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Abstract

The Monte Carlo method is a stochastic simulation approach essentially used to estimate multi-dimensional
integrals. This is traditionally achieved by generating a sample of points, i.e. a Markov chain of states,
configurations, states, trajectories or even more abstract and structured objects, and then implementing an
estimator. In this context, conditioning is a trick consisting of doing part of the job in closed form or through
numerical quadrature so as to reduce the statistical variance associated with the estimator. This variance
reduction technique has found limited applications in molecular simulation so far. In this thesis, several enhanced
sampling and conditioning schemes are presented in order to improve the algorithmic efficiency of Monte Carlo
and molecular dynamics simulations of condensed-matter systems. We specifically show how to sample multi-
particle systems more ergodically, to estimate ensemble averages of physical quantities more accurately and to
solve a first passage problem that is associated with the discrete master equation governing the evolution of
lattice-based models for alloys and glasses. Illustrative applications are chosen in the field of materials science:
structural transitions in clusters, calculations of solubility limits in alloys and of the migration barrier associated
with a point defect.
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Outline

Molecular simulation

An important task of molecular simulation is to compute the thermodynamic and transport properties of multi-
particle model systems. The former properties are often equilibrium quantities such as energy, specific heat,
pressure/volume, while the latter ones encompass rate constants and first-passage statistics associated with
the thermally activated events that are responsible for defect migration, atomic transport and microstructure
evolution.

Equilibrium simulations are always performed in a well-defined thermodynamic ensemble characterized by
a set Λ of values of some external parameters λ and by a phase space X , the set of the states x accessible to
the system. A state x corresponds to the particle momenta and particle coordinates (positions). The external
parameters may be intensive quantities such as temperature, pressure and the chemical potentials of the species
present in the system. These external parameters couple linearly to some extensive conjugate quantities which
are energy, volume and the numbers of particles of the involved species, respectively, for the three aforementioned
examples. The external parameter usually corresponds to a thermodynamic force restraining the particle system
and imposing the mean value of the conjugate quantity. Fluctuations around the average account for exchanges
of energy, volume or particles with a virtual reservoir.

The external parameter can also be an extensive quantity, such as volume in periodic systems or the number
of particles of any species, or may alternatively be used to artificially restrain or confine the positions of the
system in a particular region of the position space. This is usually achieved by mechanically constraining the
value of some collective variable ξ, a function taking input values in the position space and whose output is a
real or integer number of a low-dimensional vector. At variance with external parameters, the collective variable
(CV) corresponds to internal degrees of freedom and is often called reaction coordinate (RC) or order parameter
depending on whether it is used to describe a reaction pathway in particular or to merely discriminate molecular
or crystal structures. Harmonic forces acting on the CV are often used to mechanically restrain the system in a
portion of the phase space via the external parameter. In practice, a restraining harmonic potential is included
in the mechanical energy of the particle system (the Hamiltonian). In this situation, the coupling between the
external parameter and the system contains quadratic terms in λ and the collective variable.

Motivations and objectives

In this habilitation thesis, one will be particularly interested in characterizing the conditions of phase transition
or coexistence and in measuring the activation barrier associated with thermally activated events. These two
practical tasks of molecular simulations reflect the aforementioned linear or quadratic coupling of external
parameters to molecular or atomic systems, and requires estimating thermodynamic quantities with varying the
values of the external parameters in some (hopefully narrow) intervals Λ. Unless otherwise specified, the external
parameter will be considered to be a one-dimensional additional coordinate included in the Hamiltonian H (λ, x).
After reviewing the commonly used Monte Carlo techniques and their applications in Chapter 1, a systematic
way of improvement based on conditioning technique is developed throughout this thesis. Conditioning 1 is a
variance reduction technique that stems from an elementary property of probability theory, namely the law of
total cumulance [1]. It was introduced relatively recently in the field of molecular simulation with the waste-
recycling Monte Carlo method [2] wherein conditioning is done on the proposals. The sampling techniques to
be addressed are listed below.

1Conditioning relates to the Rao-Blackwellization procedure in mathematical statistics.
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Enhanced sampling and λ-conditioning Considering the extended Hamiltonian framework in which λ is
an additional coordinate, the canonical thermodynamic ensemble average of any physical observable O(λ, x)
corresponds to a conditional expectation given λ which will be similarly written as E [O(λ, ·)|λ]. When one is
interested in thermodynamic averages with the external parameter in the range Λ, the experience tells us that
making the external parameter an additional simulation parameter, denoted by ζ, is often advantageous, in
the sense that enhanced sampling is achieved. In this framework, the conditional expectation is traditionally
evaluated based on the expectation ratio E[O(λ, ·)|λ] = E [1λO(λ, ·)]

/
E [1λ], where 1λ(ζ) is the indicator

function taking output value 1 if input value ζ is λ, and output value 0 otherwise. In practice, we will show
that the conditional expectation is always more efficiently evaluated based on the following identity

E[O(λ, ·)|λ] =
E [E[1λ|x]O(λ, x)

]

E
[
E[1λ|x]

] , (1)

obtained by resorting to the law of total probability twice, in the numerator and denominator. The outer
expectation is estimated from a Monte Carlo sample owing to the ergodic theorem, while the inner conditional
expectation will be evaluated by integrating the integrand 1λ(ζ) with external parameter ζ ∈ Λ through
numerical quadrature for each sampled state. This procedure is precisely the one referred to as conditioning in
probability theory [3]. Conditioning should always be implemented whenever its cost is modest and the overall
computational efficiency is improved. We show that this is the case in most situations involving equilibrium
Monte Carlo simulations. In supplement to conditioning, simulations will be performed more efficiently if an
auxiliary potential a(λ) is added to the system so as to increase the marginal probability pΛ(λ) = E [1λ] in
the denominator of Eq. (1). In practice, a uniform sampling along the external parameter is looked for, which
can be achieved by setting the auxiliary biasing potential equal to the free energy, which corresponds to the
co-logarithm of the marginal probability of λ. Various ways of calculating the free energy and adapting the
auxiliary potential are discussed in Chapter 2 and Chapter 3, respectively.

Nonequilibrium path sampling and conditioning Conditioning can also be used to retrieve equilibrium
information contained in a sample of nonequilibrium dynamics, which allows recovering any equilibrium thermo-
dynamic average. Path-sampling may be used as a last resort when sampling with an auxiliary biasing potential
fails to achieve numerical ergodicity. The path-sampling approach will be discussed in Chapter 4. It will lead
us to define the concept of path ensemble and path average. A traditional prescription is that any trajectory
is a sequence of states z = {λ`, x`}0≤`≤L initiated from an equilibrium distribution of states and propagated
out of equilibrium through the action of some external forces. This way of proceeding enables one to (i) assign
a weight to nonequilibrium states based on the weight of the initial equilibrium state and the probability to
generate the subsequent trajectory, (ii) explore regions that would be otherwise rarely explored without external
forcing. The second feature is usually achieved through pulling upon an external parameter that itself couples
to the particle system via a reaction coordinate or order parameter. To enable conditioning in path ensembles,
the path expectation, denoted by EZ [O)], is defined as the expectation of O(λl, xl) where xl refers to the
equilibrium state included in the considered path. The standard state expectation E [O] coinciding with the
path expectation EZ [O], the law of total expectation on the path distribution yields the following relation

E
[
O
]

= E
Z [
E
Z [O|z]

]
.

Conditioning therefore consists of evaluating the inner conditional expectation analytically for each sampled
path. This task amounts to assigning equilibrium weighting factors to the nonequilibrium states included in the
path based on Crook’s nonequilibrium ratio [4, 5]. The outer expectation is eventually estimated from a path
sample owing to the ergodic theorem. A conditional expectation given the value λ of the external parameter
can also be constructed based on a generalized conditioning scheme. This approach is discussed in Chapter 4.

Transition path sampling and conditioning An important field of application of molecular simulation is
the calculation of transport properties. Atomic transport is usually mediated by the migration of point defects.
For instance, atomic diffusion in α-Fe proceeds through the exchange of vacancies with their neighboring atoms.
The difficulty is that it takes a substantial amount of computer time to observe a single jump of an atom into
a vacancy. In other words, vacancy migration is a rare event at the computer time scale. To alleviate the
ubiquitous problem of rare events in molecular simulation, one may implement the transition path sampling
technique (TPS). TPS consists of preferentially sampling the rare events (the transition paths) owing to the
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introduction of a biasing path functional [6, 7]. In TPS, the rate of rare events is then evaluated from the time
derivative of state-to-state correlation functions. By introducing an external parameter λ that couples to the
biasing path functional, conditioning can be used in TPS method at two levels [8]; first when estimating the
conditional expectation given that the simulation bias is switched off (λ = 0), and second to evaluate state-to-
state correlation functions along trial trajectories (waste-recycling point of view). The example is illustrated
with the migration of a single vacancy in α-iron. As shown in Chapter 4, this conditioning results in dramatic
variance reduction and enables us to compute the time correlation function in a single simulation, a task that
could only be achieved through stage simulations so far.

Waste recycling Monte Carlo and further conditioning The conditioning approach that is implemented
in the various path sampling schemes can be seen as a particular example of waste-recycling Monte Carlo
(WRMC). Briefly, in WRMC technique, the information about the trial states that have been generated but
rejected by the Metropolis test is included in the ensemble average. The weight of the trial state may be seen
as the outcome of a conditioning scheme. The connection is discussed at the end of Chapter 4. The focus
of Chapter 5 will be on the control variate formulation introduced by Delmas and Jourdain [9] and on the
estimation of the optimal control variate through conditioning. The obtained optimal waste-recycling estimator
is implemented in calculations of Cr solubility limits in α-iron. A comparison to alternative approaches is
eventually made [10].

Kinetic path sampling and deconditioning Another field of application of conditioning is kinetic Monte
Carlo (KMC). Statistically equivalent to the (most often unknown) solution of the underlying master equation,
KMC calculations find a growing number of applications in natural and engineering sciences. However still
wider applicability of KMC simulations is severely limited by the notorious kinetic trapping where the stochastic
trajectory repeatedly visits a subset of states, a trapping basin, connected to each other by high-rate transitions
while transitions out of the trapping basin are infrequent and take a great many of KMC steps to observe.
In Chapter 6 we present the kinetic path sampling (kPS) method for alleviating the trapping issue. Unlike
the transition path sampling method that focuses on short portions of the full kinetic path directly leading to
the escapes, the kPS method does not assume any quasi-equilibrium distribution of the initial states and is
statistically equivalent to the master equation. The new algorithm constructs an entire stochastic trajectory
within the trapping basin, including the typically large numbers of repeated visits to each trapping state. It
entails (i) iterative factorization of paths inside a trapping basin, which formally amounts to conditioning, (ii)
sampling a single exit state within the basin’s perimeter, and (iii) generating a first-passage path and an exit
time to the selected perimeter state through an exact randomization procedure which formally amounts to a
deconditioning procedure. We demonstrate the accuracy and efficiency of the KPS algorithm on two models:
(1) diffusion on a random energy landscape specifically designed to yield a wide and continuous spectrum of
time scales and (2) kinetics of phase separation in supersaturated solid solutions of copper in iron. We will show
that the proposed method is immune to kinetic trapping and performs well under physical conditions where
the standard KMC simulations slow down to a crawl. In particular, simulations are able to reach later stages
of phase separation in the Fe-Cu system and captures a qualitatively new kinetics and mechanism of copper
precipitation.

Avenue for future research

To further benefit from the conditioning approach, future attention should be focused on optimizing the auxiliary
biasing potentials that control the allocation of computational resources along the external parameters within
the sampling process.
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1 | Conditioning in computational statistical
mechanics

1.1 Thermodynamic ensembles and expectations

One important goal of statistical mechanics is to explain the thermodynamic behavior of condensed matter
systems at equilibrium. Statistical mechanics connects thermodynamic quantities, such as temperature or
heat capacity, to mechanical laws governing the molecular, atomic or electronic motions. Statistical mechanics
also makes it possible to extend the laws of thermodynamics to cases which are not considered in classical
thermodynamics, such as microscopic systems and other mechanical systems with few degrees of freedom.

Prior to performing any simulation, an appropriate thermodynamic ensemble must be defined. This one is
usually characterized by a phase space X , the set of the states x accessible to the system, and a given set Λ of
values of some external parameters λ. The energetics of the particle system is also to be defined and will be
described throughout this report by an extended Hamiltonian H (λ, x) where λ ∈ Λ and x ∈ X . Even though Λ
will be considered to be a discrete set, we assume that the Hamiltonian H (λ, x) can always be extended within a
dense domain Λ̄×X containing Λ×X and that the partial derivative of H (λ, x) with respect to λ ∈ Λ̄, denoted
by ∂λH (λ, x), always exists. In anticipation of the developments to come, canonical ensemble averages are
written as conditional expectations given the value of the external parameter(s). The reason for adopting this
probabilistic formalism will be justified later in Sec. 1.8 where the stratified sampling approach of probability
theory is described. The use of conditional probabilities will also prove to be convenient throughout this report
about conditioning. Hence, the occurrence probability of state x in the considered thermodynamic ensemble, a
quantity often referred to as Boltzmann weight, is equal to the conditional probability of x ∈ X given the value
of the external parameter

x 7→ π(x|λ) = exp [Fmech (λ)− H (λ, x)] ,

where dimensionless units are used for the Hamiltonian and the log-normalizing constant reads

Fmech(λ) = − ln

∫

x∈X
exp [−H (λ, x)] dx , −Ψ{λ}. (1.1)

The quantity Fmech(λ) will be referred to as absolute free energy. Its negative, quantity Ψ{λ}, is sometimes
referred to as Massieu function or entropic potential because it is the logarithm of a partition function. The
subscript “mech” stands for mechanical. In this thesis, we consider that the Hamiltonian is separable, meaning
that the kinetic and potential parts of the mechanical energy exclusively depend on momenta p and positions
q, respectively

H (λ, x) = K (p) + U(λ, q), λ ∈ Λ, x = (p, q) ∈ X ,
where K (p) is the kinetic energy and U(λ, q) the extended potential energy. Note that it is standard practice to
decouple the temperature β associated with the kinetic energy to the one associated with the potential energy
that may possibly be controlled by λ. The reason is that contributions to thermodynamic properties of the
system coming from the kinetic energy can be integrated analytically, hence there is no need to vary any external
parameter associated with the kinetic energy. The absolute free energy may be decomposed into the sum of
kinetic and potential contributions

Fmech(λ) = Fkin + Fpot(λ).

Writing the kinetic energy as K (p) = β 1
2p
TM−1p with M the mass matrix, the kinetic part of the absolute

free energy may be evaluated analytically by integrating the multidimensional normal distributions over the
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momentum space

Fkin =
1

2
ln

∣∣∣∣
2π

β
M

∣∣∣∣

where | · | denotes the determinant of a matrix. The potential part reads

Fpot(λ) = − ln

∫

q∈Q
exp [−U(λ, q)] dq.

Besides, the effect of the quantum statistics is assumed to be included in the potential energy. Hence, the
potential part of the absolute free energy of an ideal gas of noninteracting particles obeying Bose-Enstein
statistics is

Fid
pot =

∑

s

[
ln (Ns!)−Ns ln

(
V/h3

)]

where Ns corresponds to the number of particle of species s, h is Planck’s constant and V is the position space
volume. The factorial terms reflect the fact that particles of same species are indiscernible. This quantity is
connected to the Helmholtz free energy of an ideal boson gas that is Fid =

(
Fkin + Fid

pot

)
/β. In physics and

chemistry, the excess Helmholtz free energy, defined by Fex = Fm/β − Fid, contains the crucial contributions
arising from the particle interactions and determining the thermodynamic properties of the involved particle
system. The ideal gas contribution to the Helmholtz free energy will be crucial when calculating solubility limits
because the numbers of particles vary. An illustration, we refer the reader to Chapter 5 where the solubility of
a minor alloying element of α-iron is calculated.

The ensemble average of a physical observable O(λ, x), where λ ∈ Λ and x ∈ X , is given by the conditional
expectation of O(λ, ·) given λ ∈ Λ

E
(
O(λ, ·)|λ

)
=

∫

X
O(λ, x)π(x|λ)dx.

When the observable (λ, q) 7→ O(λ, q) depend on λ and the coordinate positions q ∈ Q exclusively, we have

E
[
O(λ, ·)|λ

]
=

∫

X
O(λ, q) exp

[
Fmech(λ)− H (λ, x)

]
dx =

∫

Q
O(λ, q) exp

[
Fpot(λ)−U(λ, q)

]
dq,

where Q is the configuration or position space. The conditional expectation in the configuration space thus
writes

E [O(λ, ·] =

∫

Q
O(λ, q)π(q|λ)dq,

where the conditional probability of q given λ is defined as

π(q|λ) = exp [Fpot(λ)−U(λ, q)] .

To simplify the notations in the following, absolute free energies Fmech(λ) and Fpot(λ) will be denoted by F(λ),
regardless of which sampled space is involved. We have

F(λ) = F̃kin − ln

∫

q∈Q
exp [−U(λ, q)] dq, (1.2)

where F̃kin is equal to Fkin if momenta are considered, otherwise it is 0.

1.2 Ergodic theorem and quasi-ergodicity

The cornerstone of molecular simulation is the ergodic theorem which states the equivalence between ensemble
and time averages. Concerning time averages, the term time refers to the physical time along a molecular
dynamics (MD) trajectory or to the indexes labeling the states of a Markov chain generated using a Monte
Carlo (MC) algorithm. When stochastic algorithms such as Langevin dynamics and Monte Carlo schemes are
involved, the ergodic theorem relates to the law of large number. For instance, the thermodynamic quantity
corresponding to the ensemble average of O(λ, x) for x ∈ X can be estimated from the information contained
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in a generated Markov chain of states {xm}1≤m≤M using the following arithmetic mean:

IM (O|λ) = 1
M

M∑

m=1

O(λ, xm). (1.3)

The conditionon λ inside the estimator indicate that both the sampling and the observation are performed at
the constant value λ of the external parameter. Besides, the sample size M must be large enough otherwise
inaccurate estimates will be obtained. The ergodic theorem states that in the limit M → +∞, the estimate given
by (1.3) converges to E

[
O(λ, ·)

∣∣λ
]
, the conditionally expected value of O given λ, a standard ensemble average.

The averaging scheme associated with a given MC algorithm or MD scheme is referred to as “estimator”.
Because ideal gas contributions are known, simulations essentially focus on excess contributions arising from
the interactions between the particles. It is thus simpler to restrict the sampling to the position space, as often
done in the following, and to apply estimator (1.3) to a Markov chain of configurations:

IM (O|λ) = 1
M

M∑

m=1

O(λ, qm).

However, from the viewpoint of numerical ergodicity, simulations achieve better efficiency with momenta. This
observed tendency is attributed to inertial effects that facilitate barrier crossings each time the system reaches
a saddle region of the high-dimensional potential energy surface.

For any sampling of the configuration space Q, one denotes by P (q0, q1) the probability to transition from q0

to q1, then the Monte Carlo algorithm must satisfy the detailed balance condition with respect to the probability
distribution π(q|λ) involved in the corresponding ensemble average. For Monte Carlo algorithms, this condition
states that the equality of the forward and backward probability fluxes

π(q0|λ)P (q0, q1) = π(q1|λ)P (q1, q0),

where P (q1, q0) is the probability of the reverse transition. For stochastic molecular dynamics such as Langevin
dynamics, another form of detailed balance is obeyed and will be discussed in greater details in Chapter 4. The
reverse transition involves reversed momenta:

π(x0|λ)P (x0, x1) = π(x̄1|λ)P (x̄1, x̄0),

where x̄ = (−p, q) if x = (p, q) and π(x|λ) = π(x̄|λ) since H (λ, x) = H (λ, x̄).

From the law of large number and the central limit theorem [11], it can be shown that, when the sample
size M tends to infinity, the statistical variance of IM (O|λ) multiplied by M converges towards a finite value,
traditionally referred to as asymptotic variance of the estimator. This means that the accuracy (standard
deviation) of the estimates evaluated with estimator IM (O|λ) in Eq. (1.3) scales as 1/

√
M . Moreover, if P

denotes the functional such that PO(λ, x) =
∫
X P (x, dy)O(λ, y) for x ∈ X and whatever observable O, then

the value of the asymptotic variance is formally

lim
M→+∞

MV
[
IM (O|λ)

]
= E

[
Ô(λ, ·)2

∣∣λ
]
−E

[
PÔ(λ, ·)2

∣∣λ
]
,

where x 7→ Ô(λ, x) is the unique solution up to an additive constant of the Poisson equation [11]:

Ô(λ, x)− PÔ(λ, x) = O(λ, x)−E [O(λ, ·)|λ] .

Solving the Poisson equation is more difficult than calculating the expectation itself, except in particular cases,
for instance if the sampled states are identically and independently distributed (iid). In this situation, the
transition matrix P (x, y) is independent of x and we have PO(λ, x) = E(O(λ, x)|λ). This in turn implies that

an admissible solution of the Poisson equation is Ô(λ, x) = O(λ, x) and that the asymptotic variance of the
estimator is the variance of the observable. This result is simply obtained through the variance decomposition
of the sum of independent random variables

V

[
1
M

M∑

m=1

O(λ, xm)

]
= 1

MV
[
O(λ, x)

]
.
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The asymptotic variance of the estimator is generally (but not always) larger than the variance of the observable,
due to positive correlations between the sampled states, which may result in quasi-ergodicity or nonergodic
sampling. This is the main difficulty encountered by molecular simulation for estimating observable averages.
It has two distinct causes.

1.3 Metastability

The first cause of nonergodic sampling is due to the presence of metastability. Metastability manifests itself
when many distinct basins of attraction substantially contribute to the Boltzmann distribution and the sampling
algorithm does not allow to explore these separate regions in sufficient number. This kind of issue occurs when
the energy surface is rugged and consists of energy minima separated by energetic and/or entropic barriers.
Metastability arises at many different scales in materials science or condensed matter. To give an example, let
consider a phase separation process occurring in an alloy initially quenched from a disordered solid solution at
high temperature down to a temperature at which the solute concentration is moderately supersaturated. The
atomic transport process that is responsible for the nucleation, growth and coarsening of solute precipitates
occurs via the exchange of solute and solvent atoms with point defects located on the crystal lattice. The
mediating defects may be interstitial atoms and/or vacancies, which is more often the case in alloys. Each
location of a migrating defect within the crystal structure corresponds to a metastable basin of attraction, the
hopping rates of defects on its underlying lattice being several orders of magnitude lower than the vibration
frequency of that lattice (see illustration in Chapter 4). As a result, it takes a great many of MD steps to observe
a defect transitioning from one site (basin) to another in molecular dynamics. Another type of metastability
happens at the next scale when nucleation of the second phase proceeds through an incubation stage. This one
may, for instance, result from the time lag associated with the repeated re-dissolution of subcritical nuclei prior
to reaching the critical size. Time scales for incubation are typically many orders of magnitude larger than
those involved in the migration of point defects, as shown in Chapter 6.

The degree of correlation of the states along a long MC or MD trajectory yields a measure of metastability. In
practice, an appropriate observable O must be defined, and the correlation time as the integral of the following
time autocorrelation function must be defined

CorrOO(L) = lim
M→+∞

∑M
m=1O(λ, xm)O(λ, xm+L)−

[∑M
m=1O(λ, xm)

]2

∑M
m=1O(λ, xm)O(λ, xm)−

[∑M
m=1O(λ, xm)

]2 .

If a substantial number of simulation steps is needed to uncorrelate consecutive measurements, there is metasta-
bility on the investigated time scale. However, the apparent absence of long-time correlations does not entail
that ergodic sampling is achieved. There might be a hidden metastability that can not be detected by moni-
toring the available observable O. Estimating the time autocorrelation function requires being able to correctly
estimate the mean and variance of the observable, a non trivial task in strongly metastable systems. The au-
tocorrelation time approach is nevertheless useful to compare the efficiency of different sampling algorithms on
testbed models.

1.4 Poor sampling of distribution tails

Numerical ergodicity can also be broken when the phase space regions that substantially contribute to the
ensemble average have an extremely small Boltzmann weights. This means that the region of interest is in
the tail of the Boltzmann distribution. A substantial amount of computer time will be required to harvest a
significant statistics. This type of broken ergodicity occurs for instance when estimating the high-order moments
of the energy distribution, which correspond to standard ensemble averages. To show this, let consider a particle
q = (q1, q2, q3) in a harmonic potential with inverse temperature λ. For a three-dimensional harmonic system,
the energy density g(E) is proportional to the energy E. Any algorithm sampling the Boltzmann distribution
therefore constructs a Markov chain of states whose energies are distributed according to the energy distribution
E → g(E) exp(F(λ)− λE) where the absolute free energy is F(λ) = − ln

∫
R+ e

−λEg(E)dE. Figure 1.1 displays
the contributions of energy E to the nth moment of the sampled Boltzmann distribution for n equal to 2, 4
and 6 at reduced temperature one. Estimating the moments of the energy becomes problematic as the moment
order is increased because the range of contributing energies shift towards the (poorly sampled) tail of the
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exponential distribution, as illustrated in Fig. 1.1. Nonergodic sampling is commonly met in calculations of free
energy differences. This issue will be discussed quite extensively in Chapters 2 and 3.

1.5 Achieving ergodicity through Umbrella sampling

A major methodological advance for overcoming ergodicity issues is umbrella sampling (US). This Monte Carlo
approach [12] is referred to as importance sampling or preferential sampling in the mathematical literature. It
consists of adding a biasing potential B(q) to the reference potential energy U(0, q) and of using the so-modified
potential energy U(1, q) = U(0, q) + B(q) in MC or MD simulations so as to artificially enhance the exploration
of phase space regions contributing substantially to the expected value of O(0, q). By doing so, numerical
ergodicity is achieved much faster. In the following, the estimator used in combination with umbrella sampling
is referred to as standard reweighting.

1.5.1 Standard reweighting estimator

Since the system with potential energy U(1, q) is sampled, then the effect of the biasing potential B(q) must be
corrected when evaluating the estimates, which can be done by resorting to the following standard reweighting
(R) estimator

IMR (O|λ = 0;π|ζ = 1) =
1
M

∑M
m=1O(0, qm) exp [B(qm)]
1
M

∑M
m=1 exp [B(qm)]

. (1.4)

In the estimators of (1.4), the condition ζ = 1 means that the sampling is performed with respect to thermody-
namic state S1 (biased measurements) and the condition λ = 0 corresponds to the conditional expectation that
is estimated. This estimator follows from the relation

E [O(0, q)|0] = E

[
O(0, q)

π(q|0)

π(q|1)

∣∣∣∣1
]

= E

[
O(0, q) exp (F(0)− F(1) + B(q))

∣∣∣∣1
]
,

where the free energy difference satisfies the particular relation obtained by setting the observable to the constant
value 1:

E [1|0] = E

[
1× exp (F(0)− F(1) + B(q))

∣∣∣∣1
]

= 1.

The logarithm of the denominator is therefore an estimate of the free energy difference F(1)− F(0) between
the biased (perturbed) thermodynamic state S1 (which is sampled) and the reference thermodynamic state S0

(which corresponds to the ensemble of interest). Accurately estimating a free energy difference between two
thermodynamic states of potential energy U(0, q) and U(1, q) = U(0, q)+B(q) amounts to accurately estimating
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the first moments of the distribution B → P (B) = E
[
δB
(
B(q)

)∣∣λ = 1
]
, the conditional expectation of Dirac

δ-function with respect to the biased thermodynamic state S1. This feature stems from the equality

exp
(
F(1)− F(0)

)
= E

[
exp

(
B(q)

)∣∣1
]

=

+∞∑

n=1

(−1)n

n!
E
[
B(q)n

∣∣1
]
.

The tail of the distribution P (B), may have a considerable contribution to the free energy difference, as illus-
trated previously in Fig. 1.1 for a simple harmonic oscillator. The way the free energy difference is estimated in
the denominator of (1.4) corresponds to the free energy perturbation method [13, 14, 15]. Free energy methods
are discussed in detail in Chapter 2.

Umbrella sampling is also called non-Boltzmann sampling [14] because it can be formalized with respect to
any couple of thermodynamic states Sλ and Sζ by replacing the biasing potential B(q) by U(ζ, q) − U(λ, q).
It is then possible to estimate an ensemble average with respect to thermodynamic states Sλ from a sample
generated in thermodynamic state Sζ using the more general form for the standard reweighting estimator:

IMR (O|λ;π|ζ) =

1
M

M∑
m=1
O(λ, qm) exp[U(ζ, qm)−U(λ, qm)]

1
M

M∑
m=1

exp[U(ζ, qm)−U(λ, qm)]

. (1.5)

It is instructive to recast the standard reweighting estimator (1.5) into the following form

IMR (O|λ;π|ζ) =

M∑

m=1

O(λ, qm)
exp[F̂(λ)−U(λ, qm)]

M exp[F̂(ζ)−U(ζ, qm)]
, (1.6)

where the quantities F̂(λ) and F̂(ζ) correspond to an estimate of the free energies F(λ) and F(ζ), up to a common

additive constant. Their difference F̂(λ)− F̂(ζ) is solution of the following equation

IMR (1|λ;π|ζ) = 1.

In practice, in order to obtain accurate estimates based on the standard reweighting estimator (1.4), the
biased sample must contain typical data of the unbiased distribution in a significant proportion. Stated differ-
ently, the perturbed and unperturbed distribution should substantially overlap. If this condition is not met,
then the associated free-energy difference is usually overestimated [16, 14, 15]. For instance, choosing the biasing
potential equal to the potential energy amounts to estimating the ensemble average from an unbiased random
walk in the multi-dimensional phase space, an approach obviously doomed to fail! From a mathematical point
of view, umbrella sampling is a variance reduction technique that does not guarantee variance reduction. The
question of how to alleviate convergence issues in umbrella sampling simulations arose naturally and motivated
the methodological developments to be discussed next.

1.5.2 Self-consistent reweighting estimators

When the overlapping conditions are not satisfied in practice, it is possible to evaluate the ensemble average
through staged transformations [17, 18]. The biasing potential is gradually switched on resorting to the external
parameter λ and to the extended potential energy U(λ, q), where U(0, q) possibly denotes the potential energy
of the reference system. Then, a simulation is performed at each stage of the switching protocol. A self-
consistent estimator is eventually implemented to combine the data from the multiple simulations and, based
on accurate estimates of the successive free-energy differences, to eventually extract a reliable estimate of the
desired observable [14, 15]. This postprocessing procedure is known under various names such as the Bennett
acceptance ratio (BAR) method [16], the wheighted histogram analysis method [19, 17] (WHAM), the reverse
logistic regression [20], bridge sampling [21], the multi-state BAR method [18], binless WHAM [22] and the
global likelihood method [23, 24]. These various methods are equivalent in the sense that they involve first
harvesting data from a number of independent simulations carried out for a predetermined set of external
parameter values and second solving a set of nonlinear equations.

The self-consistent (SC) estimator aims at minimizing the statistical variances associated with a series of
simulations performed with distinct values ζ ∈ Λ of the control parameter λ. The simulation performed at ζ
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provides one with a Markov chain consisting of Mζ points. Pooling all the data O(ζ, qm) of the observable into
a single chain of size M =

∑
ζ∈ΛMζ , the SC estimate of the conditional expectation of observable O given λ

writes1

ΥM
SC(O|λ) =

M∑

m=1

O(λ, qm)
exp[F̂(λ)−U(λ, qm)]

∑
ζMζ exp[F̂(ζ)−U(ζ, qm)]

. (1.7)

The free energy estimates {F̂(λ)}λ∈Λ are obtained by solving the set of nonlinear equations

�M (1|λ) = 1, λ ∈ Λ,

using an appropriate solver.2 The obtained free energy estimates F̂(λi) are optimal from the point of view of
statistical inference [18]. Note that the (standard) reweighting estimator (1.6) that is used for non-Boltzmann
sampling is recovered when a single thermodynamic state S1 is employed. MBAR also reduces to Bennett
acceptance ratio method [16] when two thermodynamic states are sampled, which explains the name given to
MBAR method in the physics and chemistry literature. The BAR method is known as the bridge sampling
method in the statistical literature wherein a rigorous mathematical foundation can be found [24]. The MBAR
method is described in detail in Ref. [15].

Next, we briefly mention an important sampling technique with which a multi-state estimator is most often
employed.

1.6 Enhanced sampling through replica exchange simulations

In practice, self-consistent estimators are applied to data harvested using replica exchange Monte Carlo (REMC) [19]
or replica exchange molecular dynamics (REMD) [25] simulations. This sampling approach propagates several
independent MD or MC trajectories (the replicas), each one performed at different and constant value of the
external parameter, and occasionally attempts swapping the λ values of two adjacent replicas. The exchange is
accepted with a probability that is essentially the ratio of the Boltzmann weights after and before the exchange.
Mixing trajectories propagated at different values of the external parameter increases the overall numerical
ergodicity and thus the sampling efficiency of simulations. For instance, if the energy surface is rugged, then
choosing inverse temperature as the external parameter allows crossing the energy barriers separating the basins
of attraction at the higher temperatures and detailed sampling of the visited basins at low temperatures owing
to temperature exchanges. Much shorter correlation times are observed in practice in simulations performed
with replica exchanges than without.

1.7 Two standard setups for the extended potential energy

At this point, it is instructive to give examples of extended potential energies that are commonly employed in
enhanced sampling techniques, such as umbrella sampling and replica exchange methods. We depict two impor-
tant setups in which the external parameter couples either linearly to a potential energy or harmonically to a
reaction coordinate ξ(q). Note that nonlinear couplings between the external parameter and the potential energy
can possibly be employed, for instance to achieve improved efficiency through functional minimization [26].

With linear coupling, the extended system evolves between a reference system S0 and a target system S1.
In practice, it is convenient to write the extended potential as

U(λ, q) = (1− λ)U0(q) + λU1(q), (1.8)

where λ takes values in the interval [0, 1]. In Eq. (1.8), U0(q) and U1(q) are the potentials of the reference and
target systems, respectively. This parameterization covers situations where the external parameter is used to
vary an intensive thermodynamic force like inverse temperature or pressure. For instance, when the reference
and target systems correspond to a system of identical potential energy V (q) held at two distinct temperatures
βmin and βmax, we simply set U0 = βminV and U1 = βmaxV . An important task is to estimate conditional
expectations given some values of the external parameter λ [see Eq. (1.25)]. Estimating the average internal

1A noticeable feature of the self-consistent estimator is that the subsample origin of qm is an irrelevant information.
2The solver provided online at https://simtk.org/home/pymbar, uses a fixed-point iterative method first and switch to Newton-

Raphson method close to the solution.
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energy at a given inverse temperature is a typical example that will be illustrated in Section 3.5 for icosahedral
and octahedral atomic clusters. The present linear setup is also used in Section 2.4 to illustrate the estimation
of total expectations, free energies and rare-event probabilities in a simple model using various estimators.

With harmonic coupling of the external parameter to a reaction coordinate ξ : q ∈ Q 7→ ξ(q), the extended
potential exhibits the following form

U(λ, q) = U0(q) + R
(
λ, ξ(q)

)
, (1.9)

with U0(q) = βrefV(q) wherein V(q) and βref are the potential and the inverse temperature of the reference
system, respectively. Here, the restraining potential R

(
λ, ξ(q)

)
is harmonic and centered on the value of the

reaction coordinate ξ(q), denoted by ξ? below

R
(
λ, ξ?

)
=

1

2
βrefκ‖λ− ξ?‖2 + ε(ξ?), (1.10)

where κ is the spring stiffness and ε(ξ?) is a small correcting potential defined by

ε(ξ?) =
∑

ζ∈Λ
exp

[
−1

2
βrefκ‖ζ − ξ?‖2

]
.

This term is included to ensure that the artificial restraining potential does not affect the reference distribution in
which restraints are absent. In this setup, the reference probability is cast in the form of a marginal probability
of q defined from the conditional probabilities of q given λ, resorting to the law of total probability. This
approach is referred to as stratification and is detailed in Sec. 1.8 below.

1.8 Restrained sampling and stratification

Here, we specifically consider the harmonic setup with the reaction coordinate ξ(q). We wish to construct the
histograms of the reaction coordinate by averaging the indicator function associated with the histogram bins.
The function for bin ξ? is denoted by 1ξ? ◦ ξ(q) where the empty circle symbolizes the functional composition.
Let further assume that a replica exchange simulation with ζ ∈ Λ has been performed and that the conditional
expectations E

[
1ξ? ◦ ξ

∣∣ζ
]

have been estimated for ζ ∈ Λ using the self-consistent estimator (1.38). The sim-
ulation biases associated with the additional harmonic restraining potential R (λ, ξ?) are to be removed. The
stratification approach does this job automatically.

The trick consists of resorting to the law of total expectation with respect to ζ:

E
Q [1ξ? ◦ ξ] = E

Λ
[
E
[
1ξ? ◦ ξ

∣∣ζ
]]
.

The meaning of the two involved expectations EQ [·] and EΛ [·] needs being clarified.

The first expectation EQ [·] is defined with respect to the marginal probability of q with respect to ζ ∈ Λ

pQ(q) =
∑

ζ∈Λ
p(ζ, q),

where the joint probability, defined over the extended phase space {Λ,Q}, writes p(ζ, q) = exp
[
−U(ζ, q)−ΨΛ

0

]

wherein the log-normalizing constant for general setups reads

ΨΛ
0 = ln

[∑
ζ∈Λ

∫

Q
exp [−U(ζ, q)] dq

]
= ln

[∑
ζ∈Λ

exp [−F(ζ)]
]
.

For the harmonic setup, we have specifically

pQ(q) =
∑

ζ∈Λ
exp

[
−U0(q)− R (ζ, q)−ΨΛ

0

]
= exp

[
−U0(q)−Ψ0

]

where the log-normalizing constant is Ψ0 = ln
∫
Q exp

[
−U0(q)

]
dq.3

3Note that the quantities ΨΛ0 and Ψ0 are equal to each other for the particular harmonic setup (1.10).
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The second expectation EΛ [·] is associated with the marginal probability of λ ∈ Λ and writes

pΛ(λ) =

∫

Q
p(λ, q)dq = exp

[
−F(λ)−ΨΛ

0

]
=

exp [−F(λ)]∑
ζ∈Λ exp [−F(ζ)]

. (1.11)

A third expectation can be defined with respect to the joint probability, which writes for a general observable
O(ζ, q):

E[O] =
∑

ζ∈ζ

∫

Q
O(ζ, q)p(ζ, q)dq. (1.12)

The laws of total expectation (LTE) on ζ and q are expressed as:

E[O] =

{
EQ [E [O(·, q)|q]] =

∫
QE [O(·, q)|q] pQ(q)dq,

EΛ [E [O(ζ, ·)|ζ]] =
∑
ζ∈ΛE [O(ζ, ·)|ζ] pΛ(ζ).

Since observable 1ξ? ◦ξ does not depend on the external parameter, its expectation with respect to the marginal
distribution can be defined and is equal to the expectation with respect to the joint distribution (see LTE on q
in first case above). Owing to the LTE above and to expression (1.11), we obtain

E
Q [1ξ? ◦ ξ] = E [1ξ? ◦ ξ] =

∑
ζ∈ΛE [1ξ? ◦ ξ|ζ] exp [−F(ζ)]∑

ζ∈Λ exp [−F(ζ)]
.

This relation entails that if the quantities E
[
1ξ? ◦ ξ

∣∣ζ
]

and F(ζ) have been estimated for ζ ∈ Λ, then an estimate
of EQ [1ξ? ◦ ξ] can be immediately deduced. Stratification is a standard implementation of MBAR [18].

1.9 Enhanced sampling through expanded ensemble simulations

When estimating a series of thermodynamic expectations along an external parameter λ, another way of im-
proving numerical ergodicity consists in considering that the external parameter is an additional coordinate and
sampling the extended space Λ×Q. This is the principle of the method of expanded ensemble (EE). In practice,
an auxiliary biasing potential a(ζ) is subtracted from the potential energy. The extended potential energy [27]
that is actually sampled exhibits the following form

Ua(ζ, q) = U(ζ, q)− a(ζ).

In the EE method, the set Λ of possible values for the external parameter is discrete and finite. The expanded
ensemble is thus an union of sub-ensembles: ∪λ∈ΛSλ. In the expanded ensemble, the joint probability of
extended state (ζ, q) writes

pa(ζ, q) = exp[−ΨΛ
a + a(ζ)−U(ζ, q)], (1.13)

where the log-normalizing constant ΨΛ
a depends on the auxiliary potential.

