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Abstract

Dans les machines à fusion telles que les tokamaks, le gain de puissance augmente non-linéairement
avec le temps de confinement de l’énergie. La qualité de confinement énergétique du plasma détermine
alors largement la taille et donc le coût d’un réacteur à fusion. Ce temps de confinement est princi-
palement gouverné par la turbulence plasma existant dans les tokamaks –induisant des fluctuations
d’une amplitude de quelques pourcents dans le coeur du plasma– mais aussi le transport associé.
Comprendre l’origine de cette turbulence et ses propriétés en vue d’un possible contrôle est l’un des
problèmes critiques pour la fusion par confinement magnétique. Le modèle le plus approprié pour
simuler ces plasmas faiblement collisionnels est un modèle cinétique. Dans les descriptions premiers
principes des plasmas, une équation à six dimensions (3 coordonnées de position et 3 de vitesse) –de
Vlasov ou Fokker-Planck– est résolue pour la fonction de distribution de chaque espèce et couplée
de manière auto-consistante aux équations de Maxwell décrivant les champs électromagnétiques. Par
chance, dans les plasmas de fusion, les fluctuations turbulentes se développent à des fréquences typ-
iques beaucoup plus faibles que la fréquence cyclotronique. Le problème 6D peut ainsi être réduit à
un problème 5D. Malgré cette réduction d’une dimension, la construction d’outils de simulations basés
sur ces principes reste très complexe et donc peu répandue. Moins de 15 codes gyrocinétiques 5D sont
développés activement dans le monde, dont 4 sont européens. Cette HDR retrace le développement
d’un tel code depuis 2001 à l’IRFM (Institut de Recherche sur la Fusion Magnétique) au CEA de
Cadarache. Le code GYSELA (pour GYrokinetic SEmi-LAgrangian) permet de résoudre les équations
gyrocinétiques pour plusieurs espèces ioniques dans la limite électrostatique (pas de fluctuations du
champ magnétique). Les spécificités du code sont d’être global (simulation de l’ensemble du tore),
de ne pas faire d’approximation de séparation d’échelle (code full-f) et de forcer la turbulence via
des sources de particules, moment et de chaleur (par opposition aux codes qui fixent les gradients de
densité, de vitesse et de température). Le code est de plus basé sur une méthode semi-Lagrangienne
(qui correspond à un mixe entre l’approche Particle-In-Cell la plus répandue et l’approche eulérienne).
Toutes ces propriétés en font un code unique en son genre. Comme tous les autres codes gyrocinétiques,
il utilise de manière intensive les super-calculateurs et nécessite les techniques de pointe en calcul mas-
sivement parallèle. Un tel projet n’aurait donc pas été possible sans une collaboration forte entre
mathématiciens, physiciens et informaticiens. Cette HDR est donc à l’interface entre trois domaines
scientifiques que sont la physique de la turbulence plasma, les méthodes numériques pour les équations
cinétiques et le calcul haute performance (HPC).
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Introduction

In magnetic fusion devices, the power gain increases non linearly with the energy confinement time.
The performance in plasma energy confinement is a major parameter in determining the size and there-
fore the cost of a fusion reactor. This confinement time is mainly governed by plasma turbulence as
observed in experiments [SCM+07, PDM+07]. The latter sustains fluctuations with relative magnitude
of a few percents in the hot core and increasing towards the edge. Turbulent transport is understood
to govern heat transport for both ions and electrons. It also plays a key role in flow generation and
particle transport [ITE99]. Despite extensive experimental and theoretical effort, plasma turbulence
in fusion experiments remains poorly understood and is a major unknown when scaling present exper-
iments to ITER size devices, and, even more troublesome to predict confinement properties of a device
like WEST. Two issues are of particular importance, (i) the level of self-organization, and therefore of
self-regulation that determines turbulent transport properties in ITER standard conditions, and (ii)
the ability of controlling turbulent transport, either towards increasing heat confinement, or towards
increasing impurity out-flux due to turbulent transport. Inhomogeneity in density, temperature, and
magnetic field drive the plasma out of thermodynamical equilibrium, and tend to excite several micro-
instabilities over a wide spectral range. These plasmas exhibit low collisionality so that conventional
fluid models are questionable and kinetic descriptions are more appropriate. A kinetic formalism is
also needed to account for wave-particle resonant interaction.
In such first-principle descriptions of plasmas, a six dimensional evolution equation for the distribution
function – Vlasov or Fokker-Planck equations – is solved for each species, coupled to self-consistent
equations for the electromagnetic fields, namely Maxwell’s equations [Ich92]. Since turbulent fluctua-
tions are observed to exhibit much lower typical frequencies than the high frequency cyclotron motion,
the 6D problem can be reduced to 5D one by removing, using phase space reduction, the gyromotion
and other high-frequency dynamics. The useful part of the distribution function then evolves in a five
dimensional phase space generated by four slow variables and an adiabatic invariant. This model is
known as the gyrokinetic model. For detailed gyrokinetic theory see review papers by Brizard & Hahm
(2007) [BH07] and Krommes (2012) [Kro12]. However, despite this dimensional reduction, solving 5D
non-linear gyrokinetic equations for several ion species remains quite challenging. Moreover, the com-
plex tokamak geometry and boundary conditions, contribute to making such a simulation tool quite
demanding with respect to development and use. Consequently, these are not very widespread and, to
date, none of the codes addresses routinely all the physics at hand. Less than fifteen 5D first-principle
gyrokinetic codes are actively maintained all over the world, four being European codes. Since 2001, I
am in charge of developing one of them at IRFM at CEA Cadarache: the Gysela code (for GYroki-
netic SEmi-LAgrangian code). Gysela is a 5D gyrokinetic code dedicated to non-linear simulations
of Ion Temperature Gradient (ITG) turbulence. The strength of the code is to be a global full-f flux-
driven code. Adding to this the fact that it is based on a semi-Lagrangian numerical scheme makes
it the only one of its kind in the gyrokinetic worldwide community. As the other gyrokinetic codes,
Gysela benefits from an intensive use of massively parallel supercomputers and require state-of-the-
art high performance computing (HPC). Such a development would not have been possible without
a strong collaboration between mathematicians, physicists and computer scientists. This manuscript
therefore reflects this interface between three scientific domains, namely plasma turbulence physics,
numerical methods for kinetic equations and high performance computing.
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GYSELA a global full-f gyrokinetic semi-Lagrangian code

My first contact with plasma turbulence was during my post-doctoral position (2000-2001) at Centre
de recherche en physique des plasmas (CRPP) at Ecole Polytechnique Fédérale de Lausanne (EPFL)
where I had developed a 4D drift-kinetic ITG code in cylindrical geometry [37]. This work has been
undertaken with M. Brunetti during her post-doc and a positive conservative flux method has been
tested [12, 11]. We had shown that the advantage of prescribing positivity of the distribution function
was counterbalanced by the drawback of an over-diffusivity.

The first task upon my arrival at CEA Cadarache was to develop a 5D gyrokinetic code in toroidal
geometry. The main initial code requirements were to be: (i) global, namely simulating the whole
plasma domain to be able to study the impact of large scale flows on turbulence ; (ii) full-f , meaning
that the whole distribution function –with no separation between equilibrium and fluctuation parts–
is evolved to take into account the back reaction of turbulent transport in the time evolution of
the equilibrium; and (iii) based on the original Backward Semi-Lagrangian (BSL) numerical scheme
[SRBG99] –a mix between widespread Particle-In-Cell (PIC) and Eulerian methods– for which we had
already shown good properties of energy conservation for a simplified 4D drift-kinetic system [38].
Taking into account all these constraints the Gysela code development started in 2005 [41, 40, 42].

Since the first version, we have continuously improved its numerical scheme and conservation
properties [48]. This has been performed in tight collaboration with IRMA1 (Institut de Recherche
Mathématique Avancée) institute from Strasbourg university and more recently with the Numerical
Methods in Plasma Physics Division2 from Max-Planck-Institute für Plasmaphysik at Garching (Ger-
many) from its creation in 2012 onwards. Thanks to this ongoing collaborative effort, an innovative
Hermite local spline method [MV07, CLS07, CLS09] has been specifically developed to improve the
parallel scalability of the BSL scheme in high-dimensional codes as Gysela . Several variants of the
BSL scheme for solving Vlasov-type equations have also been tested. Let us for instance mention the
Forward Semi-Lagrangian (FSL) scheme [CRS09] or a Conservative-Semi-Lagrangian (CSL) scheme
[CMS10b] based on the Parabolic Spline Method [ZWS02]. Each of these new schemes were tested
with simplified Vlasov-Poisson models before being tested in a 4D drift-kinetic model [10, 47].

We have learned from this systematic approach, that efficiency of numerical schemes in solving
simplified 2D Vlasov-Poisson systems is a necessary but not sufficient condition for applicability with
conserved efficiency in more demanding codes, typically the 4D drift-kinetic. Given this observation,
the need for using 4D test cases in developing numerical methods has emerged. A simplified 4D test
case has therefore been made available. It is organized with independently tested modules in order to
facilitate step by step changes in production codes as Gysela.
The decision to develop a platform dedicated to the solution of 4D Vlasov equations including the
4D drift-kinetic case (see for instance description in [38]) has been an important step in developing
Gysela. This work has begun in 2010, in the framework of the 4 years INRIA ADT (Technolog-
ical Development Actions) SeLaLib3 (Semi-Lagrangian Library). This software development is now
pursued in the context of the INRIA Project Lab FRATRES both with the Tonus INRIA Project
Team based at the University of Strasbourg and the Max-Planck-Institut für Plasmaphysik (IPP) in
Garching. While originally dedicated to the semi-lagrangian method, the structure of the SeLaLib
platform is versatile enough to provide a development and test facility for other types of approaches,
such as particle-in-cell. The SeLaLib software library contains now a collection of building blocks for
the parallel simulation of the Vlasov equations and the gyrokinetic equation either based on semi-
Lagrangian or Lagrangian (PIC) schemes. Besides numerical algorithms the library provides low-level
utilities such as input-output modules and parallelization strategies. Moreover, a collection of ref-
erence simulations for typical test cases with various discretization schemes supplements the library.
A goal for SeLaLib is to provide the appropriate numerical environment such that a building block
developed in SeLaLib can be implemented in gyrokinetic codes. This has been achieved with a new
gyro-average operator based on Hermite interpolation [CMS10a], [63]. This new operator has been
implemented in the Gysela code successfully, namely without performance loss. It replaces the Padé

1http://www-irma.u-strasbg.fr/
2http://www.ipp.mpg.de/ippcms/eng/for/bereiche/numerik
3http://selalib.gforge.inria.fr/
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approximation first implemented (see section 2.4 for more details) [53].
Presently, we use the modular SeLaLib library to develop a hybrid method based on a coupling

between a semi-Lagrangian scheme and an isogeometric approach. The goal is to find an efficient
semi-Lagrangian method to address various magnetic configurations in the Gysela code, favoring
comparison to experiments and providing a tool to investigate alternative geometries. As described
in section 2.1.2, in Gysela a generic circular magnetic configuration is currently considered. Such a
circular configuration is relevant for the Tore Supra tokamak, as well as the region in the vicinity of
the magnetic axis. It is less the case for WEST and ITER, especially when addressing the outer region
of the plasma. Simulations with the ORB5 code, have confirmed the importance of plasma shaping,
since elongation is shown to impact turbulence self-organization [4, 5]. Addressing turbulence control
and confinement optimization thus requires the capability to change the magnetic geometry. This
isogeometric approach had already been tested to solve a Poisson-type equation [CRS12]. An hybrid
approach based on analytical mapping has also been proposed during CEMRACS 2010 summer school
[3] on simplified 2D problems. Coupling with a more general mapping for the 4D drift-kinetic system
is under progress using the SeLaLib framework.

Collisional flux-driven plasma turbulence simulations

Main physical results obtained with GYSELA

The physics of turbulent transport in fusion devices is strongly coupled to experiments. Until the
breakthrough of tokamaks in the late 60’s, small plasma experiments where quite common in fusion
laboratories. Kinetic effects where used in particular to identify the role of turbulence and collisions
on phenomena akin to the plasma echo. In the late 70’s and early 80’s the interest had shifted to
understanding transport from a global point of view as measured profiles became available. Transport
codes emerged which gradually brought the conviction that heat transport, first for electrons, later
for ions, was governed by turbulence. At this stage, understanding turbulent transport was essentially
cast in the quasilinear framework, assuming constrained gradients and determining transport proper-
ties on the basis of the growth rate and most unstable mode number in the so-called mixing length
approximation. During the same years, the discovery of the H-mode in ASDEX triggered a new chal-
lenge for the theoretical understanding of turbulent transport. Several experiments and theoretical
analysis also revealed the occurrence of fast transport events in the radial direction, unfortunately
termed non-local transport. These events clearly indicated a departure of transport from the diffusive
process at the crux of the quasilinear predictions. At the same time a growing consensus made its way
indicating that large scale flows, self-generated by turbulence played a role on the onset of the H-mode.
In the late 90’s, our theory team together with a few other teams worldwide challenged turbulence
modeling with global codes such that the gradients where the result of transport and of the sources
and not prescribed. This flux-driven approach revealed complex turbulence self-organization including
the non-linear generation of zonal flows. The decay of the latter, was shown to be closely linked to
kinetic effects, which proved to be a powerful drive in investigating turbulent transport in the kinetic
framework. This very brief summary sets the scene for the development of Gysela, with a strong
emphasis on heat sources rather than constrained gradients as well as multi-scale physics, leading
to self-organization, and the idea that no separation between equilibrium and fluctuations could be
introduced a priori. In a first step, Gysela was developed as a full-f global code as recalled earlier in
this introduction.

Regarding the physics, an important step was achieved in 2009, when the forcing governed by
thermal baths at the two radial boundaries [40] was replaced by a volumetric heat source [57] (based
on the same strategy than the one previously tested in a 3D simplified model developed by Darmet
[16]). Actually, the implemented source term in the right hand side of the gyrokinetic equation is
versatile enough to allow for separate injection of heat, parallel momentum and vorticity [58]. In such
a flux-driven regime, turbulent transport exhibits intermittent large scale events, called avalanches,
which ballistic propagation on radial distances much larger than the turbulence correlation length. In
the analysis of such transport, it was shown in a specific regime, that the flux could be characterized
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by a non-local kernel κ: Q(r) = −
∫
κ(r, r′)∇rT (r′) dr′ [18]. Such dynamics of large scales –already

observed in fluid codes [56]– have been intensively studied in gyrokinetic simulations and in particular
with the Gysela code [60, 62, 57, 43, 34]. However, the connection with available confinement scaling
laws and predictive capability of this approach has not yet been achieved.

Gysela also addresses turbulent and neoclassical transports on an equal footing. A linearized
Fokker-Planck operator was derived [31] and implemented in Gysela to account for intra-species
collisions. The main results of neoclassical theory are recovered at low (banana) and medium (plateau)
collisionalities ν∗, i.e. the values of the heat diffusivity, and the ν∗ dependency of the ratio between
the poloidal flow and the ion temperature gradient [17]. The theoretical analysis is based on the
investigation of the extremum of the entropy production [55, 28, 30] where the Maxwellian distribution
function plays a leading role as the distribution belonging to the kernel of both the collision operator,
by choice of the collision operator, and of the Vlasov convection operator by considering that the
Maxwellian parameters are functions of the Vlasov invariants. Recovering known collisional transport
regime in the tokamak geometry is regarded as an important result since this transport could be
a major contribution to that of heavy impurities such as tungsten. More recently, a new collision
operator has been derived and implemented, which models both intra- and inter-species collisions.
It is particularly suited for trace impurities having reached thermal equipartition with the main ion
species. It has also been benchmarked with asymptotic collisional transport formulas in the tokamak
geometry, in the high collisionality regime (Pfirsch-Schlüter) [25]. This development has been required
by the recent possibility in Gysela to evolve a second distribution function. Coupling between the
species occurs both via the determination of the electric field and via the quasi neutrality constraint:
typically the turbulent branch and the collisions. The two distributions can model two ion species
of arbitrary masses and charges (e.g. main ions plus impurities, or deuterium-tritium plasmas). The
case of kinetic electrons is currently under development.

The properties of the equilibrium flows have been investigated. The order of magnitude of the flux
surface averaged poloidal flow has been found comparable to the one predicted by neoclassical theory.
However, its profile exhibits radial corrugations generated by turbulence, such that its gradient no-
ticeably differs from the one based on the sole neoclassical theory [31, 20, 58, 32]. Actually, turbulence
is shown to globally organize into a so-called “E × B staircase”, characterized by localized regions
of strongly sheared zonal flows associated to permeable transport barriers [18]. Their characteristics
weakly depend on key plasma parameters, but the departure from the instability threshold [23]. As far
as toroidal angular momentum is concerned, the balance of its constitutive equation is well fulfilled in
Gysela [1], and its transport is found to exhibit avalanche-like events correlated with those observed
for the heat flux [44, 2] and [DKG+13]. When a net toroidal spin-up is generated, either via a volume
source of momentum or through boundary conditions mimicking the coupling to the scrape-off layer,
the energy confinement time is found to degrade with increasing rotation for parallel Mach numbers
typically exceeding 20% [54].

Finally, improved transport regimes have been considered [61, 59]. First, a vorticity source allows
one to efficiently polarize the system. For sufficiently large shearing rates, turbulent transport is
suppressed and a transport barrier builds up. The vorticity source also governs a secondary instability
− driven by the temperature anisotropy in this case [65, 66]. Turbulence and its associated zonal flows
are generated in the vicinity of the barrier, destroying the latter due to the screening of the polarization
source by the zonal flows. These barrier relaxations occur quasi-periodically, and generically result
from the decoupling between the dynamics of the barrier generation, triggered by the source driven
sheared flow, and that of the crash, triggered by the secondary instability. Second, the heat source can
be either thermal or supra-thermal. In the latter case, where fast particles are generated, Energetic
Geodesic Acoustic Modes or EGAMs can be efficiently excited [70] and [GZD+14]. Their impact
on turbulent transport has been evidenced. In the considered range of parameters, the interaction
between EGAMs and turbulence is such that turbulent transport is enhanced in the presence of
EGAMs [71, 24]. Third, no transport barrier could be triggered in the vicinity of a minimum of the
safety factor q, although the radial extent of the gap without resonant modes was larger than the
turbulence correlation length [62].
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A strong activity of verification and benchmark

The development of the code has been performed with concern of numerical and physical verification.
First of all, one of the difficulty in full-f code is the delicate choice of the initial distribution function.
The influence of the initial state on turbulence and transport has been addressed. For two strongly
differing initial states, it has been found that the steady turbulent regime exhibits nearly identical
statistical properties [19, 22]. Conversely, several simulations with strong flow generation have seemed
to lock in states with reduced turbulent transport quite distinct from the expected regimes. The
possibility of multiple plasma states for the same values of the control parameters cannot be discarded
and long simulations hopefully backed by theoretical predictions will be necessary.

The code has been also benchmarked in the linear and non-linear regimes against other codes as
well as against theoretical predictions. At each stage, each time it was possible, comparisons with
analytical results have been performed: (i) the linear results of the 4D drift-kinetic version have been
validated with the linear dispersion relation results [38]; (ii) neoclassical results have been recovered
with our simplified collision operator [21, 17, 31, 29]; (iii) the radial force balance equation has been
recovered analytically from the conventional first order gyrokinetic equations [31, 1] and successfully
recovered numerically [19, 17, 1]; (iv) local conservation equations for density, energy and toroidal
momentum have been derived [1, 2]. Conventional verification tests for gyrokinetic codes have been
also successfully reproduced: (i) Rosenbluth-Hinton test [42]; (ii) linear and non-linear benchmarks
with the classical Cyclone DIII-D base case [42]. In this verification framework we plan to apply, in
the near future, the Projection on Proper elements (PoPe) method [13]. This PoPe method, developed
by Th. Cartier-Michaud during his PhD, has already proven its capability to verify kinetic codes of
plasma turbulence. It will be of interest to use this method in order to investigate the accuracy of
Gysela, and test alternative numerical schemes and resolution.

All along the improvement of the physics of the code, turbulence analysis have been confronted
with other gyrokinetic code results [33, 14, 44, 68, 69]. Benchmarking efforts have been also performed
since 2007 within (i) participation to the European turbulence code benchmarks [26]; (ii) non-linear
benchmarks with the global PIC code ORB5 [40]; (iii) comparison of flux-driven simulations with
ORB5 and XGC1 [58]. This benchmark activity continues in the framework of the european Fusion
project led by E. Sonnendrücker (2015-2017) on “Verification and development of new algorithms
for gyrokinetic codes” [7]. New non-linear simulations have already been compared with the two
European ORB5 and GENE codes [35]. A new collaboration has also recently started with JAEA
(Japan Atomic Energy Agency) with the objective to confrontate Gysela results with the Japanese
global full-f flux-driven code GT5D.

Finally, in terms of validation, the code has been confronted to tokamak experiments, qualitatively,
but alos quantitatively with a comparison with Tore Supra results [14, 15, 27, 23, 64].

GYSELA a massively parallel code preparing for Exascale

The code is developed in Fortran90 with some I/O routines in C. The parallelization is based on an
hybrid MPI/OpenMP paradigm since 2007 [46]. Gysela was one of the pioneer in such parallelization
approach, now commonly used to take advantage of the current supercomputer architectures based
on a cluster of SMP (symmetric shared memory multiprocessor) nodes. Since 2009 a large effort has
been dedicated to improving the parallelization efficiency. For detailed presentation regarding the
different optimization steps, we encourage the reader to refer to INRIA reports [49, 45] and papers
[50, 48] by Latu et al. as Rozar’s paper [53]. The difficulties in developing a code scalable up to several
thousands of cores are numerous and call for trade-offs and a close match between some aspects of
the code parallelization strategy and the computer architecture. One issue that is seldom considered
is the difficulty to access sufficiently large machines. As shown in Figure 1, we have tried to take
each opportunity of “Grand Challenge” campaigns –during each installation of new HPCs– to test
and improve the parallelization of the code. Gysela exhibits now an excellent scalability (91% of
relative efficiency at 458752 cores) using oll the available computing power of JUQUEEN Blue Gene
supercomputer (JSC/IAS, Juelich, Germany) [9]. With such performance, Gysela is since 2013 a
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member of the Hi Q club 4 (Highest Scaling Codes on JUQUEEN) which has been created to promote
the idea of exascale capability computing. Presently 23 codes coming from all scientific domains
belong to this club. One objective for the Gysela team is to have access to a bigger machine than
JUQUEEN for scalability tests beyond the present 500k core limit.

  

Relative efficiency
Number of

cores
Weak scaling Strong scaling

Gd Challenge
CINES (march 2010)

92 % 82 % 8192

Gd Challenge
CURIE (march 2012)

91 % 61 % 65 536

Porting on Blue Gene Architecture => Communication schemes rewritten

Gd Challenge
TURING (january 2013)

92 % 61 % 65 536

Access to totality of
JUQUEEN (may 2013)

91 % 458 752

x56

Figure 1: Relative efficiency of the GYSELA code for weak and strong scaling on two bullx machines
JADE (CINES, Montpellier, France) and CURIE (TGCC, Saclay, France) and on two Blue Gene
supercomputers TURING (IDRIS, Orsay, France) and JUQUEEN (JSC/IAS, Juelich, Germany).

The code is already using intensively Petascale capabilities with production run of 8k cores to
16k cores during several days or weeks. As shown on Figure 2, the use of CPU time has increased
by a factor 10 in 6 years, thus leading to a CPU time allocation of about 50 millions of CPU hours
in 2016. Obtaining this computing time is another challenge for the team. Every year, this requires
submitting applications, all different of course, to be granted the needed CPU time by different HPC
facilities. This year, the hours are distributed between the Tier1 Occigen machine at CINES5, Mont-
pellier, France and the two Tier0 machines : Curie at TGCC6, Bruyères-le-Châtel, France and Helios
at CSC7, Rokkasho, Japan. Of course the target HPC platforms changes from year to year depending
on the opportunities and availability. Since the development code is mainly performed on the Tier2

Figure 2: CPU time allocations for GYSELA on the different accessible supercomputers since 2012.

machine Poincaré at IDRIS8, Orsay, France, one faces the fact that the code is always running on

4http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html
5https://www.cines.fr/
6http://www-hpc.cea.fr/en/complexe/tgcc.htm
7http://www.iferc.org/CSC_Scope.html
8http://www.idris.fr/

8

http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html
https://www.cines.fr/
http://www-hpc.cea.fr/en/complexe/tgcc.htm
http://www.iferc.org/CSC_Scope.html
http://www.idris.fr/


INTRODUCTION

several HPC platforms at the same time (with little possibility of continuing a run elsewhere than
where started). To cope with these constraints, the Gysela code has been developed with portability
in mind. This means that parallelization optimization specific to one machine architecture has been
avoided as much as possible. With such strategy Gysela has already been used on many different
HPC architectures: (i) Harpertown / Nehalem INTEL (SGI Altix ICE), (ii) AMD OPTERON (PC
cluster + CRAY-XT5), (iii) Intel Itanium2 quadri-proc/dual-core (PC cluster + BULL Novascale),
(iv) Power 5 (IBM machine), (v) Nehalem Intel (BULL Novascale) ; the list being far from complete
and will most likely grow steadily with years. To facilitate the development and the deployment of
the code, Cmake build-system is used for compiling. Code versioning is ensured via the distributed
version control system GIT. A complete work-flow relies on quality procedures including human code
review and automated testing. The latter has been designed via the tracking system GitLab hosted
by Maison de la Simulation9 and the JENKINS continuous integration tool provided by CI-INRIA10.
A detailed description of this work-flow is given in Bigot et al. [8].
Despite using petascale computing resources, trade-off between the size of the fusion device and sim-
ulation up to energy confinement time must be found. Examples of three large simulations performed
since 2010 are presented in Figure 3. For each one, we have tried to stress one of the three main
simulation parameters, namely: (i) the mesh size –with a huge mesh of 272 billions of points [2]–; (ii)
a long time simulation –for comparison with Tore Supra experiments [23] (46 days on 5520 cores to
simulate approximately 1 energy confinement time)– and (iii) a simulation with impurities which has
succeed in running 15 days on 16k cores followed by 6 days on 32k cores after adding a second species,
namely tritium. These three simulations –corresponding to 6 million CPU hours for the first and
the third one and to 10.6 million CPU hours for the second one– are already extremely challenging.
They have all led to advances in the physics of plasma turbulence. A ”kitchen sink” extrapolation
indicates that a simulation for an ITER grade device and a duration of one energy confinement time,
and for two species, would require more than 50 days on 32k cores, typically 39 million CPU hours
and therefore roughly one year of the present computation budget (combining the allocation time that
is effectively spread on different HPCs).

