foremost involve majority
species in thermal equilibrium [15]. As a consequence, research on reactors purely based
on energetic particles is not a very active field, nowadays. Nevertheless, fast particle pop-
ulations are usually present in tokamaks, stellarators or other types of confining devices.
They can consist of electrons or ions, depending on the plasma conditions, and on the
auxiliary systems employed for plasma heating:

• Fast electrons are essentially the result of Lower Hybrid (LH) waves, which create
a superthermal tail in parallel velocities by Landau damping. Electron Cyclotron
waves can also create energetic electrons albeit to a lesser extent than LH waves,
except when the LH-EC synergy is at play. Runaway electrons obviously qualify as
energetic particles but this topic is beyond the scope of the present manuscript (see,
e.g. Ref. [16] and citations therein).

• An intrinsic source of fast ions in a reactor is the alpha particles created by the D-T
fusion reactions

D + T→ α+ n, (1.50)

where α refers to a 4He ion born with an energy around 3.5MeV.

A second, extrinsic source of energetic ions is Neutral Beam Injection (NBI) systems,
which inject neutral particles with energies E ∼ 100−1000keV in the plasma. These
neutrals are ionized and result in a population of fast ions with kinetic properties
fixed by the injector geometry, beam energy and target plasma parameters.

3also called “fast” in many occurrences in this manuscript.
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A third source is the result of radiofrequency (RF) waves in the Ion Cyclotron Range
of Frequency (ICRF). These waves are excited by external antennas and propagate
in the plasma until they are absorbed by cyclotron damping. Depending on the RF
system features and the target plasma parameters, it is possible to drive ions up to
energies in the range of several MeV.

Whereas these fast particle sources appear to be well separate, their simultaneous use
does not result in a mere addition of effects. For instance, ICRF waves can drive NBI
ions to energies exceeding their injection energy. As a result, the wave propagation and
damping properties can be affected. Another coupled effect is the LH wave damping
by alphas, thereby diverting power originally targeted at driving non-inductive current.
These examples constitute cases of direct coupling, but the picture is actually much more
complicated since fast particles also influence the discharge dynamic properties by affecting
the transport of various fluid moments, as well as MHD and/or turbulent activity. And of
course, these energetic particles eventually slow down on the bulk species, and contribute
to the thermal plasma heating.

1.2.3 Improving plasma performance with RF waves

For a DT plasma in the range of 10−20keV, the Lawson criterion is often expressed as [1]

niTiτE & 3 · 1021keV · s ·m−3, (1.51)

with ni the ion density, Ti the ion temperature (both assumed homogeneous) and τE the
energy confinement time. It can formulated in a slightly different fashion by assuming
parabolic temperature and density profiles:

ni0Ti0τE & 5 · 1021keV · s ·m−3, (1.52)

where the subscript 0 refers to the central value. Introducing βth as the ratio of plasma
thermal pressure to magnetic pressure

βth ≡ neTe + niTi

B2

2µ0

, (1.53)

with B the confining magnetic field and assuming Te = Ti, the triple product Eq. 1.52
may then be rewritten as

B2
0βth(0)τE & 4T2 · s. (1.54)

From a plasma operation standpoint, improving the fusion yield is thus done by in-
creasing βth (or counteracting its degradation caused by undesirable phenomena such as
MHD activity or impurity contamination) and/or τE .

Successful plasma heating results in an increase of βth. This is caused by power damp-
ing by the absorbing species, or collisional relaxation of energetic particles on the bulk
species. In modern applications, the corresponding simulations are performed using inte-
grated modeling codes [17]. Here, we are mostly interested in methods in which energetic
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electrons or ions are employed as mediators to increase βth and τE . The only notable
exception is direct flow drive by RF waves, which does not directly involve fast particles.

The various possibilities have been summarized in the diagram shown in Fig. 1.3.
Some aspects have been left out of this scheme, the most notable one being that in many
situations, RF waves are primarily used for plasma heating by direct power damping on
thermal or nearly thermal species (Electron Cyclotron Resonance Heating, Fast Wave
Electron Heating. . . ). Therefore, one may note that the frontier between “increase τE”
and “increase βth” is somewhat blurry. This is especially true for EC and LH waves, which
combine the effects of bulk plasma heating and improving confinement. In order not to
excessively overload the diagram, this has been summarized as a dashed arrow.

Increase τE
Increase or

maintain βth

Energetic electrons Energetic ions

Wave electro-
magnetic field

High frequency
(EC & LH)

Low frequency
(IC)

Interaction Interaction

Flow
drive

Optimized
current profile

Induced rotation
MHD control

EGAMs

Electromagnetic
stabilization

Impur. control
MHD control

Figure 1.3: Various methods to improve the fusion yield by using radiofrequency waves.

1.3 Organization of this manuscript

This manuscript is organized as follows: this part, chapter 1, briefly reviews the basic
elements required in our physics description, namely RF waves, energetic particles and
how RF waves can be used to improve plasma performance. In chapter 2, we present a
Hamiltonian framework in which self-consistency between the wave electromagnetic field
and the plasma response is achieved. It is a continuation of a long-lasting effort applicable
to various domains [18–22]. This theory consists of describing the unperturbed system in
terms of an Hamiltonian and associate conjugate action-angle variables, and the response
of the system to an electromagnetic perturbation as a perturbation to this Hamiltonian.
Embedding this perturbed Hamiltonian in a variational principle allows the electromag-
netic field to be computed for a given excitation. The secular response of the system can
be obtained when the electromagnetic field is assumed to be known, and used to solve the
Fokker-Planck equation in order to deduce an updated distribution function. An advan-
tage of this approach is that explicit expressions for the various Hamiltonian contributions
with a well-controlled level of approximation can be obtained and used in the two parts
of the computation (wave and quasilinear), which is then naturally self-consistent.
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In chapters 3 and 4, these general expressions are employed to respectively demonstrate
how the electromagnetic field can be obtained from the Maxwell’s equations expressed
in a variational form, and also to obtain a perturbed distribution function accounting
for the secular effect of these fields. Chapter 3 presents the foundations of a full-wave
electromagnetic code named eve, which has been initially developed as an ICRF code
[23–25], but has been successfully used for MHD waves in the Alfvén range of frequencies
as well. It can also be extended with a rather limited effort (at least formally) to higher
frequencies, and could be used to describe LH and EC waves in the presence of energetic
electrons. Chapter 4 aims at showing how the Hamiltonian expressions can be considerably
simplified to result in a minimal quasilinear model. The associated code, named aql, is
also presented. It has been extensively used as a complement to eve to simulate actual
experiments in Tore Supra [26], WEST [27], JET [28], or ITER [6]. An upside of the
Hamiltonian formalism is that it can be employed to derive models (and associated codes)
with higher levels of sophistication. For instance, a limitation of aql is that it does
not retain finite orbit width effects, which can play an important role in Tore Supra or
JET. This limitation can be overcome by employing less drastic simplifications of the
Hamiltonian contributions appearing in the quasilinear diffusion coefficient. Such effort is
not described in these pages.

Chapter 5 contains several examples of how radiofrequency waves can be used to
improve the discharge properties. In these pages, we mostly focus on the use of RF
waves interacting with energetic ions or electrons, or directly on the microscopic structures
responsible for plasma turbulence, to achieve so-called phase-space engineering. A lot has
been already done in this area, but a whole range of possibilities remains to be explored,
both theoretically and experimentally. Hopefully, these techniques will progressively shift
from the physicist realm to become part of the various actuators available for the operation
of an efficient fusion reactor.

Since this manuscript is also aimed at students and newcomers in this field, we have in-
cluded in appendices A, C, B and D technical details with a range of application extending
beyond the subject at hand.

Finally, a set of publications from the author of the present manuscript have been
listed and grouped topically in appendix E. Six of them have been included in extenso.





Chapter 2

Hamiltonian theory of
electromagnetic perturbations

In this chapter, we review the building blocks which will be used to obtain the electromag-
netic wavefield for a given excitation and plasma parameters on the one hand (chapter 3)
and the secular response to a given wavefield on the other hand (chapter 4). Note that
the geometric and plasma equilibrium aspects appear in appendix A.

2.1 Kinetic description of particles

2.1.1 Quasi-local trajectories

In this work, the unperturbed particle trajectories are described in the drift approximation.
The ordering is given by the small parameter εd ≡ |∇ρi| with ρi a “typical” ion Larmor
radius. In the absence of unperturbed electric field, the particle guiding-center velocity is
given by

ṙgc = vgc = v‖e‖ + vdr, (2.1)

with vdr is drift velocity containing the usual curvature and gradient drifts:

vdr =
v2
‖

Ωcs
e‖ × (e‖ · ∇e‖) +

v2
⊥

2Ω2
cs

e‖ ×∇Ωcs. (2.2)

To first order in εd, the particle position is given by

r = rgc + rc, (2.3)

with
rc ≡ v⊥

Ωcs
[sin(φc)e⊥1 + cos(φc)e⊥2]. (2.4)

In the absence of static electric field, the particle velocity is decomposed as

v = vgc + v⊥, (2.5)

with
v⊥ = v⊥[cos(φc)e⊥1 − sin(φc)e⊥2]. (2.6)
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It should be noted that the latter expression is obtained by neglecting the slow variation
of the local magnetic basis along the magnetic field line. The gyro-phase is given by [29]

φ̇c = Ωcs +
v‖

2
e‖ · (∇× e‖ + 2∇e⊥1 · e⊥2). (2.7)

Note that the drift velocity, as well as the second term on the right-hand side of the
previous expression, are corrections of order εd. According to Defs. A.38, we can also write
the perpendicular velocity vector as

v⊥ = v⊥(eiφce− + e−iφce+), (2.8)

and the Larmor radius vector as

rc = −iρc(eiφce− − e−iφce+). (2.9)

Of particular importance is the relation

rc · ∇ = ρc(ei(φc−π/2)∇+ + e−i(φc−π/2)∇−), (2.10)

with
∇± ≡ ∇ · e∓ = T i±∂i, (2.11)

where Defs. A.48 have been used.

2.1.2 Adiabatic invariants

It is convenient to characterize the particle motion in terms of adiabatic invariants. In
this work, we will consider the set of invariants of the unperturbed motion I ≡ (E,µ, Pφ)
with the energy E ≡ msv

2/2, the magnetic moment µ ≡ msv
2
⊥/2/B0. Pφ is the canonical

toroidal momentum given by [30]

Pφ ≡ ms
F

B0
v‖ + qs

Φp

2π
= ms

F

B0
v‖ + qsψ, (2.12)

with the same notations as in Eq. A.6. It should be noted that Pφ is the only invariant
which depends explicitly on the radial position through the poloidal flux ψ, defined as

ψ ≡
∫
dsJ |∇θ ·B0| (2.13)

The first and third action variables are directly linked to the invariants by the relations

J1 = −ms

qs
µ, (2.14)

and
J3 = Pφ. (2.15)

We have
∂fs,0
∂Ji

=
∂fs,0
∂Ik

∂Ik
∂Ji

, (2.16)
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where ∂fs,0/∂Ik is assumed to be a known quantity. We have from Hamiltonian theory

∂E

∂Jk
=
∂Hs,0

∂Jk
= Ωk. (2.17)

Evidently
∂µ

∂Jk
= − qs

ms
δk,1, (2.18)

and
∂Pφ
∂Jk

= δk,3, (2.19)

so that

Ni
∂fs,0
∂Ji

= NkΩk
∂fs,0
∂E

−N1
qs
ms

∂fs,0
∂µ

+N3
∂f

∂Pφ
. (2.20)

2.1.3 Anisotropic Maxwellians

Plasma heating by ICRF waves results in the acceleration of resonant ions in the perpen-
dicular direction. The modification in the parallel direction mainly results from pitch-
angle scattering and remains rather moderate in standard experimental situations (cf.
chapter 4). The use of an anisotropic Maxwellian distribution, i.e. a Maxwellian fea-
turing T‖,s 6= T⊥,s is therefore rather common. In all this document, when anisotropic
Maxwellians are employed, we will impose Ts ≡ T‖,s, with Ts the normalization tempera-
ture. In this framework, a commonly employed expression is

fs,0(r,p) =
ns

(2πms)3/2T⊥,sT
1/2
s

e−msv
2
⊥/2/T⊥,se

−msv2
‖/2/Ts . (2.21)

However, as pointed out by Dendy et al., the previous expression is not acceptable
because it does not satisfy the Vlasov equation to lowest order [31]. To fulfill this condition,
it is necessary to specify the equilibrium distribution function in terms of the adiabatic
invariants, so that

fs,0(r,p) = A exp
(
− µB0,res

T⊥,s
− E − µB0,res

Ts

)
, (2.22)

with A a constant. B0,res is the magnetic field magnitude at the location where the
interaction occurs. Unlike Eq. 2.21, the latter distribution features a θ dependence when
expressed in terms of local position/velocity.

Introducing the anisotropy factor η⊥, the distribution function can be written as

fs,0(r,p) = A exp
(
−
msv

2
‖

2Ts

)
exp

(
− msv

2
⊥

2η⊥(θ)Ts

)
, (2.23)

with

η⊥(θ) ≡ T⊥,s
Ts

[
B0,res

B0(θ)
+
T⊥,s
Ts

(
1− B0,res

B0(θ)

)]−1

, (2.24)
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where Ts ≡ Ts(s) and T⊥,s ≡ T⊥,s(s) are flux functions. In this framework, T⊥,s should
be seen as the perpendicular temperature at the point where the interaction occurs. The
normalization is obtained by imposing that the heated particle density be equal to the
local density ns(s), which is assumed to be uniform on a flux surface. This yields

fs,0(r,p) =
ns

(2πmsTs)3/2η⊥(θ)
exp

(
−
msv

2
‖

2Ts

)
exp

(
− msv

2
⊥

2η⊥(θ)Ts

)
. (2.25)

2.2 Hamiltonian perturbations

2.2.1 Linear response

We introduce the Hamiltonian of particles with charge qs and mass ms interacting with
the total electromagnetic field:

Hs =
(p− qsA0 − qsA)2

2ms
+ qsϕ0 + qsϕ, (2.26)

where (A0, ϕ0) is the equilibrium electromagnetic potential. This Hamiltonian is linearized
to first order in the wave field amplitude by writing Hs ≈ Hs,0 + δHs where

δHs = qs(ϕ− vs,0 ·A), (2.27)

with vs,0 the unperturbed velocity, given by

vs,0 =
∂Hs,0

∂p
. (2.28)

The distribution function is written as the sum of an equilibrium distribution function
and a harmonic perturbation, fs = fs,0 + δfs. The link between the distribution function
and the Hamiltonian is given by the Vlasov equation for each species

∂fs
∂t

+ [fs, Hs] = 0. (2.29)

At this point, it is convenient to introduce the system of conjugate action-angle coor-
dinates, (Ji,Φi)i=1..3, which is defined in the unperturbed system as [32]

dJk
dt

= −∂Hs,0

∂Φk
= 0, (2.30)

and
dΦk

dt
≡ Ωk =

∂Hs,0

∂Jk
, (2.31)

where Ωk = Ωk(J) corresponds to the kth natural frequency of the system. By definition,
the unperturbed Hamiltonian and distribution function depend only on the action variable,
so that it is possible to write

Hs = Hs,0(Jk) + δHs(Jk,Φk, t), fs(Jk,Φk, t) = fs,0(Jk) + δfs(Jk,Φk, t), (2.32)
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where the oscillating quantities oscillate at frequency ω, and are expressed as a Fourier
series over the generalized angles, i.e.,

δHs ≡
∑
N

δhNe
i(NkΦk−ωt), δfs ≡

∑
N

δfNe
i(NkΦk−ωt), (2.33)

with N ≡ (N1, N2, N3) a triplet of integers. The linearization of Eq. 2.29 is straight-
forward and yields the linear response of the particles immersed in the wave field as

δfN = −δhN
Ni

ω −NkΩk

∂fs,0
∂Ji

. (2.34)

The action-angle coordinates are deduced from the conjugate position-momentum co-
ordinates by a canonical transformation, which implies d3rd3p = d3Jd3Φ.

2.2.2 Orbit integrals

The evaluation of δhN is performed by inverse Fourier transform of δHs

δhN1,N2,N3 =
1

(2π)3

∫
dΦ1dΦ2dΦ3δHse

−N·Φ, (2.35)

with
δHs ≡ δHs(r,p) = δHs(J,Φ). (2.36)

As discussed in Section 2.1.2, the various orbits of the particle guiding-centers are
characterized by the three invariants (E,µ, Pφ) of the unperturbed motion. In order to
track the particle guiding-center location on a given orbit, they must be supplemented by
the poloidal and toroidal angles at the guiding-center, θ and φ. Finally, the particle gyro-
motion is fully described by adding the gyro-phase φc. The Hamiltonian perturbation can
be written as:

δHs(r,v) = δHs(E,µ, Pφ, θ, φ;φc). (2.37)

Given the nature of the problem under consideration, it is natural to reformulate the
latter expression as a Fourier series over the gyro-angle:

δHs(E,µ, Pφ, θ, φ;φc) ≡
∞∑

p=−∞
δHpse

ipφc , (2.38)

with
δHps(E,µ, Pφ, θ, φ) ≡ 1

2π

∫
dφcδHs(E,µ, Pφ, θ, φ;φc)e−ipφc . (2.39)

Note that the previous expression implicitly assumes that the gyro-center motion is
fully decoupled from the guiding-center motion. Since δHps only depends on quantities
evaluated at the guiding-center, a Fourier expansion can be performed over the toroidal
and poloidal angles to obtain

δHs(E,µ, Pφ, θ, φ;φc) ≡
∑
pmn

δHpmne
i(pφc+mθ+nφ), (2.40)
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where

δHpmn(E,µ, ψ) ≡ 1
(2π)3

∫
dφcdθdφδHs(E,µ, Pφ, θ, φ;φc)e−i(pφc+mθ+nφ), (2.41)

with ψ the radial variable. This leads to

δhN1,N2,N3 =
1

(2π)3

∑
pmn

∫
d3ΦδHpmne

i[(pφc−N1Φ1)+(nφ−N3Φ3)+mθ−N2Φ2]. (2.42)

The gyro-phase is linked to the first generalized angle by a relation of the type

φc = Φ1 + Θ(E,µ, Pφ, θ, φ), (2.43)

which, since θ and φ are the angles for the guiding-center, implies that the integral over
Φ1 is trivial, giving

δhN1,N2,N3 =
1

(2π)2

∑
pmn

∫
dΦ2dΦ3δHpmne

i[pΘ(θ,φ)+(nφ−N3Φ3)+mθ−N2Φ2]δN1,p. (2.44)

The difficulty in this expression comes from the fact that θ and φ are functions of the
generalized angles Φ2 and Φ3. However, in a confining fusion device, which by definition
exhibits quasi-periodicities, it can be shown that [33]{

θ = εΦ2 + θ̂(H,µ, Pφ,Φ2),
φ = Φ3 + qθ̂(H,µ, Pφ,Φ2) + φ̂(H,µ, Pφ,Φ2),

(2.45)

where ε = 0 (resp. 1) for trapped (resp. passing) particles. q is the safety factor. θ̂ and
φ̂ are both periodic functions of Φ2. The integration over Φ3 can thus be performed in
Eq. 2.44 to give

δhN1,N2,N3 =
1

2π

∑
pmn

∫
dΦ2δHpmne

i[pΘ+nqθ̂+nφ̂+mθ−N2Φ2]δp,N1δn,N3 . (2.46)

According to Eq. 2.31, Φ2 = Ω2t, so that

δhN1,N2,N3 =
∑
pmn

1
τb

∫ τb

0
dtδHpmne

i[pΘ+nqθ̂+nφ̂+mθ−N2Φ2]δp,N1δn,N3 . (2.47)

Substituting pΘ ≡ p(φc − Ω1t) and nqθ̂ + nφ̂ ≡ n(φ− Ω3t) yields

δhN1,N2,N3 =
∑
pmn

1
τb

∫ τb

0
dtδHpmn(H,µ, ψ)ei[pφc(t)+mθ(t)+nφ(t)−NiΩit]δp,N1δn,N3 , (2.48)

with τb = τb(H,µ, Pφ) the bounce period of the considered particles. The above expression
is an orbit integral clearly exhibiting the resonant selection process at play between the
particles and the waves.
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The previous expression may be rewritten as

δhp,N2,n =
1
τb

∑
m

∫ τb

0
dtδHpmn(t)efm(t), (2.49)

with
fm(t) ≡ i[γm(t)− (pΩ1 +N2Ω2 + nΩ3)t

]
, (2.50)

having let
γm(t) ≡ pφc(t) +mθ(t) + nφ(t). (2.51)

2.2.3 Quasi-local limit

By performing a Fourier expansion over θ and φ, the variations of δHs in the parallel
directions have been incorporated in the phase term, and δHpmn varies spatially only in
the radial direction. In other words, if the guiding-center orbit coincides with a flux surface,
δHpmn can be taken out of the integral. In this work, we retain this radial variation, but
assume that it remains moderate on a given guiding-center orbit [34]. More explicitly, we
impose the condition

|δḢpmn| =
∣∣∣∣ ψ̇

δHpmn

∂δHpmn

∂ψ

∣∣∣∣ . 1
τb
. (2.52)

This ensures that along the particle trajectory, the variation of δHpmn is smooth com-
pared to the variation of the particle/wave phase

|ḟm| = p(Ωcs(t)− Ω1) +mθ̇ + nφ̇−N2Ω2 −N3Ω3 ≈ p(Ωcs(t)− 〈Ωcs〉), (2.53)

where 〈〉 refers to an average on the guiding-center orbit. This shows that |ḟm| ∼ pΩcsr/R
with r the minor radius and R the major radius of the considered flux surface. Since
Ωcs ∼ Ω1 � Ω2 = 2π/τb, condition (2.52) effectively ensures that the phase varies very
strongly along the particle orbit, so that the integral can be evaluated by a saddle point
method [35]. We rewrite (2.49) in the complex plane as

δhp,N2,n =
1
τb

∑
m

∫
C
dtδHpmn(t)efm(t), (2.54)

where C is the path of steepest descent and t is now to be considered as a complex variable.
We have

dfm
dt

= i(pΩcs +mθ̇ + nφ̇−N1Ω1 −N2Ω2 −N3Ω3), (2.55)

which is zero when the following resonance condition is fulfilled:

dfm
dt

∣∣∣∣
t=t0

= 0 = i(pΩcs(t0) +mθ̇(t0) + nφ̇(t0)−N1Ω1 +N2Ω2 +N3Ω3), (2.56)

or
pΩcs(t0) + k‖(t0)v‖(t0) = NiΩi, (2.57)

where we have introduced k‖v‖(t) ≈ mθ̇+ nφ̇. On the other hand and anticipating future
considerations, Eq. 3.42 shows that resonant energy exchanges occur only when the global
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resonance condition ω = NiΩi is verified, showing that the points along the orbits where
wave/particle interactions take place are actually given by pΩcs + k‖v‖ = ω, which is
consistent with results from a quasi-local derivation [11]. Depending on the shape of the
considered orbit and on the resonance layer location, the particle may experience 0, 2 or
4 such points along its orbit.

A Taylor expansion of fm around t = t0 is performed:

fm(t) ≈ fm(t0) +
(t− t0)2

2!
d2fm
dt2

∣∣∣∣
t=t0

+
(t− t0)3

3!
d3fm
dt3

∣∣∣∣
t=t0

, (2.58)

yielding

δhp,N2,n =
1
τb

∑
m,t0(m)

eifm(t0)

∫
C
dτδHpmn(τ + t0) exp

(
τ2

2
f̈m(t0) +

τ3

6

...
f m(t0)

)
, (2.59)

with τ ≡ t − t0. The sum must be performed over all saddle points corresponding to
poloidal number m.

Condition (2.52) ensures that δHpmn varies smoothly in the vicinity of the resonance
point, so that

δHpmn(τ + t0) ∼ δHpmn(t0), (2.60)

and

δhp,N2,n =
1
τb

∑
m,t0

δHpmn(t0)eifm(t0)

∫
C
dτ exp

(
τ2

2
f̈m(t0) +

τ3

6

...
f m(t0)

)

=
1
τb

∑
m,t0

δHpmn(t0)eifm(t0)

∫
C
dτ exp

[
i

(
τ2

2
γ̈m(t0) +

τ3

6
...
γm(t0)

)]
.

(2.61)

Far from third-order saddle points, such as γ̈m(t0) = 0, a good approximation to the
previous expression is

δhp,N2,n ≈
1
τb

∑
m,t0

δHpmn(t0)eifm(t0)

∫
C
dτ exp

(
i
τ2

2
γ̈m(t0)

)
. (2.62)

Denoting τ ≡ reiϕ, the path of steepest descent is attained for

ei(2ϕ+arg(γ̈m)+π/2) = −1, (2.63)

or
ϕ =

π

4
− 1

2
arg(γ̈m), (2.64)

so that

δhp,N2,n ≈
1
τb

∑
m,t0

δHpmn(t0)efm(t0)±iπ/4
∫ ∞
−∞

dre−|γ̈m|r
2

=
1
τb

∑
m,t0

√
2π

|γ̈m(t0)|δHpmn(t0)efm(t0)±iπ/4,

(2.65)
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where the + (resp. −) sign must be chosen for γ̈m > 0 (resp. γ̈m < 0).
In order to handle tangent resonances without needing to add a separate contribution,

it is possible to use the asymptotic expression proposed by Lamalle [34]:

δhp,N2,n ≈
1
τb

∑
m,t0

Γm(t0)δHpmn(t0)efm(t0), (2.66)

with

Γm(t) ≡ 2π
(

2eiσm(t)π

|...γm(t)|
)1/3

Φ0(gm(t)eiσm(t)π/6), (2.67)

having defined
Φ0(x) ≡ exp(2x3/3)Ai(x2), (2.68)

with Ai the Airy function, σm ≡ sign(γ̈m) and

gm(t) ≡ |γ̈m(t)|
(2|...γm(t)|2)1/3

. (2.69)

For the squared amplitude of the Hamiltonian contributions, we have therefore

|δhp,N2,n|2 ≈
1
τ2
b

∑
m1,t1[m1]
m2,t2[m2]

Γm1(t1)Γ∗m2
(t2)δHpm1n(t1)δHpm2n(t2)∗efm1 (t1)+f∗m2

(t2). (2.70)

The complexity in this expression lies in the sum over partial waves and resonant
points. Depending on the problem to be solved, various approximations are needed to
obtain numerically tractable expressions.

Finally, we note that in the limit |...γm(t)| → 0, the asymptotic expansion of the Airy
function

Ai(x) ∼ exp
(
− 2x3/2

3

)
1

2
√
πx1/4

, (2.71)

yields

Γm(t) ∼
√

2π
|γ̈m(t)|e

iσm(t)π/4. (2.72)

It is possible to use the expression for the squared Hamiltonian contributions given by
Eq. 2.70 along with approximation (2.72) to obtain

|δhp,N2,n|2 =
2π
τ2
b

∑
m1,m2

∑
t1,t2

√
1

|γ̈m1(t1)γ̈m2(t2)|δHpm1n(t1)δH∗pm2n(t2)efm1 (t1)+f∗m2
(t2),

(2.73)
where the sum must be carried out over all saddle points for partial waves m1 and m2.
We have

γ̈m1(t) ≡ pΩ̇cs(t) +m1θ̈(t) + nφ̈(t), (2.74)

and
γ̈m2(t) ≡ pΩ̇cs(t) +m2θ̈(t) + nφ̈(t). (2.75)
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By definition dfm1/dt(t = t1) = 0 = γ̇m1(t1)−NiΩi so that

γ̇m1(t1) = NiΩi. (2.76)

Likewise, for poloidal mode m2:

γ̇m2(t2) = NiΩi. (2.77)

The phase term in Eq. 2.73 is given by the expression

fm1(t1) + f∗m2
(t2) = i[γm1(t1)− γm2(t2)−NiΩi(t1 − t2)]. (2.78)

Following Lamalle [34], we introduce the saddle point corresponding to the resonance
between the particle and the wave with poloidal mode m0 ≡ (m1 +m2)/2, which verifies

γ̇m0(t0) = NiΩi. (2.79)

Evidently
γ̇m1(t1) = γ̇m2(t2) = γ̇m0(t0). (2.80)

The linear, quadratic and cubic time variation in γm1 is retained, yielding

γm1(t) ≈ γm1(t0) + γ̇m1(t0)(t− t0) + γ̈m1(t0)
(t− t0)2

2
+

...
γm1(t0)

(t− t0)3

6
. (2.81)

Accordingly

γ̇m1(t) ≈ γ̇m1(t0) + γ̈m1(t0)(t− t0) +
...
γm1(t0)

(t− t0)2

2
. (2.82)

On the other hand, from Eq. 2.51

γ̇m1(t) = γ̇m0(t) +
m1 −m2

2
θ̇(t). (2.83)

Combining the previous two expressions and using Eq. 2.80, we obtain
...
γm1(t0)

2
(t1 − t0)2 + γ̈m1(t0)(t1 − t0) +

m1 −m2

2
θ̇(t0) = 0, (2.84)

which admits the solutions

t1 − t0 =
−γ̈m1(t0)±

√
γ̈2
m1

(t0)− (m1 −m2)
...
γm1(t0)θ̇(t0)

...
γm1(t0)

, (2.85)

and

t2 − t0 =
−γ̈m2(t0)±

√
γ̈2
m2

(t0) + (m1 −m2)
...
γm2(t0)θ̇(t0)

...
γm2(t0)

. (2.86)

Far away from third order saddle points, we deduce from the previous relations

t1 − t0 ≈ −m1 −m2

2
θ̇(t0)
γ̈m1(t0)

, (2.87)
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and

t2 − t0 ≈ m1 −m2

2
θ̇(t0)
γ̈m2(t0)

. (2.88)

We obtain

γm1(t1)− γm2(t2) =(m1 −m2)θ(t0) + (t1 − t2)NiΩi

+
m1 −m2

2
(t1 + t2 − 2t0)θ̇(t0)

+ γ̈m1(t0)
(t1 − t0)2

2
− γ̈m2(t0)

(t2 − t0)2

2
.

(2.89)

Coming back to the phase term (Eq. 2.78), we can write

fm1(t1) + f∗m2
(t2) =i(m1 −m2)θ(t0)

+ i
m1 −m2

2
θ̇(t0)(t1 + t2 − 2t0)

+ i

[
γ̈m1(t0)

(t1 − t0)2

2
− γ̈m2(t0)

(t2 − t0)2

2

]
.

(2.90)

Far from third order points, Eqs. 2.87 and 2.88 can be used to obtain the approximate
expression

fm1(t1) + f∗m2
(t2) ≈ i(m1 −m2)θ(t0)− i

(
m1 −m2

2

)3 2θ̇2(t0)θ̈(t0)
γ̈m1(t0)γ̈m2(t0)

≡ iΦ12(t0). (2.91)

Eq. 2.73 yields

|δhp,N2,n|2 ≈
2π
τ2
b

∑
m1,m2

∑
t0

δHpm1n(t1)δH∗pm2n(t2)√|γ̈m1(t1)γ̈m2(t2)| eiΦ12(t0), (2.92)

where the sum is carried out over the “average” saddle points tm1,m2
0 and t1 (resp. t2)

is given by Eq. 2.87 (resp. 2.88). If, furthermore, the angular acceleration of the particle
is neglected upon crossing the resonance, i.e. θ̇(t0) = 0, we obtain the simpler expression

|δhp,N2,n|2 ≈
2π
τ2
b

∑
m1,m2

∑
t0

δHpm1n(t0)δH∗pm2n(t0)
|γ̈m0(t0)| ei(m1−m2)θ(t0), (2.93)

where, again, it is important to note that resonant time t0 corresponds to m0 = (m1 +
m2)/2, underlining the symmetric nature of this expression with respect to poloidal num-
bers m1 and m2. It should be pointed out that this symmetry is also been obtained when
the summation over bounce harmonics is carefully handled, as shown by P. U. Lamalle in
Ref. [34].
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2.3 Hamiltonian contributions

2.3.1 All-orders expression

At this point, it is still necessary to express δHpmn as a function of the electromagnetic
potential. This is done by performing a Taylor expansion of the particle Hamiltonian
around the guiding-center location:

δHs(r) = δHs(rgc + rc) =
∞∑
l=0

(rc · ∇)l

l!
δHs(r)|rgc . (2.94)

Eq. 2.10 and the binomial theorem are employed to perform the following expansion

(rc · ∇)l = ρlc

l∑
k=0

(
l

k

)
ei(2k−l)(φc−π/2)∇k+∇l−k− , (2.95)

which after reordering the sums to express the obtained expression for δHs in terms of the
cyclotron phase harmonics yields the compact formula

δHs(r) =
∞∑

p=−∞
eip(φc−π/2)

∞∑
k=0

ρ2k+|p|
c

∇k+
+

k+!
∇k−−
k−!

δHs(r)|rgc , (2.96)

with {
k+ = k + p, k− = k if p > 0,
k+ = k, k− = k − p otherwise,

(2.97)

which may also be written as [34]

k+ ≡ k + max(0, p), k− ≡ k + max(0,−p). (2.98)

Using Eq. 2.8, we can write the Hamiltonian (Eq. 2.27) at the particle guiding-center
as

δHs(rgc) = qs

[
(ϕ−v‖A‖)−v⊥(eiφcA++e−iφcA−)

]
≡ δH0+δH+1e

iφc+δH−1e
−iφc , (2.99)

with 
δH0 ≡ qs(ϕ− v‖A‖),
δH+1 ≡ −qsv⊥A+ = −qsv⊥R+(Aα + iAβ),
δH−1 ≡ −qsv⊥A− = −qsv⊥R−(Aα − iAβ),

(2.100)

where we have defined A± ≡ A · e∓ and used Eqs. A.55 and A.57.
We finally obtain for the expanded Hamiltonian

δHs(r) =
∞∑

p=−∞
eip(φc−π/2)

1∑
L=−1

eiLπ/2
∞∑
κ=0

ρ2κ+|p−L|
c

∇k+
+

k+!
∇k−−
k−!

δHL, (2.101)

with
k+ = κ+ max(0, p− L), k− = κ+ max(0,−p+ L), (2.102)
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yielding for the contribution to the ICRF harmonic resonance p:

δHps(r) =
1∑

L=−1

ei(L−p)π/2
∞∑
κ=0

ρ2κ+|p−L|
c

∇k+
+

k+!
∇k−−
k−!

δHL. (2.103)

It should be noted that in all cases, k+ + k− = 2κ + |p − L|, which is the exponent
of ρc in Eq. 2.101, thus directly providing the small parameter to be considered in FLR
expansions. At this point, however, the expression above includes all harmonics of the
ICRF wave/particle interaction to arbitrary order in Larmor radius. In appendix B, the
second order FLR expressions effectively implemented in the eve code are deduced.

2.3.2 WKB harmonics

An algorithm has been implemented in order to include higher harmonics of the wave-
particle interaction without having to handle derivatives of order larger than two, which
can be problematic in a finite element code. Another advantage is that the resulting
expressions are significantly simpler. On the other hand, it is necessary to assume that
the perpendicular wave vector, k⊥, is known at any location and for any relevant value of
k‖ (in such algorithms, it is usually assumed to be given by the fast wave wavenumber,
i.e. k⊥ ∼ k⊥,FW ). This means that the Hamiltonian perturbation (2.94) is assumed to be
given by

δHs(r) = δHs(rgc) exp(ik⊥ · rc). (2.104)

From Eq. 2.4 and writing the perpendicular wave vector as

k⊥ = k⊥
[

cos(β)e⊥1 + sin(β)e⊥2

]
, (2.105)

with β the angle characterizing the direction of k⊥ (see Ref. [49] for a discussion of this
particular point), we obtain

δHs(r) = δHs(rgc) exp
[
ik⊥ρc sin(φc + β)

]
, (2.106)

and

δHs(r) = δHs(rgc)
∞∑

p=−∞
Jp(k⊥ρc)eip(φc+β). (2.107)

Therefore, using Eq. 2.99, we have

δHs(r) =
1∑

L=−1

δHL

∞∑
p=−∞

Jp(k⊥ρc)ei(p+L)φceipβ, (2.108)

or equivalently

δHps(r) =
1∑

L=−1

δHLJp−L(k⊥ρc)ei(p−L)β, (2.109)

where Jp is the Bessel function of the first kind.





Chapter 3

Wave electromagnetic field

In this chapter, we establish the variational principle by which the wavefield can be com-
puted. By employing the ingredients presented in chapter 2, we deduce the appropriate
expressions, i.e. the antenna, Maxwellian and plasma functionals [19]. They have been
implemented in a numerical code named eve, which is described in detail in Ref. [23].
We stress here that special attention is being paid to the fact that eve must be useful
for heating experiment modeling, i.e. have acceptable calculation time and be directly
comparable to other wave codes [36].

3.1 Variational principle

3.1.1 Maxwell’s equations

Full-wave calculations consist of directly solving the Maxwell’s equations in the whole
geometric volume. They may be written in the form

∇ ·E =
ρmaxw
ε0

, (3.1)

∇ ·B = 0, (3.2)

∇×E = −∂B
∂t
, (3.3)

and

∇×B = µ0jmaxw +
1
c2

∂E
∂t
. (3.4)

In this driven problem, we assume that the system consists of an antenna and a plasma,
contained in a perfectly conducting vacuum vessel. This is a closed system, so that we
have conservation relations for the current

jant + jpart + jd = jmaxw, (3.5)

and for the charge density
ρant + ρpart + ρd = ρmaxw, (3.6)
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where jant (resp. ρant) is the current (resp. charge) density in the antenna structure.
jpart (resp. ρpart) is the current (resp. charge) density carried by the plasma particles.
jd corresponds to an artificial dissipative current, which is useful in particular situations
(such as runs in vacuum).

Rather than the field itself, the electromagnetic potential will be used. The electric
and magnetic fields are linked to the vector potential A and scalar potential ϕ through

E = −∂A
∂t
−∇ϕ, (3.7)

and
B = ∇×A. (3.8)

From Maxwell’s equations and assuming a monochromatic wave of frequency ω, we
may write

jmaxw =
1
µ0
∇× (∇×A) + iωε0(iωA−∇ϕ) + jd, (3.9)

and
ρmaxw = ε0∇ · (iωA−∇ϕ) + ρd. (3.10)

Following Gambier and Samain [19], we introduce the gauge-invariant antenna func-
tional

Lant(A∗, ϕ∗) ≡
∫
d3r

{
jant ·A∗ − ρantϕ∗

}
, (3.11)

the plasma functional

Lpart(A, ϕ,A∗, ϕ∗) ≡
∫
d3r

{
jpart ·A∗ − ρpartϕ∗

}
, (3.12)

and the Maxwellian functional

Lmaxw(A, ϕ,A∗, ϕ∗) ≡ −
∫
d3r

{
jmaxw ·A∗ − ρmaxwϕ∗

}
. (3.13)

The variational statement corresponding to the conservation relations (3.5) and (3.6)
consists of extremalizing the quantity

Lant(A∗, ϕ∗) + Lpart(A, ϕ,A∗, ϕ∗) + Lmaxw(A, ϕ,A∗, ϕ∗), (3.14)

with respect to all variations of the potentials A∗, ϕ∗ when A and ϕ are kept constant.
In other words, the solution (A, ϕ) is given by

δLant(A∗, ϕ∗) + δLpart(A, ϕ,A∗, ϕ∗) + δLmaxw(A, ϕ,A∗, ϕ∗)
δ(A∗, ϕ∗)

= 0, (3.15)

We expand the potentials on a basis of given functions (ai, φi) with coefficients (αi),
i.e.

(A, ϕ) =
∑
i

αi(ai, φi). (3.16)
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From Eqs. 3.9 and 3.10, it is clear that the Maxwellian functional (3.13) is bilinear in
(A, ϕ) and (A∗, ϕ∗). On the other hand, in the linear wave problem under consideration
in this work, the plasma functional is also bilinear in (A, ϕ) and (A∗, ϕ∗). In other words,
we may write

Lpart + Lmaxw =
∑
ij

(Lpart,ij + Lmaxw,ij)αiα∗j , (3.17)

with
Lpart,ij ≡ Lpart(ai, ϕi,a∗j , ϕ∗j ), (3.18)

and
Lmaxw,ij ≡ Lmaxw(ai, ϕi,a∗j , ϕ

∗
j ). (3.19)

If we assume that the antenna current is independent of the field developing in the
plasma, the antenna functional does not depend on (A, ϕ), and

Lant =
∑
j

Lant,jα
∗
j , (3.20)

with
Lant,j ≡ Lant(a∗j , ϕ∗j ). (3.21)

Using Eqs. 3.17 and 3.20, the variational statement (3.15) may be rewritten as

δ
{

[Lant,j + (Lpart,ij + Lmaxw,ij)αi]α∗j
}

δα∗j
= 0, (3.22)

or yet, for every possible value of j,

(Lpart,ij + Lmaxw,ij)αi + Lant,j = 0. (3.23)

The solution of this linear system yields the electromagnetic potential and thus the
electromagnetic field.

3.1.2 Maxwellian functional

The Maxwellian functional is given by

Lmaxw = −
∫
d3r {jmaxw ·A∗ − ρmaxwϕ∗}. (3.24)

The current jmaxw and charge ρmaxw density are given in terms of the potential in
Eqs. 3.9 and 3.10. Using the vector relation

A∗ · [∇× (∇×A)] = (∇×A∗) · (∇×A)−∇ · (A∗ × (∇×A)) (3.25)

yields

Lmaxw = −
∫
d3r
{

1
µ0

(∇×A) · (∇×A∗)− ε0(iωA−∇ϕ) · (−iωA∗ −∇ϕ∗)
}

+
∫
d2S ·

{
ε0(iωA−∇ϕ)ϕ∗ +

1
µ0

A∗ × (∇×A)
}
− Ldsp,

(3.26)
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with the dissipation functional

Ldsp ≡
∫
d3r {jd ·A∗ − ρdϕ∗}. (3.27)

The rationale for the latter is that in some applications, it is useful to introduce an
artificial resistive damping in the medium. This is needed, for instance, to run the code in
the absence of plasma when no mechanism is available to dissipate the wave power. The
(assumed isotropic) supplemental dissipation is obtained by writing jd ≡ ε0ωdE, which
imposes for the charge density ρd = −iε0ωd∇ · E/ω. Usually, values of ωd/ω as low as
10−3−10−2 are sufficient to obtain a satisfactory convergence of the code in vacuum. The
functional is readily rewritten in the form

Ldsp(ψ) = iε0

∫
ψ′<ψ

dr′
ωd
ω

(iωA−∇ϕ) · (−iωA∗ −∇ϕ∗) + Sdsp, (3.28)

with

Sdsp = iε0

∫
ψ
d2S · ωd

ω
(iωA−∇ϕ)ϕ∗. (3.29)

We note that rather than adding a new functional, the dissipative term may be readily
included in the Maxwellian functional by substituting the 1/c2 factor appearing in the
second term of Eq. 3.26 with (1 + iωd/ω)/c2. Eq. 3.26 can thus be rewritten as

Lmaxw = −
∫
d3r
{

1
µ0

(∇×A) · (∇×A∗)− ε0
(

1 + i
ωd
ω

)
(iωA−∇ϕ) · (−iωA∗ −∇ϕ∗)

}
+
∫
d2S ·

{
ε0

(
1 + i

ωd
ω

)
(iωA−∇ϕ)ϕ∗ +

1
µ0

A∗ × (∇×A)
}
.

(3.30)

The way the surface term is treated depends on the type of boundary conditions
employed. If we assume that the calculation volume is bounded by a perfect conductor,
we have ϕ = 0 on the surface. Also, the continuity conditions for A at the vacuum/vessel
interface impose that the tangential components must vanish. Denoting n̂ the unit vector
normal to the magnetic surface and pointing outwards, we may write

d2S ·A∗ × (∇×A) =d2Sn̂ · [A∗ × (∇×A)]

= d2S(n̂×A∗) · (∇×A),
(3.31)

which vanishes on the surface since n̂×A∗ only involves the tangential components of
A. Therefore, when the integral is carried out over the whole vacuum vessel volume, we
may write

Lmaxw = −
∫
d3r
{

1
µ0

(∇×A) · (∇×A∗)− ε0
(

1 + i
ωd
ω

)
(iωA−∇ϕ) · (−iωA∗ −∇ϕ∗)

}
.

(3.32)
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For convenience, we introduce the Maxwellian functional integrated from the magnetic
axis up to magnetic surface ψ, denoted Lmaxw(ψ):

Lmaxw(ψ) =−
∫
ψ′<ψ

d3r′
{

1
µ0

(∇×A) · (∇×A∗)

− ε0
(

1 + i
ωd
ω

)
(iωA−∇ϕ) · (−iωA∗ −∇ϕ∗)

}
+ Smaxw(ψ),

(3.33)

with

Smaxw(ψ) ≡
∫
ψ
d2S ·

{
1
µ0

A∗ × (∇×A) + ε0

(
1 + i

ωd
ω

)
(iωA−∇ϕ)ϕ∗

}
. (3.34)

The surface term may be rewritten as

Smaxw(ψ) ≡
∫
ψ
d2S ·

{
1
µ0

A∗ ×B + ε0

(
1 + i

ωd
ω

)
ϕ∗E

}
. (3.35)

Evidently
Lmaxw(ψ = ψc) = Lmaxw, (3.36)

where ψc refers to the flux surface coinciding with the vacuum vessel.

3.1.3 Plasma functional

General expression

The plasma functional is given by

Lpart ≡
∑
s

Lpart,s =
∑
s

∫
d3r {jpart,s ·A∗ − ρpart,sϕ∗}. (3.37)

The sum is to be carried out over all plasma species, denoted by index s.
To first order, the change in charge density caused by the wave is given by the kinetic

expression

ρpart,s = qs

∫
d3p δfs(r,p, t). (3.38)

Likewise, for the current density perturbation

jpart,s = qs

∫
d3p {δvs(r,p, t)fs,0(r,p) + vs,0(r,p)δfs(r,p, t)}, (3.39)

with the velocity perturbation induced by the wave field

δvs =
∂Hs

∂p
= − qs

ms
A. (3.40)

This yields for the plasma functional

Lpart,s = −ε0
∫
d3rω2

ps|A|2 −
∫
d3p d3r δfsδH∗s , (3.41)
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with ω2
ps ≡ nsq2

s/ms/ε0. ns is the unperturbed density.
Using the expansion over generalized angles (2.33), Eq. 3.41 can be rewritten as

Lpart,s = −ε0
∫
d3rω2

ps|A|2 + (2π)3
∑
N

∫
d3J

Ni

ω −NkΩk

∂fs,0
∂Ji
|δhN|2, (3.42)

where the integral over the generalized angles has been carried out, resulting in the
cancellation of all terms containing δhNδh

∗
N′ with N 6= N′. The second term on the

right-hand side of this expression shows that the condition for an energy exchange to
take place between the wave and the particles is two-fold. It requires that i) the global
resonance condition ω − N · Ω = 0 be verified, ii) δhN be not zero. In order to make
the latter condition explicit and to obtain a practical expression for Lpart, the elementary
contributions δhN have to be evaluated.

Using Eq. 2.20 in Eq. 3.42, the particle functional may be decomposed as

Lpart,s ≡ L(adiab)
part,s + L(res)

part,s, (3.43)

with the non-resonant (or adiabatic) particle functional defined as

L(adiab)
part,s = −ε0

∫
d3rω2

ps|A|2 − (2π)3
∑
N

∫
d3J

∂fs,0
∂E
|δhN|2, (3.44)

and the resonant functional

L(res)
part,s = (2π)3

∑
N

∫
d3J

ω

ω −N ·ΩDfs,0|δhN1,N2,N3 |2, (3.45)

having introduced the differential operator D acting on the unperturbed distribution
function

Dfs,0 ≡ ∂fs,0
∂E

− N1

ω

qs
ms

∂fs,0
∂µ

+
N3

ω

∂fs,0
∂Pφ

. (3.46)

This expression is similar to the numerator appearing in Eq. 11 of Edery et al. [22].

Adiabatic functional

Since the equilibrium distribution function is independent of the generalized angle, the
Parseval identity for the Hamiltonian:∑

N

|δhN|2 =
1

(2π)3

∫
d3Φ |δHs|2, (3.47)

can be employed in Eq. 3.44 to write

(2π)3
∑
N

∫
d3J

∂fs,0
∂E
|δhN|2 =

∫
d3Jd3Φ

∂fs,0
∂E
|δHs|2. (3.48)

In the latter expression, only |δHs|2 has a dependence on the generalized angle Φ1.
We introduce the decomposition of δHs in harmonics of the cyclotron phase

δHs ≡
∑
p

δHpse
ipφc , (3.49)
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Using this relation with Eq. 2.43, we obtain∫
dΦ1|δHs|2 = 2π

∑
p

δHpsδH
∗
ps

= 2πq2
s

[
(ϕ− v‖A‖)(ϕ∗ − v‖A∗‖) +

v2
⊥
2

(A⊥1A
∗
⊥1 +A⊥2A

∗
⊥2)
]
,

(3.50)

where Eqs. 2.100 have been employed.
We can use this to rewrite Eq. 3.44 as

L(adiab)
part,s = −ε0

∫
d3rω2

psA ·A∗

− q2
s

∫
d3p d3r

∂fs,0
∂E

[
(ϕ− v‖A‖)(ϕ∗ − v‖A∗‖) +

v2
⊥
2

(A⊥1A
∗
⊥1 +A⊥2A

∗
⊥2)
]
,

(3.51)

where p and r refer to the guiding-center variables. After a few algebraic manipulations
with the velocity integrals, we eventually obtain

L(adiab)
part,s =ε0

ms

Ts

∫
d3rω2

psχ0(r)ϕϕ∗ + ε0

∫
d3rω2

psχ1(r)(A⊥1A
∗
⊥1 +A⊥2A

∗
⊥2)

+ ε0

∫
d3rω2

psχ2(r)A‖A
∗
‖ − ε0

√
Ts

2ms

∫
d3rω2

psχ3(r)(A‖ϕ
∗ −A∗‖ϕ).