In Monte Carlo schemes, some moves occasionally attempt to modify the current value of the dynamical
external parameter, entailing that a Markov chain {ζm, qm}1≤m≤M is generated in the extended phase space.
The method of expanded ensemble achieves improved ergodicity for the same reason replica exchange method
does. The difference is that the subsample sizes Mλ are not predetermined but are outputs of EE simulations.
The size Mλ corresponds to the number of visits of the sub-ensemble within the generated sample of extended
states:

Mλ =

M∑

m=1

1λ(ζm) ≡MIM (1λ), (1.14)

where the function 1λ is the indicator function taking value 1 when input value is λ and 0 otherwise. In (1.14),
IM denotes the arithmetic mean estimator. In practice, all the subsample sizes should be large enough otherwise
inaccurate estimates will be obtained. To ensure that the sampled values ζm are distributed uniformly enough
along the λ coordinate, an (additional) auxiliary biasing potential a(λ) is subtracted from the potential energy
U(λ, q). The action of the auxiliary biasing potential is crucial not only in the linear setup but also in the
harmonic setup with which the restraining potential alone does not affect the thermodynamic expectations of
observable 1ξ? ◦ ξ. Subtracting an adequate biasing potential a(ζ) to the extended system enables one to drive
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the external parameter that in turn will pull the particle system towards regions of interests. This setup aims
at mechanically steering the sampled values of the reaction coordinate ξ owing to a(ζ). We show how this task
can be efficiently done in Sec. 3.4. In the considered example, ξ(q) is a bond orientational order parameter [28]
able to monitor structural transitions in small atomic clusters.

In EE simulations, the biased probability density pa(ζ, q̄) is sampled, but expectations should be evalu-
ated with respect to the unbiased probability density p0(ζ, q̄). The simulation biases are straightforwardly
removed when evaluating thermodynamic averages by employing a binning estimator whose formal expression
is independent of the auxiliary biasing potential, as explained next.

1.9.1 Binning estimator

The conditional probability of observing q given the external parameter λ is

π(q|λ) = exp[F(λ)−U(λ, q)] =
pa(λ, q)∫
Q pa(λ, q)dq

=

∑
ζ∈Λ

1λ(ζ)pa(ζ, q)

∑
ζ∈Λ

∫
Q1λ(ζ)pa(ζ, q)dq

where the normalizing quantity F(λ) is the free energy introduced in (1.2). A thermodynamic average at λ ∈ Λ
corresponds to a conditional expectation of an observable O and writes

E(O|λ) =

∫

Q
O(λ, q)π(dq|λ) =

∑
ζ∈Λ

∫
Q1λ(ζ)O(λ, q)pa(ζ, dq)

∑
ζ∈Λ

∫
Q1λ(ζ)pa(ζ, dq)

.

The conditional expectations in the EE can be estimated using the following standard binning estimator

ΥM
H (O|λ) =

1
M

∑M
m=1 1λ(ζm)O(λ, qm)
1
M

∑M
m=1 1λ(ζm)

, λ ∈ Λ, (1.15)

where the subscript H stands for histogram. The standard binning estimator corresponds to a ratio involving
arithmetic-mean estimators

ΥM
H (O|λ) =

IM (1λO)

IM (1λ)
, λ ∈ Λ. (1.16)

As an example of application, the derivative of the free energy with respect to λ [which is the conditional
expectation of ∂λU(λ, q) given λ as shown in (1.2)] can be estimated after setting O(λ, q) to ∂λU(λ, q) in (1.15)
or (1.16):

F̂′(λ) =

∑M
m=1 1λ(ζm)∂λU(λ, qm)
∑M
m=1 1λ(ζm)

.

Note that, from a thermodynamic viewpoint, the external parameter is usually referred to as the thermodynamic
force when it is an intensive quantity. Herein, we rather adopt a mechanical viewpoint and assume that λ is an
additional coordinate. The dynamics of λ is determined by the variation of both the biasing potential and the
potential energy with respect to λ. From a mechanical point of view, ∂λU and its conditionally expected value
given λ corresponds to a local mean force and a mean force, respectively. Since F′(λ) is the mean force along λ,
the free energy F(λ) defined in (1.2) can be referred to as a potential of mean force.

1.9.2 Adaptive biasing force in expanded ensembles

The bias is traditionally chosen in such a way that uniform sampling is achieved along λ. This entails that the
average effective forces along λ vanish during simulations for all λ values in the interval of interest. The requested
biasing force therefore corresponds to the mean force defined as the conditional expectation of ∂λU(λ, q) given λ
in (1.2). It was proposed [29] to adapt the biasing force during a preliminary simulation on the current estimate
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of the mean force.4 In the expanded ensemble, this is achieved as follows

a′M (λ) =

∑M
m=1 1λ(ζm)∂λU(λ, qm)
∑M
m=1 1λ(ζm)

. (1.17)

The denominator of the fraction indicates the size of the corresponding subsample. The present way of con-
structing the biasing potential from its gradient corresponds to a technique referred to as adaptive biasing
force (ABF) in the literature [15]. In the long term, the adaptive biasing force in (1.17) converges to the mean
force [32]: limM→+∞ aM = F, up to a common additive constant. More details about the ABF method will be
given in Chapter 3.

1.9.3 Adaptive biasing potential in expanded ensembles

As an alternative to ABF, it is possible to adapt the auxiliary biasing potential during the course of a simulation
based on the size of each subsample, i.e., the numbers of visits of each subensemble [33]. This alternative way
of proceeding corresponds to a technique referred to as adaptive biasing potential (ABP) in the literature [15].
Numerous variant schemes based on the ABP idea have been proposed for the more general reaction coordinate
case [15]. The main difficulty in implementing an ABP scheme involves tuning the update frequency of the
biasing potential in order to ensure efficient convergence of the simulations. It the update frequency is too low,
then the rate of convergence will be small. If the update frequency is too high, then the biasing potential will
oscillate around a mean value. A trade-off minimizing these two adverse scenarii should therefore be found.
Details and examples of ABP algorithms are given in Chapter 3 for the reaction coordinate case.

4The biasing forces in the original ABF method [30, 31] are along a reaction coordinate ξ(q). The original ABF algorithm is
depicted in Chapter 3

11



1.9.4 Adiabatic reweighting

The adiabatic reweighting estimator [34, 8] is an estimator specifically dedicated to expanded ensemble simula-
tions. This estimator is based on Bayes formula [34] and requires that the associated Markov chain of states is
sampled from the marginal probability of q, which is defined by

pQa (q) =
∑

λ∈Λ
pa(λ, q) =

∑

λ∈Λ
exp[a(λ)−U(λ, q)−ΨΛ

a ].

This means that, for any state q sampled according to the marginal probability distribution, the reweighting
factor used in the estimator of a conditional expectation given λ is the conditional probability of λ given q.
This quantity depends on the auxiliary potential and is defined by

πa(λ|q) =
pa(λ, q)

pQa (q)
=

exp[a(λ)−U(λ, q)]∑
ζ∈Λ exp[a(ζ)−U(ζ, q)]

.

The expression relating the target distribution π(q|λ) and the normalized reweighting factor πa(λ|q)/pΛa (λ) to
the sampled distribution pQa (q) corresponds to the well-known Bayes formula, which writes

π(q|λ) =
πa(λ|q)pQa (q)

pΛa (λ)
. (1.18)

The estimator is directly constructed upon the expectation form of Bayes formula (1.18). This alternative form
is obtained by multiplying both sides of (1.18) by O(λ, q), integrating over q ∈ Q and then expressing the
marginal probability of λ in (1.18) using the law of total expectation:

pΛa (λ) =

∫

Z
πa(λ|q)pQa (dq) , EQa [πa(λ|q)] .

These manipulations eventually enable one to cast the conditional expectation of the observable value O(λ, q)
given λ in its Bayesian form

E [O|λ] =
EQa [πa(λ|q)O(λ, q)]

E
Q
a [πa(λ|q) ]

.

Owing to the ergordic theorem, the resulting estimator is eventually

ΥM
Π (O|λ) =

1
M

∑M
m=1O(λ, qm)πa(λ|qm)
1
M

∑M
m=1 πa(λ|qm)

, (1.19)

where the sampled states {qm}1≤m≤M are distributed according to pQa (dq).

The term adiabatic was introduced in reference to the virtual dynamical decoupling that is involved when
the method is implemented within MD simulations [34]. When the position coordinates q evolve very slowly
compared to λ, the latter variable has enough time to fully explore its space Λ and visits any value of λ
according to the corresponding equilibrium probability πa(λ|q). With this picture in mind, the force exerted
upon q is −EQa [∇qU(ζ, q)|q], the average of minus the gradient of U(λ, q) with respect to q and over the current
equilibrium distribution of λ given q. This force is precisely equal to the logarithmic gradient of the equilibrium
marginal probability distribution:

∇q ln pQa (q) = −
∑
ζ∈Λ∇qU(ζ, q) exp[a(ζ)−U(ζ, q)]∑

ζ∈Λ exp[a(ζ)−U(ζ, q)]
= −Ea [∇qU(ζ, q)|q] .

Hence, the conditionally expected force acting on q can be employed as a forcefield in MD simulations to sample
states according to the marginal probability distribution, provided the dynamics is coupled to a thermostat as
shown in Ref [34].

In MC simulations, it seems that a new scheme is required to sample the marginal distribution pQa (q). But,
we have already that scheme since we know how to sample the joint probability pa(ζ, q). In fact, estimator (1.19)
could have been equally implemented using a sample {ζm, qm}1≤m≤M by application of the ergodic theorem to
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the following expectation ratio

E [O|λ] =
Ea [πa(λ|q)O(λ, q)]

Ea [πa(λ|q)] , (1.20)

where the expectation Ea is defined with respect to any function (ζ, q) 7→ G(ζ, q) as follows

Ea
[
G(·, ·)

]
,
∑

ζ∈Λ

∫

Q
G(ζ, q)pa(ζ, dq) =

∑

ζ∈Λ

∫

Q
πa(ζ|q)G(ζ, q)pQa (dq) = E

Q
a


∑

ζ∈Λ
πa(ζ|q)G(ζ, q)


 .

Setting the function G(ζ, q) to πa(λ|q)O(λ, q) and πa(λ|q) yields the two following relations

Ea
[
πa(λ|·)O(λ, ·)

]
= E

Q
a
[
πa(λ|·)O(λ, ·)

]
and Ea

[
πa(λ|·)

]
= E

Q
a
[
πa(λ|·)

]
,

obtained noticing that the observables do not depend on ζ and plugging
∑
ζ∈Λ πa(ζ|q) = 1. The ratio given

in (1.20) immediately folows. It is instructive to establish the connection with umbrella sampling method in
which U(λ, q) = U(0, q) + λB(q). The estimator with respect to the reference system (λ = 0) becomes

ΥM
Π (O|0) =

1
M

∑M
m=1O(λ, qm) exp Ba(qm)
1
M

∑M
m=1 exp Ba(qm)

. (1.21)

where we have introduced

Ba(q) = lnπa(0|q) = ln
pa(0, q)∑
ζ∈Λ pa(ζ, q)

= a(0)− ln
∑

ζ∈Λ
exp [a(ζ)− ζB(qm)].

Adiabatic reweighting thus exhibits similarities with standard reweighting (1.4). The standard reweighting
estimator in the expanded ensemble would be transposed as

ΥM
R (O|0) =

1
M

∑M
m=1O(0, qm) exp [a(0)− a(ζm) + ζmB(qm)− ln ‖Λ‖]
1
M

∑M
m=1 exp [a(0)− a(ζm) + ζmB(qm)− ln ‖Λ‖]

, (1.22)

where ‖Λ‖ =
∑
ζ∈Λ 1 is the cardinal of Λ. With the inclusion of this quantity, the denominator in (1.22) yields

an estimate of the marginal probability pΛa (0), like the denominator of estimator (1.21).

The behavior of standard reweighting with that of adiabatic reweighting on a practical rare-event problem
will be compared in subsection 2.3.3. We will observe that the former estimator is much more efficient than
the latter estimator, by several orders of magnitude in the rare event context, due to improved overlapping
properties of the marginal probability distribution when the auxiliary potential is adequately chosen. The
question naturally arises as to which of the estimators described heretofore is the most accurate for any given
auxiliary biasing potential from a statistical viewpoint.

To address this question, we first introduce a generic weighing function allowing us to define a large class
of estimators which the conditioning approach will apply to. The standard binning and reweighing estimators
will be two particular instances of this class of estimators.

1.10 Generic estimator for conditional expectations

The generic estimator of the conditional expectation of observable O(λ, q̄) given λ is based on the following
generic weighing function

gλa (ζ, q̄) =
pa(λ, q̄)

pa(ζ, q̄)
Kλζ ,

where the matrix Kλζ satisfies the condition

∑
ζ∈Λ

Kλζ = 1, ∀λ ∈ Λ. (1.23)
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Owing to normalization (1.23), the expectation of gλa is always equal to the marginal probability of the external
parameter:

Ea
[
gλa
]

=
∑

ζ∈Λ

∫

Q
gλa (ζ, q̄)pa(ζ, q̄)dq̄ = pΛa (λ). (1.24)

Similarly, the following relation holds whatever the generic function:

Ea
[
gλa (·, ·)O(λ, ·)

]
=

∫

Q
O(λ, q̄)pa(λ, q̄)dq̄

= E
[
O(λ, ·)

∣∣λ
]
× pΛa (λ).

This relation together with Eq. (1.24) allows to express the conditional expectation of O given λ as a function
of gλa

E
[
O
∣∣λ
]

=
Ea
[
gλa (·, ·)O(λ, ·)

]

Ea [gλa ]
, (1.25)

and to obtain the generic estimators by application of the ergodic theorem

ΥM
G (O|λ) =

1
M

∑M
m=1 g

λ
a (ζm, q̄m)O(λ, q̄m)

1
M

∑M
m=1 g

λ
a (ζm, q̄m)

, (1.26)

where we considered a Markov chain {ζm, q̄m}1≤m≤M ergodic with respect to pa(ζ, q̄).
The generic weighing estimator generalizes the binning estimator [27] and the standard reweighting estima-

tor [8]. The binning estimator is obtained by setting the kernel matrix Kλζ to the identity matrix. The function
gλa (ζ, q̄) then reads

hλa(ζ, q̄) , 1λ(ζ)

and we denote the corresponding estimator by ΥM
H (O|λ). The standard reweighting estimator of E [O|λ],

denoted by ΥM
R (O|λ), is obtained by setting the entries of the kernel matrix to the inverse of ‖Λ‖ =

∑
ζ∈Λ 1,

the cardinal of the discrete set Λ. Unlike the binning estimator ΥM
H (O|λ), the standard reweighting estimator

ΥM
R (O|λ) includes information from all the sampled subensembles (ζ ∈ Λ) owing to the standard reweighting

function,

rλa (ζ, q̄) =
1

‖Λ‖
exp [a(λ)−U(λ, q̄)]

exp [a(ζ)−U(ζ, q̄)]
.

Thus, the factors rλa (ζm, q̄m) must be used in place of the generic weighing factors gλa (ζm, q̄m) in (1.26). This
standard reweighting function with ‖Λ‖ = 1 is commonly used in umbrella sampling (see Sec. 1.5) or free energy
perturbation techniques [13, 12, 14, 15] to rescale the contribution of states sampled with probability q̄ 7→ π(q̄|ζ)
with respect to target probability q̄ 7→ π(q̄|λ) inside the estimator. The forthcoming derivations involving the
generic estimator will cover binning and standard reweighting as two particular remarkable cases. We show
in Subsection 1.11.3 that the adiabatic reweighting estimator can be constructed from the generic estimator
through the conditioning procedure of probability theory and that this guarantees a reduction of the asymptotic
variance. We complete the study by proving variance reduction with respect to STWHAM [35], a self-consistent
estimator dedicated to expanded ensemble simulations. Prior to showing how conditioning is done within the
generic and self-consistent reweighting estimator, we first describe in Subsection 1.11.1 a simple conditioning
scheme and prove variance reduction in the estimation of the marginal probability of λ .

1.11 Conditioning and variance reduction

1.11.1 Estimating the marginal probability of λ

Let consider a sample {ζm, q̄m}1≤m≤M drawn from the distribution of probability mass pa(ζ, q̄) using a Metropo-

lis Monte Carlo algorithm or a Langevin process. The generic estimator for estimating pΛa (λ) consists of evalu-
ating the arithmetic mean of ga, denoted by

IM
(
gλa
)

= 1
M

M∑

m=1

gλa (ζm, q̄m), (1.27)
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where we applied the ergodic theorem to relation (1.24). Let also simplify the notation of the conditional
probability of λ given q by using

πλa (q) =
exp [a(λ)−U(λ, q)]∑
ζ∈Λ exp [a(ζ)−U(ζ, q)]

instead of πa(λ|q). The conditionally expected value of gλa given q is the conditional probability of λ given q

Ea
[
gλa (·, q)

∣∣q
]

= πλa (q). (1.28)

Besides, the expected value of gλa is the expected value of πλa (law of total expectation)

Ea
[
gλa
]

= E
Q
a
[
Ea
[
gλa (·, q)

∣∣q
]]

= E
Q
a
[
πλa
]

= Ea
[
πλa
]
,

where we first resorted to Eq. (A.1) with O(·, q) set to Ea
[
gλa (·, q)

∣∣q
]
. Interestingly, the last term in the sequence

of equalities above means that for estimating Ea
[
gλa
]
, it is possible to replace gλa (ζm, q̄m) in Eq. (1.27) by πλa (q̄m).

It is precisely this replacement scheme that is referred to as conditioning. Estimating the marginal probability
of λ with the conditioning scheme therefore consists of evaluating the following quantity

IM
(
πλa
)

= 1
M

M∑

m=1

πλa (q̄m).

The equality between expectations EQa
[
πλa
]

and Ea
[
πλa
]

indicates that the arithmetic estimator can still be
employed using a configuration chain QT = {q̄m}1≤m≤M distributed according to the marginal probability

pQa (q). Superscript T stands for transposition so that Q is a column stochastic vector.

In general, the sampled configurations are identically but not independently distributed. This implies that
the covariance matrix of Q is non diagonal in general (see Lemma A.2.1 for the definition of the covariance

matrix of a random vector). Denoting the vector encompassing the sampled factors by G =
{
gλa (ζm, q̄m)

}T
1≤m≤M

and the M -dimensional vector whose components are equal to M−1 by eM , the quantities IM (gλa ) and IM (πλa )
can be re-written as eTMG and Ea

(
eTMG|Q

)
, respectively. The statistical variances of estimators IM (gλa ) and

IM (πλa ) are then

Va
[
IM (gλa )

]
= Va

[
eTMG

]
, (1.29)

Va
[
IM (πλa )

]
= V

Q
a
[
Ea
(
eTMG|Q

)]
, (1.30)

where the varianceVa is defined in Eq. A.3 of the Appendix. The reduction of the variance through conditioning
stems from the law of total variance (A.2). Setting O to eTMG, the law writes

Va[eTMG] = E
Q
a

[
Va[eTMG|Q]

]
+VQa

[
Ea
(
eTMG

∣∣Q
)]
. (1.31)

The variance reduction is thus equal to the expected conditional variance, a strictly positive quantity in practical
applications:

E
Q
a

[
Va[eTMG|Q]

]
> 0. (1.32)

The equality is reached when, for any given sample Q, eTMG is constant. This is assumed to be never the
case, otherwise a sampling strategy would no be justified. Equality (1.31) and inequality (1.32) thus imply the
following strict inequality between the variance of the two estimators in (1.29) and (1.30)

Va
[
IM (gλa )

]
> Va

[
IM (πλa )

]
.

Hence, the statistical variance associated with the arithmetic mean of the generic function is always larger than
that associated with arithmetic mean of the conditional probabilities of λ, whatever the value of the biasing
potential. It is therefore always preferable to use an estimator obtained through conditioning, provided that the
overhead associated with the evaluation of the conditional expectation given the sampled states is small enough.
The cost of conditioning becomes substantial in practice when the dimension of Λ exceeds two or three. In this
situation, the reduction of the variance may not be important enough to justify implementing a conditioning
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scheme. In the following, we always assume that performing the numerical quadrature integration within the
conditioning scheme has a negligible cost compared to the one of evaluating the potential energy and its gradient.
Assuming that the sampled configurations are identically and independently distributed (i.i.d) entails that the
covariance matrix of G is diagonal. The statistical variances of the considered estimators therefore take the
following simple forms

Va
[
IM (gλa )

]
= 1

MVa
[
gλa
]
,

Va
[
IM (πλa )

]
= 1

MVa
[
πλa
]
.

The i.i.d. assumption is made from now so as to facilitate the comparison of the estimator variances in the
asymptotic limit of large sample sizes. It will not modify the various inequalities which will be derived to
compare the asymptotic variances of the generic and conditioned estimators.

1.11.2 Visualization of the expected conditional variance

Conditioning can be applied to the estimation of any quantity, like for instance the expected value of the
external parameter in the expanded ensemble. Let {(ζm, qm}1≤m≤M be a iid sample of extended states drawn

from pa(ζ, q) distribution in which the extended potential energy has the form Ua(ζ, q) = ωq2 + κ
2 (ζ − αq)2

with a set to 0. This entails that each extended state {ζm, qm} corresponds to a pair of two correlated normal
variables. The variance of the standard estimator writes

Va
[
IM (ζ)

]
= Va

[
1
M

∑M

m=1
ζm

]
= 1

MVa [ζ]

while the variance of the conditioned estimator is

Va
[
IM (Ea [ζ|q])

]
=

[
1
M

∑M

m=1
Ea [ζ|qm]

]
= 1

MVa [Ea [ζ|q]] .

The reduction of variance through conditioning can be visualized in figure 1.2 in which the sampled states have
been displayed. Variance reduction is guaranteed by the law of total variance

Va [ζ] = Va [Ea [ζ|q]] +Ea [Va [ζ|q]] .

The two variances and the expected conditional variance above are equal to the areas of the three central
squares in figure 1.2, as indicated by the legend. The lengths of the square edges thus correspond to standard
deviations. The expected value of the ζ-component of the blue arrows is equal to Ea [ζ −Ea [ζ|q]] which is 0.
The variance of the arrow component is thus equal to the expected value of the conditional variance

Va [ζ −Ea [ζ|q]] = Ea

[
Ea

[
(ζ −Ea [ζ|q])2 ∣∣q

]]
= Ea [Va [ζ|q]] ,

which is precisely the area of the blue square in figure 1.2. The variance reduction is 1
MEa [Va [ζ|q]].
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ζ

q

{ζm, qm} {Ea [ζ|qm], qm}
Va [ζ] Va [Ea [ζ|q]]

Ea [Va [ζ|q]]

Figure 1.2: Illustration of variance reduction through conditioning for estimating the expected value of ζ. The × symbols
represent the sampled points.

1.11.3 Estimation of conditional expectations

Standard reweighting, binning and generic weighing

Conditioning for estimating the conditional expectations of O given λ consists in substituting the conditional
expectation given the sampled states for the sampled values of the generic function in the generic estimator of
Eq. 1.26. Thus, substituting πλa (q̄m) for gλa (ζm, q̄m) yields the adiabatic reweighting estimator of E [O|λ]:

ΥM
Π (O|λ) =

1
M

∑M
m=1 π

λ
a (q̄m)O(λ, q̄m)

1
M

∑M
m=1 π

λ
a (q̄m)

, (1.33)

where we used a Markov chain {ζm, q̄m}1≤m≤M distributed according to pa(ζ, q̄), or a configuration chain

{q̄m}1≤m≤M distributed according to the marginal pQa (q̄). The substitution that is done amounts to plugging
the law of total expectation both in the numerator and the denominator of Eq. (1.25),

E [O|λ] =
EQa

[
Ea
[
gλa (·, q)O(λ, q)

∣∣q
]]

E
Q
a
[
Ea
[
gλa (·, q)

∣∣q
]] =

Ea
[
πλa (·)O(λ, ·)

]

Ea [πλa ]
.

The AR estimator can alternatively be viewed as an instance of waste-recycling Monte Carlo [2, 9] when the ζm
are sampled directly from the conditional probabilities ζ 7→ πζa(q̄m) at each given q̄m as suggested in Ref. [36]:
the wasted information relative to rejected trial moves for ζ ∈ Λ is recycled in the estimator. However, resorting
to such a Gibbs sampler [37] is not a necessary prescription and any sampler satisfying the detailed balance
condition can possibly be used. In fact, adiabatic reweighting amounts to performing virtual Monte Carlo moves
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and can be viewed as a particular instance of the virtual-move Monte Carlo method propopsed in Ref. [38].

The present conditioning scheme entails variance reduction in the asymptotic limit of large sample sizes. To
prove this property, we will compare the asymptotic variance of the adiabatic reweighting estimator (Eq. (1.33))
to that of the generic estimator (Eq. (1.26)). The present situation differs from that of subsection 1.11.1
wherein reduction was guaranteed for any sample sizes. The difficulty is due to the presence of a denominator
in Eqs. (1.26) and (1.33). Let us assume that the function q 7→ O(λ, q) is non-constant (otherwise sampling
would not be necessary) and introduce the centered observable Oλ(q) = O(λ, q)−E[O|λ], a quantity centered
on the value of the conditional expectation given λ. Then, the quantity Oλgλa is centered with respect to the
total expectation. We have

Ea
[
gλaOλ

]
= E

Q
a

[
Ea
[
gλa (·, q)Oλ(q)|q

]]
= E

Q
a
[
πλa (·)O(λ, ·)

]
−E(O|λ)pΛa (λ) = 0.

Let us now assume that the generated Markov chains {ζm, q̄m}1≤m≤M consist of a sequences of random variables

that are i.i.d. according to pa(ζ, q̄). Then, the variance of the arithmetic mean of gλa (ζm, q̄m)Oλ(q̄m) multiplied
by M decomposes into the variance of gλa (ζ, q̄)Oλ(q̄):

MVa

[
1
M

M∑

m=1

gλa (ζm, q̄m)Oλ(q̄m)

]
= Va

[
gλaOλ

]
.

In the limit of large sample sizes, the variance of the
√
MΥM

G (O|λ) quantity becomes equivalent to the following
variance

MVa
[
ΥM

G

(
O
∣∣λ
)]

∼
M→+∞

Va

[
gλaOλ
Ea
[
gλa
]
]
. (1.34)

The limit of the left-hand side term of Eq. (1.34) as M tends to infinity is called the asymptotic variance of the
ΥM

G (O|λ) estimator. The square-root of the asymptotic variance corresponds to the asymptotic standard error
and writes

σa [Υ∞G (O|λ)] =
1

pΛa (λ)

√
Va
[
gλaOλ

]
, (1.35)

where we have substituted pΛa (λ) for Ea(gλa ). This mathematical result is a consequence of the delta method
(see Appendix A). More precisely, the delta method states that the following convergence in law holds

1
M

∑M
m=1 g

λ
a (ζm, q̄m)O(q̄m)

1
M

∑M
m=1 g

λ
a (ζm, q̄m)

L−→
M→+∞

N
(
E [O|λ] , σ2

a [Υ∞G (O|λ)]
)
,

where N (µ, ς) denotes the normal law of mean µ and variance ς. Similarly, the asymptotic error of the adiabatic
reweighting estimator is, with i.i.d. assumption again,

σa [Υ∞Π (O|λ)] =
1

pΛa (λ)

√
Va
[
πλaOλ

]
. (1.36)

To compare the two asymptotic errors, we resort to the law of total variance as in subsection 1.11.1, but
with respect to Oλgλa quantity in place of gλa . The law states that the total variance is equal to the sum of the
expectation of the conditional variances given q and the variance of the conditional expected values given q:

Va
(
gλaOλ

)
= E

Q
a
[
Va
(
gλa (·, q)Oλ(q)

∣∣q
)]

+VQa
[
Ea
(
gλa (·, q)Oλ(q)|q

)]
.

Plugging Eq. (1.28) into the law of total variance leads to

Va
[
πλaOλ

]
= Va

[
gλaOλ

]
−EQa

[
Va
[
gλaOλ|q

]]
. (1.37)

The function q 7→ Oλ(q) being non-constant and the conditional variance of gλa being strictly positive for all
q, the last expectation above is strictly positive. Thus, Va

(
πλaOλ

)
is strictly lower than Va

(
gλaOλ

)
. From

identities (1.35), (1.36) and (1.37), we deduce the following strict inequality between the asymptotic errors of
the estimators

σa [Υ∞Π (O|λ)] < σa [Υ∞G (O|λ)] .
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It is therefore always preferable to use the adiabatic reweighting estimator rather than the binning, standard
reweighting or generic estimators. We now go on by discussing the relevance of implementing self-consistent
reweighting estimators in combination with expanded ensemble simulations.

Self-consistent reweighting

To estimate conditional expectations in expanded ensemble simulations with high accuracy, it has been suggested
by Chodera et al. [35] to implement the self-consistent reweighting estimator WHAM. The original WHAM
approach consists of performing a number of independent simulations for each λ ∈ Λ and pooling the generated
samples into a single sample whose total size is M =

∑
λ∈ΛMλ. The Mλ quantities are the sizes of the λ-samples,

the original samples generated at constant λ using the independent simulations. These sizes are crucial input
parameters in self-consistent reweighting estimators together with the pooled sample. Since a single simulation
is performed in the expanded ensemble, it has been proposed to estimate the λ-sample sizes through standard
histogram binning (see Eq. 1.27)

Mλ =

M∑

m=1

1λ(ζm) = MIM (1λ) , λ ∈ Λ.

The collected data are then postprocessed using WHAM. The overall procedure [35] is referred to as simulated
tempering WHAM (STWHAM). Resorting to the bin-less formulation [18, 22] of WHAM, the self-consistent
reweighting estimator of E [O|λ] can be cast into the following form

ΥM
SC(O|λ) =

M∑

m=1

O(λ, q̄m) exp[F̂(λ)−U(λ, q̄m)]
∑
ζ∈ΛMζ exp[F̂(ζ)−U(ζ, q̄m)]

, (1.38)

where the quantities F̂(ζ) for ζ ∈ Λ are the estimated free energies. They are given by the solutions (up to a
common constant) to the following set of nonlinear equations:

ΥM
SC(1|λ) = 1, λ ∈ Λ. (1.39)

System (1.39) is equivalent to
IM
(
πλâ
)

= IM (1λ) , λ ∈ Λ. (1.40)

where the unknown function â(λ) stands for the quantity F̂(λ) + lnMλ in Eq (1.38). Since the λ-sample sizes
Mλ are stochastic quantities in the STWHAM estimator (1.38), it is legitimate to do some conditioning on
them and to use as input data

M̂λ =

M∑

m=1

exp [a(λ)−U(λ, q̄m)]∑
ζ∈Λ exp [a(ζ)−U(ζ, q̄m)]

= MIM
(
πλa
)
,

instead of Mλ for λ ∈ Λ. We show in Appendix A.6 that conditioning the self-consistent reweighting estimator
further reduces its asymptotic statistical variance. Besides, conditioning amounts to substituting IM

(
πλa
)

for
IM (1λ) in system (1.40). This entails that the self-consistent solutions â(λ) become equal to a(λ) (up to a
common additive constant). The conditioned self-consistent reweighting estimator is therefore obtained by sub-

stituting a(λ)− ln M̂λ for F̂(λ) and M̂λ for Mλ in the unconditioned self-consistent reweighting estimator (1.38).
These two substitutions enable one to recover the AR estimator (1.33) as shown below:

ΥM̂
SC(O|λ) =

M∑

m=1

O(λ, q̄m) exp
[
a(λ)− ln M̂λ −U(λ, q̄m)

]

∑
ζ∈Λ M̂ζ exp

[
a(ζ)− ln M̂ζ −U(ζ, q̄m)

] =

1
M

M∑
m=1
O(λ, q̄m)

exp [a(λ)−U(λ, q̄m)]∑
ζ∈Λ exp [a(ζ)−U(ζ, q̄m)]

1
M

M∑
m=1

exp [a(λ)−U(λ, q̄m)]∑
ζ∈Λ exp [a(ζ)−U(ζ, q̄m)]

=
1
M

∑M
m=1 π

λ
a (q̄m)O(λ, q̄m)

1
M

∑M
m=1 π

λ
a (q̄m)

= ΥM
Π (O|λ).
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To summarize, the use of the conditioned λ-sample sizes in STWHAM provides a reduction of the statistical
variance (see Appendix A.6), and, concomitantly, the task of solving a large set of nonlinear equations is avoided
because the self-consistent reweighting with conditioning amount to adiabatic reweighting. More generally,
conditioning the expectations associated with the binning, standard reweighting and self-consistent reweighting
estimators reduces the statistical variances in the analysis of expanded ensemble simulations and leads to the
formulation of the identical adiabatic reweighting estimator. Adiabatic reweighting is thus asymptotically
optimal among the large class of considered estimators.

1.12 Summary

Molecular simulations such as MD or MC are often plagued by ergodicity issues making the estimation of
thermodynamic averages unreliable. The two main causes of broken ergodicity are metastability and small
distribution tails. This results in the rare occurrence of the physically interesting events. Enhanced sampling
algorithms in combination with efficient estimators are often employed to speedup the convergence of simu-
lations. The principle is often the following: some biased or perturbed systems are sampled so as to achieve
ergodicity artificially and then an accurate estimate of the desired thermodynamic average is recovered using
an unbiasing procedure. In difficult problems, an external parameter is used to tune the strength of the bias
perturbing the system. This naturally leads to defining an extended potential energy framework in which two
simulation approaches can be envisaged:

• performing replica exchange simulations to sample the thermodynamic states corresponding to a set of
values for the external parameter and implementing a self-consistent estimator (MBAR or WHAM) to
compute the desired thermodynamic averages through post-processing of the information contained in the
sampled states;

• performing simulations in an expanded ensemble wherein the external parameter is an additional coordi-
nate and estimating the conditional expectations online using a conditioning scheme.

Because thermodynamic estimates are obtained straightforwardly with the conditioning procedure, the second
approach obviates the need of post-processing the collected data. However, an auxiliary biasing potential
allowing homogeneous sampling along the external parameter needs instead to be constructed with the help
of a preliminary run (preprocessing). In practice, the biasing potential is adapted on the current estimate of
the free energy or of its gradient, as briefly mentioned in subsections 1.9.2 and 1.9.3. We show in Chapter 2
how to efficiently compute free energies using the conditioning technique and in Chapter 3 how to construct an
adequate biasing potential using adaptively biased sampling techniques.
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2 | From free energies to probabilities and ex-
pectations

2.1 On the relativity of free energies

In this Chapter, we discuss the possible ways of calculating the free energies along λ within the expanded
ensemble. We assume that the auxiliary biasing potential is constant, i.e. that it does not vary in the course
of the simulation. We have shown in Chapter 1 that the absolute free energies F(λ), up to an undetermined
and unimportant constant, can be estimated for λ ∈ Λ by solving self-consistent system. The common additive
constant remains undetermined because the absolute free energy defined in can not conveniently be cast in
the form of an expectation within the expanded ensemble framework. Fortunately, this indetermination is
armless in practice because one is essentially interested in differences of free energies between two or several
thermodynamic states. In order to rationally review the various free energy techniques of the literature, we
found it more judicious and convenient to adopt Landau’s viewpoint [39, 14] and to define the free energy as
the cologarithm of the expected indicator value:

A(λ) = − lnE [1λ] , (2.1)

reminding that the indicator function takes output value 1 if input value ζ is equal to λ and 0 otherwise. The
total expectation denoted by E is defined in (1.12). It coincides with the total expectation Ea when a(λ) is set
to 0. The joint probabilities p(λ, q) and p0(λ, q) are identical. Noticing that the expected value of 1λ(ζ) is the
marginal probability of λ whose expression is given in (1.11) yields

A(λ) = − ln pΛ(λ) = F(λ)− ln
∑

ζ∈Λ
exp [−F(ζ)] .

Differences of free energies are not affected by the logarithmic term and can be estimated considering the
absolute or relative viewpoint:

A(λ)− A(ζ) = F(λ)− F(ζ).

However, due to the finiteness of Λ, the derivative of the relative free energy is not strictly equal to the derivative
of the absolute free energy which corresponds to a mean force along λ:

A ′(λ) = F′(λ)
[
1− pΛ(λ)

]
≈ F′(λ) = E [∂λU(λ, q)|λ] .

In practice, we assume that the set ‖Λ‖ is large enough so that the marginal probability of λ is negligible and
the derivative of the absolute and relative free energies will be considered to be each other equal.

It is worth mentioning that the Landau free energy along a reaction coordinate ξ(q) exhibits a form similar
to (2.1) and writes:

F (ξ?) = − lnE [1ξ? ◦ ξ] .

Calculations of the free energy along a bond-orientational order parameter are described in Chapter 3 using the
expanded ensemble method with harmonic coupling setup.

The concept of relative free energy is universal. It similarly applies to state-to-state time correlations in
dynamical processes. This is because the time correlations between let say state A ⊂ Q and state B ⊂ Q
correspond to the probabilities of observing a transition from A to B during the considered elapsed time t.
To formalize this probability, let t ∈ R 7→ qt ∈ Q denote the dynamical process, S denote a subset of the
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configuration space (S ⊂ Q) and χS(q) be the characteristic function that takes value 1 if q ∈ S and 0 otherwise.
Then, the free energy associated with the A-to-B time correlation function is defined by

F(B, t, A, 0) = − lnE? [χB(qt)χA(q0)] (2.2)

where expectation E? refers to a time average over the involved dynamical process. By assigning a free energy
to a rare-event probability (2.2), the idea of applying standard free energy techniques to the calculations of time
correlation functions comes naturally [6]. This approach is referred to as the transition path sampling (TPS)
method, introduced by Bolhuis, Chandler, Dellago and Geissler and reviewed by these authors in Ref. [7]. The
TPS approach is useful when the available reaction coordinates are not reliable. In this situation, restraining or
constraining the system using a bad reaction coordinate (BRC) on a multidimensional potential energy surface
often breaks numerical ergodicity. An illustration of this issue will be given in Sec. 3.2. A free energy barrier
computed along a BRC usually underestimates the activation free energy, i.e. the true free energy barrier
yielding the rate of thermally activated reactive events. We show in Sec. 2.3 how to straightforwardly estimate
a state-to-state time correlation function based on a conditioning procedure. This is achieved by casting this
function in the form of a conditional expectation of the characteristic function χB within an appropriate expanded
transition path ensemble. The main difficulty of the proposed approach lies in the construction of a biasing
path functional that sufficiently increases the fraction of paths ending in the product state, for which χB(qt)
is 1. An expanded transition path sampling method fulfilling this requirement will be presented in Chapter 4
together with an application to the migration of a vacancy in α-iron and a comparison with the transition rates
obtained using transition state theory, which is discussed in Sec. 4.5.

Outline of the Chapter We show first how to construct conditioned estimators for computing total expec-
tations, relative free energies (2.1) and rare-event probabilities (2.2). We then assess the performance of the
estimators on a toy model, and explain the efficiency of the conditioning procedure by resorting to a fluctuation
theorem of statistical mechanics.

2.2 Conditioning and variance reduction

2.2.1 Estimation of total expectations

We consider first the estimation of total expectations of the form given in Eq. (1.12) using expanded ensemble
simulations. The involved observable may for instance be some indicator functions when occupation probabilities
need being calculated along an external parameter or an internal reaction coordinate. The questions then arise
as to (i) how to transpose the generic estimator, (ii) how to condition the transposed estimator and (iii) whether
conditioning achieves variance reduction.

To answer question (i), we decompose the total expectation of O resorting to the law of total expecta-
tion (1.12) on λ ≡ ζ, as in the the stratification approach detailed in Sec. 1.8, but we plug instead the expectation
ratio (1.25) that involves the weighing function gλa . This yields

E [O] =
∑

λ∈Λ

Ea
[
gλa (·, ·)O(λ, ·)

]

Ea [gλa ]
pΛ0 (λ). (2.3)

The unbiased marginal probability of λ that appears in the right-hand side (rhs) term is now expressed as a
function of the marginal probability of λ with the biasing potential switched on

pΛ0 (λ) =
e−a(λ)pΛa (λ)∑

λ?∈Λ e
−a(λ?)pΛa (λ?)

=
e−a(λ)Ea

[
gλa
]

Ea
[∑

λ?∈Λ e
−a(λ?)gλ?a

] .