  

Number of 
Points

(*=/a)
Time / 

c

Number of
cores

Number of 
days of 

simulation

Gd Challenge
CINES 2010

272 billions
(*=1/512)

147 840 8192 31

Gd 
Challenge 

CURIE 2012

33 billions
(*=1/150)

678 510 16 384 15

=> Adding of tritium 32768 6

Comparison 
with 

experiment
(in progress)

87 billions
(*=1/300)

2 000 000 5520 46

Figure 3: Some numbers for four challenging simulations performed with GYSELA: the first one with
a big mesh of 272 billion of points for a ITER-like ρ∗ = 1/512 (where ρ∗ = ρs/a with ρs the Larmor
radius of species s and a the small radius of the tokamak), the second and third one which have run
several days on more than 16k cores and the last one which correspond to a long time simulation.

This is to be compared to typical Gysela simulations at present: these are designed to run with a
control parameter ρ∗ = 1/150 (∼ 33 billions of points for one distribution function), a factor 2 in ρ∗ and
8 in number of grid points compared to ITER values, and using 4096 to 8192 cores for a couple of weeks.

9https://gitlab.maisondelasimulation.fr/
10https://ci.inria.fr/
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Stepping kinetic electron is altogether another story. If you consider that the ratio of Larmor
radii between ions (deuterium) and electrons is about 60 (scaling like the square root of the mass
ratio), one should increase the mesh size by a factor 603 and decrease the time step by a factor 60.
Therefore, the road is still long for a global flux-driven simulation with both kinetic ions and elec-
trons for ITER parameters. It will not be possible without exascale resources. It will also be very
dependent regarding innovative physical frameworks and well adapted as well as more efficient nu-
merical schemes. Regarding this aspect, aligned coordinates –based on a flux-coordinate independent
field-aligned approach [Ott11, HO13]– have been recently implemented with the aim of decreasing
the number of points required in the toroidal directions. Regarding the physics associated to the
electrons, the first step is to investigate the impact of the mass ratio on turbulence. First Gysela
simulations with kinetic electrons are planned with “heavy” electrons (mion/melectron ∼ 400 instead
of ∼ 1836). A second approach, where filtering to retain the “slowest” electrons (trapped electrons +
part of the passing electrons) as kinetic and the other part being assumed adiabatic, is being developed.

Finally, a computer science effort has been initiated to prepare the code to future exascale ma-
chines. The goal is to obtain an efficient parallelization on million of cores. The expertise gained with
the Gysela scalability test up to 500k cores on a BlueGene machine has helped identifying several
bottlenecks to achieve efficient exascale simulations. Some of them are inherent to Gysela, such as
the requirement for large memory per node, but others are more common to all applications, hence:
(i) the probability of crashes, which will inevitably increases with the increase of number of cores; (ii)
the choice for exascale architectures, which are still not clear (MIC, GPU or something else?); and (iii)
all the questions linked to handling large amounts of data (several hundreds of TBytes for Gysela),
namely data transfer, and data analyses and multidimensional visualization. If options are still open
regarding the type of processors that will be used in exascale HPCs, there is a trend towards less mem-
ory per node. A strong effort has already been performed during F. Rozar’s PhD to improve Gysela
memory scalability [51, 52], but further effort towards increasing the parallel domain decomposition is
mandatory to further reduce the memory requirement per node. In the course of preparing Gysela
for future architectures, a simplified prototype (with the main mathematical kernels of Gysela) has
been designed and tested on Xeon-Phi and GPU accelerators [6]. First results show that porting
codes on such architectures is not trivial and will require significant rewriting to achieve meaningful
performance upgrade. This represents lots of manpower specialized in high performance computing.
Regarding fault tolerance, some work has been initiated: (i) with the development of asynchronous
writing of the restart files during O. Thomine’s post-doc. [67] and (ii) with the implementation of
FTI library [BGTK+11] in Gysela. Both are still under test in the code and efforts will be pursued
on this issue in the framework of EoCoE european project11.

This manuscript has been written keeping in mind that is should prove to be helpful for students
and collaborators interested in Gysela results and running Gysela simulations. In that spirit,
I hope it can be seen as a brief introduction to gyrokinetic plasma turbulence for mathematicians
and computer scientists, as well as an introduction to Semi-Lagrangian computing for physicists. In
both cases, it would stand as a user’s guide of the Gysela code. In practice, this document is an
extension of the reference article for the 5D version of the code [36], completed whenever necessary.
It is organized as follows:

• Chapter 1 aims at introducing magnetic confinement in fusion devices. We recall that for strongly
magnetized plasmas, the six dimensional evolution equation for the distribution function – Vlasov
or Fokker-Planck equations – is solved for each species and coupled to the self-consistent equa-
tions for electromagnetic fields, namely Maxwell’s equations. We briefly describe the gyrokinetic
ordering and the so-called gyrokinetic framework model following Brizard and Hahm [BH07].

• Chapter 2, is dedicated to the global full-f flux-driven code Gysela including collisions and
source terms.

11http://www.maisondelasimulation.fr/projects/EoCoE.php
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• Chapter 3 is divided into two parts: (i) a first one addresses the numerical description of the
code based on the Semi-Lagrangian approach and (ii) the second one is focused on the hybrid
MPI/OpenMP parallelization of the code.

• Chapter 4 summarizes the systematic effort for verification and benchmarking performed at each
step the code development.

Whenever suitable, technical parts describing precisely what is implemented in the code are presented
in Appendices. At the end of this document, the reader can also find a copy of the article published
in Société Mathématique de France (SMF) journal “Panoramas et synthèses” [39]. This article stems
from the lecture “Gyrokinetic simulations of magnetic fusion plasmas” I gave during CEMRACS 2010
(Centre d’Eté Mathématique de Recherche Avancée en Calcul Scientifique) summer school, dedicated
this year to numerical models for fusion. A description of the Particle-In-Cell and Eulerian methods,
with a discussion on strengths and weaknesses of the three approaches, is presented there, complet-
ing the description of the various numerical schemes used in non-linear gyrokinetic simulations. In
comparison, the specific properties of the semi-Lagrangian approach will be found there.
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gyrokinetic full-f global semi-lagrangian code for flux-driven ion turbulence simulations. Comp.
Phys. Comm, 207:35–68, 2016.

[37] V. Grandgirard, M. Brunetti, S. Allfrey, A. Bottina, P. Bertrand, X. Garbet, Ph. Ghendrih,
A. Ghizzo, G. Manfredi, M. Ottaviani, Y. Sarazin, O. Sauter, J. Vaclavik, and L. Villard. Semi-
lagrangian drift-kinetic code for slab-itg turbulence. 29th EPS Conference on Plasma Phys. and
Contr. Fusion Montreux, 26B:4.095, 2002.

15



PUBLICATIONS

[38] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi,
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Gyrokinetic model for plasma
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1.1 Brief introduction to plasma fusion

The increase in energy needs and the fact that fossil fuels are running out make indispensable the
development of new sources of energies. To produce energy out of matter, it is necessary to carry
out a transformation in which, between the initial and final state, a small proportion of the body
mass involved disappears. This mass defect may then be found in the form of energy through the
well-known formula E = mc2, where E is the produced energy, m the mass that has disappeared and
c the speed of light. Chemical reactions involve atoms or molecules and their electrons. As such,
the corresponding energies lie in the tens of electron-Volt range (the ionisation energy of hydrogen is
13.6eV). As far as nuclear reactions are concerned, there exist two main types, both in the range of
Mega electron-Volt1. The fission reaction consists in splitting the nucleus of a sufficiently heavy atom

1 The ratio between the energy retrieved from chemical and nuclear reactions directly relates to the characteristic
interaction lengths of the underlying forces: the Coulomb interaction links electrons to the nucleus on distances rCoulomb

of the order of a few tens of Angström (1Å = 10−10m), while the nuclear force (also called residual strong force) binds
neutrons and protons in nuclei at distances rnuclear of the order of one Fermi (1Fermi = 10−15m). Since the potential
energy associated to each of these central forces (there also exists a weak noncentral component of the nuclear force) decays
like 1/r, with r the distance between the two interacting particles, it comes: ECoulombpot /Enuclearpot ∼ rnuclear/rCoulomb ∼
10−6. The precise ratio involves the interaction constants for each of these forces.
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1.1. BRIEF INTRODUCTION TO PLASMA FUSION

(such as the uranium or plutonium atoms) to make lighter atoms. Conversely, very light atomic nuclei
are joined together in the fusion reaction to build heavier atoms. Fission is at work in present nuclear
reactors while fusion is still at the stage of research.
These researches on controlled fusion are conducted on the most accessible fusion reaction which is the
Deuterium-Tritium reaction. In this reaction two nuclei of Deuterium and Tritium (the heavy isotopes
of hydrogen, respectively with 1 and 2 neutrons) combine into an alpha particle (Helium nucleus) and
a neutron.

D + T → 4He (3.52MeV ) + n (14.06MeV ) (1.1)

The total kinetic energy retrieved from the reaction is about 17.6MeV , one fifth carried out by the
Helium nucleus, the remainder by the neutron (this ratio comes from the conservation of momentum

during the reaction: mHevHe = mnvn, which implies that EHe = 1
2mHev

2
He = mHe

mn

v2
He
v2
n
En = 1

4En).

Deuterium is widely available from water, since it constitutes 0.015% of all hydrogen atoms. Tritium
is radioactive with a relatively short half-life of 12.3 years, so that its natural occurrence is negligible.
It has to be produced. Fortunately, the neutron which is created by the reaction (1.1) can be used
to breed new tritium out of lithium directly in the wall of the reaction vessel. In order to overcome
the electrostatic repulsion between them, the nuclei must have a temperature greater than a hundred
million degrees2 or about 10keV (1eV ≈ 11 600 oC). At such temperatures, electrons are completely
detached from the nuclei, such that the hot “gas” is no longer composed of neutral atoms, but of
positively (ions) and negatively (electrons) charged particles. This fourth state of matter is called
plasma. Due to the presence of these charge carriers, the plasma is electrically conductive so that
it strongly responds to electromagnetic fields. Magnetic confinement fusion attempts to create the
conditions needed for fusion energy production by confining the plasma with strong magnetic fields.
Any static and homogeneous magnetic field restricts the perpendicular (to the magnetic field lines)
motion of charged particles to gyro-orbits. Parallel to the field lines, particles move freely (up to
magnetic, and possibly electric, mirror effects). In order to keep the volume of the container finite,
the field lines are usually bent to a torus. It turns out that charged particles immersed in a curved
magnetic field are subject to drifts. Should the magnetic field be purely toroidal (i.e. with circular
field lines), these drifts would be strong enough to prevent any confinement on long time durations in a
volume of acceptable size [Wes97]. This problem is solved by twisting the magnetic field lines, thanks
to the creation of an additional poloidal component of the magnetic field. The average pitch of the
field line, defined by the ratio of toroidal revolutions per poloidal revolution of a field line, corresponds
to the so-called safety factor q. If q is not a rational number, the field line covers a so-called flux
surface. The field lines at different radial positions inside the toroidal plasma vessel define nested flux
surfaces. The two most important concepts for magnetic confinement fusion essentially differ in the
way the twisting of the field lines is achieved. In stellarators, as Wendelstein 7-X in construction at
Greifswald in Germany, the twisted magnetic field that is needed for confinement is entirely generated
by the external field coils. In tokamaks (Fig. 1.1), the set of external field coils produces a purely
toroidal magnetic field. The poloidal component of the magnetic field is created by the strong electric
current induced in the plasma along the toroidal direction. Most of fusion experiments in the world,
including the International Thermonuclear Experimental Reactor (ITER), now under construction at
Cadarache, France, follow this concept.

In view of producing energy, the ratio between the power from fusion reactions Pfusion and the exter-
nal additional power Padd supplied to the plasma by the heating systems must be greater than 1. This
ratio is called the quality factor Q = Pfusion/Padd. The present record of fusion power in D-T plasmas
has been achieved in the European tokamak JET, with 16 Mega-Watt produced corresponding to
Q = 0.64. In practice, reaching ignition (condition under which the plasma can be maintained by
fusion reactions without external energy input) is not mandatory for viable power plant. Finite values
close to Q = 20 are often thought to be enough for the economic viability of a reactor. In ITER,

2 As a matter of fact, the minimal distance between two colliding thermal particles at such a temperature is about
10−13m, still much too large for the nuclear force to overcome the repulsive Coulomb force. Fusion reactions take place
thanks to the tunnel effect of quantum mechanics.
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Figure 1.1: Left: Schematic view of the coil system and magnetic field of a tokamak. Right: Corre-
sponding idealized toroidal magnetic geometry and its adopted notations.

whose objective is to demonstrate the practical feasibility of a fusion-based production of energy on an
industrial level, the target is Q = 5 in steady conditions, and Q = 10 during transients. In this latter
case, a significant fraction of the heating power of the plasma, namely 2/3, comes from the plasma
itself via fusion reactions.
The Lawson criterion is the constraint for reaching self-plasma heating (the ignition condition), as-
suming that the power of Helium ashes is entirely deposited on fuel ions, namely Deuterium and
Tritium ions. It is reached when this fraction Pα of the fusion power counterbalances all power losses
W/τE , with W the plasma internal energy and τE the energy confinement time. In this case, the
energy confinement time is equal to the Lawson time τLawson = W/Pα. Lawson criterion states that
the triple product nTτE (n is the density, T the temperature) must be larger than a critical value of
the order of 3 1021m−3keV s−1. In other words, to be able to produce energy from fusion reactions,
a sufficiently hot (T ) and dense (n) plasma must be confined efficiently (τE). The difficulty resides
in obtaining the three parameters simultaneously. Indeed, for example, when density is increased by
means of gas injection, or when temperature is increased additional heating, the energy confinement
time degrades in tokamak plasmas. In magnetic fusion devices, the maximal achievable plasma density
n (number of particles per volume unit) is theoretically upper bounded by the strongest achievable
magnetic field. Indeed, confinement is effective provided the thermal energy density nT remains lower
than the magnetic energy density B2/2µ0, with µ0 the permeability of free space. The ratio of the
former on the latter defines the dimensionless beta parameter β. As a matter of fact, tokamak plas-
mas are subject to large scale instabilities well below the critical value β = 1 (β is typically of a few
percents in tokamaks), which appear redhibitory for the confinement. In such devices, densities are
of the order of a few 1020m−3. Such densities are much lower, typically by 5 orders of magnitudes,
than the density of air at normal pressure and temperature. Given the very large temperatures of
such plasmas, the pressure is however of a few atmospheres. For these reasons, much effort is devoted
to scenarios aiming at improving the confinement time τE . As seen on figure 1.2 a small increase of
τE can have a big impact on the fusion performances. This confinement time, which is basically a
thermal relaxation time, is mainly governed by conductive losses. It turns out that these losses are
essentially of turbulent nature. Understanding turbulent transport in magnetized plasma is one of the
key open issues in magnetic confinement fusion research.

1.2 Theoretical Hierarchy of Plasma Physics

The self consistent treatment of plasma evolution requires to solving both the dynamics of the elec-
tromagnetic fields, governed by Maxwell’s equations, and the plasma response to these fields. Plasma
response can be described by a hierarchy of models. The basic and most precise model of this hi-
erarchy is the microscopic description. At this level, the plasma is an ensemble of several species of
charged particles (for neutral plasmas, these are electrons with charge qe = −e and mass me and at
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Figure 1.2: Quality factor Q increases with energy confinement time τE . Q is proportional to τE =
τE/(τLawson − τE).

least one species of ions with charge qi = Zie and mass mi) characterized by their positions x and
velocities v. Their individual motion is governed by Newton’s equation, the only relevant force being
the Lorentz one (Coulomb plus Laplace). For very fast particles, the relativistic formulation should
be retained. As shown e.g. by Poincaré, the minimal phase space where all the possible trajectories of
any dynamical system are represented is six-dimensional: 3D in configuration space (referred as real
space) and 3D in velocity space (or momentum space in the general case). In the following, the vector
x = (x1, x2, x3) refers to position in real space and v = (v1, v2, v3) in velocity space. The subscript s
refers to the various species, with charge qs and mass ms. SI units are adopted. Newton’s law then
reads as follows:

ms
dv i

s

dt
= qs(E + v i

s ×B) (1.2)

with i (1 ≤ i ≤ Ns) any particle of species s. Here, E is the electric field and B the magnetic field.
We introduce the scalar φ and vector A potential such that E = −∇∇∇φ− ∂tA. The dynamics of these
fields obey Maxwell’s equations:

∇∇∇ ·E =
ρ

ε0
Gauss (1.3)

− 1

c2

∂E

∂t
+∇∇∇×B = µ0j Ampère (1.4)

∇∇∇ ·B = 0 flux conservation (1.5)

∂B

∂t
+∇∇∇×E = 0 Faraday (1.6)

The fields depend on the charge density ρ(x, t) and current density j(x, t) of the plasma. Let the
plasma consists of Ns particles of s species at positions (x i

s ,v
i
s ), with i = 1, · · · , Ns. Considering

point-like particles, the number density of species s is

ns(x, t) =

Ns∑

i=1

δ(x− x i
s (t))

The total charge density is then

ρ(x, t) =
∑

s

qsns(x, t) (1.7)

The current density j is obtained from the mean velocities

nsvs(x, t) =

Ns∑

i=1

v i
s (t) δ(x− x i

s (t))

as

j(x, t) =
∑

s

qsvs(x, t) ns(x, t) (1.8)
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The complete description of plasma dynamics is given by Newton’s law (Eq. (1.2)) and Maxwell’s
equations (Eqs. (1.3)-(1.6)). Such a microscopic approach requires to solve N coupled equations in 6D
phase space for the N =

∑
sNs particles of the system. Considering fusion plasmas of about 1020m−3

ions and electrons, this many-body model still remains out of reach for nowadays supercomputers.

Next, the kinetic models proceed from the statistical description of the plasma: the particle distri-
bution function fs(x,v, t) is introduced, counting the number of particles of species s in the infinitesi-
mal volume dxdv of the 6D phase space centered on the position (x,v). Although the precise locations
of individual particles are lost, the detailed knowledge of particle motion is required to evaluate the
dynamics of fs. In this sense kinetic theory is still microscopic, even though statistical averages are
employed.

The last step of the hierarchy consists in further reducing the degrees of freedom of the kinetic
theory by integrating over the 3D velocity space. Then, a hierarchy of so-called fluid moments can
be constructed by weighting the distribution function fs by tensors of the velocity of rank k before
integration. The first moments are the density, the flow velocity (vector), and the pressure (tensor of
rank 2). These are macroscopic quantities depending on space and time only. In such macroscopic
or fluid models, the knowledge of the individual particle motions is no longer required. The major
difficulty of the fluid approach resides in the fact that each moment of order k depends on the moment
(k + 1), such that an additional hypothesis is required to close the system of otherwise infinite set of
fluid equations. For weakly collisional media such as fusion plasmas, no satisfactory closure exists,
conversely to neutral fluids for which the fluid description remains fully appropriate. Still, solving
3D fluid equations is certainly the most convenient and fastest way to solve the problem given the
set of well established numerical techniques and the wealth of results obtained in the field of fluid
turbulence. However, it is known that the stability threshold given by fluid equations is lower than the
actual (kinetic) value [DBB+00]. It is also well established that fluid description usually overestimates
turbulent fluxes [DBB+00]. This discrepancy comes partly from the resonant interactions between
waves and particles (Landau resonances), which cannot be properly accounted for by fluid models.
Also, large scale axi-symmetric flows of fusion plasmas, known as zonal flows, which play an important
role in regulating turbulence, tend to be over-damped in fluid models.

Several attempts have been made to propose optimized closures, in view of accounting as much as
possible for some kinetic effects, such as Landau resonances (see e.g. [HP90]-[WSD+97]-[SDPZ+09]).
Comparing fluid and kinetic simulations provides a stringent test of these closure schemes. This
exercise has revealed much more difficult than expected, pointing out irreconcilable discrepancies
[DBB+00]-[SGDP+06a]. Fortunately, the dramatic increase of numerical resources and performances
now enables the direct treatment of kinetic models, or at least of the gyro-kinetic ones (see section
1.4).

1.3 Plasma kinetic theory

1.3.1 Liouville theorem

Let us consider a canonical Hamiltonian system: q = {qi}1≤i≤N denote the generalized coordinates,
p = {pi}1≤i≤N their conjugate momenta and H({qi,pi}) the Hamiltonian. Let also the phase-space
distribution DN (q,p) determine the probability DN (q,p) dNq dNp that the system is in the infinitesi-
mal volume of phase-space dNq dNp around the position (q,p). The equilibrium statistical mechanics
of such a canonical Hamiltonian system is governed by Liouville’s theorem, which states that the
phase-space distribution function is constant along the trajectories of the system – that is, the den-
sity DN of N system points in the vicinity of a given system point travelling through phase-space is
constant in time. The proof directly follows from the continuity equation fulfilled by DN , namely:

∂DN
∂t

+

N∑

i=1

[
∂

∂qi

(
DN

dqi
dt

)
+

∂

∂pi

(
DN

dpi
dt

)]
= 0 (1.9)
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and the fact that the generalized velocity field (ṗ, q̇) in phase space is divergenceless, as a direct
consequence of the Hamilton equations of motion

dqi
dt

=
∂H

∂pi
dpi
dt

= −∂H
∂qi

Developing eq. (1.9) leads to

∂DN
∂t

+
N∑

i=1

(
∂DN
∂qi

dqi
dt

+
∂DN
∂pi

dpi
dt

)
+DN

N∑

i=1

[
∂

∂qi

(
dqi
dt

)
+

∂

∂pi

(
dpi
dt

)]
= 0

The last sum vanishes in virtue of Hamilton’s equations. The resulting equation states that the
convective derivative of the density dDN/ dt is equal to 0:

dDN
dt

=
∂DN
∂t

+

N∑

i=1

(
∂DN
∂qi

dqi
dt

+
∂DN
∂pi

dpi
dt

)
= 0 (1.10)

Integrating by parts Liouville’s equation (1.10) over the variables leads to a chain of (N−1) equations
where the j-th equation connects the j-th and (j + 1)-th particle density probability functions, with
Dj = Dj(q1 · · ·qj ,p1 · · ·qj). The truncation of this BBGKY hierarchy of equations is a common
starting point for many applications of kinetic theory. In particular, truncation at the first equation
or the first two equations can be used to derive classical Boltzmann equations and their first order
corrections. This derivation is out of the scope of this paper, and can be found in e.g. [PGM02]. In
the following, we focus on the kinetic description of the plasma turbulence and more precisely on the
numerical solving of Boltzmann equation and of its collisionless form, namely Vlasov equation.

1.3.2 Vlasov-Maxwell system

In a high temperature fusion plasmas, the kinetic energy is much larger than the average potential
(Coulombian) energy between particles, such that particles are weakly coupled. In weakly coupled
plasmas, multiple particle correlations involving more than two particles are neglected. For each
plasma species let us consider Fs ≡ Fs(t,x,v) the 6D distribution function, which provides the prob-
ability to find a particle at position x with velocity v at time t. Then the evolution of the density of
particles species s in the phase space (x,v) is governed by Boltzmann equation

dFs
dt

=
∂Fs
∂t

+ v · ∂Fs
∂x

+ qs (E + v ×B)
∂Fs
∂v

=
∑

s′
Css′ [Fs, Fs′ ] + S(Fs) (1.11)

where Css′ [Fs, Fs′ ] is the collision operator between the species s and s′ and S is a source operator.
Without source term and in the collision-less limit (i.e Css′ [Fs, Fs′ ] is neglected) equation (1.11) is
reduced to the Vlasov equation (or collision-less Boltzmann equation):

∂Fs
∂t

+ v · ∂Fs
∂x

+ qs (E + v ×B)
∂Fs
∂v

= 0 (1.12)

Here, E is the electric field and B the magnetic field. We introduce the scalar U and vector potential
A such that E = −∇∇∇U − ∂tA. Electromagnetic fields are external but are also generated by the
particles. They must be computed self-consistently by the Maxwell’s equations,

∇∇∇ ·E =
1

ε0

∑

s

qsns Gauss (1.13)

− 1

c2

∂E

∂t
+∇∇∇×B = µ0

∑

s

js Ampère (1.14)

∇∇∇ ·B = 0 flux conservation (1.15)

∂B

∂t
+∇∇∇×E = 0 Faraday (1.16)
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where qs is the charge of species s (i.e qs = Zse). The constants ε0 and µ0 are respectively the
permittivity and permeability of free space. The source terms, the particle density ns(x, t) and the
current density js(x, t), correspond to the first two velocity moments of Fs:

ns(x, t) =

∫
d3v Fs(t,x,v) (1.17)

js(x, t) =

∫
d3v vFs(t,x,v) (1.18)

The Vlasov-Poisson model is obtained by neglecting the time fluctuations of the magnetic field B. In
the electrostatic limit considered in the following the time fluctuations of the vector potential A are
neglected, then E is directly linked to the fluctuating electrostatic potential U as:

E = −∇∇∇U (1.19)

1.3.3 Advective and conservative forms of Vlasov equation

In this paragraph, let us recall some numerical properties of the Vlasov equation useful for the rest of
the manuscript (Proofs can be found for instance in appendix C of [GS13]). First, let us denote Z the
six-dimensional phase space vector Z = {x,v} and ∇(x,v) the six-dimensional phase-space derivative:

∇(x,v) = {∇x,∇v} =

{
∂

∂x
,
∂

∂v

}
=

∂

∂Z
(1.20)

Then the Vlasov equation (1.12) can be transcribed into an advection equation in phase-space of the
function Fs : Rd × R+ → R (with d = 6)

∂

∂t
Fs(Z, t) + U(Z, t) · ∇(x,v)Fs(Z, t) = 0 (1.21)

Here, we have introduced the six-dimensional phase-space flow U : Rd×R+ → R, defined as the total
time derivative of Z:

U(Z, t) = {Ux,Uv} =
dZ

dt
=

{
dx

dt
,
dv

dt

}
= {v,E + v ×B} (1.22)

Let us now consider the differential system

dZ

dt
= U(Z(t), t) (1.23)

Z(t1) = z (1.24)

Definition 1 The solutions of equation (1.23) are called the characteristics of the advection equation
(1.21). Let us denote Z(t; z, t1) the solution of (1.23)-(1.24).