(3.52)

where we have introduced

χ0(r) ≡ −
∫
d3p

Ts
ns

∂fs0
∂E

, (3.53)

χ1(r) ≡ −1−
∫
d3p

msv
2
⊥

2
1
ns

∂fs0
∂E

, (3.54)

χ2(r) ≡ −1− 2
∫
d3p

msv
2
‖

2
1
ns

∂fs0
∂E

, (3.55)

and

χ3(r) ≡ −
∫
d3p

√
Ts

2ms
msv‖

1
ns

∂fs0
∂E

, (3.56)

Resonant functional: continuous limit

The resonant functional appearing in Eq. 3.43 is given by

L(res)
part,s = (2π)3

∑
N

∫
d3J

ω

ω −N ·ΩDfs,0|δhN1,N2,N3 |2. (3.57)

Using the quasi-local form Eq. 2.93 in the previous expression, we obtain

L(res)
part,s = (2π)3

∑
p,N2,n

∫
d3J

ω

ω −NiΩi
Dfs,0

× 2π
τ2
b

∑
m1,m2

∑
t0

δHpm1n(t0)δH∗pm2n(t0)
|γ̈m0(t0)| ei(m1−m2)θ(t0),

(3.58)
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which can be recast in the form

L(res)
part,s = (2π)3

∑
p,n

∫
d3J

1
τb

∑
m1,m2

∑
N2

∑
t0

2π
τb

1
|γ̈m0(t0)|

ω

ω −NiΩi
Dfs,0

× δHpm1n(t0)δH∗pm2n(t0)ei(m1−m2)θ(t0).

(3.59)

From Eq. 2.79, the time it takes for a particle to cross the resonance corresponding to
N2 to the resonance corresponding to N2 + 1 is given by

δt =
Ω2

|γ̈m0(t0)| =
2π
τb

1
|γ̈m0(t0)| , (3.60)

which means that the sum over N2 and t0 may be transformed into a time integral.
N2Ω2 must be replaced by γ̇m0 − pΩ1 − nΩ3, and

L(res)
part,s = (2π)3

∑
p,n

∫
d3J

1
τb

∫ τb

0
dt
∑
m1,m2

ω

ω − γ̇m0(t)
Dfs,0δHpm1n(t)δH∗pm2n(t)ei(m1−m2)θ(t).

(3.61)
The previous expression is independent of Φ1 and Φ3. Furthermore, dΦ2 = Ω2dt =

2πdt/τb so that we can perform the transform

(2π)2

∫
d3J

2π
τb

∫ τb

0
dt =

∫
d3Jd3Φ =

∫
d3rd3p, (3.62)

and

L(res)
part,s =

∑
p,m1,m2,n

∫
d3p d3r

ω

ω − pΩcs − k‖,0v‖
Dfs,0ei(m1−m2)θδHpm1nδH

∗
pm2n, (3.63)

where Def. 2.51 has been used and the parallel wavevector corresponding to poloidal mode
m0, k‖,0 ≡ m0∇‖θ + n∇‖φ has been introduced.

Eq. 3.63 can be further manipulated in the context of a second-order FLR expansion.
This is detailed in appendix B. The important point for what follows is that it embeds
the dielectric response in the form

I(q)

kk̄
≡ q2

s

ε0

∫
d3puq⊥v

α⊥
⊥ v

α‖
‖

ω

ω − pΩcs − k‖,0v‖
Dfs,0. (3.64)

Another possibility is to handle the wave-particle interaction in the framework of a
WKB treatment (see section 2.3.2). In this case, the dielectric kernel is given by

ILL̄kk̄ ≡
q2
s

ε0

∫
d3p vα⊥⊥ v

α‖
‖

ω

ω − pΩcs − k‖v‖
Dfs,0Jp−L

(
k⊥v⊥
Ωcs

)
Jp−L̄

(
k⊥v⊥
Ωcs

)
. (3.65)
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3.1.4 Energy conservation

An essential feature of the variational formulation employed in this work is that it embeds
energy conservation. Straightforward algebra allows to recast (3.33) as

−iω
2
Lmaxw(ψ) = −iωWfield(ψ) + SPoynting(ψ) + Ẇdsp(ψ)− 1

2

∫
d2S · jmaxwϕ∗, (3.66)

with

Wfield(ψ) ≡
∫
ψ′<ψ

d3r′
(
ε0|E|2

2
− |B|

2

2µ0

)
, (3.67)

SPoynting(ψ) ≡ 1
2µ0

∫
ψ
d2S · (E∗ ×B

)
, (3.68)

and

Ẇdsp(ψ) ≡ ωd
∫
ψ′<ψ

d3r′
ε0|E|2

2
. (3.69)

From Maxwell’s equations, the last term appearing in Eq. 3.66 may be transformed to
obtain the more compact form

−iω
2
Lmaxw(ψ) = −iωWfield(ψ)+SPoynting(ψ)+Ẇdsp(ψ)−1

2

∫
d2S·(jpart+jant)ϕ∗. (3.70)

A similar treatment may be applied to the antenna functional (3.11) to obtain

−iω
2
Lant(ψ) = Ẇant(ψ) +

1
2

∫
d2S · jantϕ∗, (3.71)

with
Ẇant(ψ) ≡ 1

2

∫
ψ′<ψ

d3r′jant ·E∗, (3.72)

the time derivative of the work needed from an external generator to maintain the field
in the cavity. The time-averaged power exchanged between the wave and the particles in
the volume delimited by magnetic surface ψ is given by the real part of

Ẇpart(ψ) =
1
2

∫
ψ′≤ψ

d3rE∗ · jpart, (3.73)

and it is readily seen that

−iω
2
Lpart(ψ) = Ẇpart(ψ) +

1
2

∫
d2S · jpartϕ∗. (3.74)

Summing Eqs. 3.70, 3.71 and 3.74 yields the conservation law valid on every flux surface

−iωWfield(ψ) + SPoynting(ψ)+Ẇdsp(ψ) + Ẇant(ψ) + Ẇpart(ψ) =

− i ω
2µ0

{Lpart(ψ) + Lant(ψ) + Lmaxw(ψ)
}

= 0.
(3.75)

Ẇpart includes an irreversible part and a reversible part, which may be written as
the divergence of the so-called kinetic flux, yielding a surface integral (see section 1.1.3
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for a discussion of this point). It must be pointed out that this separation is a tricky
issue [12, 37] which has been treated in an elegant way by D. Smithe by introducing a
symmetrical version of the dielectric tensor [14]. Here, we write

Ẇpart(ψ) ≡ Pabs + Skin, (3.76)

to obtain the local conservation law

−iωWfield(ψ) + SPoynting(ψ) + Ẇdsp(ψ) + Ẇant(ψ) + Pabs(ψ) + Skin(ψ) = 0. (3.77)

It may be shown that Pabs is directly given by

Pabs = −i ω
2µ0
Lpart, (3.78)

so that the kinetic flux is given by

Skin =
1
2

∫
d2S · jpartϕ∗. (3.79)

The latter relation is, however, of little practical interest since jpart is actually never
explicitly written as a function of the electromagnetic field (unlike in dielectric tensor-
based approaches).

When the whole vacuum vessel is considered, the global energy conservation is deduced

−iωWfield + Ẇdsp + Ẇant + Ẇpart = 0. (3.80)

The real part directly shows that the total coupled power is dissipated either through
damping by particles (Ẇpart) or artificial dissipation (Ẇdsp).

3.2 Dielectric response

3.2.1 General expression

Both Eqs. 3.52 and 3.63 have the advantage of being able to accommodate any kind of
distribution function provided the dielectric response, i.e. Eqs. 3.53, 3.54 and 3.64, are
evaluated correctly. In this document, in order to retain compatibility with Fokker-Planck
solvers, we always assume that the local distribution function is normalized according to∫

d3p fs0(p‖, p⊥) = ns0. (3.81)

Eq. 3.64 can then be rewritten as

I(q)

kk̄
≡
(
ωps
c

)2msc
2

Ts
v
α‖+α⊥
th x0,sWα‖,q+α⊥ , (3.82)

with

Wi,j ≡ 1√
π

∫ ∞
−∞

du‖
ui‖

u‖ − xp,s
2
∫ ∞

0
du⊥u

j+1
⊥ K(u‖, u⊥), (3.83)



3.2. Dielectric response 41

with u‖,⊥ ≡ v‖,⊥/vth. Also, we have defined

xp,s ≡ ω − pΩcs

k‖vth
, (3.84)

and
K(u‖, u⊥) ≡ −Tsπ3/2m3

sv
3
th

1
ns
Dfs,0. (3.85)

It is also interesting to rewrite the adiabatic response functions χ0, χ1, χ2 and χ3

(Eqs. 3.53-3.56) in the more convenient form

χ0 =
2√
π

∫
du‖du⊥u⊥Kadiab(u‖, u⊥), (3.86)

χ1 = −1 +
2√
π

∫
du‖du⊥u

3
⊥Kadiab(u‖, u⊥), (3.87)

χ2 = −1 +
4√
π

∫
du‖du⊥u⊥u

2
‖Kadiab(u‖, u⊥), (3.88)

and
χ3 =

2√
π

∫
du‖du⊥u⊥u‖Kadiab(u‖, u⊥), (3.89)

with
Kadiab(u‖, u⊥) ≡ −Tsπ3/2m3

sv
3
th

1
ns

∂fs,0
∂E

. (3.90)

Whereas the numerical evaluation of Eqs. 3.86-3.89 does not pose any particular dif-
ficulties, the calculation of Eq. 3.83 is more complicated. The employed algorithm for
arbitrary distributions is presented in appendix C.

3.2.2 Anisotropic Maxwellians

In this section, we use the anisotropic Maxwellian distribution function, Eq. 2.25 to write

fs,0(r,p) =
ns

(2πmsTs)3/2η⊥
exp

(
−
msv

2
‖

2Ts

)
exp

(
− msv

2
⊥

2η⊥Ts

)
. (3.91)

In this case, it is readily shown that

Kadiab(u‖, u⊥) =
1
η⊥
e
−u2
‖e−u

2
⊥/η⊥ , (3.92)

where the same notations as previously have been used. Eqs. 3.86-3.89 simplify as

χ0 = 1, (3.93)

χ1 = −1 + η⊥, (3.94)

and
χ2 = χ3 = 0. (3.95)
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From Eq. 3.46, we have the relation

Dfs,0 = − 1
Ts
Apsfs,0, (3.96)

with

Aps ≡ 1− pΩcs,res

ω

(
1− 1

η⊥

)
. (3.97)

The dielectric kernel (Eq. 3.83) takes the simple form

Wi,j = ApsI‖,iI⊥,j . (3.98)

The perpendicular integrals are directly related to the Euler Gamma function:

I⊥,j ≡ 2
η⊥

∫ ∞
0

du⊥u
j+1
⊥ e−u

2
⊥/η⊥ = η

j/2
⊥ Γ

(
j

2
+ 1
)
. (3.99)

In the FLR version version of the code, only the first five integrals are actually needed.
The parallel integrals are given by

I‖,n ≡
1

π1/2

∫ ∞
−∞

du‖
un‖

u‖ − xp,s
e
−u2
‖ , (3.100)

which may be directly related to the plasma dispersion function Z, so that we may write
for the first three functions (which are the only ones needed in this FLR version of the
code): 

I‖,0 = Z(xp,s),
I‖,1 = 1 + xp,sZ(xp,s),
I‖,2 = xp,s[1 + xp,sZ(xp,s)].

(3.101)

3.2.3 Resonant functional: WKB harmonics

Eq. 3.65 yields

ILL̄kk̄ = −2Apsns
T‖,s

[
ω

k‖vth,‖

∫ ∞
−∞

du‖
u‖
α‖

u‖ − xp,s
e
−u2
‖

]

×
∫ ∞

0
du⊥u

α⊥+1
⊥ Jp−L

(√
2k⊥vth,s⊥

Ωcs
u⊥

)
Jp−L̄

(√
2k⊥vth,s⊥

Ωcs
u⊥

)
e−u

2
⊥ .

(3.102)

The bracketed quantity is almost the parallel integral already seen previously (see
Eq. 3.100). We define

ILL̄⊥,n ≡ 2
∫ ∞

0
du⊥u

n+1
⊥ Jp−L

(√
2k⊥vth,s⊥

Ωcs
u⊥

)
Jp−L̄

(√
2k⊥vth,s⊥

Ωcs
u⊥

)
e−u

2
⊥ , (3.103)

so that
ILL̄kk̄ =

ns
T‖,s
ApsI‖,α‖ILL̄⊥,α⊥ . (3.104)
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An analytical evaluation of the perpendicular integrals ILL̄⊥,n (Eq. 3.103) is made possible
by the general relation [38]∫ ∞

0
e−ρ

2x2
Jp(αx)Jp(βx)xdx =

1
2ρ2

exp
(
− α2 + β2

4ρ2

)
Ip

(
αβ

2ρ2

)
, (3.105)

valid for <(p) > 1, | arg(ρ)| < π/4, α > 0, β > 0. Ip is the modified Bessel function of the
first kind. Owing to the numerous zero elements in

(H0,0
lk

)
, it turns out that only a few of

these integrals are necessary. Introducing

λ ≡ k2
⊥v

2
th,s⊥

Ω2
cs

, (3.106)

and
µ ≡
√

2λ, (3.107)

they have the explicit expressions

I0,0
⊥,0 = e−λIp(λ), (3.108)

I1,0
⊥,1 = I0,1

⊥,1 =
e−λ

µ

[
pIp(λ) + λ

(
I ′p(λ)− Ip(λ)

)]
, (3.109)

I−1,0
⊥,1 = I0,−1

⊥,1 =
e−λ

µ

[
pIp(λ)− λ(I ′p(λ)− Ip(λ)

)]
, (3.110)

I1,1
⊥,2 = e−λ

[
Ip−1(λ) + λ

(
I ′p−1(λ)− Ip−1(λ)

)]
, (3.111)

I−1,−1
⊥,2 = e−λ

[
Ip+1(λ) + λ

(
I ′p+1(λ)− Ip+1(λ)

)]
, (3.112)

and
I1,−1
⊥,2 = I−1,1

⊥,2 = e−λλ
[
I ′p(λ)− Ip(λ)

]
. (3.113)





Chapter 4

Quasilinear plasma response

Arguably the most powerful aspect of the Hamiltonian framework presented in chapter
2 is the fact that it can be used to articulate a variational statement by which the elec-
tromagnetic field can be obtained as was done in chapter 3, but also to obtain a global
Fokker-Planck equation. The advantage is that the two sides of the calculation are nat-
urally consistent between each other. This Fokker-Planck equation naturally includes
potentially important effects such as finite orbit width effects [39, 40] or Hamiltonian
chaos aspects [21, 41]. However, even codes working in terms of motion invariants (or
combinations thereof) usually do not solve the global problem. An example of an ad-
vanced Fokker-Planck numerical solver is the orbit following Monte Carlo (OFMC) code
spot [42]. We refer the interested reader to publications related to the ongoing effort of
coupling spot with eve, the wave code based on the Hamiltonian formalism discussed in
chapter 3 [43].

In this chapter, we present how the Fokker-Planck equation is derived in the frame-
work of the Hamiltonian description of chapter 2. The fact that energy conservation is
automatically ensured is underlined. The goal here is to build a physics model able to
capture the main features of the secular plasma response with minimal effort. Rather than
assuming a priori that the interaction between the ions and the wave takes place at the
finite locations defined by the local ion cyclotron resonance ω − pΩcs − k‖v‖ = 0, as is
often done, we derive the relevant local expressions for the quasilinear diffusion part from
the global ones. This is achieved by performing quasi-local approximations of the various
global quantities, following the procedure detailed in chapter 2. Note that this asymptotic
limit allows one to recover the classical results obtained when the quasi-local approach
is employed from the start [8, 11, 44] but the Hamiltonian approach lends itself to more
refined studies (see, e.g., Refs. [21, 34,45]).

4.1 Hamiltonian quasilinear theory

4.1.1 Fokker-Planck equation

In the framework of the Hamiltonian theory employed throughout this manuscript, the
Fokker-Planck equation is deduced from the Vlasov equation (Eq. 2.29), written here in
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terms of action-angle variables

∂fs
∂t
− ∂Hs

∂Φi

∂fs
∂Ji

+
∂Hs

∂Ji

∂fs
∂Φi

= 0. (4.1)

We use the same expansion as in chapter 2 (Eq. 2.33), namely

Hs = Hs,0(Jk, t) +
∑

N1,N2,N3

δhN1,N2,N3(Jk)ei(NiΦi−ωt) + c.c., (4.2)

and
fs = fs,0(Jk, t) +

∑
N1,N2,N3

δfN1,N2,N3(Jk)ei(NiΦi−ωt) + c.c., (4.3)

where c.c. designates the complex conjugate of the previous term. Note that the equilib-
rium quantities Hs,0 and fs,0 depend on time in a secular fashion. δHs and δfs, on the
other hand, feature an oscillatory time-dependence at the wave frequency ω.

The advantage of the angle-action formalism is that the quasilinear mode selection,
which is performed by a space-time averaging operation over a finite volume-time period,
cleanly reduces to an angle-time averaging operation, i.e.

〈. . .〉 ≡ 1
(2π)3

∫
dΦ1dΦ2dΦ3

ω

2π

∫ 2π/ω

0
dt . . . . (4.4)

The secular modification of fs is then directly extracted by writing

fs,0(t) = 〈fs〉. (4.5)

Averaging the Fokker-Planck equation and keeping the first order contributions of Hs

and fs yields

∂fs,0
∂t
− i
∑
N

Ni
∂

∂Ji
[δhNδf

∗
N − δh∗NδfN] =

(
∂fs,0
∂t

)
coll.

, (4.6)

where a collisional term has been added on the right-hand side to reflect the fact that the
slow time variation of the equilibrium distribution is necessarily influenced by collisions.

Using the expression for the linear response to the wave (Eq. 2.34), we can rewrite the
previous equation in the compact form

∂fs,0
∂t

=
∂

∂Ji
D

(QL)
ij

∂fs,0
∂Jj

+
(
∂fs,0
∂t

)
coll.

, (4.7)

with the quasilinear diffusion operator

D̄
(QL)
ij = π

∑
N1,N2,N3

NiNj |δhN1,N2,N3 |2δ(ω −NkΩk). (4.8)

At this stage, the Fokker-Planck equation (4.7) is global. This is clear from the quasi-
linear diffusion operator (Eq. 4.8), which features a global resonance: only those particles
with an unperturbed motion in strict resonance with the wave can exchange energy. It
must however be realized that the sum over (N1, N2, N3) represents an infinite number of
usually densely packed such resonances.
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4.1.2 Quasilinear diffusion coefficient

It is more convenient to express the diffusion coefficient in terms of the invariants of the
motion. Following section 2.1.2, a rather natural choice is I ≡ (E,Λ, Pφ). Λ is preferred
over µ for algebraic reasons, and is defined as Λ ≡ µB0(0)/E with B0(0) the magnetic
field at a given reference location (typically the magnetic axis).

The wave term in the Fokker-Planck equation then takes the form

〈Dw(fs)〉 =
1
g1/2

∂

∂Ii
g1/2D

(QL)
ij

∂fs,0
∂Ij

, (4.9)

and
D

(QL)
ij =

∂Ii
∂Jk

Ij
∂Jl

D̄
(QL)
kl . (4.10)

The Jacobian of this transformation is given by

g1/2 =
E

ωb

1
ωcs(0)

. (4.11)

With the help of Eqs. 2.17, 2.18, 2.19 and 4.11, we obtain for the energy-energy element
of the diffusion tensor

D
(QL)
EE = π

∑
N1,N2,N3

NiΩiNjΩj |δhN1,N2,N3 |2δ(ω −NkΩk), (4.12)

or
D

(QL)
EE = πω2

∑
N1,N2,N3

|δhN1,N2,N3 |2δ(ω −NkΩk). (4.13)

As shown in section 2.2.2, the wave-particle interaction dictates that only the Hamil-
tonian contributions with N1 = p and N3 = n survive, so that we may write, limiting
ourselves to the interaction at harmonics p and toroidal wavenumber n (for the sake of
concision, the indices p and n are omitted from now on)

D
(QL)
EE =πω2

∑
N2

|δhp,N2,n|2δ(ω −NkΩk)

=
π

ωb
ω2
∑
N2

|δhp,N2,n|2δ
(
N2 − ω − pΩ1 − nΩ3

Ω2

)
,

(4.14)

D
(QL)
EΛ = D

(QL)
ΛE =

π

ωb
ω

(
pΩcs(0)− Λω

E

)∑
N2

|δhp,N2,n|2δ
(
N2 − ω − pΩ1 − nΩ3

Ω2

)
, (4.15)

D
(QL)
ΛΛ =

π

ωb

(
pΩcs(0)− Λω

E

)2∑
N2

|δhp,N2,n|2δ
(
N2 − ω − pΩ1 − nΩ3

Ω2

)
, (4.16)

D
(QL)
EPφ

= D
(QL)
PφE

=
π

ωb
nω
∑
N2

|δhp,N2,n|2δ
(
N2 − ω − pΩ1 − nΩ3

Ω2

)
, (4.17)
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D
(QL)
ΛPφ

= D
(QL)
PφΛ =

π

ωb
n

(
pΩcs(0)− Λω

E

)∑
N2

|δhp,N2,n|2δ
(
N2 − ω − pΩ1 − nΩ3

Ω2

)
, (4.18)

and

D
(QL)
PφPφ

=
π

ωb
n2
∑
N2

|δhp,N2,n|2δ
(
N2 − ω − pΩ1 − nΩ3

Ω2

)
. (4.19)

Evidently

D
(QL)
EΛ = D

(QL)
ΛE =

1
E

(
pΩcs(0)
ω

− Λ
)
D

(QL)
EE , (4.20)

D
(QL)
ΛΛ =

1
E2

(
pΩcs(0)
ω

− Λ
)2

D
(QL)
EE , (4.21)

D
(QL)
EPφ

= D
(QL)
PφE

=
π

ωb

n

ω
D

(QL)
EE , (4.22)

D
(QL)
ΛPφ

= D
(QL)
PφΛ =

n

ω

(
pΩcs(0)
ω

− Λ
)
D

(QL)
EE , (4.23)

and

D
(QL)
PφPφ

=
π

ωb

n2

ω2
D

(QL)
EE , (4.24)

so that only the expression for D(QL)
EE is actually needed.

4.1.3 Energy conservation

As discussed in section 3.1.4, energy conservation is a direct consequence of the variational
formulation [19]. We recall here the local Poynting theorem (3.77), which may be rewritten
in the form

−iωWfield(ψ) + SPoynting(ψ) + Ẇdsp(ψ) + Pabs(ψ) + Skin(ψ) = −Ẇant(ψ). (4.25)

As already discussed in chapter 3, a delicate task is to obtain the power irreversibly
transferred from the wave to the particles, which requires the evaluation of the kinetic
flux [12, 14, 37, 46]. In the present approach, however, this step is unnecessary since the
dissipated power is directly available from the particle functional Lpart. To demonstrate
this point, it is necessary to evaluate the secular variation of the kinetic energy of the
particles in interaction with the wave in the framework of the quasilinear theory, which is
given by

W =
ms

2

∫
d3rd3pv2fs,0(r,p, t), (4.26)

so that the energy increase caused by the power transferred from the wave to the particles
through non-collisional damping may be written as

Pabs =
dW

dt
=
ms

2

∫
d3rd3pv2 ∂

∂Jj
D

(QL)
ij

∂fs,0
∂Ji

. (4.27)
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Using d3rd3p = (2π)3d3J in the integral and integrating by parts yields

Pabs = −πms

2
(2π)3

∫
d3J
(
Nj

∂v2

∂Jj

)
Ni
∂fs,0
∂Ji

δ(ω −NkΩk)|δhN|2. (4.28)

The quantity in parentheses may be rewritten as

Nj
∂v2

∂Jj
=

2
ms

Nj
∂E

∂Jj
=

2
ms

NjΩj , (4.29)

so that, using the global resonance condition imposed by the delta function

Pabs = −ωπ(2π)3

∫
d3JNi

∂fs,0
∂Ji

δ(ω −NkΩk)|δhN|2, (4.30)

which is strictly identical to the imaginary part of the plasma functional (3.42), thereby
demonstrating

Pabs =
ω

2
=(Lpart). (4.31)

We also deduce from Eq. 3.74 that the kinetic flux is given by

Skin(ψ) = −1
2
<
{∫

ψ
d2S · jpartϕ∗

}
. (4.32)

Fig. 4.1 shows the power balance corresponding to the 3He case in ITER discussed in
Ref. [23]. After the field is reconstructed, the power coupled by the antenna is given by
Eq. 3.71, the Poynting flux is available from Eq. 3.68, and the power absorbed on species,
Pabs, is directly deduced from the plasma functional (Eq 4.31). The kinetic flux is then
deduced from the energy balance, Eq. 4.25.

It is often convenient to separate the power absorbed by the various plasma species.
Using the decomposition of Eq. 3.37 in terms of a sum over species, we may write

Pabs(ψ) ≡
∑
s

Pabs,s(ψ), (4.33)

with
Pabs,s(ψ) =

ω

2
=(Lpart,s(ψ)), (4.34)

which is directly available from the wave calculation and corresponds to the power ab-
sorbed by species s inside magnetic surface ψ. An important quantity for experiment
modeling is the power density absorbed by species s on magnetic surface ρ. It is obtained
by writing

ps(ψ) =
1
V(ρ)

d=(Lparts,)
dρ

∣∣∣∣
ψ

, (4.35)

with the volume element defined as

V(ρ) = 2π
∮
dθJ(ρ, θ). (4.36)
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Figure 4.1: Power balance corresponding to a 3He(DT) scenario in ITER [23]. Shown are
the Poynting flux, the (cumulative) absorbed power, and the kinetic flux deduced from the
energy balance. The cumulative power coupled by the antenna is also shown as a dashed
line and matches the absorbed power on the vacuum vessel.

4.2 Derivation of a quasi-local model

4.2.1 Quasilinear diffusion coefficient

We now turn to the calculation of D(QL)
EE . Using the quasi-local expression for the Hamil-

tonian contributions, Eq. 2.66, we have

δhp,N2,n ≈
1
τb

∑
m,t0[m]

Γm(t0)δHpmn(t0)ei[γm(t0)−(pΩ1+N2Ω2+nΩ3)]. (4.37)

We recall that t0 is given by

γ̇m0(t0) = pΩcs(t0) +m0θ̇(t0) + nφ̇(t0) = NiΩi, (4.38)

which by virtue of the Dirac function which selects a given value of N2 yields the usual
quasi-local resonance

ω = pΩcs(t0) + k‖(t0)v‖(t0). (4.39)

Using the procedure detailed in chapter 3, we obtain

D
(QL)
EE =

π

ωb
ω2

{
1
τ2
b

∑
m1,m2

∑
t0

|Γm0(t0)|2δHpm1n(t0)δH∗pm2n(t0)ei(m1−m2)θ(t0)

}
, (4.40)

with m0 = (m1 +m2)/2.
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We note that if the function γm0 depends only weakly on the poloidal wavenum-
ber (which is typical of cyclotron interaction or Cerenkov interaction at sufficiently high
toroidal numbers), we have

D
(QL)
EE ≈ π

ωb
ω2

{
1
τ2
b

∑
m1,m2

∑
t0

|Γm0(t0)|2δHpm1n(t0)δH∗pm2n(t0)ei(m1−m2)θ(t0)

}
=

π

ωb
ω2

{
1
τ2
b

∑
t0

|Γm0(t0)|2
∑
m1,m2

δHpm1n(t0)δH∗pm2n(t0)ei(m1−m2)θ(t0)

}

=
ω2

2τb

∑
t0

|Γm0(t0)δHpn(t0)|2.

(4.41)

The quantity |Γm0(t0)| ≡ τres represents the time spent by the particle in resonance
with the wave, allowing to rewrite the previous expression in a relatively transparent
fashion as

D
(QL)
EE ≈ ω2

2

∑
t0

(
τ2
res(t0)
τb

)
|δHpn(t0)|2. (4.42)

From the local resonance condition, the resonance time is approximately given by

τres ≡ 1
|pv‖∇‖Ωcs|1/2

, (4.43)

whereas the bounce time is
τb =

∮
dl

v‖
, (4.44)

with dl the elemental arc-length along the field line.
We can go one step further in simplifying the problem if we assume, as Stix did in his

seminal paper [47], that the particle parallel motion is uniform along its unperturbed orbit
(in a quasi-local sense). If we assume that τ2

res/τb only varies slowly along the particle
orbit as the particle crosses the local resonance, then we have simply

D
(QL)
EE ≈ D0

∑
t0

|δHpn(t0)|2, (4.45)

where all quantities in the Hamiltonian are evaluated at the local resonance and the
constant D0 is determined by imposing that the total absorbed power be equal to the
coupled RF power.

In the framework of this quasi-local model, we may use a uniform approximation to the
Hamiltonian contributions Hpn by employing a Kennel-Engelmann-type expression [48].
In fact, this is already available to us from our previous derivation of a WKB Hamiltonian
(see section 2.3.2), using k⊥ from the fast wave dispersion relation and assuming that the
propagation angle β is zero (actually a subtle assumption [49]). This yields

δHpn =− qs v⊥√
2
A+Jp−1(k⊥v⊥/Ωcs)− qs v⊥√

2
A−Jp+1(k⊥v⊥/Ωcs)

+ qs(ϕ− v‖A‖)Jp(k⊥v⊥/Ωcs).
(4.46)
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The last term in this equation corresponds to the interaction between the parallel
electric field and the particles. Since we are interested in ion heating and we only consider
the fast wave, the main contribution to the electric field is the perpendicular potential
vector A⊥, so that may we may write

|δHpn|2 ≈ q2
s

v2
⊥

2ω2
|E+Jp−1(k⊥v⊥/Ωcs) + E−Jp+1(k⊥v⊥/Ωcs)|2, (4.47)

which is a well-known expression (see, e.g. [11, 30]).
Since we have adopted a quasi-local form for the Fokker-Planck equation, it is conve-

nient to express the diffusion tensor in terms of the local velocity (v‖, v⊥). We have

Λ ≡ miv
2
⊥

2E
B0(0)
B0

=
u2
⊥
u2

B0(0)
B0

, (4.48)

and

E ≡ mi

2
(v2
‖ + v2

⊥) =
miv

2
th,i

2
u2, (4.49)

from which we deduce

D(QL)
v⊥v⊥

=
1

miv2
⊥

(
p

Ωcs

ω

)2

D
(QL)
EE , (4.50)

and

D(QL)
v‖v‖

=
1

miv2
‖

(
1− pΩcs

ω

)2

D
(QL)
EE . (4.51)

At the cyclotron resonance, we have ω ∼ pΩcs, so that

|D(QL)
v⊥v⊥
| � |D(QL)

v⊥v‖
|, |D(QL)

v‖v⊥
| � |D(QL)

v‖v‖
|, (4.52)

which is the justification for the subsequent neglecting of all terms but the perpendicular
one in the quasilinear diffusion tensor. From expressions 4.45, 4.47 and 4.50, we see that
the wave contribution to the distribution function evolution takes the simple form(

∂fi
∂t

)
wave

≡ Q̂fi =
1
u⊥

∂

∂u⊥
u⊥Dw

∂fi
∂u⊥

, (4.53)

with
Dw = D0

∑
t0

|E+Jp−1(k⊥v⊥/Ωcs) + E−Jp+1(k⊥v⊥/Ωcs)|2. (4.54)

4.2.2 Coulomb collisions

The classical derivation of the Coulomb collision operator is by essence local in the velocity
space [50–52]. If we denote “i” the heated species, the collisional part of the Fokker-Planck
equation at a given space location can be written as

∂fi
∂t

=
∑
s

Ĉ(fi, fs), (4.55)
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where the sum is carried out over all plasma species. A complex problem is the correct
handling of the Ĉ(fi, fi) term (self-collisions) [52, 53]. We choose here to disregard this
issue by employing a linearized operator where self-collisions are supposed negligible, and
assuming that the background species are all Maxwellians. The resulting operator can
be written as the divergence of a quasilinear flux, i.e. Ĉ(fi, fs) ≡ −∇v · Sc with Sc =
−D · ∇vfs + Fcfs.

At this stage, it is convenient to introduce a reference frequency characterizing the
collisions between test ions belonging to the heated species and the background constituted
by one of the bulk ion species (usually the majority ion, denoted here “M”)

νi ≡ νi/M ≡
Γi/M

v3
th,i

, (4.56)

where vth,i is a thermal velocity characterizing the heated species (for instance, the thermal
velocity before heating). Introducing the normalized time τ ≡ νit, the normalized velocity
u ≡ v/vth,i and pitch angle cosine λ ≡ v‖/v, we then obtain the collision term in the
compact form [8]

∂fi
∂τ

=
1
u2

∂

∂u

[
u2

(
Duu

∂fi
∂u
− Fufi

)]
+

1
u2

[
∂

∂λ
(1− λ2)

Θc

2u
∂fi
∂λ

]
, (4.57)

with
Duu =

1
2u

∑
β

νi/β

νi
Ψ(uβ), (4.58)

Fu = −
∑
β

νi/β

νi

Ti
Tβ

Ψ(uβ), (4.59)

and
Θc

2u
=
∑
β

νi/β

νi

Θ(uβ)
2u

, (4.60)

where β designates the bulk species, i.e. all plasma species except the heated one. We
introduce uβ ≡ v/vth,β. Also

Γa/b ≡ nbZ
2
aZ

2
b e

4 log(Λa/b)
4πε20m2

a

, (4.61)

with log(Λa/b) the Coulomb logarithm. Besides

Ψ(x) ≡ erf(x)− xerf′(x)
x2

, (4.62)

and

Θ(x) ≡ 1
x2

[(
x2 − 1

2

)
erf(x) +

x

2
erf′(x)

]
. (4.63)

Note that we have

νi/β

νi
=

nβ
nM

Z2
β

Z2
M

log(Λi/β)
log(Λi/M )

≈ nβ
nM

Z2
β

Z2
M

, (4.64)
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and also
uβ = u

vth,i
vth,β

. (4.65)

4.2.3 A quasi-local Fokker-Planck solver

At this point, it would be useful to take advantage of the model described previously in
order to predict the plasma response to a given wave-field. The idea is to be as numerically
efficient as possible, retaining only the following physics ingredients to simulate ICRF
plasma heating:

• Building of the superthermal ion tail by RF-induced diffusion, balanced by collisions.
For a given initial equilibrium distribution function fi(tinitial), we impose that in the
absence of RF source, fi will tend towards a given feq at large t. This is needed
to describe a distribution function which has been pre-heated by, e.g. neutral beam
injection. Designing a comprehensive model for NBI heating is beyond the scope of
our study.

• Heating of the various thermal plasma species by collisional relaxation of the ICRF-
heated ions. This is essential because transport properties, which eventually deter-
mine the plasma performance, are dependent on this heat source term.

• Fast ions lost due to prompt losses, i.e. orbit widths comparable or exceeding the
device size.

A generic form for a local Fokker-Planck equation fulfilling these requirements is

∂τfi =
∑
β

Ĉ(fi, fβ)−
∑
β

Ĉ(feq, fβ) + Q̂fi − L̂fi + Sfuelling, (4.66)

where Q̂fi represents the wave quasilinear term, L̂fi a fast ion loss term and Sfuelling is a
particle source adjusted to compensate for losses caused either by the loss term, or by the
choice of an insufficiently extended velocity grid.

In the presence of the quasi-local Coulomb operator, Eq. 4.57, a common procedure is
to expand the distribution function in terms of Legendre polynomials

fi(u, λ) ≡
∑
n

fn(u)Pn(λ), (4.67)

or conversely

fn(u) ≡ 2n+ 1
2

∫ 1

−1
dλfi(u, λ)Pn(λ). (4.68)

The rationale is that the pitch-angle scattering term appearing in Eq. 4.57 takes a
diagonal form, i.e.

∂

∂λ
(1− λ2)

Θc

2u
∂fi
∂λ

= −
∑
n

n(n+ 1)
Θc

2u
fn(u)Pn(λ). (4.69)
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We assume a generic form for the loss term, i.e.

L̂fi =
Λfil(u, λ)

τfil
fi, (4.70)

with τfil the typical fast ion loss time, and Λfil(u, λ) a function of velocity and pitch-angle
which cancels in regions where ions are confined, and approaches 1 in regions of velocity
space where particles are lost1.

We impose that the total heated ion density is conserved, and that any lost ion must
be reintroduced as a thermal ion. This is done by setting

Sfuelling =
ni

π3/2vth,i
e−u

2S0, (4.72)

with S0 a constant. Since the employed forms of the collision and quasilinear diffusion
operators conserve density, we immediately obtain

S0 =
2π
niτfil

∫
dudλu2Λfil(u, λ)fi(u, λ). (4.73)

The corresponding term in the Fokker-Planck equation is straightforward to imple-
ment.

If we project Eq. 4.66 using expansion 4.67 onto basis polynomial Pm, we obtain∑
n

δnm∂τfn =
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Λmn
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[
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u
∂u(u2Duu) +

1
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∂u(u2Fu)− 2(2u2 − 1)Duu − 2uFu

]
feq(u).

(4.74)

In the latter expression, feq is assumed to be an isotropic Maxwellian. Using more com-
plicated equilibrium distribution function shapes does not pose any conceptual difficulty,
but makes the source term somewhat more complex.

1As an example of a most natural form for Λfil, one can employ the isotropic expression

Λfil(u) ≡ 1

1 + e−(E−Efil)/∆E
, (4.71)

with ∆E an adjustable parameter. This ensures that all ions with energy exceeding Efil are virtually lost.
Of course, more sophisticated expressions can be employed as well.
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We have introduced the following moments

Dmn
00 (u) ≡ 1

2

∫ 1

−1
dλ(1− λ2)Dw(u, λ)Pm(λ)Pn(λ), (4.75)

Dmn
01 (u) ≡ 1

2

∫ 1

−1
dλ(1− λ2)λDw(u, λ)P ′m(λ)Pn(λ), (4.76)

Dmn
10 (u) ≡ 1

2

∫ 1

−1
dλ(1− λ2)λDw(u, λ)Pm(λ)P ′n(λ), (4.77)

Dmn
11 (u) ≡ 1

2

∫ 1

−1
dλ(1− λ2)λ2Dw(u, λ)P ′m(λ)P ′n(λ), (4.78)

and

Λmn(u) ≡ 1
2

∫ 1

−1
dλΛfil(u, λ)Pm(λ)Pn(λ). (4.79)

All these expressions lend themselves to implementation in an efficient numerical code,
which was named aql. An early version of aql is described and extensively employed in
Ref. [6].

4.2.4 Derived quasilinear quantities

From the distribution function and various operators, it is possible to derive various quasi-
linear quantities of physical interest.

The heated ion density is defined as

ni ≡
∫
d3v fi(v), (4.80)

and can be expressed in terms of the first Legendre moment of fi (Eq. 4.67) as

ni = 4π
∫ ∞

0
duu2f0. (4.81)

The perpendicular and parallel energy content can be directly obtained by writing

W⊥,‖ ≡
∫
d3v

mv2
⊥,‖

2
fi(v), (4.82)

yielding

W‖ = Ti

∫
d3v u2

‖fi =
4π
3
Ti

∫ ∞
0

duu4

(
f0 +

2
5
f2

)
, (4.83)

and

W⊥ = Ti

∫
d3v u2

⊥fi =
4π
3
Ti

∫ ∞
0

duu4

(
2f0 − 2

5
f2

)
, (4.84)

where f0 and f2 are the coefficients in the Legendre expansion of the distribution function
(Eq. 4.67). It is readily seen that in the isotropic case, W⊥ = 2W‖, as it must.
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A crucial quantity, needed to perform the distribution function calculation is the ab-
sorbed power pabs,qlin, which is deduced from Eq. 4.53 as

pabs,qlin ≡
∫
d3v

mv2

2
Q̂fi, (4.85)

and may be rewritten as

pabs,qlin = 4πνiTiv3
th,i

∫
dudλu2(1− λ2)Dw(u, λ)

(
u
∂fi
∂u
− λ∂fi

∂λ

)
= 8πTiv3

th,i

∫
duu2

∑
n

[
uD0n

00

∂fn
∂u
−D0n

01 fn

]
,

(4.86)

where the moments of both the distribution function and quasilinear diffusion coefficients
(Eqs. 4.75 and 4.76) are used. One should systematically compare the results obtained
from the two expressions above to ensure that the Legendre expansion retains a sufficient
number of harmonics.

Another important quantity is the power transferred to the background plasma by
collisions, which is given by

pcoll ≡
∫
d3v

mv2

2
Ĉfi, (4.87)

and may be written in terms of f0 only

pcoll = 8πνiTiv3
th,i

∫ ∞
0

du
[
∂u(u3Duu) + u3Fu

]
f0, (4.88)

where an integration by parts has been carried out in order to avoid involving the derivative
of fi in the calculations.

This expression may be used in the course of the calculation because of its simplicity
and numerical efficiency. If one is interested in the power transferred from the heated ion to
a given (Maxwellian) background species β, then straightforward algebraic manipulations
of Eq. 4.88 using Eqs. 4.58 and 4.59 yield

pi→βcoll = 8πνi

(
νi/β

νi

)
v3
th,i

∫ ∞
0

duu

[
Ψd(uβ)− u2 Ti

Tβ
Ψ(uβ)

]
f0, (4.89)

with
Ψd(x) ≡ xerf′(x). (4.90)

Finally, the power lost because of fast ion losses is given by

pfil ≡
∫
d3v

mv2

2
L̂fi. (4.91)

Substituting Eq. 4.70 and using expansion Eq. 4.67 yields the following expression

pfil = 4πνiTiv3
th,i

∫
duu4 Λn

τfil
fn, (4.92)

with the Legendre moment of the loss function

Λn ≡ 1
2

∫ 1

−1
dλΛfil(u, λ)Pn(λ) = Λ0n(u), (4.93)

where Λ0n refers to Eq. 4.79.





Chapter 5

On phase-space engineering using
RF waves

After these technical chapters, we wish to discuss here the concept of engineering phase-
space using radiofrequency waves. As recounted by Fisch [54], the original rationale for
the use of RF waves was plasma heating, i.e. managing to irreversibly transfer a given
amount of energy from an external generator to the plasma. In this case, the fine details
of the wave-particle interactions occurring in the velocity space are of limited practical
importance.

Since then, much progress has been done in this area. The general idea is that RF
(and NBI systems, to some extent) offer a flexibility which can be exploited to influence an
otherwise tightly coupled system. If experiments in present devices already feature a large
amount of non-linear coupling phenomena between the various quantities characterizing
the plasma, burning plasmas will be even more difficult to modify. On the other hand,
using external power comes with a cost in terms of reactor efficiency, and thus obviously
degrades the overall performance. Nevertheless, since the “natural” plasma state - or the
state the plasma would reach in the absence of any external control (assuming such a
state even exists in the first place) - can be sub-optimal in terms of fusion performance
because of MHD instabilities, of turbulence or any other intrinsic process, it may be
globally advantageous to spend some power to control it. This is already done in various
devices, and will probably be done in future machines, if only to control the burn phase
and possibly improve its efficiency.

It must be realized, however, that phase-space engineering is only possible to some
extent. For instance, it is tempting to take this logic to the extreme, and confine the power
production in an “optimal” location of phase space and recirculate part of this power to
maintain the conditions necessary for the power production on the one hand, and extract
another part of this power for net production on the other hand. This appealing idea
actually made its appearance since the inception of fusion research, and motivated the
design of many reactor concepts. However, Rider [15] has shown that although generating
the fusion power by creating wildly out-of-equilibrium fuel populations could work in
principle, the cost of reusing part of this power (recirculating) against collisions to maintain
the out-of-equilibrium state was prohibitive.
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Nevertheless, even in the confines of relatively conservative fusion reactor concepts, a
lot of progress remains to be done and many possibilities still need to be explored. The
advantage is that these ideas combine the progress towards the goal of energy-production
by fusion with an indisputable physics interest. We describe here a few examples of such
control involving radiofrequency waves with varying degrees of maturity.

5.1 LH-EC synergy

The presence of a toroidal current is a prerequisite for plasma equilibrium in a tokamak.
Fisch and co-workers [55] have proposed that this current could be driven by RF waves,
which has been a breakthrough since it made the steady-state operation of tokamaks
a possibility. In this area, Tore Supra has had a pioneering role [26, 56] (see reprint
in appendix E). RF current drive consists of influencing the electron population in an
asymmetric fashion with respect to the parallel velocity in order to drive non-inductive
current in tokamaks by 1) pushing preferentially the electron in one parallel direction
with respect to the plasma current, 2) creating an asymmetric resistivity. The fact that
a careful design of the wave spectrum is required to locally modify the kinetic properties
of the electron distribution function in velocity space appears clearly when one employs
the adjoint method [57, 58]. Dumont and Giruzzi [59] (see reprint in chapter E) have
extended the adjoint technique to describe the so-called LH-EC synergy. Its principle is to
exploit the enhanced parallel quasilinear diffusion on a pre-existing plateau created by LH
waves to increase the originally modest EC current drive efficiency, a process which can
be qualified as phase-space engineering. As a confirmation of the validity of this concept,
the LH-EC synergy was simultaneously observed in steady-state discharges performed in
the Tore Supra tokamak, and manifested itself by a 4-fold improvement of the “normal”
EC efficiency in the presence of LH power [60]. Fig. 5.1(a) shows a calculation of the
normalized EC current drive efficiency in the absence and in the presence of LH waves,
illustrating the large efficiency enhancement which can be anticipated by having EC waves
damp in the region of the LH quasilinear plateau [59, 61]. Fig. 5.1(b) shows the current
deduced from measurements, compared to the predicted linear EC current [60].

The uncertainties related to the possibility of using LH waves in next-step fusion de-
vices make the relevance of the LH-EC synergy for fusion reactors questionable. Neverthe-
less, the general concept of modeling a portion of the phase space with one type of wave or
with externally injected energetic particles in order to influence the propagation/damping
of another wave retains its attractiveness. A prime example is the third harmonic damping
of ICRF waves in JET, which is only possible if a significant population of fast deuterons
is already present in the plasma [62].

5.2 Heavy impurity control

One of the most important changes in fusion research in the last decade is that several
devices have had their carbon walls replaced by metallic plasma facing component-based
walls1. One of the incentives for this modification is that tritium retention in carbon-

1It should be noted that metallic walls were quite common in the early days of fusion research.
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Figure 5.1: (a) Normalized ECCD efficiency computed by solving the adjoint equations
(solid), and by numerical integration of the Langevin equations (crosses). Also shown
is the Fisch-Boozer efficiency (thin line). (b) Measured additional current driven by EC
waves in the presence of LH waves (dots) and computed linear EC current (squares) vs
ρEC , location of maximum EC power deposition. Adapted from Ref. [61].

based elements is too large to be acceptable in a fusion reactor. In ASDEX Upgrade, a
Tungsten (W) wall has been installed, whereas JET has been testing an ITER-relevant
combination of tungsten/beryllium components. The consequences of these change have
been quite profound. In terms of plasma operation, W has been observed to penetrate up
to the plasma core in many situations. As a result, its density can sometimes peak near
the magnetic axis until it radiates most of the discharge power [63].

In ASDEX Upgrade, central Electron Cyclotron Heating/Current Drive has been found
to have a favorable impact on the W concentration [64]. This has been attributed to an
enhanced level of anomalous particle diffusion combined with a density pump-out, which
prevents density peaking and associated W accumulation. In JET, there is no EC system
and the ICRF system must be used for impurity control. It has been found that at low
levels of power, the IC system was responsible for enhanced impurity levels in the plasma,
probably because of an increased W source2. At higher power levels, however, locating the
IC resonance in the vicinity of the magnetic axis has been found to slow down the impurity
accumulation, or even prevent it from occurring. There is currently a lot of activity in this
area but the most widespread interpretation is that the change in neoclassical transport
caused by the fast ions is the dominant mechanism. This causes the inward particle pinch
to either cancel or even revert [65–67]. It is likely that depending on the device and
plasma parameters, a combination of changes in neoclassical and turbulent transport is
responsible for the global dynamics of the heavy impurities in the discharge [68].

Concentrating on neoclassical transport, if we assume that the tungsten is in the
Pfirsch-Schlüter regime of collisionality, and is located at a given location on a flux surface,

2Although to this day, this source has not been unambiguously identified.
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one obtains for the neoclassical flux [65]

〈ΓneoZ · ∇r〉 =
e2niTi

ε2miΩ2
i τiZZ

[
d log pi
dr

−
(

3
2
− 0.33fc

)
d log Ti
dr

]
, (5.1)

with ni, Ti, pi the bulk ion density, temperature and pressure, respectively. Ωi is the bulk
ion cyclotron frequency. ε is the inverse aspect ratio of the considered flux surface. τiZ is
the ion-impurity collision time, and fc is the fraction of circulating ions.

Clearly, if

ηi ≡ d log(Ti)
d log(ni)

& 6
1 + 2ft

, (5.2)

with ft the fraction of trapped ions, the impurity flux is directed outward, i.e. impurities
are chased away from the plasma core. Therefore, it is tempting to find methods to
increase the temperature gradient at constant density. This is the idea behind the enhanced
screening of minority ICRF ions: although there are by definition few such ions, the
temperature resulting from the RF heating is such that temperature screening efficiency
can become comparable to the temperature screening caused by the bulk ions [68].