Inserting the last term above into the rhs term of equation (2.3) and eventually permuting the expectation Ea
and the sum

∑
λ∈Λ yields

E [O] =
Ea
[∑

λ∈ΛO(λ, ·)e−a(λ)gλa (·, ·)
]

Ea
[∑

λ∈Λ e
−a(λ)gλa

] . (2.4)

To manipulate such total expectations, it is more convenient to multiply the previously employed weighing
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functions (1λ, rλa , gλa and πλa ) by exp[−a(λ)]. The modified weighing functions are denoted by hλa , rλa , gλa
and �

λ
a , respectively. The employed notations with their definitions are compiled in Table 2.1. Inserting the

functions gλa(ζ, q̄) = e−a(λ)gλa (ζ, q̄) and ga(ζ, q̄) =
∑
λ∈Λ g

λ
a(ζ, q̄) into equation (2.4) yields

E [O] =
Ea
[∑

λ∈ΛO(λ, ·)gλa(·, ·)
]

Ea [ga]
. (2.5)

We are now in a position to formulate the estimator of the total expectation based on relation (2.5):

ΥM
G (O) =

1
M

∑M
m=1

∑
λ∈ΛO(λ, q̄m)gλa(ζm, q̄m)

1
M

∑M
m=1 ga(ζm, q̄m)

, (2.6)

where {ζm, q̄m}1≤m≤M is a Markov chain generated according to the probability distribution pa(ζ, q̄).

We have in particular for the binning estimator of E [O]

ΥM
H (O) =

1
M

∑M
m=1O(ζm, q̄m) exp[−a(ζm)]
1
M

∑M
m=1 exp[−a(ζm)]

,

where we replaced gλa and ga in Eq. (2.5) by hλa and ha. With harmonic coupling, the standard reweighting
estimator of E [1ξ? ] writes

ΥM
R (1ξ?) =

1
M

∑M
m=1 1ξ?(ξm) exp [−a(ζm) + R (ζm, ξm)]
1
M

∑M
m=1 exp [−a(ζm) + R (ζm, ξm)]

,

where we replaced gλa and ga in Eq. (2.5) by rλa and ra and ξm stands for ξ(q̄m). This relation shows that
it is in principle possible to remove the biasing and harmonic potentials simultaneously. However, this way
of proceeding is not efficient. Instead, integration of the averaged restraint Ea [∂ξ?R (·, ξ?)|ξ?] along ξ? is
preferred in practice [40]. This approach, referred to as CZAR method, exploits the fact that the restraint
can be differentiated with respect to ξ?. It will be further described in Sec. 3.4 and compared to adiabatic
reweighting.

With regards to question (ii), conditioning consists in replacing the gλa(ζm, q̄m) and ga(ζm, q̄m) terms by
their expected values given q̄m, which are respectively (q ≡ q̄m)

Ea
[
gλa(·, q)|q

]
= exp [−a(λ)]Ea

[
gλa (·, q)

∣∣q
]

= �
λ
a(q),

and

Ea [ga(·, q)|q] =
∑

λ∈Λ
�
λ
a(q) = �a(q).

Next, we write the law of total expectation in the rhs ratio of Eq. 2.4 and plug the expected value of ga(ζ, q)
given q

E [O] =
EQa
[
Ea
[∑

λ∈Λ g
λ
a(·, q)O(λ, q)

∣∣q
]]

E
Q
a

[
Ea
[
ga(·, q)

∣∣q
]] =

Ea

[∑
λ∈Λ �

λ
a(·)O(λ, ·)

]

Ea

[
�a

] .

From the rhs expectation ratio of Eq. 2.2.1 and by application of the ergodic theorem, the adiabatic reweighting
estimator of E[O] below is deduced:

ΥM
Π (O) =

1
M

∑M
m=1

∑
λ∈Λ �

λ
a(q̄m)O(λ, q̄m)

1
M

∑M
m=1 �a(q̄m)

, (2.7)

where {q̄m}1≤m≤M is a Markov chain of states distributed according to probability distribution pQa (q). This
one can possibly be extracted from an expanded Markov chain {ζm, q̄m}1≤m≤M generated according to pa(ζ, q̄)
probability density. We have compiled in Table 2.1 the relations between total expectations and weighing
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functions which are useful for the construction of the estimators.

We answer question (iii) in the affirmative: conditioning for estimating total expectations achieves variance
reduction. As for estimations of conditional expectations in section 1.11, this property is a consequence of the
law of total variance. The proof follows the same reasoning, but requires replacing the conditionally centered
variable Oλ(q) = O(λ, q)−E [O|λ] by the totally centered variable

OΛ(ζ, q̄) = O(ζ, q̄)−E [O] ,

and the weighing factor gλa by a sum over λ ∈ Λ involving the gλa factors. The asymptotic variance of the ΥM
R (O)

estimator writes (see Appendix A)

σ2
a [Υ∞G (O)] = Va

[∑

λ∈Λ
OΛ(λ, ·) g

λ
a(·, ·)
Ea(ga)

]
,

where the quantity inside the variance is also centered. The asymptotic variance of the ΥM
Π (O) estimator

is obtained from the one of the ΥM
Π (O|λ) estimator by replacing the conditional probabilities πλa (q) by sums

involving �
λ
a(q) over λ ∈ Λ. One obtains

σ2
a [Υ∞Π (O)] = Va

[∑

λ∈Λ
OΛ(λ, ·) �

λ
a(·)

Ea(�a)

]
= V

Q
a

[
Ea

[∑

λ∈Λ
OΛ(λ, q)

gλa(·, q)
Ea(ga)

∣∣∣∣q
]]

,

where �a =
∑
λ∈Λ �

λ
a . Plugging the law of total variance into the right-hand side variance enables one to

conclude that the asymptotic variance of the ΥM
Π (O) estimator is smaller than that of the ΥM

G (O) estimator

σ2
a [Υ∞Π (O)] = Va

[∑

λ∈Λ
OΛ(λ, ·) g

λ
a(·, ·)
Ea(ga)

]
−EQa

[
Va

[∑

λ∈Λ
OΛ(λ, q)

gλa(·, q)
Ea(ga)

∣∣∣∣q
]]

< σ2
a [Υ∞G (O)] .

We will illustrate the estimation of total expectations by setting the observable to the indicator functions
1λ(ζ) or 1ξ? (ξ(q̄)) where ξ(q̄) is an internal reaction coordinate. The co-logarithms of the expected values
of the two indicator functions yield the free energies along the external and internal coordinate, respectively.
Various ways of estimating free energies, the primary goal of expanded ensemble simulations, are discussed next
in subsection 2.2.2 and also later in Sec. 3.4, for the external and internal coordinate cases, respectively.

2.2.2 Estimation of the free energy along an external parameter

As defined in Eq. 2.1, the free energy A(λ) is the co-logarithm of the total expectation of the indicator function
1λ(ζ) for λ ∈ Λ. Its derivative is a conditional expectation of the λ-derivative of the extended potential given
λ:

A ′(λ) = E [∂λU(λ, ·)|λ] .

This quantity can be estimated and then integrated to obtain the free energy. Table 2.2 illustrates the various
ways of estimating the corresponding total and conditional expectations using the generic weighing functions
and a time-independent auxiliary biasing potential.

Let denote the binning, standard reweighting and adiabatic reweighting estimators by ΥM
H , ΥM

R and ΥM
Π

respectively. Considering these three important estimators potentially makes 6 direct methods of computing
the free energy or its derivative, while direct free energy methods are usually classified into three overlapping
categories in the literature: thermodynamic occupation [41, 14, 42] (TO), thermodynamic integration [43] (TI),
free energy perturbation [13] (FEP). We next analyze the correspondence between estimators and free energy
methods.

As for methods belonging to the first category, estimating the free energy from the log-probability of λ is
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Table 2.1: Notations and definitions of weighing functions and relations to conditional and total expectations.

Definitions

hλa(ζ, q̄) = exp [−a(λ)]hλa(ζ, q̄) = exp [−a(λ)]1λ(ζ) ha =
∑
λ∈Λ h

λ
a ,

rλa(ζ, q̄) = exp [−a(λ)] rλa (ζ, q̄) =
1

‖Λ‖
exp [−U(λ, q̄)]

exp [a(ζ, q̄)−U(ζ, q̄)]
ra =

∑
λ∈Λ r

λ
a ,

gλa(ζ, q̄) = exp[−a(λ)]ga(ζ, q̄) =

{
hλa(ζ, q̄) if binning,

rλa(ζ, q̄) if standard reweighting,
ga =

∑
λ∈Λ g

λ
a ,

�
λ
a(q̄) = exp [−a(λ)]πλa (q̄) =

exp [−U(λ, q̄)]∑
ζ∈Λ exp [a(ζ, q̄)−U(ζ, q̄)]

, �a =
∑
λ∈Λ �

λ
a .

Expressions for total expectations

E [O] =
Ea
[∑

λ∈Λ g
λ
a(·, ·)O(λ, ·)

]

Ea [ga]
=⇒ E [1λ] =

Ea
[
gλa
]

Ea [ga]

E [O] =
Ea
[∑

λ∈Λ �
λ
a(·)O(λ, ·)

]

Ea [�a]
=⇒ E [1λ] =

Ea
[
�
λ
a
]

Ea [�a]

Expressions for conditional expectations

Ea
[
gλa(·, q)

∣∣q
]

= �
λ
a(q) ⇐= Ea

[
gλa (·, q)

∣∣q
]

= πλa (q),

E [∂λU(λ, ·)|λ] = −∂λ lnEa
[
rλa
]

⇐= ∂λrλa(·, ·) = −∂λU(λ, ·)rλa(·, ·),

E [∂λU(λ, ·)|λ] = −∂λ lnEa
[
�
λ
a
]

⇐= ∂λ�λa(·) = −∂λU(λ, ·)�λa(·).

done resorting to the binning estimator as follows

Â(λ)
M

TO = − ln

[
1
M

∑M
m=1 1λ(ζm) exp[−a(ζm)]

1
M

∑M
m=1 exp[−a(ζm)]

]
= − ln

IM
(
hλa
)

IM (ha)
= − ln ΥM

H (1λ) .

Methods of the second category consists in estimating the free energy derivative and evaluating the free
energy through numerical integration. This is what is actually done in the extended ABF technique [34, 40].

From an expanded ensemble simulation, a simple way of obtaining an estimate Â ′(λ) of the mean force involves
the binning estimator ΥM

H

Â ′(λ)
M

TI =
1
M

∑M
m=1 ∂λU(λ, q̄m)1λ(ζm)

1
M

∑M
m=1 1λ(ζm)

=
IM (∂λU hλa)

IM (hλa)
= ΥM

H

[
∂λU

∣∣λ
]
.

It may be suggested to estimate the free energy derivative resorting instead to the standard reweighting estimator
as it is done in umbrella sampling [12]. Using the standard reweighting function introduced in Table 2.1 together
with the property ∂λr

λ
a(ζ, q̄) = −∂λU(λ, q̄)rλa(ζ, q̄), we have

Â ′(λ)
M

FEP = ΥM
R

(
∂λU

∣∣λ
)

= −∂λ ln

[
1
M

M∑

m=1

rλa(ζm, q̄m)

]
.

The fact that the estimator can be written has a logarithmic derivative of another standard reweighting estimator
indicates that it is not necessary to integrate the mean force to obtain the free energy. The standard reweighting
approach pertains to the second category of free energy methods (FEP), which aim at directly evaluating the
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Table 2.2: Expectation ratios based on which the various free energy estimators of Table 2.3 are constructed.

A(λ) =





− ln
Ea[gλa ]

Ea[ga]
with generic weighing,

− ln
EQa

[
Ea
[
gλa(·, q)

∣∣q
]]

E
Q
a
[
Ea
[
ga(·, q)

∣∣q
]] = − ln

Ea
[
�
λ
a
]

Ea [�a]
with conditioning,

A ′(λ) =





Ea[gλa∂λU(λ, ·)]
Ea[gλa ]

with generic weighing,

EQa
[
Ea
[
∂λU(λ, q)gλa(·, q)

∣∣q
]]

E
Q
a
[
Ea
[
gλa(·, q)

∣∣q
]] = −Ea

[
∂λ�λa

]

Ea [�λa ]
with conditioning.

free energy by estimating a partition function ratio and then taking its co-logarithm

Â(λ)
M

FEP = − ln

[
1
M

∑M
m=1r

λ
a(ζm, q̄m)

1
M

∑M
m=1ra(ζm, q̄m)

]
= − ln ΥM

R (1λ).

To perform a conditioning with respect to the FEP and TO method above, one must replace the weighing
factors hλa and rλa by their conditional expected values given q, which happens to be given by �

λ
a(q). Similarly,

ha and ra must also be replaced by �a(q). One thus obtains the following estimator

Â(λ)
M

AR = − ln

[
1
M

∑M
m=1 �

λ
a(q̄m)

1
M

∑M
m=1 �a(q̄m)

]
.

Differentiating the free energy estimate with respect to λ yields

dÂ(λ)
M

AR

dλ
= −∂λ ln

[∑M
m=1 �

λ
a(q̄m)

∑M
m=1 �a(q̄m)

]
= −

∑M
m=1 ∂

λ
�
λ
a(q̄m)

∑M
m=1 �

λ
a(q̄m)

= ΥM
Π (∂λU|λ) = Â ′(λ)

M

AR,

where we substituted −∂λU(λ, q̄m)�λa(q̄m) for ∂λ�λa(q̄m) in the second line and eventually identify with the AR
estimate of E [∂λU|λ]. The consistency between the estimated mean force and the derivative of the estimated
free energy in the AR method is a property inherited from the FEP method. However, unlike FEP method,
the adiabatic reweighting approach is directly related to thermodynamic integration, since the estimated mean
force can also be constructed from the following conditioning scheme

Â ′(λ)
M

AR =
1
M

∑M
m=1 ∂λU(λ, q̄m)Ea

[
hλa(ζ)

∣∣q̄m
]

1
M

∑M
m=1Ea

[
hλa(ζ)

∣∣q̄m
] .

This means in particular that each sampled point q̄m with 1 ≤ m ≤M contributes to the estimated mean force
with an integrated weight over Λ that is equal to one. This property is inherited from the TI method and does
not hold for the FEP method. This explains why the latter method may yield completely inaccurate results in
some circumstances. This point is illustrated in Section 2.4. The four ways of estimating the free energy and
its derivative are summarized in Table 2.3.
Next, we compare the variances of the TI, FEP and TO methods to the one of the AR method. The asymptotic

variance for the TO/FEP method can be cast in the following form using the generic functions gλa and ga (see
Appendix A, Eq. (A.5))

σ2
a

[
Â(λ)

∞
FEP/TO

]
= Va

[
gλa(ζ, q)

Ea [gλa ]
− ga(ζ, q)

Ea [ga]

]
.
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The asymptotic variance of the AR method can be cast in the similar form (see Appendix A, Eq. (A.6))

σ2
a

[
Â(λ)

∞
AR

]
= V

Q
a

[
Ea

[
gλa(·, q)
Ea [gλa ]

− ga(·, q)
Ea [ga]

∣∣∣∣q
]]

= Va

[
�
λ
a

Ea [�λa ]
− �a
Ea [�a]

]
.

The law of total variance then entails the following strict inequality

Va

[
gλa

Ea [gλa ]
− ga
Ea [ga]

]
−Va

[
�
λ
a

Ea [�λa ]
− �a
Ea [�a]

]
= Ea

{
Va

[
gλa(·, q)
Ea [gλa ]

− ga(·, q)
Ea [ga]

∣∣∣∣q
]}

> 0.

It results the following strict inequality for the asymptotic variances

σ2
a

[
Â(λ)

∞
AR

]
< min

{
σ2

a

[
Â(λ)

∞
TO

]
, σ2

a

[
Â(λ)

∞
FEP

]}
.

With regards to the TI method, the efficiencies of the adiabatic reweighting and histogram binning estimators
are more easily compared considering the derivative of the free energy. The asymptotic variances associated
with the ΥM

Π (∂λU|λ) and ΥM
H (∂λU|λ) estimators satisfy the relation σ2

a
[
ΥM

Π (∂λU|λ)
]
< σ2

a
[
ΥM

H (∂λU|λ)
]
. It

is therefore always preferable to estimate free energies in combination with a conditioning scheme when the
auxiliary biasing potential is time-independent. Remarkably, whatever the standard free energy method (TO,
FEP, TI) that is chosen, conditioning with respect to the external parameter provides the same AR estimator,
as illustrated in Table 2.3.

Prior to assessing the performance of the various estimators considered so far, we show how to implement
a conditioning procedure in the transition path sampling method briefly mentioned in Sec. 2.1 and further
described in Subsec. 2.3.1 below. We refer to Chapter 4 and Section 4.4.2 in particular for a general description
of path sampling algorithms.
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Table 2.3: Standard (TI, FEP, TO) and conditioning (AR) estimators for computing mean forces and
free energies. Note that, unlike r

λ
a and �

λ
a weighing functions, the function h

λ
a can not be differentiated

with respect to λ. It results that two distinct methods (TO and TI) are based on binning.

Estimation of free energy Â(λ)
M

X Corresponding mean force Â ′(λ)
M

X

Â(λ)
M

TO = − ln ΥM
H (1λ) = − ln

IM
(
hλa
)

IM (ha)
→ derivative by finite difference → Â ′(λ)

M

TO

Â(λ)
M

TI ← numerical quadrature ← IM
(
hλa∂λU

)

IM (hλa)
= ΥM

H (∂λU|λ)

Â(λ)
M

FEP = − ln ΥM
R (1λ) = − ln

IM
(
rλa
)

IM (ra)
� −∂λ ln

IM
(
rλa
)

IM (ra)
=

IM
(
−∂λrλa

)

IM (rλa)
= ΥM

R (∂λU|λ)

Â(λ)
M

AR = − ln ΥM
Π (1λ) = − ln

IM
(
�
λ
a
)

IM (�a)
� −∂λ ln

IM
(
�
λ
a
)

IM (�a)
=

IM
(
−∂λ�λa

)

IM (�λa)
= ΥM

Π (∂λU|λ)
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2.3 Estimating rare-event probabilities

2.3.1 Conditional correlation function

The crucial task in TPS is to compute the free energy difference

F(B, t, A, 0)−F(Q, t, A, 0) = − ln
E? [χB(qt)χA(q0)]

E? [χA(q0)]
, − ln C(t),

that is the difference between the free energy of the space of transition paths (of duration t) and the free energy
of the space of paths initiated from state A and ending anywhere at t. Note that the latter quantity simplifies
into the relative free energy of the reactant state A, F(A) = − lnE? [χA], because χQ(q) = 1 for any q and
because of the translational time invariance. The two introduced characteristic functions χA and χB merely
serve to distinguish the final product states B from the initial reactant states A without providing any relevant
information on the reaction mechanism. In TPS, short trajectories of duration t and initiated from A are sampled
from a biased distribution controlled by an external parameter (denoted by λ or θ). This parameter is used to
gradually switch on a biasing path functional favoring the sampling of transition paths. Path ensembles and
path functionals being later introduced in Chapter 4, we rather consider a biasing potential of form λB(qt),
linear in λ and acting on the path ending point qt. The transition paths favored by the biased sampling have
a higher probability to commit to the product state, in which case χB(qt) = 1. This setup is adopted in the
transition path sampling method of Chapter 4 where the path functional θL(z) replaces λB(qt).

In standard TPS, a series of umbrella sampling simulations is performed and a self-consistent estimator
(WHAM or MBAR) is used to calculate the time correlation function. These tasks can be done directly
and simultaneously in a single simulation through conditioning. For this purpose, we formalize an expanded
transition path ensemble in Subsection 2.3.2. In this framework, the A-to-B time correlation function is then
given by the following expectation

C(Lτ) = E [χB(qLτ )|χA(q0) = 1, λ = 0] , (2.8)

where we considered a discretized dynamics of timestep τ and L steps. We derive the conditioned estimator
in Subsection 2.3.3 and assess its performance on the estimation of rare-event probabilities on a simple model.

2.3.2 Expanded transition path ensemble

We illustrate the rare-event problem using an analytically tractable model to make it possible to compare the
obtained Monte Carlo estimates with exact reference data. We consider a generic Brownian motion model in
which a one-dimensional single particle evolves on a flat potential energy profile. The position of the particle
is obtained by integrating the corresponding overdamped Langevin equation: we have q`τ+τ = q`τ +

√
2τDB`

where D a diffusion coefficient and B` is a random variate drawn is the normal distribution of zero mean and
unit variance. We next set A to {0} and B to [1,+∞[. This implies that q0 is equal to 0 and that qLτ is
distributed according to the normal distribution

π(q|0) =
√
ω/π exp(−ωq2) , exp [F(0)−U0(q)] ,

where ω = (4DLτ)−1 and U0(q) ≡ U(0, q) stands for ωq2. Integrating this distribution from 1 to ∞ yields
C(Lτ) = erfc(

√
ω)/2, the probability that a path ends at a position larger than 1.

Dropping the subscript L, we simply denote the path endpoints by q and omit the condition χA(q0) = 1 in
the involved expectations. We introduce the biasing potential B(q) = −2ωq so as to softly and partially restrain
the trajectory endpoints with the overall biasing potential

U(λ, q)−U0(q) = −2λωq,

so as to gradually increase the fraction of trajectories ending in the product basin q ≥ 1 with increasing λ value.
This way of proceeding corresponds to the so-called tilting protocol that is used in path sampling simulations
to sample rare trajectories from a path distribution [44, 45, 46, 8]. In the expanded ensemble with auxiliary
potential a(λ), the biased probability of (λ, q) is

pa(λ, q) = exp
[
a(λ)−U0(q)− λB(q)−ΨΛ

a
]
.
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The conditional probability of q given λ is then

π(q|λ) =
√
ω/π exp

[
−ω(q − λ)2

]
. (2.9)

The reference distribution is obtained by setting λ to 0 in (2.9) and is represented as a function of q by the
green curve delimiting the red area in Fig. 2.1. We set Λ =

{
λj
}

0≤j≤J with λj = j/J and J = 103. The

conditional distributions with various biases, obtained by setting λ to 1
4 , 1

2 , 3
4 and 1 in (2.9) are displayed in

Fig. 2.1 for the two values of the ω parameter. The two selected values correspond to a fast Brownian motion
for which ω = 5 and to a slow one for which ω = 100. For ω = 5, we observe that the biased distributions
q → π(q|1) substantially overlap with both the target region (q ≥ 1) and the reference distribution q → π(q|0)
(areas displayed in red and green respectively). For ω = 100, none of the biased distribution (λ = 1

4 , 1
2 and

3
4 ) substantially overlaps with both the reference distribution and the target region. At variance, the marginal
distribution of q obtained for λmax = 1 and both values of ω (curves displayed in blue) overlap with the unbiased
distribution. In brief, for small values of ω, the various conditional probabilities substantially overlap with each
other. The degree of overlap decreases with increasing ω. The state-to-state time correlation function (2.8)
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Figure 2.1: Conditional distributions π(q|λ) for the indicated values of λ (green curves) and the marginal probability
of q (blue curves) for ω = 5 in pannel (a) and ω = 100 in pannel (b). The target region corresponds to q ≥ 1 and the
unbiased distribution of q is filled in red.

transposed in the expanded (path) ensemble becomes

C =
Ea [χB(q)πa(0|q)]
Ea [πa(0|q)] =

Ea
[
χBπ

0
a
]

Ea [π0
a]

.

The dependence of C on the final time Lτ is also omitted from now. This ratio can be seen as a conditioned
version of the expectation ratio involving the standard reweighting function:

C =
Ea
[
χBr

0
]

Ea [r0]
.

Next, we emphasize the importance of conditioning for estimating probabilities of rare-events [8]. We show
in Sec. 2.3.3 below that, when the auxiliary potential is set to free energy A(λ), it is possible to accurately
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compute C through the biased sampling of trajectory endpoints, even for very slow diffusion processes in which
the value of ω is large and the probability to reach q ≥ 1 is very small. The auxiliary biasing potential can
be constructed adaptively using one of the techniques reviewed in Chapter 3 and is assumed to have correctly
converged to the free energy.

2.3.3 Estimation of rare-event probabilities

The probability C = erfc(
√
ω)/2 to observe a point at a position larger than 1 from the reference distribution (2.9)

with λ equal to 0 is computed through biased sampling of pA(ζ, q̄). The conditional expectation is estimated
using the adiabatic reweighting estimator and standard reweighting estimator respectively given by

ΥM
Π

(
χB
∣∣0
)

=
1
M

∑M
m=1 χB(q̄m)π0

A(q̄m)
1
M

∑M
m=1 π

0
A(q̄m)

, (2.10)

ΥM
R

(
χB
∣∣0
)

=
1
M

∑M
m=1 χB(q̄m)r0

A(ζm, q̄m)
1
M

∑M
m=1 r

0
A(ζm, q̄m)

, (2.11)

as obtained by replacing the observable q 7→ O(0, q) by the indicator function. Here, we did not consider the
binning estimator as it is obviously not suited to the present rare event problem. The goal is to retrieve statistics
from configurations exhibiting large q̄m values which are observed concomitantly with large ζm sampled values.
The marginal probability of λ at 0 is first estimated from the denominator of (2.10) and (2.11). Each generated
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Figure 2.2: Comparison between the adia-
batic reweighting estimator (2.10) and standard
reweighting estimator (2.11): (a) mean estimate
(ME) of the marginal probability of λ at 0 as a
function of ω, (b) averaged estimates of the prob-
ability C = C(Lτ) normalized to the exact proba-
bility and (c) its normalized standard error. All
averages are obtained from 105 estimates and
each estimate is obtained using M = 104 points.

Markov chain {ζm, qm}1≤m≤M is used twice, first to obtain a AR estimate based on (2.10) and then to get a
SR estimate based on (2.11). The mth state of the chain is generated as follows: ζm is drawn randomly and
uniformly in Λ = [0, 1] interval and qm is drawn in the Gaussian distribution of (2ω)−1 variance and ζm mean.
Displayed in Fig. (2.2) are the means and standard errors of 105 independent estimates, obtained using both
estimators. We observe that, with increasing ω parameter, only the AR estimator yields an accurate estimation
of the marginal probability of λ at 0 (Fig. 2.2.a) and of the correlation function (2.2.b). The computational
speed-up of convergence that is achieved by using AR estimator rather than SR estimator can be assessed from
their respective standard errors plotted as a function of ω in Fig. 2.2.c. As soon as ω becomes larger than 20,
the standard error associated with AR estimator is two orders of magnitude lower than the one obtained using
the SR estimator. The conditioning procedure accelerates the simulations by about four orders of magnitude.
With conditioning, accurate estimates of the probability C are always obtained, even for very narrow conditional
distributions π(q̄|λ) for which the value of ω is large and C is very small. For rare-event problems, available
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alternatives [7, 47] to conditioning consists of post-processing the harvested information by implementing a
self-consistent reweighting estimator.

2.4 Assessment of variance reduction

We consider the extended potential U(ζ, q̄) = ω
(
q̄2 − 2q̄ζ

)
of the two-dimensional system of Sec. 2.3 and assess

the numerical performance of the aforementioned methods of estimating the free energy A(λ) by computing
the reduction of the statistical variances in Subsection 2.4.1 and explain the origin of this reduction in Sub-
section 2.4.2. Here, we still consider that the biasing potential is equal to the free energy. It is shown in
Appendix C that this choice is optimal in term of overall variance reduction for the thermodynamic occupation
method when the number of bins is large.

2.4.1 Free energy estimations

We generate a series of free energy estimates ÂM
X (λ; k) wherein k ∈ J1,KK is the simulation index, using

K = 2 · 103 simulations, employing method X = TI, FEP, TO or AR and setting the biasing potential equal
to the true free energy A(λ). Each simulation consists of up to Mmax = 105 sampled states. The sampled
distribution is pA(ζ, q̄) ∝ exp

[
A(ζ)− ωq̄2 + 2ωζq̄

]
, which is proportional to exp

[
−ω(ζ − q̄)2

]
. We compute the

variance of the generated estimates using the following variance estimator

v̄arK
(

ÂM
X

)
= 1
‖Λ‖

∑

λ∈Λ

1
K

K∑

k=1

(
P̂MX (λ; k)

1
K

∑K
h=1 P̂MX (λ;h)

−
∑
ζ∈Λ P̂MX (ζ; k)

∑
ζ∈Λ

1
K

∑K
h=1 P̂MX (ζ;h)

)2

, (2.12)

where M ranges from 5 · 102 to Mmax and

P̂MX (λ; k) =
exp

[
−ÂM

X (λ; k)
]

∑
ζ∈Λ exp

[
A(ζ)− ÂM

X (ζ; k)
] .

This quantity arises from the generic expression of the asymptotic variances of ÂM
X and corresponds to the kth

estimate of the quantity exp [−A(λ)]×pΛA (λ). Note that when the bin of 1λ remains unvisited during the entire

kth simulation, ÂM
TO(λ; k) is infinite and P̂MTO(λ; k) is zero. However, the sums

∑K
h=1 P̂MTO(λ;h) over the 2 · 103

simulations never canceled, so that the variance estimator (2.12) was always defined.
We display in Fig. 2.3 the estimated variances multiplied by the sample size M as a function of M in order

to observe the convergence towards the asymptotic limit for the given number K of independent simulations.
We observe that a considerable variance reduction is achieved in practice owing to the conditioning scheme.
Furthermore, the asymptotic regime is obtained faster and the estimated variances are also less fluctuating with
conditioning.

While fluctuations decrease with increasing K, it is extremely costly to obtain accurate estimates of the
asymptotic variance for large sample sizes M for the FEP method when ω is large. The observed inefficiency
of the FEP method results from the fact that the simulation samples non-overlapping distributions. 1

2.4.2 Fluctuation relations

To explain why adiabatic and standard reweighting estimators behave so differently, we resort to fluctuation
relations [16, 48] in order to analyse how the quantity pA(0) is evaluated in both approaches. This probability
corresponds to the denominator of ratio (2.10) for the AR estimator, and of ratio (2.11) for the SR estimator,
when a(λ) is set to A(λ). The marginal probability is (1 +J)−1 when Λ contains 1 +J points. This probability
is computed from two different ensemble averages, entailing two distinct types of fluctuation relations. For the
BF approach, the following single relation must hold

〈e−∆(q)〉 =

∫

R

e−∆P̄(d∆) = e0 (2.13)

1In real FEP computations, the reaction path is usually divided into a number of small pieces and the standard reweighting
estimator is applied for each of them.
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Figure 2.3: Evolution of the estimated variances as a function of the sample size M for the four free energy
method (X=TI,FEP,TO,AR) and using K = 2000 simulations.
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where ∆(q) = − ln [pA(0, q)/p̄A(q)] and P̄(∆) denotes the probability that ∆(q) takes the particular value ∆.
As for the SR approach, a whole family of detailed fluctuation relations must be satisfied by the quantity
∆(ζ, q) = − ln [pA(0, q)/pA(ζ, q)]

〈e−∆(λ,q)〉λ =

∫

R
e−∆Pλ(d∆) = e0, (2.14a)

〈e−∆(ζ,q)〉 =
∑

λ∈Λ
〈e−∆(λ,q)〉λpA(λ) = e0 (2.14b)

where Pλ(∆) denotes the probability that ∆(λ, q) takes the particular value ∆. The uniform average over
λ ∈ Λ yields an additional overall fluctuation relation (2.14b) corresponding to (2.13). Because the exponential
function is strictly increasing, the negative values of ∆ and the stricly positive ones have similar statistical
weight in (2.13) or (2.14a), in the sense that the sum of the two contibutions are equal to one (except for the
case λ = 0). Hence, excessively small fractions of negative ∆ values will result in large statistical variance and
in slow numerical convergence of the estimates as a function of simulation time [16]. The probabilities Pλ(∆)
with λ ∈

{
0, 1

4 ,
1
2 ,

3
4 , 1
}

and P̄(∆) have been plotted as a function of ∆ for ω = 5 in Fig. 2.4.a and and for
ω = 100 in Fig. 2.4.b. From the distributions at ω = 100, we observe that the probability to have ∆(ζm, qm) ≤ 0
is negligible when ζm > 1

2 . Given the fact that the ζm’s are sampled uniformly in [0, 1], substantial deviations
from fluctuation relations (2.14a) will inevitably be measured in typical (finite-length) simulations, resulting in
inaccurate SR estimates. At variance, the AR approach does not suffer from this limitation, as the fluctuation
relation that must be satisfied is global. We indeed observe that the fraction of the negative values of ∆ is
always substantial, making the AR estimator particularly efficient for large ω values.
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estimator with various values of λ ≡ θ.

2.5 Summary

Estimating relative free energies and free energy differences are two important tasks of expanded ensemble
simulations and of molecular simulation in general. When a conditioning scheme is implemented for estimating
the free energy in an expanded ensemble, the three standard approaches (thermodynamic integration, thermo-
dynamic occupation and free energy perturbation) merge into the adiabatic reweighting method that inherits
the appealing features of each parent method. Conditioning should always be implemented since it ensures
variance reduction compared to any of the three standard approaches.

When, in addition to conditioning, the biasing potential is equal to the free energy, the marginal distribution
that is sampled exhibits excellent overlapping properties, making it possible to retrieve the relevant information
in rare event problems. This makes the conditioning approach particularly suited to free-energy and rare-events
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calculations. Besides, it does not require any postprocessing, unlike with self-consistent estimators.
In Chapter 3, we proceed further with the description of algorithms achieving homogeneous sampling along

the external parameter or the reaction coordinate.
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3 | Advanced Monte Carlo and adaptively bi-
ased sampling

In this Chapter, we focus on two enhanced sampling techniques, advanced Monte Carlo and adaptively biased
sampling. The former technique aims at enabling non-local Monte Carlo moves ideally crossing free energy
barriers. The second technique aims at flattening the free energy surface with the help of an auxiliary biasing
potential adapted during the course of the simulation.

Outline of the Chapter After recalling the principle of biased sampling along some internal or external
coordinates, we show its limitation for overcoming free energy barriers and outline the advantage of advanced
Monte Carlo. We eventually discuss various schemes of adapting the auxiliary biasing potential or its gradient
and show how to apply such a scheme to the characterization of the transition temperature in a small Lennard-
Jones cluster.

3.1 Biased sampling along external and internal coordinates: simi-
larities and differences

Because ergodicity issues along a reaction coordinate are similar to those occurring along an external parameter,
adaptive techniques allowing to construct an appropriate biasing potential are the same in both situations. It is
instructive to make a parallel between the external parameter and reaction coordinate using the same extended
potential framework of probability p0(ζ, q̄), with unbiased expectations E0 denoted by E for simplicity.

Problems arise whenever the sampling along a coordinate, either external or internal, is confined into a small
portion of the range of interest, here Λ or Ξ. It becomes particularly problematic to compute the relative free
energy along the associated coordinate, because it is equal to the cologarithm of the probability to observe the
desired coordinate value

A(λ) = − lnE [1λ(ζ)] , λ ∈ Λ, (3.1a)

F (ξ?) = − lnE [1ξ? ◦ ξ(q)] , ξ? ∈ Ξ, (3.1b)

where Λ in (3.1a) and Ξ in (3.1b) are two discrete sets. The indicator function along the reaction coordinate is
used to approximate the Dirac distribution δξ(q)−ξ?(dq) associated with ξ(x) and centered on ξ?. We consider
that the external parameter λ couples quadratically to ξ(q). We show later that this coupling is practically
useful in the advanced Monte Carlo scheme described in Sec. 3.2. Biased sampling consists of subtracting a
biasing potential so as to achieve a more homogeneous sampling along the desired coordinate. This is what was
done in chapter 1 with the additional auxiliary biasing potential a(λ). We can similarly introduce a biasing
the biasing potential q 7→ f ◦ ξ(q) = f [ξ(q)] with respect to the reaction coordinate. The resulting biased
probabilities are

pa(λ, q) =
exp

[
a(λ)−U(λ, q)

]
∑
ζ∈Λ

∫
Q exp

[
a(ζ)−U(ζ, q)

]
dq
,

pf (λ, q) =
exp

[
f ◦ ξ(q)−U(λ, q)

]
∑
ζ∈Λ

∫
Q exp

[
f ◦ ξ(q)−U(ζ, q)

]
dq
.
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The unbiased probability can also be written as a function of the biased probabilities

p0(ζ, q̄) = exp[−a(ζ)]pa(ζ,q̄)∑
ζ∈Λ

∫
Q exp[−a(ζ)]pa(ζ,dq)

=
exp[−a(ζ)]pa(ζ, q̄)

Ea
[

exp[−a(ζ)]
] =

ha(ζ)pa(ζ, q̄)

Ea
[
ha(ζ)

] (3.2a)

p0(ζ, q̄) =
exp[−f◦ξ(q̄)]pf (ζ,q̄)∑

ζ∈Λ
∫
Q exp[−f◦ξ(q)]pf (ζ,dq)

=
exp[−f ◦ ξ(q)]pf (ζ, q̄)

Ef
[

exp[−f ◦ ξ(q)]
] =

hf ◦ ξ(q̄)pf (ζ, q̄)

Ef
[
hf ◦ ξ(q)

] , (3.2b)

where Ea in (3.2a) and Ef in (3.2b) denote the biased expectations associated with probabilities pa(ζ, q̄) and
pf (ζ, q̄), respectively. The quantity ha(ζ) is defined in Table 2.1 and hf (ξ

?) = exp[−f(ξ?)] is defined by
extension. In this formulation (3.2), the way of removing the bias is a generalization of the histogram binning
method considered in Chapter 2 for conditional expectations. The following pair of similar relations between
the unbiased and biased expectations of observable O(ζ, q) are thus obtained

E
[
O(ζ, q)

]
=
Ea
[
O(ζ, q) exp[−a(ζ)]

]

Ea
[

exp[−a(ζ)]
] ; E

[
O(ζ, q)

]
=
Ef
[
O(ζ, q) exp[−f ◦ ξ(q)]

]

Ef
[

exp[−f ◦ ξ(q)]
] . (3.3a,b)

Replacing O(ζ, q) by 1λ and 1ξ? ◦ ξ in (3.3a,b) yields a pair of identities expressing the free energies

A(λ) = a(λ)− lnEa [1λ(ζ)] + lnEa
[

exp[−a(ζ)]
]
, (3.4a)

F (ξ?) = f(ξ?)− lnEf [1ξ? ◦ ξ(q)] + lnEf
[

exp[−f ◦ ξ(q)]
]
. (3.4b)

The right-hand side terms in (3.4a) and (3.4b) are constants and independent of λ or ξ?.
Biasing along an internal coordinate ξ(q) differs from biasing along λ in that resorting to conditioning

is not practical in general, as it would require evaluating the potential energy of all the particle positions
inside a high-dimensional hypersurface. Another difference is that the free energy along a generalized internal
coordinate can not always be differentiated. This is the case of the free energy along the orientation-bond order
parameter of Steinhardt, Nelson, and Ronchetti [28]. This order parameter is not continuous and the associated
mean force, the free energy derivative, cannot be averaged. This issue is discussed in Sec. 3.4. At variance,
the free energy A(λ) is differentiable for the usual setups coupling the external parameter λ and the internal
coordinate (ξ(q) or U(q)). A remarkable similarity shared by both biasing approaches is eventually worth
noticing. Setting a and f to their respective free energies entails that the respective functions λ 7→ EA

[
1λ(ζ)]

]

and ξ? 7→ EF [1ξ? ◦ ξ(q)] are both constant on Λ and Ξ. This in turn implies that uniform sampling is normally
achieved along the corresponding coordinate, unless there exist hidden metastabilities in some hyper-surface
orthogonal to the coordinate gradient. The subsequent limitation of biased sampling is illustrated with the help
of simple simulations in a problematic two-dimensional system.

3.2 Hidden metastabilities and advanced Monte Carlo

Hidden metastabilities may occur when the chosen internal coordinate is an inappropriate reaction coordinate.
In this situation, biased simulations may fail to achieve ergodic sampling. We illustrate this issue on a simple
model, a two-dimensional system with periodic boundary conditions along the first coordinate q1. The phase
space is denoted by T ×R where T = [−3, 3] is the centered period. The potential energy and the extended
potential energy are respectively

U0(q1, q2) = ω(q2)2 + Uhc(q1, q2), U(λ, q1, q2) =
κ

2
(λ− q1)2 + U0(q1, q2).