The existence, uniqueness and regularity of the solutions of the previous differential equations (1.23)-
(1.24) derive from the classical theorem of differential equation theory, which reads as follows (proof
can be found in e.g. [Amm90]):

Theorem 1 Let us assume U ∈ Ck−1(Rd × [0, T ]), ∇U ∈ Ck−1(Rd × [0, T ]) with k ∈ N, k > 1 and
that, for κ ≥ 1:

|U(z, t)| ≤ κ(1 + |z|) ∀t ∈ [0, T ] ∀z ∈ Rd

then ∀t1 ∈ [0, T ] and z ∈ Rd, there exists a unique solution Z ∈ Ck([0, T ] × Rd × [0, T ]) of equations
(1.23)-(1.24).

Proposition 1 Under the same assumptions as for theorem 1, the following properties hold:
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1. ∀t1, t2, t3 ∈ [0, T ] and z ∈ Rd

Z(t3; Z(t2; z, t1), t2) = Z(t3; z, t1)

2. ∀(t, t1) ∈ [0, T ]2, the application z 7→ Z(t; z, t1) is a C1-diffeomorphism of Rd with inverse
y 7→ Z(t1; y, t).

3. The jacobian J(t; 1, t1) = det(∇zZ(t; z, t1)) satisfies J > 0 and

∂J

∂t
= (∇ ·U)(Z(t; z, t1)) J

In particular, if ∇ ·U = 0, then J(t; 1, t1) = J(t1; 1, t1) = det Id = 1 where Id is the identity matrix of
order d.

Let us also notice that equation (1.21) can be formulated as:

dFs
dt

=
∂Fs
∂t

+
dZ

dt
· ∇zFs = 0 (1.25)

The total time derivative of Fs is equal to 0. Said differently, the fundamental property of the Vlasov
equation is that the distribution function Fs is constant along its characteristics. This property is
one of the foundations of many numerical schemes, including both Lagrangian and semi-Lagrangian
numerical approaches (see [GS13] for more details).

Since the phase space element is incompressible in the Vlasov equation ∇(x,v)U = 0 – Liouville’s
theorem applies – then the advective form of the Vlasov equation (1.21) can be rewritten as

∂

∂t
Fs(Z, t) +∇(x,v) · (U(Z, t) Fs(Z, t)) = 0 (1.26)

Equation (1.26) corresponds to the conservative form of the Vlasov equation. Liouville’s theorem
guaranties that the advective and the conservative forms of the Vlasov equation are equivalent. Both
formulations are used in the numerical treatments, depending on the adopted numerical scheme.

1.3.4 Conservation properties of the Vlasov-Maxwell system

Let us consider the Vlasov-Maxwell’s system (1.12)-(1.16). As discussed in this paragraph, it satisfies
a certain number of conservation properties. Such exact properties reveal particularly powerful when
developing numerical schemes: inherently conserving numerical methods can be envisaged, or, alter-
natively, they become stringent verification tests for numerical schemes and simulation results.

Proposition 2 The Vlasov equation insures the conservation of the number N of particles in a closed
phase space volume V , apart from exchanges with the exterior. In this case, in agreement with Liou-
ville’s theorem:

N =

∫

V
Fs(x,v, t) dx dv =

∫

V
Fs(Z, t) dV = const (1.27)

As shown below, this simply results from the fact that the total derivative of Fs is equal to 0:

dN

dt
=

d

dt

∫

V
Fs(Z, t) dV =

∫

V

∂Fs
∂t

dV = −
∫

V
U · ∇(x,v)Fs dV

Using Gauss’s theorem, it can be recast as follows

∫

V
U · ∇(x,v)Fs dV =

∮

S(V )
Fs n ·U dS (1.28)
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where S(V ) stands for the surface of volume V and n is its normal unit vector. Then

∂N

∂t
= −

∮

S(V )
Fs(n ·U) dS (1.29)

This relation states that the rate of change of the number of particle inside the volume V is equal to
the integral of the flux of Fs across the surface S(V ) of this volume. Hence, N remains constant for
vanishing fluxes at the boundaries.

Proposition 3 Let the distribution function Fs(x,v, t) in the phase space (x,v) ∈ Rd × Rd, d =
1, · · · 3 be governed by the Vlasov-Maxwell equations. Then, denoting F 0

s (x,v) the distribution function
at initial time t = 0, Fs satisfies the following properties:

• Maximum principle
0 ≤ Fs(x,v, t) ≤ max(x,v)(F

0
s (x,v)) ∀t ∈ R+ (1.30)

• Conservation of the volume. For all volume V of phase-space
∫

V
Fs(x,v, t) dx dv =

∫

U−1(V )
F 0
s (y,u) dy du ∀t ∈ R+ (1.31)

• Conservation of the Lp norms, p ∈ N, 1 ≤ p ≤ ∞
d

dt

∫

Rd×Rd
(Fs(x,v, t))

p dx dv = 0 ∀t ∈ R+ (1.32)

• Conservation of the kinetic entropy

d

dt

(
−
∫

Rd×Rd
Fs(x,v, t) lnFs(x,v, t) dx dv

)
= 0 ∀t ∈ R+ (1.33)

• Conservation of the energy,

d

dt

∫

Rd×Rd
m|v|2 Fs(x,v, t) dx dv (1.34)

+
d

dt

∫

Rd

(
ε0|E(x, t)|2 +

1

µ0
|B(x, t)|2

)
dx = 0 ∀t ∈ R+

The maximum principle especially insures that Fs(x,v, t) remains positive for all time t if the initial
data F 0

s (x,v) is positive everywhere. For proofs see for instance appendix D in [GS13].

The entropy conservation is the consequence of the fact that the Vlasov-Maxwell system is time
reversible. Indeed, let us consider the following time reversal transformation: t→ −t; x→ x; v→ −v;
E→ E and B→ −B. This transformation leaves Vlasov equation invariant. This can be understood
as follows: starting from some initial state and evolving Fs in time according to the Vlasov-Maxwell
system, and deciding at a certain time to reverse the velocity of all particles (leading to the reversal of
the magnetic field B), then the system would trace back to its initial state (see e.g. Villani’s lecture
notes [Viled])

Finally, it is worth noticing that Maxwell’s equations imply that charge density ρ and current
density j satisfy the continuity equation

∂ρ

∂t
+∇∇∇ · j = 0 (1.35)

In other words, should this relation not hold, one can easily verify that there is no solution to Maxwell’s
equations. When the sources of Maxwell’s equations are computed numerically by solving the Vlasov
equation, they do not necessarily verify a discrete equivalent of the continuity equation, which would
be compatible with the discrete form of Maxwell’s equations. To address this problem, numerical
methods for deriving sources that satisfy the discrete continuity equation have been developed (cf e.g.
[VB92]). A rigorous mathematical theory for these generalized formulations of Maxwell’s equations is
derived in [BCS07].
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1.4 Gyrokinetic Vlasov-Poisson system

1.4.1 Gyrokinetic ordering

The computational effort to numerically solve the 6-dimensional Vlasov-Maxwell system still remains
out of reach for present day supercomputers. As shown in figure 1.3, it involves a wide range of
spatio-temporal scales: the typical size of micro-instabilities is of the order of the ion Larmor radius
ρLi ∼ 10−3 m, but the size of a tokamak is of the order of few meters. The strong magnetic fields

Figure 1.3: Typical space and time range scales in fusion plasmas and applicability of Vlasov, gyroki-
netic and MHD models. Here, ωps is the plasma oscillation frequency, Ωs is the cyclotron frequency,
ω∗s is the diamagnetic rotation frequency, vA is the Alfvèn velocity, νii is the ion-ion collision fre-
quency, λDs is the Debye length, ρs is the Larmor radius, Ln is the characteristic gradient length of
the equilibrium density profile, a is the plasma size and s denotes the particle species. (figure from
[IWS06])

– a few Tesla – used in magnetic confinement fusion devices lead to the fast gyration of charged
particles around magnetic field lines. Especially, the cyclotron frequency Ωs = (qsB0)/ms is large
compared to the characteristic frequency of micro-turbulence, which is of the order of the diamagnetic
frequency ω ∼ ω∗s ∼ (kθρs)vth,s/Lp (with kθ the poloidal wave vector, ρs = v⊥/Ωs the Larmor radius,
vth,s = (Ts/ms)

1/2 the thermal speed and Lp = |∇ ln p0|−1 the characteristic gradient length of the
mean pressure profile. In this framework, the single particle motion consists of the superposition
of the fast periodic gyro-motion and the slow drift of the guiding-centre, as shown in Fig. 1.4.
Besides, experimental observations in core plasmas of magnetic confinement fusion devices suggest

Figure 1.4: The phase-space reduction from 6 to 5 dimensions results from the gyro-centre transform,
which aims at eliminating the fast gyro-motion. (figure from [IWS06])

that small scale turbulence, responsible for anomalous transport, obeys the following ordering in a
small parameter εg ∼ ρ∗ with ρ∗ = ρs/a� 1 (a being the small radius of the tokamak):

ω

Ωs
∼ qsU

Ts
∼ δns

n0
∼ B1

B0
∼
k‖
k⊥
∼ ρs
Ln
∼ O(εg) (1.36)
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where the subscript s refers to the particle species. Ts is the temperature, δns the perturbed density,
n0 the equilibrium density, B0 and B1 are respectively the equilibrium and the perturbed magnetic
field, k‖ = k · b0 and k⊥ = |k × b0| are parallel and perpendicular components of the wave vector
k with b0 = B0/B0, ρs = v⊥/Ωs is the Larmor radius, Ln = |∇ lnn0|−1 is the characteristic length
of n0. Within this gyro-ordering, the so-called gyrokinetic model can be derived (see e.g. [Lee83]) by
eliminating high-frequency processes characterized by ω > Ωs. The phase space is reduced from 6 to
5 dimensions, while retaining crucial kinetic effects such as finite Larmor radius effects. For detailed
gyrokinetic theory see review papers by Brizard & Hahm (2007) [BH07] and Krommes (2012) [Kro12].
Numerically speaking, the computational cost is dramatically reduced because the limitations on the
time step and the grid discretization are relaxed from ωps ∆t < 1 and ∆x < λDs to ω∗s ∆t < 1 and
∆x < ρs (with ωps the plasma oscillation frequency and λDs the Debye length). It is also important
to note that the magnetic moment, µs = msv

2
⊥/(2B) becomes an adiabatic invariant. In terms of

simulation cost, this last point is convenient because µs plays the role of a parameter. This means
that the problem to treat is not a true 5D problem but rather a 4D problem parametrized by µs. Note
that µs looses its invariance property in the presence of collisions. Such a numerical drawback can be
overcome by considering reduced collisions operators acting in the parallel velocity space only, while
still recovering the results of the neoclassical theory [GDPN+09].

1.4.2 Gyrokinetic Vlasov equation

The resulting gyrokinetic Vlasov equation is today the most advanced framework to describe plasma
micro-turbulence. Let Fs be the particle distribution function of species s and F̄s the one associated
to the guiding-centers. The non-linear time evolution of F̄s is governed by the gyrokinetic equation
described by Brizard and Hahm [BH07]

∂tF̄s −
[
H, F̄s

]
GC

= Rhs(F̄s) (1.37)

where H the Hamiltonian of the system is defined as H = 1
2msv

2
G‖ + µsB + qsŪ and where [., .]GC

corresponds to generalized expression of the Poisson brackets in the gyro-center coordinates defined
as (see equation (150) in [BH07])

[X,Y ]GC =
B∗s

msB∗‖s
·
(
∇∇∇X∂vG‖Y − ∂vG‖X∇∇∇Y

)
− b

qsB∗‖s
· (∇∇∇X ×∇∇∇Y ) (1.38)

with b = B/‖B‖ the unit vector along the magnetic field line at the guiding-center position. Here,
Ū = Jµ.U is the gyro-average of the fluctuating electrostatic potential U . It corresponds to an

average over a cyclotron motion: Jµ.U =
∮ 2π

0 U dϕc
2π , where ϕc stands for the cyclotron phase. This

gyro-average operator Jµ is discussed in more detail in next section 1.4.3. The scalar B∗‖s corresponds
to the volume element in guiding-center velocity space. It is simply defined as

B∗‖s = B∗s · b with B∗s ≡ B +
ms

qs
vG‖∇∇∇× b (1.39)

Then, using the relation

∇∇∇× b =∇∇∇
(

1

B

)
×B +

1

B
∇∇∇×B = b× ∇∇∇B

B
+

1

B
∇∇∇×B (1.40)

B∗‖s can be expressed as 3

B∗‖s ≡ B +
ms

qs
vG‖b · (∇∇∇× b) (1.41)

3According to (1.39) and (1.40) then

B∗‖s = B · b +
ms

qs
vG‖ (∇∇∇× b) · b = B +

ms

qs
vG‖

[
b× ∇∇∇B

B
+

1

B
∇∇∇×B

]
· b = B +

msvG‖
qsB

b · (∇∇∇×B)
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For the following, let us notice that (1.39) and (1.40) gives

B∗s
B∗‖s

= b∗s +
msvG‖
qsB∗‖s

(
b× ∇∇∇B

B

)
(1.42)

with

b∗s =
B

B∗‖s
+

msvG‖
qsB∗‖sB

∇∇∇×B (1.43)

This Hamiltonian formalism is equivalent to consider that the time evolution of the guiding-center dis-
tribution F̄s is governed by the gyrokinetic conservative equation (see also Eqs (17)-(20) in [GIVW10]):

B∗‖s
∂F̄s
∂t

+∇∇∇ ·
(
B∗‖s

dxG
dt

F̄s

)
+

∂

∂vG‖

(
B∗‖s

dvG‖
dt

F̄s

)
= 0 (1.44)

where xG and vG‖ are respectively the space coordinates and the parallel velocity of the guiding centers
and where, in the electrostatic limit, the motion equations of the guiding centers are given by:

B∗‖s
dxG
dt

= vG‖B
∗
s +

1

qs
b×∇∇∇Ξ (1.45)

B∗‖sms

dvG‖
dt

= −B∗s · ∇∇∇Ξ (1.46)

with

Ξ ≡ qsŪ + µsB (1.47)

and B∗s and B∗‖s respectively defined by equations (1.39) and (1.41). Then, using relation (1.40),

equations (1.45) and (1.46) can be rewritten as 4

dxG
dt

= vG‖b
∗
s + vE×Bs + vDs (1.48)

ms

dvG‖
dt

= −µs∇∇∇∗‖B − qs∇∇∇∗‖Ū +msvG‖vE×Bs ·
∇∇∇B
B

(1.49)

where ∇∇∇∗‖ ≡ b∗s · ∇∇∇ and where the drift velocities evaluated at the gyro-centre are respectively:

• the ‘E×B’ drift ∼ O(εg):

vE×Bs =
1

B∗‖s
b×∇∇∇Ū (1.50)

• the ‘grad–B’ and ‘curvature’ drifts ∼ O(εaεg) with εa = a/R0 the inverse aspect ratio:

vDs =

(
msv

2
G‖ + µsB

qsB∗‖s

)
b× ∇∇∇B

B
(1.51)

Proof 1 (Link between gyrokinetic Poisson brackets and motion equations)
Using expression (1.38) and the expression of the Hamiltonian, then the different parts of the Poisson

4 Replacing (1.42) and (1.43) in equation (1.45) leads to equation (1.48). Using again previous expression of B∗s/B
∗
‖s

and the fact that (b×∇∇∇B) · ∇∇∇B is null leads to equation (1.49).
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brackets
[
H, F̄s

]
can be written separately as follows

[
msv

2
G‖/2, F̄s

]
GC

= −vG‖
B∗s
B∗‖s
· ∇∇∇F̄s = −vG‖∇∇∇∗‖F̄s −

msv
2
G‖

qsB∗‖s

(
b× ∇∇∇B

B

)
· ∇∇∇F̄s (1.52)

[
µsB, F̄s

]
GC

=
µsB

∗
s

msB∗‖s
· ∇∇∇B∂vG‖F̄s −

µs b

qsB∗‖s
·
(
∇∇∇B ×∇∇∇F̄s

)

=
µs
ms
∇∇∇∗‖B∂vG‖F̄s −

µs
qsB∗‖s

(b×∇∇∇B) · ∇∇∇F̄s (1.53)

[
qsŪ , F̄s

]
GC

=
qs
ms

B∗s
B∗‖s
· ∇∇∇Ū∂vG‖F̄s −

b

B∗‖s
·
(
∇∇∇Ū ×∇∇∇F̄s

)

=
qs
ms
∇∇∇∗‖Ū∂vG‖F̄s (1.54)

+
vG‖
B∗‖s

(
b× ∇∇∇B

B

)
· ∇∇∇Ū∂vG‖F̄s −

(
b×∇∇∇Ū

)

B∗‖s
· ∇∇∇F̄s

Combining all the terms (1.52)-(1.54) we find the gyrokinetic Vlasov equation

∂tF̄s +

[
vG‖b

∗
s +

(
msv

2
G‖ + µsB

qsB∗‖s

)(
b× ∇∇∇B

B

)
+

1

B∗‖s
b×∇∇∇Ū

]
· ∇∇∇F̄s

+

[
− µs
ms
∇∇∇∗‖B −

qs
ms
∇∇∇∗‖Ū −

vG‖
B∗‖s

(
b× ∇∇∇B

B

)
· ∇∇∇Ū

]
∂vG‖F̄s = 0

which is equivalent to equations (1.44)-(1.46) due to (b×∇∇∇B) · ∇∇∇Ū = −(b×∇∇∇Ū) · ∇∇∇B.

Finally, using the fact that the axi-symmetric equilibrium is determined by three of the ideal Magne-
toHydroDynamic (MHD) equations:

∇∇∇p = J×B ; ∇∇∇×B = µ0J ; ∇∇∇ ·B = 0 (1.55)

the vector b∗s and the scalar B∗‖s can be expressed as:

b∗s ≡
B

B∗‖s
+

msvG‖
qsB∗‖sB

µ0J (1.56)

B∗‖s ≡ B +
msvG‖
qsB

µ0b · J (1.57)

Besides, using the relation 5

b×
[
b×

(∇∇∇×B

B

)]
= [(∇∇∇× b) · b] b−

(∇∇∇×B

B

)
(1.58)

5 Let U,V and W being three vectors, U× (V ×W) = (U ·W)V − (U ·V)W then

b×
[
b×

(∇∇∇×B

B

)]
=

[
b ·
(∇∇∇×B

B

)]
b− (b · b)

(∇∇∇×B

B

)
=

[(∇∇∇×B

B

)
· b
]
b−

(∇∇∇×B

B

)
and due to:

∇∇∇× b =∇∇∇×
(
B

B

)
=

1

B
(∇∇∇×B) + b× ∇∇∇B

B

then

b×
[
b×

(∇∇∇×B

B

)]
=

[(
∇∇∇× b− b× ∇∇∇B

B

)
· b
]
b−

(∇∇∇×B

B

)
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it can be easily proven that 6

b∗s = b +
msvG‖
qsB∗‖s

B×
( µ0

B2
∇∇∇p
)

(1.59)

Therefore, the velocity vG‖b∗s is equal to the parallel motion vG‖b ∼ O(1) plus a diamagnetic velocity
vdias = (msv

2
G‖)/(qsB

∗
‖s)B ×

(
µ0∇∇∇p/B2

)
∼ O(εaεg). Let us introduce the dimensionless number

β ≡ p/(B2/2µ0), the ratio of the plasma kinetic pressure over the magnetic pressure. In tokamak, β
is of the order of few percents. Then in the low β limit, the diamagnetic part of b∗s can be neglected
and b∗s ≈ b.

1.4.3 Gyro-average operator

The gyro-radius ρρρs is transverse to b = B/B and depends on the gyrophase angle ϕc:

ρρρs =
b× v

Ωs
= ρs (cosϕc e⊥1 + sinϕc e⊥2) (1.60)

Here e⊥1 and e⊥2 are the unit vectors of a cartesian basis in the plane perpendicular to the magnetic
field direction b. Let xG be the guiding-center radial coordinate and x the position of the particle in
the real space. These two quantities differ by a Larmor radius ρρρs as x = xG +ρρρs. The gyro-average ḡ
of any function g depending on the spatial coordinates corresponds to the following operation:

ḡ(xG, v⊥) =

∮ 2π

0

dϕc
2π

g(x) =

{∮ 2π

0

dϕc
2π

exp(ρρρs · ∇∇∇)

}
g(xG) (1.61)

The operator eρρρs·∇∇∇ corresponds to the change of coordinates (x,p) → (xG,pG). This gyro-average
process consists in computing an average on the Larmor circle. It weakens fluctuations that develop at
sub-Larmor scales. Introducing ĝ(k) the Fourier transform of g, with k the wave vector, it is possible
to prove that the gyro-average operation reads 7:

ḡ(xG, v⊥) =

∫ +∞

−∞

d3k

(2π)3
J0(k⊥ρs)ĝ(k)eik·xG (1.62)

where k⊥ is the norm of the transverse component of the wave vector k⊥ = k− (b ·k)b, and J0 is the
Bessel function 8 of first order. In the following, we shall denote indistinctly Jµφ or φ̄ the gyro-average
of any scalar field φ.

1.4.4 Poisson equation with adiabatic electrons

Now that the gyroaverage operator and the gyrokinetic Vlasov equation have been presented, let
us introduce two simplifications of Maxwell’s equations which will be used in the following, namely
(i) electromagnetic effects are ignored and (ii) electrons are considered adiabatic. For this, let us
differentiate the electron species labeled e, who have a charge qe = −e and a mass me, from the ion
species – each s species of ion being of charge qs = Zse and of mass ms– then the Maxwell-Gauss
equation (1.13) reads:

−∇2U =
1

ε0
(
∑

s
(except

electrons)

qsns − ene) (1.63)

6According to (1.41), B can be expressed as B = B∗‖s − ms
qs
vG‖b · (∇∇∇× b). Let us then replace this expression in

(1.43) and use (1.58), then b∗s = b+
msvG‖
qsB
∗
‖s

(
b×

[
b×

(∇∇∇×B
B

)])
. Finally, using ideal MHD equations (1.55) gives equation

(1.59).
7Due to expression (1.61),

ḡ(xG, v⊥) =

∫ 2π

0

dϕc
2π

∫ +∞

−∞

d3k

(2π)3
ĝ(k) exp{ik · (xG + ρρρs)}

=

∫ +∞

−∞

d3k

(2π)3

[∫ 2π

0

dϕc
2π

exp(ik⊥ρs cosϕc)

]
ĝ(k) exp(ik · xG)

8The Bessel function of the first kind J±(z) are defined as Jn(z) = i−n

π

∫ π
0

exp(iz cos θ) cos(nθ) dθ.
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Ion density

In the gyrokinetic framework, the additional complexity comes from the fact that each particle density
ns =

∫
d3vFs needs being related to the distribution function of the gyro-centers F̄s. Both distribution

functions relate to each other in the following way:

Fs(x,v, t) = F̄s(xG,vG, t) +
qs
B

{
U(x, t)− Ū(xG,vG, t)

}
∂µF̄s,eq(xG,vG) (1.64)

with F̄s,eq the equilibrium distribution function. Such a relationship results from the infinitesimal
contact (or canonical) transformation that relates the canonical variables (x,v) and (xG,vG), as
detailed in appendix A. Therefore, after an integration by parts, the particle density ns reads:

ns(x, t) =

∫
d3vF̄s(xG,vG, t) +

∫
d3v

qs
B
F̄s,eq(xG,vG) ∂µŪ(xG,vG, t) (1.65)

The first integral on the right hand side corresponds to the gyro-center density nGs(x, t). The last
integral on the right hand side is the polarization density ns,pol. Further recalling that xG = x − ρρρs,
it follows that

ns(x, t) = nGs(x, t) + ns,pol(x, t) (1.66)

with:

nGs(x, t) =

∫
Jv dµ dvG‖ J.F̄s(x,v, t) (1.67)

ns,pol(x, t) =

∫
Jv dµ dvG‖

qs
B

∫ 2π

0

dϕc
2π

{
e−ρρρs·∇∇∇Fs,eq(x,v)

∂µ

[
e−ρρρs·∇∇∇

〈
eρρρs·∇∇∇

〉
U(x,v, t)

]}
(1.68)

where Jv = (2πB∗‖s/ms) stands for the Jacobian in the velocity space.