In order to illustrate this effect, we consider here standard minority hydrogen heating in
deuterium in JET [69]. Writing η ≡ nH/ne, retaining only the species-specific dependence
in the neoclassical flux, and assuming for the sake of concision an homogeneous distribution
of the heavy impurity, we obtain

〈ΓneoZ · ∇r〉 ∝ ne
[
R

Ln

(
1− η
vth,D

+
η

vth,H

)
− 1

2

(
1− η
vth,D

R

LT,D
+

η

vth,H

R

LT,H

)]
, (5.3)

with Lx the gradient length for quantity x. The latter expression has been obtained
assuming the density profiles are proportional, and that the temperature is isotropic. This
assumption is of course disputable since ICRF is known to induce strongly anisotropic
distributions, but it is useful to produce semi-analytical estimates. We note that in the
presence of fast hydrogen ions, the first term in the bracket is slightly reduced, which
decreases the inward particle pinch. The most important effect is in the second term,
since R/LT,H can be much larger that R/LT,D.

In Fig. 5.2 is shown the contribution of deuterium and hydrogen ions in the temperature
screening term of the neoclassical flux. ΓT is defined as

ΓT ≡ − ni
2vth,i

R

LT,i
, (5.4)

with i either deuterium or hydrogen. Γ0 is the same term in the absence of hydrogen ions.
As nH/ne increases, the temperature screening caused by hydrogen ions increases much

faster than the deuterium screening decreases. Minority screening can become comparable
to the bulk ion screening, effectively doubling the net screening. This means that among
other parameters, the minority concentration can play an important role in fine-tuning
the scenario. It should be noted that these simulations are aimed at gaining some in-
sight into the associated physics. Extensive modeling requires accounting for temperature
anisotropy, neoclassical and anomalous transport for all species. MHD is known to play
an important role in the impurity dynamics as well, but it is left out of this model [70].
To this day, a complete and clear physical picture and solid operational recipes still have
to be established.
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Figure 5.2: Ratio of the screening factors Γ of deuterium (black) and hydrogen ions at
various normalized radii. Extract from Ref. [69].

5.3 MHD control

Controlling MHD events by external means has been an early priority in fusion research.
As an illustration, the fact that energetic ions had a stabilizing effect on various MHD
instabilities, among which the sawtooth, has been established many years ago [71–73]. By
applying NBI or RF power, it is possible to increase the sawtooth period, which appears
at first to be an appealing idea, since a very hot core is formed. The issue, however, is
that the massive sawtooth crash which follows can have deleterious outcomes, such as
the destabilization of Neoclassical Tearing Modes (NTM)3, much more detrimental to the
global confinement than the sawteeth themselves [74]. In addition to this, it has been
recognized that sawteeth may be sometimes desirable to evacuate heavy impurities from
the plasma center, by degrading (to some extent) the core particle confinement. Therefore,
flexible tools capable of modulating the sawtooth activity are desirable. Such tools include
external power sources to tailor the fast ion population [75].

Initially, the process responsible for sawtooth destabilization has been attributed to
shear variations in the vicinity of the q = 1 surface. This has triggered the development
of advanced schemes consisting of driving localized current by means of EC waves [76,77]
or IC waves, using the rather subtle Ion Cyclotron Current Drive (ICCD) effect [78]. This
necessitates the use of asymmetric antenna phasings, which are more prone to operational
issues than the more classical dipole phasing. More recently, however, it has been es-
tablished that energetic ions themselves could have either a stabilizing or a destabilizing
effect, depending on the features of the corresponding distribution function [79, 80]. This
has relaxed some of the constraints on the asymmetric antenna phasing, and allowed more
classical RF conditions to be used to successfully control sawteeth [81,82].

3We note that the process by which sawtooth crashes trigger NTM is, to this day, not completely
explained.
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Fig. 5.3 shows two JET discharges with similar conditions, in which the confining
magnetic field and/or toroidal current are ramped in order to displace the IC resonance
position with respect to the sawtooth inversion radius. A clear destabilization of the

Figure 5.3: Two JET pulses employing dipole-phased ICRH in the absence of NBI power.
Pulse 85930 (red) ramped down the toroidal magnetic field and toroidal current respec-
tively from 2.7T to 2.33T and from 2.4MA to 2.1A. Pulse 85932 ramped in the exact
opposite direction. The plot shows identical ICRH power, an ECE channel measuring the
central temperature midway through the pulses (about 21s), the line integrated density
and the resonance positions relative to an approximate position of the measured inversion
radius. Small sawteeth and corresponding resonance positions are indicated in shaded
boxes. Extract from Ref. [81].

sawteeth is observed when the resonance is in the vicinity of the q = 1 surface. The
ICCD contribution has been estimated to be very low in these conditions (dipole phasing),
which means that the predominant effect is the fast ion contribution to the MHD potential
energy. So far, this scheme has not been completely validated for H-mode plasmas in JET.
Nevertheless, the fact that the resonance location lies on the low field side of the plasma,
the use of dipole phasing, and the larger than expected window of destabilization leads to
a certain confidence that this scheme can be successfully applied to ITER.

This short presentation of sawtooth control using energetic ions is one example among
a large variety of possible means to control various instabilities. Another notable example
is the destabilization of various Alfvén Eigenmodes (AEs) by energetic ions, either alphas
or originating from neutral beams [83,84]. ICRH ions are capable of this as well [85–88]. It
should be mentioned here that energetic ions can also excite Energetic Particle Modes, i.e.
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modes which are non-existent in the absence of fast ions, whereas AEs or other eigenmodes
are always present in the discharge, albeit potentially stable [89].

5.4 Energetic Geodesic Acoustic Modes

Whereas the direct impact of turbulence on energetic particles (EPs) has been found
to be limited [90], the influence of these particles on turbulence, on the other hand, has
received relatively little attention so far. The possibility of controlling, to some extent, the
creation and features of the fast ion populations opens the possibility of a potential action
on an intrinsically self-regulated system involving turbulence, mean flows, zonal flows [91]
and also higher frequency phenomena such as Geodesic Acoustic Modes (GAMs) [92].
Although the latter have an efficiency presumably smaller than stationary or low frequency
flow shear generation mechanisms [93], they have been shown to play a central role in the
L-H transition, which is believed to involve the same actors in the plasma edge [94].

The reason why GAMs are only observed in the plasma edge, however, is because
they are subject to strong Landau damping and therefore cannot impact core turbulence
in a stationary fashion. The possibility of overcoming this limitation by exciting similar
modes with fast particles therefore represents an appealing prospect. In this case, the
mode is usually referred to as an EGAM, and has been predicted theoretically [95,96] and
unambiguously observed in experiments [97,98]. Recently, detailed numerical studies of the
EGAMs properties [99] and their influence on turbulence [100] have been conducted in the
framework of gyrokinetic simulations. Another advantage of EGAMs is that unlike GAMs
which are non-linearly generated by the turbulence itself, the energetic particle sources
can be tuned to some extent, and thus opens the possibility of a turbulence control in the
plasma core.

Fig. 5.4(left) shows how the energetic ion source has been implemented in the gyroki-
netic code gysela [100] to mimick, in the simplest way, the pumping of particles at a
given parallel velocity v0 to push them towards either larger or smaller velocities. With
this simple source, EGAMs are successfully excited when this source is switched on, as
shown in Fig. 5.4(right).

The appearance of EGAMs in the turbulence simulations has had unexpected conse-
quences. After a first phase during which the turbulence level is spectacularly reduced
and the subsequent transport is reduced as well, EGAMs have been observed to synchro-
nize with the ITG turbulent structures, resulting in transport modulations at the EGAM
frequency, and an overall increase of the heat transport [100]. This is shown in Fig. 5.5, in
which χE×B is shown versus time and minor radius. Three phases, denoted A, B and C
are visible: (A) the EP source is applied to an established steady-state turbulence regime,
(B) a transport barrier develops and (C) EGAMs and turbulence coexist and interact with
each other in a non-trivial fashion.

This outcome has triggered further efforts: since regular GAMs have been shown to
efficiently suppress turbulence, the link between GAM and EGAM has been studied in
details [102]. The non-linear process responsible for the coupling between EGAM and
ITG modes is currently under investigation. Further gyrokinetic simulations with more
advanced sources, and including extensive parameter scans, are currently underway to
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Figure 5.4: (Left) A schematic representation of the source of energetic particle versus
normalized parallel velocity. (Right) Amplitude of the (1,0) component of the electric
potential in the presence (red line) and in the absence of fast particles (blue, dotted line).
Extract from Refs. [100,101].

Figure 5.5: 2D representation of the E×B heat diffusivity versus normalized radius and
time, showing the three phases discussed in the text. Extract from Ref. [100]
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assess the generality of the obtained result.

5.5 Poloidal flow drive

The idea of directly impacting turbulence by using RF waves has been contemplated
from the early 1990’s [103]. Poloidal flow drive using RF waves stems from the fact
that Ion Bernstein Waves (IBWs) excited by an external antenna have been observed
to be capable of inducing profile modifications consistent with the triggering of Internal
Transport Barriers (ITBs) [104,105]. In TFTR, using an IBW antenna, RF-induced flows
have been unambiguously observed [106,107].

However, the direct excitation of IBW has proven very difficult, and its application on a
reactor-class device is not envisaged at this stage. Another possible method to obtain IBWs
and another suitable converted wave, the Ion Cyclotron Wave (ICW) [108,109], is to use a
standard ICRF system, i.e. exciting the fast magnetosonic wave, and a plasma composition
and RF parameters tuned so that efficient mode-conversion is achieved. Fig. 5.6(a) shows
a full wave calculation of a DH(3He) mode-conversion scenario in the Alcator C-mod
tokamak. The Ion Cyclotron Wave lies above and below mid-plane, on the low field side
of the conversion layer. This wave has the capability to drive a poloidal flow by exerting
a poloidal force on the plasma species (Fig. 5.6(b)), shown here as a surface-averaged
quantity [110].

Figure 5.6: (Left) Real part of the perpendicular wave electric field computed by aorsa
for a DH(3He) mode-conversion ICRF scenario in Alcator C-Mod. (Right) Flux surface-
averaged poloidal force on electrons and hydrogen ions with 1 MW of RF power absorbed.
Extract from Ref. [110].

This promising concept has triggered an intense interest, both theoretically [46, 111–
113], and numerically [110, 114]. The physical description of the processes at hand in-
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volves a challenging mathematical analysis [46]. The basic idea is that the momentum
conservation equation can be written as

m∂tΓ +∇ ·ΠCGL − J×B = F, (5.5)

with
Γ ≡

∫
d3v vf. (5.6)

ΠCGL is the secular part of the stress tensor, J is the fluid current density and B the
equilibrium magnetic field. A careful analysis shows that F, the secular force on the right
hand side, may be rewritten in the form

F = F(0)
reactive + F(0)

resistive + F(1), (5.7)

and contains “non-CGL” parts of the stress tensor. It turns out that F(0)
reactive, which can

locally have a large amplitude, is an extension of the ponderomotive force deduced from
cold plasma theory. It also flux surface-averages to zero, although a full consensus on this
point has yet to be reached [113], and is therefore unable to induce any flow. F(0)

resistive,
on the other hand, has a convenient expression when the electric field is expressed in the
Fourier space

F(0)
resistive =

∑
k,k′

k + k′

4ω
ei(k

′−k)·r(k + k′)E∗k ·W(a) ·Ek′ , (5.8)

where Ek is the Fourier component corresponding to wavenumber k and W(a) is the anti-
hermitian part of the generalized dielectric kernel introduced by D. Smithe [14]. It appears
that F(0)

resistive ∼ kẆ/ω where Ẇ is the dissipated wave power, so that this term clearly
corresponds to the wave momentum input. The last term in Eq. 5.7, not explicitly given
here, does not correspond to any momentum input but can nevertheless drive bipolar
poloidal sheared flows by redistributing the plasma momentum. Note that for the param-
eters chosen in the simulations presented in Ref. [115], it was found to be small compared
to the direct momentum input term.

Recently, successful experiments have been performed in Alcator C-mod [116,117]. In-
teresting observations have also been made in JET [118]. As is often the case, however, the
transposition to H-mode plasmas is far from straightforward, one element being that the
RF power is usually small compared to the NBI power used to ensure the L-H transition.
The number of experiments which have spent a substantial part of their program on this
topic is somewhat limited, and certainly did not include scans in all possible parameters.
Furthermore, central core heating to chase heavy impurities has become the priority for the
RF systems installed in ongoing metallic-environment tokamaks, so that the time/power
left for more prospective studies is rather limited. Nevertheless, the prospect of enhancing
confinement by driving poloidal flows should motivate a continuous effort on both the
experimental and theoretical sides. As for the latter, either a fluid, a gyrokinetic or a 6D
turbulence code is the adapted tool to describe the (potential) impact of a RF driven flow
on turbulence. It has been pointed out that some fluid models could be unable to treat
this problem correctly [114]. Regardless of the kinetic or fluid treatment, the RF code
must provide the corresponding non-linear force, a challenging task in itself. A practical
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procedure to input the corresponding momentum source in turbulence codes still needs to
be devised.

5.6 Alpha-channeling

Alpha-channeling essentially involves all the concepts discussed in these pages: waves,
energetic particles, and also instabilities. Although the experimental evidence required to
validate this idea is still only partial, and its practical implementation in a reactor has
not been realized yet, it is elegant and the underlying physics is fascinating. The basic
idea is rather simple: since the alphas have a birth energy of around 3.5MeV, well in
excess of the critical velocity in magnetic fusion plasmas, they tend to slow down through
collisions on the plasma electrons. On the other hand, fusion reactions require hot ions
which are obtained by external heating, or in a burning plasma by energy equipartition
with the electrons. These two processes have a cost in terms of efficiency, and devising a
method to directly channel the free energy contained in the alpha particle population to
the fuel ions, and thus increase fusion reactivity, is quite appealing. A total energy balance
study has concluded that there was a clear benefit in terms of reactor economics [119].
From a practical point of view, this operation is done by employing waves to induce
a diffusion of the alpha particles in energy space, corresponding to a diffusion in the
radial direction [120]. Since they are born at high energies, the resulting distribution
is characterized by a lower total energy, and the energy difference is employed for wave
amplification. One has to find electromagnetic waves able to induce this velocity-space
diffusion and be absorbed by the fuel ions.

Since the wave-particle resonance condition places stringent conditions on the type of
wave which could accomplish such a task, it has been shown that the simultaneous use
of two waves could significantly relax these conditions: one wave, with ω ∼ Ωcα, breaks
the adiabatic invariance of the alpha-particle motion and is thus able to extract its per-
pendicular energy, whereas the other one, with ω � Ωcα, transports it radially up to the
plasma edge, decreasing its parallel energy in the process. Fisch has originally proposed to
use a combination of a mode-converted IBW and a Toroidal Alfvén eigenmode [121,122].
The former decreases the alpha energy, whereas the latter displace the particles towards
the edge at approximately constant energy. Therefore, the connection between high en-
ergy/plasma core - low energy/plasma edge is still ensured, and the constraints on the
waves parameters are not as stringent as in the single wave case. Note that other modes,
such as EGAMs could also be possible candidates to modify the particle energy with no
little radial displacement, but this possibility remains at this stage entirely speculative.
Nevertheless, this is an interesting prospect in the light of recent observations of EGAMs
coexisting with Alfvén instabilities in ASDEX Upgrade [123].

In past and ongoing fusion experiments, it has not been possible to fully qualify the
concept of alpha-channeling, most likely because the alpha population were/are too lim-
ited. In TFTR, however, important prerequisites have been successfully checked [54]. The
first one is the “k‖ flip” of the IBW. The second one is the wave-induced diffusion of
energetic ions. Classical, quasilinear, estimates of the required power to channel the alpha
energy before collisional relaxation could take place gave an estimate of 100MW of IBW
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power, which represents a huge amount of circulating power even in a reactor. However,
it was observed in the experiment that the induced diffusion was much larger than ex-
pected [124]. The proposed explanation was that the IBW was in fact exciting an internal
eigenmode. Recently, Compressional Alfvén Eigenmodes have been identified as potential
candidates for this enhanced transport in NSTX [125]. In any case, this observation has
the practical consequence that the required power to channel the alpha energy could be
much lower than initially predicted, thereby reinforcing the attractiveness of this concept.
Hopefully, ITER will provide valuable information on the idea as a whole.



Chapter 6

Conclusions

Putting the history of magnetic fusion research into perspective is an interesting exercise in
many respects. On the one hand, some devices have specialized in sustaining steady-state
plasmas for long durations (Tore Supra, LHD. . . ). On the other hand, two machines have
demonstrated high DT fusion performance (TFTR and JET). Finally, by concentrating on
scenario development and/or precise physics points, other devices have allowed progress
to take place along these two paths. To some extent and in a simplified picture, ITER can
be envisaged as a confluence between these two routes: high fusion performance and long
duration discharges. To the plasma physicist, one of the main differences between ITER
and its predecessors is the fact that it will shelter a burning plasma, i.e. a plasma which
requires little external power input to maintain fusion reactions.

Whereas a burning plasma is a necessary condition for an efficient reactor, the draw-
back is that it is also by nature a highly coupled system, which makes it difficult to
control. And even assuming that it is possible to devise a reactor which is able to self-
sustain without any control, it may not be optimal in terms of fusion performance. In
other words, for the same plasma (or say, quantity of fusion fuel), it would be possible
to extract more fusion power if, for instance, heat transport was reduced compared to its
“design” value, or if the radiated power level was lower. In this respect, the role of RF
waves is progressively shifting from being a mere channel through which electrical power is
irreversibly transferred from an external generator to the plasma core, to a sophisticated
control method aimed at influencing its properties. This can be done either directly, or
creating/maintaining/modifying energetic particle populations which, in turn, impact the
discharge properties.

In this manuscript, we have focused on a detailed description of how a common mathe-
matical framework can be used to self-consistently describe both the electromagnetic wave
propagation and the secular modifications of the distribution functions. This was done
by showing that under the action of a given electromagnetic field, an expression for the
linear Hamiltonian response could be deduced with a well-controlled degree of approxima-
tion (chapter 2). In chapter 3, this response has been embedded in a variational principle,
which allows the electromagnetic field to be computed for a set of given plasma conditions.
In order to obtain the plasma response to the wave propagation and damping, a typical
simplification consists of considering the wavefield as a given, i.e. resulting from the linear
response, and solve a quasilinear equation. The Hamiltonian framework directly provides
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this time- and space-averaged Fokker-Planck equation, as illustrated in chapter 4.
In these technical parts, we have chosen to specialize on ICRF waves, assuming that

a second order expansion in Larmor radius was valid. The resulting expressions have
been implemented in a numerically efficient full wave code, named eve. In the same vein,
various simplifications have been used in chapter 4 and lead to the “classical” quasi-local
expressions for the quasilinear diffusion coefficient obtained by different methods. It should
be realized, however, that the same mathematical framework can be applied to different
problems as well. For instance, higher frequency waves can be described by adapting the
level of approximation of the Hamiltonian response. Extending the eve code to LH waves
could be done with reasonable effort. It was not shown in these pages, but eve has also
been successfully used to describe waves in the Alfvén range of frequencies.

Finally a selected set of topical problems for fusion in general, all involving RF waves,
has been briefly presented in chapter 5. They all aim, to various extent, at modifying the
phase-space characteristics in order to improve the overall current drive efficiency (LH-
EC synergy), influence particle transport (heavy impurity control), stabilize or destabilize
MHD instabilities and thus impact the global discharge properties (MHD control), desta-
bilize chosen classes of kinetic instabilities in an attempt to control turbulence (EGAMs),
drive sheared plasma rotation (poloidal flow drive) or channel the immense amount of free
energy contained in the fusion alpha particles to fuel ions (alpha-channeling).

We have opted for a rather detailed presentation of a mathematical framework, along
with the subsequent derivation of expressions usable in simulations codes. However, in
the domain of RF heating of fusion plasmas, there is a continuous need for direct com-
parisons to experiments either to interpret observations (which range from such “basic”
measurements as the diamagnetic energy increase resulting from RF heating to sophisti-
cated ones such as fast ion losses measurements or phase-contrast imagery) or to bridge
gaps in the available diagnostics, including during an experimental session. Along the
same idea, among the attached publications, we chose to retain theoretically-oriented as
well as experimentally-oriented ones: a continuous interaction between theory, simulation
and experiments is a necessary condition for the success of fusion research.



Appendix A

Geometry

A great deal of the prescriptions for the geometry and magnetic field configuration in these
pages is inspired from the MHD codes helena, castor and mishka [126]. It has been
kept as general as possible to be able to handle any toroidal 2D equilibrium. It is also
designed with the perspective of being extended from 2D to 3D geometry in a relatively
straightforward fashion.

A.1 Toroidal coordinates

The reference coordinates system is the lab basis (X̂, Ŷ , Ẑ) (see Fig. A.1).

e//

eα

eβ

B
0

Y

Z

X

Figure A.1: Lab (X̂, Ŷ , Ẑ) and Stix (eα, eβ, e‖) bases in toroidal geometry.

Owing to the symmetries of the system, a more natural system of coordinates in quasi-
periodic fusion devices is (s, θ, φ) with s the radial coordinate (proportional to the square
root of the poloidal flux: s ∝ ψ1/2), the poloidal angle θ and the toroidal angle φ.

For a given vector X ≡ xX̂ + yŶ + zẐ, defining D ≡ ∂sx∂θy − ∂θx∂sy, the three
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contravariant basis vectors are given by
es ≡ ∇s = (∂θyX̂ − ∂θxŶ )/D,
eθ ≡ ∇θ = (−∂syX̂ + ∂sxŶ )/D,
eφ ≡ ∇φ = Ẑ/R,

(A.1)

where R ≡ R0 +X, with R0 the distance between the torus main symmetry axis and the
origin of the reference coordinate system. The associated metric elements are given by

g11 = |∇s|2 = [(∂θx)2 + (∂θy)2]/D2,
g12 = g21 = ∇s · ∇θ = −[∂sx∂θx+ ∂sy∂θy]/D2,
g22 = |∇θ|2 = [(∂sx)2 + (∂sy)2]/D2,
g13 = g23 = g31 = g32 = 0,
g33 = 1/R2.

(A.2)

The reciprocal Jacobian is given by

1
J

= es · (eθ × eφ) =
1
RD

. (A.3)

The associated covariant basis is given by
es ≡ J∇θ ×∇φ = ∂sxX̂ + ∂syŶ ,

eθ ≡ J∇φ×∇s = ∂θxX̂ + ∂θyŶ ,

eφ = RẐ.

(A.4)

The covariant metric elements can thus be deduced
g11 = (J/R)2|∇θ|2 = (∂sx)2 + (∂sy)2,
g12 = g21 = −(J/R)2∇s · ∇θ = ∂sx∂θx+ ∂sy∂θy,
g22 = (J/R)2|∇s|2 = (∂θx)2 + (∂θy)2,
g13 = g23 = g31 = g32 = 0,
g33 = R2.

(A.5)

A.2 Magnetic equilibrium

In the system of coordinates described in the previous section, the axisymmetric confining
magnetic field can be conveniently written as

B0 = ∇φ×∇ψ + F∇φ, (A.6)

where F ≡ F (ψ) is the toroidal flux function. On the other hand, the poloidal flux ψ
is related to the radial coordinate by the relation ∇ψ ≡ f(s)∇s, with f the poloidal flux
function. fJ is the Jacobian of the (ψ, θ, φ) coordinates system. The coordinates of the
magnetic field are given by

B1
0 ≡ B0 · es = 0, B01 ≡ B0 · es = g12

f

J
, (A.7)
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B2
0 ≡ B0 · eθ =

f

J
, B02 ≡ B0 · eθ = g22

f

J
, (A.8)

and
B3

0 ≡ B0 · eφ =
F

R2
, B03 ≡ B0 · eφ = F. (A.9)

The total magnetic field magnitude is

B0 =
(
g22

f2

J2
+
F 2

R2

)1/2

. (A.10)

The toroidal field is directed along Ẑ and its magnitude is given by

Bt =
F

R
, (A.11)

and the poloidal field magnitude is given by

Bp = g
1/2
22

f

J
. (A.12)

The relation between the safety factor q and the poloidal flux function f is obtained
by writing

dlp =
Bp
Bt
dlt, (A.13)

with lp (resp. lt) the poloidal (resp. toroidal) projection of the considered field line.
On the other hand, dlt = Rqdθ yields

q =
1

2π

∮
dlp

Bt
RBp

=
F

2πf

∮
dlp

J

R2
g
−1/2
22 . (A.14)

The poloidal arc-length is given by

dlp =
√

(∂θx)2 + (∂θy)2dθ = g
1/2
22 dθ, (A.15)

which gives

q =
F

2πf

∫ 2π

0
dθ

J

R2
. (A.16)

Of course, if q is directly available, rather than f , the latter expression can be inverted
to deduce f .

The toroidal flux inside magnetic surface ψ is obtained by integrating the magnetic
field over the whole poloidal section limited by s = s(ψ), i.e.

Φt ≡
∫
d2S ·B0, (A.17)

with
d2S ≡

∫
dsdθJ∇φ, (A.18)
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so that
Φt =

∫
dsdθ

JF

R2
. (A.19)

Note that if the equilibrium is provided in Straight Field Line coordinates, i.e.

q(ψ) =
JF

fR2
, (A.20)

Eq. A.19 yields

Φt = 2π
∫
dψq(ψ), (A.21)

where the fact that both f and q are flux functions has been taken into account.
Along the same lines, the poloidal flux is given

Φp ≡
∫
dφdsJ∇θ ·B0, (A.22)

which, in the case of an axisymmetric equilibrium, allows one to recover

Φp ≡
∫

2πdsf(s) = 2πψ(s). (A.23)

A.3 Local magnetic frames

In kinetic problems, it is convenient to resort to orthogonal reference systems having the
third direction along the confining magnetic field. Given the freedom of choices of the two
other ones, we will use the normal to the flux surface. The three vectors defining the Stix
frame [11] are defined as (see Fig. A.1)

eα ≡ ∇s/|∇s|,
eβ ≡ e‖ × eα,
e‖ ≡ B0/B0.

(A.24)

eve solves for the variables (u1, u2, u3, u4) ≡ (sAα, sAβ, A‖, ϕ/c). The first two com-
ponents are multiplied by s in order to obtain a well-behaved solution at the origin and
facilitate the implementation of the boundary conditions.

To transform the potential vector A coordinates between the lab frame and the Stix
frame, the following matrices are introduced:

1. (eα, eβ, e‖) → (es, eθ, eφ): Uiσ ≡ ei · eσ withAsAθ
Aφ

 = Uiσ

AαAβ
Aσ

 = Ūiσ

u1

u2

u3

 , (A.25)

with elements
U11 =

1
|∇s| , U12 =

Fg12

JB0|∇s| , U13 =
fg12

JB0
, (A.26)
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U21 = 0, U22 =
Fg22

JB0|∇s| , U23 =
fg22

JB0
, (A.27)

U31 = 0, U32 = − f

B0
|∇s|, U33 =

F

B0
. (A.28)

Also {
Ūiσ = Uiσ/s for (i, σ) = (1 . . . 3, 1 . . . 2),
Ūiσ = Uiσ otherwise.

(A.29)

2. (eα, eβ, e‖) → (es, eθ, eφ): U iσ ≡ ei · eσ withAsAθ
Aφ

 = U iσ

AαAβ
A‖

 = Ū iσ

u1

u2

u3

 , (A.30)

with elements
JU1

1 = J |∇s|, JU1
2 = 0, JU1

3 = 0, (A.31)

JU2
1 = J

g21

|∇s| , JU
2
2 =

F

B0|∇s| , JU
2
3 =

f

B0
, (A.32)

JU3
1 = 0, JU3

2 = − fg22

JB0|∇s| , JU
3
3 = J

F

R2B0
, (A.33)

and {
Ū iσ = U iσ/s for (i, σ) = (1 . . . 3, 1 . . . 2),
Ū iσ = U iσ otherwise.

(A.34)

The Stix frame has the advantage of making the formulation and implementation of
the boundary conditions relatively simple. On the other hand, it is ill-defined as s → 0
and can entail poor numerical convergence. Jaeger et al. [127] have therefore introduced
an alternative basis (e⊥1, e⊥2, e‖) to describe the unperturbed particle motion with

e⊥1 ≡
X̂ − (X̂ · e‖)e‖
|X̂ − (X̂ · e‖)e‖|

, (A.35)

e⊥2 ≡ e‖ × e⊥1, (A.36)

and
e‖ ≡ B0/B0. (A.37)

In order to express the field in rotating components, it is also useful to introduce the
complex basis vectors

e± ≡ e⊥1 ∓ ie⊥2

2
. (A.38)

These unit vectors do not suffer any singularity at the origin and reduce to the lab
reference frame when the poloidal magnetic field is zero [127].

The associated transformation matrices are given by
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1. (e⊥1, e⊥2, e‖) → (es, eθ, eφ): Tiσ ≡ ei · eσ withAsAθ
Aφ

 = Tiσ

A⊥1

A⊥2

A‖

 , (A.39)

2. (e⊥1, e⊥2, e‖) → (es, eθ, eφ): T iσ ≡ ei · eσ withAsAθ
Aφ

 = T iσ

A⊥1

A⊥2

A‖

 , (A.40)

with, for the first column

JT 1
1 =

R∂θy√
1− b2x

, JT 2
1 =

−1√
1− b2x

(
R∂sy + bx

f

B0

)
, JT 3

1 = − bx√
1− b2x

JF

R2B0
. (A.41)

The covariant elements on the first columns are obtained by writing

JTi1 =
∑
k

gikJT
k
1 . (A.42)

T12 =
F

RB0

∂sy√
1− b2x

, T22 =
F

RB0

∂θy√
1− b2x

, T32 = − fR

B0J

∂θy√
1− b2x

. (A.43)

The corresponding contravariant column is given by

JT i2 = J
∑
k

gikTk2. (A.44)

Finally, for the third column

JT 1
3 = 0, JT 2

3 =
f

B0
, JT 3

3 =
JF

B0R2
, (A.45)

and
JTi3 =

∑
k

gikJT
k
3 . (A.46)

In these expressions, we have used bx ≡ B0 · X̂/B0, giving

bx =
f

JB0
∂θx. (A.47)

Other useful elements related to rotating components are

T i± ≡ ei · e∓ =
T i1 ± iT i2

2
. (A.48)

It is worth noting that
(T i±)∗ ≡ ei · (e∓)∗ = (T i∓). (A.49)
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A last useful matrix is needed to perform the transformation (eα, eβ) → (e⊥1, e⊥2):(
A⊥1

A⊥2

)
= Riσ

(
Aα
Aβ

)
= R̄iσ

(
u1

u2

)
, (A.50)

with elements

R11 =
R

J |∇s|
1√

1− b2x
∂θy, R12 =

R

J |∇s|
bz√

1− b2x
∂θx, (A.51)

R21 = − R

J |∇s|
bz√

1− b2x
∂θx, R22 =

R

J |∇s|
1√

1− b2x
∂θy, (A.52)

with

bz ≡ B0 · Ẑ
B0

=
F

B0R
. (A.53)

Also
R̄iσ = Riσ/s for (i, σ) = (1 . . . 2, 1 . . . 2). (A.54)

Finally, we define

R+ ≡ eα · e− =
R1α + iR2α

2
, R− ≡ eα · e+ =

R1α − iR2α

2
, (A.55)

and
R̄+ ≡ R+/s, R̄− ≡ R−/s. (A.56)

It is readily deduced that

eβ · e− = iR+, eβ · e+ = −iR−. (A.57)

Also, one may note that
(R̄±)∗ = R̄∓. (A.58)

A.4 Cylindrical geometry

In many instances, it is useful to operate the code in cylindrical geometry. This is often
done by setting a large value to R0/a0 but in this case, all other quantities (toroidal
wavenumber. . . ) have to be rescaled accordingly. Also, this induces small terms in the
geometric elements which can lead to numerical problems in the course of the calculation.
This is why the possibility of using a true cylindrical geometry has been introduced. In
this case, the equilibrium is given by

x = R0+ a0s cos(θ),
y = a0s sin(θ),
z = R0φ

(A.59)

The Jacobian is given by
J = R0D, (A.60)
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with
D = a2

0s. (A.61)

For the contravariant basis vectors, we obtain

es = ∇s =
1
a0

(cos(θ)X̂ + sin(θ)Ŷ ), (A.62)

eθ = ∇θ =
1
a0s

(− sin(θ)X̂ + cos(θ)Ŷ ), (A.63)

eφ = ∇φ =
1
R0
Ẑ. (A.64)

The only non-zero terms of the contravariant metric tensor are given by

g11 =
1
a2

0

, g22 =
1

a2
0s

2
, g33 =

1
R2

0

. (A.65)

The covariant basis vectors are

es = a0(cos(θ)X̂ + sin(θ)Ŷ ), (A.66)

eθ = a0s(− sin(θ)X̂ + cos(θ)Ŷ ), (A.67)

eφ = R0Ẑ, (A.68)

with corresponding non-zero terms in the metric tensor

g11 = a2
0, g22 = a2

0s
2, g33 = R2

0. (A.69)

The expressions (A.7), (A.8) and (A.9) are still valid. In the specific case of the
cylindrical geometry under consideration, they can be simplified as

B1
0 ≡ B0 · es = 0, B01 ≡ B0 · es = 0, (A.70)

B2
0 ≡ B0 · eθ =

f

R0a2
0s
, B02 ≡ B0 · eθ =

sf

R0
, (A.71)

and
B3

0 ≡ B0 · eφ =
F

R2
0

, B03 ≡ B0 · eφ = F. (A.72)

The total magnetic field magnitude is

B0 =
1
R0

(
F 2 +

f2

a2
0

)1/2

. (A.73)

The toroidal field is directed along Ẑ and its magnitude is given by

Bt =
F

R0
, (A.74)



A.4. Cylindrical geometry 81

and the poloidal field magnitude is given by

Bp =
f

R0a0
. (A.75)

Eq. A.16 yields

q =
a2

0Fs

R0f
, (A.76)

showing that we have q = rBt/(RBp), which is consistent with the expression usually
employed in a cylinder.
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Plasma functional: numerical
implementation

B.1 Adiabatic functional

The adiabatic plasma functional, Eq. 3.52, is relatively straightforward to implement. For
a distribution even with respect to v‖, it can be written in terms of the state vector
elements as

L(adiab)
part,s = ε0

∫
dsdθdφJω2

ps

{
msc

2

Ts
χ0(r)u4u

∗
4 + χ1(r)(R̄2

11 + R̄2
12)(u1u

∗
1 + u2u

∗
2)
}
, (B.1)

with R̄11 and R̄12 given by expressions A.51. We have also used R22 = R11 and R21 =
−R22. This directly yields the following master elements:

Θ(00)
p,11,mm̄ = Θ(00)

p,22,mm̄ = ω2
ps

(
Jχ1(R̄2

11 + R̄2
12)
)
m̄−m

, (B.2)

and

Θ(00)
p,44,mm̄ = ω2

ps

msc
2

Ts

(
Jχ0

)
m̄−m

, (B.3)

all other being zero. χ0 and χ1 are given by Eqs. 3.53 and 3.54, respectively.

B.2 Resonant functional

Second order FLR expression

From (2.100), it appears that δHL may be expressed as an inner product (see Defs. A.56):

δHL = qsH̄Lkuk, (B.4)

with

H̄Lk ≡


−v⊥(δL,−1R̄− + δL,1R̄+)
iv⊥(δL,−1R̄− − δL,1R̄+)

−v‖δL,0
cδL,0

 , (B.5)
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or equivalently

H̄Lk = v
(δk,1+δk,2)
⊥ v

δk,3
‖ cδk,4


−(δL,−1R̄− + δL,1R̄+)
i(δL,−1R̄− − δL,1R̄+)

−δL,0
δL,0

 . (B.6)

We may write

∇k+
+

k+!
∇k−−
k−!

δHL = qs

k+∑
k′+=0

k−∑
k′−=0

{ ∇k+−k′+
+

(k+ − k′+)!
∇k−−k

′
−

−
(k− − k′−)!

H̄Lk
}∇k′++

k′+!
∇k
′
−
−
k′−!

uk. (B.7)

Letting

Hd+,d−
Lk ≡


−(δL,−1∇d+

+ ∇d−− R̄−/(d+!d−!) + δL,1∇d+
+ ∇d−− R̄+/(d+!d−!)

)
i
(
δL,−1∇d+

+ ∇d−− R̄−/(d+!d−!)− δL,1∇d+
+ ∇d−− R̄+/(d+!d−!)

)
−δL,0δd+,0δd−,0
δL,0δd+,0δd−,0

 , (B.8)

we obtain

∇k+
+

k+!
∇k−−
k−!

δHL = qs

k+∑
k′+=0

k−∑
k′−=0

Hk+−k′+,k−−k′−
Lk

{∇k′++

k′+!
∇k
′
−
−
k′−!

uk

}
v
δk,1+δk,2
⊥ v

δk,3
‖ cδk,4 , (B.9)

and

δHps(r) = qs

1∑
L=−1

ei(L−p)π/2
∞∑
κ=0

ρ2κ+|p−L|
c v

δk,1+δk,2
⊥ v

δk,3
‖ cδk,4 . . .

k+∑
k′+=0

k−∑
k′−=0

Hk+−k′+,k−−k′−
Lk

{∇k′++

k′+!
∇k
′
−
−
k′−!

uk

}
,

(B.10)

which can also be conveniently rewritten as

δHps(r) = qs

p+1∑
q=p−1

e−iqπ/2
∞∑
κ=0

ρ2κ+|q|
c v

δk,1+δk,2
⊥ v

δk,3
‖ cδk,4 . . .

k+∑
k′+=0

k−∑
k′−=0

Hk+−k′+,k−−k′−
p−q,k

{∇k′++

k′+!
∇k
′
−
−
k′−!

uk

}
,

(B.11)

with
k+ = κ+ max(0, q), k− = κ+ max(0,−q). (B.12)

At this stage, it is possible to numerically implement the all-order functional. Never-
theless, we choose here to retain Finite Larmor Radius (FLR) effects up to second order in
the resonant plasma functional (3.63). To do so, it is necessary to obtain the Hamiltonian
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contribution to first order in k⊥ρc. It is clear from from Eq. B.11 that this implies retain-
ing only the κ = 0 term in the Larmor radius sum, and limiting ourselves to |q| ≤ 1, which
has the effect of selecting the ICRF harmonics p = −2 . . . 2, as expected from previous
works [37]. This also has the advantage of restricting k+ and k− to being zero or one. In
this case, the pragmatic approach is to directly expand Eq. B.11 as

δHps(r) = qsv
δk,1+δk,2
⊥ v

δk,3
‖ cδk,4

{(
H0,0
p,k + iρc

[H0,1
p+1,k −H1,0

p−1,k

])
uk . . .

+ iρc
[H0,0

p+1,k∇−uk −H0,0
p−1,k∇+uk

]}
,

(B.13)

or equivalently

δHps(r) = qsv
δk,1+δk,2
⊥ v

δk,3
‖ cδk,4

{(
H0,0
p,k + iρc

[H0,1
p+1,k −H1,0

p−1,k

])
uk . . .

+ iρc

3∑
c=1

[H0,0
p+1,kT

c
− −H0,0

p−1,kT
c
+

]
∂cuk

}
.

(B.14)

At this stage, it is interesting to introduce a normalization temperature Ts and as-
sociated thermal velocity vth (regardless of the potential non-Maxwellian nature of the
considered distribution function). This allows the velocity integrals to be formally isolated
from the Fourier integrals. We also introduce the thermal Larmor radius ρth ≡ vth/Ωcs

and rewrite the latter expression as

δHps(r) = qsv
δk,1+δk,2
⊥ v

δk,3
‖ cδk,4

[
Γ(0),0
p,k uk . . .

+ u⊥

(
Γ(0),1
p,k uk + Γ(θ),1

p,k ∂θuk + Γ(φ),1
p,k ∂φuk + Γ(s),1

p,1 ∂suk

)]
,

(B.15)

where u⊥ ≡ v⊥/vth.
The auxiliary functions are defined as

Γ(0),0
p,k ≡ H0,0

p,k, (B.16)

Γ(0),1
p,k ≡ iρth

[
H0,1
p+1,k −H1,0

p−1,k

]
, (B.17)

Γ(s),1
p,k ≡ iρth

[
H0,0
p+1,kT

1
− −H0,0

p−1,kT
1
+

]
, (B.18)

Γ(θ),1
p,k ≡ iρth

[
H0,0
p+1,kT

2
− −H0,0

p−1,kT
2
+

]
, (B.19)

and

Γ(φ),1
p,k ≡ iρth

[
H0,0
p+1,kT

3
− −H0,0

p−1,kT
3
+

]
. (B.20)
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Introducing the spectral decomposition for uk, the previous expression may also be
written as

δHps(r) = qsv
δk,1+δk,2
⊥ v

δk,3
‖ cδk,4 . . .∑

mn

{[
Γ(0),0
p,k + u⊥

(
Γ(0),1
p,k + imΓ(θ),1

p,k + inΓ(φ),1
p,k

)]
ukmn

+ u⊥Γ(s),1
p,k ∂sukmn

}
ei(mθ+nφ),

(B.21)

from which we deduce

δHpm1n = qsv
δk,1+δk,2
⊥ v

δk,3
‖ cδk,4

∑
m

{[(
Γ(0),0
p,k

)
m1−m

+ u⊥

(
Γ(0),1
p,k

)
m1−m

. . .

+ imu⊥

(
Γ(θ),1
p,k

)
m1−m

+ inu⊥

(
Γ(φ),1
p,k

)
m1−m

]
ukmn . . .

+
(

Γ(s),1
p,k

)
m1−m

∂sukmn

}
,

(B.22)

where ()M means that the M -th Fourier harmonic in poloidal angle has to be considered.
It is worth noting that, from Def. B.8,

(Hd+,d−
Lk

)∗ = Hd−,d+

−Lk . (B.23)

Along with Eq. (A.49), this property ensures

(
Γ(0,s,θ,φ),q
p,k

)∗
= Γ(0,s,θ,φ),q

−p,k , (B.24)

which may be beneficial in terms of computation time.
We have also

δHpm2n = qsv
δk,1+δk,2
⊥ v

δk,3
‖ cδk,4

∑
m

{[(
Γ(0),0
p,k

)∗
m̄−m2

+ u⊥

(
Γ(0),1
p,k

)∗
m̄−m2

. . .

− im̄u⊥
(

Γ(θ),1
p,k

)∗
m̄−m2

− inu⊥
(

Γ(φ),1
p,k

)∗
m̄−m2

]
u∗km̄n . . .

+
(

Γ(s),1
p,k

)∗
m̄−m2

∂su
∗
km̄n

}
,

(B.25)

where (f)∗M means here the M -th Fourier harmonic of the complex conjugate.
The complete second-order version of resonant particle functional is finally obtained
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by inserting Eqs. B.22 and B.25 into Eq. 3.63 and organizing the various terms as

L(res)
part,s =

∑
p,m1,m2,n

∑
m,m̄

∫
dscδk,4+δk̄,4 . . .{[(

JI(0)

kk̄

)
m2−m1

(
Γ(0),0
p,k

)
m1−m

(
Γ(0),0

p,k̄

)∗
m̄−m2

+
(
JI(1)

kk̄

)
m2−m1

(
Γ(0),1
p,k + inΓ(φ),1

p,k

)
m1−m

(
Γ(0),0

p,k̄

)∗
m̄−m2

+
(
JI(1)

kk̄

)
m2−m1

(
Γ(0),0
p,k

)
m1−m

(
Γ(0),1

p,k̄
+ inΓ(φ),1

p,k̄

)∗
m̄−m2

+
(
JI(2)

kk̄

)
m2−m1

(
Γ(0),1
p,k + inΓ(φ),1

p,k

)
m1−m

(
Γ(0),1

p,k̄
+ inΓ(φ),1

p,k̄

)∗
m̄−m2

+ im
(
JI(1)

kk̄

)
m2−m1

(
Γ(θ),1
p,k

)
m1−m

(
Γ(0),0

p,k̄

)∗
m̄−m2

+ im
(
JI(2)

kk̄

)
m2−m1

(
Γ(θ),1
p,k

)
m1−m

(
Γ(0),1

p,k̄
+ inΓ(φ),1

p,k̄

)∗
m̄−m2

− im̄
(
JI(1)

kk̄

)
m2−m1

(
Γ(0),0
p,k

)
m1−m

(
Γ(θ),1

p,k̄

)∗
m̄−m2

− im̄
(
JI(2)

kk̄

)
m2−m1

(
Γ(0),1
p,k + inΓ(φ),1

p,k

)
m1−m

(
Γ(θ),0

p,k̄

)∗
m̄−m2

+mm̄
(
JI(2)

kk̄

)
m2−m1

(
Γ(θ),1
p,k

)
m1−m

(
Γ(θ),1

p,k̄

)∗
m̄−m2

]
ukmnu

∗
k̄m̄n

+
[(
JI(1)

kk̄

)
m2−m1

(
Γ(0),1
p,k

)
m1−m

(
Γ(s),1

p,k̄

)∗
m̄−m2

+
(
JI(2)

kk̄

)
m2−m1

(
Γ(0),1
p,k + inΓ(φ),1

p,k

)
m1−m

(
Γ(s),1

p,k̄

)∗
m̄−m2

+ im
(
JI(2)

kk̄

)
m2−m1

(
Γ(θ),1
p,k

)
m1−m

(
Γ(s),1

p,k̄

)∗
m̄−m2

]
ukmn∂su

∗
k̄m̄n

+
[(
JI(1)

kk̄

)
m2−m1

(
Γ(s),1
p,k

)
m1−m

(
Γ(0),0

p,k̄

)∗
m̄−m2

+
(
JI(2)

kk̄

)
m2−m1

(
Γ(s),1
p,k

)
m1−m

(
Γ(0),1

p,k̄
+ inΓ(φ),1

p,k̄

)∗
m̄−m2

− im̄
(
JI(2)

kk̄

)
m2−m1

(
Γ(s),1
p,k

)
m1−m

(
Γ(θ),1

p,k̄

)∗
m̄−m2

]
∂sukmnu

∗
k̄m̄n

+
[(
JI(2)

kk̄

)
m2−m1

(
Γ(s),1
p,k

)
m1−m

(
Γ(s),1

p,k̄

)∗
m̄−m2

]
∂sukmn∂su

∗
k̄m̄n

}
.

(B.26)

We have the dielectric kernel

I(q)

kk̄
≡ q2

s

ε0

∫
d3puq⊥v

α⊥
⊥ v

α‖
‖

ω

ω − pΩcs − k‖,0v‖
Dfs,0, (B.27)

where
α⊥ ≡ δk,1 + δk̄,1 + δk,2 + δk̄,2, (B.28)

α‖ ≡ δk,3 + δk̄,3. (B.29)
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Fast algorithm

The numerical evaluation of the above expression is costly, essentially because of the fact
that k‖,0 depends on m1 and m2:

k‖,0v‖ =
m1 +m2

2
θ̇ + nφ̇. (B.30)

This means that the products have to be performed between all Fourier harmonics,
which is very demanding in terms of computing resources. If, on the other hand, we
substitute m1 +m2 with m+ m̄ in k‖,0, i.e. write

k‖,0v‖ ≈
m+ m̄

2
θ̇ + nφ̇, (B.31)

these products may be performed in real space, so that the sum over m1 and m2 may be
suppressed. The plasma functional then takes a more civilized form:

L(res)
part,s =

∑
p,n

∑
m,m̄

∫
dscδk,4+δk̄,4 . . .{[{

JI(0)

kk̄
Γ(0),0
p,k Γ(0),0∗

p,k̄

+ JI(1)

kk̄

(
Γ(0),1
p,k + inΓ(φ),1

p,k

)
Γ(0),0∗
p,k̄

+ JI(1)

kk̄
Γ(0),0
p,k

(
Γ(0),1

p,k̄
+ inΓ(φ),1

p,k̄

)∗
+ JI(2)

kk̄

(
Γ(0),1
p,k + inΓ(φ),1

p,k

)(
Γ(0),1

p,k̄
+ inΓ(φ),1

p,k̄

)∗}
m̄−m

+ im
{
JI(1)

kk̄
Γ(θ),1
p,k Γ(0),0∗

p,k̄
+ JI(2)

kk̄
Γ(θ),1
p,k

(
Γ(0),1

p,k̄
+ inΓ(φ),1

p,k̄

)∗}
m̄−m

− im̄
{
JI(1)

kk̄
Γ(0),0
p,k Γ(θ),1∗

p,k̄
+ JI(2)

kk̄

(
Γ(0),1
p,k + inΓ(φ),1

p,k

)
Γ(θ),0∗
p,k̄

}
m̄−m

+mm̄
{
JI(2)

kk̄
Γ(θ),1
p,k Γ(θ),1∗

p,k̄

}
m̄−m

]
ukmnu

∗
k̄m̄n

+
[{
JI(1)

kk̄
Γ(0),1
p,k Γ(s),1∗

p,k̄
+ JI(2)

kk̄

(
Γ(0),1
p,k + inΓ(φ),1

p,k

)
Γ(s),1∗
p,k̄

}
m̄−m

+ im
{
JI(2)

kk̄
Γ(θ),1
p,k Γ(s),1∗

p,k̄

}
m̄−m

]
ukmn∂su

∗
k̄m̄n

+
[{
JI(1)

kk̄
Γ(s),1
p,k Γ(0),0

p,k̄
+ JI(2)

kk̄
Γ(s),1
p,k

(
Γ(0),1

p,k̄
+ inΓ(φ),1

p,k̄

)∗}
m̄−m

− im̄
{
JI(2)

kk̄
Γ(s),1
p,k Γ(θ),1

p,k̄

}
m̄−m

]
∂sukmnu

∗
k̄m̄n

+
[{
JI(2)

kk̄
Γ(s),1
p,k Γ(s),1∗

p,k̄

}
m̄−m

]
∂sukmn∂su

∗
k̄m̄n

}
.