The harmonic potential ω(q2)2 is introduced to restrain the large deviation of |q2| absolute values from its origin
in simulations. The hard-core potential Uhc describes the action of an impassable quadrangle obstacle centered
on (0, 0). It is infinite if (q1, q2) lies inside the periodically replicated quadrangle of vertexes (1, 0) − (h, 1)-
− (−1, 0)− (−h,−1), otherwise the particle lies outside the obstacle and the hard-core potential is equal to 0.
The horizontal locations of the top and bottom vertexes are determined by the value of h, initially set to 0.
The period of the potential along q1 is half the spatial period, so that the system presents exactly 2 basins of
attraction. Contours of the potential energy surface are plotted in Fig. 3.1. The selected internal coordinate is
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Figure 3.1: MC simulations of the two-dimensional toy model with symmetric hard-core obstable (h = 0). Contours
of the biased potential energy surface (q1, q2) 7→ U0(q1, q2) − f(q1) are plotted in the two bottom panels, with f(q1) set
to 0 (left panel) or to the free energy F (q1) (right panel). The biased free energy barriers − ln pΩ

f (q1) are shifted to
their minimum value and plotted as a function of q1 in the two top panels for Ω set to R+, R− and R. Some sampled
configurations are materialized by the small white dots. The obstacle prevents the trajectory from escaping its basin of
attraction (bottom left pannel). The biased MC trajectories is able to bypass the obstacle either by transitioning through
the up or down channels.

q1 and the harmonic potential that couples λ to q1 is introduced in anticipation of later use.

We first consider the sampling of the biased marginal probability p̄f (q1, q2) ∝ exp [f(q1)−U0(q1, q2)] in
which biasing potential f(q1) is subtracted from the potential energy so as to enhance the sampling along the
internal coordinate. The probability to observe the system at q1 with q2 ∈ Ω is

pΩ
f (q1) =

∫
Ω

exp
[
f(q1)−U0(q1, q2)

]
dq2∫

T×R exp
[
f(q1)−U0(q1, q2)

]
dq1dq2

.

The free energy along q1 is therefore

F (q1) = − ln

∫
R

exp
[
−U0(q1, q2)

]
dq2∫

T×R exp
[
−U0(q1, q2)

]
dq1dq2

= f(q1)− ln pR(q1) + Constant.

The system can escape its trapping basin by circumventing the impenetrable obstacle through the top or bottom
channels. This event is extremely rare in unbiased simulations when ω is large enough. We study this situation
by setting ω to 50. Two Monte Carlo simulations are performed using the Metropolis algorithm 1 described
p. 113. The biasing potential f(q1) is set to zero in the first simulation and to F (q1) in the second simulation.
The latter setup flattens the apparent free energy, − ln pRF (q1), as shown in Fig. 3.1. Some of the sampled
configurations are shown on the contour plots of the potential energy surface by the small white dots. In
simulations with the biasing potential switched on, the sampling becomes ergodic and completely homogeneous
along q1. In this situation, q1 is said to be a good reaction coordinate, despite the fact that the reaction can
follow two distinct pathways.

When the obstacle shape is made asymmetrical, the internal coordinate q1 becomes an inappropriate RC,
in the sense that it can not be used anymore to correctly monitor the transitions between the two metastable
basins. We illustrate the reaction coordinate issue by setting h to 2/3 and performing the two previous shorts
simulations again, with the biasing potential first switched off and then set equal to the free energy. The contour
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Figure 3.2: Identical set-up as in Fig. 3.1, except that the obstacle shape is now asymmetrical (h = 2/3). Left column
panels: the bias is switched off. Right column panels: the bias switched on and set to f(q1). The displayed curves

− ln pR
+

f (q1) and − ln pR
−

f (q1) correspond to the effective free energy along the two possible transition channels. The
residual free energy barriers in each channel prevent the evolving system from transitioning even though uniform sampling
is expected asymptotically (since and pRF (q1) is constant).

plots of the potential energy surfaces and the simulation results are displaued in Fig. 3.2. We observe that the
simulated trajectory can never escape its trapping basin, even when the biasing potential is switched on and
homogeneous sampling is expected along q1. The reason is that to circumvent the asymmetrical obstacle, one
of the two free energy barriers displayed in top right panels in Fig. 3.2 must be crossed. Biasing along q1 does
not allow to guide the system inside either of the two possible transition paths, at variance with the previous
symmetrical set-up. Note that biasing with the free energy profile based on either of the 2 channels confines
the system to the opposite channel.

The natural way of achieving sampling ergodicity would be to bias the simulations along more appropriate
reaction coordinates. Identifying good reaction coordinates is indeed an active field of research [49]. However,
there exist many systems presenting multiple transition pathways that we don’t know how to describe by means
of a one- or two-dimensional reaction coordinates. Another way to achieve improved ergodicity is to to resort to
advanced Monte Carlo techniques [14]. We describe and implement such a technique [44] below. The technique,
termed “work-bias Monte Carlo” (WBMC), need not be able to discriminate the multiple transitioning channels
to sample them.

Work-bias Monte Carlo scheme

The WBMC scheme [44] consists of generating the trial configurations in the Metropolis algorithm through
nonequilibrium paths so as to allow for non-local or global Monte Carlo moves jumping across free energy
barriers. WBMC employs an external parameter coupled to the system to guide the system from one basin to
another one. The algorithmic structure is presented in Algorithm 2 of Appendix B. The variation of energy along
a trajectory starting in (λ0, q0) and ending in (λL, qL) is sketched in figure 3.3 and satisfies the conservation
equation

Uf (λ
L, qL)−Uf (λ

0, q0) =

L−1∑

`=0

W `→`+1
f +

L−1∑

`=0

Q`→`+1
f = W 0→L

f +Q0→L
f
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(λ`, q`)

(λ`+1, q`) (λ`+1, q`+1)

W `→`+1 = U(λ`+1, q`)−U(λ`, q`) Q`→`+1
f = Uf (λ

`+1, q`+1)−Uf (λ
`+1, q`)

Figure 3.3: The quantity W `→`+1 represents the work done on the system when switching the external parameter from
λ` to λ`+1 (plain arrows). The quantity Q`→`+1

f represents the heat exchanged with the thermostat during the subsequent
relaxation of the system (dashed arrow).
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Figure 3.4: The WBMC scheme generates global moves based on the trajectories displayed in purple. The work along
the paths approximates the free energy profile in the corresponding channel, a feature enabling the system to cross the
barrier with a high probability. The auxiliary biasing potential f has been set to 0 (left panels) or to the free energy F
(right panels). White circles are the points sampled by a few WBMC moves.

where each Q`→`+1
f is the energy variation after a local Monte Carlo move and W0→L is the effective work

associated with a global trial Monte Carlo move, the acceptance probability being min
[
1, exp(−W0→L)

]
.

The algorithm samples the marginal probability pQf (q) because it satisfies the detailed balance condition
with respect to this distribution. The general proof that the detailed balance is obeyed by work-bias Monte
Carlo moves is given in the Appendix of Ref [44]. In figure 3.4, it is shown that both basins of the toy model are
sampled owing to the fact that some WBMC moves cross the local free energy barriers. The WBMC scheme
has been used in [44] to insert/delete particles in a Lennard-Jones liquid. In this application, the external
parameter is the particle number which allows particles to be gradually deleted or added to the dense fluid.
Direct insertions and deletions using the standard Metropolis algorithm fail in dense fluids due to the high
rejection rate.

3.3 Adaptively biased sampling

Here, we described adaptively biased sampling methods that construct the biasing potential on the fly during the
simulation using the current estimate of the free energy so as to ensure uniform sampling. We thus consider that
the internal or external coordinate on which the biasing potential applies correctly capture the transformation
along this coordinate.
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Many schemes have been proposed in the literature, but they can easily be classified into only two categories,
depending on whether it is the biasing potential that is adapted or its gradient [32].

3.3.1 Adaptive biasing potential method

The biasing potential is adapted resorting to identities (3.4a) and (3.4b). The approach was proposed in Ref. [33]
in the expanded ensemble framework based on identity (3.4), which relates the biasing potential, the logarithm of
the measured probability and the free energy. It was proposed to construct the ideal biasing potential iteratively
through a series of I static simulations. This corresponds to the concept of adaptation. The ith simulation
(i ∈ J1 ; IK) consists of performing µi MC steps with biasing potential ai or fi so as to estimate next ai+1

or fi+1. The successive sample sizes {µi}1≤i≤I are the crucial parameters of the iterative algorithm, as they
determine the updating frequency of the biasing potential. Typically, the µi’s are much larger than one and
moderate in the first iterations and increases in the last iterations when sampling becomes homogeneous along
ξ coordinate. For the production simulation based on aI or fI , µI is usually the largest. The iterative biasing
potential algorithm is obtained by setting γi = µi in Algorithm 3 page 114. The inner-loop on m corresponds
to the static estimation associated with the next biasing potential, the outer-loop on i corresponding to the
iterative construction. The limitation of this iterative algorithm is that a reliable estimate of the free energy
must be obtained in a larger subrange of Ξ at each iteration because γi = µi, implying a series of relatively long
simulations: µi >> 1. This issue can be alleviated by updating the biasing potential continuously (µi = 1),
i.e., each time a configuration is sampled, and by a small amount. To satisfy the second criterion, one sets
γi << 1, this factor controlling the amplitude of the adaptations. Because µi = 1, the positive weights γi must
additionally decrease to 0 as i tends to infinity so as to ensure that the adaptive biasing potential converges
towards the free energy in this limit. This way of proceeding corresponds to the Wang-Landau algorithm
described in Algorithm 4 of Appendix B. Note that in both ABP algorithms, the right-hand side logarithms in
each updating rule stem from (3.4) and serve to ensure that the adaptive biasing potential is normalized:

∫

Ξ

exp
[
− f0(ξ?)

]
dξ? = 1 =⇒

∫

Ξ

exp
[
− fi(ξ?)

]
dξ? = 1.

Other variant ABP algorithms have been proposed in the literature, such as self-healing umbrella sam-
pling [50] and metadynamics [51]. A review can be found in [15]. A detailed proof of convergence is given
in [52] for a linearized version of algorithm 3. The proof is then extended to the original Wang-Landau version
assuming γi << 1.

The common limitation of all ABP algorithms involves the optimal choice of the updating sequence {γi/µi}1≤i≤I ,
which controls the rate of convergence. If the ratio γi/µi converges to 0 too fast, then the adaptation amplitude
will be very small. The biasing potential will subsequently converge slowly to the free energy. At variance, if
the ratios converge to 0 too slowly, then the biasing potential will fluctuate for a long period prior to stabi-
lizing. Finding a good trade-off between these two adverse situations requires judiciously tuning the updating
parameters, not an easy task in general.

The adapting biasing force method discussed below is (almost) free of such updating parameters.

3.3.2 Adaptive biasing force method along internal coordinate

The adaptive biasing force method constructs the biasing potential a(λ) or f (ξ?) by adapting its derivative from
the current estimate of the mean force. Estimating the mean force F ′(ξ?) is more complicated than estimating
the mean force A(λ) in general. This is because the function q 7→ ξ(q) involves a non trivial dependence on the
positions. The assumptions in the following developments are that the function ξ(q) is smooth over Q and that

the
[
∇ξT (q)∇ξ(q)

]−1
is bounded. Here, one considers that the reaction coordinate can be differentiated twice

and that its dimension is d. For a d-dimensional column vector f(q), the divergence div f is the d-dimensional

column vector defined component-wise as
[

div f(q)
]
α

=
∑d
i=1 ∂qifα(q). Resorting to the co-area formula and

integrating by parts enable one to differentiate (3.4b) and to obtain the following identity

F ′(ξ?) = −
∫
Q div

[
exp[−U0(q)]

[
(∇ξ(q))T∇ξ(q)

]−1∇ξ(q)
]
δξ?−ξ(q)(dq)∫

Q exp[−U0(q)]δξ?−ξ(q)(dq)
, (3.5)
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where ∇ξ is a N × d matrix, (∇ξ)T ξ is a d × d matrix whose inverse matrix is precisely
[
(∇ξ)T ξ

]−1
in (3.5).

The derivation of this relation being quite involved, the reader is referred to [15] for details. We can rewrite the
mean force (3.5) as a conditional expectation given ξ(q) = ξ?

F ′(ξ?) = E

[
dU0

dξ
(q)

∣∣∣∣ ξ(q) = ξ?
]
,

where we defined the local mean force by

dU0

dξ
(q) = − exp

[
U0(q)

]
div
[
exp

[
−U0(q)

] [
(∇ξ(q))T∇ξ(q)

]−1∇ξ(q)
]

=
[[

(∇ξ)T∇ξ
]−1∇ξ

]T
∇qU0(q)− div

[[
(∇ξ)T∇ξ

]−1∇ξ(q)
]

(3.6)

where ∇q denotes the gradient with respect to q and where the dependence of ξ on q in the second line was
dropped for clarity. Formula (3.6) applies to a d-dimensional reaction coordinate. For a one dimensional reaction
coordinate, we have (∇ξ)T∇ξ = ∇ξ · ∇ξ and dU0

dξ = (∇ξ · ∇qU0)/(∇ξ · ∇ξ)− div
[
∇ξ/(∇ξ · ∇ξ)

]
. Since the free

energy corresponds to the integral of the mean force with respect to ξ, this one is also referred to as potential of
mean force in the chemical or biophysical literature. This one can also be cast as a ratio pf two biased averages,
i.e. in a form similar to (3.3a,b)

F ′(ξ?) =

∫
Q
dU0

dξ (q) exp[f ◦ ξ(q)−U(q)]δξ?−ξ(q)(dq)∫
Q exp[f ◦ ξ(q)−U0(q)]δξ?−ξ(q)(dq)

=
Ef
[
dU0

dξ (q)δξ?−ξ(q)(q)
]

Ef
[
δξ?−ξ(q)(q)

] . (3.7)

Based on (3.7), Darve and Pohorille proposed to adapt the biasing force f using the current estimate of
the mean force, as done in Algorithm 5 page 115 of Appendix B with K replicas of the system

{
qkm
}

1≤k≤K
evolving in parallel and guided using the common adaptive biasing force fm ◦ ξ. After completion algorithm 5,
the adaptive biasing force is equal to

f ′M (ξ?) =

∑M
m=1

∑K
k=1

dU0

dξ (qkm)1ξ? [ξ(qkm)]
∑M
m=1

∑K
k=1 1ξ? [ξ(qkm)]

, ξ? ∈ Ξ,

which yields an estimate of the mean force F ′(ξ?) within the interval Ξ. The proof that the biasing force
converges to F within Ξ in the large sample limit (M → +∞) can be found in Ref [32]. After convergence, the
ξ(qkm) variables will freely explore Ξ.

The ABF approach assumes the existence of the mean local force and the ability to evaluate it. In particular,
the mean local force should be defined for all configurations with non zero probability. With the hard-core
potential used to illustrate the concept of biased sampling in Section 3.2, the mean local force Uξ(λ, q) is not
defined on the perimeter of the hard-obstacle. As a result, the mean force should include a contribution arising
from the dependence of the obstacle boundary on the reaction coordinate. The ABF method, as based on
algorithm 5, cannot be implemented.

A solution to the problem consists of implementing ABF with respect to an external parameter that is
harmonically coupled to the reaction coordinate, resorting to algorithm 6. In this context, the extended potential
should exhibit the form given in (1.9) and (1.10). The present harmonic setting is not only used in extended
ABF [34], but also in unified free energy dynamics [53] and extended Lagrangian metadynamics [54, 55]. The
last formulation of metadynamics differs from the (currently) most widely implemented formulation [51] in
which a biasing potential similar to a acts directly on the reaction coordinate, ξ(q). Once the biasing force
has been adapted using algorithm 6, the expected value of any observable can be estimated using the adiabatic
reweighting estimator described in algorithm 7 of Appendix B.

3.4 Estimation of the free energy along a reaction coordinate

3.4.1 ξ-AR estimator

Here, we show how to estimate the free energy along an internal reaction coordinate ξ(q) with a biasing potential
acting upon the external parameter in the harmonic setup. In practice, the quantity that is directly estimated is
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the total expectation of the characteristic function 1ξ? ◦ξ, i.e. the probability to observe the reaction coordinate
taking value ξ?. Substituting 1ξ? ◦ ξ(q) for the observable O(λ, q) in Eq. (2.7), one obtains the AR estimator of
total expectation E [1ξ? ]

ΥM
Π (1ξ?) =

1
M

∑M
m=1 1ξ? ◦ ξ(q̄m)�a(q̄m)

1
M

∑M
m=1 �a(q̄m)

.

The corresponding asymptotic variance is given in Eq. A.4 in Appendix A. The free energy estimate is obtained
by taking the co-logarithm of the estimated probability.

To write the function �a explicitly, let introduce the following effective restraining potential

R̄ a(ξ?) = ln
∑

ζ∈Λ
exp [a(ζ)− R (ζ, ξ?)] .

The marginal probability of q therefore writes pQa (q) = exp
[
−U0(q) + R̄ a ◦ ξ(q)−ΨΛ

a
]
. Thanks to the potential

ε, the identity R̄ 0 ◦ ξ(q) = 0 holds whatever q ∈ Q and we have

�a(q) =
pQ0 (q)

pQa (q)
= exp

[
−R̄ a ◦ ξ(q)

]
.

Hence, the AR estimator further simplifies into

ΥM
Π (1ξ?) = exp

[
−R̄ a(ξ?)

] 1
M

∑M
m=1 1ξ?(ξm)

1
M

∑M
m=1 exp

[
−R̄ a(ξm)

] ,

where ξm = ξ(q̄m). The estimator of the free energy is eventually obtained by taking the co-logarithm

F̂ (ξ?)
M

AR = R̄ a(ξ?)− ln IM (1ξ? ◦ ξ) + ln IM
(
exp

[
−R̄ a ◦ ξ

])
. (3.8)

This specific estimator, denoted ξ-AR estimator in the following, has been applied to free energy calculations
associated with vacancy migration in α-iron [34] and molecular folding [56]. Recently, it has been proposed to
evaluate the free energy F (ξ?) using an alternative estimator [40] referred to as corrected z-average restraint
(CZAR) wherein ξ? ≡ z. The CZAR estimator only differs from the ξ-AR estimator in the way the effective
restraining potential is evaluated in (3.8). In CZAR, R̄ a(ξ?) is evaluated through thermodynamic integration,
i.e. by integrating estimates of its derivative R̄ ′a(ξ?). This is done by casting the effective restraining gradient
in the form of a conditional expectation

R̄ ′a(ξ?) =∂ξ? ln
∑

λ∈Λ
exp [a(λ)− R (λ, ξ?)] = −

∑
λ∈Λ

∂ξ?R (λ, ξ?)πλa (ξ?) = −Ea [∂ξ?R (·, ξ?)|ξ?] ,
(3.9)

where the conditional probability given ξ? reads

πλa (ξ?) = exp
[
a(λ)− R (λ, ξ?)− R̄ a(ξ?)

]
. (3.10)

The effective restraining gradient in CZAR is estimated using the ΥM
H estimator in which binning is performed

using indicator function 1ξ? instead of 1λ:

ΥM
H (∂ξ?R |ξ = ξ?) = βκ

{∑M
m=1 ζm1ξ?(ξm)
∑M
m=1 1ξ?(ξm)

− ξ?
}
, (3.11)

where we resorted to ∂ξ?R (ζ, ξ?) = βκ(ξ? − ζ), omitting the correcting force ε′(ξ?). Conditioning the binning
estimator in Eq. (3.11) yields

ΥM
Π (∂ξ?R |ξ?) = βκ

{∑M
m=1Ea [ζ|ξ?]1ξ?(ξm)
∑M
m=1 1ξ?(ξm)

− ξ?
}

= −R̄ ′a(ξ?), (3.12)

which, once integrated, leads to the formulation of the ξ-AR estimator. Because the asymptotic variance of
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ΥM
Π (∂ξ?R |ξ?) in Eq. (3.12) is zero, one concludes, owing to the delta method, that the CZAR estimator exhibits

a larger asymptotic variance than the ξ-AR estimator (3.8).

To quantify the cumulated error in the estimation of ∆R̄ a = R̄ a(ξmax)− R̄ a(ξmin) with CZAR method, let
first write down the asymptotic variance of estimator ΥM

H (∂ξ?R |ξ?):

σ2
a (Υ∞H (∂ξ?R |ξ?)) =

Va [∂ξ?R |ξ?]
Ea [1ξ? ]

,

where the variance is conditional on ξ?. Next, we assume that R̄ a is integrated over Ξ, a discrete set of evenly
spaced values along ∆ξ = ξmax − ξmin interval. Let ‖Ξ‖ be the cardinal of Ξ. Then, ∆ξ/‖Ξ‖ is the constant
spacing between consecutive values and the cumulated asymptotic error writes

σ(∆R̄ a) =
∆ξβκ

‖Ξ‖

√
∑

ξ?∈Ξ

Va [ζ|ξ?]
Ea [1ξ? ]

. (3.13)

The ζ variable in each conditional variance is assumed to be i.i.d. This assumption is verified when a Gibbs
sampler directly generates the ζ values from the conditional probability (3.10). In contrast, residual metastability
usually persists along ξ and the sampled values ξ(q) will be highly correlated. The dominating contribution
to the asymptotic variance of the CZAR estimator is expected to arise from the IM (1ξ? ◦ ξ) term. Thus,
the cumulated error (3.13) should not be significant in practical applications. We illustrate this point in next
subsection.

3.4.2 The 38-atom Lennard-Jones cluster and Q4 bond-orientational order param-
eter

We consider the problem of calculating the free energy along the Q4 bond-orientational order parameter [28] in
the 38-atom Lennard-Jones (LJ) cluster. The LJ potential reads

VLJ(q) = 4ε
∑

i>j

[
r−12
ij − r−6

ij

]
,

where rij = ‖qj − qi‖/σ is the reduced distance separating atoms qi and qj . LJ reduced units of length, energy
and mass (σ = 1, ε = 1, m = 1) will be used in the following. LJ38 undergoes a two-stage phase change
with increasing temperature. [57, 58] A solid-solid transition between the truncated octahedral funnel and the
icosahedral funnel occurs near Tss=0.12, melting follows near Tsl= 0.17. As in other finite size systems, [42]
the transitions are not sharp but gradual. The most stable octahedral and icosahedral structures of the 38-
atom cluster are a truncated octahedron with energy E0 = −173.9284 (global minimum) and an incomplete
icosahedron with energy E1 = −173.2524, respectively. The order parameter Q4 is a convenient collective
variable to distinguish between the cubic structure favored at low temperatures and the icosahedral isomers
above Tss. The values of Q4 typically range from 0.002 − 0.06 (icosahedral structures) to 0.19 (octahedral
structures). The ABF method is implemented in the harmonic expanded ensemble resorting to the AR estimator
in order to compute the free energy along the external parameter λ coupled harmonically to Q4. The standard
ABF method [30, 31, 59] cannot be performed directly along Q4 because the second derivatives of the Q4 are
not available. The restraining potential is set to κ

2Tref
‖Q4(q)−λ‖2 and the extended potential exhibits the form

given in Eq. (1.9), so that the free energy derivative A ′(λ) is constructed from the following identity

E [∂λU|λ] =
κ

Tref

[
λ− E

Q
a
[
πλaQ4

]

E
Q
a [πλa ]

]
.

We set κ = 104 and Tref = 0.15. At this temperature, spontaneous structural transitions cannot be observed
on the simulation timescale when a(λ) is set to 0 (no bias). The implemented ABF method, described in
Algorithm 6 of Appendix B, adapt the bias a(λ) on the free energy A(λ) via the running estimate of its gradient.
One collateral advantage of conditioning is to facilitate the sampling process, as it needs not propagating the
external parameter. Twelve replicas of the system are propagated using Langevin dynamics [34] (a Metropolis
algorithm is also implementable) to sample the marginal probability of q directly. The force acting on a replica
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is the gradient of the involved marginal probability (see Eq. 1.9)

∇q ln pQa (q) =−∇qU0(q) +∇qQ4(q)R̄ ′a ◦Q4(q),

where U0 = VLJ/Tref and R̄ ′a is detailed in Eq. (3.9). The time-step τ = 5 · 10−5 (lju) is chosen very small so as
to keep discretization errors negligible. The simulation length M = 108 and replica number K = 12 enable the
auxiliary biasing force to converge. Replicas are handled in parallel using a multi-core processor. They share
the same biasing force during both the learning and subsequent production runs. We next freeze the biasing
potential to the converged free energy A(λ) = aM (λ) and implement Algorithm 7 of Appendix B to check that
the the sampling is homogeneous along Q4 parameter despite the persistence of strong correlations, as shown
in Fig. 3.5. With Algorithm 2, we also construct 40 (biased) histograms of Q?4, using estimates IKM (1Q?4 ) of

EA

[
1Q?4

]
with K = 12, M = 108, a bin size of 2 · 10−4 and Q?4 ranging from 0 to 0.2. The free energy along

Q4 order parameter is then estimated using the ξ-AR estimator and the 40 harvested histograms denoted by
PA(Q?4). The obtained results are plotted in the three panels of Fig. 3.6. The brackets 〈〉 indicate averaging
over the series of 40 independent simulations. Thus, the displayed quantity 〈BA(Q4)〉 in Fig. 3.6.a represents
the (averaged and scaled) effective biasing potential, β−1R̄ a (Q4). The displayed histogram of Q4 in Fig. 3.6.b
represents the averaged of the PA(Q?4) estimates of EA

[
1Q?4

]
. The free energies displayed in Fig. 3.6.c are

estimated from F (Q?4) = BÂ(Q?4)− β−1 ln PA(Q?4). They correspond to the unreduced free energies β−1F (Q?4).

The variance reduction compared to CZAR method is too small to be measurable from 40 simulations.
Instead, we estimate the order of magnitude of the error that is made in the estimation of ∆R̄ a with the CZAR
method. Neglecting the variations of the biasing forces along λ, which are much smaller than the value of κ/Tref ,
the conditional variance in Eq. (3.13) simplifies into V0(ζ|Q?4) which is equal to Tref/κ. If we additionally
neglect the variations of the histogram PA(Q?4) and assume that EA

(
1Q?4

)
= ‖Ξ‖−1 between the icosahedral

and octahedral structures in Eq. (3.13), then the integrated error between the two structures simplifies into
∆Q4/

√
Trefκ. The expected standard deviation on ∆BA = Tref∆BA is therefore ∆Q4

√
Tref/(κMK) = 2.0·10−4

wherein MK = 1.2 · 109 is the total number of sampled points. This is less than two orders of magnitude than
6.1 · 10−2, the standard deviation that is obtained from the 40 estimates of the free energy difference ∆F .
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Figure 3.5: Evolution of the Q4 order parameter during the production run for each replica. Each panel corresponds to
a distinct replica.
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3.5 Characterization of structural transition

From the free energy profile along Q4, the occurrence probabilities of the icosahedral and octahedral structures
can be evaluated. For these two structures, the Landau free energies A(ico|T−1

ref ) and A(octa|T−1
ref )), defined as

minus the logarithm of their respective occurrence probabilities, can be directly evaluated. We now wish to
compute the two Landau free energies at other temperatures so as to characterize Tss, the solid-solid structural
transition temperature for which A(ico|T−1

ss ) = A(octa|T−1
ss ). Unfortunately, ABF simulations along Q4 do not

converge at temperature lower than 0.13, meaning that Q4 becomes a bad reaction coordinate and that Tss can
not be determined this way.

The problem is solved by evaluating A(x|T−1) as a function of inverse temperature separately for the two
structures x of set X , {ico, octa} from the knowledge of A(T−1|ico) and A(T−1|octa), the free energies along
the inverse temperature given the structure. The identity connecting the two kinds of free energies corresponds
to Bayes formula expressed in log-space

A(x|T−1) = A(T−1|x) + A(x)− A(T−1), (3.14)

where A(x) is the marginal colog-probability of structure x in the expanded ensemble. Subtracting Bayes formula
at T−1

ref in log-space from Eq. (3.14) cancels the marginal colog-probability of x, which leads to the desired Landau
free energy

A
(
x|T−1

)
= A

(
T−1|x

)
− A

(
T−1

ref |x
)

+ A
(
x|T−1

ref

)
+ A

(
T−1

ref

)
− A

(
T−1

)
.

The free energy difference A(T−1
ref )−A(T−1) is a common contribution to all structures. It does not affect phase

equilibrium properties and merely serves as a normalizing constant. It may be calculated from the relation

A
(
T−1

ref

)
− A

(
T−1

)
= ln

∑

x̃∈X
exp

[
−A

(
T−1|x̃

)
+ A

(
T−1

ref |x̃
)
− A

(
x̃|T−1

ref

)]
.

In our case study, phase equilibrium is reached when the two structures are equi-probable:

A
(
ico|T−1

ss

)
= A

(
octa|T−1

ss

)
.

We proceed as follows: after setting the external parameter to the inverse temperature λ = T−1, we perform
two supplementary simulations to compute A(T−1|ico) and A(T−1|octa) with the AR estimator and the
external parameter ranging from λmin = 6.25 to λmax = 14, taking advantage of the fact that structural
transitions do not occur spontaneously in the range of involved temperatures. The transition temperature is
characterized by the intersection point of our two Landau free energies as a function of inverse temperature, as
shown in Fig. ??. The error that is made in the estimation of the transition temperature essentially arises from
the uncertainty in the evaluation of ∆F at Tref .
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Figure 3.7: Estimation of the free energies of the
icosahedral and octahedral structures as a function of
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3.6 Summary

In this Chapter, we practically show how to perform simulations adaptively in the expanded ensemble using
adaptive biasing potential and adaptive biasing force methods. We advocate to resort to the ABF rather
than ABP in order to set the biasing potential a(λ) equal to the free energy A(λ). A difficulty with ABP
algorithms is that the updating rate of the biasing potential must be chosen adequately. If the rate rapidly
converges to zero, then the biasing potential will evolve extremely slowly and likely not converge during the
simulation. In contrast, if the rate slowly converges to zero, then the biasing potential will fluctuate for a long
period prior to stabilizing. Finding a good trade-off between these two adverse situations requires judiciously
tuning the updating parameters, a difficult task in general. ABF methods are (almost) free of such updating
parameters. The advantage of extended ABF is that it is still applicable when the reaction coordinate is
discrete or discontinuous. In contrast, standard ABF requires differentiating the reaction coordinate twice and
can not be implemented to compute the free energy along the widely used bond orientational order parameters
of Steinhardt et al. [28] for instance.

An open question concerns the usefulness of the conditioning procedure during the adaptive regime. Condi-
tioned ABP exhibits accelerated convergence compared to unconditioned ABP, which seems to be mathemati-
cally justifiable [60]. However, mitigated numerical results are reported for ABF expanded ensemble simulations
employing a linear coupling aimed at characterizing the melting temperature [34]. Once the adaptive procedure
has been completed, we naturally advocate to implement the conditioning procedure in order to systematically
reduce statistical variance associated with the estimation of the expected observable value.

Problems arise when the available collective variables incorrectly capture the involved reaction or transition
paths. In this situation, spurious metastability may still be observed along the order parameter and biased
Monte Carlo or MD simulation may fail to achieve ergodic sampling, as illustrated on a simple system exhibiting
two transitioning channels with shifted barriers along the employed one-dimensional RC. Ergodic sampling can
nevertheless be recovered by performing nonlocal moves using the work-bias Monte Carlo scheme. However, this
is achieved at the expense of statistical accuracy. The reason is that the information associated with intermediate
states that have been generated in the construction of the trial states are excluded from the estimator. For a
given amount of computational resource, the sample size M scales as the inverse of the path length L that is used
to construct the trial states. As a result, the amount of information that is actually included in the estimator is
considerably reduced. In Chapter 4, we introduce another type of conditioning that makes it possible to retrieve
all the information contained in the generated trial trajectories.
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4 | Path sampling and conditioning

Path sampling schemes are becoming increasingly important tools in molecular simulations for estimating free
energy differences through the fluctuations of entropy production [61] and for extracting rates of rare-events
from state-to-state time correlation functions [7]. In this Chapter, we review techniques for conditioning on the
states contained in a sample of harvested trajectories. The described techniques are exact instances of the more
general waste-recycling Monte Carlo (WRMC) method in which conditioning is performed on proposals. The
WRMC technique was briefly mentioned in Chapter 2 and will only be discussed in greater details in Chapter 5.
For the ease of exposition, we first emphasize the path-sampling and path-ensemble concepts so as to establish
connections with methods based on entropy fluctuations.

4.1 Equilibrium out of nonequilibrium

So far, we advocated so far to enhance the sampling along an internal collective coordinate or an external
parameter with the help of an auxiliary biasing potential. While the sampling efficiency is improved in many
situations, as illustrated on several testbed problems in Chapters 2 and 3, there are cases for which the approach
is unable to achieve ergodic sampling along the specified coordinate. This happens when reactive events occur
via separate transition channels along which the free energy barriers are located at distinct values of the order
parameter.1

Constructing a multi-dimensional order parameter faithfully capturing the degree of advancement of the
reaction being a difficult task, an alternative approach was suggested in Chapter 2. The work-bias Monte
Carlo (WBMC) technique described page 40 was shown to considerably enhance the sampling efficiency in this
situation. Trial states are generated by driving the system out of equilibrium using an external mechanical
force and are eventually accepted or rejected using the Metropolis acceptance rule. In a wider perspective,
the WBMC [44] technique relates to Jarzynski’s identity [62] which makes it possible to estimate free energy
differences from samples of transient nonequilibrium trajectories. Jarzynski’s approach [62] can be used to
estimate any thermodynamic expectations [5, 63]. Besides, it can be derived from the entropy production
fluctuation theorem [4], like the Metropolis acceptance rate in the WBMC technique.

A drawback of the aforementioned path-based approaches is that they are costly. A considerable amount of
configurations are generated while generating the paths, but the information associated with all the propagated
configurations is only partially included in the estimators. A first question that naturally arises is how to
retrieve this nonequilibrium information more efficiently. We show hereafter how to do it by performing a
pathwise conditioning, i.e within the sampled path ensemble. A second question to address is whether improved
estimates of the state-to-state time correlation functions can be obtained through this additional pathwise
conditioning. The objective is to further improve the efficiency of transition path sampling (TPS) simulations
conducted in a tilted path ensemble2 and with conditioning with respect to the (external) tilting parameter.

Outline of the Chapter The nonequilibrium Langevin dynamics and its time discretization [45, 46, 63] are
first described in Section 4.2. The path ensemble concept and path reweighting technique are then introduced
in Section 4.3. We then generalize the path ensemble concept and define the expanded path ensemble in
Section 4.4. We show how conditioning can be done and establish the connection with waste-recycling. We
show in Section 4.6 how to implement the conditioning approach within TPS to calculate the rate constant of
rare thermally activated events. Path-reweighting and pathwise conditioning are illustrated with free energy

1This limitation was also illustrated in Section 3.2 on a purposely designed model.
2wherein small occurrence probabilities of reactive trajectories are artificially increased using a biasing path functional
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calculations of various LJ38 structures at low temperatures and with calculations of the vacancy hopping rate
in α-iron.

4.2 Dynamical forcing

4.2.1 Langevin dynamics

The Langevin dynamics is a phenomenological model of a Hamiltonian system coupled to a thermostat, which
is an infinite reservoir of energy. Langevin dynamics has the ability to explore the various energy levels of a
canonical distribution unlike Hamiltonian dynamics that preserves the total mechanical energy of the system.
The Hamiltonian is considered to be separable and equal to the sum of the kinetic energy K(p) = 1

2p
TM−1p

and of a parameterized potential energy Uλ(q). The mass matrix M is positive semidefinite. The parameterized
Hamiltonian exhibits the form

Hλ(p, q) = K(p) + Uλ(q) = β−1H (λ, x),

where ∇pK(p) = M−1p. The Langevin dynamics thus writes

{
dpt = −∇qHλ(qt, pt)dt − 1

2βσ
2∇pK(pt)dt+ σdBt

dqt = ∇pHλ(qt, pt)dt,
(4.1)

where σ denotes a symmetric positive definite matrix and t 7→ Bt =
∫ t

0
dBs is a 3N -dimensional standard Brow-

nian motion.3 Each component of Bt has zero mean and t variance. The term dB(t) describes an infinitesimal
random fluctuation, while the term − 1

2βσ
2∇pK(pt)dt describes the dissipation. The exchange of heat with the

reservoir is the work done by the fluctuating and dissipative forces along the trajectory. In more general setups
like dissipative particle dynamics [14, 15], σ depends on q. The quantity σ2 characterizes the coupling strength
between the particle coordinates and the thermostat held at temperature β−1. The Hamiltonian dynamics is re-
covered by setting σ to 0 in (4.1). The probability density ρt(λ, q, p) associated with the Hamiltonian dynamics
evolves according to the following Liouville equation

∂tρt = {ρt, Hλ} = ∇qρt · ∇pHλ −∇pρt · ∇qHλ.

where {} denotes Poisson brackets. The evolution operators associated with the kinetic and potential energy
are respectively

LK = {·,K}, LU = {·, Uλ}.
When the system is coupled to the thermostat, the probability density associated with the Langevin dynamics
evolves according to the following forward Kolmogorov equation

∂tρt = {ρt, Hλ}+ 1
2eβK(p)divp

(
e−βK(p)σ2∇pρt

)
,
(
LK + LU + Ldiv

)
ρt (4.2)

where the additional evolution operator Ldiv is associated with the momentum divergence and describes the
fluctuation-dissipation contribution. The stationary distribution of (4.2) is the canonical distribution π (x|λ) =
exp [F(λ)− H (λ, x)] where x = (p, q) and the absolute free energy is defined in (1.1). This distribution is indeed
solution of the following equation (

LK + LU + Ldiv
)
π (x|λ) = 0. (4.3)

In set-up (4.3), the external parameter is hold at the constant value λ. In the following, we shall consider
situations for which the external parameter evolves with time.

4.2.2 External forcing

At equilibrium, the external parameter is usually viewed as a constant thermodynamic force acting upon the
coordinates of the particle system. This viewpoint is used to construct the various thermodynamic ensembles
considering that this force is a Lagrange multiplier acting on some macro-state variables, like for instance
the total mechanical energy. This viewpoint is the one adopted by Jarzynski [62, 64] for describing trajectories
driven out of equilibrium starting from an equilibrium macro-state. In this nonequilibrium context, the external

3also referred to as a Wiener process in the mathematical literature.
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force λt is varied through an imposed scheduling protocol. As a result, the effective Hamiltonian is modified
in the course of the simulation. The particle system undergoes an alchemical transformation by applying a
Hamiltonian-switching protocol.

For our conditioning purpose, it is more convenient to assume that λ is an additional variable evolving
according to the following Langevin equation

dλt = φtdt− 1
2 β̄σ̄

2∂λU(λt, qt)dt+ σ̄dB̃t (4.4)

where φt is the action of the external forcing and σ̄ the coupling strength between the coordinate λ and the
thermal reservoir at inverse temperature β̄. This dynamics is valid if λ is not bounded. An example of such
dynamics is given in Refs. [65] and [66] wherein λ is harmonically coupled to a reaction coordinate of the
particle system. Denoting the evolution operator associated with λ-variable by Lλ, the formal expression of the
probability density at time t1 = τ knowing the probability density at initial time t0 = 0 writes

ρτ = exp

(∫ τ

0

[
Lλ + LK + LU + Ldiv

]
dt

)
ρ0 = exp

(∫ τ

0

Ltotdt

)
ρ0,

where Ltot is the total evolution operator.

4.2.3 Factorization of the evolution operator

In general, the evolution operators LK , LU , Ldiv do not commute with each others, but Lλ commutes with LK
and Ldiv. Let denote the operator integral

∫ τ
0
LXdt by LX

τ . The steered Langevin dynamics will be discretized
by splitting the operator as follows:

exp

(∫ τ

0

Ltotdt

)
≈ exp

(
Ldiv
τ/2

)
exp

(
LUτ/2

)
exp

(∫ τ

0

[
Lλ + LK

]
dt

)
exp

(
LUτ/2

)
exp

(
Ldiv
τ/2

)
. (4.5)

where τ will be the time-step. This (Trotter-Strang) splitting is symmetric with respect to a time reversal
and valid to second order [45, 63, 63, 66]. A similar splitting can be applied to the evolution operator in the
middle. Henceforth, we assume that the thermal bath is at an infinite temperature, i.e. β̄−1 = 0 and that φt is
independent of qt in (4.4). It results that Lλ and LK operators commutes

exp

(∫ τ

0

[
Lλ + LK

]
dt

)
= exp

(
Lλτ
)

exp
(
LKτ
)
.