It is interesting to notice that, in the limit of k⊥ρs � 1, one can restrict the Taylor expansion
of the operator to the leading terms of the development only. Further noticing that ρρρs is calculated
at xG, such that ρρρs(xG) ' ρρρs(x) − (ρρρs · ∇∇∇)ρρρs, then (with the convention that ρρρs stands for ρρρs(x)
hereafter):

ns,pol(x, t) '
∫
Jv dµ dvG‖

qs
B

∫ 2π

0

dϕc
2π

(1− ρρρs · ∇∇∇)

Fs,eq(x,v)∂µ

[(
1− ((ρρρs · ∇∇∇)ρρρs) · ∇∇∇+

1

2
ρρρs · ∇∇∇(ρρρs · ∇∇∇)

)

(
1 +

1

4
ρs∇∇∇⊥.(ρs∇∇∇⊥)

)]
U(x, t)

=

∫
Jv dµ dvG‖

qs
B

{
Fs,eq∂µ

[
1

4

(
∇∇∇⊥ρ2

s

)
· ∇∇∇⊥

+
1

2
ρs∇∇∇⊥ · (ρs∇∇∇⊥)

]
U +

1

2
ρs∇∇∇⊥Fs,eq · ∂µ(ρs∇∇∇⊥)U

}

= ∇∇∇⊥ ·
(
msns,eq

qsB2
∇∇∇⊥U(x, t)

)
(1.69)

Adiabatic electrons

The polarisation density of electrons can usually be neglected because of their small inertia. Besides,
if the electron density is supposed to follow an adiabatic (Boltzmann) response in a flux surface, the
density of electrons reads:

ne(x, t) = ne0(r) exp

(
e

[U(x, t)− 〈 U 〉FS(r, t)]

Te(r)

)
(1.70)
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where the density ne0 is the density defined when U = 〈 U 〉FS with 〈U 〉FS representing the flux surface
average of U defined as:

〈 U 〉FS =

∫
U(r, θ, ϕ)Jx(r, θ) dθ dϕ∫

Jx(r, θ) dθ dϕ
(1.71)

where Jx(r, θ) stands for the jacobian in space. Due to this hypothesis, the electron density fluctuations
vanish for axi-symmetric zonal modes. Provided U is small, the previous electron density equation
(1.70) can be linearized, hence:

ne ≈ ne0 + e ne0
[U − 〈 U 〉FS]

Te
+O

[(
eU

Te

)2
]

(1.72)

Using the definition of the ion guiding-center density (1.66), (1.67) and the definition of the electron
density (1.72) then the Poisson’s equation (1.63) reads in the electron adiabatic limit:

−ε0∇2U −
∑

s

Zse∇⊥ ·
(
ns,eq

BΩs
∇⊥U(x, t)

)

+ e2ne0

[
U − 〈 U 〉FS

Te

]
= e

(∑

s

ZsnGs − ne0

)
(1.73)

where the expression of nGs is given by (1.67).
Several gyrokinetic codes, among which Gysela code, are based on this “simplified” Vlasov-Poisson
model. But even with such simplifications, solving the gyrokinetic Vlasov equation (1.44) –where the
distribution function evolves in a five dimensional phase space– non-linearly coupled to this 3D Poisson
equation (1.73) is still extremely difficult. Solving 5D non-linear gyrokinetic equations for several ion
species proves so challenging that to date no code is able to treat all the physics involved. Several
strategies based on different simplifications –both in terms of physics or numerical approaches– have
been developed to decrease these extreme numerical costs. These main differences are summarized in
the next section.

1.5 Main differences in gyrokinetic codes

As previously shown, the minimal set of equations to describe the gyrokinetic turbulence in tokamak
plasmas can be summarized as: (i) an evolution equation of the distribution function Fs in a 4D
phase space parametrized by the adiabatic invariant µ; (ii) a set of four coupled ordinary differential
equations (ODE) for the characteristics; (iii) a 3D integro-differential equations for the fields, namely
Poisson’s equation (or the quasi-neutrality equation) and (iv) the Ampère law (if magnetic perturba-
tions are taken into account). This set of equations is nonlinear, the dominant quadratic nonlinearity
being due to the E ×B advection terms. The quasi-neutrality equation is generally solved by using
Fourier projection in all the periodic directions and finite differences or finite elements in the others.
Concerning the global algorithm, the challenge consists in finding numerical schemes which preserve
the first principles such as the conservation of the Casimir invariants, the phase space volume and
the total energy. Various numerical schemes have been explored until now. They can be classified
in Lagrangian, Eulerian and Semi-Lagrangian. In paragraph 1.5.1, we briefly recall the concepts of
each numerical approaches as well as their advantages and drawbacks. More details can be found in
paper [GS13] published in Panorama & Synthèse review after the tutorial I had given at CEMRACS
summer school in 2010 at Marseille in France (attached at the end of this manuscript). The interest
of developing concurrently these three approaches is crucial for the gyrokinetic community. Indeed,
due to the extremely challenging computing requirements, each gyrokinetic code runs at the limit of
its applicability range. Benchmarks between the different approaches are therefore crucial and more
and more encouraged (e.g. [TGL+08, FSA+08]). They are all the more important that gyrokinetic
codes also differ in terms of physics assumptions. As briefly described in paragraphs 1.5.2 to 1.5.4,
differences are mainly due to choices in terms of: (i) distribution function representation; (ii) geometry
and (iii) boundary conditions. We encourage the reader to refer to the paper by Garbet et al. (2010)
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[GIVW10] for an overview of these different strategies for numerical simulations and their comparisons
with fusion experiments.

1.5.1 Three numerical approaches : PIC, Eulerian or Semi-Lagrangian

Particle In Cell (PIC) method

The existing gyrokinetic codes differ by their numerical schemes which have evolved all along the
last twenty-five years, in direct link with the evolution of HPC resources. Historically, particle in
cell methods (PIC) [BL85] –pioneered for gyrokinetics by Lee [Lee83]– have been most popular, and
represent widely adopted approaches to numerical simulations of kinetic plasmas. The Lagrangian-
PIC approach looks for solutions of the Vlasov equation in terms of the solution of the ODE of motion
for macro-particles. Each macro-particle represents a large number of the plasma particles. The
particle orbits are the characteristics of the Vlasov equation. In this case, the phase space density
along the trajectories is preserved by construction (Lagrange), while charge and current densities
need being computed, by extrapolation, on Eulerian (i.e. fixed in space) grid points. PIC codes
have the enormous advantages of being simple, robust and easily scalable; which explains that many
gyrokinetic codes are PIC codes. Let us mention, Parker’s code [PL93], Sydora’s code [SDD96],
PG3EQ [DWBC96], GTC [LHL+98], GT3D [ITKW01], GTS [WHL+07] and for the 5D gyrokinetic
codes: ORB5 [BPH+07, JBA+07], ELMFIRE [HKKS+01] and XGC1 [CKD+09]. However, it is well
known that the relative numerical noise inherent to PIC methods constitutes a strong limiting factor to
accurately describe the distribution function in phase space on long time scales. The main problem for
non-linear gyrokinetic simulations is that the noise level a priori accumulates in time [NHD+05]. Even
small errors in the evaluation of these moments can cause a systematic corruption of the simulation
results on relatively short periods of time. Consequently, the reduction of numerical noise has been
right from the start a matter of intense research, and many improvements have taken place during the
past ten years. Let us specifically mention the achievements made on the ORB5 gyrokinetic PIC-code
summarized in [VBB+10].

Eulerian method

Another approach to avoid the issue of marker sampling noise is the Eulerian approach. It consists in
discretizing the phase space on a fixed grid, and in applying finite differences, finite volumes and/or
Fourier transforms to model the differential and integral operators (see e.g. [B0̈7] for a review). Eule-
rian schemes are not subject to the issue of marker sampling noise which is critical in Lagrangian-PIC
methods. Conversely, when explicit time integration is performed, they are limited by the Courant-
Friedrichs-Lewy (CFL) stability condition, which constraints the maximum time step as a function of
grid space resolution. Comparison between PIC and Eulerian approaches in terms of operation num-
bers is detailed in e.g. [B0̈7, FB05]. Several gyrokinetic codes are based on this approach as proved by
this non-exhaustive list of Eulerian codes: GS2 [DJKR00], GYRO [CW03b], GENE [JDKR00], GKW
[PS04] and GT5D [IIK+08].

Semi-Lagrangian method

The purpose of the semi-Lagrangian method is to take advantage of both the Lagrangian and Eulerian
approaches, with an accurate description of the phase space, in particular regions where the density is
low, as well as an enhanced numerical stability. This method was primarily developed by Cheng and
Knorr [CK76]. It has been cast in more general framework of SL by Sonnendrücker in 1998 [SRBG99]
and Nakamura in 1999 [NY99]. In this approach, the phase-space mesh grid is kept fixed in time
(Eulerian method) and the Vlasov equation is integrated along the trajectories (Lagrangian method)
using the invariance of the distribution function along the trajectories. The Gysela code is based
on this standard Semi-Lagrangian approach [SRBG99]. So a complete description of this numerical
scheme will be given in section 3.1.
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1.5.2 δf codes / full-f codes

Gyrokinetic models can be split in two distinct families with respect to the adopted representation
of the distribution function: either full-f or δf models. In the δf model, only perturbations with
respect to some prescribed background equilibrium (usually Maxwellian in velocity) are computed.
This method [DK95] has been widely used from the beginning of gyrokinetic code development. Its
main advantage is to reduce statistical noise, which can become prohibitive in PIC codes. Technically,
the distribution function Fs is decomposed into the time-independent background Fs,0 and the time-
dependent perturbation δF :

Fs = Fs,0 + δF

The background Fs,0 is the prescribed distribution function at time t = t0. It is one of the stationary
solutions of the gyrokinetic equation at vanishing gyro-averaged potential J0s · φ = 0. Perturbations
δF are then governed by the following equation:

d

dt
δF = − d

dt
Fs,0 = − ∂

∂t
Fs,0 −

dZ

dt
· ∂
∂Z

Fs,0 = −dZ

dt
· ∂
∂Z

Fs,0 (1.74)

It is clear that, contrary to the full distribution function Fs, δF is not conserved along the trajectories.
Indeed, the right-hand side of eq.(1.74) is not equal to zero. As far as Fs,0 is concerned, it is usu-
ally assumed Maxwellian Fs,0 = Fs,eq (Fs,eq being an equilibrium Maxwellian distribution function).
Trajectories are decomposed into equilibrium and perturbed components, i.e.

dZ

dt
=

dZ

dt
|eq +

dZ

dt
|perturb

The usual form of the ˙δF equation then reads as follows:

∂

∂t
Fs,eq =

dZ

dt
|eq ·

∂

∂Z
Fs,eq = 0 (1.75)

and
d

dt
δF = −dZ

dt
|perturb ·

∂

∂Z
Fs,eq (1.76)

Should all terms be retained in these equations, they would be rigorously equivalent to the originate
gyrokinetic equation. However, let us mention a few simplifications likely leading to discrepancies
with respect to the exact gyrokinetic equation: (i) Fs,0 may not be a true equilibrium of the system
at vanishing electric field, such that ∂Fs,0 is not exactly zero (eq.(1.75)); (ii) a few non-linear terms
in the left-hand-side of eq. (1.76) are sometimes neglected, assuming that they are high order with
respect to the right-hand-side terms. In particular, if the flux-surface averaged part of δF is frozen in
time, one is left with the so-called gradient-driven regime (see section 1.5.4).

Conversely, in full-f models, the whole distribution function is evolved. Especially, the back
reaction of turbulent transport is accounted for in the time evolution of the equilibrium. Full-f
models are specifically capable of addressing the relaxation dynamics of equilibrium profiles, either
due to fast non-linear transients or governed by the slow drift of the initial profiles towards their
relaxed state in the presence of saturated turbulence. Notice that transients are of great importance
in confinement devices. The formation of Internal Transport Barrier in the plasma core is one of such
examples. In full-f simulations, the turbulent regime is evanescent if no free energy is injected in the
system to prevent the inevitable relaxation of equilibrium profiles below the – linear or non-linear –
threshold of the underlying instability. A heat source is mandatory in view of exploring the long time
– on energy confinement times – behavior of turbulence and transport.

1.5.3 Local geometry / global geometry

Accounting for the toroidal magnetic geometry is not trivial and introduces strong anisotropy in the
low frequency perturbations. While k‖ρs is ordered as a small quantity in the gyrokinetic ordering
(1.36), the perpendicular wavenumber is not assumed small, k⊥ρs ∼ O(1). Fluctuations typically
have parallel wavelengths of the order of the system size, whereas perpendicular wavelengths are of
the order of a few Larmor radii. Moreover, core plasmas are weakly collisional, characterized by mean
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free paths larger than the system size. The geometry of the magnetic configuration strongly affects
micro-instabilities and turbulence. This strong anisotropy can become an advantage in numerical
simulations using field-aligned coordinates instead of toric ones. These coordinates can lead to an
order of magnitude improvement of numerical schemes. A further simplification is made in flux-
tube codes, in which the considered domain remains in the vicinity of a magnetic field line. Scale
separation is assumed, fluctuations being at smaller scale than the equilibrium. In this framework,
the equilibrium profiles, and more precisely their gradients, are taken constant in time. In such codes
(e.g. GS2 [DJKR00], GYRO [CW03b]), periodicity is assumed for the fluctuations along the radial
direction. Conversely, global codes take the geometry of the whole plasma domain into account. In
this case, the radial periodicity assumption is irrelevant. As a result, the delicate problem of radial
boundary conditions has to be solved.

The flux-tube approach allows for an efficient reduction of CPU time and memory size consump-
tion. Conversely, modeling the whole plasma domain requires huge meshes. This drawback is coun-
terbalanced by the fact that global codes can describe phenomena such as profile shearing, profile
relaxation and large scale transport events such as avalanches (see section 1.5.4), although the latter
have recently been also observed in local simulations. The wealth of such physics has encouraged the
development of a new generation of global codes since 15 years. Let us mention, for instance, ORB5
[JBA+07], GT5D [IIK+08] or GYSELA [GSA+07] for core plasmas, and XGC1 [CK08, CKD+09] for
edge plasmas. Even the flux-tube code GENE [JDKR00] has recently given birth to a global version
[LBD+08].

1.5.4 Fixed gradient / flux driven systems

Let us close this section with differences in the treatment of the boundary conditions. As already
mentioned, flux-tube codes use periodic boundary conditions in all directions. As far as global codes
are concerned, periodicity is lost in the radial direction. Until recently, gyrokinetic simulations set
the system out of equilibrium by imposing two thermal baths as radial boundary conditions. As
shown in [GSA+07], the relaxation of the mean profiles in the center of the radial domain can lead
to strong gradients at the radial edges, unless buffer regions are added. This evolution stops when
the core gradients reach the instability threshold. It typically takes place on energy confinement time
scales. Limited statistics are available to investigate the physics of scaling laws in this case, unless
running very small ρ∗ simulations. Alternatively, an ad-hoc heat source can be added to force the
gradients out of thermodynamical equilibrium. The impact of the characteristics of the source on the
turbulent transport properties is certainly an issue. Several types of sources have been developed.
A Krook operator is used in [MJT+08, MJT+09]. In this case, however, the driving flux is not
prescribed a priori : since the Krook term depends on the actual distribution function, it evolves
in time. Conversely, implementing a heat source which is independent of the distribution function
provides a way to study forced turbulence at constant-in-time incoming flux. Gradients then self-
adjust in response to this flux as a result of turbulent (and possibly collisional) transport. Such a
forcing was successfully exploited in fluid simulations of turbulent transport. Let us remark that, in
gyrokinetics, the source is a priori 5-dimensions. In particular, its expression in the velocity space has
to be considered. Its precise choice depends on the number of fluid moments one wishes to excite.

In this chapter the gyrokinetic models commonly used to describe plasma turbulence in tokamaks
have been briefly reviewed. As already said, even with several simplifications, developing such gyroki-
netic applications is very challenging and not very widespread. for sure, the wide variety of gyrokinetic
codes, coming from all these different choices, is a strength for the fusion community. Indeed, due
to the extremely challenging computing requirements, each gyrokinetic code runs at the limit of its
applicability range. For instance significant advances like taking into account kinetic electrons and
electromagnetic effects are extremely time consuming for global codes. This has been firstly achieved
in the GYRO code [CW03a], then in the GENE code [GLB+11] and in the ORB5/NEMORB9 code

9NEMORB seems to have been the first electromagnetic branch of ORB5. Apparently, the ORB groups have mean-
while decided to avoid distinction between the different branches. So for the rest of the paper, we will refer to the code
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[BSB+10] and more recently in the GKW code [HMB+15]; this list is not exhaustive. Conversely,
the full-f and flux-driven regimes are two necessary ingredients to investigate, among others, the
mechanism underlying self-consistent transport barrier creation. Benchmarks between the different
approaches are therefore primordial (e.g. [TGL+08, FSA+08]). Difficulties reside generally in finding
common domains of validity (set of parameters, initial and boundary conditions,...).
After these generalities, the rest of the manuscript is more specifically dedicated to one of these ap-
plication: the electrostatic non-linear 5D gyrokinetic code Gysela . Within the community of the
5D gyrokinetic codes, Gysela is close to GT5D code [INJ14] in the sense that they are both global
full-f flux-driven codes. They mainly differ by: (i) their numerical schemes – GT5D is based on a
fourth-order non-dissipative conservative finite difference scheme [IITV07, IIK+08] which conserves
both L1 and L2 norms–; (ii) and their flux driven choice where the source term is compensated by a
sink term in GT5D [Ido14]. In the gyrokinetic code jargon, Gysela is a global full-f flux-driven based
on a Semi-Lagrangian approach. The two next chapters are dedicated to a detailed description of the
choices performed for the code both in terms of physics (chapter 2) as well as in terms of numerics
and parallelization (chapter 3).

with the unique ORB5 name.
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Chapter 2

GYSELA - A global full-f code
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In this chapter we focus on a complete description of the actual validated version of the Gysela
code in terms of equations. The present version of the code deals with a toroidal geometry with a sim-
plified concentric circular magnetic configuration (section 2.1.2) similar to the Tore Supra equilibria.
In the following we consider adiabatic electrons but the possibility to address transport of impurities.
A kinetic treatment of the electrons is under development in the code but will not be addressed in
this manuscript. Then, the time evolution of the full distribution function of each ion species (major
species as e.g Deuterium + one minor impurity) is governed by a 5D non-linear gyrokinetic Vlasov
equation (section 2.2) self-consistently coupled to a 3D Poisson equation (section 2.3). The required
gyro-average operator (section 2.4) that used to be approximated by a Padé expansion in the past
versions of Gysela can now be computed with a direct average on gyro-circles. The intra-species col-
lisions are taken into account via a simplified linearized collision operator (section 2.6) which recovers
neoclassical effects [GDPN+09]. We also describe the first inter-species operator implemented in the
code (section 2.7). It corresponds to a highly simplified version which ensures momentum and energy
transfers between species. A more complete version, satisfying neoclassical results for impurity trans-
port has been recently developed but is still under test. It will not be presented in this manuscript
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CONFIGURATION

but more details can be found in [EGS+15]. Problem of initialization and radial boundary condi-
tions inherent to global full-f codes like Gysela are addressed in section 2.5. Concerning boundary
conditions, three modes are available in the code: (i) the fixed-gradient mode where the temperature
profile is fixed at both radial boundaries, corresponding to decaying turbulence regimes (relaxation
of equilibrium profiles below instability thresholds cannot be avoided); (ii) the gradient-driven mode,
equivalent to the previous one but where gradient profiles are maintained by an artificial Krook-type
operator and finally (iii) the flux-driven mode (the most often used) where temperature is still fixed at
the outer boundary but can evolve freely at the inner one. In the gradient-driven mode, the strength
of the drag force of the Krook operator governs the dynamics of the mean (flux surface averaged)
gradient profiles: they remain all the more sticked to their initial value since the Krook coefficient
νk is large. More precisely, significant departures of the mean profiles w.r.t. their initial value are
only possible on short time scales (t� ν−1

k ), while the long time behaviour ensures that they remain
unchanged when time averaged. Concerning the flux-driven mode, the turbulence is forced with a
constant-in-time incoming flux generated by a heat source independent of the distribution function
(section 2.8) leading to possible long-time simulation. A simulation over several confinement times
has been recently performed for comparison to Tore-Supra experiments [DPHG+15].

2.1 Toroidal geometry with simplified magnetic configuration

2.1.1 Toroidal coordinate system

Let us introduce the notations used in the paper. We consider a set of coordinates labelled {xi}, the
metric tensor {gij} is the product of the transposed Jacobian matrix JT and the Jacobian matrix J ,
i.e {gij} = JT J . For a set of cartesian coordinates Xi, the elements Jij of the Jacobian matrix are
defined as Jij = ∂xjX

i. Let g represents the determinant of the metric tensor (i.e g = det{gij}), then

the Jacobian in space Jx is defined as Jx =
√
g and is equal to Jx =

[(
∇∇∇x1 ×∇∇∇x2

)
· ∇∇∇x3

]−1
, i.e the

volume element is Jx d3x. The tensor {gij} is the inverse of the tensor {gij}. The element of the
contravariant metric tensor verifies the relation gij = ∇∇∇xi · ∇∇∇xj . With these notations, each vector
A can be defined in terms of its covariant components Ai as A = Ai∇∇∇xi and the equivalent norm
is given by ‖A‖ =

√
(A1)2g11 + (A2)2g22 + (A3)2g33. At present, in the code, the coordinate system

used is the toroidal one, i.e the set of coordinates (x1, x2, x3) is equal to (r, θ, ϕ) where r is the radial
position, θ is the poloidal angle and ϕ the toroidal angle. Therefore, g11 = grr = 1, g22 = gθθ = 1/r2,
g33 = gϕϕ = 1/R2 and gij = 0 for all i 6= j. R(r, θ) = R0 + r cos θ with R0 the major radius of the
torus at the magnetic axis. The Jacobian Jx is then equal to Jx = rR.

2.1.2 Simplified magnetic configuration

The general form of the magnetic field in an axisymmetric tokamak is

B = I(χ)∇∇∇ϕ+∇∇∇ϕ×∇∇∇χ (2.1)

where χ is the opposite of the poloidal magnetic flux [DHCS91], which is a label of magnetic flux
surfaces, ϕ is the geometric angle in the (axisymmetric) toroidal direction and I is a flux function.
We can define a poloidal angle θ such that the safety factor q is only a function of χ,

q(χ) ≡ B · ∇∇∇ϕ
B · ∇∇∇θ (2.2)

The safety factor q describes the pitch of the magnetic field lines, and can be understood as the
number of toroidal revolutions performed for one poloidal revolution following a magnetic field line.
An adequate system of toroidal coordinates in tokamak geometry can then be defined by (χ, θ, ϕ). Note
that the poloidal angle obtained here is not the geometric poloidal angle and depends on the structure
of the magnetic field. This corresponds to so-called flux coordinates, designed for the magnetic field
lines to be straight on a given flux-surface. As manipulating a flux as a variable is not always practical,
the coordinate χ can be replaced by a radial coordinate r, also a label of flux surfaces, such that χ is
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Figure 2.1: The tokamak magnetic configuration and the toroidal coordinate system (r, θ, ϕ).

a function of r only. This system of toroidal coordinates is represented in Fig. 2.1. The geometry of
the torus can be described by its minor radius a and major radius R0 (at the magnetic axis). For the
coordinate system (r, θ, ϕ), the metric tensor is

gij =



|∇∇∇r|2 ∇∇∇r · ∇∇∇θ 0

∇∇∇r · ∇∇∇θ |∇∇∇θ|2 0
0 0 1

R2


 (2.3)

In Gysela code, a simplified magnetic geometry is adopted, where the poloidal cross-sections of the
magnetic surfaces (see Fig. 2.1) are taken as circular and concentric. The magnetic field B is defined
as

B =
B0R0

R(r, θ)
[ζ(r)eθ + eϕ] with ζ(r) =

r

qR0
(2.4)

where B0 and R0 correspond to the magnetic field and the major radius of the torus computed at the
magnetic axis while R(r, cos θ) = R0 + r cos θ. The vectors eθ = r∇∇∇θ and eϕ = R∇∇∇ϕ are the unit
vectors in the poloidal and toroidal periodic directions. An example of concentric, circular magnetic
flux surfaces is shown in Fig. 2.2 for an aspect ratio R/a = 3.2. Let us notice that with this choice of
angles the local field line pitch B · ∇∇∇ϕ/B · ∇∇∇θ does not only depend on r but also on θ as

B · ∇∇∇ϕ
B · ∇∇∇θ = q(r)

R0

R(r, θ)

In this special case of circular concentric surfaces, ∇∇∇r ·∇∇∇θ = 0 and the metric tensor (2.3) is diagonal
and the Jacobian of the metric reads

Jx(r, θ) =
1

B · ∇∇∇θ (2.5)

In the circular concentric case, the contravariant and covariant components of the magnetic field can
be expressed as

Br = 0, Bθ = Jx(r, θ)−1, Bϕ = I/R2

Br = 0, Bθ = grrJx(r, θ)/R2, Bϕ = I

In the code, the radial safety factor profile q(r) is defined by three parameters q1, q2, and q3 as
q(r) = q1 + q2 exp (q3 log(r/a)).

2.1.3 Current definition

As first approximation, the current is decoupled from the field and the magnetic field is assumed to
satisfy the Ampère equation, but not the force balance equation. Then the Ampère equation leads to
a current of the form:

µ0J = µ0JTR∇∇∇ϕ with µ0JT =
B0R0

R

ζ

r

(
1 +

r

ζ

dζ

dr
− r

R
cos θ

)
(2.6)
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Flux surfaces and θ=constant surfaces

Figure 2.2: Poloidal cross-section showing flux surfaces and contours of θ = constant in the case of
circular concentric magnetic configuration.