(B.32)

These expressions are convenient because they can be readily inserted in a symbolic
manipulation software to automatize the building of the code computing the master el-
ements, and the various quantities which have to be Fourier-transformed appear clearly
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between braces. Finally, they lend themselves well to an extension to non-Maxwellian
distribution functions.

WKB harmonics

Using Eq. B.4, Eq. 2.109 may be recast in the form

δHps(r) = qs

1∑
L=−1

H̄LkJp−L(k⊥ρc)ei(p−L)βuk, (B.33)

so that

δHps(r) = qsv
δk,1+δk,2
⊥ v

δk,3
‖ cδk,4

1∑
L=−1

H0,0
LkJp−L(k⊥ρc)ei(p−L)βuk, (B.34)

and

δH∗ps(r) = qsv
δk̄,1+δk̄,2
⊥ v

δk̄,3
‖ cδk̄,4

1∑
L̄=−1

(
H0,0

L̄k̄

)∗
Jp−L̄(k⊥ρc)e−i(p−L̄)βu∗k̄. (B.35)

Using Eqs. B.34 and B.35 introduces a serious difficulty: performing the Fourier trans-
forms of these two quantities and integrating over velocity afterwards would be much too
time-consuming. Therefore, the plasma functional is built by performing the products in
real space. The price to pay for this operation, as explained previously, is that k‖ may
not depend on m1 and m2. On the other hand, the replacement of m1 + m2 by m + m̄
can be used to remain in real space and it is expected that this substitution should not
result in large errors in the calculation (which should nevertheless be checked against the
full calculation for harmonics |p| ≤ 2 whenever applicable).

L(res)
part,s =

q2
s

ε0c2

∑
p,m1,m2,n

∫
d3p d3r

ω

ω − pΩcs − k‖v‖
Dfs,0vδk,1+δk,2+δk̄,1+δk̄,2

⊥ v
δk,3+δk̄,3
‖

cδk,4+δk̄,4

1∑
L,L̄=−1

H0,0
Lk

(
H0,0

Lk̄

)∗
Jp−L(k⊥ρc)Jp−L̄(k⊥ρc)ei(L̄−L)βuku

∗
k̄e
i(m1−m2)θ,

(B.36)

or equivalently

L(res)
part,s =

∑
p,m,m̄,n

∫
dsdθJ

1∑
L,L̄=−1

H0,0
Lk

(
H0,0

L̄k̄

)∗ILL̄kk̄ ei(L̄−L)βei(m−m̄)θukmnu
∗
k̄m̄n, (B.37)

with

ILL̄kk̄ ≡
∫
d3pvα⊥⊥ v

α‖
‖

ω

ω − pΩcs − k‖v‖
Dfs,0Jp−L

(
k⊥v⊥
Ωcs

)
Jp−L̄

(
k⊥v⊥
Ωcs

)
, (B.38)

having defined
α⊥ ≡ δk,1 + δk̄,1 + δk,2 + δk̄,2, (B.39)

α‖ ≡ δk,3 + δk̄,3. (B.40)



Appendix C

Collocation algorithm

In this appendix, we detail the algorithm which has been implemented to numerically
evaluate the dielectric kernel (Eq. 3.83), which we rewrite in a slightly different form

Wi,j(ξ) ≡ 2√
π

∫ ∞
−∞

du‖
ui‖

u‖ − ξ
∫ ∞

0
du⊥u

j+1
⊥ K(u‖, u⊥). (C.1)

C.1 General formulation

This algorithm is based on a collocation method, where the same grid is employed for
the integration variable u‖ and the pole. In RF codes, the frequency is real1. Here, we
extend it to arbitrary complex frequencies, which has a cost in terms of computational
requirements, but is needed to, e.g. studies instabilities such as EGAMs [99].

This algorithm is adapted to the evaluation of expressions of the generic form

K ≡
∫ ∞
−∞

dv
g(v)

v − ωeiϕ , (C.2)

where the complex generalized ”frequency” Ω is decomposed as a module ω and an
argument ϕ, i.e. Ω ≡ ω exp(iϕ). We introduce a velocity mesh vj ≡ j∆v with j =
−N . . .N an integer and ∆v ≡ vmax/N with vmax large enough to capture the whole
distribution function features. The idea is that we use the same mesh for v and ω, i.e.
ωk ≡ k∆v with k = 0 . . . N . Eq. C.2 can be evaluated at the mesh points k as

Kk =
∫ ∞
−∞

dv
g(v)

v − ωkeiϕ . (C.3)

g is approximated as
g(v) ≡

∑
j

gjhj(v), (C.4)

1Unless external collision effects are added but in this case, the distribution function is usually considered
Maxwellian, so that the dielectric response involves the plasma dispersion function of complex argument.
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with the tent-like finite elements defined as

hj(v) =

{
1− |v − vj |/∆v if |v − vj | ≤ ∆v,
0 otherwise,

(C.5)

and gj ≡ g(vj), the integrand value at collocation points.
Eq. C.3 may now be rewritten as

Kk =
N∑

j=−N
gjκj,k, (C.6)

with the kernel

κj,k ≡
∫ 1

−1
dx

1− |x|
x+ j − keiϕ . (C.7)

The difficulty related to the handling of =(Ω) 6= 0 is apparent: when ϕ = 0, we have
that κj,k only depends on j − k, which is very beneficial in terms of numerical evaluation.
Here, on the other hand, κ will have to be evaluated for all j and k taken independently.
The computational burden remains however within very reasonable limits.

The kernel can be computed analytically. Assuming ϕ > 0, j − keiϕ 6= ±1 and
j − keiϕ 6= 0, we obtain

κj,k = log
(
j − keiϕ + 1
j − keiϕ − 1

)
− (j − keiϕ) log

(
(j − keiϕ)2

(j − keiϕ)2 − 1

)
. (C.8)

The exceptions can be handled separately and we obtain

κj,k =

{
±2 log(2) if j − keiϕ = ±1,
iπ if j − keiϕ = 0.

(C.9)

The numerical evaluation of Expressions C.8 and C.9 is staightforward, since the in-
tegral is performed without having to cross the branch cut. To satisfy causality, the case
=(Ω) ≤ 0 needs to be handled by performing an analytical continuation of the obtained
result for ϕ < 0. We finally obtain for Eq. C.3

Kk =



N∑
j=−N

gjκj,k if ϕ ≥ 0,

N∑
j=−N

gjκj,k + 2iπg(ωk exp(iϕ)) if ϕ < 0.

(C.10)

The advantage here is that the numerical evaluation of these expressions can be per-
formed efficiently.



C.2. Dielectric response evaluation 91

C.2 Dielectric response evaluation

We now come back to the evaluation of Eq. C.1. In view of the previous section, it is
useful to rewrite it as

Wi,j(ξ) ≡
∫ ∞
−∞

du‖
1

u‖ − ξ
gi,j(u‖), (C.11)

with
gi,j(u‖) ≡

2√
π
ui‖

∫ ∞
0

du⊥u
j+1
⊥ κ(u‖, u⊥). (C.12)

Evaluating the previous expression is straightforward. We note that the collocation
method presented before will, by definition, yield Wi,j(ξk) with ξk the collocation point.
Since there is no possibility of knowing at which ξ this function will be needed to obtain
the dielectric response, it has been found that spline evaluations of Wi,j(ξ) deduced from
the Wi,j(ξk) was a numerically efficient and robust method.

We note, however, that a small difficulty remains in situations where Wi,j is needed at
velocities exceeding the maximum velocity chosen for the collocation evaluation. In this
case, it is best to avoid extending the velocity collocation grid too much, since it results
in a lack of accuracy/speed. Following Brambilla [128], we opt instead for an asymptotic
expansion of the resonant denominator, i.e.

1
u‖ − ξ

≈ −1
ξ

∞∑
n=0

(
u‖

ξ

)n
, (C.13)

which yields the following polynomial expression for variable 1/ξ:

Wi,j =
1
ξ

∑
n

Ani,j
(

1
ξ

)n
, (C.14)

with the coefficients

Ani,j ≡ −
2√
π

∫ ∞
−∞

du‖u
n+i
‖

∫ ∞
0

du⊥u
j+1
⊥ κ(u‖, u⊥). (C.15)

Numerical evaluation of the latter expression does not pose any particular difficulty. By
choosing a boundary ξmax such that the features of the distribution function are retained,
this method was found to work well retaining only a few terms (typically 5) in the expansion
Eq. C.14.



Appendix D

ICRF heating in a tokamak: a
minimal model

The aim of this appendix is the derivation of a simple model for ICRF heating. The
rationale is that during experiments, or in real-time contexts, running expensive numerical
tools is not a sensible option. Therefore, it is always interesting to attempt to extract the
most important physics features from the comprehensive models, and transpose them into
fast and reliable numerical tools. Of course, it is also necessary to compare the outcome
of such simplified models to more advanced ones, to check them as well as adjust any
potentially tunable parameter. The followed procedure stems from the results presented
in chapter 4, and essentially from three papers [47,129,130].

Our starting point is the quasi-local Fokker-Planck equation Eq. 4.66 discussed in
details in chapter 4. Here, we only keep the collision and wave quasilinear terms, and
assume that the ion distribution before heating is in thermal equilibrium with the other
species, i.e.

∂τfi = Ĉfi + Q̂fi. (D.1)

The time is normalized to a characteristic collision frequency denoted νi (see Eq. 4.56).
The local collision operator is given by (see Eq. 4.57)

Ĉfi =
1
u2

∂

∂u

[
u2

(
Duu

∂fi
∂u
− Fufi

)]
+

1
u2

[
∂

∂λ
(1− λ2)

Θc

2u
∂fi
∂λ

]
, (D.2)

The wave term is written as

Q̂fi =
1
u⊥

∂

∂u⊥
u⊥Dw

∂fi
∂u⊥

, (D.3)

with Dw the quasilinear diffusion coefficient.
We will follow here a step-by-step procedure aimed at directly implementing the pro-

posed model in real-time control systems or interpretative/predictive reduced codes.
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D.1 Power density

We assume that the total RF power PRF , frequency f and the dominant toroidal number
n are known quantities1. We consider the local resonance condition

ω = pωci +
n

R
v‖, (D.4)

where poloidal upshift effects are disregarded, i.e. k‖ ≈ n/R. p is the cyclotron harmonic,
presumed known. If we assume that the interaction involves ions with a parallel velocity
ranging between 0 and vth,‖, we deduce by differentiating Eq. D.4 that the interaction
takes place in a spatial domain whose radial extension ∆R (see Fig. D.1) is approximately
given by

∆R ≈ n

ω
vth,‖ ≈

n

ω

√
2Ti
mi

, (D.5)

where it was assumed that the parallel temperature remains close to the bulk temperature
Ti.

Determining ∆Z is more complicated: it is fixed by the plasma and antenna geometry,
ICRF scenario, plasma parameters (see Fig. D.1). . . In fact, for a given set of parameters,
it should be deduced from multi-dimensional simulations, as it clearly can have a large
influence on the final result. Here, we introduce the corresponding tunable parameter fz,
so that

∆Z = 2a0ε1fz, (D.6)

with a0 the minor radius and ε1 the elongation. fz represents the fraction of the vertical
chord along which the absorption is significant.

By doing this, we have defined the toroidal interaction volume

Vint = 2πR∆R∆Z, (D.7)

which will be used to obtain a rough estimate of the power density as

pabs ≡ PRF − Ploss
Vint

, (D.8)

with Ploss the lost power.

D.2 Quasilinear diffusion coefficient

We use the local quasilinear diffusion coefficient, Eq. 4.54, rewritten here as

Dw = Dp

∣∣∣∣Jp−1(k⊥v⊥/ωci) +
E−
E+

Jp+1(k⊥v⊥/ωci)
∣∣∣∣2. (D.9)

Notice that unlike in chapter 4, the dominant |E+|2 factor has been absorbed in the
constant Dp. The unknowns in the previous expression are k⊥, E−/E+ and Dp. Since we

1n is usually either a unique “standard” value for a given tokamak/antenna/phasing, or a set of appro-
priately weighted values.
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Ion cyclotron resonance

R∆

Z∆

Figure D.1: Illustration of the approximate interaction (purple domain) zone between
ICRF waves and plasma.

only consider heating resulting from the fast magnetosonic wave damping, one can use the
local dispersion relation [11] to deduce k⊥. If we opt for a cold plasma model (a reasonable
assumption for the fast wave propagation), we have

k2
⊥ ≈ −

ω2

c2

(n2
‖ −R)(n2

‖ − L)

n2
‖ − S

, (D.10)

and also
E−
E+
≈
∣∣∣∣n2
‖ − L
n2
‖ −R

∣∣∣∣, (D.11)

with n‖ ≡ k‖c/ω. R, L, S and D are the Stix dielectric tensor elements [11].
The determination of Dp is more complicated. The general form for the absorbed

power is

pabs,qlin =
∫
d3v

mv2

2
Q̂fi, (D.12)

which, using Eq. D.3, may be rewritten as

pabs,qlin = −4πTiv3
th

∫
du‖du⊥u

2
⊥Dw

∂fi
∂u⊥

. (D.13)

This expression involves the solution to the Fokker-Planck equation which, at this
stage, remains unknown. Assuming the “initial” distribution function2 is a Maxwellian

2In other words, the distribution function prior to ICRF heating.
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characterized by density ni and temperature Ti, we obtain the following expression for the
linear power density

pabs,lin = 8niTiDp

∫ ∞
0

du⊥u
3
⊥

∣∣∣∣Jp−1

(
k⊥vth,i
ωci

u⊥

)
+
E−
E+

Jp+1

(
k⊥vth,i
ωci

u⊥

)∣∣∣∣2e−u2
⊥ . (D.14)

It is possible to simplify the previous expression by assuming that |E−/E+| � 1. For
low to moderate energy ions fulfilling k⊥vth,i/ωci � 1, we can then use the small argument
expansion of the Bessel functions to obtain

pp=1
abs,lin ≈ 4niTiDp, (D.15)

for fundamental (minority) heating and

pp=2
abs,lin ≈ 2niTi

(
k⊥vth
Ωci

)2

Dp, (D.16)

for second harmonic heating.
However, we rather suggest to directly make use of Eq. D.14, whose numerical quadra-

ture is quite easily performed on any personal computer. Eq. D.14 can be used to deduce
Dp when the power density is known (e.g. given by Eq. D.8) as

Dp =
pabs,lin

8niTi
∫ ∞

0
du⊥u

3
⊥

∣∣∣∣Jp−1

(
k⊥vth,i
ωci

u⊥

)
+
E−
E+

Jp+1

(
k⊥vth,i
ωci

u⊥

)∣∣∣∣2e−u2
⊥

. (D.17)

D.3 Low energy, isotropic distribution

We consider firstly the distribution function averaged over the pitch-angle. Introducing
λ ≡ v‖/v, we write

〈fi〉(r, v) ≡ 1
2

∫ 1

−1
dλfi(r, v, λ). (D.18)

Likewise, the quasilinear diffusion coefficient in velocity is averaged according to

〈Dw〉 ≡ 1
2

∫ 1

−1
dλ(1− λ2)Dw. (D.19)

In the collision operator appearing in Eq. D.2, only the energy diffusion and friction
survive the pitch-angle averaging procedure, so that

〈Ĉfi〉 =
1
u2

∂

∂u

[
u2

(
Duu

∂

∂u
〈fi〉 − Fu〈fi〉

)]
. (D.20)

For the wave term, we use the relation

∂

∂u⊥
≡
√

1− λ2

u

[
∂

∂u
u− ∂

∂λ
λ

]
, (D.21)
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to approximate the pitch-angle averaged quasilinear operator in Eq. 4.53 as

〈Q̂fi〉 =
1
u2

∂

∂u
u2〈Dw〉∂〈fi〉

∂u
. (D.22)

The quasilinear quantities can be obtained directly from the expressions already pro-
vided in chapter 4, i.e. Eqs. 4.83 or 4.84 for the energy content, and 4.86 and 4.89 for the
dissipated power. Of course, in all these expressions, only the f0 terms must be kept and
the only moment of Dql needed is Eq. 4.75, i.e.

D00
00(u) ≡ 1

2

∫ 1

−1
dλ(1− λ2)Dw(u, λ) = 〈Dw〉. (D.23)

The steady-state distribution is thus determined by

Duu
d〈fi〉
du
− Fu〈fi〉+ 〈Dw〉d〈fi〉

du
= 0, (D.24)

yielding

〈fi〉(u, r) = A0(r) exp
(∫ u

0
du

Fu
Duu + 〈Dw〉

)
, (D.25)

where A0 is a constant determined by the local density.
Whereas the isotropy hypothesis would seem to indicate that this result is only valid

at very low energies, Anderson et al. [130] assert that it can still be reliably used in the
evaluation of velocity-space moments of the distribution function.

D.4 High-energy tail

At velocities much larger than the critical velocity, electron drag dominates the collision
relaxation, so that pitch-angle scattering becomes very inefficient. According to Stix, this
occurs when

v3
⊥ > v3

γ/4, (D.26)

with
miv

2
γ

2
≈ 14.810Te

[
2A1/2

i

ne

∑
β

nβZ
2
β

]2/3

, (D.27)

where the β summation is carried out over the background ions.
In this case, it makes more sense to reformulate the Fokker-Planck equation in terms

of (u‖, u⊥), and introduce the parallel energy-integrated distribution

F⊥(u⊥) ≡ 〈fi〉⊥ ≡
∫ ∞
−∞

du‖fi(u‖, u⊥). (D.28)

Following Stix [47], we assume

|u‖| � u⊥, u⊥ ∼ u, and u⊥
∂

∂u⊥
∼ u‖

∂

∂u‖
. (D.29)



D.4. High-energy tail 97

By doing this, one obtains the following approximate expression for the collision oper-
ator3

〈Ĉfi〉⊥ ≡ ĈF⊥ ≈ − 1
u⊥

∂

∂u⊥
(u⊥αF⊥) +

1
2u⊥

∂2

∂u2
⊥

(u⊥βF⊥) +
1

4u⊥

∂

∂u⊥
(γF⊥), (D.30)

where for convenience, we have used the familiar Stix expressions for the functions appear-
ing in the collision operators, which are related to our Duu, Fu and Θc by the relations

α = Fu +
1
u2

∂

∂u
u2Duu,

β = 2Duu,

γ =
2Θc

u
.

(D.31)

The wave term is more straightforward to handle:

〈Dwfi〉⊥ =
1
u⊥

∂

∂u⊥
u⊥Dw

∂F⊥
∂u⊥

. (D.32)

Combining Eqs. D.30 and D.32, one can deduce the steady-state solution as

F⊥(u⊥) = B0 exp
(
−
∫ u⊥

0
du⊥
−4αu⊥ + 2∂u⊥(u⊥β) + γ

2u⊥β + 4u⊥Dw(u⊥)

)
. (D.33)

Although further analytical progress is possible by using approximate expressions [47,
129, 130] for the quantities appearing in this expression, Eq. D.33 can be numerically
computed at quite a modest cost.

Eq. 4.82 directly yields for the perpendicular energy content

W⊥ = 2πv3
th,i

∫
du⊥u⊥

mv2
⊥

2
F⊥(u⊥). (D.34)

Of course, information on the distribution function in the parallel direction needs to
be obtained as well. This is done by following Anderson et al. [129], i.e. introducing the
reduced parallel temperature as

T‖(u⊥) ≡

∫ ∞
−∞

du‖
mv2
‖

2
fi(u‖, u⊥)∫ ∞

−∞
du‖fi(u‖, u⊥)

. (D.35)

The advantage is that for both fundamental and second harmonic heating, T‖ has the
same asymptotic limit which can be written as

T‖(u⊥) ≈ miv
3
γ

4v⊥
, (D.36)

3The reader should beware that Eq. 35 in Ref. [47] has a missing ∂/∂v⊥ on the sixth line. Ref. [129]
has a corrected expression.
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with vγ given by Eq. D.27.
Once T‖ has been determined from Eq. D.36, it is possible to deduce from Eq. D.35

the parallel energy content as

W‖ = 2πv3
th,i

∫ ∞
0

du⊥u⊥T‖(u⊥)F⊥(u⊥). (D.37)

The absorbed power, Eq. 4.85 is then given by

pabs,qlin = −4πνiv3
th,iTi

∫ ∞
0

du⊥u
2
⊥Dw

∂F⊥
∂u⊥

, (D.38)

whereas the power dissipated in collisions has the expression

pcoll = 4πνiv3
th,iTi

∫ ∞
0

du⊥u⊥

[(
αu⊥ − γ

4

)
+
β

2

]
F⊥. (D.39)

The partition of this power between the various background species is obtained by
using Eqs. D.31, and isolating the various terms in the sums appearing in Eq. 4.58 and
Eq. 4.59.
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Appendix E

Selected publications

We have attempted to gather selected publications in the diagramme shown in Fig. 1.3.
The result is contained in Fig. E.1 describing how most of them fit in the general scheme
consisting of exploiting RF waves to improve the fusion performance.
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Figure E.1: Improving fusion yield by using radiofrequency waves to generate or influence
energetic particle populations. The numbers in parentheses correspond to the publication
list given below.

The entries marked with (†) in the following list have been included in extenso in the
manuscript.
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A theoretical study of the improvement of the electron cyclotron current drive~ECCD! efficiency in
regimes in which most of the current is driven by lower hybrid~LH! waves is presented. A
perturbation technique is employed to solve the adjoint equation and derive the response function
including both collisional and LH effects in the limit where the former dominate. An alternative
treatment of the problem, involving a numerical solution of the Langevin equations, is proposed to
gain insight into the current drive mechanism and to confirm the obtained results. The existence of
a cross-effect between the two waves is demonstrated and the conditions for the synergy~i.e.,
significant enhancement of the ECCD efficiency in the presence of LH power! are
identified. © 2004 American Institute of Physics.@DOI: 10.1063/1.1739234#

I. INTRODUCTION

Among the desirable features of a future tokamak-based
fusion reactor is its steady-state operation, which implies that
the toroidal current has to be totally sustained by noninduc-
tive sources.1 Moreover, in ongoing as well as in future ex-
periments, a sharp tailoring of the current profiles is known
to have a favorable effect on the plasma confinement. These
prerequisites are key elements of the advanced tokamak con-
cept, which relies on the fact that a large fraction of the
plasma current is supplied by the bootstrap current, generally
triggered and supplemented by injecting neutral beams of rf
waves in the plasma.2

A wide class of waves can be launched in the plasma,
yet, for current drive purposes, the excitation of superthermal
electrons has been the most successful method, in accor-
dance with theoretical predictions.1 Lower hybrid current
drive ~LHCD! is a well-tested and efficient method,3–5 based
on Landau damping of the wave power. Its main drawback is
that in the so-called multipass regime, the current profile
remains difficult to control and calculations still lack full
reliability. Note, however, that in very hot plasmas, the wave
is expected to be absorbed without relying on any subtle
upshift mechanism~single-pass absorption!, which makes
the LH wave a serious candidate to drive off-axis current in
future experiments.4 On the other hand, electron cyclotron
~EC! waves exploit the resonance with the electron gyromo-
tion and are characterized by a narrow deposition, thus pro-
viding a means to induce a local modification of the current
profile. The efficiency, however, is known to be significantly
lower than for LH waves.6

Owing to these complementary features, combined
schemes, in which LH and EC waves are used together, con-
stitute an appealing solution for advanced tokamak dis-
charges. In particular, both waves are expected to exert a
cross-effect on superthermal electrons, often and sometimes
improperly referred to as the LH-EC synergy effect. The

consequences of this cross-effect encompass the possibility
to modify the LH superthermal tail, a better absorption of EC
waves, and an improvement of the ECCD efficiency, which
may help in controlling the current profile as predicted by
numerical solutions of the Fokker–Planck equation.7–12Self-
consistent, dynamical calculations, including waves kinetic
and heat transport effects, have stressed the advantages of
such scenarios, but, owing to the nonlinear nature of these
simulations, the various effects are difficult to separate.13 Ex-
perimentally, a cross-effect has been observed under certain
conditions, but the interpretation of these measurements are
difficult and have led to contradictory conclusions, due either
to their transient character or to very large fast particle
losses.14–17 More recently, a hard x-ray camera18 has been
employed to analyze the emission of fast electrons in the
presence of LH and EC waves during the current flat-top
phase on the Tore Supra19 and the Frascati Tokamak Upgrade
~FTU!20 tokamaks. In both experiments, a response of the
high-energy channels was observed, compatible with the ex-
istence of a cross-effect, but, due to the relatively low ap-
plied EC power, no conclusive observation could be made in
terms of ECCD efficiency.

Despite these numerical and experimental results, and
owing to the lack of a simple mechanism to explain the
cross-effect of both waves on fast electrons, this subject is
still being debated. The goal of this paper is thus to study the
combined current drive process from a theoretical standpoint
and to identify the conditions for the existence of a LH-EC
synergy. To this aim, the adjoint method, originally proposed
by Antonsen and Chu21 and generalized to the rf current
drive problem by Fisch,1 is extended to a situation in which
two waves are simultaneously present in the plasma. Another
possible method is to solve the Langevin equations, which
track individual electron relaxation paths and deduce quanti-
ties of interest for the current drive problem by averaging
over statistical realizations.22 These two complementary
methods are employed to derive the response function, which
leads to an estimate of the current drive efficiency, includinga!Electronic mail: remi.dumont@cea.fr
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the cross-effect and therefore the possibility of a LH-EC syn-
ergy.

This article is organized as follows. After the presenta-
tion of the kinetic aspect of the problem in Sec. II, the ad-
joint method is employed to compute an approximate expres-
sion of the response function for a LHCD plasma in Sec. III.
Section IV is devoted to the study of the dynamics underly-
ing the rf current drive process, through the derivation of the
associated Langevin equations. The properties of the re-
sponse function obtained with these two methods are exam-
ined in Sec. V. The practical consequences of the presence of
LH waves on the ECCD are discussed in Sec. VI, where the
synergy effect is demonstrated. Conclusions are drawn is
Sec. VII.

II. KINETIC MODELING OF LH¿EC CURRENT DRIVE

In the absence of a static parallel electric field and in-
cluding the effects of Coulomb collisions, and LH and EC
waves, the kinetic equation can be written as

] f

]t
2Ĉf 5D̂LH f 1D̂ECf . ~1!

In this expression,t[net is the time in terms of the
collision periodne

21 , f is the electron distribution function.
u[p/AmeTe is the normalized momentum, withTe the local
electron temperature.Ĉ is the linearized collision operator.
In this paper, we shall assume that for any perturbed distri-
bution function written asf [ f m(11a), the high-velocity
collision operatorĈf [Ĉ( f ma) is linearized according to
Ĉ( f ma)5Ĉ( f m , f ma)1Ĉ( f ma, f m)1Ĉ( f ma, f i), f i being
the ion distribution function. Ifm[ui /u refers to the cosine
of the pitch angle, it can be expressed as1

Ĉf [
2

u2

]

]u S 1

u

] f

]u
1 f D1

Zi11

u3

]

]m
~12m2!

] f

]m
, ~2!

whereZi is the plasma ion charge.D̂LH (D̂EC) is the quasi-
linear operator associated with LH~EC! waves, which is
related to the corresponding quasilinear diffusion tensorD% LH

(D% EC) and fluxSLH (SEC) by

D̂LH f 5
]

]u
•D% LH•

] f

]u
52

]

]u
•SLH , ~3!

and

D̂ECf 5
]

]u
•D% EC•

] f

]u
52

]

]u
•SEC. ~4!

The LH wave is absorbed in the plasma by Landau
damping, which implies thatD% LH is dominated by its
parallel–parallel component,23 and the corresponding quasi-
linear operator can thus be written under the form

D̂LH[
DLH

nemeTe

]

]ui
dLH~ui!

]

]ui
, ~5!

whereDLH is a constant determined by the wave power, so
that DLH,0[DLH /nemeTe quantifies the wave intensity com-
pared to collisions.dLH[dLH(ui) represents the shape of the

diffusion coefficient. Here, we consider a regime in which
the electrons undergo the effects of the wave in a region of
velocity space bounded by two limits,ui ,1 and ui ,2 , deter-
mined by the propagation properties of the wave.13 The fol-
lowing shape is assumed:

dLH~ui![H Al exp@2~ui2ui ,l !
2/Dui ,1

2 #, ui,ui ,1

ui ,1 /ui, ui ,1<ui<ui ,2

Ar exp@2~ui2ui ,r !
2/Dui ,2

2 #, ui.ui ,2 .

~6!

Ar , Al , ui ,r , and ui ,l are constants whose values are
determined by the requirement that bothdLH and ]dLH /]ui

be continuous atui5ui ,1 andui5ui ,2 .
For the problem under discussion here, a useful form of

the distribution function isf [ f m(11f1df), where f m is
the Maxwellian.f m(11f) is the distribution function modi-
fied by application of the LH power, solution of

] f mf

]t
2Ĉ~ f mf!5D̂LH f m~11f!. ~7!

Upon subtracting Eq.~7! from Eq. ~1!, we obtain the
equation forf mdf, given by

] f mdf

]t
2Ĉ~ f mdf!5D̂ECf m~11f1df!

1D̂LH~ f mdf!, ~8!

or equivalently

] f mdf

]t
2Ĉ~ f mdf!2D̂LH~ f mdf!52

]

]u
•SEC. ~9!

In this expression, the right-hand term describes the
electron excitation caused by the electron cyclotron waves,
whereas (Ĉ1D̂LH)( f mdf) is representative of the relaxation
under the combined effect of collisions and LH power.

The normalized current associated tof can be written as

j 5E duf m~f1df![ j 01 j 1 , ~10!

where j 0 and j 1 are

j 0[E duui f mf, j 1[E duui f mdf. ~11!

Note that up to this point, no approximation other than
the fact thatTe andne , the electron temperature and density,
are nonvarying on the time scale of the studied problem has
been introduced. To evaluate the driven current, it is usual to
resort to a Fokker–Planck code to compute the distribution
function solution of Eq.~1!. In this work, however, an ana-
lytical approach of the problem has been preferred. Even
though it does not pretend to replace a comprehensive kinetic
calculation, the linearization it is based on has the advantage
of allowing a separate treatment of the two waves, which is
impracticable in purely numerical calculations. This separa-
tion is the key to demonstrating unambiguously the possibil-
ity of a synergy effect.
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To computej 0 @Eq. ~11!#, it is necessary to solve Eq.~7!.
Following Eq.~3! the expression for the LH-induced quasi-
linear flux is

SLH52D% LH•
] f m~11f1df!

]u
. ~12!

If SLH is not significantly modified by the presence of
EC waves, or equivalently assuming that the shape of the
distribution function is determined mainly by the effects of
collisions and LH wave~i.e., udfu!ufu), Eq. ~7! can be
rewritten as

] f mf

]t
2Ĉ~ f mf!52

]

]u
•SLH . ~13!

Introducingg0(u,u8,t2t8), the Green function associ-
ated with Eq.~13!, solution of

]g0

]t
2Ĉg05d~u2u8!d~t2t8!, ~14!

and defining the steady-state response function as

x0~u![E
0

`

dt8E du8ui8g0~u,u8,t8!, ~15!

j 0 is given by

j 05E du SLH•
]x0

]u
. ~16!

To computej 1 , a similar treatment is applied to Eq.~8!,
introducingg1(u,u8,t2t8) the solution of the Green prob-
lem for Eq.~9!. It solves

]g1

]t
2Ĉg12D̂LHg15d~u2u8!d~t2t8!. ~17!

The associated steady-state response function is

x1~u![E
0

`

dt8E du8ui8g1~u,u8,t8!, ~18!

and allows one to evaluatej 1 using

j 15E du SEC•
]x1

]u
. ~19!

This method allows one to envision the CD mechanism
as a two-step process:

~1! A drive, whose features are contained in the expressions
for the quasilinear fluxesSLH andSEC.

~2! A relaxation, which is described by the response func-
tions x0 andx1 .

The quasilinear fluxes contain the information on the
distribution function, and their evaluation is a delicate task,
generally involving a kinetic code. However, if one is merely
interested in an estimation of the CD efficiency, as long as
the interaction is well localized in velocity space, the infor-
mation on the direction of these fluxes is known to be
sufficient.1 Note that this relaxes the assumption employed to
derive Eq.~13! since, as a result, only the direction ofSLH

has to remain unchanged under the effect of EC waves for

the LH efficiency calculation to remain valid. However, the
fact that two waves acting in perpendicular directions of ve-
locity space are considered simultaneously makes it neces-
sary to fully account for two-dimensional effects when com-
puting the response function.

The problem now reduces to evaluating this response
function, and in order to achieve this, two methods are avail-
able: the adjoint formalism and the Langevin equations.
These will be discussed for the case of two waves in Secs. III
and IV, respectively.

III. ADJOINT METHOD IN THE PRESENCE OF TWO
WAVES

In this section, the adjoint formalism is extended to the
case of two waves. For the sake of concision, only the sig-
nificant steps of this method, extensively discussed in Ref. 1
and references therein, will be recalled.

By making use of Eq.~13! when steady state is attained,
the currentj 0 defined in Eq.~16! can be written as

j 052E du x0Ĉ~ f mf!. ~20!

Introducing the commutative operation for two functions
w~u! andc~u!

@w,c#[E duw~u!c~u!, ~21!

and defining the adjointD̂† of an operatorD̂ as

@w,D̂†c#5@D̂w,c#, ~22!

Eq. ~20! can be rewritten as

j 052E duf mfĈ†x0 . ~23!

The adjoint equation is obtained by comparing Eqs.~23!

and~11! and making use of the propertyf mĈ†c5Ĉ( f mc). It
is given as

Ĉx052ui . ~24!

This equation simply describes the response of a colli-
sional plasma and associated with Eq.~2!, it leads to the
well-known Fisch–Boozer~FB! response function

x05
1

2~51Zi !
u4m. ~25!

In order to computej 1 , a similar treatment is applied to
Eq. ~9!. By noting that the LH quasilinear diffusion coeffi-
cient is self-adjoint~i.e., D̂LH

† 5D̂LH ), the adjoint equation
takes the form

@Ĉ1D̂LH#x152ui , ~26!

which describesx1 , the response function of a plasma in
which the LH wave modifies the distribution function, modi-
fying in turn the electron relaxation properties. Physically, it
means that these electrons describe a collisional curve in
velocity space, carrying elemental currentui1D̂LH

† x1 in-
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stead ofui . A rigorously equivalent interpretation is that the
particles carryui as elemental current but describe relaxation
curves influenced by the wave.

Under this form, the adjoint Eq.~26! does not appear to
have an analytical solution. A further assumption is to con-
sider that collisions dominate the relaxation process. In other
words, in spite of the modification of the dynamics in the
parallel direction caused by the LH wave, the relaxation
curves remain mostly collisional. This approximation allows
one to linearizex1 , letting x1[x̄1dx with udxu!ux̄u, the
small parameter beingDLH,0 .

The zeroth-order expansion of Eq.~26! is

Ĉx̄52ui , ~27!

which demonstrates thatx̄ is exactly the FB response func-
tion x0 .

To first-order, we obtain

Ĉdx52D̂LHx0 , ~28!

which, upon expanding the quasilinear operators and letting
Ẑ5(Zi11)/2, yields

u
]dx

]u
2Ẑ

]

]m
~12m2!

]dx

]m

5
DLH

2nemeTe
u3

]

]ui
dLH~u,m!

]x0

]ui
. ~29!

The associated Green equation is

u
]Gx

]u
2Ẑ

]

]m
~12m2!

]Gx

]m
5

d~u2u8!d~m2m8!

u82 ,

~30!

where Gx(u,u8) is the steady-state Green function of the
problem.

The pitch-angle scattering term in Eq.~30! suggests the
expansion24

d~m82m!5(
l 50

`
~2l 11!

2
Pl~m!Pl~m8!, ~31!

(Pl) being the Legendre polynomials. Applying a variable
separation yields

Gx~u,u8!5
H~u2u8!

u3

3(
l 50

`
~2l 11!

2 S u8

u D Ẑl ( l 11)

Pl~m!Pl~m8!,

~32!

whereH is the Heaviside function. This leads to the solution

dx~u,m!5
1

4~51Zi !
S DLH

nemeTe
Du4

3(
l 50

`
~2l 11!

2
Ql~u!Pl~m!, ~33!

with

Ql~u![E
0

u

du8S u8

u D Ẑl ( l 11)14

Jl~u8!, ~34!

and

Jl~u8![E
21

1

dm8Pl~m8!F3dLH~u8,m8!m8~31m82!

1
]dLH

]ui8
u8~3m8211!G . ~35!

IV. LANGEVIN EQUATIONS

To track the electrons trajectories on their relaxation
paths, a natural and convenient method consists in solving
the Langevin equations.1,25,26 Besides providing an insight
into the dynamics underlying the relaxation process,27 they
allow one to compute the response functionx. Another ad-
vantage is that no specific approximation regarding the re-
spective intensities of the collisions and of the wave has to
be introduced. They can thus be used to validate the results
obtained with the adjoint method~see Sec. III!.

The Green functiong1 corresponding to Eq.~9! has been
introduced in Sec. II. Physically,g1(u,u8,t)du is the prob-
ability of finding an electron initially at the velocity-space
positionu8 at locationu within elementdu after a timet. It
means that the associated steady-state response function
x1(u), whose definition is given by Eq.~18!, can be evalu-
ated by computing the elemental current carried by each
electron of a set whose initial location isu along its relax-
ation trajectory, as it undergoes the effects of Coulomb col-
lisions and LH wave power, and perform an ensemble aver-
age afterwards. Rather than directly solving Eq.~17!, it is
thus possible to resort to a stochastic description of this re-
laxation process. It can be done by casting this equation into
the form

]g1

]t
52

]

]u
•S. ~36!

Introducing the friction vectorF and diffusion tensorD%
and using Einstein convention for repeated indices, the prob-
ability current components are written as

Si5Fig12
]

]uj
Di j g1 . ~37!

By identification of Eqs.~2!, ~5!, and~36!, the diffusion
tensor can be written asD% [D% coll1D% LH , with

D% coll5
2

u3 S 1 0

0 ~Zi11!~12m2!/2D , ~38!

and

D% LH5DLH,0

dLH~u!

u2 S m2 um~12m2!

um~12m2! ~12m2!2 D . ~39!

For the force term,F[Fcoll1FLH , with

Fcoll52
2

u3 F S 11
3

u2Duêu1~Zi11!mêmG , ~40!
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whereêu and êm are unit vectors corresponding to theu and
m directions, respectively.

To compute the drift caused by the wave, it is necessary
to bear in mind that when the transformation from one coor-
dinate system to another is not linear, as is the case when the
LH quasilinear diffusion coefficient is transformed from
(u' ,ui) to (u,m) coordinates, the friction term needs to in-
clude a contribution from the diffusion in the first coordinate
system.22 This yields

FLH52
DLH,0

u2 @~umdLH8 ~u!1~12m2!dLH~u!!uêu

1~udLH8 ~u!23mdLH~u!!~12m2!êm#, ~41!

with dLH8 []dLH /]ui .
The Langevin equations describing the electrons trajec-

tories can then be written as22

du

dt
5h~u,t!1g%~u,t!•j~t!. ~42!

The components of the matrixg% are linked to the diffu-
sion tensorD% through

gi j 5~D% 1/2! i j , ~43!

whereD% 1/2 is obtained by diagonalizingD% , taking the posi-
tive square root of the eigenvalues, and transforming the di-
agonal matrix back.

In the framework of Stratonovitch calculus, the deter-
ministic force components are given by22

hi5Fi2~D% 1/2!k j

]

]uk
~D% 1/2! i j . ~44!

The second term of the right-hand side of this equation is
a correction to the noise-induced drift. Albeit straightfor-
ward, the computation ofh andg% is tedious and the resulting
expressions are cumbersome. They will not be presented
here.

j~t! is the Gaussian-distributed Langevin force, de-
scribed by its stochastic properties

^j i~t!&50, and ^j i~t!j j~t8!&52d i j d~t2t8!, ~45!

where ^•& refers to the average performed over statistical
realizations.

Practically, in the simulations presented in this paper, the
collision time is split in numerous time steps and each elec-
tron velocity evolves according to Eq.~42! until thermaliza-
tion is attained. It should be emphasized that the integration
of a stochastic equation in the case of a multiplicative noise
has to be carried out with care to avoid numerical artifacts
liable to distort the result. A detailed discussion of this ques-
tion can be found in Ref.~27!. Here, both the Euler and Heun
methods have been implemented and the results have been
found to be generally indistinguishable. It is recognized that
two main sources of numerical error can alter the solution of
stochastic equations:28 firstly, the statistical error, due to the
finite number of realizations, which can be evaluated from
standard statistical methods, and secondly, the error induced
by the time discretization. To reduce the latter, it is usual to
extrapolate the result forDt→0. For the values ofDLH,0

considered in this section, this error was found to be negli-
gible.

To illustrate the combined effects of Coulomb collisions
and LH waves on the electron relaxation, randomly chosen
individual relaxation paths can be studied. The velocity-
space configuration of the problem appears in Fig. 1, where

FIG. 1. Velocity-space configuration. Three domains are distinguished, each
corresponding to a different situation with respect to the wave-induced dy-
namics. Region~1! is such asu0,ui ,1 , Region~2! encompassesu0.ui ,1

andui0,ui ,2 , and Region~3! corresponds toui0.ui ,2 .

FIG. 2. Sample relaxation path.~a! Collisions only.~b!
Collisions1LH wave. The initial position is denoted by
an arrow. On~b!, the dashed lines delimit the LH do-
main boundaries.
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three domains~labeled 1–3! are distinguished, corresponding
to ~1! u0,ui ,1 , ~2! u0.ui ,1 and ui0,ui ,2 , and ~3! ui0

.ui ,2 .
Such sample trajectories are shown on Figs. 2, 3, 4, and

5, which have been produced with the following parameters:
ui ,153, ui ,255, Zi51, andDLH,050.1. All these figures are
divided in two: the part labeled~a!, where only the collisions
are included in the calculation, and~b!, where the electrons
undergo the combined effect of collisions and wave power.

In Fig. 2, a trajectory obtained for an electron whose
initial velocity lies in region 1 is shown. In such a case and
as long as the energy diffusion caused by the collisions is
neglected, which is a reasonable approximation, the wave
power cannot influence the electron relaxation, since the par-
ticle never reaches the wave diffusion domain. The relax-
ation path of an electron starting from the LH quasilinear
domain~in region 2! can be seen in Fig. 3. In this case, the
supplemental parallel diffusion and drift induced by the LH
wave clearly lengthen the path, and will be likely to slow the
relaxation process, thus enhancing the carried current. An-
other possibility is for the initial velocity to belong to region
2, but outside the LH domain (ui0,ui ,1). A sample trajec-
tory corresponding to this case is shown in Fig. 4 and inter-
estingly enough, although the particle has an initial parallel
velocity such asui0,ui ,1 , it experiences the wave influence
due to the pitch-angle scattering effect. This is the reasonu0

appears to be as crucial asui0 . Finally, in Fig. 5, the relax-
ation of an electron havingui0.ui ,2 is shown ~region 3!.
Although the wave domain is encountered, the net effect on

the relaxation length is more complicated, as the upper-
velocity boundary of the LH quasilinear coefficient, at least
in the model chosen here to describe the wave, induces a
drift towards lower velocities~since]dLH /]uiuui ,2

,0) which
can accelerate the relaxation with respect to a purely colli-
sional trajectory.

For a quantitative evaluation of the effects of LH waves
on the particles thermalization, a statistical analysis has to be
performed. According to Eq.~18!, the response functionx1

can be written as

x1~u0!5E
0

`

dt8 ^ui&~t8!. ~46!

When the collisions are the only effect taken into ac-
count, it is possible to average the Langevin equations ana-
lytically and to deduce the response function.1 For our pur-
pose, however, this operation is not possible and the
computation of the response function has to be performed
numerically.

Here, we studŷ ui& as a function of time for various
initial velocities and values ofDLH,0 , the average being per-
formed over 20 000 electrons. The result appears in Fig. 6,
for initial positionsu05(ui0 ,u'0)5(3,0), ~4,0!, and ~5,0!,
and normalized LH diffusion coefficientsDLH,050 ~colli-
sions only!, DLH,050.1, DLH,050.2, DLH,050.4. The colli-
sional FB solution, given~for Zi51) by ^ui&(t)5ui0(1
26t/u0

3) also appears, but is perfectly superimposed with its
numerical counterpart and is thus barely visible.

FIG. 3. Same as Fig. 2, but for initial position
(ui0 ,u'0)5(4,0).

FIG. 4. Same as Fig. 2, but for initial position
(ui0 ,u'0)5(2,4).
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It can be observed that for (ui0 ,u'0)5(3,0) or~4,0!, the
wave clearly delays the thermalization. In the third case
(ui055), the effect of the drift induced at the high-velocity
boundary appears clearly, since the electrons begin by expe-
riencing a faster decrease in parallel velocity, on average.
However, the energy range of the electrons is largely spread
by the wave and a significant proportion has not yet thermal-
ized, well after the purely collisional relaxation is over. The
response function is determined by the balance between
these two effects and its features shall be presented in the
next section.

V. RESPONSE FUNCTION OF A LHCD PLASMA

In Sec. IV, a numerical method has been presented and
employed to perform a basic analysis of the velocity-space
structure when the presence of LH power influences the dy-
namics underlying the current drive process. Although it can

be used to compute the response function, the perturbation
method presented in Sec. III is more economical in terms of
computational resources and is thus more adapted to a sys-
tematic study of the response function properties, which is
the goal of the present section.

In what follows, the parameters for the LH quasilinear
domain areui ,153, ui ,255, Dui ,150.5, andDui ,251. In
Fig. 7, some level curves of the total response functionx0

1dx are represented in (ui ,u') space forDLH,050.1 ~a! and
DLH,050.2 ~b!. For comparison, the corresponding contours
of the FB response functionx0 appear as dashed lines.

Several observations can be made about this figure.
Firstly, the overall modification of the response function is
rather moderate, which is consistent with the approximation
of the adjoint calculation, which requires the collisions to
dominate the electron relaxation. Secondly, the response
function is modified mainly in the LH quasilinear domain,
but not only, and it can be seen to extend to all velocities
such asu.ui ,1 as well as beyondui5ui ,2 , under the effect
of pitch-angle scattering, described in Sec. IV. This behavior

FIG. 5. Same as Fig. 2, but for initial position
(ui0 ,u'0)5(5,0).

FIG. 6. ^ui& averaged over 20 000 particles as a function of time foru'0

50 and ~a! ui053, ~b! ui054, and ~c! ui055. DLH,050 ~dotted line!,
DLH,050.1 ~dot-dashed line!, DLH,050.2 ~dashed line!, DLH,050.4 ~solid
line!. The analytical curve for collisions only~FB solution! appears as a
thick gray line.

FIG. 7. Isocontours of the response functionx01dx of a plasma with LH
waves such asui ,153, ui ,255, Dui ,150.5, Dui ,251. ~a! DLH,050.1 and~b!
DLH,050.2. The dashed vertical lines delimit the LH domain boundaries and
the dotted contours represent the collisional response functionx0 . Contours
start atuxu525 and are equally spaced withuDxu515.
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is clearly visible in Fig. 8, where the response function per-
turbationdx is shown as a function ofm for various values of
u, andDLH,050.1.

This figure shows the strong asymmetrical shape ofdx.
As a result, the total response functionx1 is largely enhanced
in the ui.0 region of velocity space, under the influence of
the LH wave. As predicted foru,ui ,1 , we obtaindx50, in
other wordsx1 reduces to the FB response function. The
pitch-angle scattering effect can causedx(u,m) to be non-
zero even forui,ui ,1 and particularly forui,0. Another
observation is thatdx falls off rapidly for u.ui ,2 and can
even become negative. This effect is best viewed whendx is
represented as a function ofui , for various values ofu' , as
shown in Fig. 9. For completeness, the result from the
Langevin equations computation also appears foru'50, the
error bars being deduced from the estimated statistical error.

One can notice that foru*6, dx is negative, which
would indicate a deleterious effect of the LH wave on the
EC-driven current when the latter is carried by electrons ex-
cited in this region. Although supported by the numerical
solution of the Langevin equations, this conclusion must,
however, be tempered by several considerations:~i! In this

region of velocity space,dx is sensitive to the value chosen
for Dui ,2 which is not readily available,~ii ! EC wave absorp-
tion at velocities significantly above the upper bound of the
LH quasilinear domain is likely to be impossible in the ab-
sence of LH wave, and~iii ! The FB response function is
proportional tou4, which makes the LH-induced modifica-
tion rather weak for large values ofui . The latter point is
supported by Fig. 10, wherex0 andx01dx are shown as a
function of ui for the same parameters as Fig. 9.

This figure shows that beyond the upper boundary of the
LH domain, the effect is indeed small. Physically, this simply
means that no EC efficiency improvement takes place for
ui*ui ,2 , aside from the fact that the very presence of a LH
plateau is responsible for the EC wave absorption at this
location.7

More important than the response function itself, as far
as the rf current drive is concerned, is its velocity-space gra-
dient, as is apparent from Eq.~19!. For EC waves, the dif-
ferentiation is to be performed alongu' . In Fig. 11, the
quantitydx8[]dx/]u' is shown versusui for various val-
ues ofu' .