When time-stepping the dynamics, the coordinates at time t = `τ are denoted by λ` and x` = (q`, p`) with
` ∈ J0, LK. We further assume that the discretized dynamics of λ evolves inside the finite set Λ and is reflected on
the boundary of Λ. To achieve this, we assume that Λ contains evenly spaced points (along each direction when
λ is a multi-dimensional parameter) and define Λ̄ as the infinite lattice encompassing Λ. We first propagate an
unbounded dynamics ζ` on lattice Λ̄ as follows

ζ`+1 = ζ` + τϕ+R, R ∼ Nd

(
0, τ σ̄2

)
,

where the external forcing φ is assumed to be constant and Nd(0, τ σ̄2) stands for a discretized form of the
normal law of zero mean and τ σ̄2 variance. The random vector is thus located on the infinite lattice Λ̄ and
so for the constant transition vector τϕ. We next reconstruct the actual positions λ`+1 ∈ Λ from ζ`+1 ∈ Λ
resorting to Cell function defined as

λ`+1 = λmin + min
k∈Z

(∣∣ζ`+1 − λmin + 2k (λmax − λmin)
∣∣) , Cell(ζ`+1),

and used in the folllwing to denote the resulting reflection on the Λ boundaries. The forced transition τϕ is to
be reversed under time-reversal like a velocity or a momentum. Whatever the current location on the lattice,
the forward and reverse transition probabilities are therefore given by the probabilities to generate R and −R,
respectively, which both equal each other. The symmetry of the transition probabilities associated with λ under
time-reversal,

T (λ` → λ`+1) = T (λ` ← λ`+1) ,
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reflects the fact that λ is coupled to an infinite temperature reservoir. Further setting σ̄ to zero amounts
to uncoupling λ to the heat bath and to imposing the sequence (λ1, · · · , λ`, · · · ) in advance, as is done in
Hamiltonian switching protocols introduced by Jarynski [62].

4.2.4 Ornstein-Uhlenbeck process in momentum space

The operator exp
(
Ldiv τ

2

)
exhibits a closed form solution. This entails that the momenta pτ/2 at time t = τ/2

can be exactly simulated from the knowledge of the momenta p0 at time t = 0. This operator describes the
evolution of an Ornstein-Uhlenbeck (OU) process in momentum space for a duration τ

2 . Introducing the positive
friction matrix γ = 1

2βσ
2M−1, the OU process writes

dpt = −γdpt +
√

2γM/βdBt.

This particular stochastic differential equation can be integrated analytically [15], which yields

pt = p0 exp [−γt] + ΣtB1

where Σt is the principal square root of matrix Σ2
t = [I − exp (−2γt)] M/β and B1 ∝ N (0, I), i.e. B1 is normally

distributed and each component has zero mean and unit variance. The OU process at time t is simulated by
drawing pt = p0 exp(−γt)+G where G is a normal noise of zero mean and Σ2

t variance. We write G ∼ N (0,Σ2
t ).

This stochastic move obeys a form of detailed balance with respect to the Maxwell-Boltzmann distribution (for
the kinetic energy). This form states that the probability flux from p0 to pt, denoted by Φ(p0 → pt), is equal
to Φ(−pt → −p0) the probability flux from −pt to −p0:

Φ(p0 → pt) =

∣∣∣∣∣

√
β

2π
M−

1
2

∣∣∣∣∣ exp
[
−β2 pT0 M−1p0

]
×
∣∣∣∣

1√
2π

Σ−1
t

∣∣∣∣ exp
[
− 1

2G
TΣ−2

t G
]

=

∣∣∣∣∣

√
β

2π
M−

1
2

∣∣∣∣∣ exp
[
−β2 (−pt)TM−1(−pt)

]
×
∣∣∣∣

1√
2π

Σ−1
t

∣∣∣∣ exp
[
− 1

2 G̃
TΣ−2

t G̃
]

= Φ(−pt → −p0). (4.6)

where |A| denotes the determinant of a matrix A and G̃ is the Gaussian noise obtained after reversal of time
and momenta in the original OU process. The reversed process is the OU process mapping −pt back to
−p0 = −pt exp(−γt) + G̃. The OU process is said to be reversible in the sense that it obeys the form of detailed
balance above.

4.2.5 Discretization scheme for Langevin dynamics

The discretization scheme obtained via Trotter-Strang splitting (4.5) associated with evolution equation (4.2)
then reads





p`+1/4 = p` exp(−γτ/2) + G0, G0 ∼ N
(

0,Σ2
τ/2

)
,

p`+1/2 = p`+1/4 − τ
2∇qU (λ`, q`) , λ` = Cell(ζ`),

[
q`+1

ζ`+1

]
=

[
q`
ζ`

]
+

[
τM−1p`+1/2

τϕ+R

]
, R ∼ Nd

(
0, τ2 σ̄

2
)
,

p`+3/4 = p`+1/2 − τ
2∇q U (λ`+1, q`+1) , λ`+1 = Cell(ζ`+1),

p`+1 = p`+3/4 exp(−γτ/2) + G1, G1 ∼ N
(

0,Σ2
τ/2

)
,

(4.7)

where U(λ, q) stands for Uλ(q) for clarity. We assume that the rates φ` and φ`+1 governing the evolution of λ
correspond to a purely external forcing (meaning that σ̄ = 0 in Eq. 4.4). See Ref. [66] for an example of steered
Langevin dynamics for which the external parameter evolves stochastically coupled to a high temperature heat
bath, i.e β̄ << β and σ̄ > 0 in (4.4).

Note that the standard velocity-Verlet scheme (VV) for Hamiltonian dynamics [14] is recovered from
scheme (4.7) by setting φ, σ and σ̄ to 0, which entails that γ and Στ/2 are also equal to 0 in (4.7). The
VV scheme is symmetric, reversible and symplectic (see Refs. [47] or [15]).
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4.2.6 Time-reverse trajectory, detailed deviation and heat exchanged with ther-
mostat

The Langevin dynamics will be used as a sampling device. For such applications, matrix σ will simply be
diagonal positive and so will be the friction matrix γ. The mass matrix will also be diagonal. The difficulty in
constructing estimators for evaluating equilibrium thermodynamic averages is that the external forcing steers
the dynamics out of equilibrium. Hopefully, such deviations from detailed balance can be measured by reversing
the dynamics with respect to the arrow of time. Let us reverse the forward map (4.2) by inverting the order of
the indexes:





−p`+3/4 = −p`+1 exp(−γ τ2 ) + G̃1, G̃1 ∼ N
(

0,Σ2
τ/2

)
,

−p`+1/2 = −p`+3/4 − τ
2∇qU (λ`+1, q`+1) , λ`+1 = Cell(ζ`+1),

[
q`
ζ`

]
=

[
q`+1

ζ`+1

]
−

[
τM−1p`+1/2

τϕ+R

]
, R ∼ Nd

(
0, τ2 σ̄

2
)
,

−p`+1/4 = −p`+1/2 − τ
2∇q, U (λ`, q`) , λ` = Cell(ζ`),

−p` = −p`+1/4 exp(−γ τ2 ) + G̃0, G̃0 ∼ N
(

0,Σ2
τ/2

)
.

(4.8)

In absence of coupling between λ and the thermostat (σ̄ = 0), the probability to transition from λ` to λ`+1 is
equal to the transition probability for the reverse move from λ`+1 to λ`. The probability of transitioning from
(λ, p, q)` to (λ, p, q)`+1 is thus given by

T [(λ, p, q)` → (λ, p, q)`+1] =

∣∣∣∣
1

2π
Σ−2
τ/2

∣∣∣∣ exp
[
−
(

1
2G

T
0 Σ−2

τ/2G0 +GT1 Σ−2
τ/2G1

)]
.

The overall probability of transitioning from (λ,−p, q)`+1 to (λ, p, q)`+1 in the reverse updating scheme (4.8) is
given by

T [(λ,−p, q)` ← (λ,−p, q)`+1] =

∣∣∣∣
1

2π
Σ−2
τ/2

∣∣∣∣ exp
[
−
(

1
2 G̃

T
0 Σ−2

τ/2G̃0 + G̃T1 Σ−2
τ/2G̃1

)]
.

Resorting to the detailed balance condition (4.6) and denoting the reduced kinetic energy βK by K , the
logarithmic ratio of the transitioning probabilities can be expressed as

ln
T [(λ,−p, q)` ← (λ,−p, q)`+1]

T [(λ, p, q)` → (λ, p, q)`+1]
= K (p`+1)− K

(
p`+3/4

)
+ K

(
p`+1/4

)
− K (p`) = Q`→`+1,

where the quantity Q`→`+1 corresponds to the heat exchanged with the thermostat during the two half-step
OU processes. The heat exchanged during L iterations (4.7) starting from ` = 0 reads

Q0→L =
∑L−1

`=0
Q`→`+1

= K (pL)− K (p0) + 1
2

∑L−1

`=0

(
p`+1/4 − p`+3/4

)T
M−1

(
p`+1/4 + p`+3/4

)

= K (pL)− K (p0) + 1
2

∑L−1

`=0
(q`+1 − q`)T [∇qU(λ`+1, q`+1) +∇qU(λ`, q`)] + C 0→L (4.9)

where the last quantity is a second order term in τ

C 0→L = τ2

8

[
∇qU(λL, qL)TM−1∇qU(λL, qL)−∇qU(λ0, q0)TM−1∇qU(λ0, q0)

]
.

4.2.7 Work done on the extended system

The work done by the external forces on the extended system is defined from the first law of thermodynamics.
It therefore equals the variation of mechanical energy of the extended particle system and of heat in the thermal
reservoirs which the coordinates are coupled to. The energy variation of the extended system is the Hamiltonian
difference H (λL, pL, qL) − H (λ0, p0, q0). The energy variation of the thermostat is −Q0→L, the heat flowing
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from the particle system into the thermal reservoir. Thus, defining the work from the first law yields

W 0→L = H (λL, pL, qL)− H (λ0, p0, q0)−Q0→L. (4.10)

A work quantity W `→`+1 can similarly be defined for a single iteration of the Langevin scheme, i.e. for a
transition from (λ`, p`, q`) to (λ`+1, p`+1, q`+1), as illustrated in Fig. 4.1. The work done on the system arises
from the external forcing on λ and from the discretization errors associated with the splitting of the evolution
operator [45, 63, 66]. To explain this, let us express the potential energy difference as an integral of the total
gradient ∇λ,q along a trajectory Γ that is continuous, piecewise and linear between the consecutive points
(λ`, p`, q`) and (λ`+1, p`+1, q`+1) of the discretized trajectory (0 ≤ ` ≤ L− 1). We obtain

U(λL, qL)−U(λ0, q0) =

∫

Γ

[∂λU(λt, qt)dλt +∇qU(λt, qt)dqt] .

Similarly, we have K (pL)− K (p0) =
∫

Γ
∇pK (pt)dpt. The work and heat along Γ thus write

W 0→Lτ
Γ =

∫

Γ

∂λU(λt, qt)dλtdt, (4.11a)

Q0→Lτ
Γ = K (pL)− K (p0) +

∫

Γ

∇qU(λt, qt)dqt. (4.11b)

These two quantities obviously satisfy a conservation equation similar to (4.10), that is

W 0→Lτ
Γ = H (λL, pL, qL)− H (λ0, p0, q0)−Q0→Lτ

Γ . (4.12)

They correspond to the exact work and heat along the piecewise linear trajectory. The difference with the work
and heat previously defined stem from discretization errors. Indeed, approximating the integral associated with
the heat in (4.11b) by numerical quadrature based on trapezoidal rule yields

∫

Γ

∇qU(λt, qt)
qt
dt
dt ≈ 1

2

L−1∑

`=0

(q`+1 − q`)T [∇qU(λ`+1, q`+1) +∇qU(λ`, q`)] ,

≈ Q0→L − K (pL) + K (p0) (4.13)

where we plugged relation (4.9) in the second line (4.13) and neglected the second order term C 0→L. Plugging
relation (4.13) into relation (4.11b) and then comparing the two conservation equations (4.10) and (4.12) yield
the following pair of approximations

Q0→L ≈ Q0→Lτ
Γ and W 0→L ≈ W 0→Lτ

Γ .

The work W 0→Lτ
Γ in (4.11a) corresponds to the work done by the external force that is exerted along the

λ-component of the extended system for compensating the internal force −∂λU and thus displacing λ. This
quantity is exactly zero when the external forcing on λ is suppressed by holding the external parameter at a
constant value. At variance, the effective work functional z 7→ W 0→L is non zero in this particular equilibrium
case. The effective work can be either positive or negative, but its expected value is always a strictly positive
quantity corresponding to an energy irreversibly dissipated toward the thermostat(s). The dissipation of the
work done on the system is often referred to as an entropy production since the overall entropy of the ther-
mostats is increased by the heats flowing into them. The produced entropy is due to both time stepping and
external forcing [45]. Its strict positiveness is a simple consequence of the fluctuation relation derived hereafter
and satisfied by the effective work W 0→L and heat Q0→L. These quantities are precisely to be used in the
construction of sampling algorithms and estimators because of the fluctuation relation.

4.2.8 Path statistics and heat fluctuation relation

We define a path z as a sequence of L + 1 extended states z = {(λ0, x0), · · · , (λ`, x`), · · · , (λL, xL)} where
x = (p, q) and denote the path space by Z. In practice, paths will be constructed by applying L iterations of
the steered langevin dynamics forward or backward starting from an index ` ∈ J0, LK. Because of the external
steering and time-stepping, detailed balance is violated and the probability to generate a path z depends on
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(λ`, p`, q`)

(λ`, p`+1/2, q`) (λ`+1, p`+1/2, q`+1)

(λ`+1, p`+1, q`+1)

W `→`+1 = H (λ`+1, p`+1, q`+1)− H (λ`, p`, q`)−Q`→`+1

Q`→`+1 = ln
T [`← `+ 1]

T [`→ `+ 1]

Figure 4.1: The quantity W `→`+1 is the work done on the system by application of a single Langevin iteration with the
external parameter forced to move from λ` to λ`+1. It relates to the exchanged with the thermostat, Q`→`+1, through the
energy conservation equation which also includes the Hamiltonian variation. The dashed arrow represents the updating
of the external and internal coordinates (λ, q) performed at constant momentum p resorting to scheme (4.7).

the starting index `. The conditional probability to generate the indexed path (z, `) given (λ, x) is

P(z, `|λ, x) = P`→Lgen (z)P0←`
gen (z)1λ(λ`), δx(x`) (4.14)

where the partial generating probabilities are defined by

P`→Lgen (z) =

{∏L−1
l=` T [(λ, p, q)l → (λ, p, q)l+1] if 0 ≤ ` < L,

1 if ` = L,

P0←`
gen (z) =

{
1 if ` = 0,∏`−1
l=0 T [(λ,−p, q)`−l → (λ,−p, q)`−l−1] if 0 < ` ≤ L.

A useful identity due to Crooks [4] relates the ratio of path generating probabilities to the heat exchanged
with the thermostat. We have

P(z, `|λ`, x`)
P(z, 0|λ0, x0)

=
P0←`

gen (z)

P0→`
gen (z)

= exp
[
Q0→`(z)

]
. (4.15)

We refer to this identity as the heat fluctuation relation. This relation can be generalized to any thermostated
dynamics and also plays a crucial role in nonequilibrium steady states. The more general identity is referred to
as entropy production fluctuation theorem [4].

4.3 Nonequilibrium path ensemble

4.3.1 Path reweighting estimator

Here, we are concerned with the Hamiltonian-switching schedule introduced by Jarzynski [62]: the external
parameter is viewed as a thermodynamic force that is varied during a transient regime from λref = λ0 to
λtarg = λL. For all path z ∈ Z, the scheduling of the external parameter is imposed by λ` = λ` where
Λ =

(
λ0, · · · , λ`, · · · , λL

)
is a given sequence of strictly increasing or decreasing values. In this transient

nonequilibrium framework, trajectories are generated from the equilibrium distribution π
(
x|λ0

)
using the for-

ward Langevin scheme (4.7). However, resorting to the reverse map (4.8), it is possibe to consider trajectories
initiated from any distribution π(x|λ) with λ ∈ Λ. We define the conditional path probability given λ from the
law of total probability with respect to x ∈ X

P(z|λ) =

L∑

l=0

∫

X
P(z, l|λ, x)π(x|λ)dx =

L∑

l=0

P(z, l|λ, xl)π(xl|λ).

We thus have P(z|λ) equal to 0 if λ /∈ Λ, otherwise ∃` ∈ J0, LK such that λ = λ` and we have:

P(z|λ`) = P0←`
gen (z)P`→Lgen (z)π

(
x`|λ`

)
. (4.16)
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We define the conditional path expectation of observable O given λ = λ` as:

E
Z [O|λ`

]
=

∫

Z
O(λ`, x`)P(z|λ`)Dz

=

∫

X

∫

Z
O(λ`, x)π

(
x|λ`

)
DzP(z|λ`)P0←`

gen (z)P`→Lgen (z)δx(x`)Dzdx

=

∫

X
O(λ`, x)π

(
x|λ`

)
dx = E

[
O|λ`

]

The path expectation EZ
[
O|λ`

]
can be expressed as a function of expected values given λ0, resorting to the

free energy perturbation technique. This requires to specify the form of the conditional probability of x given λ.
We write π(x|λ) = exp [F(λ)− H (λ, x)] where the normalizing constant writes F(λ) = − ln

∫
X exp [−H (λ, x] dx

and corresponds to the absolute free energy defined in Eq. (1.1). Note that the relative free energy A(λ) =
F(λ) + ΨΛ

0 is more convenient to manipulate in the context of expanded ensembles and was used for this reason
in Chapter 2 and 3. The conditional path probability ratio writes

P(z|λ`)
P(z|λ0)

=
P0←`

gen (z)π
(
x`|λ`

)

P0→`
gen (z)π (x0|λ0)

= exp
[
Q0→`] exp

[
F
(
λ`
)
− H

(
λ`, x`

)]

exp [F (λ0)− H (λ0, x0)]
. (4.17)

Plugging the effective work quantity W 0→`(z) = H
(
λ`, x`

)
−H

(
λ0, x0

)
−Q0→` deduced from the conserva-

tion equation (4.10) for the total energy between time t = 0 and time t = τ` into ratio (4.17) provides us with
the following work fluctuation identity

P(z|λ`)
P(z|λ0)

= exp
[
F
(
λ`
)
− F(λ0)−W 0→`(z)

]
.

This identity allows us to formulate the following nonequilibrium path average [5]

E
Z [O

∣∣λ`
]

= E
Z
[
P(z|λ`)
P(z|λ0)

O(λ`, x`)

∣∣∣∣∣λ
0

]

= E
Z
[

exp
[
F
(
λ`
)
− F

(
λ0
)
−W 0→`]O(λ`, x`)

∣∣∣∣∣λ
0

]
. (4.18)

The two free energies being unknown, they are estimated by setting O(λ`, x) to 1 in (4.18) and solving. The
free energy difference exhibits the form:

exp
[
−
(
F
(
λ`
)
− F

(
λ0
))]

= E
Z
[
exp

(
−W 0→`)

∣∣∣∣λ0

]
. (4.19)

The identity above is known as Jarzynski’s nonequilibrium work (NW) identity. Plugging the NW identity in
the path expectation (4.18) yields

E
[
O|λ`

]
=

EZ
[

exp
[
−W 0→`]O(λ`, x`)

∣∣∣∣∣λ
0

]

EZ

[
exp [−W 0→`]

∣∣∣∣∣λ
0

] . (4.20)

The NW identity (4.19) and the NW expectation (4.20) correspond to free energy perturbation and umbrella
sampling within a path ensemble, respectively. These two relations tell us how to reweight the information
contained in a sample of short nonequilibrium trajectories so as to recover equilibrium expectations. Let us
denote the generated sample of trajectories by {zm}0≤m≤M . Each trajectory consists of a sequence of states,

zm =
{
λ`, xm`

}
0≤`≤L, initiated from the equilibrium distribution π(x|λ0) and driven out of equilibrium using

a given switching protocol Λ acting on the external parameter λ. The work for path zm writes

W 0→`
m = H (λ`, xm`)− H (λ0, xm0)−Q`→`+1

m .
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An estimate of E
[
O|λ`

]
can be obtained from the path sample using the following path reweighting (PR)

estimator

ΥM,L
PR

(
O
∣∣λ`
)

=
1
M

∑M
m=1O(λ`, xm`) exp

[
−βW 0→`

m

]

1
M

∑M
m=1 exp [−βW 0→`

m ]
. (4.21)

The denominator in the fraction corresponds to an estimate of the exponential of the free energy difference
based on Jarzynski’s NW identity.

4.3.2 Illustration on a complex high-dimensional energy landscape

We report an application of the PR estimator (4.21) from Ref. [63]. The goal is to estimate the free energies
associated with the low structure the 38-atoms Lennard-Jones system of Chapter 3. The external parameter
corresponds to a reduced inverse temperature, the potential energy is E(q) ≡ VLJ(q), and the Hamiltonian reads

H (λ, x) =
1

Tmax
[K(p)−B ◦Q4(q)] + VLJ(q)

[
λ

Tmin
+

1− λ
Tmax

]

where B ◦Q4 is an additional biasing potential that is introduced to ensure homogeneous sampling along Q4 at
high temperature. We set λ` = `/L. Paths are initiated from distribution π(x|0), which corresponds to the high
temperature thermodynamic state. The targeted thermodynamic states are the ones at lower temperatures.
The Landau free energy Λ(Q4, E) at given temperature T ` relates to the cologarithm of the biased probability
E
[
1Q4,E

∣∣λ`
]
. Removing the bias B(Q4) leads to the relation

Λ
(
Q4,E

∣∣T `
)

= B(Q4)− lnE
[
1Q4,E

∣∣λ`
]

+ c0

where c0 is an additive constant. The conditionally expected value of the indicator function is estimated using
the PR estimator:

ΥML
PR

(
1Q4,E

∣∣λ`
)

=
1
M

∑M
m=1 1Q4,E (Q4m`, Em`) exp

[
−βW 0→`

m

]

1
M

∑M
m=1 exp [−βW 0→`

m ]
. (4.22)

where Q4m` = Q4(qm`) and Em` = E(qm`) correspond to the sampled values of the order parameter and
potential energy.

Contour plot of the Landau free energy as obtained from the path sampling4 and the path reweighting
estimator (4.22) are displayed in Fig. 4.2. The path sampling approach is able to explore the icosahedral and
octahedral structures at the lowest temperature, as well as other defected structures around Q4 ≈ 0.12. The
defected structures, displayed in Fig. 4.3, are missed using parallel tempering or Wang-Landau sampling [63].

4.3.3 Comparison with Harmonic Superposition Approximation

The harmonic superposition approximation (HSA) described in Appendix B.3 is used for comparison with path
sampling and reweighting. HSA consists of superposing the harmonic contributions to the free energy of a
collection of low energy minima. In figure 4.4 are shown the probabilities to find the defective octahedral
structure obtained as a function of temperature using either path-sampling or the harmonic superposition
approximation. The two methods agree to a very good extent. Some discontinuities are more clearly visible on
the Landau free energy; they result from pollutions arising in the octahedral basin. Conversely, the results of
parallel tempering and Wang-Landau sampling, also shown in this figure, significantly disagree (even though
they agree with each other). In other terms, their relative probability is much too small, as precisely seen in
Fig. 4.4(a).

4.3.4 Advantages and limitations of path sampling and reweighting

The accuracy in the estimations is improved in the low-temperature thermodynamic states despite the severe
metastability resulting from the high free energy barriers between the various basins of attraction at low tem-
peratures. By gradually decreasing the temperature starting from an ergodic sample of states generated at

4All reported calculations have been carried out with the following parameters: L = 2 × 105 with M = 34650 or L = 2 × 107

with M = 5818 paths, respectively. These calculations were performed in parallel and took a total of 360 hours and 600 hours on
fifteen 2 GHz Xeon processors, respectively.
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high temperature, the path sampling procedure provides a biased sample of states spanning over the different
basins of attractions at lower temperatures. The path reweighting estimator (4.22) makes it possible to recover
accurate estimates of the free energy associated with the various basins of attraction. The obtained results
compare well with those obtained using using the superposition harmonic approximations [42].

The present path reweighting approach has two main limitations. A first drawback is that a considerable
amount of information is lost: the observable values of the states generated at high temperature are not taken
into account in the low temperature average. A second drawback is that barrier regions at low temperatures
are poorly sampled because trajectories are attracted to the low energy structures as the effective temperature
is decreased (though increasing λ). To circumvent these two limitations, Hummer and Szabo [67] proposed
(i) to generate the nonequilibrium paths employing the harmonic coupling setup so as to pull the reaction
coordinate over free energy barriers and (ii) to post-process all the information contained in the generated
paths by implementing the self-consistent reweighting estimator WHAM. In next Section, we present a more
direct approach based on a pathwise conditioning technique within an expanded path ensemble.
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Fig. 3. Contour plot of the Landau free energy Λ(Q4, E; T ) for five temperatures (a) T = 0.19, (b) T = 0.147, (c) T = 0.105,
(d) T = 0.062, (e) T = 0.021.

A path-sampling simulation consists in constructing a

Markov chain of paths distributed with the K̂λ0 statis-
tics. In other words, the initial states of the paths be-
long to a Markov chain distributed with the Nλ0 -statistics.
The λ-parametrized inverse temperature is chosen to be
βλn = λnβ. The time step τ is adjusted so that the accep-
tance rate is about 30–60%. The friction parameter of the
Langevin-Metropolis dynamics is γ̃ = 2/τ (smaller values
were found to be appropriate as well). All reported calcu-
lations have been carried out with the following parame-
ters: M = 100, J = 10 and N = 2 × 103 or N = 2 × 104.
The simulations with N = 2 × 103 and N = 2 × 104 in-
volve 34 650 and 5818 paths, respectively. These calcula-
tions were performed in parallel and took a total of 360 h
and 600 h on fifteen 2 GHz Xeon processors, respectively.

4.3 Results

We first computed the Landau free energy as a function of
the order parameter Q4 and internal energy E at constant

temperature T . This physical quantity is defined over the
path ensemble as

Λ(Q4, E, T ) = −kBT ln〈δ(Q4(rk) − Q4)δ(E(rk) − E)|λ〉,
(24)

and is estimated using equation (13) where rk are the path
positions belonging to Zλ.

Figure 3 displays the contour plots of the Landau free
energy for five temperatures ranging from T = 0.02 to
0.19. Domains of low free energy, corresponding to high oc-
cupation probabilities, evolve significantly as temperature
decreases. The icosahedral to octahedral phase change
is clearly observed: the most probable structure changes
from Q4 ∼ 0.18 to Q4 ∼ 0.02. As was anticipated, several
secondary minima corresponding to liquid-like or defected
octahedral structures are visible at sufficiently low tem-
perature, for values of Q4 ranging from 0.04 to 0.15. The
structure corresponding to Q4 ∼ 0.12, represented in Fig-
ure 4, is a defective truncated octahedron, with missing
atoms in the outer shell inducing a stacking fault in the
fcc structure. The associated energy and order parameter

Figure 4.2: Contour plot of the Landau free energy Λ(Q4,E|T ) for five temperatures (a) T = 0.19, (b) T = 0.147, (c)
T = 0.105, (d) T = 0.062, (e) T = 0.021.
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Figure 4.3: Structures of the 38-atom defected octahedral cluster. Its minimum energy is −171.8560 and its order
parameter is Q4 = 0.121. View (a) emphasizes the stacking fault while view (b) shows the atom that has been expelled
from the outer shell.
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ted line corresponds to the harmonic superposition approxi-
mation.
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4.4 Expanded path ensemble

The expanded path ensemble is built upon the expanded ensemble resorting to two probability distributions:
the joint probability distribution of extended states (ζ, x̄), denoted by pa(ζ, x̄) and introduced in (1.13), and
the conditional probability distribution of path (z, `) given state (ζ, x̄) denoted by P(z, `|ζ, x̄) defined previously
in (4.14).

4.4.1 Path probability and total expectations

The path probability of expanded path (z, `) is defined resorting to the following law of total probability

Pa(z, `) =
∑

ζ∈Λ

∫

X
P(z, `|ζ, x̄)pa(ζ, x̄)dx̄ = P(z, `|λ`, x`)pa(λ`, x`) (4.23)

where (λ`, x`) is the `th extended state of z. The total expectation of a state observable O?(ζ, x̄) in the path
ensemble is defined as

E
Z
a [O?] =

L∑

l=0

∫

Z
O?(λl, xl)Pa (z, l)Dz. (4.24)

Note that the expectation EZa [·] can also be applied to path observables, as will be done in the transition path
sampling simulations of Section 4.6. Plugging the law of total probability (4.23) into the path expectation (4.24)
leads to the following simplification:

E
Z
a [O?] =

∑

ζ∈Λ

L∑

l=0

∫

Z,X
O?(ζ, x̄)P(z, l|ζ, x̄)pa(ζ, x̄)Dzdx̄ =

∑

ζ∈Λ

∫

Q
O?(ζ, x̄)pa(ζ, x̄)dx̄ = Ea [O?] .

The last equality means that the biased expectation of a state observable with respect to the expanded path
distribution coincides with the biased expectation in the expanded ensemble of states. This property suggests
one to perform pathwise conditioning over the path indexes with respect to the given path coordinates. Resorting
to the law of total expectation yields

E
Z
a [O?] = E

Z
a
[
E
Z
a [O?|z]

]
= E

Z
a

[
L∑

l=0

O?(λl, xl)Pa(l|z)
]

(4.25)

where Pa(l|z) denotes the conditional probability of index l given the path z. It is equal to the conditionally
expected value of path index l given z:

Pa(`|z) = E
Z
a [1`|z] =

Pa(z, `)
∑L
l=0 Pa(z, l)

. (4.26)

where 1`(l) ≡ δl` is the indicator function associated with the index l of expanded path (z, l). Variance reduction
for conditioned estimators based on expectation (4.25) is guaranteed by the law of total variance

V
Z
a
[
E
Z
a [O?|z]

]
= V

Z
a [O?|z]−EZa

[
V
Z
a [O?|z]

]
.

We recall that with the expanded path ensemble approach, neither the reference Hamiltonian nor the refer-
ence distribution are modified by the external forcing upon λ coordinate. As a result, the ratio of backward to
forward path probabilities differs from Crooks’s probability ratio (4.17) in that the free energy is replaced by
the auxiliary potential:

Pa(z, `)

Pa(z, 0)
=

P(z, `|λ`, x`)pa(λ`, x`)

P(z, 0|λ0, x0)pa(λ0, x0)
= exp [Q0→`]

exp [a (λ`)− H (λ`, x`)]

exp [a (λ0)− H (λ0, x0)]
.

where we plugged the heat fluctuation theorem (4.15). Resorting to the energy conservation equation (4.10)
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yields the following relation

Pa(z, `)

Pa(z, 0)
= exp

[
a(λ`)− a(λ0)−W 0→`(z)

]
, exp

[
−W 0→`

a (z)
]
. (4.27)

where W 0→`
a represents the work done on the expanded system by the external forcing. It includes the term

−a
(
λ`
)

+a
(
λ0
)

that is the opposite of the auxiliary biasing potential variation. In absence of auxiliary biasing
potential, the fluctuation identity (4.27) is similar to the Bochkov and Kuzovlev fluctuation identity [68, 69, 70,
64]. Plugging the fluctuation identity (4.27) into (4.26) yields the index probability as a function of the given
path coordinates

Pa(`|z) =
exp

[
a(λ`)−W 0→`(z)

]
∑L
l=0 exp [a(λl)−W 0→l(z)]

,

which is obtained after simplifying by a(λ0). Choosing index 0 as the origin for calculating the work is arbitrary.
It will prove computationally more convenient to express the conditional probability of index ` as a function of
the index from which the path is originally generated. For any index i ∈ J0, LK, we have

Pa(`|z) =
exp

[
−W i→`

a (z)
]

∑L
l=0 exp [−W i→l

a (z)]
.

Owing to pathwise conditioning, any expectation can in principle be estimated from a collection of trajec-
tories sampled from the expanded path distribution by including the information relative to all the generated
states. Prior to explaining how this is done, we first detail the path-sampling scheme allowing ergodic sampling
of path ensembles.

4.4.2 Path sampling: shooting and indexing moves

The path-sampling scheme for nonequilibrium trajectories is decomposed into two types of Monte Carlo moves,
namely, shooting moves and indexing moves, which reflect the two steps of the Metropolis-type algorithm:

Shooting moves are used to generate a new path (z, i) ≡ (zm+1, i) starting from the current path (z̄, `) ≡
(zm, lm). The shooting move detailed below requires a state-sampling algorithm whose transition probabilities
T are detailed balance with respect to the expanded probability pa(λ, x) and a symmetric law to sample new
index i of the shot path. The new path coordinates z ≡ zm+1 are generated from the probability distribution
P(z, i|λi, xi) that is defined in (4.14). By construction, the shooting move from (z, `) to (z, i) obeys the following
detailed balance condition

P(z, i|λi, xi)T
(
λi, xi ← λ̄`, x̄`

)
αi←`Pa(z̄, `) = P

(
z̄, `|λ̄`, x̄`

)
T
(
λ̄`, x̄` ← λi, xi

)
α`←iPa(z, i),

where the two index transition probabilities αi←` and α`←i both equal each other. This balance equation is easily
verified by substituting P(z̄, `|λ̄`, x̄`)pa(λ̄`, x̄`) and P(z, i|λi, xi)pa(λi, xi) for Pa(z̄, `) and Pa(z, i), respectively.

Indexing moves are used to sample a new index for a shot path. One selects lm+1 from the probability
distribution ` 7→ Pa(`|z) where z ≡ zm+1. It satisfy the detailed balance condition

Pa(lm+1|zm+1)Pa(z, i) = Pa(i|z)Pa(zm+1, i).

Hence, the combination of shooting and indexing moves allows the ergodic sampling of the expanded path
ensemble with probability Pa(z, l). To avoid storing the entire path coordinates, the next path index lm+1 is
chosen iteratively during the path construction. The conditioned observable EZa [O?|zm+1] is similarly con-
structed on the fly. These two tricks are implemented in Algorithm 8 detailed page 116 in Appendix B. As
explained in Ref. [66], the combination of shooting and indexing can be seen as implementing a Metropolis-like
Monte Carlo algorithm generating multiple trial configurations (the proposals) in the expanded state ensem-
ble. Pathwise conditioning thus amounts to conditioning on the multi-propsal. Thus, algorithm 8 is an exact
instance of waste-recycling Monte Carlo. Nevertheless, pathwise conditioning is in principle more flexible than
waste-recycling because it might be employed in combination with any algorithm that samples the expanded
path probability Pa(z, `) or the marginal path probability Pa(z) =

∑L
`=0 Pa(z, `).
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4.4.3 Conditional and total expectations

We show here how to perform the conditioning on both the states contained in the paths and on the external
parameter λ to estimate total and conditional expectations of the form E [O] and E [O|λ] where O(λ, x) is an
observable. As for the latter expectation, we replace O? by πλa (·)O(λ, ·) and πλa and form the following ratio

E [O|λ] =
EZa

[
πλa (·)O(λ, ·)

]

EZa [πλa ]
. (4.28)

Plugging the law of total expectation into the two total expectations of (4.28) allows the conditional expectation
E [O|λ] to be expressed as a function of Pa(l|z)

E [O|λ] =
EZa

[
EZa

[
πλa (·)O(λ, ·)

∣∣z
]]

EZa
[
EZa

[
�a(·)

∣∣z
]] =

EZa
[∑L

l=0 Pa(l|z)πλa (xl)O(λ, xl)
]

EZa
[∑L

l=0 Pa(l|z)πλa (xl)
] .

Let now {(zm, lm)}16=M denote the Markov chain of paths generated according to probability Pa(z, l). The
estimator with pathwise conditioning writes

ΥM,L
PC

(
O
∣∣λ
)

=
1
M

∑M
m=1

∑L
l=0 Pa(l|zm)πλa (xlm)O(λ, xlm)

1
M

∑M
m=1

∑L
l=0 Pa(l|zm)πλa (xlm)

.

The total expectation of O(λ, x) is conditioned by replacing πλa by �
λ
a and summing over λ ∈ Λ:

E [O] =
EZa

[
EZa

[∑
λ∈Λ �

λ
a(·)O(λ, ·)

∣∣z
]]

EZa
[
EZa

[
�a(·)

∣∣z
]] =

EZa
[∑L

l=0 Pa(l|z)∑λ∈Λ �
λ
a(xl)O(λ, xl)

]

EZa
[∑L

l=0 Pa(l|z)�a(xl)
] .

The estimator of E[O] with pathwise conditioning then reads

ΥM,L
PC (O) =

1
M

∑M
m=1

∑L
l=0 Pa(l|zm)

∑
λ∈Λ �

λ
a(xlm)O(λ, xlm)

1
M

∑M
m=1

∑L
l=0 Pa(l|zm)�a(xlm)

. (4.29)

As an example, we consider the LJ-38 atom cluster and the estimator for obtaining the histogram P̂Q4,E

associated with the indicator function 1ξ? ≡ 1Q4,E. The coupling is harmonic and λ is a two-dimensional
external parameter. Resorting to the effective biasing potential

Ba (ξ?) = ln
∑

λ∈Λ
exp

[
a(λ)− ‖λ− ξ?‖2 + ε(ξ?)

]
(4.30)

with ξ? = (Q4,E)
T

and ε such that B0 = 0, the PC estimator of 1Q4,E writes

ΥM,L
PC (1Q4,E) =

1
M

M∑
m=1

∑L
l=0 exp [a(λlm)−Wlm − Ba

lm]1Q4,E(Q4lm, Elm)
∑L
l=0 exp [a(λlm)−Wlm]

1
M

M∑
m=1

∑L
l=0 exp [a(λlm)−Wlm − Ba

lm]
∑L
l=0 exp [a(λlm)−Wlm]

. (4.31)

A slightly different estimator is used in Ref. [66] where sampling is performed with respect to the state
probability pf (λ, x) instead of pa(λ, x), in which the auxiliary potential a(λ) is replaced by a biasing po-
tential whose form f(ξ) is invariant under the transformation (4.30). The invariance stems from B f (ξ?) =
ln
∑
λ∈Λ exp

[
f(ξ?)− ‖λ− ξ?‖2 + ε(ξ?)

]
= f(ξ?). This replacement yields the following variant pathwise condi-
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Figure 4.5: Free energy F (Q4, E) as a function of Q4 and E. Left panel is the actual measurement at T = 0.19,
while the right panel represents the free energy reconstruction for temperature T = 0.05 as obtained through Legendre
transforms of the log-probabilities (or Laplace transforms of the probabilities).

tioning (VPC) estimator [66]

ΥM,L
VPC (1Q4,E) =

1
M

M∑
m=1

∑L
l=0 exp [−Wlm]1Q4,E(Q4lm, Elm)

∑L
l=0 exp [flm −Wlm]

1
M

M∑
m=1

∑L
l=0 exp [−Wlm]

∑L
l=0 exp [flm −Wlm]

. (4.32)

A series of 5 path-sampling simulations of LJ38 have been carried out at the temperature T = 0.19, using the
iterative ABP procedure introduced by Coluzza and Frenkel [71]: the free energy estimate − ln P̂Q4,E obtained
using estimator (4.32) are used as a next biasing potential. Path sampling simulations generate M = 105

trajectories of L = 2.5 · 105 steps at each iteration. We refer the reader to Ref. [66] for details concerning other

simulation parameters. The estimated histograms P̂Q4,E of the last iteration are displayed in Fig. 4.5.

The estimated free energies along Q4 are reported in Fig. 4.6 for comparison with those obtained with other
standard methods [63, 66]. We observe that the free energy profile Q4 at the lowest temperature is lowest with
PC except in the range ∈ 0.03− 0.05 where the PR approach is better. The improved accuracy is attributed to
the pathwise conditioning procedure. The loss of accuracy is attributed to the form of the biasing potential and
to the different λ-scheduling that is less appropriate. Furthermore, adapting an auxiliary biasing force a′(λ)
directly based on the PC estimator (4.31) could prove to be more efficient. This new approach should be tested.

4.4.4 Free energy barrier for vacancy migration in α-Fe

When a one-dimensional free energy barrier between equi-probable structures needs to be calculated, the
path sampling scheme can be simplified. In this situation, the auxiliary biasing potential can be removed and
the scheduling of the external parameter can be determined in such a way to ensure transitions between the
coexisting structures. This point is illustrated with simulations of the migration of a single vacancy on a lattice
in α-Fe, a crystalline phase of iron with body-centered cubic (BCC) structure. The migration corresponds to
the jump of an atom in the [111] direction into a nearest neighbor vacant site. The length of the jump is
a0

√
3/2, where a0 is the edge of the BCC cube. The cell contains 1023 atoms. Atomic interactions of this

atomic system are described by an embedded atom model potential [72]. We use harmonic coupling to the
reaction coordinate that is the jumping atom coordinate along [111] direction. The velocity φ associated with
the external forcing acting on ζ is small enough to ensure that the two equiprobable structures are sampled.
We thus generated M = 102 paths of length L = 105 with λ0 = −a/10 and λL = 11a/10 (where a = 2.4728Å is
the nearest neighbour distance). With this parameter set, approximately 40% of indexing moves cross the free
energy barrier. We calculated the histogram along ξ using the following simplified pathwise conditioned (SPC)
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Figure 4.7: Free energy Λ(ξ;T ) as
a function of ξ and T .  0.1
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Figure 4.8: Migration free energy as a
function of temperature. IR1 and IR2 re-
fer to two values of κ (see text). The dotted
line are the results of classical harmonic ap-
proximation.

estimator

ΥM,L
SPC (1ξ?) =

1

M

M∑

m=1

∑L
l=0 exp [−Wlm]1ξ?(ξlm)
∑L
l=0 exp [−Wlm]

.