2.2 Gyrokinetic Vlasov equation

At the opposite of δf codes, Gysela is a full-f code, namely the full guiding-center distribution func-
tion F̄s is evolved for each species s with no separation between equilibrium and perturbation. Let us
consider the gyro-center coordinate system (xG, vG‖, µ) where xG corresponds to 3D space coordinates,
vG‖ is the velocity parallel to the magnetic field line and µs = msv

2
G⊥/(2B) the magnetic moment.

Conventional covariant and contravariant notations are adopted in the following. For reminders on
Einstein notations see appendix B.1. In Gysela code, the non-linear time evolution of F̄s is governed
by the 5D collisional gyrokinetic equation (described by Brizard and Hahm [BH07])

B∗‖s
∂F̄s
∂t

+∇∇∇ ·
(
B∗‖s

dxG
dt

F̄s

)
+

∂

∂vG‖

(
B∗‖s

dvG‖
dt

F̄s

)
= Rhs(F̄s) (2.7)

with the right hand side Rhs defined as

Rhs(F̄s) = B∗‖s
(
Dr(F̄s) +K(F̄s) + C(F̄s) + S

)

where Dr and K are respectively a diffusion term and a Krook operator applied on a radial buffer
region (see section 2.8.4), C corresponds to a collision operator (see section 2.6) and S refers to source
terms which are detailed in section 2.8.
Let us define the Poisson brackets as [F,G] = b·(∇∇∇F ×∇∇∇G) (see appendix B.2 for detailed expression),
and the parallel projection as∇∇∇∗‖F = b∗s·∇∇∇F . Let bk represents the covariant components of the unitary
magnetic field vector b = B/‖B‖ and Jx the jacobian in space of the system. Then it can be easily
checked that [F,G] = J −1

x εijk∂iF∂jGbk where εijk is the Levi-Civita symbol and b∗s · ∇∇∇F = b∗is ∂iF .
By using this formalism, the evolution of the gyro-center coordinates of species s, involved in the
Boltzmann equation (2.7) above, are given (within the electrostatic limit) by:

dxiG
dt

= vG‖b
∗
s · ∇∇∇xiG + vE×Bs · ∇∇∇xiG + vDs · ∇∇∇xiG (2.8)

ms

dvG‖
dt

= −µsb∗s · ∇∇∇B − qsb∗s · ∇∇∇Ū +K∇B
msvG‖
B

vE×Bs · ∇∇∇B (2.9)

where b∗s is defined by equations (1.43) and (1.41) as

b∗s ≡
B

B∗‖s
+

msvG‖
qsB∗‖sB

∇∇∇×B with B∗‖s ≡ B +
ms

qs
vG‖b · (∇∇∇× b)
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The i-th contravariant components of the ‘E×B’ drift are given by

vE×Bs · ∇∇∇xiG = viE×Bs =
1

B∗‖s

[
Ū , xiG

]
(2.10)

and the i-th contravariant components of the ‘grad–B’ and ‘curvature’ drifts read (at low β =
nT/(B2/2µ0) limit)

vDs · ∇∇∇xiG = viDs = K∇B

(
msv

2
G‖ + µsB

qsB∗‖sB

)
[
B, xiG

]
(2.11)

The constant K∇B has been added for tests in the code. K∇B is equal to 1 if the curvature of the
magnetic field is taken into account and 0 otherwise. Besides, using the fact that the axi-symmetric
equilibrium is determined by three of the ideal MagnetoHydroDynamic (MHD) equations∇∇∇p = J×B,
∇∇∇×B = µ0J and ∇∇∇·B = 0, the i-th contravariant components of b∗s appearing in equation (2.8) read

b∗s · ∇∇∇xiG = b∗is =
B · ∇∇∇xi
B∗‖s

+
msvG‖
qsB∗‖s

µ0J · ∇∇∇xiG
B

(2.12)

2.3 Self-consistent coupling with the quasi-neutrality equation

Fusion plasma turbulence typically develops at Larmor scales, which are larger than the Debye length

λD (i.e λDs � ρLs). The Larmor radius of thermal Deuterium nuclei is ρD ≈ 4.6 10−3 T
1/2
[keV ]/B[T ] m ≈

4.1 10−3 m, for T = 20keV and B = 5T , while

λD ≈ 2.35 10−5(T[keV ]/n1020m−3)1/2m ≈ 10−4m

for n = 1020m−3. The electron Larmor radius ρe may eventually compete with λD, but both exper-
imental observations and numerical simulations suggest that electron turbulence saturates at scales
larger than ρe. In such a case, the term ε0∇2U in the Poisson’s equation (1.73) can be dropped
out1. This approximation is called the quasi-neutrality constraint and leads to the simple equality
ne =

∑
s Zsns. Therefore, assuming that ne0 =

∑
s Zsns,eq and that ns,eq ≈ nGs,eq (where nGs,eq is

the guiding-center equilibrium density of species s), equation (1.73) becomes:

− 1

ne0

∑

s

Zs∇⊥ ·
(
ns,eq

BΩs
∇⊥U(x, t)

)
+ e

(
U − 〈 U 〉FS

Te

)
=

1

ne0

∑

s

Zs (nGs − nGs,eq) (2.13)

with Ωs = qsB0/ms and ∇∇∇⊥ =
(
∂r,

1
r∂θ
)
. Here, the polarization density (first term of eq. (2.13)) is

approximated by its expression in the limit of large wavelengths with respect to the Larmor radius
(limit k⊥ρs � 1). The gyro-center density nGs of species s is defined by equation

nGs(x, t) =

∫
Jv dµ dvG‖ J.F̄s(x,v, t) (2.14)

while the equilibrium part nGs,eq corresponds to the same equation where F̄s is replaced by F̄s,eq, i.e

nGs,eq(x, t) =

∫
Jv dµ dvG‖ J.F̄s,eq(x,v, t) (2.15)

The concentration cs ≡ ns/ne0 is defined such that
∑

s cs0Zs = 1. The flux surface average 〈 U 〉FS is
given by relation (1.71). In practice, the right hand side ρ of (2.13) is computed as

ρ(x, t) =
1

ne0

∑

s

Zs

∫
dµJµ.

[∫
Jv dvG‖ (F̄s(x,v, t)− F̄s,eq(r, θ, vG‖))

]
(2.16)

1Due to λDis =
√
ε0kBTe/(q2

sni0) then ε0 = ms

B2
0

Ti
Te
ni0

(
λDis
ρLs

)2

because ρLs =
√
Tsms/(qsB0)
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2.4. GYRO-AVERAGE OPERATOR: PADÉ OR INTEGRATION ON THE
GYRO-CIRCLES

To avoid the problem of the singularity in 1/r, the problem is solved within a ring rmin ≤ r ≤
rmax where rmin ≥ 1e−5. The boundary conditions are Dirichlet boundary conditions for U and
〈 U 〉FS at rmin and rmax. One difficulty with equation (2.13) is to deal with the flux surface average
term 〈 U 〉FS. This term is non-linear in θ, because the space Jacobian depends on θ. Therefore,
it does not allow one to project simply in 2D Fourier space. To overcome this problem the solving
of (2.13) is performed in two steps as proposed in [CRS12]. Let us define the differential operator

L = − 1
ne0

∑
s Zs∇⊥ ·

(
ns0
B0Ωs

∇⊥·
)

and 〈 · 〉θ, ϕ the average on θ and ϕ directions. Then, the first step

consists in finding U solution of the following differential system,

(
L+

e

Te

)
U = ρ− 〈 ρ 〉θ, ϕ with U(r, θ, ϕ) = U(r, θ, ϕ)− 〈 U 〉θ, ϕ(r) (2.17)

The second step consists in solving the following 1D radial differential equation

L〈 U 〉FS = 〈 ρ 〉θ, ϕ +

(
L+

e

Te

)
〈 U 〉FS (2.18)

In this equation, ϕ plays the role of a parameter. Fourier projection is performed in θ direction. In
radial direction, for both differential systems (2.17) and (2.18), finite differences are used. Finally,
the electrostatic potential is reconstructed with the formula U = U − 〈 U 〉FS + 〈 U 〉FS. For both
equations (2.17) and (2.18), Dirichlet boundary conditions are applied at the outer boundary at rmax,
while Dirichlet or Neumann can be chosen at the inner boundary at rmin. Notice that these boundary
conditions then apply to U , not to the actual electric potential U . Given the relationship between U
and U , imposing the Dirichlet condition U(rBC) = 0, with rBC = {rmin, rmax}, is then equivalent to
the following conditions on U : U(rBC) = 〈U〉θ,ϕ(rBC) and 〈U〉FS(rBC) = 0. The Neumann condition
proceeds in a similar way. In GYSELA, it can be only applied to the inner boundary provided rmin ≤
10−2. In this case, Jx(rmin, θ) is fairly independent of θ, so that the flux surface average is almost equal
to the average over both angles: 〈·〉FS ≈ 〈·〉θ,ϕ. In the framework of this approximation, imposing the
Neumann condition ∂rU(rmin) = 0 is equivalent to ∂rU(rmin) = ∂r〈U〉θ,ϕ(rmin) ≈ ∂r〈U〉FS(rmin) = 0.
The fact that this solution is equivalent to solve directly equation (2.13) and the detailed numerical
scheme associated are explained in Appendix C.

2.4 Gyro-average operator: Padé or integration on the gyro-circles

The gyro-average operation is essential for gyrokinetic simulations. This operator ensures the link
between the Poisson equation which is solved with the charge density of particles and the Vlasov
equation which describe the guiding-center evolution. As schematically described in Figure 2.3 the
gyro-average operator is not only applied to the 3D electrostatic potential U (used for advection
equations), but also to the 5D guiding-center distribution function F̄s (for right hand side of Poisson
equation). Here is used the fact that

∫
J0s · F̄s d3v corresponds to the particle density. Historically,

this operator was approximated by a Padé expansion (section 2.4.1). A computation based on direct
integration on the gyro-circles has been more recently implemented in the code (section 2.4.2).

2.4.1 A Padé approximation for the gyro-average operator

Considering the expression (1.62), in Fourier space the gyro-average reduces to the multiplication by
the Bessel function of argument k⊥ρs. This operation is straightforward in simple geometry with
periodic boundary conditions, such as in local codes. Conversely, in the case of global codes, the
use of Fourier transform is not applicable for two main reasons: (i) radial boundary conditions are
non periodic, and (ii) the radial dependence of the Larmor radius has to be accounted for. Several
approaches have been developed to overcome this difficulty in the gyrokinetic codes. The first one,
currently used in the code, consists in simplifying the treatment of the gyro-average operator by
approximating the Bessel function with a Padé expansion JPadé(k⊥ρs) = 1/

[
1 + (k⊥ρs)2/4

]
(e.g. see

[SGF+05]). The advantage of this Padé representation is that it does no longer requires to use the
Fourier space as required by the Bessel function. Indeed, since it involves k2

⊥, it can easily be treated
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Figure 2.3: Schematic view of the coupling between the Poisson and Vlasov solvers in the GYSELA
code.

in the configuration space by using the relation ∇2
⊥ ↔ −k2

⊥. Using this Laplacian equivalence, the
gyro-average operation of any g function is defined such that each m Fourier mode of ḡ is solution of
the equation [

1− 1

2Ω2
s

B0

ms
µs

(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2

)]
ḡm(r, ϕ) = gm(r, ϕ) (2.19)

where at first approximation B(r, θ) has been replaced by B0 to be consistent with the quasi-neutrality
equation. In this differential equation, first and second derivatives are computed using a Taylor expan-
sion of second order leading to a tridiagonal matrix system (see Appendix D for details of implemen-
tation in the code). This Padé approximation is asymptotically correct in the large wavelength limit
k⊥ρs � 1 (indeed: J0(k⊥ρs) ≈ 1 − k2

⊥ρ
2
s/4 for k⊥ρs � 1), while keeping JPadé finite in the opposite

limit k⊥ρs →∞. The drawback is a filtering of small scales: in the limit of large arguments x→∞,
JPadé(x) ≈ 4/x2, whereas J0(x) ≈ (2/πx)1/2 cos(x− π/4) (see Figure 2.5).

(a)

Figure 2.4: The zero-th order Bessel function J0(k⊥ρs) compare to its Padé approximation
1/
[
1 + (k⊥ρs)2/4

]
.

2.4.2 Integration on the gyro-circles by using hermite interpolation

A second widespread method for this gyro-averaging process is to use a quadrature formula. In this
context, the integral over the gyro-ring is usually approximated by a sum over four points or more on
the gyro-ring [Lee83]. This is rigorously equivalent to considering the Taylor expansion of the Bessel
function at order two in the small argument limit, namely J0(k⊥ρs) ' 1− (k⊥ρs)2/4, and equivalent
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(a) (b)

Figure 2.5: Exact and approximated gyro-average operators applied on an arbitrary funcion Fk exhibit-
ing a broad spectrum ranging from low to large wavelengths as compared with the Larmor radius ρc:
(a) Representation in the Fourier space, (b) Representation in the real space (figures from [SGF+05]).

to computing the transverse Laplacian at second order using finite differences. This method has been
extended to achieve accuracy for large Larmor radius [HTK+02], i.e the number of points (starting
with four) is linearly increased with the gyro-radius to guarantee the same number of points per
arclength on the gyro-ring. In this approach –used e.g. in [ITKW01] and [JBA+07]– the points that
are equidistantly distributed over the ring are rotated for each particle (or marker) by a random angle
calculated every time step. This is performed on a finite element formalism and enables therefore high
order accuracy by keeping the matricial formulation. In [CMS10a] the influence of the interpolation
operator (which is of great importance when the quadrature points do not coincide with the grid
points) has been studied and it is shown that the cubic splines are appropriate. The direct integration
on gyro-circles proposed in [CMS10a] has been recently generalized to arbitrary coordinates [SMC+15]
and implemented in the code. For the distribution function the gyro-average operator is applied on
F̄s − F̄s,eq to deal with values close to 0 at the domain boundaries. Two interpolations –cubic splines
and Hermite polynomial– have been tested on analytical cases and basic gyrokinetic simulations with
a 4D drift-kinetic model, one Larmor radius and the standard linear Cyclone benchmark case (see
[SMC+15] for more details and comparison with Padé approximation). Both appear to give the same
results. However, the Hermite interpolation is slightly faster and its local character is more favourable
for parallelization. The number of points per circle is an input parameter comprised between 4 and 16.
There is no adaptive number of points depending on the Larmor radius value because the CPU time is
in fact determined by the maximum number. As shown in [SMC+15] the method converges with the
number of points, so there is no interest in decreasing the number of points at small radius. It is shown
in [RSM+15] that 16 points is a good compromise between accuracy and CPU time consumption (2
times slower than the previous Padé approximation due to its higher algorithmic complexity). All
numerical results presented in the following are performed with the Padé approximation. The reason
for not choosing the Hermite interpolation is just chronological: this latter method has been developed
only recently. First analyses of new simulations with gyro-average operators based on Hermite show
similar results in terms of conservation laws. The impact on non-linear cases will be addressed in a
future paper.

2.5 Initial and boundary conditions

Boundary conditions are periodic in θ and ϕ directions. Concerning the radial direction, Gysela is
a global code, i.e it considers a large fraction of the plasma radius. This is in contrast to flux-tube
codes which focus on a small volume around magnetic field lines by proceeding from a scale separation
assumption, the fluctuation scale length being smaller than that of the equilibrium. In such codes,
periodicity is almost always assumed along the radial direction. Conversely, global codes as Gysela
face the delicate problem of radial boundary conditions. Non-axisymmetric fluctuations of the electric
potential and of the distribution function –i.e (m,n) 6= (0, 0) modes, with m and n the poloidal and
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toroidal wave numbers– are forced to zero at both radial boundaries of the simulated domain. As
far as the axisymmetric component is concerned, the value of the potential is prescribed at the outer
boundary, while the radial electric field is set to zero at the inner boundary. In addition, so as to avoid
possible numerical instabilities, which might occur in the case where turbulent fluctuations reach the
frontiers of the simulation domain, buffer regions have been added at both radial boundaries. They
are characterized by non-vanishing ad-hoc dissipative coefficients, which aim at keeping all gradients
finite and damping out all fluctuations (see section 2.8.4). Initial conditions consist of an equilibrium
distribution function F̄s,eq perturbed by a sum of accessible (m,n) Fourier modes (m and n being the
poloidal and toroidal wave numbers, respectively). That means, F̄s = F̄s,eq + δF̄s where the perturba-
tion part δF̄s reads δF̄s = F̄s,eq g(r)h(vG‖)δp(θ, ϕ) with δp(θ, ϕ) =

∑
m,n ε cos (mθ + nϕ+ δmn) where

the amplitude ε is fixed and the phases δmn have arbitrary values. The radial function g(r) (resp.
h(vG‖)) has a polynomial dependence and vanishes at both radial (resp. vG‖) boundaries. Concerning
the initialization of the equilibrium distribution function two choices are possible: (i) the first one is a
local conventional Maxwellian, (ii) and the second one is a canonical Maxwellian, i.e depends on the
motion invariants. The Maxwellian distribution function is defined as

F̄s,eq(r, E) = ns0(r)× [2πTs(r)/ms]
− 3

2 exp

(
− E

Ts(r)

)
(2.20)

where E stands for the kinetic energymsv
2
G‖/2+µB(r, θ) which is the second invariant of the system (at

vanishing electric potential). The initial radial profiles of the ion temperature and density (respectively
Ts(r) and ns0(r)) are deduced by numerical integration of their gradient profiles given by the two
parameters κ and ∆r: d log Ts(r)/dr = −κTs cosh−2 ((r − rp)/∆rTs) with rp corresponding to the
middle of the radial box. F̄s,eq is constant on a magnetic surface labelled by the radial coordinate r.
As shown in [DPGS+08a], such initial state does not constitute an equilibrium of the system solved by
Gysela at vanishing electric field. A stationary equilibrium of the collisionless equations of the code
must depend on the three motion invariants, namely the adiabatic invariant µ, the total energy E and
the toroidal kinetic momentum Pϕ = qsψ +msRvϕ with ψ the poloidal flux and vϕ the toroidal fluid
velocity. In Gysela, a convenient choice for this equilibrium is provided by the canonical Maxwellian
(2.20) in which the radial coordinate r is replaced –as proposed in [ABe06]– by an effective radial
coordinate r̄, with the dimension of a length, derived from Pϕ

r̄ = rp −
qp
rp

[
ψ(r)− ψ(rp)

]
− msqp
eB0rp

[
RvG‖ −R0 ¯vG‖

]
(2.21)

where ψ(r) = −B0

∫ r
0 r
′/q dr′. The last term ¯vG‖ in (2.21) is defined as,

¯vG‖ = sign(vG‖)
√

2/ms

√
E − µBmaxH(E − µBmax)

with H the Heaviside function and Bmax the maximum of the magnetic field on the whole simulation
box. It has been chosen to minimize parallel flows. With this expression the difference between r̄
and r is of order ρ∗, the ratio of ρs the Larmor radius of species s and the minor radius a. In the
case of a decaying turbulence it is important to choose F̄s,eq as a function of the motion invariants,
especially for studying zonal flows. It had been observed in [ITKW01, ABe06] that breaking this rule
leads to the development of large scale steady flows, which can prevent the onset of turbulence. This
phenomena has also been observed in Gysela simulations where a study of the difference between
both equilibrium initialization has been performed in detail [DPGS+08a, DPGS+08b]. In [DPGS+08b]
it has also been shown that when the system is driven by an external source of free energy, the choice
of a canonical equilibrium is less crucial. The turbulence onset is only delayed and its ultimate nature
is unaltered; namely characterized by the same level of parallel and axisymmetric flows, the same level
of transport and the same correlation times and lengths.

2.6 Simplified collision operator recovering neoclassical effects

Although fusion plasmas are weakly collisional, so that a kinetic approach is mandatory, the effect
of collisions cannot be fully neglected. Collisional transport plays an important role in regions where
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EFFECTS

turbulent transport is low, such as transport barriers. Even more importantly, collisional friction
damps low frequency flows, and hence controls the equilibrium radial electric field. Collisions also
regularize fine structures in velocity space. Finally, collisions have also an impact on microinstabilities,
e.g via particle detrapping that is partially stabilizing Trapped Electron Modes (TEMs). Let Fs be
the particle distribution function of species s and Fs′ be the particle distribution function of species
s′. The Fokker-Planck equation, which corresponds to the collisional version of the Vlasov equation,
can be written as:

Cs(Fs) =
∑

s′
Css′(Fs, Fs′) (2.22)

to take into account the collisions inter and intra-species. In tokamak configuration, these collisions
depend on the Coulomb binary interactions between particles (see Landau [Lan36] for calculations).
Then it is shown in [HM03] that the collision operator applied to the distribution functions can take
the classical Fokker-Planck operator form:

Css′(Fs, Fs′) =
∂

∂v
·
{(
D(Fs′) ·

∂

∂v
+ V(Fs′)

)
Fs

}
(2.23)

where V is a dynamical friction term and D is a diffusion term of the order of D ∼ v2
Ts
νss′ with the

collision frequency νss′ being defined as

νss′ ∼
D
v2
Ts

∼ ns′

ms

(
1

ms
+

1

ms′

)
q2
sq

2
s′ log Λ

(1 + ε0)2

(
v2
Ts + v2

T ′s

)−3/2
(2.24)

where ns′ is the density of species s′, qs (resp. qs′) is the particle charge of species s (resp. s′), ms

is the particle mass of species s, ε0 the permittivity of free space, log Λ ≈ 17 the Coulomb logarithm
and vTs =

√
Ts/ms is the thermal velocity of species s. Let us first underline that the frequency

νss′ is different from νs′s. Besides, let us compare the collision frequencies for the different following

particle populations: (i) ion-ion collisions: νii ∝ Z4ni/
√
miT

3/2
i , (ii) electron-electron collisions: νee ∝

ne/
√
meT

3/2
e , (iii) electron-ion collisions: νei ≈ Zνee and (iv) ion-electron collisions: νie ≈ me

mi
Z2νee �

νii � νee. Therefore, the ion-electron collisions can be neglected. At the moment in the code, the
electrons are considered adiabatic, therefore only the ion-ion collisions and impurity-ion collisions
(see section 2.7.1) are taken into account. The full gyro-averaged and linearized Landau operator
has been derived in [XR91] but such a full Coulomb collisional operator is difficult to implement in
Gysela without severe loss of parallelisation efficiency. As described in section 3.2, the Gysela
parallelization takes advantage of the fact that the magnetic moment µ is an adiabatic invariant,
that plays the role of a parameter in Boltzmann equation. A unique value of µ is assigned to each
processor. It was shown that the predictions of the neoclassical theory at low collisionality could be
entirely recovered with a reduced collision operator acting in the v‖ direction only [DPDG+11]. In
short, this results from the fact that the main ions of tokamak plasmas are weakly collisional. In
this so-called banana regime, collisions essentially perturb the banana orbits at their turning points,
where the parallel velocity of trapped particles vanishes. This corresponds to the trapped-passing
boundary in the (v‖, v⊥) plane. Accounting for diffusion in v‖ then reveals sufficient to model such a
transport, governed by the broadening of the trapped-passing boundary due to collisions. It also has
the advantage of keeping µ invariant, hence not degrading the efficiency of the code parallelization.
The operator implemented in the code, is a simplified version of the Lenard-Bernstein operator [LB58].
This simplified version has been derived in [GDPN+09] where it is especially shown that it recovers
the exact neoclassical transport in the banana and plateau regimes2 (see Helander’s book [HS05]
p.149 for complete neoclassical transport regime description). This generic energy and momentum-
conserving collision operator has been implemented and successfully tested in the code (see [AGG+11],

2The physics of neoclassical transport depends on the collisionality ν∗. If the collisionality is low, ν∗ < 1, the particle
orbits are completed by a typical thermal particle. In this so-called banana regime, trapped particles almost fully
determine the transport coefficients. In the opposite limit, ν∗ > ε−3/2, the particle orbit is not fully completed because
its motion is disturbed by collisions before. This high collisionality regime is called the Pfirsch-Schülter regime or fluid
regime. In-between, the plateau regime is characterized by a weak dependance of the transport on the collisionality of
the plasma.
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[DPDG+11]). A new version also valid for the Pfirsch-Schülter regime has been recently derived
[EGS+15] and is still under tests in the code. The current collision operator is expressed as a simplified
Lorentz-type operator where only the vG‖ contribution is taken into account:

Cs(F̄s) =
1

B∗‖s

∂

∂vG‖

{
B∗‖sD‖s F̄Ms

∂

∂vG‖

(
F̄s
F̄Ms

)}
(2.25)

where F̄Ms is a shifted Maxwellian distribution –chosen such that Cs(F̄Ms) = 0– defined as:

F̄Ms =
ns0

(2πTs,coll/ms)
3/2

exp

(
−ms

(vG‖ − V‖s,coll)
2

2Ts,coll
− µsB

Ts,coll

)
(2.26)

The collision term D‖s reads for each µs:

D‖s(r, v) = As(r)
(

Φ(v)−G(v)

2v

)
with As(r) = 3

√
π

2

v3
Ts,coll

ε3/2

qR0
ν∗s (2.27)

where v(r, vG‖) =
√
E/Ts,coll. The scalar ν∗s, associated to the main s species, is a dimensionless

ion-ion collisionality parameter depending on the ion-ion collision frequency νss such that:

ν∗s =
qR0

vTs,coll
ε3/2

νss with νss =
4
√
π

3

ns e
4 log Λ

(4πε0)2m2
sv

3
Ts,coll

(2.28)

where vTs,coll
denotes the initial thermal velocity vTs,coll

= (Ts,coll/ms)
1/2, q the safety factor, R =

R0 + r cos θ the major radius, ε = r/R0 the inverse aspect ratio and ns the density of ion species s.
The explicit expression (2.27) also involves the error function Φ and the Chandrasekhar function G
defined as

G(v) =
Φ(v)− vΦ′(v)

2v2
with Φ(v) =

2√
π

∫ v

0
e−x

2
dx and Φ′(v) =

2√
π
e−v

2
(2.29)

Considering that the ν∗s scalar which is given (as input data) in the code corresponds to the main
species, the collision frequencies νs′s′ for minority species s′ are deduced from this value as

νs′s′ =
vTs′,coll

ε3/2

qR0
ν∗s′ with ν∗s′ =

(
ns′

ns

)(
Zs′

Zs

)4( Ts,coll

Ts′,coll

)2

ν∗s (2.30)

Let us express for each µs, the operator V‖s as

V‖s(r, v) = −
(
vG‖ − V‖s,coll

)

v2
Ts,coll

D‖s(r, v) with vTs,coll
=
√
Ts,coll/ms (2.31)

then the collision operator (2.25) can be expressed with a more classical Fokker-Planck structure as:

Cs(F̄s) =
1

B∗‖s

∂

∂vG‖

[
B∗‖s

(
D‖s

∂F̄s
∂vG‖

− V‖s F̄s
)]

(2.32)

where the operators D‖s and V‖s respectively model a diffusion and a drag in the parallel velocity
direction (see figure 2.6). The conservation properties of parallel momentum and energy are ensured by
constraining D‖s to depend on µs only and defining the local fluid velocity V‖s,coll and ion temperature
Ts,coll as follows (see Appendix F for more details)

V‖s,coll = P−1

[〈
ms

B∗‖s
∂vG‖(B

∗
‖sD‖svG‖)

〉
〈
msD‖svG‖

〉

−
〈

1

B∗‖s
∂vG‖(B

∗
‖sD‖s)

〉〈
m2
sD‖sv2

G‖
〉]

(2.33)

Ts,coll = P−1
[〈
msD‖s

〉 〈
m2
sD‖sv2

G‖
〉
−
〈
msD‖svG‖

〉 〈
m2
sD‖svG‖

〉]
(2.34)
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Figure 2.6: Parallel velocity dependence of the diffusive and convective operators D‖s and V‖sin
equations (2.27) and (2.31).

where

P =
〈
msD‖s

〉
〈
ms

B∗‖s
∂vG‖(B

∗
‖sD‖svG‖)

〉
−
〈
m2
sD‖svG‖

〉
〈

1

B∗‖s
∂vG‖(B

∗
‖sD‖s)

〉
(2.35)

with the brackets 〈·〉 corresponding to the velocity space integral 〈·〉 =
∫
· Jv dµs dvG‖Fs. The impact

of the collisions on the evolution of the distribution function F̄s is taken into account by stepping the
evolution of the distribution function ∂tF̄s = Cs(F̄s) with a Crank-Nicolson scheme. This collision
operator forces the system to relax towards the Maxwellian distribution function, calculated from the
instantaneous and local parallel flow V‖s,coll and the isotropic temperature Ts,coll ∼ Ts,coll ‖.