Wheneverui,ui ,2 , dx8 appears to be positive, which
implies a favorable contribution of the LH wave to the EC

FIG. 8. dx as a function of the pitch-angle cosm for u52 ~thin solid!, 4
~dot-dashed!, 5 ~dashed!, and 5.5~thick solid!. The plasma and LH wave
parameters are the same as in Fig. 7~a!.

FIG. 9. dx as a function of normalized parallel velocityui for u'50 ~solid!,
4 ~dashed!, and 5.5~dot-dashed!. Also shown is the response function ob-
tained by numerical solution of the Langevin equations foru'50 ~circles!.

FIG. 10. Comparison of the FB response functionx0 ~thin lines! and the
response function, including LH wave effectsx01dx ~thick lines! for
DLH,050.1 for u'50 ~solid!, 4 ~dashed!, and 5.5~dot-dashed!.

FIG. 11. ]dx/]u' as a function ofui for u'50 ~dot-dashed!, 1 ~dashed
gray!, 2 ~dash!, 3 ~solid grayed!, and 4~solid!.
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current. Moreover, even for moderate values ofu' , where
electrons are most easily driven by EC waves,dx8 can be
fairly large, provided an appropriate range of parallel veloci-
ties is selected, which is possible through the use of suitable
launching angles.6 For ui*ui ,2 , dx8 can have a negative
value, although as stated earlier this feature should be pon-
dered cautiously. This figure confirms that the LH wave has
an overall beneficial effect on the current driven EC wave,
and that a synergy between the two waves can be expected,
especially when the latter are excited in the vicinity of
ui ,EC&ui ,2 . Note that this parameter is generally simply de-
termined by the LH wave accessibility condition.29

VI. ECCD EFFICIENCY IN THE PRESENCE OF LH
WAVES

The features of the distribution function in the presence
of LH waves presented in Sec. V have consequences in terms
of ECCD efficiency. From Eq.~10!, the total current appears
as j 5 j 01 j 1 where j 0 @Eq. ~16!# is driven by the LH wave,
and is implicitly assumed to be unaffected by the presence of
the EC wave. In Sec. III, the response function of the plasma
in the presence of LH waves was linearized according to
x15x01dx, which implies thatj 1 , given by Eq.~19! can
be cast into the formj 15 j EC1d j , with

j EC[E du SEC•
]x0

]u
, ~47!

and

d j [E du SEC•
]dx

]u
. ~48!

j EC is the EC current obtained when the cross-effect of
both waves is not accounted for, andd j is a supplemental
current, which qualifies for the denominationsynergy current
~or antisynergy, in the event thatd j and j EC have opposite
signs!. The clear distinction stems from the linearization in-
troduced in the computation of the response function and
permits a straightforward separation of the contribution of
each process, which is generally the key difficulty encoun-
tered when trying to characterize a synergy effect. Note that
if DLH,0→0, the usual FB efficiency is recovered. For the
adjoint method, this is clear from Eqs.~33! and ~48!, which
demonstrate thatd j 50 whenDLH,050. The same result is
obtained from the Langevin equations. In this case, Fig. 6
indeed shows thatdx5x12x0 is zero, so thatj 15 j EC.

Defining j w the amount of current generated by wave
power pw and assuming that the interaction is localized in
velocity space, as is generally the case with EC waves and to
a lesser extent with LH waves also, the steady-state current
drive efficiency can be approximated by1

hw[
j w

pw
'

Sw• ~]x/]u!

Sw•
]

]u S u2

2 D , ~49!

wherex is the response function andSw the quasilinear flux.
Evaluating this expression only requires the direction ofSw ,

which unlike its magnitude, is weakly dependent on the pre-
cise shape of the distribution function and is well known1

(SEC}ê' andSLH}êi).
Here, the efficiencies of both waves are computed using

Eq. ~49! with the same parameters as above:DLH,050.1,
ui ,153, ui ,255, Dui ,150.5, Dui ,251 andZi51. In Fig. 12,
these efficiencies are shown as functions ofui for u'50 and
u'52.

The 4:3 ratio between the LH and EC efficiencies is
recovered, in the absence of a cross-effect.1 If this effect is
included, the corrected EC efficiency@i.e., (j EC1d j )/pEC] is
significantly enhanced in the region of velocity space corre-
sponding to the LH superthermal plateau. For the chosen
value ofDLH,0 , it becomes comparable to the LH efficiency.
As discussed in Sec. III, a slight antisynergy effect is ob-
served forui above ui ,2 . Globally, the EC efficiency en-
hancement increases withu' and can exceed the LH effi-
ciency within a significant range of parallel velocities.
Moreover, for some parameters, the countercurrent drive
amount can be slightly lowered by the synergy effect, which
can further enhance the current driven in an EC downshift
scheme,6 where the wave interacts with electrons havingui

,0 as well asui.0.
To characterize the ECCD efficiency enhancement, fol-

lowing the definition, introduced in Ref. 13, the improve-
ment factorFsyn[( j LH1EC2 j LH)/ j EC, is studied. According
to the linearization introduced in the present model, it sim-
plifies to give

Fsyn511
d j

j EC
511

]dx/]u'

]x0 /]u'

. ~50!

The variation of the synergy factor as a function ofui,
when the ion chargeZi is varied from 1 to 3, all other pa-
rameters being unchanged, is shown in Fig. 13.

FIG. 12. Current drive efficiency as a function ofui for ~a! u'50 and~b!
u'52 for LH waves~dashed line! for EC waves alone~thin solid line! and
for EC waves when the synergy effect with LH waves is taken into account
with DLH,050.1 ~thick solid line!.
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It is seen that the interaction with electrons whose par-
allel velocity lies in the vicinity of the LH quasilinear do-
main can be very beneficial for the EC current drive. For the
chosen value ofDLH,0 , an improvement of the efficiency as
high as 40% can be obtained. The anti-synergy effect just
underlined proves to be marginal. Another observation is that
even though the plasma ion charge increase is known to be
detrimental to superthermal electron-based CD schemes, it
only has a minor influence on the synergy mechanism itself.
Finally, a particularly noticeable feature is that the improve-
ment factor is found to be weakly dependent on the particu-
lar velocity-space location under consideration.

Hitherto, the presented simulations have all been per-
formed forDLH,050.1, in order to ensure the validity of the
perturbation technique employed to derive the response func-
tion from the adjoint equation. The Langevin equations for-
malism, introduced in Sec. IV, is more demanding from a
computational point of view. Still, it has the advantage of
allowing to study how the ECCD efficiency depends on
DLH,0 , since it is derived without any assumption regarding
its value.

This study is performed by solving the Langevin equa-
tions @Eq. ~42!# for 20 000 electrons at each initial velocity.
For increasing values ofDLH,0 , the time stepDt is decreased
so as to remain small with respect to the variations ofD% LH

@Eq. ~39!# andFLH @Eq. ~41!#. To ensure convergence, how-
ever, the computation is performed with several values ofDt,
and the resulting averaged quantities are extrapolated toDt
→0. For large values ofDLH,0 , this procedure proves to be
necessary to avoid the inherent bias induced by the time
discretization, which adds to the purely statistical error.28

The same plasma and LH wave parameters as before are
chosen, with Zi51. The simulations are performed for
velocity-space location (ui ,u')5(4,1) and the quantity un-
der study isdx[x12x0 , where x1 is obtained from the

Langevin equations@Eq. ~46!# and x0 is given by Eq.~25!.
As discussed in Sec. VI, the most relevant quantity, as far as
the ECCD efficiency is concerned, isdx85]dx/]u' . To
obtain it, simulations are performed for several values ofu'

and the derivative is obtained numerically.
In Fig. 14, dx and dx8 are plotted versusDLH,0 , with

associated fitting curves. For comparison, the adjoint solu-
tion for dx appears also.

The adjoint solution appears to give a fair result for
DLH,0&1, in accordance with the validity range of the asso-
ciated method. Its linear dependence onDLH,0 @see Eq.~33!#,
however, leads to an overestimate of the response function,
as the numerical solution shows thatdx levels off when
DLH,0 becomes large. To extrapolate the results asDLH,0

tends to infinity~i.e., in a perfectly saturated situation!, dx8
is fitted using dx85a0•@12exp(2a1DLH,0

a2 )#. A least-
squares fit leads toa0'7.3, a1'0.7, and a2'0.5. This
gives the extrapolated value limDLH,0→`dx8'7.3, or when
used in Eq.~50!, Fsyn'2.8. This means that for the param-
eters considered here, the ECCD efficiency is nearly tripled
when compared to its ‘‘standard’’ value; that is, the value
obtained in the absence of LH waves.

VII. CONCLUSIONS

Owing to the complexity of a full kinetic treatment of
the current drive problem in tokamaks, added to the diffi-
culty of separating the contributions from various physical
processes, the existence of a synergy between LH and EC
waves has often been disputed. In this paper, a different ap-
proach has been employed to address this question from a
theoretical standpoint, when the dominant source of defor-
mation of the distribution function is LH power. Two
complementary methods have been employed: a perturbation
solution of the adjoint equation allows a fast derivation of
the response function, including both collisional and LH ef-
fects in the limit where the former dominate. On the other

FIG. 13. Synergy factor in the presence of LH waves forDLH,050.1 and
various values of the plasma ion charge:Zi51 ~solid!, Zi52 ~dashed!, and
Zi53 ~dot-dashed!. ~a! u'50, ~b! u'52.

FIG. 14. ~a! dx and ~b! ]dx/]u' versus normalized LH quasilinear diffu-
sion coefficientDLH,0 for ui54 andu'51. The solid lines are fitting curves
and on~a!, the result of the adjoint method is shown as a dashed line in the
inset containingdx plotted on logarithm axes.
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hand, solving the Langevin equations allows one to over-
come this restriction and, in addition to the computation of
the response function, provides an insight in the dynamics
underlying the process. However, they imply a less straight-
forward mathematical treatment and higher computational
requirements.

By application of these two formalisms, it has been
shown that a synergy was indeed possible between the two
waves, provided the EC parameters are chosen to drive elec-
trons within or close to the LH quasilinear domain, which
means that the two quasilinear domains have to overlap. In
this case and even for moderate values of the LH quasilinear
diffusion coefficient, a significant improvement of the ECCD
efficiency has been obtained. Moreover, for sufficiently high
values of this coefficient~i.e., when quasilinear saturation is
reached!, the improvement factor appears to be nearly con-
stant. In addition, in this study, the efficiency enhancement
has been found to exhibit only a mild dependence on the
particular velocity space location. These trends suggest that
the synergy mechanism is fairly robust and should manifest
itself provided the EC waves are launched using a set of
parameters compatible with the LH quasilinear domain prop-
erties.

In present experiments, the characterization of such an
enhancement of the EC current drive efficiency can be a
daunting task. This is mostly due to the fact that, as in nu-
merical simulations, many phenomena are involved in the
process and are difficult to separate. It is nonetheless possible
to envision experimental scenarios aimed at studying the
LH-EC synergy. One such scenario could be creating a fully
noninductive plasma by relying on the LHCD system. After
a delay equivalent to several resistive times, injecting two
EC beams with opposite parallel spectra~i.e., opposite toroi-
dal angle, to lowest order! should result in zero net EC cur-
rent in the absence of a cross-effect. The measurement of an
additional amount of current would then be the signature of a
synergy between the two waves. Another possible scenario
consists in using the LH wave to sustain a fully noninductive
discharge, turn on the EC system, and let the feedback sys-
tem reduce the LH power so as to maintain a zero loop
voltage with constant total plasma current. From the level of
EC power injected in the plasma and the resulting drop in
LH power, a value for the EC efficiency in the presence of
LH waves can be deduced.

ACKNOWLEDGMENTS

One of the authors~R.J.D.! wishes to express his appre-
ciation for encouraging comments by M. Brambilla and G.
Leclert.

1N. J. Fisch, Rev. Mod. Phys.59, 175 ~1987!.
2T. S. Taylor, Plasma Phys. Controlled Fusion39, B47 ~1997!.
3X. Litaudon, R. Arslanbekov, and G. T. Hoanget al., Plasma Phys. Con-
trolled Fusion38, 1603~1996!.

4E. Barbato, Plasma Phys. Controlled Fusion40, A63 ~1998!.
5Y. Peysson and the Tore Supra Team, Plasma Phys. Controlled Fusion42,
B87 ~2000!.

6V. Erckmann and U. Gasparino, Plasma Phys. Controlled Fusion36, 1869
~1994!.

7I. Fidone, G. Giruzzi, G. Granata, and R. L. Meyer, Phys. Fluids27, 2468
~1984!.

8I. Fidone, G. Giruzzi, V. Krivenski, E. Mazzucato, and L. F. Ziebell, Nucl.
Fusion27, 579 ~1987!.

9D. Farina, M. Lontano, and R. Pozzoli, Plasma Phys. Controlled Fusion
30, 879 ~1988!.

10D. Farina and R. Pozzoli, Phys. Fluids B1, 815 ~1989!.
11G. Giruzzi, I. Fidone, and R. L. Meyer, Nucl. Fusion29, 1381~1989!.
12M. Shoucri, I. Shkarofsky, V. Fuchs, K. Kupfer, A. Bers, and S. Luckhardt,

Comput. Phys. Commun.55, 253 ~1989!.
13R. Dumont, G. Giruzzi, and E. Barbato, Phys. Plasmas7, 4972~2000!.
14A. Ando, K. Ogura, H. Tanaka, M. Iida, S. Ide, M. Nakamura, T.

Maekawa, Y. Terumichi, and S. Tanaka, Nucl. Fusion26, 107 ~1986!.
15Y. Yamamoto, K. Hoshino, H. Kawashimaet al., Phys. Rev. Lett.58, 2220

~1987!.
16T. Maekawa, T. Maehara, T. Minami, Y. Kishigami, T. Kishino, K.

Makino, K. Hanada, M. Nakamura, Y. Terumichi, and S. Tanaka, Phys.
Rev. Lett.70, 2561~1993!.

17J. A. Colborn, J. P. Squire, M. Porkolab, and J. Villasen˜or, Nucl. Fusion
38, 783 ~1998!.

18Y. Peysson and F. Imbeaux, Rev. Sci. Instrum.70, 3987~1999!.
19G. Giruzzi, C. Darbos, R. Dumontet al., in Proceedings of the Eighteenth

Fusion Energy Conference, Sorrento, Italy, paper IAEA-CN-77/EXP4/02.
20V. Pericoli-Ridolfini, E. Barbato, A. Bruschiet al., in RF Power in Plas-

mas, edited by T. K. Mau and J. deGrassie~AIP, Melville, 2001!, p. 225.
21T. M. Antonsen and K. R. Chu, Phys. Plasmas25, 1295~1982!.
22H. Risken,The Fokker-Planck Equation, 2nd ed.~Springer-Verlag, Berlin,

1989!.
23M. Brambilla, Kinetic Theory of Plasma Waves~Clarendon, Oxford,

1998!.
24J. M. Rax and D. Moreau, Nucl. Fusion29, 1751~1989!.
25M. G. Cadjan and M. F. Ivanov, J. Plasma Phys.61, 89 ~1999!.
26F. Castejo´n and S. Eguilior, Plasma Phys. Controlled Fusion45, 159

~2003!.
27J. L. Garcı´a-Palacios and F. J. La´zaro, Phys. Rev. B58, 14937~1998!.
28A. Greiner, W. Strittmatter, and J. Honerkamp, J. Stat. Phys.51, 95 ~1988!.
29P. T. Bonoli and R. C. Englade, Phys. Fluids29, 2937~1986!.

3459Phys. Plasmas, Vol. 11, No. 7, July 2004 Theory of synergy between electron cyclotron . . .

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.169.8.54 On: Thu, 29 Oct 2015 10:12:56



Effects of non-Maxwellian species on ion cyclotron waves propagation
and absorption in magnetically confined plasmas

R. J. Dumonta!

Association Euratom-CEA, CEA/DSM/DRFC, Centre de Cadarache,
13108 Saint-Paul lez Durance, France

C. K. Phillips
Princeton Plasma Physics Laboratory, Forrestal Campus, P.O. Box 451, Princeton, New Jersey 08543

D. N. Smithe
ATK Mission Research Corporation, Newington, Virginia 22122

sReceived 11 November 2004; accepted 31 January 2005; published online 30 March 2005d

Magnetically confined plasmas can contain significant concentrations of nonthermal particles,
arising from neutral beam injection, fusion reactions, shock heating, or wave-driven acceleration of
resonant plasma species. The associated distribution functions can depart significantly from
Maxwellians, which may impact the propagation and absorption of radio frequency waves. The
potential effect of these particles has been investigated using a full-wave code that has been
extended to handle gyrotropic, but otherwise arbitrary distribution functions. This code has been
used to numerically simulate ion cyclotron resonance heatingsICRHd in magnetic fusion plasmas in
which coresonant neutral beam injectionsNBId heating may also be applied. The presence of
nonthermal ion populations generated by the NBI can alter the ICRH characteristics. Two situations
involving ion cyclotron range of frequency waves are presented: fast wave to ion Bernstein wave
mode conversion and high harmonic fast wave electron heating. In both cases, the adequacy of an
equivalent Maxwellian-based description is discussed. Results indicate that the absorption profiles
are more strongly affected than the wave fields by the presence of nonthermal species. ©2005
American Institute of Physics. fDOI: 10.1063/1.1881472g

I. INTRODUCTION

Laboratory fusion plasmas, as well as many space plas-
mas, can comprise both thermal and nonthermal species. In
collisionless space plasmas, turbulent heating or shock pro-
cesses can accelerate particles, resulting in velocity-space
distributions that are Lorentzian or power-law-like in
nature.1–3 Both neutral beam injectionsNBId and fusion re-
actions in laboratory fusion plasmas introduce energetic ions,
which follow a slowing-down type distribution in velocity
space.4 When radio frequencysrfd waves are applied to heat
or else to drive noninductive currents in these magnetized
plasmas, the wave-induced particle acceleration results in
velocity-space distributions that feature energetic tails5 or ex-
tended quasilinear plateaus.6 In all of these situations, the
question that arises is whether or not these nonthermal spe-
cies have a noticeable impact on electromagnetic wave dy-
namics in the plasma.

Previous theoretical studies of the effects of nonthermal
species on wave dynamics have been based on analyses of
generalized dispersion relations1–3,7,8 or else on simplified
wave field models.9–11 Most of the studies that used general-
ized dispersion relations1–3,7,8were focused on modifications
to instability thresholds or to local power absorption. In the
wave field studies, the wave equation was simplified by ne-
glecting mode-conversion processes, which results in a dif-
ferential form for the wave equation, and then by replacing

the wave vector in the dielectric tensor with the fast wave
root of the generalized hot plasma dispersion relation.9–11

More recently, all-orders full-wave solutions to the ki-
netic wave equation in magnetized plasmas with Maxwellian
species have been obtained in one-dimensional12–14s1Dd and
two-dimensionals2Dd magnetized plasmas15 without the re-
strictions that mode conversion is negligible, or that perpen-
dicular wavelengths are large compared to the ion gyrora-
dius. Owing to fairly high computational requirements, these
simulations have so far been limited to Maxwellian popula-
tions, which allows an analytical computation of the velocity
integrals required to obtain the wave field and various energy
quantities. In order to account for the presence of nonthermal
populations, the dielectric response is formulated in terms of
equivalent Maxwellians that reproduce the particle and en-
ergy content of the original distributions.7

In the studies presented in this paper, full-wave solutions
for wave propagation and absorption in plasmas with non-
Maxwellian components have been obtained by generalizing
the 1D all-orders quasi-local code16

METS to include nonther-
mal species in the plasma dielectric response function. Al-
though the specific examples considered here are relevant to
heating and current drive processes in laboratory fusion plas-
mas, the model is sufficiently general to be applicable in
other venues.

The remainder of this paper is organized as follows. In
Secs. II and III, the theoretical background of this study is
presented, with the absorption kernel computation discussed
in the latter. After the presentation of the analytical modeladElectronic mail: remi.dumont@cea.fr
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used for the nonthermal distribution functionsSec. IVd, Secs.
V and VI are devoted to ion cyclotron resonance heating in
magnetic fusion plasmas. Specifically, a mode-conversion
scheme aimed at heating electrons while a tritium beam is
injected in a plasma of the Tokamak Fusion Test Reactor17

sTFTRd is studied in Sec. V. High harmonic fast wave elec-
tron heating in the presence of NBI in the National Spherical
Torus Experiment18 sNSTXd is discussed in Sec. VI, in
which either an isotropic or an anisotropic distribution func-
tion is used to describe the deuterium beam ions. Conclu-
sions are drawn in Sec. VII.

II. LOCAL FULL-WAVE ANALYSIS

For time-harmonic electromagnetic fields with oscilla-
tion frequencyv, the wave equation can be written as

= 3 = 3 E −
v2

c2 SE +
i

ve0
JpD = ivm0Js, s1d

whereE andJp are the electric field and the first-order per-
turbed plasma current, respectively.Js is the current provided
by external sourcesse.g., antennasd.

The relation between the plasma current and the wave
electric field is given by19

Jpsr d =E dr 8s% sr ,r 8d ·Esr 8d, s2d

wheres% is the conductivity kernel. In a uniform plasma,s% is
invariant for any translation, i.e.,s% sr ,r 8d=s% sr −r 8d, giving a
purely local character to Eq.s2d. In an inhomogeneous
plasma, on the other hand, this relation is nonlocal, and the
resulting wave equation has the integral form16

= 3 = 3 E −
v2

c2E d3k expsik · r dK% sr ,kd ·Eskd

= ivm0Js. s3d

Here,K% is the dielectric kernel,16

K% sr ,kd = 1% +
i

ve0
s% sr ,kd, s4d

and can be expressed in terms of the local absorption

kernel16 W% sr ,k1,k2d:

K% sr ,kd = u1% + S1 − i
]

]k2
·

]

]r
DW% sr ,k1,k2duk1=k2=k . s5d

The energy balance equation accurate to first order in
ri /LB, whereri is the ion Larmor radius andLB the equilib-
rium magnetic field scale length, is obtained by multiplica-
tion of Eq. s3d by E* on its left. After some algebraic ma-
nipulations, one gets

]Wem

]t
− = · sP + Td = − Pabs, s6d

with the Poynting flux given by

Psr d =
1

2m0
ResE* 3 Bd, s7d

and the electromagnetic field energy by

Wem=
e0uEu2

2
+

uBu2

2m0
. s8d

Defining the spatial absorption

Pabssr d =
ve0

2
ImHE d2k1d

3k2e
isk1−k2d·r

3E*sk2d ·W% sr ,k1,k2d ·Esk1dJ s9d

specifies the kinetic flux as16

Tsr d = −
ve0

2
ReHE d3k1d

3k2e
isk1−k2d·r

3
]

]k
· ufE*sk2d ·W% sr ,k1,kd ·Esk1dguk=k1J . s10d

W% is thus needed to obtain the dielectric tensorK% , hence the
electromagnetic fieldfEq. s3dg and the local absorptionfEq.
s9dg.

Numerically, the wave field is obtained by approximat-
ing Eq. s3d in the plasma by its discrete Fourier transform
written as

o
j

expsik j · r idFk j 3 k j 3 1% +
v2

c2 K% sr i,k jdG ·Esk jd = 0.

s11d

In the one-dimensional representation used here,r i

=xiêx+yiêy+ziêz, wherexi is the ith spatial grid point, with
0ø i øN. yi ;ysxid and zi ;zsxid define the chord along
which the computation is performed.k j ;kjêx+kyêy+kzêz,
with kj ;ps2j −Nd /L whereL is the length of this chord and
0ø j øN. ky is assumed to be constant andkz varies in ac-
cordance with the toroidal upshift, i.e.,kzsRd=kz,antRant/R, R
being the major radius,Rant the antenna major radius, and
kz,ant representing the launched spectrum. The numerical so-
lution of Eq. s11d reduces to a matrix inversion, which is
efficiently performed on parallel computers even when large
problems are considered and when the matrix is dense,
which is the case as soon ask'ri, with k' the perpendicular
wave number, is no longer much smaller than unity. Like-
wise, Eqs.s9d and s10d show that the computation of the
energy quantities mostly reduces to double integrals evalua-
tions, whose parallel computation is straightforward and in-
volves few interprocesses communications, making the full-
wave problem well suited for efficient treatment on parallel
computers.

III. ABSORPTION KERNEL

If bi is the angle betweenk',isi =1,2d and êx, and n

denotes thenth cyclotron harmonic, thenW% s, the local ab-
sorption kernel for speciess may be written in the form

042508-2 Dumont, Phillips, and Smithe Phys. Plasmas 12, 042508 ~2005!

Downloaded 05 Apr 2005 to 132.169.8.54. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



W% ssr ,k1,k2d = −
vps

2

v
o

n=−`

`

expsinsb1 − b2dd

3C% −1sb2d · Q% n,s ·C% sb1d s12d

with W% =osW% s. Among the most important features ofW% is
the fact that it acts symmetrically on its left and on its right,
unlike the usual dielectric tensor. This point is the key to the
demonstration of the positive character of the spatial absorp-

tion in an all-orders description.16 C% is the unitary polariza-
tion matrix given by

C% sbd =
1
Î21 eib − ieib 0

e−ib ie−ib 0

0 0 Î2
2 . s13d

The velocity-space dependence arising from the equilibrium

distribution function f0,s is contained in the kernelQ% n,s,
which appears as

Q% n,ssr ,k1,k2d = iE
0

`

dtE d3veisv−nVs−k1,ividtw% n,s, s14d

where

w% n,s ;
1

2
an,sbn,s, s15d

with

an,s ; fv'Jn+1sj2,sd,v'Jn−1sj2,sd,Î2viJnsj2,sdg s16d

and

bn,s ; fL̂f0,sJn+1sj1,sd,L̂f0,sJn−1sj1,sd,Î2L̂nf0,sJnsj1,sdg,

s17d

where ji,s;k',iv' /Vs si =1,2d. Vs is the cyclotron fre-
quency and thesJnd are Bessel functions of the first kind. The
differentiation operators are defined as

L̂f0,s ; S1 −
kivi

v
D ] f0,s

]v'

+
kiv'

v

] f0,s

]vi

,

L̂nf0,s ;
nVs

v

vi

v'

] f0,s

]v'

+ S1 −
nVs

v
D ] f0,s

]vi

. s18d

These expressions reduce to well-known quantities when
a Maxwellian distribution function is ascribed tof0,s.

20 The
inclusion of the parallel gradient effect, neglected in the
present work, leads to a further complication which is
avoided by performing thevi integral first, followed by the
integrations overt andv' as was shown by Smitheet al.21

This operation leads to a generalized plasma dispersion func-
tion, whose evaluation can still be performed analytically.
Since the purpose of the extension ofMETS presented in this
paper is the addition of the capability to handle arbitrary
gyrotropic distribution functions, e.g., resulting from a
Fokker–Planck calculation, the velocity integrations will be

performed numerically.Q% n,s is thus rewritten as

Q% n,ssr ,k1,k2d = 2pE
−`

`

dvi

1

v − nVs − k1,ivi

3E
0

`

dv'v'w% n,ssr ,v,k1,k2d. s19d

After the v' integral is performed numerically, thevi inte-
gral is evaluated using Plemelj formula as

Q% n,ssr ,k1,k2d = uPE
−`

`

dvi

W% n,s

v − nVs − k1,ivi

− i
p

uk1,iu
W% n,suvi=vi,res

, s20d

with definition

W% n,ssr ,k1,k2,vid ; 2pE
0

`

dv'v'w% n,ssr ,k1,k2,vd, s21d

and wherevi,res;sv−nVsd /k1,i corresponds to the resonant
parallel velocity. P refers to the Cauchy principal value,
whose evaluation is one of the most time-consuming tasks of
the code. By fully computing both the real and imaginary

parts of Q% n,s in this fashion,METS provides the first self-
consistent full-wave treatment of wave propagation and ab-
sorption in plasmas with non-Maxwellian species.

IV. MODEL DISTRIBUTION FUNCTION

Although the 1D slab model presented here is generally
applicable to any plasma in which trapping effects and par-
allel gradients in the equilibrium magnetic field can be ig-
nored, for illustrative purposes, two specific cases relevant to
radio frequency heating of toroidal magnetic fusion plasmas
will be considered. Both of these cases include nonthermal
ions present in the plasma due to neutral beam injection and
the corresponding fast ion population is described by a
slowing-down model in which the dominant process is as-
sumed to be the relaxation on electrons.4 The slowing-down
distribution functionsSDDFd f0,b is expanded as a series of
Legendre polynomialsPl,

f0,bsu,md = o
l=0

`

alsudPlsmd, s22d

wherem;vi /v is the pitch-angle cosine andu;v /vb is the
velocity normalized to the beam injection velocityvb

;Î2Eb/mb, with Eb the beam energy andmb the beam ion
mass. The coefficientsal are given by

alsud ; s2l + 1d
Sts

vb
3

Kl

K0

Alsud
4ps1 + uc

3d
. s23d

Here,S is the number of injected particles per second and per
unit volume,ts the slowing-down time4 defined as
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ts = 2p3/2e0
2 memb

Zb
2e4nelnsLd

vth,e
3 , s24d

with me the electron mass,vth,e the electron thermal velocity,
ne the electron density, and lnsLd the Coulomb logarithm.uc

is the critical velocity,

uc
3 =

3

4
Îp

meZ̄

mi

vth,e
3

vb
3 , s25d

whereZ̄=oimbniZi
2/mime. Zi is the ion charge number,mi its

mass,ni its density, and the sum has to be carried over all ion
species.

The Kl coefficients are given by

Kl ; E
−1

1

dmPlsmdKsmd, s26d

where Ksmd is the beam angular distribution. When the
charge-exchange losses are neglected,Al can be written as

Alsud = ulsl+1dbS 1 + uc
3

u3 + uc
3D1+lsl+1db/3

Hs1 − ud, s27d

with b=miZef f/ s2mbZ̄d, Zef f=oiniZi
2/ne. H is the Heaviside

function.
In the remainder of this paper, a Gaussian-shaped angu-

lar distribution will be used for the beam,

Ksud = K̄ expS−
su − u0d2

Du2 D , s28d

where K̄ is a constant,u0 is the beam injection angle with
respect to the magnetic field direction, andDu is the beam
angular divergence.

In order to avoid an unphysical step atv=vb, the distri-
bution function decreases exponentially, i.e.,f0,bsu.1d
= fwsud with

fwsud = o
l=0

`

blPlsmdexpS− su − u1d2

Du2 D , s29d

with Du!1. Thebl andul coefficients are computed to en-
sure that the distribution function and its derivatives with
respect toui andu' are continuous. This gives

bl = als1dexpS s1 − uld2

Du2 D s30d

and

ul = 1 +
Du2

2

lsl + 1dbuc
3 − 3

1 + uc
3 . s31d

Based on the results cited in Ref. 7, nonthermal species
are often modeled in the dielectric kernel by equivalent Max-
wellian sEQMd distributions featuring the same average en-
ergy and particle density as the corresponding non-
Maxwellian species. To highlight the differences in wave
dynamics due to nonthermal distributions, results obtained
with the model slowing-down distributions will be compared
to those obtained with the equivalent Maxwellian represen-

tation. Specifically, two Maxwellian distributions will be
used: an isotropic EQM and a bitemperature EQM.

Defining the energy content of the SDDF as

« =
2

3
E d3uSu2

2
D fsud, s32d

the isotropic EQM is given by

feqsud = feqsud =
1

s2p«d3/2expS−
u2

2«
D . s33d

The anisotropicsbitemperatured EQM is obtained by defining

«i = 2E d3uSui
2

2
D fsud, «' =E d3uSu'

2

2
D fsud, s34d

so that

feqsud = feqsui,u'd =
1

s2pd3/2«i
1/2«'

expS−
ui

2

2«i

DexpS−
u'

2

2«'

D .

s35d

V. ICRF HEATING IN TFTR

The full-wave analysis presented in Sec. II is applied to
a situation in which ICRF waves were used on TFTR to heat
electrons, through the absorption of an ion Bernstein wave
obtained by mode conversion of a fast wave excited at the
antenna.22 A mixed deuterium-tritiumsD-Td plasma was
formed by injecting a 103 keV tritium neutral beam into a
deuterium target plasma, resulting in a tritium concentration
of 0.42 relative to the electron density. The thermalD ions,
as well as the dilute thermal hydrogen and carbon impurity
ions, had central temperatureTi0=31 keV. The central elec-
tron density wasne0=4.731019 m−3 with central electron
temperatureTe0=7.8 keV. The confinement magnetic field
on the magnetic axissR0=2.84 md wasB0=4.7 T. For ICRF
waves with frequencyfRF=30 MHz and parallel wave num-
ber ki,ant<5.2 m−1, launched from the low field side of the
torus, the unshifted fundamental deuteriumsrespectively tri-
tiumd cyclotron resonance is located atR<3.40 m srespec-
tively R<2.27 md. In this scenario, mode conversion be-
tween the launched fast wave and short wavelength ion
Bernstein wavesIBWd occurs between theD and T funda-
mental resonance layers, at radiusR<2.78 m. The tritium
beam ions are simulated with an isotropic SDDF, whereas all
other species are assumed to be Maxwellian.

In a full-wave description, the dispersion relation does
not need to be computed, since no particular propagation
mode is to be isolated, contrary to ray-tracing computations.
However, it generally sheds considerable light on the modes
potentially propagating in the plasma, and thus on the ICRF
scheme itself. Practically, it is obtained from Eq.s11d, writ-
ing

detHk j 3 k j 3 1% +
v2

c2 K% sr i,k jdJ = 0, s36d

and solving forskjd. In Fig. 1, the real part of the dispersion
relation obtained with the parameters given above is shown.
The branches corresponding to the incident, reflected, and
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transmitted fast wave, and the mode-converted Bernstein
wave swhich is a backward moded are denoted. The disper-
sion relation typical of a mode-conversion scheme is recog-
nized, with a back-to-back cutoff resonance featuring a con-
version layer atR<2.78 m. The fact thatMETS uses a set of
incoming and outgoing waves as boundary conditions make
it capable of predicting the respective fractions of power in
each branch of the dispersion relation. With the SDDFsresp.
EQMd, we obtain a reflected fraction of 66.3%sresp. 64.5%d,
a transmitted fraction of 19.3%sresp. 19.2%d, and a mode-
converted fraction of 14.4%sresp. 16.3%d. The power on the
IBW branch is found to be entirely damped in both cases.
These observations lead to conclude that the mode-
conversion scenario in itself is rather weakly affected by the
nature of the distribution function. The dispersion relation
obtained for the SDDF differs significantly from the disper-
sion relation computed with the EQM on the ion Bernstein
branch only foruk'u*200 m−1. In order to evaluate the po-
tential effect of this difference on the wave field, the spec-
trum of the total electric field obtained fromMETS is shown
in Fig. 2. The tail corresponding to the ion Bernstein wave is

observed, extending to wave numbers up tok'<200 m−1.
The spectra obtained in the case of the SDDF and the EQM
are fairly similar, with a globally lower tail in the former
case. This is caused by the fact that with the SDDF, the
power propagates further on the IBW branch before being
strongly absorbed by theT ions. On the contrary, in the EQM
case, the ions belonging to the fast tail of the Maxwellian
distribution damp the power at smaller values ofk', owing
to the large Doppler shift of the cyclotron resonance.

In Figs. 3 and 4, the left-handed and parallel components
of the electric field, respectively, defined asE+;Ex+ iEy and
Ei=E ·B0/B0 are displayed as functions of major radius for
both distribution functions. Also denoted is the approximate
location of the mode-conversion layer. On the left-hand side
of the mode-conversion layer, the electric field exhibits a
wavelengthl<5 cm consistent with the values ofk' on the
mode-converted branch in Fig. 1. In both cases, the same
general structure is observed for the SDDF and the EQM.

FIG. 1. sColor onlined. Real part of the dispersion relation for a IBW mode-
conversion scheme in TFTR, obtained with a slowing-down distribution
function sthick symbolsd, with the equivalent Maxwelliansthin symbolsd.
The figures between parentheses give the relative fraction of power in each
branch of the dispersion relation, the first one referring to the SDDF, the
second one to the EQM.

FIG. 2. sColor onlined. Spectrum of the electric field in TFTR, obtained with
a slowing-down distributionsthick lined and with its equivalent Maxwellian
sthin lined.

FIG. 3. sColor onlined. Real partssolid lined and imaginary partsdashed
lined of the left-handed electric field whensad a slowing-down distribution
function or sbd the equivalent Maxwellian is used to simulate the tritium
beam ions.

FIG. 4. sColor onlined. Real partssolid lined and imaginary partsdashed
lined of the parallel electric field whensad a slowing-down distribution func-
tion or sbd the equivalent Maxwellian is used to simulate the tritium beam
ions.
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From the low field sidesR=2.9 md to R<2.55 m,E+ andEi

obtained with the SDDF appear to be similar to their EQM
counterparts, and differ only from this point on to the high
field side. The amplitude of the oscillations in the wave
structure due to the mode converted IBW decreases with
distance more strongly when the SDDF is used, although the
actual wavelength of the IBW obtained from the two model
distributions is nearly the same.

Using Eq.s9d, the power deposited on each species can
be computed. In the case under study, only electrons and
tritium ions are found to absorb a significant fraction of the
wave power. In Fig. 5, the power deposited on electrons is
shown as a function of major radius, for the two assumed
tritium distribution functions. In Fig. 6, the power deposited
on tritium ions is plotted as a function of major radius. The
total single-pass absorption is found to be 15.6% in the case
of the SDDF and 17.3% in the case of the EQM. The fraction
of the total absorbed power deposited on electrons is 12.1%
in the case of the SDDF and 8.1% in the case of the EQM,
and the deposition profiles have a fairly similar aspect. On
the other hand, the power absorbed by theT ions is 87.8%

with the SDDF and 91.9% in the case of the EQM. With the
slowing-down distribution, however, the power deposition is
much more peaked and shifted towards high field side. This
discrepancy can be explained by examining differences in
the parallel distribution function for the beam ions, defined
as

Fi,bsr,uid ; 2pE
0

`

du'u'f0,bsr,ui,u'd. s37d

The contours ofnbsrdFi,bsr ,uid, with nb the fast ion den-
sity, obtained for the isotropic SDDF and the EQM are
shown in Fig. 7 in thesR,uid plane. For clarity, these con-
tours are quadratically spaced. Also appearing in the figure is
a line representing the resonant parallel velocity of the beam
ions

ui,res= Smbc
2

2Eb
D1/21 − nVb/v

ni

, s38d

with ni=cki /v and n=1 in this fundamental heating case.
The difference between the SDDF and the EQM is linked to
the fact that above the injection energy, the SDDF density is
zero, whereas in the case of the Maxwellian, a small but
finite number of beam ions have a velocity large enough to
satisfy the Doppler-shifted resonance condition, and thus ab-
sorb the wave. This is consistent with the fact that the tritium
absorption, shown in Fig. 6, begins only atR<2.6 m for the
SDDF. To further illustrate this difference, the parallel distri-
bution functionFi,b for the isotropic SDDF and the EQM is
shown in Fig. 8 at two different positions in the plasma,R
=2.55 m andR=2.65 m indicated by the dashed lines in Fig.
6. The velocity-space location of the shifted tritium reso-
nance at each of these spatial positions is indicated by a
dashed line. Since the rate of absorption is proportional to
the slope of the distribution function for the resonant ions,
the SDDF absorbs the wave power more strongly than the
EQM nearR<2.55 m.

FIG. 5. sColor onlined. Profile of the power deposited on electrons for a
slowing-down distribution functionsthick lined and for its equivalent Max-
wellian sthin lined. Also appearing as a vertical dashed line is the approxi-
mate location of the mode-conversion layer.

FIG. 6. sColor onlined. Profile of the power deposited on the tritium beam
ions for a slowing-down distribution functionsthick lined and for its equiva-
lent Maxwelliansthin lined. Also appearing as a vertical dashed line is the
approximate location of the mode-conversion layer.

FIG. 7. sColor onlined. Contours of the fast ion parallel distribution function
for sad a slowing-down type orsbd a Maxwellian distribution function. The
oblique dashed lines denote the velocity-space location of the Doppler-
shifted fundamental tritium resonance.
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VI. FAST WAVE ELECTRON HEATING IN NSTX

In the spherical torus NSTX, high harmonic fast wave
sHHFWd heating can potentially be used to heat electrons
and to drive noninductive toroidal current23 through absorp-
tion of the wave by Landau damping and transit time mag-
netic pumping. When the wave is injected in a plasma con-
taining neutral injection-born deuterium ions, it is reasonable
to expect a modification of the propagation and absorption
properties of the wave due to the influence of the fast popu-
lation. The fast ions can absorb a significant amount of
power, thus lowering the electron absorption.24

Typical parameters of HHFW discharges in NSTX in-
clude B0=0.45 T atR0=1 m, ne0=2.7531019 m−3, andTe0

=1 keV. Perpendicular or tangential 80 keV deuterium NBI
heating has been examined.23 For these parameters, the fast
D ions comprise about 15% of the plasma density. The wave
frequency isfFW=30 MHz, so that the 5th through 12th har-
monics of the unshiftedD cyclotron resonance are present in
the plasma. The parallel wave number at the antenna is
ki,ant<14 m−1. In addition to the fast population, three ther-
mal ion species are taken into account: deuterium, hydrogen,
and carbon, all with central temperatureTi0=1 keV. The fast
ions are simulated using a slowing-down distribution, as de-
scribed in Sec. IV, either isotropic or anisotropic withu0

=0° stangential injectiond or u0=90° sperpendicular injec-
tiond.

First, the results obtained in the absence and in the pres-
ence of the beam are compared. When no beam is present,
the quasineutrality is ensured by adjusting the carbon or hy-
drogen density, which was verified to have no impact on the
result. In Fig. 9, the real parts of the left-handed and parallel
wave electric field computed byMETS are shown as functions
of the major radius, along an equatorial chord, when no fast
population is present, and when the fast ions are described
either by an isotropic slowing-down distribution or by its
equivalent Maxwellian. As expected for HHFW, the varia-

tions of the left-handed and of the parallel field are domi-
nated by long wavelengths consistent with the local disper-
sion relation for the fast wave branch. In the presence of fast
ions, a stronger attenuation of the wave field is observed,
indicating an increased absorption of the wave by the
plasma. The wavelength, on the other hand, is not affected.
The corresponding power deposition profiles, on electrons in
the absence of the beam, and on electrons and beam ions
when NBI is present, are shown in Fig. 10. When no beam is
injected in the plasma, the single-pass absorption is 71.6%,
damped on electrons. With NBI, the single-pass absorption
increases to 92.9%srespectively 95.3%d among which
28.8% srespectively 27.8%d is damped by electrons, and
71.2%srespectively 72.1%d when the latter are modeled us-
ing a SDDFsresp. an EQMd. It is found that no other species
absorbs a significant fraction of the wave power.

Another observation is that the EQM reproduces fairly
well the fast ion absorption when the fast ion distribution is
isotropic. To explain this feature, which appears to be in

FIG. 8. sColor onlined. Beam ions parallel distribution function for a
slowing-down typessolid lined or a Maxwelliansdashed lined distribution
function at major radiussad R=2.55 m andsbd R=2.65 m sboth positions
appear as grayed dashed lines in Fig. 6d. The vertical dashed lines denote the
velocity-space location of the Doppler-shifted fundamental tritium
resonance.

FIG. 9. sColor onlined. Real part of thesad left-handed andsbd parallel wave
electric field in the absencesgrayedd and in the presence of a deuterium
beam when the latter is represented by an isotropic SDDFssolid lined or by
an isotropic EQMsdashed line, barely visibled.

FIG. 10. sColor onlined. Power deposited on species as a function of major
radius: electron absorption when no beam is presentsgrayedd; fast ion and
electron absorption when the former are described by an isotropic SDDF
ssolid lined or an isotropic EQMsdashed lined.
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contrast to the conclusions of Sec. V, Fig. 11 shows contours
of nbsrdFi,bsr ,uid in the sR,uid plane, for the beam ions mod-
eled using either the SDDF or the EQM. Since, the scheme
relies on the absorption of the wave at large harmonic num-
bers, several resonances are simultaneously present in the
plasma, and appear in the figure, as well. For these param-
eters, the EQM is an adequate representation of the SDDF,
and the simultaneous presence of multiple resonances in the
plasma has the consequence that the wave is mostly absorbed
by bulk ions at any location in the plasma. To further illus-
trate this, in Fig. 12,Fi,b is shown versus parallel velocity, at
major radiusR=1.25 m. Again, the two distribution func-
tions differ by the fact that the SDDF drops sharply to zero
for ui *1, whereas the EQM has a tail extending to higher
velocities. However, in this case, the presence of several
resonancessn=7–11d allow the wave to interact with lower
energy ions. Therefore, the detailed behavior of the fast ve-
locity part of the distribution, especially forui *1, is of
lesser importance than in the case presented in Sec. V.

Anisotropic velocity effects can also have a significant
impact on the wave absorption profiles: parallel velocity ef-

fects tend to modify the absorption profile by broadening the
resonance region, while perpendicular velocity effects
mostly affect the wave damping at higher harmonics. To
study this impact, the same parameters as before are consid-
ered, but with a slowing-down distribution function which is
representative of a beam launched either tangentially or per-
pendicularly with respect to the magnetic field direction. In
order to improve the EQM representation, a bitemperature
Maxwellian is used, withTiÞT' to account for the different
energy content in the parallel and perpendicular directions of
velocity space.

First, the beam is assumed to be injected perpendicularly
to the magnetic fieldsu0=90°d. The power deposition on fast
deuterium ions and electrons is shown in Fig. 13. The ab-
sorption on the fast ions is fairly well described with the
isotropic EQM, and the agreement is further improved with
the bitemperature EQM. In this case, the single-pass absorp-
tions on each species are found to agree within 3%.

If the beam is injected tangentially, on the other hand,
the power deposition profile is not well reproduced using an
EQM, either isotropic or bitemperature. This is shown in Fig.
14 where the fast ion absorption is shown as a function of the
major radius. Considering the single-pass absorption on the
D ions modeled with the SDDF as a referencesPD /Ptotal

=51.9%d, the isotropic EQM underestimates the ion absorp-
tion, giving PD /Ptotal=27.8%, whereas the bitemperature
EQM overestimates it, withPD /Ptotal=70.1%. In Fig. 15,
Fi,b for perpendicular or tangential injection, at radiusR
=1.25 m, is compared for the SDDF, the isotropic EQM, and
the bitemperature EQM. When the beam is injected perpen-
dicularly to the magnetic field, the bitemperature Maxwellian
is able to reproduce the shape of the distribution. On the
other hand, neither the isotropic nor the anisotropic EQM is
able to retain the features ofFi,b when the beam is injected
tangentially to the magnetic field and as a consequence, the
absorption profiles differ significantly.

FIG. 11. sColor onlined. Contours of the fast ion parallel distribution func-
tion for sad a slowing-down type orsbd a Maxwellian distribution function.
The oblique dashed lines denote the velocity-space location of the Doppler-
shifted deuterium resonances.

FIG. 12. sColor onlined. Beam ions parallel distribution function for a
slowing-down type ssolid lined or a Maxwellian distribution function
sdashed lined at major radiusR=1.25 msdenoted as a gray line in Fig. 10d.
The vertical dashed lines denote the velocity-space location of the Doppler-
shifted deuterium resonances.

FIG. 13. sColor onlined. Power deposited onsad electrons and onsbd the fast
deuterium ions, when the latter are described by an anisotropic SDDF cor-
responding to a perpendicular injection of the beamsthick solid lined, or
when the isotropicsthin lined or the bi-temperaturesdashed lined EQM is
substituted.
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VII. CONCLUSIONS

In this paper, the effects of non-Maxwellian distribution
functions on the propagation and absorption of waves in the
ion cyclotron range of frequencies are discussed. In order to
conduct this study,METS, a full-wave, one-dimensional, all-
orders code has been extended to handle arbitrary gyrotropic
distribution functions, by resorting to massively parallel
computers to perform numerically the velocity integrals in-
volved in the calculation of the electromagnetic field and
wave absorption.

The code has been used to investigate ICRF heating on
TFTR, in a fast wave to ion Bernstein wave mode-
conversion scenario, when a tritium beam was simulta-
neously injected in the plasma. The simulations show that the
wave structure of only the finite temperature mode-converted

IBW is affected by the details of the fast ion distribution
function. Although the mode-conversion scenario in itself
appears to be rather weakly affected, the deposition profiles
differ dramatically depending on whether the fast ion distri-
bution function is modeled with an isotropic slowing-down
distribution function, or with an equivalent Maxwellian, re-
producing its particle and energy contents. This discrepancy
is caused by the difference in the structure of the distribution
function for v*Î2Eb/mb: the presence of ions havingv
.vb in the EQM case causes a larger Doppler shift and thus
a wider absorption.