The SPC estimator is obtained from the PC estimator (4.31) by setting the biasing potential to 0. As a result, the
denominator of (4.31) becomes equal to one. The method was found to yield reproducible estimates of the free

energy Λ(ξ;T ) = − ln ΥM,L
SPC (1ξ?) down to the temperature T of 20K. Two series of simulations were carried out.

From 20K to 250K, we used κ = 105J m−2 (IR1) and from 200K to 1000K we used κ = 0.5× 105J m−2 (IR2).
Results are represented by the free energy landscape of Fig. 4.7. We observe that the intermediate free-energy
minimum is more pronounced at the lower temperatures and completely disappears at temperatures higher than
700K. The migration free energies are deduced from the relative barrier heights along ξ-axis of Fig. 4.7. They are
plotted as a function of temperature in Fig. 4.8 together with the prediction of classical harmonic approximation
(CHA) considering one of the two symmetric energy minima and saddle configurations. As expected, Monte
Carlo simulations and CHA calculations agree at low temperatures (T < 200K) where anharmonic effects are
negligible, confirming the exactness of our simulation method. At temperatures higher than 200K, we observe
a substantial deviation between MC simulations and CHA, attesting to strong an anharmonicity. Note that the
extent of anharmonicity is in quantitative agreement with the one previously reported in the literature [73] for
the vacancy migration free energy.
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4.5 Calculating rates of thermally activated events

Transition state theory (TST) relates the free energy barrier ∆FA→B from basin A to basin B to the
transitioning frequency or rate [74]:

kA→B
TST =

N ckBT

h
exp

(
−∆FA→B

kBT

)
(4.33)

where h is Planck’s constant and N c, the coordination number of BCC structure, accounts for the 8 possible
vacancy jumps. Even when the barrier is accurately calculated by Monte Carlo simulations, the transition rate
given by TST and the reaction coordinate may significantly differs from the true transition rate that would be
estimated from the number of transitions in very long MD simulations. The discrepancy essentially arises from
the inability of the reaction coordinate to accurately capture the transition, in particular in the vicinity of the
top of the free energy barrier. To explain more specifically, let ξ† denote the value of the reaction coordinate at
the top of the barrier. The surface Σ† = {q : ξ(q) = ξ†} may not coincide with the isocommitor surface (the true
dividing surface) and may for instance contain much more configurations from one basin of attraction than from
the other. In this situation, the free energy at ξ† is lower than the free energy of the isocommitor surface that
contains configurations with higher energies in average. In practice, a transmission coefficient, first introduced
by Eyring [74], should be included in (4.33). This coefficient yields the probability to ultimately reach basin
B starting from ξ? with momenta distributed from the Boltzmann-Maxwell distribution. It is estimated from
the fraction of trajectories initiated from the top of the barrier and committing to basin B first [14, 41]. More
advanced techniques for calculating the transmission coefficient have been proposed by Vanden-Eijnden and Tal
[75] and Erp and Bolhuis [76].

Transition path sampling (TPS) is a more direct approach [6, 7] aiming at estimating the probability C(t)
that a trajectory initiated in basin A at time 0 reaches basin B at time t. The method has been schematically
described in Sec. 2.3. We recall that the probability to compute a state-to-state time correlation function is

C(t) =
E? [χA(x0)χB(xt)]

E? [χA(x0)]
. (4.34)

where χA and χB denotes the characteristic functions of basins A and B, and symbol E? stands for time
averaging over the appropriate dynamics. The asymptotic limit of the derivative of the correlation function
yields the phenomenological rate constant

kA→B = lim
t→∞

dC(t)
dt

.

The difficulty with estimating state-to-state time correlation functions is that the involved transitions are rare. A
biasing path functional is thus introduced so as to artificially enhance the occurrence of transitions by gradually
confining or tilting the trajectory endpoints to the product state B [7, 47].

Estimating the state-to-state correlation functions in TPS method requires to extract the free energy differ-
ence associated with the transformation of a trajectory ensemble into a perturbed ensemble wherein the rare
reactive trajectories have become frequent. This task is traditionally achieved using self-consistent estimators
(MBAR or WHAM) using a series of independent Markov chains, in which the strength of the biasing path
functional favoring the occurrence of reactive trajectories is gradually increased. TPS is therefore an ideal case
study to apply the twofold conditioning approach for estimating observable expectations associated with rare
events. This first requires to define the appropriate expanded transition path ensemble.

4.6 Expanded transition path ensemble

Following Ref. [8], we show how to construct an overlapping marginal distribution containing both reactive and
typical paths and further derive an efficient estimator for the time-correlation function C(t) with conditioning
both on the trial paths and the external parameter.
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4.6.1 Path probability

The external parameter λ of the extended Hamiltonian is hold at constant value λref defining the temperature
of the system. We define short and long paths and denote their respective path spaces by Y and Z. A path
y ∈ Y consists of a sequence of I+1 states y = {x0, · · · , x`, · · · , xI}, while a path z ∈ Z consists of L+1 states.
The dynamical correlations will be measured based on samples of short paths that are extracted from the long
paths. The external parameter is denoted by θ to avoid confusion with λ. Herein, θ acts on the entire path
y ∈ Y via linear coupling to a path functional L(y). The set of external parameter values is denoted by Θ. The
path probability in the expanded transition path ensemble is defined by

pa(θ, y) = exp
[
a(θ)− S(θ, y)−ΨΘ

a
]

(4.35)

where ΨΘ
a is the normalizing constant and the path action, the analog of Hamiltonian for paths, is defined by

S(θ, y) = H (λref , x0)− ln
[
χA(x0)P0→L

gen (y)
]

+ θL(y).

By convention, the expanded path probability (4.35) is zero if either the characteristic function χA(x0) or the
path generating probability P0→L

gen (χ) is zero. In analogy with the marginal probability introduced in Chapters 2
and 3 for states or configurations, we define the marginal path probability as

pΘ
a (y) =

∑

θ∈Θ

pa(θ, y). (4.36)

The conditional probability given θ writes

πθa(y) =
exp [a(θ)− θL(y)]∑
ϑ∈Θ exp [a(ϑ)− ϑL(y)]

= exp [a(θ)− θL(θ)− Ba(θ)]

where we have defined
Ba(θ) = ln

∑

ϑ∈Θ

exp [a(ϑ)− ϑL(ϑ)] .

From any long path z = {x0, ·, ·, xL}, L − I sub-paths of length I (of duration τI) can be defined. We denote
these sub-paths by z̃l = {xl, · · · , xI+l} with l ∈ J0, L− IK. We define the conditional probability of (z, `) given
` ∈ J0, L− IK and y = z̃l by

P (z, `|y) = δy(z̃`)P
0←`
gen (z)P`+I→Lgen (z)

and the long-path probability is given by the law of total probability

PΘ
a (z, `) =

∫

Y
P (z, `|y) pΘ

a (y)Dy = P (z, `|z̃`) pΘ
a (z̃`).

We denote the (total) expectation of path-observable y 7→ f(y) in the expanded transition path ensemble Y
with respect to marginal probability pΘ

a (y) as

E
Y
a [f ] =

∫

Y
f(y)pΘ

a (y)Dy.

The same expectation can be expressed in the long-path ensemble as follows:

E
Z
a [f ] =

L∑

l=0

∫

Z
f(z̃l)P

Θ
a (z, l)Dz.

To show that these two path expectations coincide, we plug the law of total probability inside the path-integral
above and simplify:

E
Z
a [f ] =

L∑

l=0

∫

YZ
f(y)P (z, `|y) pΘ

a (y)DyDz =

∫

Y
fθ(y)pΘ

a (y)Dy = E
Y
a [f ] .
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Setting f(y) to πθa(y)O(θ, y) and πθa(y) enables one to cast the conditional expectation of O(θ, y) given θ as the
following expectation ratio

E
Y [O|θ] =

EZa
[
πθa(·)O(θ, ·)

]

EZa [πθa]
=
EZa

[
EZa

[
πθa(z̃l)O(θ, z̃l)

∣∣z
]]

EZa
[
EZa

[
πθa(z̃l)

∣∣z
]] .

In the rhs ratio, conditioning is performed on the index with respect to the path coordinates z. As done
previously in Section 4.4, the conditioned expectation of the index determines the conditional probability of the
index given path z:

Pa(`|z) = E
Z
a [1`|z] =

Pa(z, `)
∑L−I
l=0 Pa(z, l)

=
PΘ

a (z̃`)∑L−I
l=0 PΘ

a (z̃l)
.

The r.h.s ratio simplifies because the dynamics is assumed to be exactly detailed balance. Plugging expres-
sion (4.36) for the marginal probabilities yields

Pa(`|z) =
χA(x`) exp [Ba(z̃`)]∑L−I
l=0 χA(xl) exp [Ba(z̃l)]

.

The conditional expectation given θ can therefore be cast in the conditioned form

E
Y [O|θ] =

EZa

[∑L−I
l=0 exp [a(θ)− θL(z̃l)]χA(xl)O(θ, z̃l)∑L−I

l=0 exp [Ba(z̃l)]χA(xl)

]

EZa

[∑L−I
l=0 exp [a(θ)− θL(z̃l)]χA(xl)∑L−I

l=0 exp [Ba(z̃l)]χA(xl)

] (4.37)

As an example of application, let us estimate the state-to-state correlation function C(`τ) defined in (4.34). We
define the path observable as O(0, y) = χB(x`) with ` ∈ J0 , IK and plug it into (4.37) with θ = 0 to obtain

C(`τ) = E
Y [1B(x`)] =

EZa

[ ∑L−I
l=0 χA(xl)χB(xl+`)∑L−I

l=0 exp [Ba(z̃l)]χA(xl)

]

EZa

[ ∑L−I
l=0 χA(xl)∑L−I

l=0 exp [Ba(z̃l)]χA(xl)

] .

The estimator is therefore

ΥM,L
TPC

(
χB(x`)

)
=

1
M

M∑
m=1

∑L−I
l=0 χA(xlm)χB(x(l+`)m)
∑L−I
l=0 exp [Ba(z̃l)]χA(xl)

1
M

M∑
m=1

∑L−I
l=0 χA(xlm)

∑L−I
l=0 exp [Ba(z̃lm)]χA(xlm)

. (4.38)

4.6.2 Biasing path functional

Motivated by the ability of eigenvalue-following [77, 78, 79, 80, 81] and Lyapunov-weighting [82, 83, 84, 85, 86,
87, 88, 89] methods to locate saddle points in complex systems based on the topology of their energy surfaces, it
was proposed [47] to perform TPS simulations using the lowest eigenvalues of the Jacobian along the trajectory
as a biasing functional. We show next that this way of proceeding does not confine the trajectory endpoints to
a reactive state, unlike original TPS.

4.6.3 Case study: vacancy migration in α-Fe

We now demonstrate the efficiency of the approach in simulations of the migration of a single vacancy on a
lattice in α-Fe at the temperature of 500 K. At this temperature, the number of hopping events during a typical
simulation is small. Reference values for the free energy barrier associated with the vacancy migration has been
calculated [66] and are reported in Section 4.4.4 where this testbed model is described. Reference values for
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migration rates are available as well and are given in Ref. [47]. They were obtained using a combination of
transition path sampling and the multistate Bennett acceptance ratio method for postprocessing.

Computational set-up Basin A and B are defined with respect to the underlying perfect lattice whose sites
are the atomic positions of the structure at 0 K without the vacancy. The lattice parameter is a0 = 2.8553Å.
The indicator function χA is equal to 1 if all atoms are located within a distance of 0.45Å from their lattice
site, and to 0 otherwise. The indicator function χB is 1 if one atom is located beyond a distance of a0

√
3/4

from its lattice site, otherwise it is 0. Path sampling consists of shooting and indexing moves as detailed
in the Sections 4.4 and 4.6. Trajectories contain L = 150 steps with time-step τ = 2fs. A position-Verlet
scheme [47] is used to construct x`+1 from x`, meaning that the gradient of the potential energy is evaluated
at q`+1/2 = q` + p`τ/2. The Jacobian matrix associated with the MD transformation exhibits eigenvalues that
are either complex numbers located on the unit circle or real positive numbers. Let us denote by µ`+1/2 the
logarithm of the smallest eigenvalue modulus. Its value is characterized by the eigenvalue spectrum of the
Hessian matrix associated with the potential energy at q`+1/2. Details on the connection between the Hessian
and Jacobian matrices are given in Ref. [47]. The value of µ`+1/2 is strictly negative when the lowest egeinvalue of
the Hessian matrix is strictly negative, in which case the energy surface is negatively curved along the direction
generated by the corresponding eigenvector. The biasing path functional is set to

L(z) = max

[
Lmin,

L−1∑

`=0

µ`+1/2

]
≤ 0

The cut-off parameter Lmin is set to the value −9. It is used to prevent from exploring regions containing
second order saddles and thus to save computational time, trajectories leading to such regions corresponding to
non-reactive rare events. The lowest eigenvalues of the Hessian is computed using the Lanczos algorithm [90], as
in the activation-relaxation technique [77, 78]. Details about the numerical implementation are given in Ref. [81,
91].

Construction of the auxiliary potential Simulations are performed on a parallel computer architecture
where many replicas of the system can be propagated simultaneously and independently while periodically
adapting the common biasing force, as was done in ABF simulations of Sec. 3.4. We set θmin = 0 and θmax = 2.1.
In the following, a simulation run utilizes K = 480 replicas and consists of M = 104 Monte Carlo cycles. Each
replica is allocated to a distinct processor. A cycle consists of performing a shooting move followed by an
indexing move for each replica. The two procedures are detailed in Section 4.4.

Two consecutive series of 5 independent simulation runs are performed. The first five runs aim at constructing
the auxiliary biasing potential using an ABF scheme (see Eq. 18 of Ref. [8] and refer to Chapter 3 for a
general exposition of ABF method). Then, freezing the previoulsy obtained biasing potentials, 5 subsequent
(production) runs are performed to estimate the expectations associated with the time-correlation function
using the estimator (4.38). Figure 4.9 displays the estimates of PA(θ), A(θ) and E(L|θ) as a function of θ and
averaged over the 5 runs. The standard errors are evaluated from the 5 estimates and are indicated by error bars
for the three quantities in Fig. 4.9. We observe that a flat histogram is obtained for the marginal probability
of θ. Reproducible data are obtained for the mean force and its potential. Furthermore, the difference between
the adaptive and production runs is insignificant, final averages could have been taken after the adaptation run.

The standard errors are small and not clearly visible on the graphs in Fig. 4.9, except on the curve displaying
the marginal probability of θ. We observe that the standard errors associated with PA(θ) increase with θ and
become substantial at large θ values. To explain this trend, let us examine ρ̄(L), the probability distributions of
the sampled L values. We observe in Fig. 4.10 that this distribution is bimodal. The large peak at 0 corresponds
to typical trajectories that are non reactive. The smaller peak in the range from −7 to −4 contains both reactive
trajectories and active trajectories returning to a. The presence of two peaks means that metastability is not
completely suppressed through path-sampling, even though the fraction of reactive trajectories is enhanced by
several orders of magnitude compared with the one associated with the unbiased distribution ρ(L|0). Concerning
the biased distribution ρ(L|θmax), the peak containing the reactive trajectories is higher and more pronounced
than that of the sampled distribution. This feature explaining the substantial statistical fluctuations observed
in the measurement of PΘ

A (θ) when θ is large. Note that the θc value for which the two peaks of the bimodal
distribution ρ(L|θc) have equal weights occurs in the range 2.2 − 2.4 and decreases with the path length [47].
Here, θc would correspond to the inflexion of the E(L|θ) curve, outside the plot in Fig. 4.9.c. As reported in
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Ref. [47], the restricted sampling of the conditional distribution π(z|θ) becomes very difficult when θ > θc, the
measured autocorrelation function of L increases drastically. Important autocorrelations are also observed in the
sampling of P̄A(z) distribution when θmax is set to a value larger than θc. However, the extent of metastability is
smaller with a scheme sampling the marginal probability rather than the conditional probabilities . We speculate
that this trend results from the smaller barrier height for trajectory disactivation for ρ̄(L) distribution than for
ρ(L|θ) distribution, as indicated in Fig. 4.10 by the red and blue downward arrows, respectively.

The sampled path distributions with θmax < θc contain high enough a fraction of reactive trajectories so as
to accurately estimate the A-to-B correlation function. Figure 4.11 represents the time correlation function and
its time derivative as obtained after the 5 adaptation runs and the 5 production runs. The phenomenological
transition rate corresponds to the plateau value, which is in perfect agreement with the value calculated in
Ref. [47] using the self-consistent reweighting estimator MBAR and a set of 40 independent simulations with
increasing θ-values. Note that a significant smoothing effect of conditioning on the shifted trial paths is reported
in this study for the evaluation of the derivative of the time-correlation function C(t).

Besides, the proposed biasing path functional based on the curvature of the potential energy surface makes
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it possible to explore the multiple reaction channels corresponding to the 8 possible atomic jumps into the
vacancy. This is a clear advantage compared with other rare event approaches such as transition interface
sampling [76], and forward flux sampling [92] that may confine trajectories into separate transition channels
in some circumstances. However, the twofold conditioning approach can be used in combination with path
functional that confines trajectories interfaces and may prove useful in studying dislocation motion in crystals.
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4.7 Summary

In this Chapter, we presented path sampling schemes to achieve improved accuracy in difficult free-energy
and rare-event problems. In the path ensemble framework, conditioning is performed both on the trial paths
and on the external parameters for estimating expectations associated with rare-event probabilities and multi-
dimensional free energy surfaces. The twofold conditioning approach can straightforwardly be implemented in
combination with an auxiliary biasing potential on the external parameters and with biasing path functionals.
For the latter case in particular, it makes it possible to estimate the state-to-state time correlation function
from a single transition path sampling simulation.

Concerning the calculation of free energy surfaces, the difficulty involves the presence of residual metastability
or hidden barriers along the order-parameter coordinates which are often unable to capture the transition state
unlike (good) reaction coordinates. The crossing of these hidden barriers is facilitated by the steering schedules
on the extended Hamiltonian. As a result, better sampling ergodicity is achieved. Furthermore, pathwise
conditioning offers a unifying framework for performing expanded ensemble simulations while taking advantage
of the nonequilibrium work identity. In this context, additional studies should investigate to which extent
pathwise conditioning accelerate the convergence of the adaptive biasing forces. However, the overall simplicity
and flexibility of the twofold conditioning approach place it in good position to further extend the range of
applicability of both transition path sampling and expanded ensemble simulations.

In next Chapter, we consider the estimation of free energy differences based on path reweighting in a work-
biased path ensemble. Simulations in this ensemble can be performed without the help of any auxiliary biasing
forces or potentials, which avoids the task of adapting them. We show how conditioning on the trial paths
can be further exploited to improve the estimator by optimally including information relative to the rejected
proposals.
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5 | Waste recycling and conditioning

In this Chapter, we discuss in greater details the waste-recycling Monte Carlo (WRMC) method introduced by
Frenkel [2, 38] and further developed by Delmas and Jourdain [9]. We illustrate the method on calculations of
Chromium solubility limits in α-iron.

5.1 Conditioning on Monte Carlo proposals

The WRMC method is a Markov chain Monte Carlo technique that (i) implements a Metropolis-type procedure
to accept or reject trial configurations, the proposals, and (ii) performs a conditioning on the outcome of the
acceptance/rejection procedure within the estimator. The goal is to reduce the estimator variance by including
information about the proposals. The weight of any proposal is equal to its acceptance probability and the
weight of the old configuration is the probability to reject the proposal, or all the proposals when multiple
proposals are generated in the Monte Carlo trial. The two types of conditioning encountered so far are related to
WRMC method. Conditioning on the external parameter λ coincides with waste-recycling when the conditional
probabilities involved in the conditioning procedure are also used in the sampling scheme. This is the case when
a Gibbs sampling scheme [37] is used in an expanded ensemble to sample λ and perform a conditioning on λ at
the same time, as discussed in Section 1.11 of Chapter 1. The path sampling scheme involving indexing moves
and pathwise conditioning, which has been discussed in Subsection 4.4.3 of Chapter 4, can also be formulated
as an instance of WRMC algorithm. In both cases, multiple proposals are generated and only one is selected
using Barker or Boltzmann acceptance rule.

Trial states in multi-proposal schemes are not necessarily generated along a path initiated from the current
configuration. In its most general formulation, a WRMC algorithm possibly generates the multiple proposals
independently from each others, as done in Ref. [93, 2, 94, 48, 95]. The set of proposals form ramified structures
called Markov webs [94]. The important prescription is that the next state of the Markov chain of configurations
is selected with a probability that obeys detailed balance. Such multi-proposal Monte Carlo algorithms will not
be discussed here and we refer the reader to the cited references.

In the WRMC set-up, the statistical variance of the plain waste-recycling estimator reduction can be further
reduced [9]. To achieve this additional variance reduction, Delmas and Jourdain [9] first introduce a family
of estimators that are a linear combination of the plain WRMC and MC estimators and then showed how to
practically determine the optimal combination in term of variance reduction. This way of proceeding amounts
to formulating and solving a control variate problem.

Outline of the Chapter In Sec. 5.2, we give a heuristic derivation of the Delmas-Jourdain optimal waste-
recycling estimator. A rigorous justification based on a martingale approach can be found in Ref. [9]. For
the ease of exposition, we formulate the problem in the single-proposal framework and keep the notations of
previous Chapter. In Sec. 5.3, we describe the transmutation ensemble in which the estimator will be tested
in combination with work-biased particle transmutations. We then apply the approach to the calculation of
solubility limits in iron alloys in Sec. 5.4.

5.2 Control variate approach to waste-recycling Monte Carlo

The WRMC approach will be applied to free-energy calculations based on the fluctuation theorem, i.e. to free
energy perturbation in path space. We thus consider a path ensemble of space Z in which the expectation of
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observable f(z) is

Eθ [f ] =

∫

Z
Pθ(z)f(z)Dz

where θ is an external parameter controlling the path probability Pθ(z).

5.2.1 Barker selection rule

We consider herein that the sampling scheme is based on Barker selection rule. The probability to accept the
proposal z̃ from z is

P(1|z, z̃) =
P(z, z̃|1)Pθ(z̃)

P(z, z̃|0)Pθ(z) + P(z, z̃|1)Pθ(z̃)

where P(z, z̃|0) is the probability to generate the proposal z̃ from z and, similarly, P(z, z̃|1) is the probability
to generate proposal z from z̃ in the reverse Monte Carlo move. The proposal probabilities are described in
Section 5.4. The probability to reject the proposal is equal to the probability to select the old configuration z

P(0|z, z̃) = 1− P(0|z, z̃) =
P(z, z̃|0)Pθ(z)

P(z, z̃|0)Pθ(z) + P(z, z̃|1)Pθ(z̃)

It can easily be verified that any algorithm based on Barker generates a Markov chain {z0, z1, · · · , zm}
that is ergodic with respect to the probability Pθ(z). We denote by E [f(z1)|z0, z̃0] the conditional expectation
of f(z1) where z1 is generated by the sampling process given current path z0 and trial path z̃0. We have
E [f(z1)] = Eθ [f ]. With Barker selection rule, we have

E [f(z1)|z0, z̃0] = f(z0)P(0|z0, z̃0) + f(z̃0)P(1|z0, z̃0).

5.2.2 A family of estimator

Let g denote the following function taking input values in Z3

g(z, z̃, zs) = f(z)P(0|z, z̃) + f(z̃)P(1|z, z̃)− f(zs).

Since the function is based on Barker selection probabilities, we have for any successive points zm and zm+1 in
the Markov chain

g(zm, z̃m, zm+1) = E [f(zm+1)|zm, z̃m]− f(zm+1),

where z̃m is the proposal from zm. The conditional expectation of g(z0, z̃0, z1) given (z0, z̃0) is obviously zero:

E [g(zm, z̃m, zm+1)|zm, z̃m] = 0. (5.1)

However, the total expectation of g is always zero:

E [g(zm, z̃m, zm+1)] = E [E [f(zm+1|zm, z̃m]]−E [f(zm+1)] = 0.

Hence, a family of valid and unbiased estimators of Eθ [f ] is given by

IM (f + bg) =
1

M

M−1∑

m=0

f(zm+1) + bg(zm, z̃m, zm+1) , JMb (f), (5.2)

where b ∈ R. At first sight, the parameterized estimator seems useless as it yields estimates of f that contains
additional errors. The idea is to tune the value of the control variate b so as to improve the accuracy in the
estimation of f by taking advantage of the measurable correlations between f and g. The sign of the correlations
will determine the sign of the optimal control variate b?. If f and g are uncorrelated, we don’t expect any possible
variance reduction and thus b? should be equal to 0. These qualitative statements are justified more formally
in next Subsection below. In the WRMC context, the correlation between f and g arises from the statistical
covariance of the generated sample of f values, as shown by Delmas and Jourdain [9].
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Figure 5.1: The two clouds of + symbols represent two samples of estimate pairs
{
IM (f), IM (g)

}
and{

IM (f + b?g), IM (g)
}

. The optimal control variate may be deduced directly from the variance and covariance properties

of a large sample of IM (f) and IM (g) estimates.

5.2.3 Control variate problem

The asymptotic variance of estimator IM (f + bg) and the asymptotic covariance of estimators IM (f) and
IM (g) are denoted by σ2(f+bg) and κ(f, g), respectively. The value b? of b minimizing the asymptotic variance
σ2(f + bg) is given by

b? = −κ(f, g)

σ2(g)
(5.3)

where σ2(g) denotes the asymptotic variance of g. The optimal value b? corresponds to the minimum of the
following quadratic function

σ2(f + bg) = σ2(f) + 2bκ(f, g) + b2σ2(g),

a relation obtained by exploiting the scalar product properties of the covariance and the definition of the
variance: σ2(f + bg) = κ(f + bg, f + bg) and σ2(g) = κ(g, g). The improved estimation through the use of
a control variate is illustrated in figure 5.1. Besides, the asymptotic variance of the optimal estimator can be
expressed as a function of the asymptotic correlation function ρ(f, g) = κ(f, g)/ [σ(f)σ(g)]:

σ2(f + b?g) = σ2(f)
[
1− ρ2(f, g)

]
.

We next cast the two involved covariances into computationally tractable forms and show that the optimal
control variate can be accurately estimated in the course of a single simulation. Let h denote a generic function
taking values in Z3 and define IM (h) = 1

M

∑M
m=0 h(zm, z̃m, zm+1). The function h will later be set to g or
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simply f . The asymptotic covariance of IM (h) and IM (g) is defined by

κ(h, g) = lim
M→+∞

1

M

M−1∑

n=0

M−1∑

m=0

Cov [h(zn, z̃n, zn+1), g(zm, z̃m, zm+1)]

=

∞∑

m=−∞
E [h(z0, z̃0, z1)g(zm, z̃m, zm+1)]

=

0∑

m=−∞
E [h(z0, z̃0, z1)g(zm, z̃m, zm+1)] +

∞∑

m=1

E
[
h(z0, z̃0, z1)E

[
g(zm, z̃m, zm+1)

∣∣zm, z̃m
]]

=

−1∑

m=−∞
E [h(z0, z̃0, z1)g(zm, z̃m, zm+1)] +E [h(z0, z̃0, z1)g(z0, z̃0, z1)]

where the summation from m = 1 to∞ cancels owing to relation (5.1). To simplify the remaining sum over the
negative values of m, let consider that the Markov process is generated backward and let modify the labels of
the Markov chain accordingly. We substitute z̃†m+1 for z̃m or zm depending on whether the proposal is accepted

or rejected, in which cases zm+1 is equal to z̃m or zm, respectively. The point z̃†m+1 is precisely the proposal for

the reverse sampling scheme. Noticing that g(zm, z̃m, zm+1) is equal to f(zm)− f(zm+1) + g(zm+1, z̃
†
m+1, zm),

the asymptotic covariance therefore simplifies to

κ(h, g) =

−1∑

m=−∞
E

[
h(z0, z̃0, z1)

{
f(zm)− f(zm+1) + g(zm+1, z̃

†
m+1, zm)

}]
+E [h(z0, z̃0, z1)g(z0, z̃0, z1)]

= E [h(z0, z̃0, z1) {Eθ(f)− f(z0)}] +

−1∑

m=−∞
E

[
E

[
h(z0, z̃0, z1)g(zm+1, z̃

†
m+1, zm)

∣∣zm+1, z̃
†
m+1

]]

+E [h(z0, z̃0, z1)g(z0, z̃0, z1)] . (5.4)

where we simplified the telescopic series involving the difference f(zm)− f(zm+1) in the last term. The expec-
tation Eθ [f ] arises from the fact that zM and z0 become independently distributed in the limit M → −∞ and

thus E [f(zM )]→ Eθ [f ]. Besides, the conditional expectation of g(zm+1, z̃
†
m+1, zm) given (zm+1, z̃

†
m+1) cancels

because the sampling algorithm is reversible (i.e. obeys detailed balance). This entails the equality

E

[
h(z0, z̃0, z1)g(zm+1, z̃

†
m+1, zm)

∣∣zm+1, z̃
†
m+1

]
= 0, (5.5)

for m ≤ −1. As a result, equality (5.5) leads to the overall cancellation of the series involving these expectations
in (5.4). The covariance therefore writes

κ(h, g) = E [h(z0, z̃0, z1) {Eθ(f)− f(z0) + g(z0, z̃0, z1)}] .

The interested reader is referred to the study of Delmas and Jourdain [9] for a rigorous mathematical analysis
of WRMC based on martingale theory and filtration. The present derivation aims at facilitating an intuitive
understanding of the origin for the remarkably simple form of the optimal control variate. We next exhibit this
remarkable form. Setting h(z0, z̃0, z1) to f(z0) yields

κ(f, g) = E [f(z0) (Eθ(f)− f(z0) + g(z0, z̃0, z1))] = E [f(z0) {Eθ [f ]− f(z0)}] = −Vθ(f). (5.6)

Setting h(z0, z̃0, z1) to g(z0, z̃0, z1) yields

κ(g, g) = E
[
g(z0, z̃0, z1)2

]
,

where we noticed that

E [g(z0, z̃0, z1) (Eθ[f ]− f(z0))] = E
[
E
[
g(z0, z̃0, z1)

∣∣z0, z̃0

]
(Eθ[f ]− f(z0))

]
= 0,

wherein plugging the law of total expectation with respect to (z0, z̃0) and resorting to equality (5.1) leads to
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the overall cancellation.

5.2.4 Various equivalent expressions of the optimal control variate

We next derive in parallel several pairs of expressions for the asymptotic variance of g which are instructive
from the point of view of conditioning:

κ(g, g) =





E

[(
f(z1)−E [f(z1)|z0, z̃0]

)2]
,

E

[(
f(z1)−E

[
f(z0)|z1, z̃

†
1

] )2
]
,

where in the second case above, we resorted to the symmetry of Barker rule and to the Markov process re-
versibility. Rearranging both cases considered above leads to

κ(g, g) =




E

[
E

[(
f(z1)− f(z0)−E [f(z1)− f(z0)|z0, z̃0]

)2 ∣∣z0, z̃0

]]
,

E

[
E [f(z1)− f(z0)|z0, z̃0]

2
]
,

(5.7)

where we reversed back the Markov process in the second case. Subtracting the two null terms

0 =

{
E

[
E
[
f(z1)− f(z0)−E [f(z1)− f(z0)|z0, z̃0]

∣∣z0, z̃0

]2]
,

E
[
E [f(z1)− f(z0)] |z0, z̃0

]2
,

to the two cases of Eq. (5.7) helps identifying the conditional variance of f(z1) − f(z0) given (z0, z̃0) and the
total variance of the conditional expectation of f(z1)− f(z0) given (z0, z̃0) :

κ(g, g) =

{
E [V [f(z1)− f(z0)|z0, z̃0]] ,

V [E [f(z1)− f(z0)|z0, z̃0]] .
(5.8)

The expressions above will enable us to compare the asymptotic variances of f and the asymptotic covariances
of f and g, by yielding a lower bound to the optimal control variate (5.3). Owing to translational invariance of
the conditional variances of f(z1)− f(z0) given (z0, z̃0), the first expression for the asymptotic variance of g in
system (5.8) can be cast into the following form:

κ(g, g) = E [V [f(z1)|z0, z̃0]] = V [f(z1)]−V [E [f(z1)|z0, z̃0]] . (5.9)

where the second equality stems from the law of total variance for f(z1). One deduces from (5.6) and (5.9) that
the optimal control variate (5.3) is strictly larger than one

b? =
V [f(z1)]

V [f(z1)]−V [E [f(z1)|z0, z̃0]]
> 1, (5.10)

provided that V [f(z1)] = Vθ [f ] > 0. From a dynamical view point, the optimal control variate depends on the
correlation between consecutive sampled points. Indeed, taking the half-sum of the two terms of (5.8) leads to

κ(g, g) =
1

2
V [f(z1)− f(z0)] =

1

2
E

[
(f(z1)− f(z0))

2
]

= Eθ

[
f2
]
−E [f(z1)f(z0)] . (5.11)

Then, substituting expression (5.11) for the denominator of (5.10) yields the following identity:

b? =
Eθ

[
f2
]
−Eθ [f ]

2

1
2E

[
(f(z1)− f(z0))

2
] =

Eθ

[
f2
]
−Eθ [f ]

2

Eθ [f2]−E [f(z1)f(z0)]
. (5.12)

Interestingly, the expression of the optimal control variate is the same when multiple proposals are used with
WRMC, as shown by Delmas and Jourdain [9]. From expression (5.12), it is clear that the optimal control variate
depends on the statistical covariance of the sampled points in the generated Markov chain. If the sampled points
of the Markov chained were independently distributed, then one would get E [f(z1)f(z0)] = Eθ [f ]

2
, entailing
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that the optimal control variate would be one. This would entails that conditioning on the proposals provide
optimal variance reduction. However, the iid condition is rarely met in practical applications. Even though the
proposals be drawn from a constant distribution independently from the current point, the fact of occasionally
selecting the old point introduces statistical correlations in the generated Markov chain. From expression (5.12)
and inequality (5.10), one easily deduces that the correlation coefficient within pairs of successive values of f
along the Markov chain is strictly positive:

corr [f(z1), f(z0)] =
E [f(z1)f(z0)]−E [f(z1)]E [f(z0)]√

V [f(z1)]V [f(z0)]
= 1− b−1

? > 0.

This property stems from the use of a sampling algorithm based on Barker acceptance rule. If the Metropolis
rule is used instead, the inequality is not satisfied in general. The standard way [9, 10, 96] of estimating b? is
deduced from the form (5.12) and the ergodic theorem. It consists In evaluating the quantity

b̂MNC =
IM
(
f2
)
−
[
IM (f)

]2
1

2M

∑M−1
m=0 [f(zm+1)− f(zm)]

2
, (5.13)

where fm and fm+1 stands for f(zm) and f(zm+1) to simplify the notations. Subscript NC stands for no
conditioning. We now show that more accurate estimators of b? can be constructed through conditioning.

5.2.5 Estimating the control variate through conditioning

Among the various expressions derived previously for the asymptotic variance of g, we distinguish three levels
of conditioning which are evidenced by the following total expectations

κ(g, g) = 1
2V [f1 − f0] =





E

[
1
2 (f1 − f0)

2
]

=⇒ NC

E

[
E

[
1
2 (f1 − f0)

2 ∣∣w0

]]
=⇒ SC

E

[
E

[
E

[
1
2

(
f1 − f†0

)2 ∣∣w†1
] ∣∣w0

]]
=⇒ DC.

where w0 and w†1 stand for (z0, z̃0) and (z1, z̃
†
1) to further simplify the notations. SC and DC refer to single

conditioning and double conditioning, respectively.

The estimator of b? that consists of performing a single conditioning writes

b̂MSC =
JM1
(
f2
)
− JM1 (f)2

1
2M

∑M−1
m=0 P(1|zm, z̃m) [f(z̃m)− f(zm)]

2
. (5.14)

where the denominator is equal to the arithmetic mean of 1
2E

[
(f(zm+1)− f(zm))

2 ∣∣zm, z̃m
]
. Resorting the

reversibility property of the Markov, E
[
g†0|w†1

]
= E [g1|w0] and setting g to f or f2, the double conditioning

writes

E

[
E

[
1
2

(
f1 − f†0

)2 ∣∣w†1
] ∣∣∣∣w0

]
= E

[
1
2f

2
1 − f1E

[
f†0
∣∣w†1
]

+ 1
2E

[(
f†0

)2
∣∣∣∣w1

] ∣∣∣∣w0

]
= V

[
f1 − f0

∣∣w0

]
.

As a result, the doubly conditioned estimator of b? writes

b̂MDC =
JM1
(
f2
)
− JM1 (f)2

1
M

∑M−1
m=0 P(0|zm, z̃m)P(1|zm, z̃m) [f(z̃m)− f(zm)]

2
. (5.15)

The denominator in (5.15) corresponds to the conditional variance of f(zm+1) given (zm, z̃m), written as a
function of the two involved conditional probabilities

V [f(zm+1)− f(zm)|zm, z̃m] = P(0|zm, z̃m)P(1|zm, z̃m) [f(z̃m)− f(zm)]
2
.

The three estimates can easily be evaluated numerically during a simulation. The SC estimator has been
proposed and tested in Ref. [10]. It amounts to evaluating the optimal control variate based on waste-recycling.
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It was found to be more accurate in practice than NC estimator (5.13). This observation can be rationalized
mathematically by noticing the two following inequalities

V
[

1
2 (f1 − f0)2

]
> V

[
1
2E
[
(f1 − f0)2

∣∣w0

]]
> V

[
E

[
E

[
1
2 (f1 − f0)

2 ∣∣w†1
] ∣∣w0

]]
.

These inequalities are easily obtained by application of the law of total variance to observable 1
2 (f1 − f0)

2
. This

entails that the NC estimator of the optimal control variate in Eq. (5.13) is less accurate than the estimator
based on the singly conditioned expectation. Similarly, the latter estimator is also less accurate than the doubly
conditioned estimator, which can be shown resorting to the delta method. We show with a practical example
that this double inequality is observed in Sec. 5.4. The testbed application involves estimating the difference
of free energies associated with the transmutation of an A atom into a B atom in an AB binary alloy. This
free energy difference corresponds to the difference of chemical potentials of the two species. Simulations will
be carried out in a work-biased path ensemble [45, 10] that is introduced in Sec. 5.3 below.

5.3 Work-biased path ensemble

5.3.1 Work as a biasing path functional

This ensemble is a variant of the nonequilibrium path ensemble of Section 4.3 in which the work serves as a
biasing path functional. The bias aims at improving the convergence of the associated free energy perturbation
technique owing to enhanced overlaps between the sampled distribution and the target distributions (see Ref. [46]
and also subsection 2.4.2 for the connection with the rare event problem). As in the expanded transition path
ensemble of previous section, an external parameter θ couples linearly to the biasing path functional so as to
control its strength. It results that paths are most conveniently sampled using a MCMC algorithm in which
trial paths are generated either forward or backward. It sounds natural to include the rejected paths in the free
energy estimator.

5.3.2 Path probability and expectation

Herein, a path consists of a sequence of extended states: z = {(λ0, x0), · · · , (λ`, x`), · · · , (λL, xL)} wherein
the scheduling of the external parameter is imposed. The Hamiltonian is gradually switched from H (λ0, ·)
to H (λL, ·). Path will be generated by a Monte Carlo process or by a steered Langevin dynamics. The
biasing path functional is the work defined from the Hamiltonian variation and the heat via the first law of
thermodynamics (4.10)

W 0→L(z) = H (λL, xL)− H (λ0, x0)−Q0→`(z) (5.16)

Besides, the work relates to the path generating probabilities through the work fluctuation relation (4.17):

W 0→L(z) = H (λL, xL)− H (λ0, x0)− ln
P(z|λL, xL)

P(z|λ0, x0)

where we plugged the heat fluctuation theorem (4.15) to substitute the heat in (5.16) for the conditional
probability ratio. Expressing the two Hamiltonians as a function of the conditional log-probabilities of x0 given
λ0 and of xL given λL provides us with a useful expression for the work

W (z) ≡ W 0→L(z) = F(λL)− F(λ0)− ln
P(z|λL)

P(z|λ0)
,

recalling that F(λ) denotes the absolute free energy of the system (see relations (4.16)). The biased probability
of path z exhibits the following form

Pθ(z) = nθP
(
z|λL

)θ
P
(
z|λ0

)1−θ
= nθ exp

{
θ
[
F(λL)− F(λ0)−W (z)

]}
P
(
z|λ0

)
,
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where nθ is the normalizing constant. Noticing that n1 = n0 = 1, the nonequilibrium work relation (4.19) with
` set to L is recast into the following form [45]

exp
[
−F(λL) + F(λ0)

]
=
EZθ [exp [(θ − 1)W ]]

EZθ [exp [−θW ]]
.