2.7 Collisional transfers between two species

The inter-species operator currently implemented in the code is highly simplified. It only ensures
the moment transfers and energy transfers between species. A more complete version, satisfying
neoclassical results for impurity transport, is under development.

2.7.1 Collisional energy transfer

The energy exchange between two species is approached by the following reduced collision operator

dF̄s
dt

= − ηEss′

(2πTmean/ms)
3/2

∆Tss′

Tmean

( Ess′
Tmean

− 3

2

)
exp

(
− Ess′
Tmean

)
≡ CEss′(Ess′) (2.36)

dF̄s′

dt
= − ηEss′

(2πTmean/ms′)
3/2

∆Ts′s
Tmean

( Es′s
Tmean

− 3

2

)
exp

(
− Es′s
Tmean

)
≡ CEs′s(Es′s) (2.37)

where d/dt stands for the phase space Lagrangian derivative and the following definitions have been
adopted

Tmean =
Ts + Ts′

2
; ∆Tss′ = Ts − Ts′ = −∆Ts′s (2.38)

Vmean =
V‖s + V‖s′

2
; ∆Vss′ = V‖s − V‖s′ (2.39)

Ess′ =
ms

(
vG‖ − Vmean

)2

2
+ µsB ; Es′s =

ms′
(
vG‖ − Vmean

)2

2
+ µs′B (2.40)

The temperatures and fluid velocities which enter these definitions are flux surface averaged, i.e. by
considering 〈·〉FS =

∫
·Jxdθdϕ/

∫
Jxdθdϕ. Then velocities correspond to V‖s(r) = 〈

∫
vG‖ F̄s d3v〉FS/Ns(r)

with density Ns(r) = 〈
∫
F̄s d3v 〉FS, the volume element being defined as d3v = Jv dvG‖ dµs. Tem-

peratures are defined as Ts(r) = 2/3〈
∫
Es F̄s d3v 〉FS/Ns(r) where Es = (ms/2)

(
vG‖ − V‖s

)2
+ µsB.
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The parameter ηEss′ has been designed so that particles and parallel momentum are conserved

ηEss′ =
8 ε3/2

3
√
π

ms

ms′

(
Zs′

Zs

)2 ns′
√
Ts,coll/ms

qR0

(
1 +

v2
T ′s

v2
Ts

)−3/2

ν∗s (2.41)

where the normalized ion-ion collision frequency ν∗s is given by eq.(2.28) (for detailed calculation see
Appendix G.1). Numerically, equation (2.36), is solved as F̄s(t+ ∆t) = F̄s(t) + ∆t CEss′(Ess′ , t).

2.7.2 Parallel momentum transfer

Parallel momentum exchange between two species can be modelled by the following approximate
collision operator:

dF̄s
dt

= −ηvG‖ss′ ∆Vss′vG‖ exp

(
− Es
Tmean

)
≡ CvG‖ss′ (Es) with Es =

1

2
msv

2
G‖ + µsB (2.42)

dF̄s′

dt
= −ηvG‖s′s ∆Vs′svG‖ exp

(
− Es′

Tmean

)
≡ CvG‖s′s (Es′) (2.43)

where Tmean is defined by equation (2.38). ∆Vss′ is equivalent to eq.(2.39). The parameters η
vG‖
s′s and

η
vG‖
ss′ are designed such that only parallel momentum exchanges are induced by this operator, thus

leading to

η
vG‖
ss′ = ns′m

2
s

( ε

2π

)3/2 1

qR0

√
Ts,coll

T
5/2
mean

(
Zs′

Zs

)2 vTs
vT>

ν∗s and η
vG‖
s′s =

(
ms′

ms

)3/2

η
vG‖
ss′ (2.44)

where the velocity vT> corresponds to the maximum value between vTs and vT ′s (for more details see
Appendix G.2).

2.8 Flux-driven approach with source terms

2.8.1 Sources of heating, momentum and vorticity

As introduced previously Gysela is a full-f code, namely the back reaction of turbulent transport is
accounted for in the time evolution of the equilibrium. In such a framework, the turbulence regime
is evanescent if no free energy is injected in the system. Turbulent transport results in the flattening
of the temperature profile, which would ultimately reach marginal stability in the absence of any
forcing. A heat source is mandatory in view of exploring the long time –on energy confinement times–
behaviour of turbulence and transport. In Gysela, the possibility to drive the system by a prescribed
source was added in 2009 [SGA+10]. This source consists of the sum of the product of Hermite and
Laguerre polynomials in vG‖ and µs, respectively, in the spirit of the pioneering work by Darmet et
al [DGS+08]. It is versatile enough to allow for separate injection of heat, parallel momentum and
vorticity. Such a versatility imposes serious constraints on the expression of the source in phase space.
The separation between these three kinds of sources is achieved using projections onto the bases of
orthogonal Hermite polynomials in vG‖ and orthogonal Laguerre polynomials in µs. The retained
expression for the source is the following (see Appendix H for detailed description)

dF̄s
dt

= Sheat(r, θ, vG‖, µs) + Smoment(r, θ, vG‖, µs) + Svorticity(r, θ, vG‖, µs) (2.45)

where the pure heating source is defined as:

Sheat =

[
v̄2
G‖s −

1

2
−

J‖B
2− J2

‖B
(2− µ̄s)

(
2v̄G‖s − J‖B

)] 2SE0
(2πTs,srce/ms)

3/2 Ts,srce

SEr e
−v̄2

G‖s
−µ̄s

(2.46)
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with µ̄s = µsB/Ts,srce, v̄G‖s = vG‖/
√

2Ts,srce/ms, J‖B ≡
√

2msTs,srce/(qsB
2)µ0J‖ and α = (ms/q

2
s)×

Ts,srce/(2B
2). Smoment is a pure momentum source expressed as

Smoment =
[
2v̄G‖s(2− µ̄s)− J‖B

(
1 + 2v̄G‖s − µ̄s

)] S
vG‖
0

4π3/2 (Ts,srce/ms)
2 S

vG‖
r e

−v̄2
G‖s
−µ̄s

(2.47)

while Svorticity is a pure source of vorticity

Svorticity = −
[
2v̄2
G‖s − µ̄s

] SΩ
0

α (2πTs,srce/ms)
3/2

SΩ
r e
−v̄2

G‖s
−µ̄s

(2.48)

The prescribed radial envelopes SEr , S
vG‖
r and SΩ

r are chosen as the sum of two hyperbolic tangents but
could be any radial function under the constraint that the integral over the minor radius is normalized
to 1 while SE0 , S

vG‖
0 and SΩ

0 correspond to the source amplitudes and Ts,srce to the temperature of the
source. They are usually localized close to the inner boundary of the simulation domain [SGA+10].
The heat source is an isotropic source that takes particles at a vanishing velocity and accelerates them
up to v ≈ 1.5vTh . See schematic view with figure 2.8. As a remark, there is another choice possible
for the heat source Sheat in the code, which corresponds to

Sheat =
SE0

3
√

2
(
πTs,srce

ms

)3/2
Ts,srce

(
E

Ts,srce
− 3

2

)
exp

(
− E

Ts,srce

)
SEr (2.49)

There are two main advantages in dealing with a prescribed heat source: (i) the forcing of turbulence
can mimic that in experiments, in contrast to simulations where the mean gradient is prescribed and
(ii) the sum of the spatially and time (on the τE time scale) averaged turbulent and neoclassical heat
fluxes must balance the prescribed driving flux. In this case, the response is the temperature gradient,
which ultimately governs the internal energy and therefore the performance of the discharge. An
example of initial and final temperature profiles is shown in figure 2.7. Flux driven simulations then
allow investigating the impact of heating power on the energy confinement time [SGA+11]. The source
of vorticity described before has been efficiently used to polarize the plasma [SSZ+13a] inducing the
development of sheared electric fields in the turbulent core. The creation of ion transport barriers by
these externally induced sheared E ×B flows has been studied in details in [SSZ+13b, SSZ+13a].

Figure 2.7: Schematic view of a heat source and buffer regions in the case of a flux driven simulation.
Comparison between initial temperature profile (black line) and final temperature (red line).

2.8.2 Energetic particle source

A source of energetic particles (EPs) has been also implemented in the code to study the interaction
between EPs and turbulence. EPs are characterized by energies larger than the thermal energy.
The excitation by EPs of the geodesic acoustic modes (GAMs) –corresponding to the oscillatory
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component of large scale E×B zonal flows– creates modes which are called energetic geodesic acoustic
modes (EGAMs) [Fu08, NFA+08]. For more details on the impact of EGAMs on turbulence see
[ZGS+12, ZSG+13, DZS+13]. In practice this source is coupled to the heating source, such that
dtF̄s = Sheat + SEP where SEP is also built, as for the previous sources, by using projection onto
the Laguerre and Hermite polynomial bases, with the constraint to inject only parallel energy. For
symmetry reason, the energetic particle source, is built as

SEP(r, θ, vG‖, µs, t) = S EP
0 (t)S EP

r (r) (S+ + S−) with S−(θ, vG‖, µs) = S+(θ,−vG‖, µs)

where S EP
0 is the source amplitude and S EP

r the radial profile is normalized such that
∫
r drS EP

r = 1.
After the same kind of calculation as in the previous sources, the final expression reads

S± =

[
(v̄G‖s ± v̄0)2 − 1

2
−QEP(2− µ̄s)(2(v̄G‖s ± v̄0)− J‖B)

]
e
−(v̄G‖s±v̄0)2

e−µ̄s (2.50)

where µ̄s = µsB(r, θ)/TS⊥ and QEP = J‖B/
(

2− J2
‖B(1 + 2v̄2

0)
)

with v̄0 = v0/
√

2TS‖ an arbitrary

normalized velocity. The expressions of the parallel current J‖B and the velocity v̄G‖s are the same as
in equation (2.46) where Ts,srce is replaced by TS‖. TS‖ and TS⊥ correspond to the normalized parallel
and perpendicular temperatures of the energetic particle source. Each of the terms S+ and S− does
not inject neither mass –which is essential because electrons are considered adiabatic in the code–
nor vorticity. See figure 2.8 for a representative view of the source in parallel velocity direction. The

Figure 2.8: Schematic view of the energetic particle source as a function of the parallel velocity

source mimics the effects of two tangential neutral beam injectors, oriented in the co-and counter-
current directions. It is localized around the mid position r = 0.5 (rmin + rmax) and brings the
distribution function out of the equilibrium by creating a positive slope in energy. As explained in
[ZSG+13] v0 and TS‖ are both critical parameters in view of exciting EGAMs. Gysela results for
EGAMs excitation have been successfully compared to analytical theory [ZSG+13] and benchmarked
more recently with ORB5 code.

2.8.3 Source of impurities

Finally, it is also possible to add a source of impurities s′ of the form

Sns′ =
S
ns′
0 Sr(

2πTs′,srce

ms′

)3/2

(
5

2
− µs′B

Ts′,srce
−
ms′v

2
G‖

2Ts′,srce

)
exp

(
−
ms′v

2
G‖

2Ts′,srce
− µs′B

Ts′,srce

)
(2.51)

Let us notice that this source of matter is not a pure source, due to the fact that it also injects some
amount of vorticity. This injection is balanced by a sink for the major species s, such that

Zs

∫
SnsJvs dvG‖ dµs + Zs′

∫
Jvs′Sns′ dvG‖ dµs′ = 0
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2.8.4 Diffusion terms in buffer regions

Finally, to avoid strong gradients at the boundaries, radial diffusion and artificial damping can be
added in buffer regions. These buffer regions are defined at each side of the radial domain r ∈
[rmin, rmax] as a sum of hyperbolic tangents:

Hbuff(r) = 1 +
1

2

[
tanh

(
r − rmax +BL Lr

BS Lr

)
− tanh

(
r − rmin −BL Lr

BS Lr

)]
(2.52)

where Lr is the length of the radial domain. BL and BS are respectively the location and the stiffness
of the buffer regions. The function Hbuff plays the role of a mask which is equal to 1 in the buffer
regions and 0 elsewhere. The diffusion term which is applied in the buffer regions is of the form

Dr(F̄s) =
1

B∗‖s

[
1

r

∂

∂r

(
rχ(r)B∗‖s

∂

∂r
F̄s

)]
(2.53)

with χ(r) = χ0Hbuff(r) (χ0 being the diffusion coefficient). The equation ∂tF̄s = Dr(F̄s) is solved by
using a Crank-Nicolson scheme (see appendix I). An artificial damping term ν0 is introduced in the
buffer regions by defining a Krook operator

Kr(F̄s) = −ν(r)(F̄s − F̄s,eq) with ν(r) = ν0Hbuff(r) (2.54)

and solving ∂tF̄s = Kr(F̄s). Let ∆t be the time step, then an analytic solution of the previous equation
is given by 3

F̄s(t+ ∆t) = F̄s,eq + (F̄s(t)− F̄s,eq) exp (−ν(r)∆t) (2.55)

This mechanism restores the distribution function to its initial equilibrium state F̄s,eq, in the buffer
regions, by slowly damping all the turbulent modes of the system. It also plays the role of a heat sink
by effectively coupling the plasma with the outer thermal baths.

Let us summarize the main characteristic of the Gysela code with its strengths and weaknesses.
First of all, it is global. It simulates the whole plasma in toroidal geometry (r, θ, ϕ) but for a simplified
circular magnetic configuration. The 2D velocity space is (vG‖, µ) with µ the magnetic momentum.
Periodic boundary conditions are imposed both in poloidal (θ) and toroidal (ϕ) directions. Homo-
geneous Dirichlet boundary conditions are considered in parallel velocity (vG‖) direction. In radial
direction (r), boundary conditions are non-homogeneous Dirichlet in r = rmax while they vary ac-
cording to the forcing choice in r = rmin (non-homogeneous Dirichlet if thermal baths and Neumann
conditions for gradient-driven or flux-driven options).
Secondly, Gysela is a full-f code. It considers for each ion species the time evolution of the full 5D
distribution function Fs(r, θ, ϕ, vG‖, µ) (where µ as adiabatic invariant plays the role of a parameter)
but electrons are assumed adiabatic. The minimal set of Gysela equations is then

- a 4D+1D gyrokinetic Vlasov equations for each ion species (2.7)

- with four advection equations (2.8)-(2.9)

- self-consistently coupled to a 3D quasi-neutrality equation (2.13).

Thirdly, Gysela can take into account neoclassical transport effects with:

- a linearized intra-species collision operator (2.32) and

- a simplified inter-species collision operator including energy transfers (2.36)-(2.37) and parallel
momentum transfers (2.42)-(2.43).

Fourthly, additional source terms are available for flux-driven simulations:

3 Let G be a function defined as G(t) = F̄s(t) − F̄s,eq. As F̄s,eq is constant in time, ∂tF̄s = Kr(F̄s) is equivalent
to ∂tG(t) = −ν(r)G(t) which has for solution G(t) = exp(−ν(r)t). Therefore, G(t + ∆t) = F̄s(t + ∆t) − F̄s,eq =
exp(−ν(r)× (t+ ∆t)) = G(t) exp(−ν(r)∆t).
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- a pure source of heating (2.46),

- a pure source of momentum (2.47),

- a pure source of vorticity (2.48) and

- a source of energetic particles (2.50).

Finally, Gysela is the unique 5D global full-f flux-driven code in the world based on a Semi-Lagrangian
numerical scheme. This originality is detailed in the next chapter.
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Chapter 3

A highly parallel semi-Lagrangian code
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As said before, one originality of the Gysela code is to be based on a Semi-Lagrangian scheme
which is a mix between PIC and Eulerian approaches. Each of these three numerical methods has
its advantages and its drawbacks. This objective of this chapter is not at all to prove that the Semi-
Lagrangian approach is better or not than the two others. We are convinced that having the three type
of gyrokinetic codes (PIC, Eulerian and Semi-Lagrangian) is a strength for Fusion community. We
first detailed here how the Backward Semi-Lagrangian (BSL) method is applied to the 5D gyrokinetic
Boltzmann equation. For this, we start by reminding the BSL concept. Then, we describe the global
numerical scheme, implemented in the code, which is based on a time-splitting of Strang [Str68]. All
the numerical methods associated to each operators and each equations are completely described in
appendices to act as user’s guide of the code. As already mentioned, Gysela requires state-of-the-
art in HPC to deal with non-linear simulations on huge 5D meshes. The second part of Chapter 3 is
therefore dedicated to these parallel computing aspects. Its eulerian character is an advantage because
there is no problem of load-balancing. However, a difficulty when parallelizing the semi-Lagrangian
Vlasov solver is due to the cubic spline interpolation. Indeed, cubic splines are a good compromise
between simplicity and accuracy but are non-local. We detail how this difficulty has been overcome
and what has been done to improve the scalability of the Poisson solver. The associated hybrid
OpenMP/MPI parallelization results in a remarkable scalability on several hundreds of thousands of
cores.

3.1 Specificity of the GYSELA code: a semi-Lagrangian scheme

Semi-Lagrangian (SL) schemes have been first used for the advection of vorticity in simplified models
of large scale flows. It has gained maturity when the discretization approach was introduced in
the relevant context of atmospheric flows. A comprehensive review of semi-Lagrangian methods in
this meteorological context until 1990 is due to Staniforth [SC91]. It is also applied to geophysical
fluid dynamics (cf. [Dur98]). In magnetized plasma turbulence area, the SL method has been first
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applied to calculate a turbulence driven by passing ions in 2D (1D in space, 1D in velocity) [SRBG99]
and trapped ions in 3D (2D in space, 1D in velocity) [DGBG00, SGF+05]. This method was then
extended to the 4D model (3D in space and v‖ (with µ = 0)) of Ion Temperature Gradient (ITG)
driven turbulence in cylindrical geometry with the development of the Gysela code (for GYrokinetic
SEmi-LAgrangian code) [GBB+06] and the CYGNE code [BGS+04]. The 4D drift-kinetic slab-ITG
version of the Gysela code has shown good properties of energy conservation in non-linear regime
[GBB+06] as well as accurate description of fine spatial scales [SGDP+06b]. In the CYGNE code the
standard Taylor expansion is replaced by a Bürlisch-Stoer scheme (for the 2D advection) to increase
the spatial accuracy and the logarithmic interpolation technique is used to ensure the positivity of the
distribution function. Brunetti et al. [BGS+04] have shown that (i) the positivity can be preserved
but at the cost of larger diffusion and (ii) that non-equidistant meshes in radial and parallel velocity
directions are a key tool for obtaining accurate results. Due to the good conservation property obtained
in 4D, the gyrokinetic 5D version of the Gysela code [GSA+07] has been based on the same numerical
scheme. The global algorithm for the new 5D gyrokinetic multi-ion species version of the code will
be described in the following both in terms of numerics (section 3.1.3) and parallelisation (section
3.2). Advantages and drawbacks of such a 5D semi-Lagrangian code will be discussed. The purpose
of the semi-Lagrangian method is to take advantage of both the Lagrangian and Eulerian approaches,
with an accurate description of the phase space, in particular regions where the density is low, as
well as an enhanced numerical stability. It is based on the fact that the most precise way to solve
convection (or advection) hyperbolic PDE is to use their characteristics along which the distribution
function remains constant. This method was primarily developed by Cheng and Knorr [CK76]. It
has been cast in more general framework of SL by Sonnendrücker in 1998 [SRBG99] and Nakamura
in 1999 [NY99]. In this approach, the phase-space mesh grid is kept fixed in time (Eulerian method)
and the Vlasov equation is integrated along the trajectories (Lagrangian method) using the invariance
of the distribution function along the trajectories. The Gysela code is based on this standard
semi-Lagrangian approach [SRBG99]. This approach has been recently renamed Backward semi-
Lagrangian approach (BSL) by its author to make the distinction with the emergence of new schemes:
(i) Forward semi-Lagrangian approach (FSL) firstly proposed in 2009 [CRS09] and (ii) Conservative
semi-Lagrangian approach (CSL) proposed in [CMS10b, BCMS12] through Parabolic Spline Method
[ZWS07]. The main difference between BSL and FSL approaches is that the advection equations are
solved backward in time in the first case and forward in the second one. They are both based on
solving the advective form of Vlasov equation while the CSL methods deal with the conservative form
of the Vlasov equation. FSL and CSL schemes have both been tested in Gysela [LGA+12, BCG+11]
but the actual version of the code is the standard BSL approach as described in the following.

3.1.1 Backward Semi-Lagrangian (BSL) concept

Let us consider the 5D gyrokinetic Vlasov equation

B∗‖s
∂F̄s
∂t

+∇∇∇ ·
(
B∗‖s

dxG
dt

F̄s

)
+

∂

∂vG‖

(
B∗‖s

dvG‖
dt

F̄s

)
= 0 (3.1)

which corresponds to equation (2.7) without collisions and source terms. By using the incompressibility

property of the gyrocenter flow 1 in the 4D phase space, i.e ∇∇∇
(
B∗‖sdtxG

)
+ ∂vG‖

(
B∗‖sdtvG‖

)
= 0, the

previous conservative Vlasov equation (3.1) is equivalent to its advective form

∂F̄s
∂t

+
dxG
dt
∇∇∇ · F̄s +

dvG‖
dt

∂F̄s
∂vG‖

= 0 (3.2)

Let Γ = (xG, vG‖) be a position vector in the phase space solution of the characteristic equations (2.8)-
(2.9). Then equation (3.2) leads to dtF̄s(Γ(t), t) = 0. The semi-Lagrangian method uses this invariance

1According to equations (1.45)-(1.41), B∗‖s
dxG
dt

= vG‖B+ 1
qs

(
msv

2
G‖∇× b + µsb×∇B

)
+b×∇Ū , then using the fact

that ∇B = 0 and ∇·(∇×b) = 0, ∇·
(
B∗‖s

dxG
dt

)
= ∇·(b×∇Ū)+ 1

qs
∇·(b×µs∇B). Finally due to ∇×∇Ū = ∇×∇B = 0,

∇·
(
B∗‖s

dxG
dt

)
= ∇Ū ·∇×b+µs

qs
∇B·∇×b. Besides, ∂

∂vG‖

(
B∗‖s

dvG‖
dt

)
= − 1

qs
∇×b·∇

(
qsŪ + µsB

)
= ∇×b·

(
µs
qs
∇B +∇Ū

)
which proves the free divergence property.
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of the distribution function F̄s along its characteristics. Let us consider the computational 5D domain
[x1
Gmin, x

1
Gmax] × [x2

Gmin, x
2
Gmax] × [x3

Gmin, x
3
Gmax] × [vG‖min, vG‖max] × [µsmin, µsmax] and the asso-

ciated grid (fixed in time) defined by the finite set of mesh points Γijklm =
(
x1
Gi
, x2

Gj
, x3

Gk
, vG‖l , µsm

)

with xpGq = q∆xpG for all q = 0, · · · , Np with p = 1, 2, 3 ; vG‖l = l∆vG‖ for all l = 0, Nv‖ and
µsm for all m = 0, Nµ. N1, N2, N3 are the number of cells in each spatial directions and Nv‖ the
number of cells in vG‖ direction. The (Nµ + 1) values for µs are not necessary equidistributed. Ac-
tually, the standard choice in GYSELA corresponds to an equidistributed grid in

√
µ. This choice

leads to a better accuracy when computing integrals in µ. Let us also assume that F̄s is known at
each point Γijklm of this grid at time tn. Therefore the distribution function can be computed at
the next time tn + ∆t, with ∆t the time step, on the same grid by using the invariance property
F̄s (Γikjlm(tn + ∆t), tn + ∆t) = F̄s (Γ(tn,Γijklm, tn + ∆t), tn) where Γ(tn,Γijklm, tn + ∆t) corresponds
to the solution of the characteristic at time step tn which is equal to Γijklm at time tn+∆t. The method
consists in (i) finding the foot of the characteristic at the time tn: Γ(tn,Γijklm, tn + ∆t) by solving
backward in time the advection equations (2.8)-(2.9) and (ii) computing F̄s (Γ(tn,Γijklm, tn + ∆t), tn)
by interpolation, using the fact that at this time tn the distribution function is known over the whole
fixed grid. Cubic spline interpolations are used in the code, because it offers a good compromise
between accuracy (small diffusivity) and simplicity (numerical cost) [FSB01, BM08] (see appendix J
for more details).