HHFW electron heating on NSTX has been explored
with the same code.METS predicts that in the presence of a
deuterium beam, a significant fraction of the power is ab-
sorbed by the fast ions, lowering the electron absorption,
which is consistent with earlier simulations24 and experimen-
tal measurements.23 In this regime, the rf wave fields are
dominated by the fast wave, which is adequately described
by a cold plasma model. Thus, although the attenuation of
the fields is different for isotropic or anisotropic beam distri-
butions due to a different wave absorption, the wavelength is
largely unaffected by the details of the distribution function.
Furthermore, owing to the fairly large number of resonances
simultaneously involved in the interaction, the SDDF and
EQM absorptions are similar, as long as the distribution is
isotropic in velocity space. This is also the case when an
anisotropic SDDF is used with the beam injected perpen-
dicularly with respect to the magnetic field, which introduces
no major structural modification of the distribution function
in the parallel direction. On the other hand, if the beam is
assumed to be injected tangentially to the magnetic field, it
was shown that the isotropic equivalent Maxwellian descrip-
tion predicts too large a fast ion damping rate, and that the
introduction of a bitemperature Maxwellian was not suffi-
cient to recover a correct absorption, since it is unable to
reproduce the features of the effective distribution function.
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Abstract
Magnetic fusion plasmas feature two major classes of low frequency electromagnetic oscillations: waves in the ion
cyclotron range of frequencies (ICRFs) constitute a well established method employed for plasma heating and current
drive, whereas waves in the Alfvén range of frequencies naturally occur in the form of modes in close interaction with
fast particles. The propagation of these waves is characterized by significant space-dispersion, making it necessary
to incorporate non-local effects in the global kinetic full-wave codes which are often employed for their simulation.
We present here a variational approach to this problem, which has the advantage of providing a common framework
to the wave calculation and to the quasilinear response description. Two important points are discussed: firstly, we
show that the irreversible part of the power transferred from the wave to the plasma particles is directly available
and does not require an explicit evaluation of the kinetic flux; secondly, it is demonstrated that the symmetry of the
obtained plasma functional ensures that these energy transfers are described in a consistent fashion, regardless of
the level of approximation employed to evaluate the particle Hamiltonian. Finally, quasi-local, finite Larmor radius
expressions are derived in the framework of this formalism and implemented in a new multi-dimensional full-wave
code, named EVE, which is employed to analyse two ICRF heating scenarios for ITER.

PACS numbers: 52.35.Hr, 52.50.Qt, 52.55.Fa, 52.65.Ff

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Owing to the robustness of the underlying technologies and
to their versatility, waves in the ion cyclotron range of
frequencies (ICRFs) are routinely employed in magnetic fusion
devices and, as such, constitute one of the key elements
for the success of future reactors [1]. Although plasma ion
heating through minority fundamental absorption or harmonic
damping is currently the most widespread scenario and is
therefore favoured in plans for next-step experiments, ICRF
waves also offer other possibilities, such as electron heating
and/or non-inductive current drive either by direct damping
of the fast magnetosonic wave excited by the antenna [2]
or by damping of mode converted short wavelength kinetic
waves [3], sawtooth stabilization by ion cyclotron current
drive [4], and may even be used to generate plasma rotation [5].
Alfvén waves propagate at frequencies below the lowest ion
cyclotron frequency. Although schemes involving these waves
directly excited by outside antennas for plasma heating have
been proposed in the past [6], they occur mostly in the form
of various modes, such as toroidal Alfvén eigenmodes (TAEs),
intrinsic to fusion plasmas, most notably when the latter feature
fast ions [7].

Considerable efforts have been devoted to the modelling of
both Alfvén and ICRF waves. Their large vacuum wavelength,
added to the fact that most situations in which they occur
involve cut-offs and mode conversion regions in the plasma,
makes it necessary to describe their propagation and absorption
by means of global codes [8]. Various models can be applied
to the modelling of Alfvén waves: fluid descriptions [9] can be
extended to incorporate kinetic effects [10]. Recently, global
gyrokinetic codes have been developed to account for various
effects related to Alfvén waves in modern devices [11]. On
the other hand, ICRF waves are usually modelled by means
of linear kinetic full-wave codes, either retaining all orders in
the expansion of the wave–plasma interaction terms in series
of k⊥ρi, where k⊥ is the perpendicular wavenumber and ρi is
the ion Larmor radius, at the price of stringent computational
requirements [12], or performing a finite Larmor radius (FLR)
expansion in k⊥ρi [13]. Although the applications presented
in this paper pertain to ICRF waves, the inclusion of plasma
space-dispersion in these codes makes them generally suited
to describe both linear Alfvén and ICRF waves [8, 14].

This paper is organized as follows: in section 2,
the Hamiltonian-based variational approach to the wave
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calculation problem is extensively described and the general
plasma functional is given in action-angle variables. The
issue of energy transfers is also addressed in some detail.
This comprehensive description of the dielectric response
is, however, rather cumbersome to implement and requires
challenging numerical resources. It is therefore of interest
to analyse the approximations under which the more familiar
quasi-local expressions can be deduced from the full
description. The pertinent hypotheses and the situations
where they break down are detailed in section 3. A practical
expression of the plasma functional is obtained in terms
of adiabatic invariants and an expansion of the particle
Hamiltonian is performed to yield a tractable second-order
FLR version of this functional. The obtained expressions
are implemented in a new multi-dimensional full-wave code,
named EVE, which is presented in section 4. As an illustration
of some of the features of EVE, the simulation of two ICRF
heating scenarios envisioned for ITER, i.e. pure second
harmonic tritium and helium-3 minority heating, are analysed.
Conclusions and prospects are discussed in section 5.

2. Variational formulation of the wave problem

Full-wave descriptions consist of calculating the wave field by
a direct solution of the Maxwell’s equations. Following [15]
and considering a field oscillating at prescribed frequency ω,
the current conservation is written in the form

jant + jpart = 1

µ0
∇ × ∇ × A + iωε0(iωA − ∇ϕ) ≡ jmaxw,

(1)

where jant is the antenna current density, jpart is the current
density carried by the plasma particles. (A, ϕ) is the wave
four-potential. The charge conservation yields

ρant + ρpart = ε0∇ · (iωA − ∇ϕ) ≡ ρmaxw. (2)

Three gauge-invariant functionals, respectively Lant, Lpart and
Lmaxw, are constructed by writing

L ≡
∫

d3r{j(A, ϕ) · A∗ − ρ(A, ϕ)ϕ∗}, (3)

and substituting j (respectively ρ) with jant, jpart and −jmaxw
(respectively ρant, ρpart and −ρmaxw). The integrals are
performed over the whole (assumed perfectly conducting)
vacuum chamber volume. In the linear wave problem
considered here, both Lpart and Lmaxw are bi-linear in (A, ϕ)

and (A∗, ϕ∗). Lant is linear in (A∗, ϕ∗) since jant and ρant

are assumed to be completely determined by the antenna
parameters. The variational statement corresponding to the
conservation conditions (1) and (2) states that the quantity

Lpart(A, ϕ, A∗, ϕ∗) + Lmaxw(A, ϕ, A∗, ϕ∗) + Lant(A∗, ϕ∗)
(4)

must be extremal for all variations of A∗ and ϕ∗, when A and
ϕ are kept constant. As discussed in [15, 16], this form is
directly suited for implementation in a numerical code. The
wave electromagnetic field is then obtained by writing

E = iωA − ∇ϕ, B = ∇ × A. (5)

The plasma functional can be decomposed as

Lpart ≡
∑

s

Lpart,s =
∑

s

∫
d3r {jpart,s · A∗ − ρpart,sϕ

∗}, (6)

where the sum is carried over all plasma species. The next step
consists of introducing the Hamiltonian of particles with charge
qs and mass ms in interaction with the total electromagnetic
field:

Hs = (p − qsA0 − qsA)2

2ms

+ qsϕ0 + qsϕ, (7)

where (A0, ϕ0) is the equilibrium electromagnetic potential.
This Hamiltonian is linearized to first order in the wave field
amplitude by writing Hs ≈ Hs,0 + δHs , where

δHs = qs(ϕ − vs,0 · A), (8)

with vs,0 the unperturbed velocity. The distribution function is
written as the sum of an equilibrium distribution function and
a harmonic perturbation, fs = fs,0 + δfs , so that to first order,
the current density perturbation caused by the wave may be
written as

jpart,s = qs

∫
d3p{δvsfs,0 + vs,0δfs}, (9)

with the velocity perturbation induced by the wave field

δvs = ∂Hs

∂p
= − qs

ms

A. (10)

This yields for the plasma functional

Lpart,s = −ε0

∫
d3r ω2

ps |A|2 −
∫

d3r d3p δfsδH
∗
s , (11)

with ω2
ps ≡ nsq

2
s /ms/ε0. ns is the unperturbed density.

The link between the distribution function and the
Hamiltonian is obtained from the Vlasov equation for each
species

∂fs

∂t
+ [fs, Hs] = 0. (12)

At this point, it is convenient to introduce the system
of conjugate action-angle coordinates, (Jk, �k)k=1,...,3, which
is associated with the following equations of motion in the
unperturbed system

dJk

dt
= −∂Hs,0

∂�k

= 0, (13)

and
d�k

dt
≡ �k = ∂Hs,0

∂Jk

, (14)

where Hs,0 is the unperturbed Hamiltonian. �k = �k(J)

corresponds to the kth natural frequency of the system. By
definition, the unperturbed Hamiltonian depends only on the
action variables, so that it is possible to write

Hs = Hs,0(J) + δHs(J,Φ) (15)

and also
fs = fs,0(J) + δfs(J,Φ), (16)

2
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δHs and δfs are expressed as Fourier series over the
generalized angles, i.e.

δHs ≡
∑

N

δhNeiNk�k , δfs ≡
∑

N

δfNeiNk�k , (17)

where N ≡ (N1, N2, N3) is a triplet of integers. The
linearization of equation (12) is straightforward and yields the
linear response of the particles to the wave field as

δfN = −δhN
Ni

ω − Nk�k

∂fs,0

∂Ji

. (18)

The transformation from position–momentum to action–
angle coordinates is canonical, which implies d3r d3p =
d3Jd3Φ. The plasma functional can thus be rewritten as

Lpart,s = −ε0

∫
d3r ω2

ps |A|2

+ (2π)3
∑

N

∫
d3J

Ni

ω − Nk�k

∂fs,0

∂Ji

|δhN|2, (19)

where the integral over the generalized angles has been
performed, resulting in the cancellation of all terms containing
δhNδh∗

N′ with N �= N′. As discussed in some detail in
appendix A, both global and local power balance relations
are direct consequences of the variational form of Maxwell’s
equations. In particular, it is worth mentioning that the
issue of distinguishing the power actually dissipated from
the reversible energy carried by the particles (kinetic flux) is
naturally addressed in the framework of this theory.

Usually, it is more practical to manipulate distribution
functions given in terms of the three adiabatic invariants
(E, 
, Pφ), rather than in action variables [17]. As shown
in appendix B, the resulting functional may then be cast in
the form

Lpart,s = L(nres)
part,s

+ (2π)3
∑

N

∫
d3J

ω

ω − Nk�k

Dfs,0|δhN1,N2,N3 |2, (20)

where L(nres)
part,s is a real quantity, yielding a purely reactive term.

The second term on the right-hand side of the expression,
on the other hand, shows that the condition for an energy
exchange to take place between the wave and the particles
is two-fold. It requires that (i) the global resonance condition
ω − N · Ω = 0 be verified, (ii) δhN be not zero. It is worth
noting that the sign of Dfs,0 completely determines whether
the energy transfer occurs from the wave to the particles or
vice versa. In particular, if the distribution is Maxwellian, i.e.
Dfs,0 < 0, it is readily shown that �(L(res)

part,s) > 0, so thatPabs is
strictly positive (see equation (A.18)), as it should be [18, 19].

In order to obtain a practical expression for Lpart, the
elementary contributions δhN have to be evaluated. This is
done by inverse Fourier transform of δHs

δhN1,N2,N3 = 1

(2π)3

∫
d�1 d�2 d�3δHse

−N·Φ, (21)

with
δHs ≡ δHs(r, p) = δHs(J,Φ). (22)

To track the particle guiding-centre location on a given
orbit, the adiabatic invariants must be supplemented by the

poloidal and toroidal angles at the guiding-centre, θ and φ.
Finally, the particle gyro-motion is described by adding the
gyro-phase φc. The Hamiltonian perturbation can thus be
written as

δHs(r, v) = δHs(E, 
, Pφ, θ, φ; φc). (23)

Given the nature of the problem under consideration, it
is natural to reformulate the latter as a Fourier series over the
gyro-angle:

δHs(E, 
, Pφ, θ, φ; φc) ≡
∞∑

p=−∞
δHpse

ipφc . (24)

Since δHps only depends on quantities evaluated at the
guiding-centre, a Fourier expansion can be performed over the
toroidal and poloidal angles to obtain

δHs(E, 
, Pφ, θ, φ; φc) ≡
∑
pmn

δHpmn(E, 
, ψ)ei(pφc+mθ+nφ),

(25)

yielding

δhN1,N2,N3

= 1

(2π)3

∑
pmn

∫
d3ΦδHpmnei[(pφc−N1�1)+(nφ−N3�3)+mθ−N2�2].

(26)

The gyro-phase is linked to the first generalized angle by
a relation of the type

φc = �1 + �(E, 
, Pφ, θ, φ), (27)

which, since θ and φ are the angles tracking the guiding-centre,
makes the integral over �1 trivial, yielding

δhN1,N2,N3 = 1

(2π)2

×
∑
pmn

∫
d�2 d�3δHpmnei[p�(θ,φ)+(nφ−N3�3)+mθ−N2�2]δN1,p.

(28)

The difficulty in this expression comes from the fact
that θ and φ are functions of the generalized angles �2 and
�3. However, owing to the quasi-periodicities of the particles
motion in a confining fusion device, it can be shown that [20]

{
θ = ε�2 + θ̂ (E, 
, Pφ, �2),

φ = �3 + qθ̂(E, 
, Pφ, �2) + φ̂(E, 
, Pφ, �2),
(29)

where ε = 0 (respectively 1) for trapped (respectively passing)
particles. q is the safety factor. θ̂ and φ̂ are both periodic
functions of�2. The integration over�3 can thus be performed
in equation (28) to give

δhN1,N2,N3

= 1

τb

∑
pmn

∫ τb

0
dtδHpmnei[p�+nqθ̂+nφ̂+mθ−N2�2]δp,N1δN,N3 ,

(30)

3
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with τb = τb(E, 
, Pφ) the bounce period of the considered
particles and where d�2 = �2 dt has been used. Substituting
p� ≡ p(φc − �1t) and nqθ̂ + nφ̂ ≡ n(φ − �3t) yields

δhN1,N2,N3

= 1

τb

∑
pmn

∫ τb

0
dtδHpmnei[pφc(t)+mθ(t)+nφ(t)−Ni�i t]δp,N1δn,N3 .

(31)

The above expression is an orbit integral clearly exhibiting
the resonant selection process at play between the particles
and the partial waves characterized by all possible couples of
poloidal and toroidal numbers (m, n).

3. Quasi-local plasma functional

At this point, the plasma–wave interaction described by
equation (19) has a purely global character, as no assumption
has been made on the particle trajectories. This is to be
contrasted with the usual derivation of the dielectric tensor
where the trajectories are approximated prior to the response
calculation in order to evaluate the integrals over unperturbed
orbits. A direct numerical calculation of the individual
contributions described by equation (31) is, however, very
challenging from a numerical viewpoint. Furthermore, it is
instructive to derive the quasi-local expressions from the global
ones, since this allows direct comparisons with the familiar
dielectric tensor, and also to identify the approximations
needed to recover them. For cyclotron harmonics, the orbit
integral lends itself to a steepest descent method evaluation.
The same method can be applied to the Cerenkov resonance
(p = 0) provided the phase varies rapidly over the orbit, i.e. for
sufficiently large toroidal numbers and parallel velocities [19].
This results in the expression

|δhp,N2,n|2

≈ 2π

τ 2
b

∑
m1,m2

∑
t1,t2

δHpm1n(t1)δH
∗
pm2n

(t2)√
γ̈m1(t1)γ̈m2(t2)

e{fm1 (t1)+f ∗
m2

(t2)}. (32)

with the wave–particle phase mismatch

fm(t) ≡ i
[
γm(t) − (p�1 + N2�2 + n�3)t

]
, (33)

where
γ̇m(t) ≡ p�cs(t) + mθ̇(t) + nφ̇(t). (34)

t1 (respectively t2), is the time corresponding to the wave–
particle interaction with the partial wave characterized by
poloidal mode m1 (respectively m2), i.e.

γ̇m1(t1) = γ̇m2(t2) = Ni�i, (35)

In equation (32), the sum is performed on all partial ICRF
resonances, determined by the above relation. Following [19],
the saddle point corresponding to the resonance between the
particle and the wave with poloidal mode m0 ≡ (m1 + m2)/2
is introduced. The time the particle crosses this particular
resonance is denoted t0 and is given by

γ̇m0(t0) = Ni�i. (36)

Far from third order saddle points and Taylor-expanding
γm1 and γm2 to first order in time about t = t0 permits to rewrite
equation (32) as

|δhp,N2,n|2 ≈ 2π

τ 2
b

∑
m1,m2

∑
t0

δHpm1n(t1)δH
∗
pm2n

(t2)

|γ̈m0(t0)|
ei�12(t0),

(37)

with

�12(t0) ≡ (m1 − m2)θ(t0) +

(
m1 − m2

2

)3
θ̇2(t0)θ̈(t0)

γ̈m1(t0)γ̈m2(t0)
.

(38)

The interaction times for partial wave characterized by
poloidal numbers m1 and m2 are respectively given by

t1 = t0 − m1 − m2

2

θ̇ (t0)

γ̈m1(t0)
, (39)

and

t2 = t0 +
m1 − m2

2

θ̇ (t0)

γ̈m2(t0)
. (40)

Using equation (37) in the resonant plasma functional
(equations (20) and (B.13)) yields

L(res)
part,s = (2π)3

∑
p,n

∫
d3J

∑
m1,m2

1

τb

∑
N2

∑
t0

2π

τb

1

|γ̈m0(t0)|

· · · ω

ω − Ni�i

Dfs,0δHpm1n(t1)δH
∗
pm2n

(t2)e
i�12(t0), (41)

From equation (36), the time elapsed between the crossing
of the resonance corresponding to N2 to the resonance
corresponding to N2 + 1 is given by

�t = �2

|γ̈m0(t0)|
= 2π

τb

1

|γ̈m0(t0)|
, (42)

which means that except in the neighbourhood of third order
saddle points, the sum over N2 and t0 can be transformed
into a time integral. N2�2 must then be replaced by γ̇m0 −
p�1−n�3. The quasi-local hypothesis consists of simplifying
the unperturbed particle motion at each individual resonant
point [21]. To lowest order, one can assume that this motion
is uniform. The resonant plasma functional then reduces to

L(res)
part,s = (2π)3

∑
p,n

∫
d3J

1

τb

∫ τb

0
dt

· · ·
∑

m1,m2

ω

ω − γ̇m0(t)
Dfs,0δHpm1n(t)δH

∗
pm2n

(t)ei(m1−m2)θ(t).

(43)

The previous expression has a Lagrangian character, since
particles are followed along their unperturbed orbits. It is
independent of �1 and �3. Furthermore, since d�2 =
�2 dt = 2π dt/τb, we can perform the transform to Eulerian
coordinates

(2π)2
∫

d3J
2π

τb

∫ τb

0
dt =

∫
d3J d3Φ =

∫
d3r d3p. (44)

Noting that the uniform approximation implies

m0θ̇ (t) + nφ̇(t) ≈ (m0∇‖θ + n∇‖θ)v‖, (45)
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the parallel refractive index corresponding to the average
poloidal mode m0, k‖ ≡ m0∇‖θ +n∇‖φ is introduced to obtain
the quasi-local expression

L(res)
part,s =

∑
p,m1,m2,n

∫
d3r d3p

ω

ω − p�cs − k‖v‖

×Dfs,0ei(m1−m2)θ δHpm1nδH
∗
pm2n

. (46)

Note that k‖ involves both poloidal numbers m1 and m2 in a
symmetric fashion.

At this point, it is necessary to express the Hamiltonian
contributions δHpmn as functions of the electromagnetic
potential. This is done by performing a Taylor expansion of
the particle Hamiltonian around the guiding-centre location:

δHs(r) = δHs(rgc + rc) =
∞∑
l=0

(rc · ∇)l

l!
δHs(r)|rgc

. (47)

The particle unperturbed motion is described in the local
magnetic basis with fixed directions (e⊥1, e⊥2, e‖) proposed by
Jaeger et al [22]. Its main advantage over the more traditional
local magnetic frame (eα ≡ ∇s/|∇s|, eβ ≡ e‖ × eα, e‖ ≡
B0/B0) lies in the fact that it is well behaved in the vicinity of
the magnetic axis.

The drift approximation, characterized by the ordering
parameter εd ∼ |∇ρi| � 1 with ρ the ion Larmor radius,
is employed. In this framework, the particle position is written
as r ≡ rgc + rc with rgc the guiding-centre location and rc the
Larmor radius vector, given by

rc = −i
ρc√

2
(eiφc e− − e−iφc e+). (48)

with ρc = v⊥/�cs and φ̇c = �cs + O(εd). In this work,
the unperturbed particle motion is described to lowest order in
εd . Accordingly, the correction to the gyro-angle caused by
the slow spatial variation of the basis vectors along the field
line [23] is neglected. The complex polarization vectors are
defined as

e± ≡ e⊥1 ∓ ie⊥2√
2

. (49)

The particle velocity is given by v ≈ v‖e‖ + v⊥ + O(εd)

with
v⊥ = v⊥√

2
(eiφc e− + e−iφc e+). (50)

Note that to lowest order in εd , the variables (v‖, v⊥, φ)

correspond to the cylindrical coordinates of the particle
velocity [19]. Introducing ∇± ≡ ∇ · e∓, the binomial theorem
is employed to perform the following expansion

(rc · ∇)l =
(

ρc√
2

)l l∑
k=0

(
l

k

)
ei(2k−l)(φc−π/2)∇k

+∇ l−k
− , (51)

which after reordering the sums to express the obtained
expression for δHs in terms of the cyclotron phase harmonics
yields the compact formula

δHs(r) =
∞∑

p=−∞
eip(φc−π/2)

∞∑
k=0

(
ρc√

2

)2k+|p| ∇k+
+

k+!

∇k−
−

k−!
δHs(r)|rgc

,

(52)
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Figure 1. Normalized coefficients of the poloidal decomposition at
normalized radius ρ = 0.3 of (a) E⊥1; (b) E⊥2; (c) E‖. Shown are
the results obtained when −32 � m � 32 (Nm = 65),
−48 � m � 48 (Nm = 97) and −64 � m � 64 (Nm = 129). The
considered toroidal number is n = 66.

with {
k+ = k + p, k− = k if p > 0,

k+ = k, k− = k − p otherwise.
(53)

The Hamiltonian at the particle guiding-centre can be
rewritten as

δHs(rgc) ≡ δH0 + δH+1eiφc + δH−1e−iφc , (54)

with 


δH0 ≡ qs(ϕ − v‖A‖),
δH+1 ≡ −qsv⊥A+/

√
2,

δH−1 ≡ −qsv⊥A−/
√

2,

(55)

where A± ≡ A · e∓. This yields

δHs(r) =
∞∑

p=−∞
eip(φc−π/2)

×
1∑

L=−1

eiLπ/2
∞∑

κ=0

(
ρc√

2

)2κ+|p−L| ∇k+
+

k+!

∇k−
−

k−!
δHL, (56)

with

k+ = κ + max(0, p − L), k− = κ + max(0, −p + L),

(57)

yielding for the contribution to the ICRF resonance
harmonic p:

δHps(r) =
1∑

L=−1

ei(L−p)π/2
∞∑

κ=0

(
ρc√

2

)2κ+|p−L| ∇k+
+

k+!

∇k−
−

k−!
δHL,

(58)
It should be noted that in all cases, k+ + k− = 2κ +

|p − L|, which is the exponent of ρc in equation (56), thus
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Figure 2. Contours of the real part of the reconstructed (a) left-handed; (b) right-handed; (c) parallel electric field corresponding to the
spectra shown in figure 1. Contours are equally spaced and range from (a) −4.2 to 4.0 kV m−1; (b) −16.8 to 16.0 kV m−1; and (c) −0.038 to
0.038 kV m−1.

directly providing the small parameter to be considered in
FLR expansions. Another important observation is that the
symmetry of the plasma functional (equation (46)) is ensured
regardless of the order of the Larmor radius expansion without
the requirement that any odd-order terms be included [24].

4. The EVEEVEEVE code

The EVE code is a full-wave solver based on the variational
formulation described previously. It is based on the quasi-
local plasma functional (equation (46)), in which a first order
expanded version of the Hamiltonian (equation (58)) has been
implemented. The quadratic dependence of the functional
on the interaction Hamiltonian makes of EVE a second-order
FLR code. The system of coordinates is (s, θ, φ), with
s the radial coordinate, related to the poloidal flux by the
relation ∇ψ ≡ f (s)∇s, and varying between 0 (centre) and
1 (edge) in the plasma volume. θ and φ are the poloidal and
toroidal angles. The confining magnetic field is written as
B0 = ∇φ × ∇ψ + F(s)∇φ with F the toroidal flux function.
A spectral treatment is applied in the poloidal and toroidal
directions. The components of the potential vector are solved
in the local magnetic frame (eα, eβ, e‖), with e‖ ≡ B0/B0,
eα ≡ ∇s/|∇s| and eβ = e‖ × eα . Any component uk of the
state vector u ≡ (sAα, sAβ, A‖, ϕ/c) is decomposed as

uk(s, θ, φ) =
∑
jmn

α
jmn

k eimθeinφhk(s − sj ). (59)

hk consists of a set of radial finite elements, which are chosen
as a mix of quadratic and cubic Hermite polynomials in order
to prevent potential spectral pollution effects [25]. sj is the
j th spatial grid point and the αkmn

k are the unknowns of the
problem. Furthermore, assuming the equilibrium is toroidally
axisymmetric, the complex conjugate to uk is decomposed as

u∗
k̄
(s, θ, φ) =

∑
j̄ m̄n

α
j̄m̄n

k e−im̄θe−inφhk̄(s − sj̄ ). (60)

In the chosen representation, the parallel wavenumber
appearing in the resonant denominator of equation (46) can be
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Figure 3. Toroidal antenna spectrum for phasing (a) [0, π, 0, π ];
(b) [0, 0, π, π]; (c) [0, π/2, π, 3π/2].

written as

k‖ = n
F

R2B0
+

m1 + m2

2

f

JB0
, (61)

which accounts for geometrical upshift effects. J is the
Jacobian of the (s, θ, φ) system. Note that m1 and m2

represent the poloidal numbers of the two partial resonant
waves, and must not be confused with the poloidal numbers
corresponding to the solution expansion. There is no
conceptual obstacle to the construction of a numerical code
based on these expressions without any requirement to treat the
poloidal direction spectrally. The evaluation of the quasi-local
functional (equation (46)) is, however, numerically costly,
because of the dependence of k‖ on both m1 and m2, which
imposes to perform Fourier transforms for all possible values
of m1 and m2. A significant simplification occurs by using the
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ansatz

k‖ ≈ n
F

R2B0
+

m + m̄

2

f

JB0
. (62)

This assumption is equivalent to neglecting the supplemental
parallel space dispersion caused by the fact that δHpm1n

(respectively δHpm2n) is actually a convolution of the poloidal
harmonics of the solution vector, m (respectively m̄). Although
comprehensive tests of the validity of this approximation are
still needed, practical simulations performed using expressions
(61) and (62) have been found to yield indistinguishable results.
On the other hand, as expected, the use of equation (62)
results in a large reduction in the calculation time. The
plasma is assumed to be surrounded by a vacuum region
delimited by a perfect conductor, on which the condition
Aβ = A‖ = 0 is imposed. The unicity of the solution on
the magnetic axis is automatically verified by considering the
variables u1 ≡ sAα and u2 ≡ sAβ , and imposing u1(s =
0) = u2(s = 0) = 0. The actual values of Aα(s = 0)

and Aβ(s = 0) are subsequently obtained by extrapolation.
Finally the Fourier coefficients corresponding to variables A‖
and ϕ on the vacuum vessel are set to zero for all values
of m �= 0. The three functionals (see equation (3)) are
constructed and the extremalization of expression (4) yields
the (α

jmn

k ) coefficients. The stiffness matrix construction,
inversion and the evaluation of the various energy quantities
have been parallelized and EVE may be executed on various
parallel architectures, with a speedup essentially determined
by the solver performing the stiffness matrix inversion (here,
SCALAPACK), owing to the limited necessary inter-processor
communications involved in all other operations.

The antenna functional is given by

Lant ≡
∫

ds dθ dφJ {jant · A∗ − ρantϕ
∗}. (63)

The current conservation in the antenna structure for a current
oscillating at frequency ω imposes iωρant = ∇ · jant. The
following general form is assumed for jant

J jant = I0σθ (θ)σφ(φ)δ(s − sant)eθ , (64)

where σθ (θ) (respectively σφ(φ)) determines the poloidal
(respectively toroidal) shape of the antenna current on
magnetic surface s = sant.

Equivalently, since the toroidal modes are treated one by
one, we may write

{J jant}n ≡ I0σnσθ (θ)δ(s − sant)eθ , (65)

where σn is the nth toroidal harmonic of σφ(φ).
For ICRF applications, the antenna is assumed to comprise

a set of Ns straps with the current flowing in the poloidal
direction. Denoting �l the algebraic poloidal length between
the antenna short and a given point on the antenna strap, the
following profile is assumed:{

σθ (θ) = σθ (θs) cos
(
β�l

)
for |�l| < Lant/2,

σθ (θ) = 0 otherwise.
(66)

In the previous expression, θs corresponds to the poloidal
angle at the short and Lant is the length of the antenna strap.
β is the LC-constant of the matching circuit [13]. Each strap
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Figure 4. Absorbed power per toroidal number for the phasings
corresponding to figure 3 in the presence of 3He ions. The total
absorbed power is 20 MW.

is centred around toroidal angle φi (i = 1, . . . , Ns), with an
angular width �φi = �wi/Rant where �wi is the strap width
and Rant is the antenna major radius in the equatorial plane.
We set

σφ(φ) =
√

2π

Ns

Ns∑
i=1

1

(�φi)1/2
�

(
φ − φi

�φi

)
exp(iϕi), (67)

where ϕi is the relative phase (in radians) of the ith strap and
�() is the rectangle function. This yields for toroidal mode n,

σn =
Ns∑
i=1

√
�φi

2πNs

sinc

(
n�φi

2

)
ei(ϕi−nφi), (68)

consistent with Parseval’s identity

∞∑
n=−∞

|σn|2 = 1

2π

∫ 2π

0
dφ|σφ(φ)|2. (69)

For illustrative purpose, the EVE code is employed to
simulate ICRF heating in the ITER elmy H-mode plasma
scenario 2 [26]. The plasma parameters are provided by
the ASTRA code [27]. They can be summarized as follows:
major radius R0 = 6.21 m, minor radius a0 = 1.96 m, central
density ne(0) = 10.2×1019 m−3, central electron temperature
Te(0) = 24.8 keV, central ion temperature Ti(0) = 21.2 keV,
where ‘i’ designates the plasma thermal ions: tritium (T),
deuterium (D), helium-3 (3He), thermalized helium-4 (4He)
and beryllium (Be). Also considered are fusion alphas (α),
modelled by an isotropic equivalent Maxwellian with Tα(0) =
1.2 MeV. Two possible scenarios are compared: helium-3
minority ion heating [28] with concentrations ηD = 32%,
ηT = 42%, η3He = 4%, η4He = 4%, ηα = 1%, ηBe = 2%, and
second harmonic tritium heating with ηD = 32%, ηT = 50%,
η4He = 4%, ηα = 1%, ηBe = 2%. The magnetic field at
the geometric centre is B0(R = R0) = 5.3 T and the wave
frequency is f = 53 MHz.
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Figure 5. Real part of the (a) left-handed; (b) right-handed; (c) parallel electric field for [0, π, 0, π ] phasing in the presence of 3He ions for
20 MW absorbed power. Contours are equally spaced and range from (a) −87 to 51 kV m−1; (b) −230 to 190 kV m−1 and (c) −0.255 to
0.255 kV m−1.

These cases have been run with 250 radial points in the
plasma region. Because of the toroidicity, poloidal modes
are coupled by the equilibrium, which entails a consumption
scaling as N2

m in memory (with Nm the total number of poloidal
modes employed in the calculation) and scaling as N3

m in
CPU time. Prior to simulating large physical problems, it is
therefore of interest to perform a convergence analysis and
estimate the minimum required number of poloidal modes.
In figure 1 is shown the normalized Fourier decomposition
of the three components of the electric field (E⊥1, E⊥2, E‖)
versus poloidal number for Nm = 65 (−32 � m � 32),
Nm = 97 (−48 � m � 48) and Nm = 129 (−64 � m � 64)

in the helium-3 minority heating case. The toroidal number is
n = 66.

It appears that with 65 poloidal modes, the obtained
coefficients at the limits of the calculation domain have
decreased by two decades with respect to the m = 0 value.
This decrease reaches four decades with 129 poloidal modes
but clearly, the decomposition corresponds to a solution which
is essentially equivalent to the result obtained with 97 modes.
The latter value has therefore been chosen as a trade-off
between accuracy and computational cost. Compatible with
this value of Nm, 196 angular points have been considered
in the poloidal direction. The three cases actually display
minor visual differences in the reconstructed electric field and
negligible differences in terms of power deposition profiles.
Figure 2 shows the real part of the left-handed (E+ ≡
E⊥1 + iE⊥2), right-handed (E− ≡ E⊥1 − iE⊥2) and parallel
component of the reconstructed electric field obtained with
Nm = 129.

Unlike ray-tracing codes, full-wave codes compute global
solutions corresponding to superpositions of eigenstates of the
considered inhomogeneous plasma. However, because of the
high damping rate of hot plasmas in devices such as ITER,
the results are qualitatively well understood in WKB terms.
Here, for instance, a fast magnetosonic wave excited by the
low field side antenna and propagating towards the high field
side is clearly observed. This wave experiences damping
by the plasma species near the magnetic axis, which results
in a large decrease in the electric field amplitude. A small

fraction of the wave is also converted into an ion Bernstein
wave, which appears with a small wavelength on the high field
side of the mode conversion layer (barely visible in figure 2).
In this scenario, however, the rate of conversion is too small
to have a significant impact on the power split between the
plasma species. Nevertheless, its presence requires sufficient
radial and poloidal resolution to reach satisfactory global
convergence. Like similar full-wave codes, EVE features an
algorithm to artificially damp the IBW wave in the event that
the condition |k⊥ρi | � 1 is not verified, and possibly relax
these numerical requirements [13, 30], but it was not employed
in the present simulations.

The ITER ICRF antenna consists of 24 straps, grouped in
8 poloidal triplets connected in pairs [31]. By introducing
phase shifts between these pairs, various antenna phasings
are possible. In this work, we consider three different
phasings: [0, π, 0, π ], [0, 0, π, π ] and [0, π/2, π, 3π/2]. The
corresponding spectral density for each case, |σn|2, is shown
in figure 3. To perform simulations accounting for the toroidal
structure of the antenna, it is necessary to consider all relevant
modes in the toroidal decomposition. In this work, 551
modes are included in the calculation, i.e. −275 � n � 275.
For comparison, it is also instructive to isolate the dominant
modes in the toroidal spectra, i.e., n = 66 for [0, π, 0, π ]
phasing, n = 26 for [0, 0, π, π ] phasing and n = 33 for
[0, π/2, π, 3π/2] phasing. A total power of PRF = 20 MW is
coupled to the plasma, at frequency f = 53 MHz.

Figure 4 shows the power absorbed for every toroidal
number in the 3He minority heating case. Owing to the
large damping rate characterizing this scenario, the spectral
dispersion with respect to n remains moderate and the profiles
of absorbed power exhibit a dependence over n qualitatively
similar to the spectral density corresponding to each phasing
(figure 3). Figure 5 shows the electric field reconstruction
for the [0, π, 0, π ] phasing at toroidal angle φ = 0 (in front
of the antenna). Although the IBW is more noticeable than
in figure 2, its impact on the power split is negligible. The
difference in magnitude in the electric field between figures 2
and 5 is the result of the wave focusing in front of the antenna,
which is only described when the solution is summed over
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Figure 6. Absorbed power density for [0, π, 0, π ] phasing for
20 MW total absorbed power. Shown as a thin line is the power
profile obtained when only the dominant toroidal number (here,
n = 66) is considered.
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Figure 7. Absorbed power density for [0, 0, π, π ] phasing for
20 MW total absorbed power. Shown as a thin line is the power
profile obtained when only the dominant toroidal number (here,
n = 26) is considered.
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Figure 8. Absorbed power density for [0, π/2, π, 3π/2] phasing for
20 MW total absorbed power. Shown as a thin line is the power
profile obtained when only the dominant toroidal number (here,
n = 33) is considered.

toroidal modes [32]. In figure 6 are shown the corresponding
profiles of absorbed power. For the sake of clarity, only
the most representative species are shown. The composite
power absorption, reconstructed using all toroidal modes, is
compared with the power deposition profile obtained when
only the dominant peak in the toroidal spectrum (n = 66)
is considered. In this case, the latter provides an accurate
representation of the overall power damping. The same

Table 1. Repartition of the wave power between the plasma species
in the 3He minority heating case for [0, π, 0, π ] (column 1);
[0, 0, π, π] (column 2) and [0, π/2, π, 3π/2] phasing (column 3).
Between parentheses is indicated the percentage of power absorbed
when only the dominant peak in the toroidal spectrum is considered.

[0, π, 0, π ] [0, 0, π, π] [0, π/2, π, 3π/2]

Electrons 48.5 (47.7) 43.7 (44.2) 44.4 (47.2)
Deuterium 0.4 (0.3) 0.5 (0.1) 0.4 (0.1)
Tritium 3.8 (3.9) 4.6 (4.9) 4.2 (4.4)
Helium-3 42.5 (44.8) 47.0 (50.1) 46.5 (47.6)
Helium-4 0.1 (0.1) 0.1 (0.0) 0.1 (0.0)
Alphas 4.7 (3.1) 4.2 (0.7) 4.4 (0.7)
Beryllium 0.1 (0.1) 0.0 (0.0) 0.0 (0.0)
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Figure 9. Absorbed power per toroidal number for the phasings
corresponding to figure 3 in the absence of 3He ions. The total
absorbed power is 20 MW.

comparison has been performed for the two other phasings,
namely [0, 0, π, π ] (figure 7) and [0, π/2, π, 3π/2] (figure 8)
and corresponding dominant numbers, respectively n = 26
and n = 33. The agreement remains satisfactory although the
consequences of the differences observed in the profiles in,
e.g., an integrated simulation remain to be assessed. Table 1
summarizes the power fraction absorbed by each plasma
species. Regardless of the phasing, the 3He ions absorb a
large fraction of the power at the fundamental resonance,
which is expected to result in good ion heating [28, 29].
About 5% is absorbed by the tritium ions, at the second
harmonic of the cyclotron resonance. With these parameters,
a significant part of the power is absorbed by the electrons,
through Landau damping and transit time magnetic pumping,
essentially because at 53 MHz, the fundamental 3He and
second harmonic resonant layers of the tritium ions are located
slightly on the high field side of the magnetic axis, i.e. past the
region of good absorption of radiofrequency wave power by
the electrons as the wave propagates towards the high field
side.

The same simulations have been performed in the absence
of 3He ions. In this case, tritium second harmonic heating is
the favoured mechanism. Figure 9 shows the power absorbed
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Figure 10. Real part of the (a) left-handed; (b) right-handed; (c) parallel electric field for [0, π, 0, π ] phasing in the absence of 3He ions for
20 MW absorbed power. Contours are equally spaced and range from (a) −72 to 60 kV m−1; (b) −240 to 190 kV m−1; and (c) −0.240 to
0.230 kV m−1.

versus the toroidal number. Although these spectra exhibit
more isolated spikes than in figure 4, which is characteristic
of a smaller overall single-pass damping rate than in the
3He case, the shapes of the obtained spectra are still similar
to the spectral density of the toroidal decompositions. In
figure 10, the field corresponding to [0, π, 0, π ] phasing is
shown. The second harmonic tritium absorption layer is
clearly seen to result in a large decrease in the electric field
amplitude as the wave propagates towards the high field
side. The power deposition profiles on species are shown in
figure 11 for phasing [0, π, 0, π ]. Unlike in the 3He case,
the alphas absorb a non-negligible fraction of the wave power
and electron absorption, which takes place over the whole
minor radius, is found to be the dominant damping mechanism.
At this frequency, the deuterium ions also absorb a small
fraction of the wave power. It is worth noticing that the
profiles obtained in a calculation based on a single toroidal
number slightly differ from the composite profiles. This is
more pronounced for the [0, 0, π, π ] and [0, π/2, π, 3π/2]
phasings, shown in figures 12 and 13: although the location
of the maximum power absorption is correct, the widths of
the obtained profiles are substantially different. The numbers
corresponding to the power absorption obtained in the second
harmonic tritium case are summarized in table 2 for each
phasing. The discrepancy between the composite solutions
and the single toroidal number solutions results from the
differing levels of alpha absorption. For the sake of clarity,
the corresponding profiles are shown in figure 14. For each
phasing, they are compared with the result associated with the
single toroidal number solution. It is clear that whereas
the composite power depositions are qualitatively similar for
the three phasings, they differ significantly, both from each
other and from the corresponding profiles obtained in single
toroidal number calculations. This is caused by the large
energy of the alphas, which causes their fundamental cyclotron
resonance to be significantly Doppler-shifted. Considering
that thermal particles are representative of the population
resonant with the wave, the approximate location of power
deposition corresponding to a given toroidal number n is
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Figure 11. Absorbed power density for [0, π, 0, π ] phasing for
20 MW total absorbed power. Shown as a thin line is the power
profile obtained when only the dominant toroidal number (here,
n = 66) is considered. In the inset is shown the power absorbed by
deuterons and thermal helium-4 ions.

obtained by solving

ω = �cα + k‖vth,α, (70)

with vth,α the thermal velocity of the alpha particles, �cα their
cyclotron frequency and k‖ ≈ N/R the parallel wavenumber
obtained when the poloidal uphsift effects are neglected. The
Doppler shift causes the second term on the right-hand side
to be large, which results in wide deposition profiles, which
are sensitive to the particular value of n. In figure 14,
the approximate location of the Doppler-shifted resonance
in the equatorial plane is also shown and is representative of
the location of power damping in the single toroidal number
calculations. On the other hand, when all relevant toroidal
numbers are included, this sensitivity is lost and the profiles are
similar for the three phasings. These results demonstrate that
prior to using ICRF simulations based on simplified toroidal
spectra, it is necessary to perform extensive simulations to
ascertain the validity of such an approach. It also shows
that more realistic alpha distributions should be considered,
at least in the second harmonic tritium case: slowing-down
distributions are believed to be more representative of the
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Figure 12. Absorbed power density for [0, 0, π, π ] phasing for
20 MW total absorbed power. Shown as a thin line is the power
profile obtained when only the dominant toroidal number (here,
n = 26) is considered. In the inset is shown the power absorbed by
deuterons and thermal helium-4 ions.
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Figure 13. Absorbed power density for [0, π/2, π, 3π/4] phasing
for 20 MW total absorbed power. Shown as a thin line is the power
profile obtained when only the dominant toroidal number (here,
n = 33) is considered. In the inset is shown the power absorbed by
deuterons and thermal helium-4 ions.

Table 2. Repartition of the wave power between the plasma species
in the second harmonic tritium heating case for [0, π, 0, π ]
(column 1); [0, 0, π, π ] (column 2) and [0, π/2, π, 3π/2] phasing
(column 3). Between parentheses is indicated the percentage of
power absorbed when only the dominant peak in the toroidal
spectrum is considered.

[0, π, 0, π ] [0, 0, π, π ] [0, π/2, π, 3π/2]

Electrons 61.3 (61.8) 55.9 (53.7) 58.3 (60.1)
Deuterium 5.2 (6.1) 5.6 (6.4) 5.1 (5.1)
Tritium 18.5 (19.1) 25.5 (35.0) 23.1 (28.7)
Helium-3 — — —
Helium-4 0.9 (1.0) 1.2 (1.4) 1.0 (1.1)
Alphas 11.9 (10.1) 11.1 (2.8) 11.4 (3.1)
Beryllium 2.3 (2.0) 0.7 (0.7) 1.1 (1.9)

actual population than Maxwellians and can yield significantly
different results [38] but more comprehensive simulations,
relevant to future reactors, also require the inclusion of orbit
effects.

5. Conclusions

The variational approach to the wave problem, initially
proposed in [15] and discussed in this paper has several
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Figure 14. Power deposited on the alpha particles in the second
harmonic tritium heating case for (a) [0, π, 0, π ]; (b) [0, 0, π, π]
and (c) [0, π/2, π, 3π/2] phasing. In each case, the deposition
profile obtained when only the dominant toroidal number is
considered appears as a thin curve. The vertical dashed line denotes
the approximate location (in the equatorial plane) of the
Doppler-shifted fundamental cyclotron resonance for thermal
particles. In the three cases, this resonance is located on the high
field side.

0 0.2 0.4 0.6 0.8 1
Normalized radius

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ow

er
 [a

.u
.]

Kinetic

Poynting

Abs. power

Figure 15. Power balance corresponding to the 3He case in ITER,
for n = 66. Shown are the Poynting flux, the (cumulative) absorbed
power, and the kinetic flux deduced from the energy balance. The
cumulative power coupled by the antenna is also shown as a dashed
line and matches the absorbed power on the vacuum vessel.

advantages over alternative descriptions. Firstly, it provides
a coherent framework to the wave calculation and to the
quasilinear response description as shown, e.g., in [16].
Secondly, it results in symmetric expressions which ensure
that the energy transfers are correctly described. Lastly,
by providing very general expressions, it is flexible enough
to allow various levels of approximations, which should be
determined by the physical problem at hand, and also by the
computational power available. This last point is illustrated by
the development EVE code whose first version, presented in this
paper, is based on a quasi-local second-order FLR derivation
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of the plasma functional. The resulting tool is available to
simulate commonly employed scenarios of ICRF heating in
magnetic fusion plasmas, i.e. fundamental minority heating,
second harmonic heating, fast wave electron heating and mode
conversion electron heating, up to the second harmonic of
the cyclotron resonance. Although in some situations, the
simulations performed with this code are already numerically
demanding, there is no obstacle to the implementation of
more comprehensive expressions in the future. For instance,
the inclusion of finite orbit width effects is conceptually
straightforward: it requires an implementation of the plasma
functional embedding the distribution functions of the various
plasma species expressed in terms of adiabatic invariants
[33, 34]. These distributions are typically provided by a
Fokker–Planck code, ideally based on the same formalism.
It is planned that such self-consistent simulations will be the
subject of forthcoming publications.
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Appendix A. Power balance

It is important to mention that energy conservation relations
are direct consequences of the variational formulation [15].
The time-averaged work exerted by the wave on the particles
in the volume inside magnetic surface ψ is given by

Ẇpart(ψ) = 1

2
�

{ ∫
ψ ′�ψ

d3r′E∗ · jpart

}
(A.1)

It is readily shown that

Ẇpart(ψ) = ω

2
�{Lpart(ψ)

} − 1

2
�

{ ∫
ψ

d2S · jpartϕ
∗
}
, (A.2)

On the other hand, the work provided by the
radiofrequency generator to maintain the oscillating field in
the system is given by

Ẇant(ψ) = ω

2
�{Lant(ψ)

} − 1

2
�

{ ∫
ψ

d2S · jantϕ
∗
}
, (A.3)

Straightforward algebra allows to cast the Maxwellian
functional in the form

−i
ω

2
Lmaxw(ψ) = −iωWfield(ψ) (A.4)

+
1

2µ0

∫
ψ

d2S · (
E∗ × B

) − 1

2

∫
ψ

d2S · jmaxwϕ∗, (A.5)

with

Wfield(ψ) ≡
∫

ψ ′<ψ

d3r′
(

ε0|E|2
2

− |B|2
2µ0

)
, (A.6)

which is a purely real quantity. Introducing the Poynting flux

SPoynting(ψ) ≡ 1

2µ0
�

{ ∫
ψ

d2S · (
E∗ × B

)}
, (A.7)

the combination of equations (A.2), (A.3) and (A.5) yields the
local conservation relation

Ẇpart(ψ) + SPoynting(ψ) = −Ẇant(ψ), (A.8)

A well-known feature of Ẇpart is that it comprises both
a reversible and an irreversible part, whose separation is
delicate [35–37]. More specifically, denoting Pabs the power
transferred from the wave to the plasma species, we have the
relation

Ẇpart(ψ) = Pabs(ψ) + Skin(ψ), (A.9)

with Skin the kinetic flux. The Poynting theorem is thus
obtained in the form

Pabs(ψ) + Skin(ψ) + SPoynting(ψ) = −Ẇant(ψ). (A.10)

To deducePabs from this relation requires the evaluation of
the kinetic flux. In the present approach, however, this step is
unnecessary since the dissipated power is directly available
from the particle functional �(Lpart). To demonstrate this
point, it is necessary to evaluate the secular variation of the
kinetic energy of the particles in interaction with the wave in
the framework of the quasilinear theory. This is done by letting
fs,0 vary on a slow timescale compared with the inverse of the
wave frequency. Keeping second-order terms in equation (12)
and averaging over the three generalized angles to eliminate
fast variations in fs , we deduce the Fokker–Planck equation in
the form

∂fs,0

∂t
= Ĉ +

∂

∂Ji

D
(QL)
ij

∂fs,0

∂Ji

, (A.11)

with Ĉ the collision operator. In the framework of the
Hamiltonian theory, the wave quasilinear diffusion operator
is given by [17]

D
(QL)
ij = π

∑
N

NiNj |δhN|2δ(ω − Nk�k). (A.12)

The total kinetic energy characterizing the particles of
species s is given by

ε = ms

2

∫
d3rd3pv2fs,0(r, p, t), (A.13)

so that the energy increase caused by the power transferred
from the wave to the particles through non-collisional damping
may be written as

Pabs = ∂ε

∂t
= ms

2

∫
d3r d3pv2 ∂

∂Jj

D
(QL)
ij

∂fs,0

∂Ji

. (A.14)

Using d3r d3p = (2π)3 d3J in the integral and integrating
by parts yields

Pabs = −π
ms

2
(2π)3

∫
d3J

(
Nj

∂v2

∂Jj

)
Ni

∂fs,0

∂Ji

× δ(ω − Nk�k)|δhN|2. (A.15)
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The quantity in parentheses may be rewritten as

Nj

∂v2

∂Jj

= 2

ms

Nj

∂E

∂Jj

= 2

ms

Nj�j , (A.16)

so that, using the global resonance condition imposed by the
delta function

Pabs = −ωπ(2π)3
∫

d3JNi

∂fs,0

∂Ji

δ(ω − Nk�k)|δhN|2,
(A.17)

which is strictly identical to the imaginary part of the plasma
functional (19), thereby demonstrating

Pabs = ω

2
�(Lpart). (A.18)

We also deduce from equation (A.2) that the kinetic flux
is given by

Skin(ψ) = −1

2
�

{ ∫
ψ

d2S · jpartϕ
∗
}
. (A.19)

Figure 15 shows the power balance corresponding to
the 3He case in ITER discussed in section 4. After the
field is reconstructed, the power coupled by the antenna is
given by equation (A.3), the Poynting flux is available from
equation (A.7), and the power absorbed on species, Pabs, is
directly deduced from the plasma functional (equation (A.18)).
The kinetic flux is then deduced from the energy balance,
equation (A.10).