The standard nonequilibrium work relation (4.19) is recovered when θ is set to 0, since EZθ=0 [exp [−W ]] is
equivalent to EZ

[
exp

[
−W 0→L] |λ0

]
. The work-biased path ensemble is sampled by performing the specific

shooting moves described in Refs. [46] and [10] which are variants of the shooting moves described in Chapter 4.
The judicious choice of θ ∈ [0 , 1] will be discussed page 86. The enhanced bridging properties of the

sampled distribution Pθ(z) for intermediate θ values usually enable better overall efficiency than when θ is set
equal to O or 1. Compared to expanded path ensemble methods, the absence of auxiliary biasing potential in
the present approach obviates the need of running an adaptive process.

We next apply the waste-recycling Monte Carlo with the optimal estimator to our system of interest, binary
alloys of varying composition.

5.4 Applications

5.4.1 Binary alloys

The performance of the optimal estimator is first assessed by comparing with that of traditional estimators
in a generic but realistic binary system with A and B atoms interacting on a rigid lattice in Sec. 5.4.2. The
possibilities of the methodology are then illustrated by performing off-lattice simulations of a model FeCr alloy
in Sec. 5.4.3.

The computational cell contains N atoms. In the reference state at t = 0, we have N = NA + NB or
N = NFe + NCr atoms where NX refers to the atom number of type X. In the target state at t = τ , the cells
still contains N atoms, but an A or Fe atom has been transmuted into a B or Cr atom, respectively. Paths
thus consist of artificially switching the potential energy of a selected atom. The switching will be performed
instantaneously in the AB alloy (Sec. 5.4.2), or gradually using constant-pressure Langevin dynamics [46] in the
FeCr alloy (Sec. 5.4.3).

The infinitely-fast transmutations of Sec. 5.4.2 are carried out without changing the atomic masses. Hence,
the ratio of the reverse conditional probability, P(z|χτ ) = (NB+1)−1, to the forward one, P(z|χ0) = (N−NB)−1,
relates to the exponential of the ideal chemical potential difference

P(z|λL, xL)

P(z|λ0, x0)
=

NB + 1

N −NB
= exp

[
β∆µid

]
, (5.17)

where A and B are assumed to have identical masses. The ideal chemical potential difference in Eq. (5.17)
acts as a heat transfered from a reservoir of A and B atoms into the system. Hence, the dimensionless work
W carried out on the system for transmuting an A atom into a B atom to the Hamiltonian variation can be
deduced from the first law:

W (z) = H (λL, xL)− H (λ0, x0)− β∆µid

where xL only differs from x0 by the transmuted atom. When transmuting a B into an A atom, the quantity
−W (z) must be considered instead. In contrast, the transmutations of Sec. 5.4.3 are performed gradually using
constant-pressure Langevin dynamics [46] and linear Hamiltonian switching. As a result, the probability ratio
Eq. (5.17) becomes

P(z|λL, xL)

P(z|λ0, x0)
= exp

[
β∆µid + βQ(z)

]

where Q(z) is the excess heat transferred from the thermostat and barostat to the particle system [46], in
addition to the heat ∆µid transfered from the atomic reservoir. We thus have

W (z) = H (λL, xL)− H (λ0, x0)− β∆µid −Q(z)

In both set-ups, sampling forward and backward transmutations is sufficient to explore the phase spaces of the
alloy. Accepting several paths amounts to exchanging the allocation of atoms on the underlying lattice of the
reference and target systems.
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Simulations aim at extracting differences of chemical potentials ∆µ between both species as a function of the
alloy composition. We have either ∆µ = µB − µA or ∆µ = µCr − µFe depending on the involved alloy system.
Both quantities indeed correspond to the difference of Gibbs free energy between the target and reference states

∆µ = β−1
[
F
(
λL
)
− F

(
λ0
)]
.

The generic estimator will be

JMb (∆µ) = −β−1 ln
JMb (exp [(θ − 1)W ])

JMb (exp [θW ])
(5.18)

where the estimator JMb is defined in (5.2) for path function f . Let c = NB/N or c = NCr/N denote the alloy
concentration in B or Cr. A change in the monotonicity of the function c → ∆µ(c) is a signature of phase
coexistence. The conditions of phase equilibria can then be determined via the equal-area construction with
respect to ∆µ(c), or equivalently, via the common-tangent construction with respect to the Gibbs free energy

G(c) =

∫ c

0

∆µ(c′)dc′. (5.19)

measured per atom.

5.4.2 AB system with constant pair interactions

In our simplified binary alloy lattice model, the rigid lattice is body centered cubic. The cell contains N = 212

sites with NB atoms of type B at t = 0. The site function ηB(i) is 1 or 0 depending on whether site i is occupied
by a B atom or not. Interaction energies are taken as pair interactions εXY between nearest-neighbor sites,
where X and Y may equal A or B. The ordering enthalpy ε = εAA + εBB − 2εAB plays a key role as it entirely
determines the thermodynamics of the system [97]. Without loss of generality, we can choose εAA = εAB = 0
and set ε = −30 meV. With a negative ordering energy, the system exhibits a miscibility gap below which the
solid solution decomposes into A-rich and B-rich phases. The unmixing transition is of first-order except for the
A0.5B0.5 composition where it is second-order [97] and where the critical temperature is Tc ≈ −ε/(k×0.62) [98].

The extended Hamiltonian reads

H (λ, x) = βε


λ

∑

j∈N (k)

ηB(j) +
∑

i 6=k

∑

j∈N (i)

ηB(i)ηB(j)




where index k denotes the lattice site of the hybrid atom, index i in the second summation runs over lattice sites
except site k and index j runs over the sets of nearest neighbor pairs of the involved site (k or i). We first check
the Delmas-Jourdain prediction that the asymptotic variance σ(f, bf)2 of JMb (f) is minimal at b = b? when
the Barker sampler is used. Since lim

M→∞
MV

[
JMb (f)

]
= σ(f + bg)2 where V

[
JMb (f)

]
is the statistical variance

of JMb (f), we evaluate V
[
JMb (f)

]
as a function of b for large enough M and confirm whether its minimum

occurs close to estimated values of b?. Note that the real function b→ V
[
JMb (f)

]
is a posituve quadratic form

regardless of the value of M .

We set temperature to 348 K, the simulation parameter θ to 1/2, and B concentration to 50at.%. The
two ensemble averages Eθ

[
exp

(
± 1

2βW
)]

have been evaluated using estimators JMb (f) given in Eq. (5.2) with

f = exp
(
± 1

2βW
)

and 0 ≤ b ≤ 20. The statistical variances V
[
JMb (f)

]
have been computed from K = 107

estimates generated using distinct random seeds. Each estimate consists of M = 2 · 103 transmutations, from
A into B and from B into A alternatively. For each estimation, we also record the estimated value of b? using
estimator b̂MNC given in Eq. (5.13), estimator b̂MSC given in Eq. (5.14) and estimator b̂MSC given in Eq. (5.15), and
additionally construct their histograms yielding the probabilities that an estimate of b? is equal to b.

As shown in Fig. 5.2, the quadratic formV
[
JMb (f)

]
is indeed minimum at the value corresponding to the best

b?-estimate indicated by the vertical double-dotted segment, obtained by combining the MK available data from

either b̂MK
NC , b̂MK

SC or b̂MK
DC . The minimum is also very close to the horizontal line labeledV

[
JM
b̂?

(f)
]

corresponding

to the variance obtained from the K estimates JM
b̂?

(f) after substituting the corresponding estimate b̂MNC for b?

in each run. Substituting b̂MSC for b? further decreases the variance by 0.24%, an amount not visible on the
graph. A more noticeable benefit to conditioning for estimating b? can be seen from the three histograms of b?
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Figure 5.2: (left ordinate) V
[
JMb (f)

]

is the statistical variance of Jb

(
e−βW/2

)

and is evaluated from 107 estimates. Note
that V

[
JM0 (f)

]
and V

[
JM1 (f)

]
corre-

sponds to the variances of I
(

e−βW/2
)

and J1

(
e−βW/2

)
. The optimized variance

V

[
JM
b̂?

(f)
]

is defined in the text; (right or-

dinate) histograms of the estimated opti-
mal parameters b?, obtained without condi-
tioning (NC) with single conditioning (SC)
and double conditioning (DC). The his-
tograms are obtained by averaging the in-
dicator function hb(b̂?) where b̂? is one of
the 107 estimated control variate.

displayed in Fig. 5.2. The histogram obtained with double conditioning is slightly narrower than the histogram
obtained with single conditioning that is itself slightly narrower than the one obtained without conditioning.

Choice of the external parameter θ. In the series of simulations presented above, θ was set equal to 1/2.
This symmetric setting is often used in practice [44, 45, 46, 99] because the work distribution associated with
P1/2 exhibits sufficient overlaps with those associated with both P0 and P1, ensuring a fast convergence of the
involved exponential averages [46]. However, the optimal external parameter value θ? that minimizes the total
variance in the estimates of ∆µ from Eq. (5.18) is not known in general. A series of simulations with varying
the value of θ in the range [0,1] has been carried out in Ref. [10] so as to locate the optimal value θ? with respect
to the evaluation of ∆µ at the asymmetric composition c = 10at.% B by calculating the statistical variance
of estimator (5.18) with b set to b̂MSC. The value θ? was found to be closed to 1/2. Besides, the optimal value
seems to be exactly 1/2 at the symmetric composition of the (symmetric) Ising system.

Choice of the acceptance rule In the present simulations, the sampling algorithm is suboptimal because
the acceptance probabilities with the Barker rule are always lower than those of the Metropolis rule. When
the sampling scheme is based on Metropolis selection rule and when the Metropolis acceptance and rejection
probabilities are used in the estimator, then it may happen that the waste-recycling estimator exhibits an
increased statistical variance in some circumstances. This feature was predicted theoretically and illustrated
practically on a toy model by Delmas and Jourdain [9]. However, when Barker acceptance probabilities are
included in the estimator, while still using the Metropolis selection rule in the sampling, the procedure amounts
to a conditioning with respect to a well-defined probability distribution, performed independently from the
transition probabilities associated with the sampling process. As a result, variance reduction is guaranteed by
the law of total variance. This implementation corresponds to a particular instance of the virtual-move Monte
Carlo (VMMC) method [38]. The question of whether the combination of the optimal Metropolis sampler and
the suboptimal estimators JM0 or JM1 may achieve better efficiency than the combination of the suboptimal
Barker sampler and the optimal estimator JMb? is not answered by theory [9]. Hence, it is instructive to address
this numerically. The statistical variances of the ∆µ-estimates obtained using the biased estimator of Eq. (5.18)
have been calculated and plotted as a function of B concentration in Fig. 5.3. We observe that it is always more
efficient to implement the optimized estimator JMb? with the suboptimal sampler than estimators JM0 or JM1 with

Metropolis sampling. Note that JMb? is still a valid and unbiased estimator when combined with the Metropolis
sampler (but is not optimal anymore). Here, the combination was found slightly more efficient, with variance
further decreased by 4.7% for A0.5B0.5 compared to Barker sampling and JMb? . However, variance reduction is
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Figure 5.3: (a,b) statistical variances of estimated differences of excess chemical potentials [displayed in (c,d)] as a
function of concentration. Used estimators are indicated in the legends. The symmetry of this Ising system with respect
to CB = 50% explains the equality between chemical potentials (∆µ = 0) at the solubility limit Cs.

not always guaranteed mathematically. A solution would be to extract b? correspoding to the minimum variance
by postprocessing.

5.4.3 Fe-Cr system with EAM interactions

We now test our estimators on a more difficult model whose inter-atomic potentials are based on the embedded
atom method (EAM). We have implemented the EAM potentials of Olsson et al. [100] developed to model the
α and α′ phases of the FeCr binary system. This EAM potential correctly reproduces the BCC structure of Iron
and Chromium. Furthermore, the lowest energy states found for the Iron-rich and Chromium-rich compositions
have negative formation energies of -10.08 meV at 6.67%Cr and -8.18 meV at 93.33%Cr, respectively [101]. The
lowest formation energy in the intermediate composition range (found by probing many candidate intermetallic
BCC structures based on the theory of the convex polyhedron in the correlation function space [97]) is -8.51meV
at 50%Cr [102], above the corresponding value of -9.13meV associated with the convex hull. Phase separation
should therefore be favoured over formation of intermetallics with intermediate compositions. The expected
miscibility gap of FeCr alloy was indeed observed in Monte Carlo simulations carried out on a rigid lattice with
the interaction energies directly deduced from the EAM potential [100]. Here, the rigid-lattice assumption is
entirely released in the construction of the phase diagram. We perform path-sampling simulations to compute the
chemical potential difference with varying concentration and temperature. Transmutations are now performed
gradually in 102 steps with linear Hamiltonian switching and constant-pressure Langevin dynamics [46] in a
computational cell containing 432 atoms. Equilibration proceeds in 20 transmutations per atom, starting from
a random distribution of the atoms on 63 unit cells of the BCC structure. Simulations have been carried out
with temperature ranging from 300 to 1700 K in step of 25 K. Examination of the simulated microstructures
show evidende of phase separation at low enough temperatures. Figure 5.4 displays the snapshot of a typical
phase separated microstructure for alloy Fe0.8Cr0.2 at 300 K.

Figure 5.5 displays the statistical variances obtained for the various estimators obtained with M = 400
transmutations (per estimate) and K = 200 estimates at T=500 K. The aforementioned hierarchy still holds
in the present case for all concentrations. Because the amount of transmutations per estimate is much smaller
than previously, it is more relevant to estimate b? using conditioning (SC) than without (NC). The former
variant further decreases the variance associated with the estimation of b? by 20 % on average over the latter
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Figure 5.4: Snapshot of a simulated microstructure containing
20% at. Cr obtained at T = 300K. Fe and Cr atoms are displayed
in blue and gray, respectively.
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one. Averaging over all temperatures, estimator JMb? -SC decreases the variance by a factor of 2 to 5/2 compared

to JM0 and by 20 to 30 % compared to JMb? with NC. The ∆µ-values displayed in Fig. 5.5b correspond to a
single estimate obtained from the 8 · 104 = M × K transmutations used to evaluate the statistical variance.
Figures 5.5b and 5.5c illustrate the equal-area or common-tangent constructions of Maxwell and corroborate
the occurrence of phase coexistence.

The reconstructed Gibbs free energy surface G is less fluctuating because it is based on a self-averaging
integral Eq. (5.19). The potential quantity ∆µ?(T ) in Fig. 5.5c is such that the occurrence probabilities
of the Fe-rich and Cr-rich phases are equal. The occurrence probability is P?(c, T ) = Z−1eNβ[c∆µ?−G(c)]

where Z =
∫ 1

0
eNβ[c′∆µ?−G(c′)]dc′ is the semigrand canonical partition function [14] associated with the finite

computational cell. The potential function ∆µ?(T ) exactly coincides with the slope of the common-tangent
at coexistence and in the thermodynamic limit only. Within finite computational cells, ∆µ?(T ) is defined
even when there is no common tangent, is always easy to determine and fluctuates less than the slope of the
common-tangent when there exists one. The transformed Gibbs free energy surfaces G(c)− c∆µ? are displayed
in Fig. 5.6. The contour plot in the temperature-concentration plane of the bottom panel clearly visualizes the
miscibility gap in the composition range going approximately from Fe0.1Cr0.9 to Fe0.9Cr0.1.

The coexistence lines (solubility limits) associated with the gap end around 500 K both in the iron-rich or
chromium-rich sides and are indicated by the solid white curve in Fig. 5.6b. Above 525 K, we observe that
free energy profiles becomes lower for intermediate composition which indicates the presence of a stability field
for these intermediate compositions and of two immiscibility fields for the Fe-rich and Cr-rich compositions.
Solubility limits on the Fe-rich and Cr-rich sides associated with the two immiscibility fields are indicated by
the dashed white curves in Fig. 5.6b. However, examination of snapshots of the simulated systems within the
expected stability field still shows unmixed microstructures with a tendency to phase separation decreasing
with increasing temperature from 525 K to 1700 K. This is attributed to the fact that the correlation length
diverges at the critical temperature Tc where the thermodynamic transition is second order. Given that the
computational cell contains only 2 × 63 atoms and that atomic interactions up to 7th nearest neighbors were
shown to play an important role [101], strong finite-size effects are expected. The low temperature of 500 K
measured for the present closure of the miscibility gap should therefore not be interpreted as an estimate
of the critical temperature Tc whose experimental value is expected to lie around 900 K [102]. A finite-size
scaling analysis [103] should therefore be carried out, which entails performing simulations with much larger
computational cells. To achieve this task, the overall computation time has to be reduced considerably, possibly
by evaluating the interatomic potential and forces on parallel computer architectures [96]. While the preliminary
results presented here show that a direct and accurate construction of the equilibrium phase diagram of FeCr
alloy is achievable in principle, they also emphasize the need for more extensive free energy calculations in this
system.
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5.5 Summary

The optimal estimator proposed by Delmas and Jourdain for waste-recycling Monte Carlo has been assessed
numerically. As a testbed, we simulated two alloy systems via the work-biased path ensemble and simultaneously
estimated the free energy differences from the nonequilibrium works measured along the transmutations. We
find that the estimator indeed achieves variance reduction compared to the other Monte Carlo estimators that
are compatible with the present sampling approach. Furthermore, the maximal reduction of the statistical
variance that is predicted by the theory is attained for relatively short simulations (2 · 103 sampled paths).

Concerning the investigated examples of binary alloys, we point out that achieving numerical ergodicity in
the reference and target thermodynamic states entails exchanging the allocation of atoms of distinct types on the
underlying lattice (which amounts to performing pairs of simultaneous transmutations with opposite direction)
with a high enough frequency. With path-sampling, exchanges of atom allocation are automatically achieved
when trial paths are successively accepted within the transmutation ensemble. It turns out that the phase
space exploration is considerably facilitated. Resorting to such a path-sampling scheme was found particularly
advantageous in the FeCr alloy system which presents a large magnetic misfit. Direct exchange moves sampled
using a standard scheme in the reference and target system would have been extremely infrequent and thus
computationally expensive compared to the gradual transmutations considered here. The approach might work
as well in the numerous alloy systems exhibiting large atomic misfits.

Overall, the Delmas-Jourdain estimator is unbiased and optimal in terms of asymptotic variance with respect
to a simple control variate b? that can be accurately estimated from the correlations in the collected data. One
substantial benefit to employing this optimal estimator is the flexibility in the choice of the sampler, allowing
us to couple waste recycling Monte Carlo with a work-biased transmutation path ensemble ideally formulated
to study the phase coexistence of binary alloys. Since information associated with trial switching processes
is optimally included in the free-energy estimates for any sampler, this one is to be chosen so as to facilitate
the phase space exploration. In other scenarios, another Monte Carlo sampling scheme might be better posed,
yet the optimal estimator of Delmas and Jourdain would still be applied quite similarly. As an example, the
free energy barriers associated with the migration of small molecules inside zeolites have been estimated by
combining a multi-proposal sampling scheme to the same control variate structure [96].
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6 | A matter of time evolution: kinetic path-
ways and deconditioning

This Chapter focuses on the kinetic Monte Carlo (kMC) method. Herein, conditioning aims at accelerating the
kMC simulations by enabling each mobile defect to perform entire sequences of hops at once. Deconconditioning
then serves to synchronize defects evolving in parallel.

6.1 Kinetic Monte Carlo and master equation

The kMC method [104, 105, 106] is extensively used to simulate the time evolution of many physical systems
described by discrete master equations (ME), i.e. sets of ordinary differential equations for the time-dependent
vector of state probabilities [107, 108]. Statistically equivalent to the (most often unknown) solution of the ME,
kMC finds a growing number of applications in natural and engineering sciences. However, still wider applica-
bility of kMC is severely limited by the notorious kinetic trapping where the stochastic trajectory repeatedly
visits a subset of states, a trapping basin, connected to each other by high-rate transitions while transitions out
of the trapping basin are infrequent and take great many kMC steps to observe.

We herein present an efficient method for sampling stochastic trajectories escaping from the trapping basins.
Unlike recent transition path sampling methods that focus on short portions of the full kinetic path directly
leading to the escapes and/or require equilibration over a path ensemble [7, 109, 110, 111, 112, 113, 114],
our method constructs an entire stochastic trajectory within the trapping basin including the typically large
numbers of repeated visits to each trapping state as well as the eventual escape. Referred hereafter as kinetic
Path Sampling (kPS), the proposed algorithm is statistically equivalent to the standard kMC simulation and
entails (i) factorization of paths inside a trapping basin via conditioning over probabilities of repeated visits, (ii)
sampling a single exit state within the basin’s perimeter and (iii) generating a first-passage path and an exit time
to the selected perimeter state through an exact deconditioning procedure (randomization). The kPS algorithm
does not require any advance knowledge of the trapping basin nor does it entail matrix diagonalization.

Outline of the chapter We describe the of kPS method in Sec. 6.2 and demonstrate its accuracy and
efficiency on two models: diffusion on a random energy landscape specifically designed to yield a wide and
continuous spectrum of time scales (Sec. 6.3), and kinetics of phase separation in super-saturated solid solutions
of copper in iron (Sec. 6.3).

6.2 Conditioning and deconditioning

The evolution operator, obtained formally from solutions of the ME, can be expressed as an exponential of the
time-independent transition rate matrix 1

P(t, t+ τ) = exp

(∫ t+τ

t

Mds

)
= exp (τM) , (6.1)

where Pβγ(t, t+ τ) is the probability to find the system in state γ at t+ τ given that it was in state β at time t,
Mβγ is the rate of transitions from state β to state γ (off-diagonal elements only) and the standard convention

1The evolution operator is obtained by integrating the ME v̇T(t) = vT(t)M from t to t+ τ and identifying the formal solution
with vT(t+ τ) = vT(t)P(t, t+ τ) where vT(t) is the state-probability (row) vector at t.
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is used to define the diagonal elements as Mββ = −∑β 6=νMβν . As defined, the evolution operator belongs
to the class of stochastic matrices such that

∑
ν Pβν = 1 and Pβγ ≥ 0 for any β, γ, t and τ . If known, the

evolution operator can be used to sample transitions between any two states 2 and over arbitrary time intervals
τ . In particular, substantial simulation speed-ups can be achieved by sampling transitions to distant states
on an absorbing perimeter of a trapping basin. Two main defficiencies of the existing implementations of this
idea [115, 116, 117, 118] is that states within the trapping basin are expected to be known a priori and that
computing the evolution operator requires a partial eigenvalue decomposition of M entailing high computational
cost [119].

Consider the linearized evolution operator

P(0)(t, t+ τ) = I + τM, (6.2)

where I = P(0)(t, t) is the identity matrix. Assuming that τ ≤ min
{
−(Mββ)−1 : ∀β

}
, P(0) is a proper stochastic

matrix that can be used to generate stochastic sequences of states from the ensemble of paths defined by
matrix M. The diagonal elements of P(0) define the probabilities of round-trip transitions after which the
system remains in the same state. To correct for the linearization of the evolution operator in (6.2), the time
elapsed before any transition takes place is regarded as a stochastic variable and sampled from an exponential
distribution t→ τ−1 exp(−t/τ) [120]. This simple time randomization obviates the need for exponentiating the
transition rate matrix in (6.1).

The mean residence time of a transition from β based on P(0) is simply τ :

T (0)
β = E

(0) [t] =

∫ ∞

0

t

τ
exp

[
− t
τ

]
dt = τ.

Drawing the elapsed time in the exponentially decaying distribution aims at correctly synchronizing mobile
defects evolving in parallel. This task is a crucial aspect of KMC simulations, especially in models describing
alloys under irradiation [104, 121] in which many interacting defects evolves in parallel. The advantage of
employing the mean residence times [122, 123] is that the procedure can be generalized through conditioning,
making it possible to perform accelerated kMC simulations. We next describe the conditioning procedure.

Noticing that the probability 1 − P
(0)
ββ to exit from β is equal to τMββ , the mean first-passage time for

exiting state β is obtained from the law of total expectation, either explicitly :

T (1)
β = E

(1)
[
E

(1)
[
τ(1 + n)T (1)

β

∣∣n
]]

=

∞∑

n=0

(1 + n)τ
[
P

(0)
ββ

]n
(1− P (0)

ββ ) = (Mββ)−1,

with n the number of β → β round-trips of probability P
(0)
ββ , or implicitly :

T (1)
β = E

(1)
[
E

(1)
[
τ + T (1)

β

∣∣β → β
]]

= τ + T (1)
β P

(0)
ββ .

The implicit relation can be immediately generalized to trapping basins EN consisting of N states and provides
with a linear system in which the unknown quantities are the mean first-passage times from any states β ∈ EN :

T (N)
β = E

(N)
[
E

(N)
[
τ + T (N)

γ

∣∣β → γ
]]

= τ +
∑

γ

T (N)
γ P

(0)
βγ ,

where T (N)
γ is zero if γ /∈ EN . The linear system of equations can be solved using various methods, for instance

by inverting the transition rate matrix M = τ−1P(0)−I inside the trapping basin using the Gauss-Jordan pivot
elimination method [124]. This matrix factorization technique yields not only the mean first-passage times,
but also the exit probabilities P(N) from the trapping basin EN . With this factorization [125, 124], the mean
first-passage times and exit probabilities are obtained explicitly by subsuming all possible transitions involving
the eliminated states in the trapping basin EN . This remarkable path interpretation [122, 125] makes it possible
to construct a detailed escape trajectory statistically equivalent to the standard kMC without ever performing
an inefficient kMC simulation that accounts for all transitions within EN , reverting back to transition matrix

2If the system is in β at a given time, then the state-probability vector at a later time τ is vT
β (τ) = 1T

βP(0, τ) where 1T
β denotes

the row vector whose βth entry is one and the other ones are zero. The entries of vT
β (τ) are Pβγ(0, τ) and can be used as transition

probabilities for kMC moves from β.
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Figure 6.1: Energy surface of the saddle
points. The color scale is in the units of ε.
Artificial smoothing is used for better visu-
alization.

P(0). This deconditioning procedure [124] entails a statistically exact randomization. In practice, escape paths
are constructed by drawing random deviates from the Gamma, binomial and negative binomial distributions
whose shape parameters are contained in the path factorization.

In brief, kPS detects kinetic trapping on the fly, charts the trapping basin sequentially, state by state,
achieves high computational efficiency by eliminating the most trapping states owing to the ongoing path
factorization [122, 126, 125] and generates statistically correct exit times from the charted basins. A description
of the kPS algorithm is given in Ref. [124] and its supplemental materials.

6.3 Application to diffusion in a disordered substrate

We first apply kPS to simulations of a random walker on a disordered energy landscape (substrate) [127]. The
substrate is a periodically replicated 256×256 fragment of the square lattice on which the walker hops to its
four nearest-neigbour (NN) sites with transition rates

Mβγ = exp
[
(Eβ − Es

βγ)/T
]
,

where T is the temperature, Eβ the site energy and Es
βγ the saddle energy between sites β and γ. The energy

landscape is purposefully constructed to contain trapping basins of widely distributed sizes and depths (see the
Supplemental Material [124] for details) and is centered around the walker’s initial position next to the lowest
energy saddle (Fig. 6.1).

When performed at temperature T= 2.5, standard kMC simulations (with hops only to the NN sites) are
efficient enabling the walker to explore the entire substrate. However at T= 1, the walker remains trapped near
its initial position repeatedly visiting states within a trapping basin. To chart a basin set E for subsequent kPS
simulations, the initial state 1 is eliminated at the very first iteration followed in sequence by the “most absorbing

states” for which P
(n)
1γ is found to be largest at the n-th iteration (2 ≤ n ≤ N). The expanding contours shown

in Fig. 6.1 depict the absorbing boundary ∂A (perimeter of the basin) obtained after eliminating 27, 29, 211,

212, 213 and 214 states. The perimeter contour ∂A consists of all states γ for which P
(N)
1γ is nonzero.

To demonstrate correctness of kPS, we generated 104 paths starting from state (127, 127) and ending at the
absorbing boundary ∂A of the basin containing N = 213 states, using both kPS and kMC at T=2.5. The perfect
match between the two estimated distributions of exit times is shown in Fig. 6.2.a. The mean times of exit to ∂A
are plotted as a function of the number of eliminated states at T= 2.5 and T=1.0 in Fig. 6.2.b, while the costs
of both methods are compared in Fig. 6.2.c. At T=1.0, kMC trajectories are trapped and never reach ∂A: in
this case we plot the expectation value for the number of kMC hops required to exit E which is always available
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after path factorization [125]. We observe that the kPS cost scales as N3, as expected for this factorization,
and exceeds that of kMC for N > 212 at T=2.5. However, at T=1 trapping becomes severe rendering the
standard kMC inefficient and the wall clock speedup achieved by kPS is four orders of magnitude for N = 215.
We observe that in kPS the net cost of generating an exit trajectory is nearly independent of the temperature
but grows exponentially with the decreasing temperature in kMC. At the same time, an accurate measure of
the relative efficiency of kPS and kMC is always available in path factorization, allowing one to revert to the
standard kMC whenever it is relatively more efficient. Thus, when performed correctly, a stochastic simulation
combining kPS and kMC should always be more efficient than kMC alone.

6.4 Application to phase seperation kinetics in FeCu

As a second illustration, we apply kPS to simulate the kinetics of copper precipitation in iron within a lat-
tice model parameterized using electronic structure calculations [128]. The simulation volume is a periodically
replicated fragment of the body centered cubic lattice with 128×128×128 sites on which 28,163 Cu atoms are
initially randomly dispersed. Fe atoms occupy all the remaining lattice sites except one that is left vacant al-
lowing atom diffusion to occur by vacancy (V) hopping to one of its NN lattice sites. Its formation energy being
substantially lower in Cu than in Fe, the vacancy is readily trapped in Cu precipitates rendering kMC grossly
inefficient below 550 K [128]. Whenever the vacancy is observed to attach to a Cu cluster, we perform kPS over
a pre-charted set E containing N trapping states that correspond to all possible vacancy positions inside the
VCuN−1 cluster containing N − 1 Cu atoms: the shape of the trapping cluster is fixed at the instant when the
vacancy first attaches. The fully factored matrix P(N) is then used to propagate the vacancy to a lattice site
just outside the fixed cluster shape which is often followed by vacancy returning to the same cluster. If the
newly formed trapping cluster has the same shape as before, the factorized matrix is used again to sample yet
another escape. However a new path factorization (kPS cycle) is performed whenever the vacancy re-attaches
to the same Cu cluster but in a different cluster shape or attaches to another Cu cluster (see the Supplementary
Material for additional simulation details [124]).

We simulated copper precipitation in iron at three different temperatures T0 = 273 K, T1 = 373 K and
T2 = 473 K for which the atomic fraction of Cu atoms used in our simulations significantly exceeds copper
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solubility limits in iron. Defined as the ratio of physical time simulated by kPS to that reached in kMC
simulations over the same wall clock time, the integrated speed-up is plotted in Fig. 6.3.a. as a function of the
physical time simulated by kPS (averaged over 41 simulations for each method and at each temperature).

The precipitation kinetics are monitored through the evolution of the volume-averaged Warren-Cowley
short-range order (SRO) parameter [98] shown in Fig. 6.3.b both for kPS and kMC simulations. At T0 and
T1 the kinetics proceed through a distinct incubation stage reminescent to a time lag associated with repeated
re-dissolution of subcritical nuclei prior to reaching the critical size in the classical nucleation theory [129].
However, “incubation” observed here is of a distinctly different nature since all our simulated solid solutions
are thermodynamically unstable and even the smallest of Cu clusters, once formed, never dissolve. At all
three temperatures the growth of VCuN−1 clusters is observed to proceed not through the attachment of
mobile V-Cu dimers but primarily through the cluster’s own diffusion and sweeping of neighboring immobile
Cu monomers [124]. This is consistent with an earlier study that also suggested that, rather counter-intuitively,
the diffusivity of VCuN−1 clusters should increase with the increasing N before tapering off at N = 30 ÷ 100
(see Fig. 9 of Ref. [128]). We futher observe that at T0 the cross-over from the slow initial “incubation” to
faster “agglomeration” growth seen on 6.3.b occurs concomittantly with the largest cluster growing to 15-16 Cu
atoms [124]. Individual realizations of the stochastic precipitation kinetics reveal that, in addition to N = 15,
cluster growth slows down again once the cluster reaches N = 23, 27, 35 and so on (see figure S4 in the
Supplementary Materials). Leaving precise characterization of these transitions to future work, we speculate
that the observed “magic numbers” correspond to compact clusters with fully filled nearest-neighbor shells in
which vacancy trapping is particularly strong reducing the rate of shape-modifying vacancy escapes required
for cluster diffusion.

Numerically, as expected, the integrated speed-up rapidly increases with the decreasing temperature as
vacancy trapping becomes more severe. Two line segments of unit slope and two pairs of vertical arrows are
drawn in Fig. 6.3 to compare evolution stages achievable within kPS and kMC over the same wall clock time.
As marked by the pair of two solid vertical arrows on the right, the integrated speed-up exceeds seven orders
of magnitude at T0. Subsequent reduction in the speed-up concides with the transition into the agglomeration
regime where increasingly large VCu clusters repeatedly visit increasingly large number of distinct shapes. To
understand the origin of the efficiency decrease, we have monitored the number of distinct shapes of the vacancy-
copper cluster. For a V-Cu30 cluster, we found that, over the 103 last factorizations that have been performed,
there are only 21 different cluster shapes and that the 5 most frequent shapes occur with a frequency of about
60%. Indeed, the efficiency of kPS simulations for this particular model can be improved by indexing distinct
cluster shapes for each cluster size and storing the path factorizations to allow for their repeated use during
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the simulations [130, 131]. In any case, given its built-in awareness of the relative cost measured in kMC hops,
kPS is certain to enable more efficient simulations of diffusive phase transformations in various technologically
important materials. In particular, it is tempting to relate an anomalously long incubation stage observed in
aluminium alloys with Mg, Si and Se additions [132] to possible trapping of vacancies on Se, similar to the
retarding effect of Cu on the ageing kinetics reported here for the Fe-Cu alloys.

6.5 Summary

A kinetic Path Sampling algorithm suitable for simulating the evolution of systems prone to kinetic trapping is
developed. Unlike most other algorithms dealing with this numerical bottleneck [115, 116, 117, 133, 134, 130],
kPS does not require any a priori knowledge of the properties of the trapping basin. It relies on an iterative
path factorization of the evolution operator to chart possible escapes, measures its own relative cost and reverts
to standard kMC if the added efficiency no longer offsets its computational overhead. At the same time, the
kPS algorithm is exact and samples stochastic trajectories from the same statistical ensemble as the standard
kMC algorithms. The proposed method is less sensible to kinetic trapping and performs well under simulation
conditions where the standard kMC simulations slows down to a crawl. In particular, it reaches later stages
of phase separation in the Fe-Cu system and captures a qualitatively new kinetics and mechanism of copper
precipitation. The kPS method is well positioned to extend the range of applicability of stochastic simulations
beyond their current limits.

Perspectives kPS should be combined with spatial protection [121] and synchronous or asynchronous algo-
rithms to enable efficient parallel simulations of a still wider class of large-scale stochastic models [135, 136,
137]. A synchronization issue occurs when, at a given time, a mobile defect enters a trapping basin already
containing a defect. The location of the latter defect needs to be known. This requires solving the (restricted)
master equation governing the evolution of the latter defect conditioned by the fact that it did not reach the
absorbing boundary. Remarkably, removing the absorbing boundaries will suppress the sources of irreversibility
and will make it possible to symmetrize the evolution operator via similarity transformation based on detailed
balance condition satisfied for intra-basin transitions. The subsequent eigenvalue decomposition should be
greatly facilitated by this symmetrization.
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Conclusion and perspectives

Molecular simulations methods usually requires to vary the value of an external parameter λ within a specified
range Λ. In such problems, enhanced ergodicity is achieved if simulations are performed in an expanded ensemble
wherein the external parameter behaves like an additional coordinate subject to an auxiliary biasing force. The
various methods of computing thermodynamic expectations and free energies which can be used in the expanded
ensemble framework are reviewed below

(a) Thermodynamic integration to estimate the derivative of the free energy along λ and then to obtain the
free energy through integration by numerical quadrature. This approach resorts to a binning estimator
and is used in combination with adaptive biasing force method to construct an auxiliary biasing potential
that converges towards the free energy.

(b) Thermodynamic occupation to directly extract the free energy from occupation probabilities. This ap-
proach is based on a binning estimator and may also be employed to adapt the biasing potential directly
on the free energy along λ.

(c) Free energy perturbation to extract the free energies from partition function ratios using a simple standard
reweighting estimator. This approach requires substantial overlaps between the various λ-samples and has
been rarely used.

(d) Post-treatment procedures such as the self-consistent reweighting estimator based on Bennett acceptance
ratio method (STWHAM) or the histogram reweighting estimator based on thermodynamic integration
along the reaction coordinate (CZAR). The goal is to estimate the desired thermodynamic property more
accurately than with estimators (a-c). The latter procedure is employed to compute the free energy along
reaction coordinates using mechanical restraints.

Remarkably, conditioning over the external parameter in the expanded ensemble provides us with a unifying
methodology: once conditioned, the various estimators associated with methods (a-d) become equivalent and
exhibit systematically reduced statistical variances. In practice, simulations performed with the conditioned
estimators are facilitated by the fact that the external parameter need not being sampled. Characterizing the
structural transition temperature in LJ38 has been shown to be a simple task.

Furthermore, the proposed unifying approach is amenable to path sampling simulations involving the esti-
mation of rate constants in rare-event problems or the calculation of free energies in difficult problem presenting
spurious metastability.

The avenue for future research on the conditioned estimators will involve formulating and constructing
biasing potentials that allow optimal variance reduction for estimating thermodynamic expectations within a
given set of external parameter values. The feasibility of the biasing potential optimization is demonstrated in
Appendix C where an optimal biasing potential is constructed adaptively using a partial biasing technique [138].
Preliminary results are promising. This optimization approach compare favorably with the one that would be
developed for the replica exchange method (see Sec. 1.6), for which optimally allocating the replicas along the
external parameter is a difficult task, especially if a self-consistent estimator is used to postprocess the harvested
data.

The advocated conditioning approaches are well positioned to further extend the range of applicability of
Monte Carlo and molecular dynamics techniques to the calculation of free energies and thermodynamic prop-
erties in condensed matter systems. From a broad perspective, we enumerate below several possible extensions
of the conditioning approach to expanded ensembles together with applicability domains of materials science:

1. developing a method for performing simulations in a semi-grand expanded ensemble wherein the difference
of chemical potentials is the external parameter. The goal is to estimate isotherms of both the canonical
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and semi-grand canonical ensembles in a single run owing to conditioning. Specific applications would
involve calculating solubility limits of Ni, Si, Mn, Cu impurities in α-iron;

2. enabling the expanded transition path sampling method to extract free energy barriers along some collec-
tive variables concomitantly with the time correlation function. Combining with the activation-relaxation
technique to focus the efforts in the vicinity of saddle states. Application would involve the migration and
transformation of extended defects and impurities in alloys;

3. calculating the rate of vacancy emission from multi-component clusters by combining adaptively biased
sampling techniques and a time rescaling technique based on the quasi-equilibrium assumption [139]; ap-
plications would involve the numerous high-dimensional problems that are intractable to path factorization
due to combinatorial explosion;

4. monitoring the Gibbs statistical entropy of a supercooled liguid through its jamming transition, using
adaptively biased simulations performed in an expanded nonequilibrium path ensemble [95]. The goal is
to investigate from a fundamental viewpoint the behavior of the statistical entropy when a glass forms
from a metastable liquid assumed to be in a local equilibrium. Gibbs entropy, which can not be measured
experimentally out of equilibrium, is a measure of the phase space volume of the system that coincides
with Boltzmann’s entropy at equilibrium.
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[95] M. Athènes and F. Calvo. “Multiple-Replica Exchange with Information Retrieval”. In: ChemPhysChem 9.16
(2008), pp. 2332–2339 (cit. on pp. 77, 98).
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A | Asymptotic variances of estimators

A.1 Elementary laws of probability theory and statistics

We review here the elementary laws of probability theory that are systematically applied within the expanded
ensemble framework. Let us consider the joint probability pa(ζ, q̄) defined over an extended space Λ×Q. Set
Λ denotes the discrete space of the external parameter ζ or λ. The set Q denotes the position space for the
coordinates q̄ or q of the particles. The total expectation associated with observable G(ζ, q̄) is defined by:

Ea [G] =
∑

ζ∈Λ

∫

Q
G(ζ, q̄)pa(ζ, q̄)dq̄.