3.1.2 Time-splitting

In low-dimensional systems, the semi-Lagrangian method is very efficient. When applied to higher
dimensional problems, one faces the problem of multidimensional interpolation, which is extremely
expensive for high dimensional problems. However, this problem has been partially cured by using
the time-splitting idea of Cheng and Knorr [CK76]. Using the incompressibility property, Strang’s
operator decomposition into space and velocity can be applied, replacing equation (2.7) by a set of two
conservative equations. Besides, to avoid dealing with a 3D space operator, the latter is also divided
into two parts. Let us denote XG = (x1

G, x
2
G) = (r, θ) and remind that in our case x3

G = ϕ then the
Boltzmann equation (2.7) is solved by applying a splitting of Strang [Str68] as

B∗‖s
∂F̄s
∂t

+∇∇∇⊥ ·
(
B∗‖s

dXG
dt

F̄s

)
= 0 at (ϕ, vG‖) fixed (3.3)

B∗‖s
∂F̄s
∂t

+
∂

∂ϕ

(
B∗‖s

dϕ

dt
F̄s

)
= 0 at (XG, vG‖) fixed (3.4)

B∗‖s
∂F̄s
∂t

+
∂

∂vG‖

(
B∗‖s

dvG‖
dt

F̄s

)
= 0 at xG fixed (3.5)

This splitting into three equations was introduced in the 4D version of the code. As explained in
[GBB+06], in the 4D drift-kinetic slab case the conservative and advective forms of the equations are
equivalent in the (r, θ) direction and z direction separately due to the independent vanishing divergence
property, see equations (9)-(10) in [GBB+06] due to ∇∇∇ · vGC = 0 and ∂zv‖ = 0. In the 5D gyrokinetic
case ∇∇∇⊥ · (B∗‖sdtXG) 6= 0 and ∂ϕ(B∗‖sdtϕ) 6= 0 so that these terms should be taken into account as

source terms of the advective form of equations (3.3) and (3.4). However, they are presently set to
zero. This simplification may alter the accuracy of the conservation properties of the code (see section
4.4). Also, it likely has an impact on the maximal value acceptable for the discretization time step. A
solution to overcome this problem could be to use a conservative scheme instead of the BSL one but
the first tests we have performed [BCG+11] are not conclusive. This constraint on the numerical value
of ∆t is acceptable for ion turbulence simulations but could become problematic when addressing
kinetic electrons. The development of more efficient semi-Lagrangian schemes is still an active axis
of research. An idea currently under evaluation is to separate and to treat differently the linear and
non-linear parts. Encouraging results have been presented in [LGA+14]. The splitting operation stays
a drawback of the semi-Lagrangian method. An alternative method without splitting (based on a 4D
advection and 4D cubic spline interpolation) is currently developed. The first drawback is an increase
of the numerical diffusion due to the 4D interpolation which will require to be quantified.
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In the current version, the advections in ϕ and vG‖ directions are straightforward, but that in the
XG direction requires more attention. If we consider the 2D advection in (r, θ) direction between
times t and t+ ∆t, the value of the electric field E at time t+ ∆t/2 is required in second order time
scheme. This value is calculated by using a predictor-corrector method. Besides, computing these 2D
trajectories is equivalent to solving dXG/dt = V(XG, ϕ, t), V being the advection field. This system
is solved by using the parabolic assumption developed in [SRBG99]. Let XGij be the position of
XG(tn + ∆t) at time tn + ∆t, then there exists a displacement dij = (αij , βij) tangent to the parabola
such that XG(tn) = XGij −dij and XG(tn−∆t) = XGij −2dij . The displacement dij can be calculated
by solving the implicit equation dij = ∆tV(XGij − dij , tn) (see p. 129 in [GS13]). This is done with
a Taylor expansion which is equivalent at second order to a Newton algorithm.

3.1.3 GYSELA global algorithm

Concerning now the complete Boltzmann equation (2.7) the right hand side is also split to treat
separately the collision operator, the Krook operator, the diffusion and source terms. Let X̃G denote
the shift operator in the poloidal cross-section (r, θ) associated to equation (3.3) over a time step
∆t. Similarly, ϕ̃ and ṽG‖ denote the shift operators respectively in the ϕ (equation (3.4)) and vG‖
directions (equation (3.5)). As described in the previous paragraph, each of these three shift operators
are based on a backward semi-Lagrangian scheme which means two steps for each mesh point: (i) first
the computation of the characteristic feet and (ii) second an interpolation by cubic splines. Let us
denote C̃ the collision operator corresponding to solving ∂tF̄s = C(F̄s) and D̃ the operator associated
to the radial diffusion ∂tF̄s = Dr(F̄s). They are both solved by applying a Crank-Nicolson scheme
(see Appendices F.2 and I). The Krook operator K̃ corresponding to the Krook diffusion equation
∂tF̄s = K(F̄s) is trivial while solving ∂tF̄s = S associated to the source operator S̃ is described in
Appendix H.2.5. Then, using these notations the following sequence is used to solve the 5D Boltzmann
equation (2.7)

B̃oltz ≡
[(
K̃r
2
,
D̃r
2
,
C̃
2
,
S̃
2

)
,

(
ṽG‖
2
,
ϕ̃

2
, X̃G ,

ϕ̃

2
,
ṽG‖
2

)
,

(
S̃
2
,
C̃
2
,
D̃r
2
,
K̃r
2

)]
(3.6)

where the factor 1/2 means that the operator is applied on half a time step. The choice of the
sequence (3.6) is not unique but some constraints are imposed in the code: (i) the first one is to
impose a symmetry to keep second order accuracy in the splitting (Strang splitting [Str68]), (ii) the
second one is to fix the 2D operator X̃G which is the most costly at the middle of the algorithm;
(iii) finally the operators coupled to the right hand side, respectively to the Vlasov equation, are
contiguous. Let us also define the operator Q̃ (corresponding to the Poisson solving) which denotes
symbolically the four steps: (i) computation of right hand side of the quasi-neutrality equation (2.13)
using expression (2.16), (ii) solving the QN equation (2.13) to deduce the electrostatic potential U ,
(iii) computation of the gyro-averaged electric potential Ū = Jµ.U with a Padé approximation (2.19)
or with an integration on the gyro-circles as described in section 2.4 and (iv) computation of the
electric field as E = −∇∇∇Ū .
Finally, the global numerical algorithm of the Gysela code can be summarized (see schematic view
in Figure 2.3) as follows,

1. Initialization
Considering a prescribed magnetic field B(r, θ) (see section 2.1.2) and equilibrium profiles of
density n0(r), ion temperatures Ts(r) and safety factor q(r) (see section 2.5), then

(a) Computation of the equilibrium distribution function F̄s,eq as a local or canonical Maxwellian
by using (2.20) and (2.21).

(b) Initialization of F̄s(t = 0) as F̄s(t = 0) = F̄s,eq(1+perturbation) as described in section 2.5.

2. For each time iteration,
Considering the distribution function F̄ns = F̄s(t = tn) at time tn known on the 5D mesh grid,
then the distribution function F̄n+1

s at the next time tn+1 = tn + ∆t on the same mesh grid is
computed by using a predictor-algorithm as
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(a) Computation of the electric field E(tn) by using the Q̃ sequence.

(b) Prediction on ∆t/2:

• Computation of F̄s(t = tn + ∆t/2) by solving B̃oltz/2 sequence with E(tn).

• Computation of E(tn + ∆t/2) by solving Q̃.

(c) Correction on ∆t:

• Starting from F̄s(t = tn) –given that this 5D distribution function has been stored

before prediction–, computation of F̄s(t = tn + ∆t) by solving B̃oltz on a time step ∆t
with the electric field E(tn + ∆t/2) at time tn+1/2.

3.2 An efficient hybrid OpenMP/MPI parallelization

The code is developed in Fortran 90 with some I/O routines in C (47k lines of Fortran 90 and 2.3k
lines of C code) using GIT as version control system. Doxygen is used to generate documentation
from the source code. The only external library dependence is the HDF5 library. HDF5 is the chosen
format for all output saving, both 0D to 3D diagnostics and 5D restart files. Diagnostic analyses
are performed with Python. The parallelization is based on a hybrid MPI/OpenMP paradigm. This
hybrid approach is suitable for cluster of SMP (symmetric shared memory multiprocessor) nodes where
MPI provides communication capability across nodes and OpenMP exploits loop level parallelism
within a node. Let us denote by Nspecies the number of ion species and by Nµ the number of µ
values. As the magnetic momentum µ is an adiabatic invariant it plays the role of a parameter. So
for each species we have Nµ independent Boltzmann equations (2.7) to solve. Let Nr, Nθ, Nϕ and
NvG‖ be the number of points in each directions r, θ, ϕ and vG‖. Large data structures are used
in Gysela: 5D data of size Nr × Nθ × Nϕ × NvG‖ × Nµ for distribution functions and 3D data
of size Nr × Nθ × Nϕ for the electrostatic potential and its derivatives as for first moments of the
distribution function (used for diagnostics). An MPI parallelization is mandatory to treat such large
amount of data. Let us take the example of a typical 5D mesh used for our simulations 2, namely
(Nr ×Nθ ×Nϕ ×NvG‖ ×Nµ) = (256× 128× 128× 128× 16). It corresponds to a mesh of almost 8.6
billion points. The size of one 5D array for the distribution function is of the order of 68 Gbytes, which
is not tractable on a single node. For information, the biggest simulation run so far with Gysela
was an ITER simulation [AGG+13] with 272 billion points. Taking into account the fact that two
distribution functions are necessary for the numerical integration over time due to predictor-corrector
scheme, more than 1 Tbytes of data (just for 5D arrays) were manipulated. So, as described in the
following, we use a domain decomposition so that a MPI process never contains the complete 5D
distribution function.
Concerning the MPI parallelization, an MPI communicator is defined per species. Inside each one of
the MPI SPECIES communicators, an MPI communicator is defined for each value of the magnetic
moment µ. Within each MPI MU communicator a 2D domain decomposition allows us to assign to
each MPI process a sub-domain in (r, θ) dimensions. Let us consider pr (resp. pθ) the number of
sub-domains in r (resp. θ) direction. The number of MPI processes used during one run is equal
to NMPI = pr × pθ × Nµ × Nspecies. This MPI decomposition of the default MPI COMM WORLD
communicator is summarized in Figure 3.1. Thus, each MPI process is then responsible for the sub-
domain of the distribution function F̄s(r = [istart, iend], θ = [jstart, jend], ϕ = ∗, vG‖ = ∗, µ = µid) with
the integer µid ∈ [0, Nµ − 1]. The local values istart, iend, jstart and jend associated to the parallel
decomposition are initially set by using a classical domain decomposition in (pr × pθ) blocks. The
OpenMP paradigm is used in addition to MPI. Let us denote by Nthread the number of threads in
each MPI process, then the number of cores for a simulation corresponds to Nthread ×NMPI .

2For current Gysela simulations, Nµ is chosen equal to 16 or 32 while the choice of NvG‖ is much larger (typically,
NvG‖ ∼ 4Nµ). Notice however that Nµ should be compared to NvG‖/2, since the grid in µ goes from 0 to µmax, while
that in vG‖ covers the range −vG‖,max to +vG‖,max. The choice of NvG‖ > 128 is necessary to take correctly into account
the trapping and de-trapping of particles and also to solve accurately the collision operator (at this time, only in parallel
velocity). The same number of points for µ direction will be required when collision operator effects will be added in
perpendicular direction (mandatory step for kinetic electrons).
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Figure 3.1: MPI COMM WORLD communicator decomposition for two species, 8 values of µ, pr = 4
radial sub-domains and pθ = 2 sub-domains in the poloidal direction. In this case, the number of MPI
processes is equal to 128.

3.2.1 Parallel Vlasov solver: How to treat non-local interpolation aspect ?

A difficulty when parallelizing the semi-Lagrangian Vlasov solver is due to the cubic spline inter-
polation. Cubic splines are a good compromise between simplicity and accuracy but a drawback is
that they are non-local. Indeed, a lot of the values of the distribution function F̄s are required to
reconstruct the interpolated value of the function at any position in the domain. Two strategies are
available in the code to overcome the problem: (i) local cubic spline interpolation or (ii) transposition.
The Hermite spline interpolation on patches [CLS07, CLS09, LCGS07] has been specifically developed
for dealing with 2D domains distributed on several MPI processes. The idea is to compute local cubic
spline coefficients on each 2D (r, θ) sub-domains by solving reduced linear systems. Then one ensures
a C1 global interpolator similar to the sequential one by imposing Hermite boundary conditions at the
interface of each patch [CLS07]. The first limitation of this technique is that a minimum of 32 points
per directions is needed per MPI process [LCGS07] (i.e Nr/pr ≥ 32 and Nθ/pθ ≥ 32) to provide good
numerical stability and small communication overhead (in 2D, each processor has to exchange deriva-
tives with its 8 neighboring processors). The second constraint is that the shift at one point on the
border of a sub-domain, which results from the motion along the trajectories in the 4D phase space,
must not exceed the elementary cell width. This constraint is linked to the choice made to limit the
size of the interface transferred between processors. This CFL condition can be extremely restrictive
specially in the θ direction where large shifts can occur but also in the radial direction when a source
is imposed in the case of flux-driven simulations. For these reasons the choice of a 4D data trans-
position is now often preferred. This transposition consists in modifying in each MPI COMM MU
communicator the parallel decomposition of F̄s such that each processor then contains only part of
the data in ϕ and vG‖ direction but all the information in the poloidal cross-section. Standard cubic
spline interpolation in (r, θ) plane are then possible. Let us define the transposition operation TF and
its inverse T−1

F as

F̄s(rblock, θblock, ϕ = ∗, vG‖ = ∗, µ = µid)

TF⇒
⇐
T−1
F

F̄s(r = ∗, θ = ∗, ϕblock, vG‖block, µ = µid)
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then the sequence (3.6) described above for solving the Boltzmann equation is replaced by the following
one

B̃oltztransp ≡
[(
K̃r
2
,
D̃r
2
,
C̃
2
,
S̃
2

)
,

(
ṽG‖
2
,
ϕ̃

2

)
, TF

(
X̃G
)
T−1
F ,

(
ϕ̃

2
,
ṽG‖
2

)
,

(
S̃
2
,
C̃
2
,
D̃r
2
,
K̃r
2

)]

3.2.2 A scalable quasi-neutral solver

The parallel quasi-neutrality algorithm presently used in the code is summarized in algorithm 1. For
more details on the different improvements which have been performed to obtain this parallel solver
see [LGC+11, LCG11]. The presence of the non-local term 〈 U 〉FS(r) couples the θ and ϕ directions
and penalizes the parallelization but the most important cost is the communication induced by the
computation of the r.h.s, namely task 2 in algorithm 1. Indeed this calculation requires a collective
communication step that involves all MPI processes. Instead of broadcasting U(r = ∗, θ = ∗, ϕ = ∗)
to all MPI processes, a refined strategy has been setup to reduce the large communication cost. It
consists in sending to each process only a sub-domain in ϕ direction of U . With this decomposition
the gyro-average computation of U as the partial derivatives in r and θ directions are straightforward.
Afterwards, a transposition is performed to calculate ∂ϕU . For a complete performance analysis of
the different steps of the algorithm see [LGCDP12].

Algorithm 1: Quasi-neutrality algorithm in the GYSELA code

Input: F̄s(rblock, θblock, ϕ = ∗, vG‖ = ∗, µ = µid)

1. vG‖ integration of F̄s to compute within each MPI COMM MU communicator

intdvpar Fs(rblock, θblock, ϕ = ∗, µ = µid) =

∫
Jv dvG‖

(
F̄s − F̄s,eq

)

2. Remapping within each MPI COMM MU communicator of intdvpar Fs –because the
gyro-average operation requires to have all the data for each (r, θ) plane– as

intdvpar Fs(rblock, θblock, ϕ = ∗, µ = µid)⇒ intdvpar Fs(r = ∗, θ = ∗, ϕblock, µblock).

3. For all ϕ, computation of the gyro-average of intdvpar Fs and integration over µ to obtain

ρs(r = ∗, θ = ∗, ϕblock) =

∫
dµsJµ. · (intdvpar Fs(r = ∗, θ = ∗, ϕblock))

4. MPI reduction towards the Nspecies MPI COMM SPECIES communicators to finally compute
ρ =

∑
s Zsρs, the right hand side of the quasi-neutrality equation (2.13).

5. Solving (2.17) and (2.18) to deduce U(r = ∗, θ = ∗, ϕblock) and broadcast to the Nspecies ×Nµ

communicators.

Output: U(r = ∗, θ = ∗, ϕblock) on each MPI process.

3.2.3 Performing weak and strong scaling

The weak and strong scaling, presented in this section, have been performed on two different high
performance computers. The strong scaling has been tested on the thin nodes of the Curie machine at
TGCC3, Bruyères-le-Châtel, France which are based on bullx B510 architecture. Each node contains
two 8 cores processors (INTEL Xeon E5-2680 Sandy-Bridge) running at 2.7 GHz with 64 GB of 1.6
GHz memory. The weak scaling has been performed on the IBM Blue Gene/Q machine JUQUEEN at

3http://www-hpc.cea.fr/en/complexe/tgcc.htm
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JSC/IAS4, Juelich, Germany which is composed of 24 racks grouping 1024 nodes. Each node contains
a single 17-cores processor running at 1.6 GHz with 16 GB of 1.33 GHz memory. These cores are twice
slower compared to Sandy Bridge cores. The improvements of the code to adapt it efficiently to the
BlueGene architecture are detailed in [BGL+13]. The scaling results are detailed in Figures 3.2 and
3.3 for the 4 main components of the code, namely (i) Vlasov solver, solving the Boltzmann equation
as described in section 3.2.1; (ii) Field solver, solving the quasi-neutrality equation as summarized in
algorithm 1; (iii) Derivatives computation, the computation of the first derivatives of the gyro-averaged
electrostatic potential Jµ.U in the three r, θ and ϕ directions and (iv) Diagnostics corresponding to
all physical quantities from 0D to 3D computed and saved in HDF5 format like densities, parallel
and perpendicular temperatures, velocities, fluxes, energies et caetera. The strong scaling has been
performed with the mesh size parameters Nr = 512, Nθ = 512, Nϕ = 128, NvG‖ = 128 and Nµ = 32.
The number of threads was kept constant Nthread = 8 to assign two MPI process per node. The
couple (pr, pθ) of processors in r and θ directions take the following values (2, 4), (8, 2), (8, 4), (16, 4),
(16, 8) and (16, 16) so that the scaling spans from 2048 to 65536 cores. For the weak scaling the
testbed case was composed from 64k to 458k cores. The considered meshes vary from 17.18 to 481
billion points defined with Nr = 512, Nθ = 1024, Nϕ = 128, NvG‖ = 128 and 7 different values of
Nµ = 2, 4, 8, 16, 32, 48 and 56. The triplet (pr, pθ, Nthread) is kept constant equal to (16, 32, 64).
The number of threads is chosen equal to 64 such that a single MPI process is mapped per node and
4 threads are dedicated per core as determined for BlueGene/Q optimization. The results of both
scalings are summarized in Figures 3.2 and 3.3. Let us first remark that the weak scaling test (Fig. 3.3)
exhibits an excellent scalability of the code with 90.9% of relative efficiency at 458752 cores –which
corresponds to the totality of the JUQUEEN computer– compared to 16k. Concerning the strong
scaling Gysela globally scales with a relative efficiency of of 89% at 16k cores and 60.6% on 65k cores
compared to 2048 cores (Fig. 3.2). This is already a very good result for such a semi-Lagrangian code.
Looking into more detail, we see that the deterioration from 89% at 16k to 60.6% at 65k is mainly due
to the diagnostics and field solver. Indeed, the Vlasov solver which represents 60% of the application
at 2k cores and 48% at 65k cores exhibits a good efficiency of 74.6% at 65k processors. Conversely,
the diagnostics which correspond to 37.5% of the total time for the reference case, end taking as much
time as the Vlasov solver due to the decreased efficiency at 55.8%. A lot of work has already been
done to improve the field solver [LCG11, LGC+11, LGCDP12] but this work must continue because
an efficiency of 41% impacts the global scalability. Let us finally notice that even if the computation
time of the derivatives remains negligible until 16k, a further effort is needed to prepare the code to
future exascale machines.

The execution times are not comparable in the two scalings presented here because the considered
meshes are not the same. Performance comparisons between BlueGene/Q and Bullx architectures
are found in [BGL+13]. Production runs are commonly running on both architectures. In general,
depending on simulation parameters, the code is a factor 2.5 to 3 times faster on bullx machines (as
Curie or Helios at CSC, Rokkasho, Japan) than on BlueGene machines (as JUQUEEN or Turing at
IDRIS, Orsay, France or Fermi at CINECA, Bologna, Italy). This behavior is consistent with that
observed with many other codes.

3.2.4 Memory scalability

Due to the previous scalability results Gysela uses frequently from 8k to 32k cores for one ion species
with adiabatic electrons and the twice these values when an impurity is taken into account. Besides,
a simulation often runs during several weeks. The annual time consumption on HPC machines is
currently of 51 millions of core hours. So the code already benefits from petascale computational power
of the current high performance computers. We also know that at short term when adding kinetic
electrons, a simulation with ITER parameters on several confinement times will require exascale HPC
capabilities. Among the Exascale challenges, the reduced memory per core has been identified as one of
the most critical. This is particularly true for the Gysela code due its global character which requires
huge 5D meshes. The mesh discretization is already constrained by the memory required per node.

4http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
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Figure 3.2: Strong scaling performed on the Curie machine from 2048 to 65536 cores: Execution time
(a) and relative efficiency (b) for one Gysela run of 4 iterations for a mesh (Nr×Nθ×Nϕ×NvG‖×Nµ) =
(512× 512× 128× 128× 32) with 8 threads and 32 values in µ direction.
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Figure 3.3: Weak scaling performed on the JUQUEEN machine from 64k to 458k cores: Execution
time (a) and relative efficiency (b) for one Gysela run of 4 iterations for a mesh fixed in 4D as
(Nr×Nθ×Nϕ×NvG‖) = (512×1024×128×128) but for 7 different values of µ = 2, 4, 8, 16, 32, 48, 56.
The number of parallel domains in r, θ directions and the number of threads are fixed such that
(pr, pθ, Nthread) = (16, 32, 64). The number of cores varies as pr × pθ × Nµ × Nthread/4 because 4
threads per core are used for BlueGene optimization.

The C/Fortran MTM (Modelization & Tracing Memory consumption) library has been developed
[RLRG15] to investigate in detail the memory consumption of the code. This library provides an
Application Programming Interface (API) which replaces the standard calls to allocation/de-allocation
routines. This intrusive technique permits to retrieve precisely the peak of memory consumption and
all the arrays involved. External Python scripts have been designed to analyze these results and provide
memory prediction. Continued efforts are made to reduce the memory footprint of the code and to
improve its memory scalability (see [RLRG15] for details) but Table 3.1 shows that lots of work remains
to be done to be able to run ITER simulations on machines with only 16GB per node. Indeed, for a
minimum ITER mesh, namely (Nr×Nθ×Nϕ×NvG‖×Nµ) = (1024×1024×256×128×16), Table 3.1
shows that such simulations can run on Curie Machine (64 GB/node) with 8192 cores but would require
524288 cores on the BlueGene current architecture (16 GB/node)- knowing that the optimal number
of threads is 64. This number of cores is still out of reach on European high performance computers.
Currently, as shown in Table 3.2 and in Figure 3.4, the global memory scalability of the code is of
47.8%. This strong scaling was performed with a constant 5D mesh of (1024× 4096× 1024× 128× 2)
points using MTM prediction mode and varying the number of MPI processes from 128 to 2048 by
increasing the number of points in r and θ directions. The 4D structures are very scalable (relative
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MPI procs
OpenMP threads

16 32 64 128

128 126.1 GB 126.9 GB 128.7 GB 132.2 GB

512 35.2 GB 36.1 GB 37.8 GB 41.3 GB

2048 16.4 GB 16.4 GB 16.5 GB 23.2 GB

8192 12.5 GB 12.5 GB 12.5 GB 19.1 GB

Table 3.1: Memory peak (in GBytes) depending on the number of MPI procs and of OpenMP threads
for a 5D mesh (Nr ×Nθ ×Nϕ ×NvG‖ ×Nµ) = (1024× 1024× 256× 128× 16).

efficiency of 89.9%) compared to the others (see Fig.3.4). Indeed, 3D structures with 23.8% represent
32% of the global cost for 32k cores against 16% for 2048 cores. The 3D structures are then no more
negligible. The scalability of the 1D structures is with 19% of the order of the 3D arrays but the cost
is still not significant. At the opposite, the incompressibility of 2D structures between 256 and 2k
MPI processes is extremely penalizing leading to an increase of the cost percentage by a factor 10.
The fact that the memory for 2D structures remains constant (equal to 7.1 GBytes) is probably due
to incompressible temporary arrays allocated for OpenMP loops. Improvement of memory footprint
of 3D and 2D structures will be pursued in the future.

Number of cores 2k 4k 8k 16k 32k
Number of MPI processes 128 256 512 1024 2048

4D structures
Memory size 207.2 GB 104.4 GB 53.7 GB 27.3 GB 14.4 GB

Memory percentage 79.2% 71.5% 65.6% 52.2% 42.0%

3D structures
Memory size 42.0 GB 31.1 GB 18.6 GB 15.9 GB 11.0 GB

Memory percentage 16.1% 21.3% 22.7% 30.4% 32.1%

2D structures
Memory size 7.1 GB 7.1 GB 7.1 GB 7.1 GB 7.1 GB

Memory percentage 2.7% 4.9% 8.7% 13.6% 20.8%

1D structures
Memory size 5.2 GB 3.3 GB 2.4 GB 2.0 GB 1.7 GB

Memory percentage 2.0% 2.3% 3.0% 3.8% 5.1%

Total per MPI process in GBytes 261.5 145.9 81.8 52.3 34.2

Table 3.2: Strong scaling for each kind of data for a 5D mesh (1024×4096×1024×128×2): (first lines)
memory allocation size in GBytes and (second lines) percentage with respect to the total memory at
the peak of the memory consumption. (Table from [RLRG15]).

Figure 3.4: Memory relative efficiency for a GYSELA simulation at the memory peak of time con-
sumption for the four kind of structures used in the code (1D arrays to 4D arrays). The results are
extracted from Table 3.2. The reference point corresponds to 128 MPI processes.
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Another bottleneck for Exascale applications will be the possibly increased crash probability following
that of the number of cores of future machines [Cap09]. The Weibull law [SG10] gives an estimate
of the time between two crashes which is of the order of the minute for a number on nodes larger
than 105. Two approaches have been explored until now to try to improve the fault tolerance of the
code. The first one consists in employing an asynchronous method to increase the frequency of the
restart file writing. A Gysela simulation runs typically several days or even weeks. So the complete
simulation is split into a series of jobs of approximately 10 hours with automatic re-submission. The
restart files are not only saved at the end of each job but several times during the job in parallel to
calculations (see [TBG+13] for complete description). Another checkpointing using the FTI library
[BGTK+11] (high performance Fault Tolerance Interface for hybrid systems) is under investigation.
The main idea is to benefit from fast access local SSD disks available on some HPC architectures.
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Since the first steps 15 years ago, the code has evolved significantly, including more and more
physics with more and more numerical complexity and high level of parallelism. Portability of the
code on several HPC architectures has been achieved. In such a complex code it becomes very difficult
to track or to propagate changes by being sure to reproduce previous results and simulations. Over
the past two years, a large effort has been made to improve the development process with due regard
to modularity, reproducibility and efficiency. This approach is based on the joint use of a version
control system (GIT1) together with that of a continuous integration platform such as JENKINS2.
At each commit on the GIT reference branch, automatic compiling and executing are submitted. For
more details on our strategy the reader can refer to [BCMG+15]. A database of non-regression tests
is also under construction with the objective to be run less frequently (every night or week) but to
ensure that new changes have no impact on well-established results. All the tests proposed in this
section, which were used for GYSELA verification3, are detailed with the objective to become part of
the non-regression database. They all correspond to 5D gyrokinetic simulations for one species. Other
verification tests can be founded on simpler 4D models in [GBB+06, LGA+14].