It is often convenient to separate the power absorbed
by the various plasma species. Using the decomposition of
equation (6), we may write

Pabs(ψ) =
∑

s

Pabs,s(ψ), (A.20)

with
Pabs,s(ψ) = ω

2
�(Lpart,s(ψ)), (A.21)

which is directly available from the wave calculation and
corresponds to the power absorbed inside magnetic surface ψ .
An important quantity for experiment modelling is the power
density absorbed by species s on magnetic surface ρ. It is
obtained by writing

ps(ψ) = 1

V(ρ)

d�(Lparts,)

dρ

∣∣∣∣
ψ

, (A.22)

with the volume element defined as

V(ρ) = 2π

∮
dθJ (ρ, θ). (A.23)

Appendix B. Plasma functional and adiabatic
invariants

Although action variables are mathematically convenient to
describe the periodic unperturbed motion, it is more practical
to characterize this motion in terms of adiabatic invariants. In
this work, we consider the set of invariants of the unperturbed
motion I ≡ (E, 
, Pφ) with E ≡ msv

2/2 the particle energy,


 ≡ µB0(0)/E with µ ≡ msv
2
⊥/2/B0 the magnetic moment

and B0(0) the magnetic field on axis. Pφ is the canonical
toroidal momentum given by

Pφ ≡ ms

F

B0
v‖ + qsψ, (B.1)

with F the toroidal flux and ψ the poloidal flux. It should be
noted that Pφ is the only invariant which depends explicitly on
the radial position through the poloidal flux ψ .

The first and third action variables are directly linked to
the invariants by the relations J1 = msµ/qs and J3 = Pφ .
We have

∂fs,0

∂Ji

= ∂fs,0

∂Ik

∂Ik

∂Ji

, (B.2)

where ∂fs,0/∂Ik is assumed to be a known quantity. From
equation (14):

∂E

∂Jk

= ∂Hs,0

∂Jk

= �k. (B.3)

It is readily shown that

∂


∂Jk

= 1

E
[�cs(0)δk,1 − 
�k]. (B.4)

Also
∂Pφ

∂Jk

= δk,3, (B.5)

so that

Nk

∂fs,0

∂Jk

= Nk�k

(
∂fs,0

∂E
− 


E

∂fs,0

∂


)

+
N1�cs(0)

E

∂fs,0

∂

+ N3

∂fs,0

∂Pφ

. (B.6)

Using the previous expression in equation (19), the particle
functional may be decomposed as

Lpart,s ≡ L(nres)
part,s + L(res)

part,s , (B.7)

with the non-resonant particle functional defined as

L(nres)
part,s = −ε0

∫
d3rω2

ps |A|2 − (2π)3

×
∑

N

∫
d3J

(
∂fs,0

∂E
− 


E

∂fs,0

∂


)
|δhN|2, (B.8)

Since the equilibrium distribution function is independent
of the generalized angles, it is possible to use the Parseval
identity for the Hamiltonian:

∑
N

|δhN|2 = 1

(2π)3

∫
d3Φ |δHs |2. (B.9)

In accordance with equation (50), the particle unperturbed
velocity is given by vs,0 ≡ v⊥[cos(φc)e⊥1 −sin(φc)e⊥2]+v‖e‖
with φc the gyro-angle. Using d3p = dφc dp‖ dp⊥p⊥, the
integration over φc may be performed, allowing to recast
equation (B.8) in the form

L(nres)
part,s = −q2

s

∫
d3r d3p

∂fs,0

∂E‖

{
|ϕ|2 +

1

ms

(
E⊥ − 2E‖

)|A⊥|2
}
,

(B.10)
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with the parallel and perpendicular energy given by

E‖ = E − B0µ = E

(
1 − 


B0

B0(0)

)
, (B.11)

and

E⊥ = B0µ = E

B0

B0(0)
. (B.12)

It is readily seen that equation (B.10) is a real quantity.
The contribution of the non-resonant functional is thus purely
reactive.

The resonant functional appearing in equation (B.7) is
given by

L(res)
part,s = (2π)3

∑
N

∫
d3J

ω

ω − N · ΩDfs,0|δhN1,N2,N3 |2,

(B.13)

having introduced the differential operator D acting on the
unperturbed distribution function

Dfs,0 ≡
(

∂fs,0

∂E
− 


E

∂fs,0

∂


)
+ p

�cs(0)

ω

1

E

∂fs,0

∂

+

n

ω

∂fs,0

∂Pφ

.

(B.14)

If the distribution function is independent of the toroidal
momentum, the previous expression may be recast in the
convenient form

Dfs,0 =
(

1 − p�cs

ω

)
∂fs,0

∂E‖
+

p�cs

ω

∂fs,0

∂E⊥
. (B.15)

Of particular interest is the case of an anisotropic
Maxwellian characterized by perpendicular (respectively
parallel) temperature T⊥,s (respectively T‖,s), given by

fs,0(r, p) = ns

(2πms)3/2T⊥,sT
1/2
‖,s

e−E⊥/T⊥e−E‖/T‖ . (B.16)

In this case, it is readily shown that the non-resonant
functional can be written as

L(nres)
part,s = ε0

∫
d3 r

msc
2

T‖,s

(
ωps

c

)2

|ϕ|2

+ ε0

∫
d3r ω2

ps

(
T⊥,s

T‖,s
− 1

)
|A⊥|2, (B.17)

which reduces to the expression of Gambier and Samain [15]
if T‖,s = T⊥,s . From equation (B.15), we also have the relation

Dfs,0 = −fs,0

T‖,s
Aps, (B.18)

with

Aps ≡ 1 − p�cs

ω

(
1 − T‖,s

T⊥,s

)
. (B.19)
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Abstract
Waves in the ion cyclotron range of frequency (ICRF) are expected to play a central role in the heating of ITER
plasmas during deuterium (D)–tritium (T) operation. These waves can also be used to drive current by direct electron
damping of the fast wave, provided an appropriate antenna phasing is used. The corresponding current profile is
peaked near the magnetic axis, and can have a beneficial effect on the discharge stability and performance. In this
paper, two scenarios applicable during the activated phase of ITER operation are compared: second harmonic tritium
heating and minority helium-3 heating, which differ in the addition of a small fraction of 3He ions (2%) in the DT
mixture for the latter. The resulting change of the dominant ICRF heating scheme causes the discharge properties to
differ appreciably. In this paper, a full-wave code is coupled to a Fokker–Planck solver and a current drive module
to investigate in detail the effect of ICRF waves on the discharge. The impact of phasing on the scenario in terms
of plasma heating and current drive efficiency is studied by simulating ICRF heating with various antenna toroidal
spectra. It is found that despite a lower current drive efficiency, the addition of 3He in the discharge increases the
single-pass absorption rate, the ion heating fraction, and makes the scenario essentially immune to details in the
toroidal phasing and fast ion properties.

(Some figures may appear in colour only in the online journal)

1. Introduction

Waves in the ion cyclotron range of frequency (ICRF) are
expected to play an important role in the operation of ITER. In
its activated phase, i.e. when the plasma will be comprised of a
mix of deuterium (D) and tritium (T), it is foreseen to use them
mostly for plasma heating [1, 2]. Furthermore, the operation of
tokamaks relies upon the drive and sustainment of a significant
fraction of the toroidal current by non-inductive methods [3].
Whereas electron cyclotron or lower hybrid waves are the
primary candidates for radiofrequency (RF) current drive in
ITER, several schemes involving RF waves in the ICRF have
also been proposed and most of them have been evaluated in
past and ongoing fusion experiments. Among these methods,
fast wave (FW) current drive is obtained by exciting the
fast magnetosonic wave with a toroidally asymmetric antenna
spectrum [4]. Owing to the absence of stringent accessibility
limitations for the FW, and to the availability of reliable RF
generators in the ICRF, this method is attractive for next-step
fusion reactors, including during H-mode operation [5–7]. On
the other hand, FW current drive (FWCD) is known to be
experimentally challenging due to low absorptivity of the FW
electron damping mechanisms and/or to parasitic damping of
the wave by ions, even at rather high harmonics of the cyclotron

resonance [8]. In ITER, the situation is different compared
with most past experiments [9], as no ‘pure’ FWCD scheme
is readily available. The simultaneous presence of multiple
species and the magnetic configuration make it impossible
to exclude all low-order harmonics cyclotron layers from the
plasma in the foreseen frequency range for the ICRF system.
Therefore, the idea is to take advantage of the high electron
temperature in ITER plasmas, and exploit the ICRF waves
whose primary goal is to heat the plasma in order to drive
centrally peaked current. In this respect, the FW driven current
may be considered as an added value of the ICRF system, as
it does not require any supplemental system compared with
the ITER baseline design [4]. In the typical ICRF scenarios
envisioned for ITER, the driven current profile is peaked on
axis, and only the amount of driven current can be controlled to
some extent within the limits given by the maximum available
power, the flexibility of the RF system in terms of toroidal
phasing and the FWCD efficiency. Although the latter is
limited as a result of the preferential interaction of the FW with
thermal electrons, it has been recognized that even a limited
amount of central current may be beneficial in terms of plasma
stability and performance [10, 11].

In this paper, several aspects pertaining to the use of ICRF
waves in the activated phase of ITER are addressed [12]. Two
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ICRF scenarios are compared: (i) second harmonic tritium
heating (DT) and (ii) helium-3 minority heating DT(3He).
Their practical implementations differ in that a small fraction
of 3He ions (2%) have been added to the plasma in the latter
case. This, however, is known to profoundly affect the ICRF
scenario by improving the wave damping and also possibly
the nuclear reaction rate, as was demonstrated in JET [13]. In
each case, the performance of FWCD is analysed in terms of
current drive efficiency. Ideally, the choice of a given antenna
toroidal phasing for the purpose of current drive should not
affect the power split between the plasma species or the wave
coupling properties in a significant way. The minimal set of
ingredients required to address the points discussed previously
is comprised of the following.

• A multi-dimensional full-wave code able to compute
the electromagnetic field excited by the antenna in the
whole plasma volume. The Hamiltonian full-wave code
EVE [14] is employed. Given the axisymmetric nature
of the problem at hand, every toroidal mode is handled
independently.

• A post-processor to recombine the solutions corre-
sponding to individual toroidal numbers, appropriately
weighted, and estimate the power split between species
and the FW driven current. The latter is estimated by
means of the heuristic Ehst–Karney formula which has
been shown to give reliable results [15, 16].

• A Fokker–Planck (FP) solver to evaluate the fast ion
population features resulting from the RF plasma heating.
For this purpose, EVE has been supplemented with a
FP module named AQL, which takes into account the
anisotropic nature of the distribution function. This
module is described in the appendix.

• A one-dimensional full-wave code using radiative
boundary conditions to estimate the per-pass damping rate
in each case. Although it is insufficient to extensively
qualify a given ICRF scenario, this quantity is indicative
of its overall reliability. In fact, low absorption scenarios
are known to be prone to such adverse effects as parasitic
damping and sheath development. In this work, we will
use the METS [17, 18] code.

This paper is organized as follows: in section 2, the
main features of the numerical tools employed for this work
are described. In section 3, the physical parameters and
characteristics of the two scenarios, DT and DT(3He), are
presented. The issue of FWCD is discussed in the same section.
Conclusions are drawn in section 4.

2. Simulation tools and numerical setup

The plasma parameters used in these simulations are based
on those employed in a recent benchmark of full-wave codes
presented in [19] and pertain to the activated phase of ITER.
The magnetic and kinetic equilibrium background plasma
profiles, provided by the PTRANSP code, are shown in figure 1.
The central magnetic field is B0(R0 = 6.2 m) = 5.45 T. Eight
ion species are taken into account: thermal deuterium, tritium,
argon, beryllium, alphas, thermal 4He, 3He and deuterium
beam. The location of the main low-order unshifted ion
cyclotron layers for these species is shown in figure 2. The
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Figure 1. Target profiles employed in the simulations presented in
this paper. (a) Toroidal flux function (left y-axis), safety factor
(right y-axis); (b) thermal temperature of electrons, fuel ions
(deuterium, tritium and helium-3) before heating, and impurities
(left y-axis); electron density profile (right y-axis).
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Figure 2. Main low-order ion cyclotron layers in the planned
frequency range of ITER ICRF generators. The cyclotron
harmonics is shown in parentheses. The vertical dashed line denotes
the working frequency considered in this paper.

plasma equilibrium is provided by the EFIT code, and is
extended by a vacuum region up to a perfectly conducting
wall, which is assumed to coincide with a virtual flux surface.
Preliminary calculations have shown that the precise location
of the vacuum vessel had a negligible influence on the final
result in the context of these simulations, which are all
characterized by a large per-pass damping rate. The ICRF
antenna is located on the low-field side, at midplane position
Rant = 8.38 m. The resulting geometric setup is shown in
figure 3, in which the main cyclotron resonance layers are
shown for the considered working frequency f = 52.5 MHz.
Superthermal species, namely alphas, D beam and the heated
ion, are modelled using equivalent Maxwellians with T‖ �=
T⊥. However, it must be noted that for consistency reasons,
the temperature of the heated species is computed by the
AQL module, in contrast to the latter reference, in which
it was also provided by PTRANSP. Since AQL accounts for
the contribution of every toroidal mode to the RF-induced
quasilinear diffusion, this implies that the fast ion distribution
also accounts for phasing effects. In this paper, we will also use
the nominal value of the ITER system for the total ICRF power,
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Figure 3. Geometric setup of calculation: plasma boundary and
antenna shape (Rant,0 = 8.38). Also shown are 10 flux surfaces,
equidistant in

√
�t . The outermost one coincides with the plasma

boundary. For simplicity, the unshifted main cyclotron layers
obtained for f = 52.5 MHz are shown as vertical lines.

namely PRF = 20 MW as well as PRF = 10 MW. Although
AQL accounts for this difference in the superthermal ion tail
development and since both scenarios appear to be fairly robust
with respect to the background parameters, it is assumed that
the background profiles remain identical when PRF = 20 MW
or PRF = 10 MW. In order to make comparisons between the
DT and DT(3He) scenarios straightforward, the profiles for
the DT case are the same as those provided by PTRANSP for
the DT(3He) case. The only difference is that the helium-3
concentration is set to zero in the latter case, and compensated
by a slight increase in the deuterium density. Evidently, the
heated species is also different, as well as the main absorption
mechanism: tritium heating at the second harmonic of the IC
resonance in the DT case, fundamental (minority) helium-3
heating in the DT(3He) case.

An important aspect in this kind of study is the necessary
resolution required to describe the heating scenario. It was
established that 460 radial points in the plasma, 512 poloidal
angles and retaining poloidal modes between −64 and +64
were sufficient to accurately describe the electromagnetic field
in the whole plasma volume. Note that in these scenarios,
converted waves are nearly absent, which makes the wave
code convergence easier. The ITER ICRF antenna consists
of 24 straps, grouped into 8 poloidal triplets connected in
pairs [20]. By introducing phase shifts between these pairs,
various antenna phasings are possible. In EVE and to describe
the ITER antenna, the antenna current is written as

jant = I0

J
σθ (θ)σφ(φ)δ(ψ − ψant)eθ , (1)

with σθ (θ) (respectively σφ(φ)) a function describing the
geometrical shape of the current sheet located on the radial
surface denoted by ψant in the poloidal (respectively toroidal)
direction. I0 is the total current in the antenna feeder and J

is the Jacobian of the (ψ, θ, φ) system of coordinates, with ψ

the poloidal flux, θ the poloidal angle and φ the toroidal angle.
It is readily deduced for the nth toroidal harmonics

{J jant}n = I0σθ (θ)σnδ(ψ − ψant)eθ . (2)

Setting the constant I0σn to unity, the wave calculation
can be performed for every individual toroidal number. The
corresponding normalized power coupled by the antenna for a
given toroidal mode n, which is a direct output of the code, is
given by

˙̄W ant,n ≡ 1

2
�

( ∫
dψ dθ{J jant,n}n · E∗

n

)
, (3)

where En is the n Fourier harmonics of the wave electric
field. Physically, the RF power coupled by the antenna is thus
given by

Ẇant ≡
∑

n

Ẇant,n = I 2
0 Rc, (4)

with the coupling resistance defined as

Rc ≡
∑

n

|σn|2 ˙̄W ant,n. (5)

In the framework of this antenna model, I0 is essentially
unknown. On the other hand, it is assumed that the total
coupled power, PRF, is a known quantity. Therefore, it is useful
to introduce the normalization constant

wp ≡
√

PRF

Rc
. (6)

For toroidal number n, the power absorbed by the
plasma species is linked to the plasma functional Lpart by the
relation [14]

P̄abs,n = ω

2
�{Lpart,n(ψ)} = − ˙̄W ant, (7)

and corresponds to another direct output of the code. Since the
wave calculation has been performed assuming I0σn = 1, this
quantity is normalized. In order to obtain the power actually
coupled to the plasma, equations (4) and (6) show that

Pabs = w2
p

∑
n

|σn|2P̄abs,n. (8)

Considering the features of the ITER antenna, σn is
given by

σn =
4∑

i=1

√
�φi

8π
sinc

(
n�φi

2

)
ei(ϕi−nφi). (9)

φi is the toroidal angle corresponding to the centre of the ith
strap, �φi ≡ �z/Rant with �z = 0.17 m its width in the
toroidal direction and ϕi corresponds to the applied toroidal
phase shift. Figure 4 shows vacuum spectra obtained for
various inter-strap phasings assuming the plasma responds
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dashed line. The two vertical lines denote the toroidal numbers for
which the propagation of the main coaxial modes is expected in the
considered geometry.

uniformly to each toroidal number n, with the antenna located
at Rant = 8.18 m. In reality, however, the plasma response
depends on n. This is shown in figure 5, where the power
coupled to the plasma assuming σn = 1 for every toroidal
number is shown versus n. Depending on the plasma–antenna
distance �R and the antenna location Rant in the midplane, the
coupled power is found to approximately decrease as

Ẇant,n ∝ exp(−2|n|�R/Rant). (10)

The combination of the antenna vacuum spectrum and of
the attenuation described by equation (10) allows one to define
appropriate boundaries to the considered toroidal spectrum.
The simulations presented in this paper have been performed
retaining toroidal modes between −150 and +150, which is
adequate for an antenna assumed to be located at midplane
major radius Rant = 8.38 m, namely �R ≈ 0.2 m.

In ICRF regimes with significant part of the wave power
directly absorbed by fundamental or harmonic cyclotron

damping, superthermal ion tails are generally observed [1,
21, 22]. In particular, it is necessary to retain fast ion effects
in the self-consistent calculation of power deposition profiles
in the case of second harmonic heating [21]. Furthermore,
in the context of FWCD calculations [8], it is necessary to
simulate the temperature of heated ions: the development of
an ion tail usually results in a modification of the damping
by the considered ion species, and a subsequent change
in the power fraction absorbed by electrons since direct
FW electron damping is sub-dominant compared with ion
cyclotron damping. In this work, we adopt a minimal model
to describe these effects: the AQL module complements
EVE, simulating the time-dependent development of the
superthermal tail of the interacting ion species, retaining
anisotropy effects by developing the distribution function
on a basis of Legendre polynomials [23]. This coupled
wave/FP simulation is performed in an iterative fashion:
the electromagnetic wave is computed first assuming that
all species are thermal (except for D beam and alphas),
including the heated species. The quasilinear diffusion
coefficient is then constructed and the resulting distribution
function for the heated ion is evaluated, accounting for the
antenna toroidal phasing and the absorbed RF power. This
distribution function results from the competition between
the RF wave and the collisions. Since EVE assumes that all
input distribution functions are Maxwellians, an equivalent
temperature is deduced and the wave calculation is performed
with the updated plasma features. The loop is performed until
the distribution function does not evolve which, practically, is
found to occur within about five iterations. The AQL module
is briefly described in the appendix.

3. ICRH scenarios for ITER

With the numerical tools presented previously, we can compare
two scenarios which can be used during the activated phase of
ITER, i.e. DT and DT(3He). As an illustration, figure 6 shows
a comparison of the contours of the right-handed electric field
magnitude in the DT case and in the DT(3He) case, assuming
a total absorbed power of 20 MW and a [0, π/2, π, 3π/2]
phasing. It is immediately clear that the addition of 2% of
3He in the DT mixture results in improved per-pass damping.
This figure shows the result obtained when quasilinear effects
are included. It is worth pointing out that the field pattern is not
dramatically affected by the fact that fast ions are accounted
for. Comparisons with the field obtained when all species
are thermal show that in the DT case, the wave amplitude is
reduced on the high-field side of the cyclotron layer, indicating
an enhancement of the power damping caused by the tritium
tail. In the DT(3He) case, however, the field is essentially
unchanged.

The power deposition profiles corresponding to the cases
shown in figure 6 are shown in figure 7. Whereas the power is
roughly evenly split between electron and tritium ions in the DT
scenario, a large fraction of the power is damped by minority
ions in the DT(3He) scenario (54.9%), the remaining being
absorbed by electrons (30.0%) and tritium ions (14.1%). In
both cases, the alpha damping is found to be very weak: 1.1%
in the DT scenario, 0.3% in DT(3He). An issue which was
encountered in these simulations is the impurity absorption.
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Figure 6. Iso-contours of |E−| in the DT (left) and DT(3He) scenarios (right). The values are given in kV m−1 for 20 MW absorbed power
and the antenna is in [0, π/2, π, 3π/2] phasing.
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Figure 7. Power absorbed by species for [0, π/2, π, 3π/2] phasing
in the (a) DT scenario, (b) DT(3He) scenario when the heated ions
are assumed to be thermal. Reduced spectrum (solid lines) and full
spectrum (dashed lines, barely visible). The right y-axis
corresponds to the cumulative power. Only species absorbing more
than 2% of the total absorbed power (20 MW) are shown.

When the profiles given by PTRANSP are used, EVE predicts a
significant absorption by impurities (mostly argon) in the DT
scenario, as already discussed in [19]. This absorption occurs
at the argon fundamental cyclotron layer on the high-field side
of the plasma. This result is found to be robust from a numerical
point of view: when the resolution is doubled in both the
radial and poloidal directions, this parasitic damping remains
unchanged. On the other hand, it was found that doubling the
argon density results in a large reduction of the corresponding
absorption, which is compatible with damping by minority
argon at its fundamental resonance. Owing to the uncertainties
on the exact density profiles for the impurity species, it was
chosen to use the profiles provided by PTRANSP, but to disregard
damping by species occurring at normalized radius ρ > 0.8
in the final power balance. Clearly, however, this crucial point
with respect to the ICRF operation in ITER deserves further
investigation, as well as extensive comparisons with other
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Figure 8. Comparison of the heated ion distribution function during
EVE/AQL iterations for [0, π/2, π, 3π/2] antenna phasing in the (a)
DT scenario, (b) DT(3He) scenario at radial location ρ = 0.1. The
initial and final distributions appear as solid lines (respectively
dashed lines) for 20 MW (respectively 10 MW) absorbed power.
Each distribution is shown versus normalized thermal velocity for
λ = 0 and λ = 1.

multi-dimensional wave codes. In figure 7, the result obtained
when only one in five toroidal mode numbers are retained in the
toroidal spectrum is also compared with the profiles obtained
when all toroidal numbers are kept. The results are in very good
agreement, which allows one to divide the total computation
time by a factor of 5. It should be noted that scenarios with
lower per-pass damping rate (e.g. in the non-activated phase)
may require more comprehensive toroidal spectra.

The AQL module has been used to evaluate the influence
of quasilinear effects linked to superthermal ions. Figure 8
shows the corresponding distribution functions obtained in
both scenarios in the parallel (λ = 0) and perpendicular
(λ = 1) directions versus velocity normalized to the initial
heated ion velocity, when 10 or 20 MW of ICRF power are
absorbed by the plasma species. Since ion cyclotron damping
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Figure 9. (a) Parallel distribution function; (b) normalized
perpendicular temperature in the DT scenario for [0, π/2, π, 3π/2]
phasing for a total absorbed power 10 or 20 MW at radial location
ρ = 0.1. The dashed lines denote the thermal distributions.

almost completely results in a quasilinear diffusion in the
perpendicular velocity direction [24], AQL always predicts
T⊥ � T‖. In the framework of this model, the only mechanism
responsible for an increase in T‖ is pitch-angle scattering,
predominantly caused by collisions with background ions.
Practically, it is found that after five iterations between EVE

and AQL, the calculation is converged and the distribution
function does not evolve any further. In order to better visualize
the distribution functions and denoting u ≡ v/vth,i with
vth,i ≡ √

2Ti/mi the thermal velocity of the heated ion before
the application of ICRF power, we define the integrated parallel
distribution F‖ and perpendicular temperature T⊥ as

F‖(u‖, ρ) ≡ 2π

∫ ∞

0
du⊥u⊥fi(u‖, u⊥, ρ), (11)

and

T⊥(u‖, ρ) ≡ 2πTi(ρ)

∫ ∞

0
du⊥u⊥

(
u2

⊥
2

)
fi(u‖, u⊥, ρ)

F‖(u‖, ρ)
. (12)

Figures 9 and 10 show F‖ and T⊥/Ti versus the parallel
energy ε‖ for both scenarios when PRF = 10 MW and PRF =
20 MW are coupled to the plasma in the [0, π/2, π, 3π/2]
phasing. It can be observed that the converged distributions
depart significantly from the initial Maxwellians, which
illustrates the importance of quasilinear effects in these
calculations. It is worthwhile noting that both scenarios differ
in that the helium-3 tail pulled by the RF power in the DT(3He)
scenario extends to higher energies than the tritium tail, owing
to the fact that the latter is a fundamental minority scheme,
whereas the former is based on second harmonic heating and
an associated large number of resonant ions.

Another important aspect in theses studies is the influence
of the total RF power. These superthermal ion tails generally
result in significant modifications of the cyclotron damping and
thus the power split between species and associated deposition
profiles [18]. In figure 11 the deposition profiles obtained
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Figure 10. (a) Parallel distribution function; (b) normalized
perpendicular temperature in the DT(3He) scenario for
[0, π/2, π, 3π/2] phasing for a total absorbed power 10 or 20 MW
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Figure 11. Power deposition profiles (left y-axis) and cumulative
power (right y-axis) for [0, π/2, π, 3π/2] phasing in the DT
scenario for a total absorbed power of (a) 10 MW; (b) 20 MW. The
dashed lines show the power obtained when the tritium tail is not
taken into account, whereas the solid lines show the result
accounting for quasilinear effects on the heated ions. Only species
absorbing more than 1% of the total absorbed power are shown.

in the DT scenario for PRF = 10 MW and PRF = 20 MW
are shown. Compared with the situation with thermal T ions,
quasilinear effects tend to enhance the tritium damping, which
in turn reduces electron damping, essentially as a result of
the large Doppler shift of the tritium resonance caused by
increasing T‖. In the considered scenario, the central location
of the ion cyclotron resonance tends to limit the quasilinear
effects on the overall power split. When PRF = 10 MW,
the direct FW electron damping is reduced by ∼0.3 MW ,
whereas this reduction amounts to 1 MW in the 20 MW case.
In figure 12 the deposition profiles obtained in the DT(3He)
scenario for PRF = 10 MW and PRF = 20 MW after the
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Figure 12. Power deposition profiles (left y-axis) and cumulative
power (right y-axis) for [0, π/2, π, 3π/2] phasing in the DT(3He)
scenario for a total absorbed power of (a) 10 MW; (b) 20 MW. The
dashed lines show the power obtained when the helium-3 tail is not
taken into account, whereas the solid lines show the result
accounting for quasilinear effects on the heated ions. Only species
absorbing more than 1% of the total absorbed power are shown.

Table 1. Partition (in per cent) of the wave power between the
plasma species in the DT and DT(3He) scenarios for a
[0, π/2, π, 3π/2] phasing with PRF = 10 MW and PRF = 20 MW.
The two last lines show the power redistributed to electrons (1) in
percentage of power damped by the heated ions, (2) in percentage of
the total RF power, accounting for collisional and direct electron
heating by the wave.

DT DT DT(3He) DT(3He)
(10 MW) (20 MW) (10 MW) (20 MW)

Electrons 45.6 43.8 30.3 30.8
Tritium 50.5 52.2 13.3 11.8
3Helium — — 55.5 55.9

Min → el. (1) 34.7 45.2 16.9 38.6
Power to el. (2) 63.1 67.4 39.7 52.4

EVE/AQL iterations are shown. These calculations yield a total
electron damping slightly increasing at larger PRF compared
with the thermal case. However, this effect is too small to be
really of significance and falls within the range of uncertainty
of the considered model and parameters. This scenario is thus
found to be only marginally sensitive to quasilinear effects,
which results from the fact that fundamental minority heating
is less sensitive to the details of the distribution function than
second harmonic damping [21]. In table 1, the obtained results
in terms of power split are summarized. Also appearing
in this table is the collisional redistribution of the power
damped by fast ions to electrons computed with AQL. In the
DT scenario results, about 2/3 of the total RF power heats
electrons (through direct wave damping + collisions), whereas
the DT(3He) scenario yields at least about 50% ion damping
even for a total RF power of 20 MW.

A side effect of the use of ICRF waves for plasma heating
is the possibility of driving non-inductive current by direct
electron damping of the FW, provided the antenna spectrum
can be made toroidally asymmetric by adapting the inter-strap
phasing. Superthermal tails may affect the driven current
profile, essentially through the modification of the power split
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Figure 13. Driven current profile (left y-axis) and cumulative
current (right y-axis) per absorbed MW for [0, π/2, π, 3π/2]
phasing when the fast ion effects are neglected (dashed) or
incorporated for a total absorbed power of 10 or 20 MW (solid) in
the (a) DT scenario; (b) DT(3He) scenario.

between species. Figure 13 shows the profile of driven current
when the [0, π/2, π, 3π/2] phasing is used. In order to
compare the results obtained for PRF = 10 MW and PRF =
20 MW, the driven current is normalized to PRF. DT and
DT(3He) scenarios differ in the influence of quasilinear effects:
whereas the tritium tail results in stronger ion absorption and
thus lowers the amount of driven current level with increasing
power in the former, the FWCD efficiency is only moderately
changed by quasilinear effects in the latter, as a result of the
characteristics of minority damping. In fact, we observe a
slight increase in the FWCD efficiency at larger PRF but this
difference is quite small.

By reverting the phasing in the antenna straps, e.g.
using [0, −π/2, −π, −3π/2] instead of [0, π/2, π, 3π/2], it
is possible to drive counter-current with FWs, which may be
desirable in terms of plasma scenario. However, the presence
of a poloidal field induces an asymmetry between opposite
phasings and makes it uncertain that the amount of driven
current is the same as in the co-current direction, especially
if the power split between plasma species is modified. In
figure 14, the two phasings are compared in the case of the
DT scenario. Although a minor difference appears in the
power deposition and driven current profiles, the cumulative
quantities show that ∼300 kA of FWCD can be driven in
either co- or counter-current by reverting the antenna phasing,
without significantly affecting the power split, and thus the
bulk heating properties of the considered scenario. The same
conclusion holds for the DT(3He) scenario although the latter is
characterized by a lower FWCD efficiency, which allows one
to drive a maximum ∼200 kA with 20 MW of ICRF power,
as shown in figure 15. We also note that the current profile
is significantly more peaked in the DT scenario than in the
DT(3He) scenario, as a result of the lower per-pass damping,
which has the consequence of improving the wave penetration
and thus the direct electron damping near the plasma centre.

Alternatively to [0, π/2, π, 3π/2], other phasings can be
used to drive current. For instance, it is possible to pair poloidal
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Figure 14. (a) Power absorbed by species for [0, π/2, π, 3π/2]
phasing (solid) and [0, −π/2, −π, −3π/2] phasing (dashed) in the
DT scenario. (b) Corresponding driven current for both phasings.
Only species absorbing more than 1% of the total absorbed power
(20 MW) are shown.
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Figure 15. (a) Power absorbed by species for [0, π/2, π, 3π/2]
phasing (solid) and [0, −π/2, −π, −3π/2] phasing (dashed) in the
DT(3He) scenario. (b) Total driven current for each phasing. Only
species absorbing more than 1% of the total absorbed power
(20 MW) are shown.

straps and use a [0, 0, π/2, π/2] toroidal phasing, as done
for instance in JET [2], a configuration sometimes referred
to as ‘super-dipole’. In figure 16, we compare phasings
[0, 0, π/2, π/2] and [0, 0, −π/2, −π/2] in the DT scenario.
Compared with the [0, π/2, π, 3π/2] phasing, super-dipole
phasings are characterized by a lower averaged value of
k‖. The contribution of the poloidal field is thus markedly
more important. We observe that a reversal of the antenna
phasing does not yield the same current magnitude, as a
result of the variation of electron damping (higher ω/k‖vth,e

tends to favour ion damping) and sensitivity of the current
drive efficiency (higher ω/k‖vth,e results in better FWCD).
The driven current in the DT scenario is found to reach
−400 kA in the counter-direction, but only half this magnitude
in the co-current direction upon reverting the toroidal phasing.
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Figure 16. (a) Power absorbed by species for [0, 0, π/2, π/2]
phasing (solid) and [0, 0, −π/2, −π/2] phasing (dashed) in the DT
scenario. (b) Corresponding driven current for both phasings. Only
species absorbing more than 1% of the total absorbed power
(20 MW) are shown.
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Figure 17. (a) Power absorbed by species for [0, 0, π/2, π/2]
phasing (solid) and [0, 0, −π/2, −π/2] phasing (dashed) in the
DT(3He) scenario. (b) Total driven current for each phasing. Only
species absorbing more than 1% of the total absorbed power
(20 MW) are shown.

The same calculation has been performed for the DT(3He)
scenario. As shown in figure 17, in this case, reverting the
toroidal phasing results in an essentially exact opposite driven
current. It should be pointed out that the operation at low
values of k‖ is experimentally challenging. Furthermore,
the per-pass damping rate is comparatively lower than for
dipole-like phasings, resulting in ‘choppier’ current profiles,
reminiscent of deposition profiles obtained in low absorption
ICRF scenarios.

In order to quantify the flexibility of the ITER ICRF
system in terms of FWCD, it is interesting to perform a
systematic study of various inter-strap phasings. In line
with the procedure employed so far, for each toroidal
phasing, EVE should be iterated with AQL until a steady-state
distribution function is obtained, which is hardly practical
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Figure 18. (a) Power fraction absorbed by species; (b) total driven
current driven by FWs for antenna phasings in the ‘dipole’
configuration, for the DT scenario. The dashed curves show the
result obtained when fuel ions are assumed to be thermal (top),
whereas the solid curves show the result obtained when the
superthermal tail is considered for a total absorbed power of 10 MW
(thin line) or 20 MW (thick line). Only species absorbing more than
1% are shown.

in terms of computational requirements. Furthermore, even
though quasilinear effects have been found to be important,
the final features of the heated species appear to be only
weakly dependent on the toroidal phasing. Consequently,
we have considered the individual solutions computed by
EVE for [0, π/2, π, 3π/2] phasing and recombined them
for various dipole-like phasings, i.e. phasings of the type
[0, �φ/2, �φ, 3�φ/2] with �φ varied between −π and π .
The result is shown in figure 18 for the DT scenario, and
in figure 19 for the DT(3He) scenario. In both cases, the
calculation has been performed for PRF = 10 MW and PRF =
20 MW.

In both the DT and DT(3He) cases, we observe that
the [0, ±π/2, ±π, ±3π/2] phasing is not quite optimal in
terms of current drive efficiency. Phasings characterized by
lower values of 〈k‖〉 where 〈·〉 denotes averaging over toroidal
numbers allow one to drive more current, even though electron
damping decreases. Another interesting effect is that in the DT
scenario, even though the curve JFW(�φ) is approximately
symmetrical in the case PRF = 10 MW, it is not the case when
the RF power is 20 MW since quasilinear effects distort the
plasma response to individual toroidal numbers. Overall, we
find that it is possible to expect up to 200 kA with 10 MW, and
up to 400 kA with 20 MW in the DT case. However, a trade-
off needs to be found between plasma heating (and ion tail
generation) and current drive, since the power split is modified
by the phasing in a rather significant way. In this respect,
the DT(3He) scenario is more robust, as shown in figure 19,
since 3He damping always dominates. However, we note that
the magnitude of the driven current is approximately half the
magnitude obtained in the DT scenario. This conclusion, in
terms of FWCD efficiency, is summarized in figure 20 in which
the raw efficiency, JFW/PRF, and the normalized efficiency
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Figure 19. (a) Power fraction absorbed by species; (b) total driven
current driven by FWs for antenna phasings in the ‘dipole’
configuration, for the DT(3He) scenario. The dashed curves show
the result obtained when fuel ions are assumed to be thermal (top),
whereas the solid curves show the result obtained when the
superthermal tail is considered for a total absorbed power of 10 MW
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Figure 20. FWCD efficiency in (a) the DT scenario; (b) the
DT(3He) scenario; for phasings in the ‘dipole’ configuration. The
right y-axis shows the corresponding normalized efficiency. Thin
(respectively thick) curves correspond to the efficiency obtained
with 10 MW (respectively 20 MW) absorbed power. The vertical
dashed lines denote usual phasings.

ηFW ≡ JFW/PRF × R0n̄e,20 versus toroidal phasing (n̄e,20 is
the line-averaged electron density in units of 1020 m−3) are
shown. FWCD efficiencies of the order ∼0.015–0.025 A W−1

are obtained in the DT scenario, corresponding to ηFW ∼ 0.1–
0.2 A W−1 m−3. In the DT(3He) case, the sensitivity to the
total absorbed power is weak, but the efficiency is also lower:
∼0.01 A W−1, corresponding to ηFW ∼ 0.05 A W−1 m−3.

All of the simulations presented so far assume that the
ICRF power is entirely coupled and absorbed by the plasma,
accounting for multi-pass damping, but disregarding important
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Figure 21. Single-pass damping rate predicted by METS when fuel
ions are assumed to be thermal (dashed) or heated by ICRF waves
(solid) versus k‖ at the antenna, when the toroidal spectrum is
assumed to be single-valued. The two vertical dashed lines show
peak values corresponding to the [0, ±π/2, ±π, ±3π/2] and
[0, 0, ±π/2, ±π/2] phasings. (a) DT scenario; (b) DT(3He)
scenario.

effects such as RF sheaths and parasitic edge losses. Although
this problem is very difficult to address extensively [2, 25],
it has been shown that the per-pass damping rate can be
considered as a first indication of the overall quality of a given
ICRF scenario [26]. For this study, the METS code [17, 18]
has been modified to use the same input distribution functions
as EVE, allowing one to estimate the power split between
species and the per-pass damping rate. METS has been run
for various values of the parallel wavenumber at the antenna
(k‖,ant), assuming the heated ions are thermal or accounting
for quasilinear effects on the fuel temperature. The results
are shown in figure 21. It should be noted that the code
convergence was sometimes difficult to obtain at very low
values of k‖.

It clearly appears that the DT(3He) scenario is
characterized by a higher per-pass damping rate than the DT
scenario, especially when quasilinear effects are accounted
for. We note also that the plasma response is not symmetrical
with respect to k‖ owing to the presence of the poloidal field.
In agreement with EVE/AQL, the effects of superthermal tail,
although necessary to describe the scenario accurately, have
a rather limited impact, except for |k‖,ant| � 2 m−1. In this
figure the average values of k‖,ant characterizing the dipole and
super-dipole phasings discussed above (〈k‖,ant〉 = ±3.6 m for
dipole phasing, 〈k‖,ant〉 = ±2.4 m for super-dipole phasing)
also appear. The latter is characterized by a lower electron
damping, and a lower per-pass efficiency, especially in the DT
scenario.

4. Conclusions

In this paper, a detailed comparison of two ICRF scenarios
applicable to the activated phase of ITER has been made
using the EVE full-wave code, associated with the AQL module
to describe the fast ion tail development in a simplified
fashion. The corresponding plasmas only differ in that
the deuterium–tritium mixture is supplemented with a small

fraction of helium-3 in the latter. However, from a ICRF
point of view, they exhibit significant quantitative differences:
firstly, the different dominant damping mechanism results in
differences in the fast ion tail development and associated
collisional relaxation. In particular, the DT scenario is
characterized by dominant electron heating (by combined
direct wave absorption and collisional heating), whereas
the DT(3He) scenario results in at least half of the RF
power on background ions. Even though quasilinear effects
have been found to be significant, both scenarios exhibit a
rather limited sensitivity to details of the heated distribution
function, especially the DT(3He) case. FWCD performance
has been evaluated for various phasings and it is found that
the ICRF system envisioned for ITER allows one to drive
non-negligeable central current with only minor impact on
the heating properties of the RF waves. The DT case is
characterized by the highest maximum FWCD efficiency
(ηFW ∼ 0.1–0.2 A W−1 m−3), wheareas we obtain ηFW ∼
0.05 A W−1 m−3 in the DT(3He) case. On the other hand,
calculations performed with the METS code have shown that the
DT(3He) case is characterized by a larger single-pass damping
rate, associated with a relative insensitivity to both the toroidal
phasing and quasilinear effects. It is thus expected that the
latter will be more robust from an operational standpoint.
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Appendix. The AQL module

The AQL is a quasilinear module which complements the code
EVE. It is aimed at estimating the quasilinear response of the
heated ions to the ICRF power, accounting for collisions with
the background plasma. Although EVE can be coupled to much
more comprehensive FP codes, AQL is a fast module which
provides an interface between the wave calculation on the one
hand, and the description of the heated ion distribution function
and its subsequent relaxation on thermal particles on the other
hand.

The orbit-averaged FP equation for the heated ion is
written as

∂fi

∂t
= 〈C(fi)〉 + 〈Dw(fi)〉, (A.1)

where C is the collision operator and Dw is the wave quasilinear
operator.

On every magnetic surface ψ , it is assumed that the
interaction takes place at poloidal angles θres, determined by
the maximum of the 2D power deposition profile pi(ψ, θ)

computed by EVE, when θ is varied between 0 and π (above
midplane) and when θ is varied between π and 2π (below
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midplane). For a given interaction angle θ = θres, we thus
obtain a local FP equation with the collision term

C(fi) = 1

v2

[
∂

∂v
v2

(
Dvv

∂fs

∂v

)
− ∂

∂v
v2Fvfs

]

+
1

v2

[
∂

∂λ
Dλλ

∂fs

∂λ

]
. (A.2)

λ ≡ v‖/v where v‖ is the parallel velocity at θ = θres.

Dvv ≡
∑

β

�i/β

2v
�(uβ), (A.3)

Fv ≡ −
∑

β

�i/β

v2

mi

mβ

�(uβ), (A.4)

Dλλ ≡
∑

β

�i/β

2v
(1 − λ2)�(uβ). (A.5)

In these expressions, the sum is to be taken over
background species and uβ is the velocity normalized to the
thermal velocity of species β. The expressions for �i/β , � and
� can be found, e.g., in [23].

The main contribution to the wave quasilinear operator is

Dw(fi) = 1

v⊥

∂

∂v⊥
v⊥D(QL)

v⊥v⊥
∂fi

∂v⊥
, (A.6)

with

D(QL)
v⊥v⊥ = D0

∑
θres

|E+Jp−1(k⊥v⊥/�ci)

+E−Jp+1(k⊥v⊥/�ci)|2. (A.7)

where E+(ψ, θ) (respectively E−(ψ, θ)) corresponds to the
left-handed (respectively right-handed) electric field, which is
directly provided by EVE. Jn is the nth order Bessel function
of the first kind. p is the harmonic number of the cyclotron
resonance, i.e. p = 1 for minority heating and p = 2
for harmonic damping. In the previous expression, the local
value of �ci ≡ �ci(ψ, θres) is used. k⊥ is the perpendicular
wavenumber magnitude, which is deduced from the finite
Larmor radius (FLR) FW dispersion relation evaluated using
the local plasma parameters, and approximating the parallel
wavenumber as k‖ ≈ n/R(ψ, θres). D0 is a parameter which
is adjusted so as to equate the quasilinear power absorption
profile, given by

pQL ≡ mi

2

∫
d3v v2Dw(fi), (A.8)

and the power profile directly computed by EVE [14] at all
times, until convergence on D0 is achieved. Afterwards the
solution is introduced in EVE. This implies an iterative process
where EVE and AQL are run successively until the distribution
function does not evolve anymore. In practice, for the cases
presented in this paper, this occurs in five iterations or less.
To solve equation (A.1), the distribution function is projected
onto an orthogonal polynomial basis as follows:

fi(v, λ, t) =
L∑

m=0

fi,m(v, t)Pm(λ), (A.9)

where m is the degree of the polynomials. This decomposition
allows one to decouple the variables v and λ and is, in
principle, exact as long as the number of polynomials L →
∞. Nevertheless, the practical resolution of the FP equation
requires a finite number of polynomials and choosing an
arbitrary L < ∞. In this paper L = 20. This choice makes
the numerical resolution easier since the initial 2D problem in
the velocity space is reduced to a 1D problem. The collision
and diffusion operators become

〈C(fi)〉 = 1

v2

∂

∂v
v2

(
Dvv

∂fi,m

∂v
Pm − Fvfi,mPm

)

+
1

v2

∂

∂λ
Dλλfi,m

dPm

dλ
(A.10)

〈Dw(fi)〉 = 1 − λ2

v2

∂

∂v

[
vD(QL)

v⊥v⊥

(
v
∂fi,m

∂v
Pm − λfi,m

dPm

dλ

)]

− 1

v2

∂

∂λ

[
λ

(
1 − λ2

)
D(QL)

v⊥v⊥

(
v
∂fi,m

∂v
Pm − λfi,m

dPm

dλ

)]
.

(A.11)

We can then multiply these two operators by Pn for
n = 0, · · · , L, integrate between λ = −1 and λ = 1 and
separate the derivatives following their order, so that we can
write the following set of partial differential equations:{

∂fi,m

∂t
= α(2)

m,n(v)
∂2fi,m

∂v2
+ α(1)

m,n(v)
∂fi,m

∂v

+α(0)
m,n(v)fi,m

}
n=0,...,L

, (A.12)

where the α coefficients are defined as

α(2)
m,n(v) = Dvv‖Pm‖2δmn + D00,m,n(v) (A.13)

α(1)
m,n(v) =

(
1

v2

d

dv

(
v2Dvv

) − Fv

)
‖Pn‖2δmn +

1

v2

d

dv

× (
v2D00,m,n(v)

) − 1

v

(
D10,m,n(v) − D01,m,n(v)

)
(A.14)

α(0)
m,n(v) = 1

v2

[
〈Pn,

∂

∂λ

(
Dλλ

dPm

dλ

)〉
λ

− d

dv

(
v2Fv‖Pn‖2δmn + vD10,m,n(v)

)
− D11,m,n(v)

]
,

(A.15)

where 〈a, b〉λ ≡ ∫ 1
−1 dλ (ab) and the following integrated

diffusion coefficients are defined:

D00,m,n(v) =
∫ 1

−1
dλ (1 − λ2)D(QL)

v⊥v⊥PmPn (A.16)

D10,m,n(v) =
∫ 1

−1
dλ λ(1 − λ2)D(QL)

v⊥v⊥
dPm

dλ
Pn (A.17)

D01,m,n(v) =
∫ 1

−1
dλ λ(1 − λ2)D(QL)

v⊥v⊥Pm

dPn

dλ
(A.18)

D11,m,n(v) =
∫ 1

−1
dλ λ2(1 − λ2)D(QL)

v⊥v⊥
dPm

dλ

dPn

dλ
. (A.19)
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Abstract
Evidence for the impact of energetic particles (EPs) on turbulence is given in this paper.
Firstly, the excitation of electrostatic instabilities in linear gyrokinetic simulations performed
with the global GYSELA code by introducing distribution functions typical of fast ions in
tokamak plasmas is presented. The obtained mode is unambiguously characterized as an
EGAM, i.e. a geodesic acoustic mode (GAM) excited by EPs. The influence of EGAMs on
turbulence and associated transport is then analyzed by implementing a source adapted to the
inclusion of fast particle populations in non-linear simulations. This source successfully
excites EGAMs in the presence of turbulence, which leads to a drastic reduction of the
turbulent transport. However, this reduction is only transient; it is followed by an increase of
the turbulent activity, characterized by a complex interaction between the EGAMs and the
turbulence. In the subsequent steady-state regime, turbulent transport appears to be modulated
at the EGAM frequency.