The marginal probabilities of λ ∈ Λ and q ∈ Q can be expressed as expected values of the indicator function
1λ and of the delta function δq(q̄), respectively:

pΛa (λ) =

∫

Q
pa(λ, q̄)dq̄ = Ea [1λ] , and pQa (q) =

∑

ζ∈Λ
pa(ζ, q) = Ea [δq] .

Let denote the expectations defined with respect to the marginal probabilities pΛa and pQa by EΛa and EQa ,
respectively. These expectations are useful for expressing the following two laws of total expectation, with
conditioning done on λ or q:

Ea [G] =

{
EΛa [Ea [G(λ, ·)|λ]] =

∑
λ∈ΛEa [G(λ, ·)|λ] pΛa (λ),

EQa
[
Ea [G(·, q)|q]

]
=
∫
QEa [G(·, q)|q] pQa (q)dq.

(A.1)

Noticing that the conditional probability of q (λ) given λ (q) is the conditionally expected value of the dirac
(indicator) function,

π(q|λ) = Ea [δq|λ] , and πa(λ|q) = Ea [1λ|q] ,
allows us to derive the laws of the total probabilities of q and λ from the laws of total expectations for the dirac
and indicator functions, respectively

pQa (q) = E
Λ
a [Ea [δq|λ]] =

∑

λ∈Λ
π(q|λ)pΛa (λ), and pΛa (λ) = E

Q
a
[
Ea [1λ|q]

]
=

∫

Q
πa(λ, q)pQa (q)dq.

We eventually formulate the law of total variance on q, which states that the total variance of G is equal
to the sum of two terms, the expectation of the conditional variances of G given q and the variance of the
conditionally expected value of G given q:

Va[G] = E
Q
a

[
Va[G(·, q)|q]

]
+VQa

[
Ea
(
G(·, q)|q

)]
. (A.2)

This identity is easily verified by expressing the involved variances as functions of their expectation:

Va [G] = Ea
[
G2
]
−Ea [G]

2
, and Va [G|q] = Ea

[
G2
∣∣ q
]
−Ea [G|q]2 . (A.3)

We similarly define VQa , the variance with respect to probability pQa , by replacing expectations Ea by expec-
tations EQa in Eq. (A.3). The law of total variance (A.2) is used in Sec. 1.11 for proving variance reduction
through conditioning of various estimators with the delta method described next.
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The law of total probability, the law of total expectation, and the law of total variance, which are extensively
applied throughout this thesis, can be generalized into the law of total cumulance [1] in probability theory and
statistics.

A.2 Delta method

Since expectations are considered with respect to the expanded ensemble, we write the dependence on the
biasing potential a(λ) explicitly when needed and use the notation Va adopted throughout the article for the
variance. The lemma below establishes a general and useful property of covariance matrices

Lemma A.2.1. Let Γ be the covariance matrix of a random vector Y taking its values in Rd and u ∈ Rd be a
constant vector. Then, we have

uTΓu = Va
[
uTY

]
.

Proof. Let write Y = (Y i)1≤i≤d and u = (ui)1≤i≤d. By definition, element Γij of covariance matrix Γ is equal
to Cova

(
Y i, Y j

)
the covariance of the one-dimensional random variables Y i and Y j , defined by

Cova[Y i, Y j ] = Ea
[
Y iY j

]
−Ea

[
Y i
]
Ea
[
Y j
]
.

Since the covariance has scalar product properties, we have the following sequence of equalities

uTΓu =

d∑

i=1

d∑

j=1

uiCova(Y i, Y j)uj = = Cova(uTY, uTY ) = Va(uTY ).

The delta method will allow us to characterize the asymptotic variance of all aforementioned estimators. It
consists of applying the generalized central limit theorem that follows:

Theorem A.2.2. Let {Ym}m≥1 be a sequence of independent, identically distributed and square integrable

random vectors taking their values in Rd. Let µ and Γ respectively denote the expected vector and the covariance

matrix of the Ym and Y
M

= 1
M

∑M
m=1 Ym. Let g : Rd 7→ R be a function that is differentiable at µ. Then, we

have the following convergence in law

√
M
(
g(Y

M
)− g(µ)

) L−→
M→+∞

N
(
0,∇g(µ)TΓ∇g(µ)

)
.

Proof. Let define ryµ : [0, 1] 7→ Rd such that

ryµ(α) = αy + (1− α)µ.

We have

g(y)− g(µ) =

∫ 1

0

∂

∂α

(
g ◦ ryµ(α)

)
dα =

∫ 1

0

r′yµ(α)∇g ◦ ryµ(α)dα =

∫ 1

0

∇g ◦ ryµ(α)dα · (y − µ)

Setting y to ȲM , we obtain

√
M
(
g(ȲM )− g(µ)

)
=

∫ 1

0

∇g
(
αȲM + (1− α)µ

)
dα ·
√
M
(
ȲM − µ

)
.

Besides, from the law of large numbers (Theorem 5.2.2, page 72 in ref [3]) and the fact that the YM ’s are iid
and integrable, then ȲM converges almost surely (a.s.) to µ as M tends to infinity. As a consequence, we have

∀α ∈ [0, 1], αȲM + (1− α)µ
a.s.−→

M→+∞
µ,
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and by continuity of ∇g
DM =

∫ 1

0

∇g
(
αȲM + (1− α)µ

)
dα

a.s.−→
M→+∞

∇g(µ).

From the multi-dimensional central limit theorem (see Theorem 6.2.8 page 94 of ref [3]) the random variable√
M
(
ȲM − µ

)
converges in law to a centered random gaussian vector with covariance matrix Γ when M tends

to infinity

GM =
√
M
(
ȲM − µ

) L−→
M→+∞

G ∼ N (0,Γ).

Since DM converges almost surely to the constant ∇g(µ) and GM converges in law to N (0,Γ), one can apply
Slutsky’s theorem (see ref [3], Theorem 5.3.12, page 79) and conclude that the product converges in law to a
gaussian random variable of mean zero and variance ∇g(µ)TΓ∇g(µ)

DMGM
L−→

M→+∞
N
(
0,∇g(µ)TΓ∇g(µ)

)
.

The variance of the gaussian variable above corresponds to the asymptotic variance of random variable
g(Y ). Below, the asymptotic variances of all estimators considered throughout this report are deduced from the
variance of random variable ∇g(µ)TY expressed using eq A.2.1, i.e, by applying Theorem A.2.2 while taking
advantage of relation

∇g(µ)TΓ∇g(µ) = Va
(
∇g(µ)TY

)
. (A.4)

A.3 Estimation of conditional expectations

For the generic ΥM
G (O|λ) estimator given in Eq. 1.26 and conditioned in subsection 1.11.3, we set Ym =(

gλa (ζm, q̄m)O(λ, q̄m), gλa (ζm, q̄m)
)T ∈ R2, g(r, s) = r/s. We have µ =

(
Ea
[
gλa (·, ·)O(λ, ·)

]
,Ea

[
gλa
])T

and

∇g(µ) =

(
1/Ea

[
gλa
]

−Ea
[
gλa (·, ·)O(λ, ·)

]/
Ea
[
gλa
]2
)

=
1

Ea [gλa ]

(
1−E [O|λ]

)
.

Resorting to Eq. (A.4), the asymptotic variance ∇g(µ)TΓ∇g(µ) is therefore

σ2
a
[
ΥM

G (O|λ)
]

=
1

Ea [gλa ]
2Va

[(
1

−E [O|λ]

)T (
gλa (·, ·)O(λ, ·)

gλa (·, ·)

)]
=
Va
[
gλaOλ

]

pΛa (λ)2
,

recalling that Oλ(q) = O(λ, q)−E [O|λ] and that Ea
[
gλa
]

= pΛa (λ). The square root of the asymptotic variance
of ΥM

G (O|λ) estimator is given in Eq. 1.35. Along the same line of reasoning, the asymptotic variance of adiabatic
reweighting estimator ΥM

Π (O|λ) can be deduced after substituting πλa for gλa .

A.4 Estimation of total expectations

For the generic estimator ΥM
G (O) of total expectation E [O] that is given in Eq. (2.6), we set g(r, s) = r/s

together with

Y =

( ∑
λ∈ΛO(λ, q̄)gλa(ζ, q̄)

ga(ζ, q̄)

)
,

Ea[Y ] =

(
Ea
[∑

λ∈ΛO(λ, ·)gλa(·, ·)
]

Ea [ga]

)
,

∇g (Ea[Y ]) =
1

Ea[ga]

(
1

−E[O]

)
,
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where gλa(ζ, q̄) = exp[−a(λ)]gλa (ζ, q̄) and ga =
∑
λ∈Λ g

λ
a . The scalar product of the first and third vectors above

is

Y T∇g (Ea[Y ]) =
∑

λ∈Λ
O(λ, q̄)

gλa(ζ, q̄)

Ea[ga]
−E[O]

ga(ζ, q̄)

Ea[ga]
.

This expression enables one to obtain the asymptotic variance of the estimator by application of Lemma A.2.1
and Theorem A.2.2

σ2
a [Υ∞G (O)] = Va

[∑

λ∈Λ
O(λ, ·)g

λ
a(·, ·)
Ea[ga]

−E[O]
ga(·, ·)
Ea[ga]

]
.

The asymptotic variance of adiabatic reweighting estimator ΥM
Π (O) can be deduced by substituting, �

λ
a =

Ea[gλa |q] for gλa , �a for ga and following the same line of reasoning:

σ2
a [Υ∞Π (O)] = Va

[∑

λ∈Λ
O(λ, ·) �

λ
a(·)

Ea[�a]
−E[O]

�a(·)
Ea[�a]

]
.

When the observable is an indicator function 1ξ? ◦ ξ(q) associated with a reaction coordinate ξ(q) that is
independent of the external parameter, the asymptotic variance simplifies into

σ2
a [Υ∞Π (1ξ? ◦ ξ)] =Va

[
1Λξ? ◦ ξ

�a
Ea[�a]

]
,

where 1Λξ? ◦ ξ(q) = 1ξ? ◦ ξ(q)−E [1ξ? ◦ ξ]. The formulation of estimator ΥM
G for observables that are dependent

on the external parameter is useful in the free energy context below.

A.5 Estimation of free energies along λ

As for the generic estimator of the free energy A(λ) considered in subsection 2.2.2, the asymptotic variance
can be obtained by noticing that the free energy corresponds to the co-logarithm of the total expectation of

observable 1λ. Here, one applies theorem A.2.2 with function g set to the co-logarithm function and Y
M

set
to ΥM

G (1λ), where G corresponds to R (standard reweighting) and H (binning) for the FEP and TO methods,
respectively. This yields the following expression for the asymptotic variance of the corresponding free energy
method

σ2
a

[
Â(λ)

∞
FEP/TO

]
=
σ2

a [Υ∞G (1λ)]

pΛ0 (λ)2
= Va

[
gλa

pΛ0 (λ)Ea [ga]
− E[1λ]

pΛ0 (λ)

ga
Ea[ga]

]
.

Noticing that E[1λ] is pΛ0 (λ) and that pΛ0 (λ)Ea [ga] is Ea
[
gλa
]
, one eventually obtain the desired asymptotic

variance in a more compact form

σ2
a

[
Â(λ)

∞
FEP/TO

]
= Va

[
gλa

Ea [gλa ]
− ga
Ea [ga]

]
. (A.5)

The asymptotic variance of the AR method similarly writes

σ2
a

[
Â(λ)

∞
AR

]
= V

Q
a

[
Ea
[
gλa(·, q)

∣∣q
]

Ea [gλa ]
− Ea [ga(·, q)|q]

Ea [ga]

]
= Va

[
�
λ
a

Ea [�λa ]
− �a
Ea [�a]

]
. (A.6)

A.6 Variance reduction through conditioning of self-consistent reweight-
ing

We prove here variance reduction when conditioning is done within self-consistent reweighting. Let first assume
the state space Q be enumerable and introduce the indicator functions Hq(q̄) and Yλ,q(ζ, q̄) = 1λ(ζ)Hq(q̄). We
define the corresponding multi-dimensional vectors as H = {Hq}q∈Q and Y = {Yλ,q}λ∈Λ,q∈Q. The averaged

vector Y
M

= 1
M

∑M
m=1 Ym constructed from the Markov chain {ζm, q̄m}1≤m≤M encodes all the information

that is necessary to evaluate any observable estimate through self-consistent reweighting (1.38). It contains in

110



particular the information that is required to solve the associated set of self-consistent equations (1.39) wherein
Mλ = 1̄Mλ . Since the Markov chain is generated according the pa(ζ, q̄) distribution, we have for all λ ∈ Λ

Ea

[
1
∞
λ

∣∣H∞
]

= 1
∞
λ = Ea [1λ] = pΛa (λ)

and, more generally

Ea

[
Y
∞∣∣H∞

]
= Y

∞
= Ea [Y ] . (A.7)

The law of total covariance allows us to decompose the covariance matrix of Y into the following sum

Γ [Y ] = Ea [Γ[Y |H]] + Γ [Ea[Y |H]] (A.8)

where Γ[Y |H] is the conditional covariance of Y given H and Γ [Ea[Y |H]] is the covariance of the conditionally
expected value of Y given H. Covariance matrices are semidefinite. Herein, we consider that the three covariance
matrices are definite positive, otherwise the problem would be degenerate and sampling might not be necessary.
The following strict inequality thus holds

∇g(Y
∞

)TEa [Γ[Y |H]]∇g(Y
∞

) > 0, (A.9)

where g denote the smooth function Y
M 7→ ΥM

SC(O|λ), i.e. the (unknown) function returning the estimate from

the given data Y
M

. The estimate being unique, ∇g(Y
∞

) is a non zero vector. The asymptotic variance of the
self-consistent reweighting estimator writes

σ2
a [Υ∞SC(O|λ)] = ∇g(Y

∞
)TΓ[Y ]∇g(Y

∞
).

As a result of (A.7), (A.8) and (A.9), the asymptotic variance of the conditioned self-consistent reweighting
estimator is systematically lowered

∇g(Y
∞

)TΓ[Ea [Y |H]]∇g(Y
∞

) = σ2
a [Υ∞Π (O|λ)] < σ2

a [Υ∞SC(O|λ)] .

When the state space Q is not enumerable, we may first approximate the observable expectation using
appropriate histograms of the energies Hλ,U and of the observable values Hλ,U,O (see Section 2.6 in Ref. [35]),
perform the conditioning, compare the asymptotic limit and eventually consider the small bin-width limit to
conclude that variance reduction still holds.
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B | Algorithms

B.1 Metropolis algorithms

Algorithm 1 used in Sec. 3.2 is a Metropolis algorithm in a biased ensemble. The standard deviation σ for the
coordinate moves was fitted so that the mean acceptance rate is 20− 50% and was set to 0.1.

1: for m = 1 to M do
2: generate gaussian deviate g of standard deviation σ
3: draw integer deviate i uniformly in J1, NK
4: construct trial configuration q̄ = (q̃1, · · · , q̃N ) from current configuration qm−1 = (q1, · · · , qN ) by setting q̃i = qi + g and

q̃j = qj for j 6= i
5: draw real number r randomly and uniformly in [0, 1[
6: if r ≤ exp[f ◦ ξ(q̃)− U0(q̄)− f ◦ ξ(qm−1) + U0(qm−1)] then . Metropolis test
7: qm ← q̄
8: else
9: qm ← qm−1

10: end if
11: end for

Algorithm 2 is used in Sec. 3.2 and referred to as Work-bias Monte Carlo algorithm. We set σ to 0.1. We define
Uf (λ, q) = U(λ, q)− f ◦ ξ(q).

1: for m = 1 to M do
2: λ0 ← λm−1 . or resample λ0 from (λm−1, qm−1)
3: W 0→0

f ← 0

4: q0 ← qm−1

5: sample λL ∝ N (2.5 + λ0, 3σ)
6: for ` = 0 to L− 1 do
7: set λ`+1 = λ0 + `+1

L
(λL − λ0) and compute W`→`+1 = Uf (λ

`+1, q`)− Uf (λ
`, q`) +W0→`

8: draw integer deviate i uniformly in J1, NK
9: construct trial configuration q̄ = (q̃1, · · · , q̃N ) from current configuration q` = (q1, · · · , qN ) by setting q̃j = qj for j 6= i

and sampling q̃i ∝ N (qi, σ)
10: draw random real r uniformly in [0, 1[

11: Q̃`→`+1
f = Uf (λ

`+1, q̄)− Uf (λ
`+1, q`)

12: if r ≤ exp[−Q̃`→`+1] then . local Metropolis test

13: q`+1 ← q̄ and Q`→`+1
f = Q̃`→`+1

14: else
15: q`+1 ← q` and Q`→`+1

f = 0

16: end if
17: Q0→`+1

f = Q0→`
f +Q`→`+1

f
18: W 0→`+1

f = W 0→`
f + W `→`+1

f
19: end for
20: draw real number r randomly and uniformly in [0, 1[
21: if r ≤ exp[−W0→L

f ] then . global Metropolis test

22: qm ← qL . acceptation of global move
23: else
24: qm ← qm−1 . rejection of global move
25: end if
26: end for
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B.2 Adaptively biased sampling algorithms

Algorithm 3 is discussed in Sec. 3.3.1. It corresponds to a Generic ABP algorithm. Setting γi equal to µi and choosing
µi >> 1 allow recovering the updating scheme proposed in [33] for observable Ō(q).

1: for i = 0 to I do
2: for m = 1 to µi do
3: construct trial configuration q̄ from current configuration qim−1
4: draw real number r randomly and uniformly in [0, 1[
5: if r ≤ exp[fi ◦ ξ(q̃)− U0(q̄)− fi ◦ ξ(qim−1) + U0(qim−1)] then . Metropolis test

6: qim ← q̄ else qim ← qim−1
7: end if
8: end for
9: if i ≤ I − 1 then

10: for ξ? ∈ Ξ do . auxiliary biasing potential update

11: fi+1(ξ?) = fi(ξ?)− ln

[
1 +

γi

µi

µi∑
m=1

1ξ?
(
ξ(qim)

)]
+ ln

[
1 +

γi

µi

µi∑
m=1

exp
(
− fi ◦ ξ(qim)

)]
12: end for
13: qi+1

0 ← qiµi
14: else . estimation on last iteration

15: Ô =

∑µI
m=1 exp

[
− fI ◦ ξ(qIm)

]
Ō(qIm)∑µI

m=1 exp
[
− fI ◦ ξ(qIm)

]
16: end if
17: end for

Algorithm 4 ABP algorithm based on the updating scheme [140]

1: for i = 0 to I do
2: construct trial configuration q̄ from current configuration qi

3: draw real number r randomly and uniformly in [0, 1[
4: if r ≤ exp[fi ◦ ξ(q̃)− U0(q̄)− fi ◦ ξ(qi) + U0(qi)] then . Metropolis test
5: qi+1 ← q̄
6: else
7: qi+1 ← qi

8: end if
9: for ξ? ∈ Ξ do . auxiliary potential update

10: fi+1(ξ?) = fi(ξ?)− ln
[
1 + γi 1ξ?

(
ξ(qi+1)

)]
+ ln

[
1 + γi exp

(
− fi ◦ ξ(qi+1)

)]
11: end for
12: end for
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Algorithm 5 ABF algorithm [30, 31] described in Sec. 3.3.2.

1: for ξ? ∈ Ξ do
2: C(ξ?)← 0, D(ξ?)← 0
3: end for
4: for m = 1 to M do
5: for k = 1 to K do
6: construct trial configuration q̄k from current configuration qkm−1
7: draw real number r randomly and uniformly in [0, 1[
8: if r ≤ exp[fm−1 ◦ ξ(q̄k)− U0(q̄k)− fm−1 ◦ ξ(qkm−1) + U0(qkm−1)] then . Metropolis test

9: qkm ← q̄k

10: else
11: qkm ← qkm−1
12: end if
13: end for
14: for ξ? ∈ Ξ do . adaptation
15: C(ξ?)← C(ξ?) +

∑K
k=1

dU0
ξ

(qkm)1ξ?
(
ξ(qkm

)
16: D(ξ?)← D(ξ?) +

∑K
k=1 1ξ?

(
ξ(qkm)

)
17: f ′m(ξ?) =

C(ξ?)

D(ξ?)
. biasing force update

18: fm(ξ?) =
∫ ξ?
ξ0

f ′m(dξ̃) . integration of biasing force

19: fm(ξ?)← fm(ξ?) + ln
∫
Ξ exp

[
− fm(ξ̃)

]
dξ̃ . normalization

20: end for
21: end for

Algorithm 6 ABF algorithm used in Sec. 3.4 for expanded ensemble simulations [34, 141] with conditioning on λ ∈ Λ.
The K replicas of the system shares the same biasing force. Either a Metropolis Monte Carlo algorithm or a Langevin
dynamics scheme can be used to propagate the replicas.

1: for λ ∈ Λ do
2: C(λ)← 0, D(λ)← 0
3: end for
4: for m = 1 to M do
5: for k = 1 to K do
6: q̄k = qkm−1 +

√
2τGkm with Gkm ∼ N (0, 1) . Apply diffusion to current configuration

7: if Metropolis algorithm then
8: r ∼ U[0,1[ . r is drawn uniformly in [0, 1[

9: if r ≤
∑
λ∈Λ exp

[
am−1(λ)− U(λ, q̄k)

]
∑
λ∈Λ exp

[
am−1(λ)− U(λ, qkm−1)

] then . Metropolis test

10: qkm ← q̄k

11: else
12: qkm ← qkm−1
13: end if
14: else if Overdamped Langevin dynamics then
15: qkm = q̄k + τ∇q ln

∑
λ∈Λ exp

[
am−1(λ)− U(λ, q̄k)

]
16: end if
17: end for
18: for λ ∈ Λ do

19: π̄am−1

(
λ|qkm

)
= exp

[
am−1(λ)− U(λ, q̄k)

] /{∑
ζ∈Λ exp

[
am−1(ζ)− U(ζ, q̄k)

]}
20: C(λ)← C(λ) +

∑K
k=1 ∂λU

(
λ, qkm

)
π̄am−1

(
λ|qkm

)
21: D(λ)← D(λ) +

∑K
k=1 π̄am−1

(
λ|qkm

)
22: a′m(λ) =

C(λ)

D(λ)
. biasing force update

23: am(λ)←
∫ λ
λ0 a′m(ζ)dζ . the symbolic integration of biasing force is performed by numerical quadrature based on

trapezoidal rule
24: am(λ)← am(λ) + ln

∑
ζ∈Λ exp

[
− am(ζ)

]
. normalization

25: end for
26: end for
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Algorithm 7 Conditioning and sampling schemes for estimating the conditional expectation of O(λ, q) observable and
the total expectation of Ō(q) observable, with time-homogeneous biasing potential Â(λ).

1: C̃ ← 0, D̃ ← 0
2: for λ ∈ Λ do
3: C(λ)← 0, D(λ)← 0
4: end for
5: for m = 1 to M do
6: for k = 1 to K do
7: q̄k = qkm−1 +

√
2τGkm with Gkm ∼ N (0, 1)

8: if Metropolis algorithm then
9: r ∼ U[0,1[

10: if r ≤
∑
λ∈Λ exp

[
Â(λ)− U(λ, q̄k)

]
∑
λ∈Λ Λ exp

[
Â(λ)− U(λ, qkm−1)

] then . Metropolis test

11: qkm ← q̄k

12: else
13: qkm ← qkm−1
14: end if
15: else if Overdamped Langevin dynamics then

16: qkm = q̄k + τ∇q ln
∑
λ∈Λ exp

[
Â(λ)− U(λ, q̄k)

]
17: end if
18: end for
19: for λ ∈ Λ do

20: π̄Â
(
λ|qkm

)
= exp

[
Â(λ)− U(λ, q̄k)

]/{∑
ζ∈Λ exp

[
Âm−1(ζ)− U(ζ, q̄k)

]}
21: C(λ)← C(λ) +

∑K
k=1O

(
qkm
)
π̄Â
(
λ|qkm

)
22: D(λ)← D(λ) +

∑K
k=1 π̄Â

(
λ|qkm

)
23: end for
24: $Â (qkm) =

∑
λ∈Λ exp

[
−Â(λ)

]
π̄Â
(
λ|qkm

)
25: C̃ ← C̃ +

∑K
k=1 �Â (qkm)Ō

(
qkm
)

26: D̃ ← D̃ +
∑K
k=1 �Â (qkm)

27: end for
28: for λ ∈ Λ do
29: ΥMΠ (O|λ) = C(λ)/D(λ) . Estimate of conditional expectation
30: end for
31: ΥMΠ (Ō) = C̃/D̃ . Estimate of total expectation

Algorithm 8 is used in Sec. 4.4 for sampling the expanded path ensemble. The proof that the next index lm+1

is selected with probability Pa(l|zm+1) is given in Ref. [66].

Start from indexed path (z0, l0):
for m = 0 to M − 1 do

Draw i randomly from lm using αi→lm transition probability matrix; Set lm+1 to i;
Move to state (λi, xi) from state (λ̄, x̄) = (λlm, xlm) of the current path (zm, lm) using the state-sampling algorithm;
Set ` to i;
while ` < L do

Apply the forward Langevin scheme; Evaluate W i→`+1
a = W i→`

a + W `→`+1
a ;

Increment N by O?(λ`+1, x`+1) exp
[
−W i→`+1

a
]

Increment D by exp
[
−W i→`+1

a
]
;

Increment ` by 1;

Change lm+1 to ` with probability exp
[
−W i→`+1

a
]
/P

end while
set ` to i;
while ` > 0 do

Apply the backward Langevin scheme; Evaluate W i→`−1
a = W i→`

a + W `→`−1
a ;

Increment N by O?(λ`, x`) exp
[
−W i→`−1

a
]

Increment D by exp
[
−W i→`−1

a
]
;

Decrement ` by 1;

Change lm+1 to `+ 1 with probability exp
[
−W i→`−1

a
]
/D;

end while
Evaluate EZa [O?|zm+1] = N /D,
· · ·

end for
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B.3 Harmonic superposition approximation

Equilibrium properties of clusters, including the free energy itself, can be formally expressed from the contribu-
tions of the basins of attraction (or inherent structures) rather than configurations [42]. The relative probability
pα of visiting isomer α is calculated as a function of temperature. The isomers are therefore sorted according

to their value of Q4, denoted as Q
(α)
4 for isomer α, and neglecting the variations of Q

(α)
4 with temperature.

Again, this approximation will be satisfied only at low temperatures, below Tss. Note that the superposition
approximation can provide accurate thermodynamics observables over broad temperature ranges, if anharmonic
contributions are included, and if the minima of the potential energy surface are correctly sampled. For small
systems such as LJ13, a nearly complete enumeration of the minima can be performed [42]. However, the number
of isomers is likely to grow at least exponentially with the number of degrees of freedom [142], and reweighting
schemes are needed for large systems. Anharmonic corrections to the free energies have been proposed from
systematic perturbation expansions [143]. Such methods, which aim at characterizing the global thermodynam-
ics of the system over broad temperature ranges, will not be considered here, as we only use the superposition
approximation at low temperatures to get an estimate of the relative probabilities of some specific low-energy
isomers, particularly the defective truncated octahedra.

Quenches from parallel tempering Monte Carlo simulations provided 6837 different structures (identified by
Doye et al. [144]), which were gathered into classes depending on their value of Q4. The first class O = {α|Qα4 >
0.18} corresponds to the truncated octahedral global minimum, as well as a few defective cubic isomers. The
second class, D = {α|0.09 ≤ Qα4 ≤ 0.12}, contains about half a dozen of defective cubic structures presenting
stacking faults. Finally, the third class I consists of all remaining isomers, including icosahedral and disordered
structures. Because we will not use any reweighting scheme, the free energies calculated this way will not
correctly represent the disordered phase, and should not be expected to compare with parallel tempering or
Wang-Landau sampling above the melting temperature.
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C | Perspectives

C.1 Optimal biasing potential for estimating conditional expecta-
tion through standard binning

When estimating conditional expectations of an observable q 7→ O(λ, q) given λ ∈ Λ, the biasing potential
should ideally be chosen such that it minimizes the sum of the asymptotic variances over λ ∈ Λ, assuming all
estimates to be equally important. It appears that an analytical form of the optimal biasing potential can be
exhibited for the binning estimator ΥM

H (O|λ). Let consider that λ takes values in a discrete set Λ =
{
λj
}

0≤j≤J
with for instance λj = j/J or λj = λmin + jλmax/J depending on the set-up. Then, the sum of asymptotic
variances to minimize is

σ2
H(O) =

∑

λ∈Λ
σ2
[
Υ+∞

H (O|λ)
]

=
∑

λ∈Λ

Ea

[
1λ(ζ) (O(λ, q)−E [O(λ, q)|λ])

2
]

pΛa (λ)2
=
∑

λ∈Λ

vλ

pΛa (λ)
. (C.1)

where we introduced

vλ =
1

pΛa (λ)
Ea

[
1λ(ζ) (O(λ, q)−E [O(λ, q)|λ])

2
]

= var(O(λ, q)|λ).

The expression (C.1) is obtained from (1.35) by substituting 1λ(ζ) for gλa (ζ, q) and simplifying. The nice feature
is that the variances of the numerators do not depend on the biasing potential a as they are conditioned on λ.
Given the conditional variances vλ, the auxiliary potential minimizing σ2

H(O) subject to the equality constraint

∑

λ∈Λ
pΛa (λ) = 1 (C.2)

can be obtained through the method of Lagrange’s multipliers. The discrete biases aλ = a(λ) being determined
up to a common additive constant, we can assume that aλ = ln pΛa (λ) + A(λ). Denoting by α the multiplier
associated with the constraint, the Lagrangian function to minimize is therefore

L (α,a) = α

(
−1 +

∑

λ∈Λ
exp

[
aλ − A(λ)

]
)

+
∑

λ∈Λ
exp

[
−aλ + A(λ) + ln vλ

]

where a =
{
aλ
}
λ∈Λ. The stationary points of the cost function must satisfy the following conditions





∂L
∂α

(α,a) = 0,

∂L
∂aλ

(α,a) = 0, λ ∈ Λ
⇐⇒





α =
(∑

ζ∈Λ
√
vζ
)2

aλ = A(λ) + ln
√
vλ − ln

(∑
ζ∈Λ
√
vλ
)
, λ ∈ Λ.
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The solution, denoted by (αc,ac), corresponds to a minimum with respect to the coordinates
{
aλ
}
λ∈Λ because

the associated Hessian matrix is diagonal and because its diagonal entries (the eigenvalues) are strictly positive

∂2L
∂2aλ

(αc,ac) =
(√

vλ + 1
/√

vλ
)

∑

ζ∈Λ

√
vζ


 > 0

The marginal probability of λ associated with the optimal biasing potential ac is therefore

pΛac(λ) = exp [ac(λ)− A(λ)] =

√
var [O(λ, q)|λ]∑

ζ∈Λ
√

var [O(ζ, q)|ζ]

Hence, assuming that the sampled states are independently and identically distributed, then the optimal biasing
potential for estimating E[O(λ, q)|λ] over Λ is equal to the sum of the free energy and of the half logarithm
of the normalized variance of the observable. As shown in Section 1.11, variance reduction is obtained for
any auxiliary biasing potential by implementing a conditioning scheme. An additional variance reduction can
therefore be obtained in simulations employing the optimal biasing potential associated with the histogramming
estimator in particular.

C.2 Optimal biasing potential for the thermodynamic occupation
method

Here, we determine the optimal biasing potential for the TO method described in Sec. 2.2.2. We set Λ =
{λj}0≤j≤J with λj = j/J and assume that the biasing potential is such that

J∑

j=0

exp
[
a(λj)− A(λj)

]
= 1. (C.3)

This entails that pΛa (λ) = exp [a(λ)− A(λ)] and Ea[ga] = 1. The asymptotic variance of this TO method is
therefore

σ2
[

Â(λ)
∞
TO

]
=Va


 1λ

pΛa (λ)
−

J∑

j=0

1λ(ζ) exp[−a(λj)]




= exp [−a(λ)] {exp [A(λ)]− 2}+

J∑

j=0

exp
[
−a(λj)− A(λj)

]

where we developed the variance resorting to the equalities Ea
[
1λ(ζ)2

]
= Ea [1λ(ζ)] = pΛa (λ). The summed

variance of the TO method is therefore, assuming equal weight for all bins

σ2
TO =

J∑

j=0

exp
[
−a(λj)

] {
exp

[
A(λj)

]
− 2 + (1 + J) exp

[
−A(λj)

]}

The summed variance can now be minimized using the method of Lagrange multipliers with constaint (C.3), in
a way analogous to what was done in Section C.1 for conditional expectations. The analysis provides us with
an optimal biasing potential which, omitting the additive constant used to normalize equation C.3, writes

aopt(λ) = A(λ) +
1

2
ln [1− 2 exp [−A(λ)] + (1 + J) exp [−2A(λ)]] .

The derivative of the optimal bias is approximately equal to the mean force wherever the free energy is sub-
stantially larger than ln(1 + J). This happens for all λ ∈ Λ as soon as the number of bins is sufficiently large.
The quantity exp[−A(λ)] scales as J−1 with increasing J . Figure C.1 illustrates the convergence as the number
of bins increases to 103, a typical value that is used in simulations. The free energy thus corresponds to the
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Figure C.1: Difference between the opti-
mal biasing potential and the free energy as
a function of λj = j/J with increasing the
bin number J . The free energy is A(λ) =
ω(λ − 1

2
)2 + ln

∑J
ı=0 exp

[
−ω(λı − 1

2
)2
]

with
ω = 16. Lines are to guide the eyes.

optimal biasing potential in the limit of a large number of bins.

C.3 Optimal biasing potential with conditioned estimators

Unfortunately, the optimal biasing potential associated with the adiabatic reweighting estimator is much more
difficult to exhibit because of the occurrence of the auxiliary potential in the involved conditional expectations
and variances to minimize. The asymptotic variance of the adiabatic reweighting estimator can be cast in the
following form

σ2
[
Υ∞Π (O

∣∣λ)
]

=
Va

[(
πλa
)2

[O(λ, ·)−E[O(λ, ·)|λ]]
2
]

pΛa (λ)2
=
Ea

[[
πλaOλ

]2]

pΛa (λ)2

recalling that Oλ = O −E [O(λ, ·)|λ] and Ea
[
πλaOλ

]
= 0. The quantity that should be minimized is therefore

σ2
Π(O) = Ea

[∑

λ∈Λ

[
πλaOλ
pΛa (λ)

]2
]
.

Minimizing this summed variance subject to constraint (C.2) leads to

pΛa (λ) = exp [a(λ)− A(λ)] = − ∂

∂aλ
lnσΠ(O) =

Ea

[
πλa
∑
ζ∈Λ

[
πζaOζ
pΛa (ζ)

]2]

Ea

[∑
ζ∈Λ

[
πζaOζ
pΛa (ζ)

]2] , exp [ϕa(λ)] (C.4)

Taking the logarithm, the optimal biasing potential appears as the solution of an implicit equation whose form
is

a(λ) = A(λ) + ϕa(λ) (C.5)

where λ ∈ Λ and the quantity ϕa defined in (C.4) depends on the free energy A, the observable O and the
biasing potential itself. A similar implicit equation is obtained for the estimation of the free energy using the
conditioned estimator:

a(λ) = A(λ) + Φa(λ) (C.6)

A preliminary study shows that it is possible to adapt the biasing potential in such a way that the implicit
equation (C.5) or (C.6) is satisfied for long enough simulations. This is achieved by implementing the adaptive
partial biasing algorithm described in Algorithm 9 below and inspired from [138]. To give a practical example,
we consider a cluster of 55 Lennard-Jones particles and perform simulation in a range of inverse temperature
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Figure C.2: (a) PΛA(λ) is the scaled marginal probability ‖Λ‖×pΛA(λ), as estimated in the ABF run (At) and production
run (Â); (b) contour map of lnE [1E|λ] with some isolines, and with color-box displayed in (c); the thick magenta solid
line and the thick white dashed line represent the two stationary lines, {λ,A ′(λ)} and {S′(E),E} curves, respectively,
where S(E) is the microcanonical entropy; (d) {lnEA [1E] ,E} curve.

around the inverse melting temperature [34] using a variant of the linear coupling setup (1.8):

U(λ, q) = βεLJλE(q)

where β, the reference temperature, is set to one. We set the observable to the partial derivative of the extended
potential with respect to λ, that is equal to the potential energy in LJ units of energy εLJ : O ≡ εLJE for all
λ ∈ Λ. The evolution of the mean potential energy provides relevant information about the finite-size phase
transition in this cluster [42]. The results of expanded ensemble simulations [34], performed using the adiabatic
ABF algorithm and reported in Fig. C.2, clearly characterize the melting transition with a kind of vander Waals
loop for the entropy derivative.

To show the feasibility of constructing optimal biasing potentials, additional expanded ensemble simulations
using Algorithm 9 and M = 109 Langevin steps. We display the simulation results in panels (c-d) of Fig. C.3:

(c): the biasing potential is constructed through partial biasing based on relation (C.5), so as to optimize the
estimation of the mean potential energy (the derivative of the free energy);

(d): the biasing potential is constructed through partial biasing based on relation (C.6), so as to optimize the
estimation of the free energy (the primitive of the mean potential energy);

(e): tentative construction of the biasing potential through full biasing so as to make the biasing potential
equal to the free energy.

The quantity δA is the difference between the biasing potential and the estimated free energy. The fact that
exp [δA] becomes equal to the scaled marginal probability PΛa (λ) in simulations (c) and (d) indicates that the
biasing potential has converged to its optimal form and that the implicit relation is satisfied. The overall
reduction of statistical variance is about a few percents only. However, the main advantage of the approach is
that simulations automatically allocate the computational resources in λ-ranges of interest, in the vicinity of
the phase transitions and on the edges, regions where the statistical variance is larger. With full biasing, δA is
always zero and the estimated marginal probability of λ should be homogeneous. The fact that this is not the
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Figure C.3: The displayed quantity δA is the difference between the adaptive biasing potential and the free energy, (a)
Histogram of the energies from a converged simulation in the range λ ∈ [3, 4]; (b) evolution of mean internal energy as a
function of λ, the inflexion point charactering the melting temperature, (c) adaptation of the biasing potential on A +ϕA
(converged simulation); (d) adaptation of the biasing potential on A + ΦA (converged simulation);(e) adaptation of the
biasing potential on A (non converged simulation).

case in the displayed simulation (e) indicates that the biasing potential failed to converge, despite the use of the
same updating rate as in simulations (c) and (d). The reason is attributed to the residual metastability that is
amplified by the slowly converging biasing potential. The updating rate γm is decaying too fast. Variant forms
of γm are advocated in Ref. [138] in such circumstances.
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Algorithm 9 partial biasing algorithm inspired from updating schemes studied by Fort et al. [138] and transposed to
expanded ensemble simulations with conditioning. Only a fraction ϕam(λ)−1 of the conditional probability πλa (q) is used
to adapt the biasing potential. Replacing ϕa by Φa allows optimizing the calculations of free energies. Setting ϕa to 1
allows recovering the standard ABP algorithm 4. C is a constant.

for m = 1 to M do
qm = qm−1 + τ∇q ln

∑
λ∈Λ exp [am−1(λ)− U(λ, q̄)] +

√
2τGm with Gm ∼ N (0, 1) . Langevin dynamics

for λ ∈ Λ do
update ϕam (λ) and pΛam (λ) from ϕam−1 (λ) and pΛam−1

(λ)

end for
γm = C

m

[∑
λ∈Λ ϕam (λ)−1

]−1

for λ ∈ Λ do . auxiliary potential update

am(λ) = am−1(λ)− ln

[
1 + γm

πλam−1
(qm)

ϕam (λ)

]
+ ln

[
1 + γm

∑
ζ∈Λ

�
ζ
a(qm)

ϕam (ζ)

]
end for

end for
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