(Some figures may appear in colour only in the online journal)

1. Introduction

Resulting either from the nuclear fusion reactions occurring in
the plasma or from external sources, such as ion cyclotron
resonance frequency (ICRF) heating and neutral beam
injection (NBI) systems, energetic ions are prevalent in modern
and future fusion devices. In these experiments, plasma
turbulence has also been identified as a major determinant
of the energy confinement time and hence of the discharge
performance as a whole. In-depth investigation of the potential
interactions between the turbulence and energetic particles
(EPs) is therefore essential toward reliable performance
predictions in next-step fusion reactors.

The direct impact of turbulence on EPs has been found
to be limited [1]. The influence of EPs on turbulence, on
the other hand, has received relatively little attention so far.
The possibility of controlling, to some extent, the creation
and features of the fast ion populations opens the possibility
of a potential action on an intrinsically self-regulated system
involving turbulence, mean flows, zonal flows [2] and also
higher frequency phenomena, such as geodesic acoustic modes

(GAMs) [3]. Although the latter have an efficiency presumably
smaller than stationary or low frequency flow shear generation
mechanisms [4], they have been shown to play a central role
in the L–H transition, which is believed to involve the same
actors in the plasma edge [5].

The reason why GAMs are only observed in the plasma
edge, however, is because they are subject to strong Landau
damping and therefore cannot impact core turbulence in
a stationary fashion. The possibility of overcoming this
limitation by exciting similar modes with fast particles
therefore represents an appealing prospect. In this case, the
mode is usually referred to as an EGAM; it has been predicted
theoretically [6, 7] and has unambiguously been observed in
experiments [8, 9]. Recently, detailed numerical studies of
the EGAMs properties [10] and their influence on turbulence
[11] have been conducted in the framework of gyrokinetic
simulations. Another advantage of EGAMs is that unlike
GAMs, which are non-linearly generated by the turbulence
itself, the EP sources can be tuned to some extent, opening the
possibility of turbulence control in the plasma core.
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Figure 1. (a) Normalized frequency (left y-axis) and linear damping rate (right y-axis) of the φ10 oscillation versus fast ion concentration.
(b) Dependence of the linear threshold versus injection velocity and fast particle concentration. The points corresponding to v0 = 4 and
shown in (a) are reported.

2. EGAMs in gyrokinetic simulations

In this paper, we present flux-driven simulations performed
with the GYSELA code [12, 13]. The standard gyrokinetic
equation for the full-f ion gyro-centre distribution function
F can be written as

∂F

∂t
+ v · ∇F + v̇‖

∂F

∂v‖
= C(F ) + Sth + SEP, (1)

where C(F ) represents the collision operator, whose features
are extensively discussed in [13]. Sth is the thermal source
and SEP is the source aimed at introducing fast EPs in the
simulations. The electrostatic limit is considered and electrons
are assumed adiabatic. The magnetic topology consists
of concentric toroidal magnetic flux surfaces with circular
poloidal cross-sections. In this work, the time is normalized
with respect to ω−1

c ≡ mi/eB0 with e the elementary charge,
mi the ion mass and B0 the confining magnetic field on the axis.
Temperatures (respectively, velocities) are normalized to the
bulk temperature Ti (respectively, bulk thermal velocity vth).

In order to check the possibility of observing EP
instabilities in gyrokinetic simulations and also characterize
them as extensively as possible, linear calculations without
turbulence have been performed. This has been done by
setting C(F ) + Sth + SEP = 0 in equation (1) and assuming
flat equilibrium profiles to make sure that the ITG turbulence
is not excited. In this case, the initial equilibrium distribution
function is written as F(t = 0) ≡ Feq(1 + ε(r) sin(θ)) with
θ the poloidal angle and ε(r) the amplitude of the initial
perturbation. Feq is made of the sum of a thermal and a
fast particle contribution, i.e. Feq ≡ Feq,i + Feq,h with Feq,i

a Maxwellian characterized by the equilibrium density ni and
the temperature Ti. Feq,h is a bump-on-tail distribution, which
is written as

Feq,h ≡ FM,h exp

(
− v2

‖
2Th

)
cosh

(
v0v‖
Th

)
, (2)

where FM,h is a Maxwellian characterized by the density nh

and the temperature Th. v‖ is the parallel velocity and v0 is
representative of the excited parallel velocity. Locally, this
distribution function may exhibit a positive slope with respect
to energy, i.e. ∂F/∂E > 0, which is a necessary condition for
the mode excitation.

It has been predicted that EGAMs are unstable only when
the fast ion density exceeds a given threshold [6, 10]. A scan
in the energetic ion density has therefore been conducted with
GYSELA by varying the fast ion concentration (nh) in the model
distribution function (equation (2)). The other parameters are
Th = 1 and v0 = 4. From the calculation result, �(φ10), the
steady-state oscillation of the (m, n) = (1, 0) component of
the electrostatic potential φ representative of the EGAM, is
Fourier analyzed in time. This yields the mode frequency ω.
The linear growth rate, γ , is deduced from the time evolution.
The scan results are shown in figure 1(a).

In the presence of EPs, an oscillation in φ10 is
systematically observed at ω ∼ 0.5ωGAM, including below
the linear threshold. It is worthwhile mentioning that a peak at
ω = ωEGAM is also apparent on other Fourier components
as a result of mode coupling in toroidal geometry, but it
is systematically most pronounced on �(φ10), viz. the up–
down asymmetric part of φ, as expected for an EGAM. The
frequency (respectively, growth rate) decreases (respectively,
increases) with the fast ion concentration. These results are
consistent with theoretical predictions [6] regarding EGAMs.
In order to further characterize the observed oscillation, the
obtained results are compared to a theoretical model derived
in [10]. In this reference, the stability diagrams of EGAMs for
two model distribution functions and various parameters are
established. In figure 1, the stability diagram corresponding
to the distribution function given by equation (2) with Th = 1
is shown. The simulation points appearing in figure 1(a) with
v0 = 4, are reported in this diagram and show that the threshold
observed in the numerical simulations is in good agreement
with the theoretical prediction. These results point to the
successful excitation of EGAMs by fast ions in GYSELA.

3. Turbulent simulations in the presence of EPs

To analyze the interaction between fast ions and turbulence
mediated by EGAMs, it is necessary to excite the mode in the
ambient turbulence. Since GYSELA simulations are flux-driven
and account for collisions, the procedure discussed previously
for linear simulations cannot be applied. Indeed, any initial
distribution function will rapidly thermalize and the EGAMs
drive (∂F/∂E > 0) will vanish as soon as the system relaxes
toward equilibrium. A source aimed at creating fast particles

2
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Figure 2. Schematic representation of the source of an EP versus
parallel velocity for v̄0 = 2 and T̄‖,s = 0.5.

has therefore been implemented in GYSELA. This bears some
resemblance to actual experiments in which ICRF sources or
neutral beam injectors are used to heat the plasma by injecting
energy. It is worthwhile mentioning that these sources also
inject other fluid moments as well, such as momentum or
vorticity into the discharge. In the framework of this study,
however, it is desirable to separate the various effects; the
source is therefore designed so as to inject only energy in
the parallel direction. This is done by using the following
form [15] for SEP (see equation (1))

SEP = S0(r, t){S‖(v̄‖ + v̄0) + S‖(v̄‖ − v̄0)}e−µ̄B . (3)

In the previous expression, v̄0 ≡ v0/
√

2T‖,s is the parallel
injection velocity and v̄‖ ≡ v‖/

√
2T‖,s . Both are normalized

with respect to parallel temperature T‖,s , characterizing the
source. µ̄ is the magnetic moment, normalized to the
transverse temperature of the source T⊥,s , which is set to 1
in these simulations. The symmetry of this form with respect
to v‖ ensures that the constraint of zero momentum injection
is fulfilled. In figure 2(a), a schematic representation of the
source effect is shown versus the parallel energy for v̄0 = 2
and T‖,s = 0.5. The source has the effect of pumping particles
around v̄0, either increasing or decreasing their parallel velocity
to maintain a constant density.

A difficulty arising when assessing the effect of EGAMs
on turbulence is to clearly isolate this effect when comparing
simulations with or without the modes. A possibility would be
to simply set SEP to zero in a reference simulation and to a finite
value in a simulation with EGAMs, but the obtained results
would differ in the total injected power. Consequently, the
ITG turbulence would have differing characteristics regardless
of EGAMs; so a quantitative assessment of the effect of the
mode would be quite complicated. The procedure employed
in this study is thus to compare two simulations with the fast
particle source switched on, but with v̄0 = 0, T̄‖,s = 1 on the
one hand and v̄0 = 2, T̄‖,s = 0.5 on the other hand. These
conditions ensure that the total injected power is rigorously
the same in both cases. However, in the first one, the source

Figure 3. Radial profiles of the thermal source (shadowed blue
area), the EP source (shadowed red area), the ion temperature (solid
black line) and the diffusive regions in the boundary of the
simulation box.

does not induce a positive slope in the distribution function. As
expected, no EGAMs are observed in the simulation. Although
the EP source is used in both situations, the first case (v̄0 = 0)
will hereinafter be referred to as ‘without EPs’, whereas the
second case (v̄0 = 2) will be deemed ‘with EPs’.

Two such simulations are compared, using the same
thermal source with an injected power of 4 MW. The
collisionality is ν� = 0.02 (banana regime) and the safety
factor q profile is parabolic with a relatively low magnetic
shear (0 < s < 0.4), such that q ≈ 2.7 at the mid-radius. The
normalized Larmor radius is ρ� = 1/150. The initial density
and temperature profiles are characterized by R/Ln = 2.2 and
R/LT = 6.5 respectively, with R the major radius and Ln and
LT the gradient lengths. Since there is no particle transport,
Ln remains constant. Both simulations are strictly identical
in the time window t < tinit , during which only the thermal
source is used. At t = tinit , turbulence has reached a statistical
steady state; the fast particle source is switched on, leading
to an additional input power of 2 MW. The radial profiles
of the thermal and EP sources are represented in figure 3.
Whereas the thermal source is peaked and localized only in
the inner radial region, the EP source spreads over an extended
region to minimize its direct impact on the temperature profile.
The initial temperature profile and the diffusive boundary
regions are plotted in the same figure; in which artificial
diffusion and increased collisionality are introduced in order
to damp turbulence and regularize the distribution function in
the vicinity of the radial simulation boundaries [13].

Firstly, the ability of the EP source at inverting the
distribution function and potentially excite EGAMs, is checked
by plotting ∂F/∂v‖ at the resonant velocity v‖,res = qRωGAM

in figure 4.
We observe that after the EP source switch-on, the

distribution function is reversed in the outer region ρ � 0.5. In
order to determine whether EGAMs are excited, we compare
the frequency spectrum of �(φ1,0) in both situations. The
result is shown in figure 5. In the presence of fast particles,
a clear peak is observed at ω ≈ 0.4ωGAM, corresponding
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Figure 4. Time evolution of the derivative of the distribution
function at the EGAM resonant velocity.

Figure 5. Amplitude of �(φ10) in the presence (red line) and in the
absence of fast particles (blue, dotted line) (see [11]).

to the EGAM frequency ωEGAM already observed in linear
simulations. A secondary lower peak is observed around
the harmonic frequency ω = 2ωEGAM, which we attribute
to the resulting non-linear wave–wave interaction. Another
observation is that the EGAM frequency is clearly embedded
in the turbulent spectrum. This has the consequence that
the interaction between EGAMs and turbulence is potentially
strong, but also precludes the use of simple models based
on scale separation assumptions to investigate it in detail.
Interestingly, we note in figure 4 that the distribution function
slope remains negative at inner radii (ρ = 0.35 in the figure) but
EGAMs are nevertheless observed at these positions, despite
the fact that they are linearly stable. This underlines the need
for a global code, with no separation between equilibrium and
fluctuating quantities, to study these phenomena. Regular
GAMs are also systematically observed in the initial phase
of the simulations but they are damped, as discussed in [14];
therefore, they are not likely to play any significant role in
regulating the turbulence in the plasma core.

A relevant quantity to characterize the turbulent transport
is the thermal diffusivity χE×B , which is governed by

Figure 6. 2D representation of the E × B heat diffusivity versus
normalized radius and time [11], showing the three phases discussed
in the article.

fluctuations of the radial component of the E × B drift
velocity vEr

χE×B ≈ − QE×B

ni∇rT
, (4)

where QE×B = 〈vErp〉 is the radial heat flux associated
with vEr and p is the pressure. These quantities are directly
available from the simulations.

In figure 6, χE×B is shown versus the time and minor
radius. Three phases, denoted A, B and C, are visible: (A) the
EP source is applied to an established steady-state turbulent
regime, (B) a transport barrier develops and (C) EGAMs and
the turbulence coexist and interact with each other in a non-
trivial fashion.

In order to gain more insight into the turbulent transport
in these simulations, figure 7 shows the evolution of |δφ|2 and
χE×B versus time, averaged over region 0.5 < ρ < 0.8.
In order to separate the effect of EGAMs and turbulence,
the contribution of axisymmetric modes (n = 0) and non-
axisymmetric modes (n 
= 0) are shown separately.

Figure 7 shows that EGAMs only appear near the end of
phase B. In phase C, they are observed to coexist with non-
axisymmetric contributions to the electrostatic potential with
similar magnitudes. After the EP source has been switched
on, the turbulent diffusivity is found to drop substantially,
as a consequence of a large reduction of the ITG activity.
This is attributed to the depletion of the resonant particles
driving the ITG instability, directly caused by the source when
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Figure 7. Contribution of n = 0 and n 
= 0 modes to the time evolution of (a) the electrostatic potential fluctuations and (b) the turbulent
diffusivity in the presence of EPs.

v̄0 = 2. Whether this effect is coincidental and results from this
particular choice of simulation parameters or is the signature
of a more general mechanism related to external heating of
fusion plasmas, remains to be firmly established. We also note
that other mechanisms, such as a direct effect of the source
anisotropy, cannot be excluded [16]. In any case, this drastic
reduction of the turbulent transport is only transient; χE×B

increases to reach a level comparable to the turbulent diffusivity
prior to the application of the EP source. We note, however,
that the contribution of n = 0 modes to the heat diffusivity
remains negligible during the whole simulation, indicating that
the transport increase is not directly caused by the EGAMs.

Interestingly, in phase C, a spectral analysis shows that
the turbulent diffusivity itself is modulated at the EGAM
frequency, suggesting that the net increase of diffusivity and
the excitation of EGAMs are correlated. In this phase,
Er , the radial electric field exhibits large oscillations at
ω = ωEGAM. The resulting electric shear does not suppress
turbulence. Instead, χE×B itself exhibits oscillations at the
EGAM frequency and its time-averaged value increases only
when EGAMs are excited. This reveals a strong interaction
between the EPs and the turbulence, via the excitation
of EGAMs.

The complex interaction between the turbulence and
EGAMs is further illustrated in figure 8, where the evolution
of the oscillating part of R/LT , defined as R/LT − 〈R/LT 〉t

with 〈·〉t the time average, is plotted for two different time
windows. This figure corresponds to the appearance of
EGAMs at the end of phase B (bottom panel) and to the
phase where turbulence and EGAMs coexist, during phase
C (top panel). When a transport barrier is observed, the
inner region exhibits an avalanche-like behavior, with fronts
propagating outward and vanishing at ρ ≈ 0.5. In the same
figure, EGAMs manifest themselves as static oscillations in
the outer region, characterized by horizontal traces. In phase
C, we see that there is not a single propagation velocity,
i.e. both outward propagating fronts and static oscillations
coexist and the outer radial region is also characterized by an
avalanche-like behavior. As a result, energy appears to flow
from the plasma core to outer regions along radially elongated
structures. Mechanisms underlying this phenomenon are still
being studied. One possibility is that the EGAM transfers
energy to turbulent modes via a decay parametric process. In

Figure 8. A comparison of the oscillating part of R/LT in a
simulation with fast particles [11] at the end of phase B (bottom)
and during phase C (top).

that process, the EGAM is the pump wave, whereas two ITG
modes, with identical toroidal and poloidal wave numbers but
frequencies shifted by the EGAM frequency, are the daughter
waves. The reverse process, i.e. the parametric excitation of
a GAM by a pump drift wave via a second drift wave, has
been investigated by Zonca and Chen [17]. This may lead to a
locking of the avalanches and the electrostatic oscillations [18].

4. Summary

A clear impact of energetic particles (EPs) on turbulence
has been observed in gyrokinetic simulations performed
with the global GYSELA. By introducing distribution functions
typical of fast ions in the absence of turbulence, a mode
unambiguously characterized as an EGAM has been observed
for parameters consistent with theoretical predictions. The
influence of EGAMs on turbulence and associated transport has
subsequently been studied using an ad hoc source introducing
fast particles in non-linear simulations. This source leads to
a drastic reduction of the turbulent transport. However, this
reduction is only transient; it is followed by an increase of
the turbulent activity, characterized by an apparent locking
between the EGAMs and avalanches. More generally, this
study shows that a radial electric shear oscillating at a
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frequency ω ∼ ωITG is unlikely to be an efficient way to
suppress turbulence. Neverthless, future simulations will
explore a wider range of source conditions in order to further
approach experimentally relevant conditions corresponding to
either NBI or ICRF heating in a reactor.

Acknowledgments

This work was granted access to the HPC resources of CINES
under the allocation 2012052224 made by GENCI (Grand
Equipement National de Calcul Intensif). This work was
supported by EURATOM and carried out within the framework
of the European Fusion Development Agreement. The views
and opinions expressed herein do not necessarily reflect those
of the European Commission.

© Euratom 2013.

References

[1] Zhang W, Lin Z and Chen L 2008 Phys. Rev. Lett.
101 095001

[2] Diamond P H, Itoh S-I, Itoh K and Hahm T-S 2005
Plasma Phys. Control. Fusion 47 R35

[3] Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids
11 2448

[4] Hahm T S 1994 Phys. Plasmas 1 2940
[5] Conway G D, Angioni C, Ryter F, Sauter P and Vicente J 2011

Phys. Rev. Lett. 106 065001
[6] Fu G Y 2008 Phys. Rev. Lett. 101 185002
[7] Qiu Z, Zonca F and Chen L 2010 Plasma Phys. Control.

Fusion 52 095003
[8] Boswell C J, Berk H L, Borba C N, Johnson T, Pinches S D

and Sharapov S E 2006 Phys. Lett. A 358 154
[9] Nazikian R et al 2008 Phys. Rev. Lett. 101 185001

[10] Zarzoso D, Garbet X, Sarazin Y, Dumont R and Grandgirard V
2012 Phys. Plasmas 19 022102

[11] Zarzoso D et al 2013 Phys. Rev. Lett. 110 125002
[12] Grandgirard V, Sarazin Y, Garbet X, Dif-Pradalier G,

Ghendrih Ph, Crouseilles N, Latu G, Sonnendrücker E,
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Abstract
Integrating several important technological elements required for long pulse operation in
magnetic fusion devices, the Tore Supra tokamak routinely addresses the physics and
technology issues related to this endeavor and, as a result, contributes essential information on
critical issues for ITER. During the last experimental campaign, components of the
radiofrequency system including an ITER relevant launcher (passive active multijunction
(PAM)) and continuous wave/3.7 GHz klystrons, have been extensively qualified, and then
used to develop steady state scenarios in which the lower hybrid (LH), ion cyclotron (IC) and
electron cyclotron (EC) systems have been combined in fully stationary shots (duration
∼150 s, injected power up to ∼8 MW, injected/extracted energy up to ∼1 GJ). Injection of LH
power in the 5.0–6.0 MW range has extended the domain of accessible plasma parameters to
higher densities and non-inductive currents. These discharges exhibit steady electron internal
transport barriers (ITBs). We report here on various issues relevant to the steady state
operation of future devices, ranging from operational aspects and limitations related to the
achievement of long pulses in a fully actively cooled fusion device (e.g. overheating due to fast
particle losses), to more fundamental plasma physics topics. The latter include a beneficial
influence of IC resonance heating on the magnetohydrodynamic (MHD) stability in these
discharges, which has been studied in detail. Another interesting observation is the appearance
of oscillations of the central temperature with typical periods of the order of one to several
seconds, caused by a nonlinear interplay between LH deposition, MHD activity and bootstrap
current in the presence of an ITB.

Keywords: Tore Supra, tokamak, steady-state, gigajoule, lower hybrid, MHD

(Some figures may appear in colour only in the online journal)

1. Long pulse operation in Tore Supra

Achieving long-duration discharges in ongoing magnetic
fusion devices is an essential step towards a future fusion
reactor. At this point, owing to economic considerations,
there is still some uncertainty as to whether a commercial
fusion reactor will be operated in a continuous or a pulsed
regime [1]. However, regardless of the final choice for a fusion
power plant, the discharge duration will be of at least several
hours, that is to say, well in excess of the timescale of all
physics processes at play in the plasma and its interaction

with the machine structure. Tore Supra, a large tokamak
(R ∼ 2.4 m, a ∼ 0.72 m, BT � 4.3 T) equipped with super-
conducting toroidal field magnets and actively cooled plasma
facing components (PFCs), is well adapted to the investigation
of the physics and technology issues related to the long pulse
operation of future magnetic fusion reactors. Therefore, in
past years, among various other topics, numerous experiments
have focused on these aspects [2].

Of prime importance to the operation of ongoing fusion
experiments, which all require external power to sustain
the plasma, is the availability of reliable auxiliary heating
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and current drive (H&CD) systems. Tore Supra features
radiofrequency (RF) capabilities which have been designed
for long pulse and/or continuous wave (CW) operation. Since
its first plasma in 1988, the machine has been upgraded
on a regular basis to improve its capabilities in terms of
steady state operation. Most notably, in 2002, CIEL, a major
upgrade of the PFCs and associated infrared (IR) surveillance
system, has been completed [3]. As a result, very long
pulses (up to more than 6 min) were performed in 2003.
In these discharges, called gigajoule (GJ) shots, more than
1 GJ of energy was successfully injected into the plasma, and
extracted by the actively cooled PFCs [4]. These shots were
inherently steady-state, since the real-time feedback system
was imposing a zero inductive flux consumption, which was
made possible by the lower hybrid (LH) system. Up to 3 MW
of LH power was used as the dominant noninductive current
source. These plasmas had typical line-averaged densities
n̄l ∼ 1.8 × 1019 m−3, plasma currents Ip ∼ 0.5 MA, and
exhibited stationary magnetohydrodynamic (MHD) activity
related to the presence of a double tearing mode [2] appearing
at the surface q = 3/2.

More recently, the CIMES project has included an upgrade
of the LHCD (LH current drive) system [5]. As a result,
Tore Supra is now equipped with two LH antennas based on
different designs: a fully active multijunction (FAM) and a
passive-active multijunction (PAM) coupler [6]. Coupling of
LH power up to 6 MW with this upgraded system has allowed
operation at n̄l ∼ 3.0 × 1019 m−3, Ip ∼ 700 kA (poloidal beta
βp ∼ 0.6, normalized toroidal beta βN ∼ 0.7) with high non-
inductive fraction (fni ∼ 80%) either with LH power only, or
combining the three available RF systems: LH, ion cyclotron
(IC) and electron cyclotron (EC). The steady progress in the
long discharge operation of Tore Supra is illustrated in figure 1,
which shows that long-duration discharges are now performed
at higher levels of RF power compared to in the past.

During the 2010/2011 experimental campaign, the
possibilities offered by the expanded operational domain have
been exploited to develop advanced scenarios at vanishing loop
voltage. This development has proceeded in two directions:

• Operation at higher Ip. However, it is established that
the level of LH-driven electron ripple losses increases
with Ip [8]. This has turned out to be a stringent
limitation, especially in the development of LH-only GJ-
class discharges with the electron ripple protection system
installed in Tore Supra at the time of these experiments.

• Operation at higher density (closer to the Greenwald
limit). Physically, this results in increased electron–
ion coupling and therefore allows Tore Supra to operate
with Ti closer to Te despite a dominant electron heating
source. From an operational standpoint, this also has the
advantage of making the coupling of LH and ICRF (IC
range of frequency) waves easier.

One of the goals of the experiments described in the
present article is the identification of operation points with
Vloop as small as possible in order to achieve GJ-class dis-
charges with plasma parameters compatible with the upgraded
RF system. In CW, the three antennas comprising the Tore
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Supra ICRF system have the capability of coupling 1 MW each,
which translates into a theoretically achievable power of com-
bined 7 MW LHCD and 3 MW ICRH (IC resonance heating)
during 180 s. However, owing to technical issues encountered
with the ICRF system (independent of steady-state operation),
the experiments have been performed using a total ICRF power
of 3 MW at the beginning of the campaign, and 1 MW at the
end. Among the most representative discharges performed
during the last experimental campaign in the framework of this
endeavor are two particular shots, each characterized by a du-
ration exceeding ten times the estimated current diffusion time:

• Discharge #46569: 0.65 GJ injected/extracted energy
obtained by coupling 4.5 MW LH power to the plasma
during 150 s. The main parameters are BT = 3.8 T,
Ip = 0.7 MA, n̄l = 2.6×1019 m−3, βp ∼ 0.47, βN ∼ 0.50
and Vloop ∼ 0.05 V.

• Discharge #47979: 0.95 GJ injected/extracted energy
obtained by coupling 6.3 MW combined IC (1 MW) and
LH (5.3 MW) power to the plasma during 160 s. The
main parameters are BT = 3.8 T, Ip = 0.7 MA, n̄l =
3.0×1019 m−3, βp ∼ 0.56, βN ∼ 0.63 andVloop ∼ 0.05 V.

The corresponding time traces are shown in figures 2(a)
and (b).

The updated domain of operation in terms of den-
sity/current in Tore Supra is shown in figure 3. In principle,
for a given magnetic field and a given density, it is possible to
operate at plasma currents between the Greenwald limit on the
one hand, and the stability limit determined by edge safety fac-
tor qa ≈ 3 on the other hand. However, another constraint is
set by the ripple losses protection system. It was established in
past experimental campaigns that in the presence of LH power,
the level of electron ripple losses scales as PR ∝ PLHI 0.7

p /n1.2
l

2
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Figure 2. Time traces for shots #46569 with LH power only (a), and #47979 with combined LH and IC power (b). From top to bottom:
plasma current and loop voltage; central electron temperature and line-averaged density; LH power coupled with the FAM and PAM
antennas.

with PR the lost power and nl the line-integrated density. In
other words, for a given level of LH power, it is only possible
to operate at densities above a certain value, and/or at currents
below a certain value. The ripple limits are shown in figure 3
for 3 MW and 5.5 MW LH power, and can be seen to be quite
stringent in terms of safe operation at high levels of LH power.
Note that this protection system is currently being upgraded in
order to prepare for future campaigns. In this figure is high-
lighted shot #32299, one of the zero loop voltage gigajoule
shots performed in 2003 (see also figure 2 in [9]), as well as
the two discharges described above.

In the course of the experimental campaign, it clearly
appeared that operating with combined LH and IC power was
beneficial, notably in terms of MHD stability and also because
operation at higher density was possible, thus relaxing the
constraint related to electron ripple losses. Compared to the
GJ discharges performed in 2003, LH+IC shots are stable
with respect to double tearing modes, and the temperature
profiles are typical of discharges featuring electron internal
transport barriers (ITBs), which are generally maintained
throughout the whole plasma duration. These ITBs appear
most clearly in shots where the three RF heating systems have
been used simultaneously. As an illustration, figure 4 shows
the temperature profile in shot #47968, measured prior to and
during the application of 700 kW of EC power, in addition to
5.2 MW of LH power and 1 MW of IC power. In this shot,
two gyrotrons have been employed; one couples RF power in
the plasma through an optical mirror set to inject EC power
at toroidal 25◦ in the direction of the plasma current, and a
second one injecting the same level of power with the same
toroidal angle in the opposite direction with respect to the
plasma current [10]. Ray-tracing calculations indicate that
this results in a fairly central power deposition profile (shown
in figure 4), with no driven EC current to lowest order. It
should be mentioned that for technological reasons, during this
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limits. The ripple limits for 3 and 5.5 MW of LH power appear as
dashed lines. The dotted–dashed curves show the theoretical
zero-loop voltage points of operation accessible for a normalized
LH efficiency ηLH = 0.70 × 1020 AW−1m−2 with 3 and 5.5 MW of
LH power. Shot #32299 is a zero loop voltage gigajoule discharge
performed in 2003, and appears as a green cross. Shots #46569 and
#47979 have been performed during the last experimental campaign
and are shown as blue and red symbols, respectively. Each is
surrounded by an ellipse illustrating the corresponding domain of
operation.

campaign, the 118 GHz gyrotrons were limited to 5 s power
injection. The compatibility of EC waves with these scenarios
was thus checked, but their use for actual plasma control is
planned for upcoming campaigns.
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The slow decrease of the ICRF power in shot #47979 (see
figure 2(b)) is an automatic response to an apparent over-
heating event on the FAM LH coupler detected by the IR
surveillance chain. The automated safety system has attributed
this event to lost fast ions impacting the front face of the
antenna, which triggered a lowering of the ICRF power and
a premature shot termination related to the appearance of
MHD activity in the discharge (see section 2). It turns out
that the observed hot spot actually corresponds to a Langmuir
probe flush-mounted on the LH antenna, and should have
had no consequence on the scenario since the temperature
was within acceptable limits for this particular, non-actively

cooled, object. This underlines the difficulty of designing
adequate surveillance and real-time control systems based on
IR thermography measurement suited to long pulse operation
in the presence of fast particle losses, RF sheaths, etc. These
phenomena result in the heating of both actively cooled PFCs
and non-actively cooled objects [11, 12]. It is worthwhile
pointing out that discharge durations exceeding the current
diffusion time are necessary in order to properly assess
the possibility of extending a given scenario to stationary
operation. Other phenomena (fast particle losses, hot spots,
impurities. . . ) can manifest themselves even after several
resistive times. In this respect, the operation of steady-state
devices such as Tore Supra is crucial in order to prepare for the
International Thermonuclear Experimental Reactor (ITER).

The remainder of this article is organized as follows: in
section 2, the issue of MHD-safe operation using ICRF waves
at high levels of LH power is presented. Global confinement
properties of these discharges are discussed in section 3.
Finally, a new type of slow oscillation appearing in these
plasmas is analyzed in section 4. Conclusions and prospects
are drawn in section 5.

2. MHD stability at high levels of LH power

Given the finite amount of magnetic flux available in the
poloidal field system, it is necessary to operate at low values
of the loop voltage to achieve long-duration discharges. This
is accomplished in Tore Supra by using LHCD. Figure 5
shows the loop voltage measured during the steady-state
phase versus normalized LH power PLH/(n̄lRIp) in combined
LH+IC discharges (R is the plasma major radius). In this
figure, the dashed lines show the apparent LH efficiency
(defined as ηLH ≡ n̄lRILH/PLH with ILH the driven current),
ηLH = 0.79 × 1019 A W−1 m−2, and the actual efficiency
ηLH ≈ 0.70×1019 A W−1 m−2 obtained by subtracting a mean
12% bootstrap current contribution estimated with the CRONOS

suite of codes used for the interpretative simulation of these
discharges [13]. This figure has been obtained by averaging the
measured loop voltage over a 10 s time window (t = 13–23 s),
except when the discharge ends in a MHD disruption, in which
case the data is averaged in the time interval t = 12–13 s. For
reference, the efficiency characterizing the 2003 GJ discharges
is also shown [4].

During this campaign, the possibility of modulating the
toroidal spectrum and power balance between the FAM and
PAM launchers has been tested. Eventually, the choice of the
parallel refractive index peak (denoted n‖) of the LH spectrum
results from a trade-off between ηLH (which scales as ∼1/n2

‖)
and the MHD stability of the resulting plasmas. Indeed, at
these levels of LH power, the discharges obtained are sawtooth-
free and characterized by significantly reversed safety factor
(q) profiles. According to EFIT calculations constrained by
polarimetry measurements [14], the minimum is typically
located at rmin/a ∼ 0.25 (R ∼ 2.75 m). Although this indirect
method leaves some uncertainty regarding the precise value of
qmin, the obtained hollow current profiles are consistent with
CRONOS reconstructions and indicate that whereas qmin is above
1.5 in some pulses, it lies between 1.3 and 1.5 in most cases.
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A consequence of this reversal is the systematic presence
of electron ITBs but for these parameters, this situation is
also prone to the triggering of double tearing modes on the
surfaces q = 4/3 often present in the plasma (see section 4).
In this respect, higher values of n‖ are desirable despite a lower
CD efficiency, since they result in broader power deposition
profiles and thus a larger spatial separation between the two
resonant surfaces. It has been found that stable operation was
possible using the combined FAM and PAM antennas with
spectra peaked at n‖ = 1.9 and n‖ = 1.8, respectively. It
should be noted that the power ratio between both antennas is
an important parameter: the PAM coupler spectrum features a
secondary peak at relatively moderate −n‖, which results in a
globally more hollow LH current profile than would be driven
with FAM antennas only [7]. This is illustrated in figure 6
where the maximum radius of HXR emission in the 60–80 keV
range, representative of the location of the maximum LH
current, is shown versus the ratio between the power coupled by
the FAM and the PAM antennas. At constant total LH power,
increasing the power injected by the FAM antenna tends to
broaden the current profile. Interestingly, even when the index
of the main spectral lobe is set to the same value for both
launchers, the power deposition is still sensitive to the ratio
PFAM/PPAM, demonstrating the role of the secondary lobes of
the launched spectrum.

During the development of combined LH+IC scenarios,
it was routinely observed that the IC power had a stabilizing
effect, consistent with past observations in Tore Supra [15].
In several instances, accidental IC power switch-offs have
occurred, resulting in the triggering of MHD activity. Figure 7
shows time traces corresponding to shot #47319 in which the
IC power is switched off at t = 25 s, whereas the LH power is
still at its nominal value. A marked increase of the MHD signal
picked up by the Mirnov coils is clearly seen approximately
500 ms after the IC termination, immediately followed by a LH
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Figure 7. Time traces for shot #47319: LH power, central electron
temperature, ICRF power, plasma current and MHD signal. The
inset shows a zoom on the period immediately following the ICRH
switch-off.

switch-off triggered by the real-time control system in response
to the appearance of excessive MHD activity in the discharge.
This beneficial effect of the ICRF power can be explained by
a direct contribution of the fast ions to the plasma stability
[16, 17], and also as a result of the change in equilibrium caused
by the ICRF power.

In order to estimate the fast ion pressure in these
discharges, the ICRF code EVE/AQL [18] has been used. It
combines the full wave solver EVE with the Fokker–Planck
module AQL, as detailed in [19]. The fast ion distribution in
shot #47319 is firstly modeled at full ICRF power using the
kinetic profiles provided by CRONOS prior to the ICRH switch-
off at t = 25 s. For this purpose, CRONOS is run in interpretative
mode and the validity of the simulation is checked by direct
comparisons to the measured magnetic flux consumption,
internal inductance, diamagnetic energy, neutron rate, electron
density and temperature profiles [13]. The power is then set to
zero in EVE/AQL, resulting in a decaying fast ion population. In
figure 8, the corresponding time traces are shown. In particular,
we note that the fueling system is not able to immediately
respond to the sharp ICRF switch-off to maintain the required
density constant during this event. As a result, a decrease of
the density is observed, also impacting on the plasma thermal
energy (Wth). This effect is taken into account in AQL, although
the induced equilibrium changes are not. The agreement
between the experimental value of the total energy measured
by the diamagnetic loop at full ICRF power Wdia(t = 25 s) ≈
0.38 MJ is recovered within the error margins inherent to the
measurement and ICRF code hypotheses. AQL manages to
reproduce the fast ion decay fairly well when the change in
the plasma density is taken into account. The computed total
energy density profiles at various times after the switch-off
are shown in figure 9. According to the modeling result,
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the estimated fast ion effective temperature Teff ∼ 150 keV
drops rapidly and 250 ms after the IC power switch-off, the
contribution of the fast ion population is essentially zero (a
fit of the energy decrease observed in figure 8 yields a decay
time τdecay ≈ 85 ms). In conclusion, both the measurements
and simulations indicate that the tail has relaxed well before
the MHD onset. Therefore, although a contribution from fast
ion energy to the discharge stability can not be excluded, a
supplemental stabilization mechanism due to modifications of
the equilibrium needs to be invoked. The fact that the latter
changes as a result of the ICRF switch-off can be clearly seen
on the internal inductance (li), which is deduced from real-time
magnetic measurements [20] and shown in figure 8.

Linear MHD calculations have been performed using the
CASTOR code [21] with resistivity set to η = 10−7. They predict
the potential destabilization of a double-tearing mode on the

Figure 10. Pressure (top) and safety factor (bottom) profiles
computed by CRONOS before and after ICRF switch-off.

q = 2 surfaces. This is the combined result of (1) a decrease
of the central electron temperature (Te) after the IC switch-off,
which results in enhanced shear reversal, and (2) a decrease
of the total pressure. These profiles, shown in figure 10,
have been used in CASTOR. The predicted linear growth rate
λ, shown in figure 11, increases after the ICRF switch-off
as a result of the lower curvature stabilization caused by the
pressure decrease [22]. Nonlinear calculations with the XTOR-

2F code [23] show the same trend although, in this case, the
inclusion of diamagnetic effects results in the simultaneous
destabilization of several MHD modes located near the qmin

surface [24–27].

3. Global confinement and transport

The electron energy content in the discharges performed during
the last experimental campaign has been analyzed. The Rebut–
Lallia–Watkins (RLW) scaling law is known to fit well Tore
Supra measurements in the ohmic phase [28]

WRLW
e ≡ 2.6 × 10−2n̄

3/4
l Z

1/4
eff B

1/2
T I 1/2

p (κa2R)11/12

+ 1.2 × 10−2IpPtotZ
−1/2
eff (κa2R)1/2, (1)

with the density in units of 1019 m−3, Ip in MA, and Ptot the
total power in MW. a is the plasma minor radius, κ the
plasma elongation, BT the toroidal field on axis, and Zeff

the effective charge. In phases with LH power only, the
electron confinement is improved with respect to the RLW
scaling, a feature typical of discharges in the LH enhanced
performance (LHEP) regime [29]. In LH+IC discharges, it has
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Figure 11. IC power and MHD signal (top); linear growth rate of
n = 1 resistive modes (bottom), calculated using the CASTOR code
with resistivity η = 10−7.
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Figure 12. Electron energy content versus Rebut–Lallia–Watkins
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been observed that the electron confinement is also improved
by a similar factor, which means that at these levels of power,
no negative impact of the ICRF waves on electron transport is
observed. Figure 12 shows a plot of the electron energy content
We versus the RLW scaling prediction (equation (1)). Typical
improvement of the energy confinement in steady-state phases,
determined by He ≡ We/WRLW

e is in the range 1.3–1.9, and is
essentially independent of the presence of ICRH.

Electron ITBs have been systematically observed in the
discharges performed during this experimental campaign.
These ITBs were routinely sustained during the whole steady-
state phase. An example of a CRONOS calculation for shot
#47319 already presented in the previous section (see figure 7)
is shown in figure 13. The electron temperature profiles, safety
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Figure 13. CRONOS interpretative analysis of shot #47319 in time
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current profile: LH, bootstrap, non-inductive and total.

factor, effective heat diffusivity and various contributions to the
current profile are averaged between t = 20 s and t = 25 s.
The electron temperature profile features a steep gradient
around the predicted reversal of the safety factor profile
ρ ≈ 0.25. The electron heat diffusivity drops sharply inside
ρ = 0.3, which is indicative of an ITB. This ITB is believed
to be the result of the negative magnetic shear, although a
contribution from plasma rotation can not be excluded [30].
As also shown in figure 13, according to the interpretative
simulation, in this discharge characterized by Vloop ≈ 0.068 V,
the LH current profile is peaked at normalized radius ρ ≈ 0.25
and accounts for 62% of the total current, whereas the bootstrap
current provides 19%.

The total energy content has also been compared to the
Tore Supra scaling law, and to the ITERL97-P scaling [28]

W ITERL97−P ≡ 0.023κ0.64R1.83ε−0.06I 0.96
p B0.03

T n̄0.4
l P 0.27, (2)

where ε ≡ R/a is the aspect ratio. In this range of parameters,
both scaling laws for the total energy exhibit negligible
difference. Although it appears at first that the total energy
content is significantly improved, this conclusion should be
tempered because the measured quantity (Wdia) includes the
energy contained in fast particles, whereas the Tore Supra
and ITERL97-P scaling laws have been established to fit the
thermal energy content Wth. In these discharges, however,
it is difficult to obtain the thermal ion energy directly from
the available measurements. In this range of ICRF power (1–
3 MW), EVE/AQL calculations for selected discharges predict an
approximately linear increase of the fast ion energy content Wf

from 10% (PIC = 1 MW) to 30% (PIC = 3 MW). Using Wth ≈
Wdia − Wf as an estimate of the thermal energy, the results in
figure 14 show that the total confinement improvement in the
presence of LH+IC power is comparable to that with LH power
only. As is consistent with this observation, no clear evidence
of ion ITB is seen in these discharges.
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The EVE/AQL simulations of shot #47319 previously
discussed have been used to estimate the level of RF power
heating the bulk ions through collisional relaxation of the fast
proton tail. The obtained profiles at 3 MW of ICRH are shown
in figure 15. First, it is observed that the power deposition
occurs mainly on the hydrogen minority species (2.7 MW), as
expected in a minority heating scheme. Secondly, at these
moderate densities, a significant amount of power leaves the
plasma due to ripple losses in agreement with established
scaling laws for Tore Supra [31]. At 3 MW of total ICRF
power, AQL predicts that 75% of the power absorbed by protons
and transmitted to the thermal species through collisions
eventually heats electrons, whereas only 25% go to bulk ions.
When considering 1 MW, the power is roughly evenly split
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Figure 16. Time traces for shot #48161: central electron
temperature; LH power, IC power and total plasma current.

between electrons and ions. In any case, this means that the
total power on ions from IC waves is in the range 0.5–1 MW
at most. In addition to this, these calculations show that for
this magnetic field, the power deposition is slightly shifted
towards the high field side, which results in a power deposition
occurring in a rather large volume inside ρ ∼ 0.4. Finally,
CRONOS calculations indicate that equipartition is negligible for
ρ > 0.1. As a result, the heating source on thermal ions, either
from collisional relaxation by fast ions or from equipartition,
is very small inside the ITB (ρ ∼ 0.25). This is a possible
explanation for the absence of any observed ion ITB in these
discharges. It is expected that operating at higher densities in
future experiments will allow us to better qualify ion transport.

4. Nonlinear oscillations

A recurring observation in the steady-state operation of Tore
Supra is the manifestation of nonlinear interplays between
the plasma quantities, which generally translates into Te

oscillations with periods extending up to a few seconds.
Several oscillation regimes have been identified before in Tore
Supra [32]. In the oscillation (O)-regime, an interplay between
the LH current and the electron temperature causes almost
purely sinusoidal oscillations observed on the central channels
of the electron temperature measured by the electron cyclotron
emission (ECE) radiometer. In the case of the so-called
giant oscillation (GO)-regime, the double/triple tearing modes
appearing on the q = 2 surfaces are believed to be the
underlying mechanism [33]. A new regime was obtained
during the last experimental campaign. An example of these
new large oscillations, which were observed in several shots,
is shown in figure 16. In discharge #48161, the electron
temperature exhibits a slow, regular oscillation in the time
interval t = 12–17 s. It is not believed to be an occurrence
of the O-regime since these oscillations have a different shape,
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Figure 17. MHD mode structure deduced from ECE measurements
of δTe (right y-axis) in the giant oscillation regime (top) and during
the oscillations observed during the last campaign (bottom). Also
shown is the safety factor profile reconstructed with CRONOS/EFIT (left
y-axis).

and also because the LH current profile itself does not oscillate,
as detailed below. The structure of a given MHD mode
appearing in Tore Supra discharges can be deduced from
correlation ECE measurements, and is characterized by a
radial profile of δTe, the oscillating part of Te at the mode
frequency following the method detailed in [34]. The present
oscillation regime is found to differ significantly from the GO-
regime in that only MHD modes compatible with q = 4/3
are present during this shot. The obtained structure in both
cases is compared in figure 17, with the safety factor profile
reconstructed by CRONOS and EFIT. The common point between
the GO and these q = 4/3 oscillations reduces to the presence
of MHD modes at the pivot of the oscillation cycle, but the
latter have a lesser overall impact on the discharge than the
former. The time behavior of typical GO in the presence of
q = 2 modes and the oscillations observed during the last
experimental campaign is shown in figure 18. The latter appear
to be significantly slower than in the GO regime. Therefore,
whereas the MHD modes on q = 2 appeared to be a plausible
candidate for the triggering of the oscillations in the GO
regime, it seems that the MHD activity in these discharges
is more an indication of the presence of q = 4/3 surfaces in
the plasma than a real driving force behind the phenomenon:
in particular, no significant changes of the MHD activity are
observed during the oscillation cycle, whereas the q = 2 MHD
mode was alternating between double and triple tearing mode
depending on the considered instant during the cycle [33].

In order to gain some insight into the features of the
observed oscillations, the CRONOS suite of codes has been used
to reconstruct the various contributions to the current profile,

Figure 18. Comparison of central temperature Te(0) (left y-axis)
and maximum of temperature oscillation δT max

e at the MHD mode
frequency (right y-axis) during the oscillations observed in the GO
regime (top) and in the last experimental campaign (bottom).

and the resulting transport coefficients. Figure 19 shows the
reconstructed contributions to non-inductive current density
(jni), i.e. the bootstrap current (jbs) and the LH-driven current
(jlh) at three times during the second oscillation of shot #48161.
According to the reconstruction of the HXR emission signal in
the 60–80 keV range of energy, the LH current does not evolve
during the cycles. This has been checked also for the lower
energy ranges in order to ensure that the corresponding power
source remains constant over time. In other words, both the
LH power and current sources remain unchanged during the
oscillation cycles. In the meantime, however, the bootstrap
current maximum appears to oscillate between the vicinity of
the ITB and the magnetic axis. This displacement results in
a shift in the location of the non-inductive current, a shift of
the qmin surface location, and a subsequent degradation of the
improved confinement. A central negative magnetic shear is
believed to be a necessary condition for the plasma to transit
into the LHEP regime [29]. Figure 20 shows plots of the
central electron temperature Te0, the locations of maximum jbs,
jlh and jni respectively (ρmax,bs, ρmax,lh, ρmax,ni respectively)
as well as 〈s〉, the magnetic shear averaged between ρ = 0
and 0.2. It can be observed that when 〈s〉 becomes negative,
Te0 increases rapidly. This entails a shift of ρmax,bs towards
the magnetic axis, and thus an increasing mismatch with
ρmax,lh. In these discharges, the local bootstrap current density
amounts up to 30% of the total current, which means that a
global shift of ρmax,ni towards the plasma center occurs and
〈s〉 increases until the improved confinement is lost when
〈s〉 � 0. As a consequence Te0 decreases and ρmax,bs shifts
outwards, resulting in a gradual realignment of jbs with jlh and
a reinforcement of the q-profile reversal triggering a new LHEP
transition. Although this mechanism remains to be explored
in more detail experimentally, notably to identify the role of
the small but finite residual ohmic current in these discharges,
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it is believed to be an occurrence of the misalignment process
discussed in Bizarro et al [35]. This opens the way to future
experiments in Tore Supra in which the bootstrap current
plays an important role. In particular, it could be possible
to extensively investigate this potential misalignment of the
LH and bootstrap currents, possibly using the EC system as
an actuator. The prospect of aligning the bootstrap current
and the LH driven current profiles would fit the Tore Supra
long term objectives: a feedback algorithm to increase PLH as
βp increases would be a method to experimentally simulate
discharges at high levels of core bootstrap current in future
fusion devices [9].

5. Conclusions

Significant progress has been achieved in the steady-state
operation of Tore Supra during the 2010/2011 experimental

campaign. A comprehensive set of shots characterized
by injected/extracted energy in the gigajoule range, and
a discharge duration well in excess of the timescale
characterizing the processes at play (energy, current and
momentum diffusion, plasma–wall interaction, hot spots,
overheating of actively cooled PFCs. . . ) have been performed.
In the continuity of past efforts in Tore Supra, these discharges
have relied on dominant LH power. However, in this campaign,
IC and EC power have also been coupled to the plasma.
Interestingly, the presence of significant ICRF power allows
the window of stable MHD operation to be extended as a result
of changes in the equilibrium and fast ion stabilization. As a
consequence, electron ITBs have been routinely observed in
LH+IC shots, with global transport properties comparable to
the LHEP discharges previously produced, which exhibited
improved electron confinement with LH power only. At
these densities, compatible with efficient LHCD, the level
of RF power actually heating bulk ions inside the ITB is
rather low, and no improvement of ion transport could be
observed. The level of bootstrap current has been increased
with respect to past operation. As a result, a new regime
in which oscillations of the bootstrap current between the
magnetic axis and the ITB foot has been observed. This
oscillation is believed to be caused by a misalignment between
the LH current profile and the bootstrap current. Although
scenarios employed in future machines are likely to be different
by design, for instance in terms of relative importance of the
LH power, this misalignment phenomenon is quite generic and
could manifest itself in other forms. Super-conducting devices
such as Tore Supra and its potential successors have thus a
unique capability to investigate a number of key physics and
technology processes at play in the steady-state operation of
future magnetic fusion devices.
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Krämer-Flecken A 2006 Fusion Sci. Technol. 50 508

[35] Bizarro J P S, Litaudon X, Tala T J J and JET EFDA
Contributors 2007 Nucl. Fusion 47 L41

11