4.1 Normalization

The Gysela code is written in normalized units based on the following normalization choices. We use
SI units and a thermal energy scale in electron volts (1eV = 1.6022 10−19J). The four fundamental
dimensional normalizing quantities are: a reference ionic mass m0 = A0mp (Kilogram), a reference
ionic charge q0 = Z0e (Coulomb), a reference magnetic induction B0 (Tesla) and a reference thermal
energy T0 (eV ). Here, A0 and Z0 are the (dimensionless) mass number and charge state of the main

1http://git-scm.com/
2http://jenkins-ci.org
3The numerical results presented in the following are based on the GIT release 17.0 of the code.
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ion species and e the modulus of the electron charge. These quantities are used to define the reference
ion cyclotron frequency Ωc0 , the reference thermal speed vT0 and the reference Larmor-radius ρ0 as

Ωc0 =
Z0 e B0

m0
; vT0 =

√
T0

m0
; ρ0 =

vT0

Ωc0

=

√
T0m0

Z0 e B0

Finally, we choose the equilibrium electron density at mid radius n0 as reference density. Physical
quantities (mass, length, time, charge and density) can be recovered from the normalized quantities
used in the code (denoted with a hat symbol) by choosing values for [A0, Z0, B0, T0, n0] and applying

ms = Asmp = m0Âs with As = A0Âs, qs = Z0 e Ẑs, l = ρ0 l̂, t = t̂
Ωc0

and ns = n0 n̂s. The velocities

are normalized to the corresponding thermal velocities vTs0 =
√
T0/ms, i.e v = vTs0 v̂s =

vT0√
Âs
v̂s. The

main normalizations are thus U = T0
Z0 e

φ̂, B = B0B̂, Ts = T0T̂s while µs = T0
B0
µ̂s with µ̂s =

v̂2
⊥s

2B̂
and

µ0J = B0
ρ0
µ0Ĵ with µ0Ĵ = ∇̂∇∇ × B̂. By deduction4, E = E0Ê with E0 = vT0B0 and the normalized

distribution function F̂s, which evolves in the code, is defined as F̂s = Fsv
3
Ts0
/n0. Finally, the energy

is normalized to the reference thermal energy T0. The code normalization is summarized in Table 4.1.
The subsequent normalized equations used in the code are presented in Appendix K. In this chapter,

ms = m0Âs
qs = Z0 eẐs
l = ρ0 l̂

t = t̂/Ωc0

ns = n0 n̂s
Ts = T0T̂s
B = B0B̂

⇒

vG‖ = vTs0 v̂G‖s
= (vT0/

√
Âs)v̂G‖s

µs = (T0/B0)µ̂s
U = [T0/(Z0 e)]φ̂

E = (vT0B0)Ê

Fs = (n0/v
3
Ts0

)F̂s

Table 4.1: Links between physical and normalized quantities.

all the quantities considered are normalized coordinates, but hat symbols are omitted for the sake of
readability.

4.2 Invariance test

In the present work the source terms are not taken into account. Let us call simu1 a first fixed gradient
simulation (i.e no source term) for one unique species of charge Z1 and mass A1 and simu2 a second
one for a species of charge Z2 = αZZ1 and mass A2 = αAA1. Then it is possible to define the other
parameters of the second simulation, only depending on the multiplying factors αZ ∈ N and αA ∈ N
such that both simulations simu1 and simu2 are identical. The idea is to define an invariance test
which permits to verify that charge and mass are correctly taken into account in the code. Notice
that such a transformation departs from a simple ρ∗ scaling, where only the ρ∗ parameter is modified
(via e.g. a change of the minor radius at constant aspect ratio) [CWD04, MLB+10]. Such a test can
be defined as a non-regression test of any gyrokinetic code but it is not generic. It depends on the
equations treated in each code. For any code, the solved equations (gyrokinetic + quasi-neutrality)
are invariant under certain groups of transformations. Within these groups, the invariance is not
approximate; it is exact provided that the code actually solves the equations it is supposed to. We
have derived in Appendix L such a group of transformations which leaves the solution unchanged
for the Gysela code. Seven control parameters are required αx, αt, αTe , αφ, αcoll, αdiff and αKrook

that respectively rescale space, time, electron temperature, electrostatic potential, collision operator,
diffusion term and Krook operator. The only issue which cannot be accounted for (i.e. which cannot be

4E = −∇∇∇U = − T0
ρ0 e Z0

∇̂∇∇φ̂ = − 1√
T0m0

e Z0B0T0
e Z0

∇̂∇∇φ̂ = −vT0B0∇̂∇∇φ̂
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rescaled) in this operation is the impact of the boundary conditions. The invariance constraints (i.e the
relationships between the various scaling factors which leave the Boltzmann equation invariant under
these transformations), as summarized in Table 4.2, are αx =

√
αA/αZ , αt = αA/αZ , αTe = 1/αZ ,

αcoll = 1, αdiff = 1/αZ and αKrook = αZ/αA. Then, the relation between the electrostatic potential
φ1 solution of the first simulation and φ2 the electrostatic potential of the second one is φ2 = αφφ1

with αφ = 1/αZ .

Simulation 1 Simulation 2

Charge Z1 Z2 = αZZ1

Mass A1 A2 = αAA1

Mesh discretization ∆x1 ∆x2 =
√
αA
αZ

∆x1

Time step ∆t ∆t1 ∆t2 = αA
αZ

∆t1

Temperature Te Te1 Te2 = 1
αZ
Te1

Collision coefficient Kcoll1 Kcoll2 = Kcoll1

Krook coefficient Kkrook1 Kkrook2 = αZ
αA
Kkrook1

Diffusion coefficient Kdiff1 Kdiff2 = 1
αZ
Kdiff1

Table 4.2: Parameter dependence between two equivalent simulations. αZ and αA are the multiplying
factors between both cases respectively for charge and mass.

Three different simulations were run to test the invariance property of the code, considering first a
reference plasma with Hydrogen (mass As = 1 and charge Zs = 1), then Helium (As = 4 and Zs = 2)
and finally Tungsten (As = 150 and Zs = 50). For the following, let us respectively call simu1 A1Z1,
simu2 A4Z2 and simu3 A150Z50 these three simulations. These cases are not relevant in terms of
physics but have been designed for numerical tests. The idea was to define small cases tractable
as non-regression tests. So the reference simulation is based on a small plasma (ρ∗ = 1/150) for a
radial domain between 0.15ρ and 0.85ρ (with ρ = r/a) and for half a torus. The parallel velocity
space is defined as −7vTs0 ≤ vG‖ ≤ 7vTs0 and the perpendicular direction is represented by 16 values
of µ between 0 and 12. The radial profiles of density ns0(r), temperature Ts0(r) and safety factor
q(r) are analytically prescribed as d log ns0(r)/dr = −2.2 cosh−2 ((ρ− 0.5)/0.04), d log Ts0(r)/dr =
−8 cosh−2 ((ρ− 0.5)/0.04) with ρ = r − rmin/(rmax − rmin) and q(r) = 1.5 + 1.7 exp(2.8 log(r/a)). A
Krook operator (see section 2.8.4) of amplitude 0.01 and a diffusion (eq.(2.53)) of 0.015 are applied
in a buffer region defined by eq.(2.52) with a location BL = 0.06 and a stiffness of 0.017635. The
collision operator (eq.(2.32)) is applied every iterations while Ts,coll (eq.(2.34)) and V‖s,coll (eq.(2.33))
are refreshed every 10 iterations. All the numerical parameters of this simu1 A1Z1 simulation are
summarized in Tables 4.3 and 4.4. For the complete description of the case see the associated input
data file of the code (Figure N.1) in Appendix N.4.
So taking into account the equivalences defined in Table 4.2, the second simulation simu2 A4Z2 is
defined with the same parameters as simu1 A1Z1 except the fact that Helium is considered instead of
Hydrogen and (i) τ = 2., (ii) Ωc0∆t = 10., (iii) Dcoeff = 0.0075, (iv) Krookcoeff = 0.005 while (v) the
diagnostic time step Ωc0∆tdiag = 100 instead of 50. The species concentration cs has been divided
by 2 to satisfy the constrainst

∑
s csZs = 1. The third simulation simu3 A150Z50 is performed for a

Tungsten species As = 150 and Zs = 50 and differs from simu1 A1Z1 by the following parameters: (i)
1/ρ∗ = 36.7423 (1/ρ?simu1×

√
150/50), (ii) cs = 0.02, (iii) τ = 50, (iv) Ωc0∆t = 15, (v) Ωc0∆tdiag = 150,

(vi) Dcoeff = 0.0003 and (vii) Krookcoeff = 0.01/3. The differences between the three considered
simulations are highlighted in Table 4.5. The time evolution of the zonal flow component (m = 0,
n = 0), where m and n are respectively poloidal and toroidal mode number in the middle of the
radial domain is presented in Figure 4.1 for the three simulations. It exhibits a relative error of
10−15 when Hydrogen case is compared to Helium case and of 10−7 when compared with Tungsten
simulation. The loss of accuracy for Tungsten is probably due to the small size of the plasma considered
(a = 36.7423/ρ0). In this case boundary conditions can play a more important role. For each test
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Nr Nθ Nϕ NvG‖ Nµ nbvth0 µmax

256 256 128 128 16 7. 12.

ρ∗ R0/a rint/a rext/a Torus Zs As Ωc0∆t

1/150 3.3 0.15 0.75 1/2 1. 1. 5.

q1 q2 q3 κns0 ∆ns0 κTs0 ∆Ts0 Ti/Te

1.5 1.7 2.8 2.2 0.04 8. 0.04 1.

Table 4.3: Main parameters for reference simulation simu1 A1Z1. The velocity phase space is defined
by −nbvth0vTs0 ≤ vG‖ ≤ nbvth0vTs0 and 0 ≤ µ ≤ µmaxT0/B0. Torus indicates the fraction of the
torus simulated. The safety factor radial profile is defined as q(r) = q1 + q2 exp(q3 log(r/a)). The
radial density profile is defined by its gradient as d log ns0(r)/dr = −κns0 cosh−2 ((r − 0.5)/∆rns0).
The same analytical expression is used for the temperature with κTs0 and ∆rTs0 .

Buffer region Collision operator

BL BS Dcoeff Krookcoeff ν∗,buff ν∗,coeff nbstepcoll nbrefreshcoll

0.06 0.017635 0.015 0.01 20. 0.28 1 10

Table 4.4: Main parameters for simu1 A1Z1 simulation concerning buffer region and collisions. BL and
BS correspond respectively to the location and the stiffness of the buffer regions where both diffusion
and Krook operator are applied with respective amplitude Dcoeff and Krookcoeff . The collision operator
is applied every nbstepcoll iterations but refreshed every nbrefreshcoll iterations.

the results are sufficiently accurate to consider that the charge and mass factors have been correctly
implemented in the code equations. The same order of magnitude is obtained when the distribution
function values are compared.

As Zs 1/ρ∗ τ Ωc0∆t Ωc0∆tdiag Dcoeff Krookcoeff

simu1 A1Z1 1. 1. 150. 1. 5. 50. 0.015 0.01

simu2 A4Z2 4. 2. 150. 2. 10. 100. 0.0075 0.005

simu3 A150Z50 150. 50. 36.7423 50. 15. 150. 0.0003 0.00333333

Table 4.5: Modified parameters according to the scaling law for the three simulations used in invariance
tests.

The same invariance exercise was performed for a smaller reference case: ρ∗ = 1/75, Nr = 128, Nθ =
128 and a full torus (all the other simulation parameters being identical to the ones described in Tables
4.3 and 4.4). The two others simulations defined for comparison follow the same rules as previously
which corresponds to a ρ∗ of 1/18.37 for the Tungsten case. The relative error is also of the order of
10−15 when comparing Hydrogen and Helium but of 10−6 when considering the Tungsten. The two
cases ρ∗ = 1/75 for Hydrogen and Helium will be good candidates as non-regression tests. Regarding
the Tungsten simulations more work could be done. The first idea would be to consider a ρ∗ = 1/75
plasma for Tungsten, but this would imply a reference case with ρ∗ ∼ 1/306.205 for the Hydrogen (i.e
a mesh of the order of 68 billion of points with (Nr, Nθ, Nϕ, NvG‖ , Nµ) = (512, 512, 128, 128, 16)). Such
a simulation is feasible but extremely time consuming for a verification test (several hours on 8192
cores). It would not be possible on the development cluster Poincare (92 nodes of 8 Sandy Bridge
E5-2670 bi-processors (2.60GHz)) at IDRIS french supercomputing center that has been used for all
tests presented above (performed on 512 cores).
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Figure 4.1: Invariance test between three simulations. Left Figure: Time evolution of Zonal Flows
Φ00 at a fixed radial position 0.5ρ with ρ = (rmax− rmin)/a. Φ00 for simu1 A1Z1 with Hydrogen must
be compared to 2Φ00 of simu2 A4Z2 for Helium and 50Φ00 obtained with simu3 A150Z50 for Tung-
sten. Right Figures: Relative errors in function of time: (top) between simu1 A1Z1 and simu2 A4Z2,
(bottom) between simu1 A1Z1 and simu3 A150Z50.

4.3 Usual linear and non-linear gyrokinetic benchmarks

Together with the verification invariance test described above, several other benchmarks have al-
ready been performed in the past to validate the code. The so-called “Rosenbluth-Hinton test” (RH)
[RH98] –which became an essential test for gyrokinetic codes to check the validity of zonal flows and
Geodesic-Accoustic-Modes (GAMs) treatment– was verified in 2008 [GSG+08]. Linear and non-linear
benchmarks were successfully achieved [GSG+08] with the classical Cyclone DIII-D base case (CBC)
[DBB+00]. Non-linear benchmarks were also performed [GSA+07] with the global PIC code ORB5
[JBA+07]. We also participated to the European turbulence code benchmarking effort [FSA+08].
Finally, flux-driven simulations have been compared [SGA+11] between GYSELA, ORB5 and XGC1
[CK08, CKD+09]. In the following we present only the tests which have been recently investigated
again with the new multi-species version of the code to be added as non-regression tests, namely
the RH test and the linear CBC test. These tests have been re-designed with the objective of being
sufficiently small to be automatically launched on the continuous integration platform(JENKINS) at
a reasonable frequency with the aim of recovering the predicted results. Here are described the results
of our investigation. This work is still in progress and we plan to continue decreasing the CPU time
consumption of such tests in the future.

4.3.1 Rosenbluth-Hinton test

This test consists in studying the collisionless relaxation of an initial E×B poloidal flow, including the
transient GAM oscillation (Geodesic Acoustic Mode), towards a non vanishing residual value. Such
simulations are interesting validation tests for gyrokinetic codes because the damping, the frequency
and the residual value of the GAM can be compared to theoretical predictions [SW06, ZCS96]. In
practice, a zonal perturbation in ion density is initialized, with a radial profile of the form sin(πr/a).
This initial state leads to the development of GAMs which correspond to the (m,n) = (0, 0) mode
coupled to sidebands (m,n) = (±1, 0) as a result of toroidal coupling. These GAMS are Landau-
damped because of the finite poloidal wavenumber of the sideband while the zonal flows relax towards
a residual value which has been analytically predicted in the case of large aspect ratio and small ρ∗
[HR99] as φ00(t∞) = φ00(t0) × Ar with Ar = 1/(1 + 1.6q2/

√
r/R), r being the minor radius of the
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considered magnetic surface, R and q corresponding respectively to the major radius and the safety
factor on this surface of interest.

Rosenbluth-Hinton test as a non-regression test

Eight simulations (detailed in Table 4.7) were performed varying both time and phase space discretiza-
tions. The initial distribution function is defined as F̄s = F̄s,eq(1 + ε sin(2π(r − rmin)/2Lr)) with a
perturbation amplitude ε equal to 10−3. For all simulations (see Table 4.6 for common parameters),
the safety factor profile is constant (q(r) = 1.9∀r ∈ [rmin, rmax]). The density and temperature profiles
are quasi-constant with κTs0 = κns0 = 10−7. For a complete description of the case see the associated
input data file of the code (Figure N.2) in Appendix N.4. Time evolution of the (0, 0) mode is plotted
in Figure 4.2 for the highest discretized simulation (simu 1 in Table 4.7). The theoretically predicted
residual value Ar is found to be recovered up to 20% in this case. A much better agreement can be
found by decreasing the ρ∗ value of the simulation as noticed by Biancalani (see figure 4 in [BBLZ14]).
A detailed analysis of both the transient GAM oscillation and damping on the one hand, and of the
residual value of zonal flows on the other hand, is presented in next paragraph 4.3.1. The numeri-
cal echo appearing at time t = 15000Ω−1

C0
is due to finite discretization of the velocity phase space.

The numerical damping rates γGAM and frequencies ωGAM reported in Table 4.7 are all computed
between t ∈ [0, 15000 Ω−1

C0
]. We observe that all the values are equal to γGAM = 2.46459 10−4ΩC0 and

ωGAM = 9.11061 10−3ΩC0 with an error smaller than 3% except for simulations number 4, 6 and 8 in
Table 4.7. The error larger than 7% for both simulations 4 and 6 is due to the fact that the numerical
echo appears at time t = 9000 Ω−1

C0
instead of t = 15000Ω−1

C0
, making the numerical residual estimation

impossible. Error in simulation 4 is due to the fact that four values of µ are not sufficient for µ integral
computation required for the r.h.s of the quasi-neutrality equation. Results for simulation 6 shows
that 64 in parallel velocity direction are not sufficient. The CPU times reported as results in Table
4.7 correspond to mono-core hours on the Poincaré machine where all simulations were performed
with 4 threads and (2 × Nµ) MPI processes for a final time equal to t = 20000Ω−1

C0
. Simulation 7

corresponding to 30 minutes on 64 cores is a non-regression test for the code.

ρ∗ As Zs R0/a rint/a rext/a Torus nbvth0 µmax

1/100 1. 1. 2.78 0.2 0.8 1. 7. 12.

q1 q2 q3 rpeak/a κns0 ∆ns0 κTs0 ∆Ts0 Ti/Te

1.9 0. 0. 0.5 1.e−7 0.2 1.e−7 0.2 1.

Table 4.6: Common parameters for Rosenbluth-Hinton test. The velocity phase space is defined by
−nbvth0vTs0 ≤ vG‖ ≤ nbvth0vTs0 and 0 ≤ µ ≤ µmaxT0/B0. Torus indicates the fraction of the torus
simulated. The safety factor radial profile is defined as q(r) = q1 + q2 exp(q3 log(r/a)). The radial
density profile is defined by its gradient as d log ns0(r)/dr = −κns0 cosh−2 ((r − rpeak/a)/∆rns0). The
same analytical expression is used for the temperature with κTs0 and ∆rTs0 .

Comparison with theoretical values for ρ∗ = 1/160

The parameters used for the following simulations are the same as those used by Biancalani [BBLZ14],
namely: (i) an analytical circular equilibrium with large aspect ratio (ε = a/R = 0.1); (ii) flat density
and temperature profiles with τ = Ti/Te = 1 and (iii) flat q-profiles varying from q = 1.5 to 3.5.
All simulations are performed for a mesh (Nr, Nθ, Nϕ, Nv‖ , Nµ) = (256, 256, 16, 128, 32). The results
obtained with GYSELA are displayed on figs.4.3,4.4, where the GAM frequency, the damping rate
and the residual value are plotted as a function of the safety factor q. They are comparable to those
published by the ORB5 team (see figures 2 and 3 in [BBLZ14]). Consistently with the theory, the
FOW (Finite Orbit Width) effects are already significant at moderate values of q (typically for q ≤ 2,
cf. fig.4.3a). Regarding the residual values, two ratio are considered: either the ratio of the finite over
the initial zonal electric potential, or the ratio of the radial electric fields. Both ratios would be equal
if the radial profiles of the electric potential would not evolve in time, as assumed by the theory. As
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Figure 4.2: Comparison of the residual value of the (0, 0) mode φ00(rpeak, t)/φ00(rpeak, t = 0) =
Ar where Ar = 1/(1 + 1.6q2/

√
r/R) = 0.06825 is given by Rosenbluth-Hinton theory. This result

corresponds to simulation 1 described in Table 4.7.

CPU time
simu. Nr Nθ Nϕ NvG‖ Nµ ΩC0∆t γGAM ωGAM (monoproc)

1 128 128 32 128 16 2. 2.46459 10−4 9.11061 10−3 7219. h.

2 128 128 32 128 16 5. 2.46459 10−4 9.11061 10−3 2921. h.

3 64 64 16 128 8 5. 2.46459 10−4 9.11061 10−3 159. h.

4 64 64 16 128 4 5. 2.63456 10−4 9.73893 10−3 79. h.

5 64 64 16 128 8 10. 2.46459 10−4 9.11061 10−3 41. h.

6 64 64 16 64 8 10. 2.54957 10−4 9.42477 10−3 83. h.

7 64 64 16 128 8 25. 2.46459 10−4 9.11061 10−3 37. h.

8 64 64 16 128 8 50. 2.54957 10−4 9.42477 10−3 21. h.

Table 4.7: Rosenbluth-Hinton test: Values of numerical damping γGAM and frequency ωGAM for 8
Gysela simulations varying according to 5D mesh size (Nr, Nθ, Nϕ, NvG‖ , Nµ) and time discretization.

evident on fig.4.4, this is actually not the case in these global simulations.

ρ∗ As Zs ε0 rint/a rext/a Torus nbvth0

1/160 1. 1. 0.1 0.01 1. 1. 7.

µmax rpeak/a κns0 ∆ns0 κTs0 ∆Ts0 Ti/Te

12. 0.5 1.e−7 0.2 1.e−7 0.1 1.

Table 4.8: Common parameters for GAM test. The velocity phase space is defined by −nbvth0vTs0 ≤
vG‖ ≤ nbvth0vTs0 and 0 ≤ µ ≤ µmaxT0/B0. Torus indicates the fraction of the torus simulated. The

radial density profile is defined by its gradient as d log ns0(r)/dr = −κns0 cosh−2 ((r − rpeak/a)/∆rns0).
The same analytical expression is used for the temperature with κTs0 and ∆rTs0 .
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Figure 4.3: Damping rate (left) and frequency (right) of the electric field for simulation parameters
given in table 4.8. Comparison with explicit analytical values given by Sugama and Watanabe [SW06]
and Zonca [ZCS96] where FOW effects are taken into account or not.

Figure 4.4: Residual values divided by the initial value of the electric potential (green stars) or
electric field (magenta triangles) for the 5 different values of constant q profile :1.5, 2., 2.5, 3. and 3.5.
Comparison with analytical theory given by Rosenbluth-Hinton [RH98] (red line) and Xiao and Catto
[XC06] (blue line).

4.3.2 Linear benchmark based on Cyclone DIII-D case for global codes

For the present benchmark, the considered physical parameters are the same as the ones defined in
Lapillone’s paper [LMG+10] corresponding to the standard linear Cyclone base case (CBC) [DBB+00].
The circular concentric magnetic equilibrium is defined with an aspect ratio of R/a = 2.78 and a
safety factor profile q(r) = 0.86 − 0.16r/a + 2.52(r/a)2. This corresponds to a local safety factor
q(rpeak) = 1.4 and a local magnetic shear s(rpeak) = 0.8 with rpeak = rmin + 0.5(rmax − rmin) and
s(r) = (r/q) dq/dr. The initial density and temperature profiles are defined with the radial form
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Figure 4.5: Radial profile of the (0, 0) mode of φ at the initial time (blue line) and at the time
t = 30000/ΩC0 (red dotted line).

function f(r) = exp(−κx∆rx tanh((r− rpeak)/∆rx). The κx and ∆rx parameters are chosen to obtain
peaked profiles at the middle of the radial box rpeak with ∆ns0 = ∆Ts0 = 0.3, κns0 = 2.23 and
κTs0 = 6.96 (see Figure 1 in [LMG+10]). To be consistent with the DIII-D shot ρ∗ is chosen equal
to 1/180.For a complete description of the case see the associated input data file of the code (Figure
N.3) in Appendix N.4.

ρ∗ R0/a rint/a rext/a nbvth0 µmax Zs As

1/180 2.78 0.1 0.9 6. 7. 1. 1.

q1 q2 q3 κns0 ∆ns0 κTs0 ∆Ts0 Ti/Te

0.86 −0.16 2.52 2.23 0.3 6.96 0.3 1.

Table 4.9: Main parameters of the ρ∗ = 1/180 linear CBC simulation. The velocity phase space is
defined by −nbvth0vTs0 ≤ vG‖ ≤ nbvth0vTs0 and 0 ≤ µ ≤ µmaxT0/B0. The safety factor radial profile
is defined as q(r) = q1 + q2(r/a) + q3(r/a)2. The radial density profile is defined by its gradient
as d log ns0(r)/dr = −κns0 cosh−2 ((r − 0.5)/∆rns0). The same analytical expression is used for the
temperature with κTs0 and ∆rTs0 .

The first difficulty with a full-f code is that the separation between linear and non-linear terms is
not possible. So non-linear mode coupling cannot be avoided, which implies that the time window
for linear growth rate estimation is limited. To prevent this coupling all the toroidal mode numbers
n are filtered except the one n initialized as perturbation in the initial distribution function F̄s(t =
0) = F̄s,eq(1 + ε

∑mmax
m=1 cos(mθ + nϕ + δmn)) with a perturbation amplitude ε = 10−6. This filtering

is performed by applying, after the quasi-neutrality equation solving, the condition F(φ)mn = 0 for
all 1 ≤ m ≤ mmax where F denotes the 2D Fourier transform in (θ, ϕ). Besides, the global aspect
of the code implies that large toroidal mode numbers n are hardly accessible because a large mesh
discretization is then necessary. For the 6 cases which were run for |n| ranging from 5 to 30 (see Table
4.10) the discretization of the velocity space was kept constant (NvG‖ , Nµ) = (64, 16) but increased in
real space for |n| > 15. The number of radial points is kept constant (Nr = 128) but doubled in both
poloidal and toroidal directions for |n| ≥ 25. This corresponds to a mesh of 8 billions of points for the
smallest poloidal mode numbers but of 32 billions of points for the largest. The time step ∆t is equal
to 40./ΩC0 for |n| ≥ 15 and divided by a factor 4. The linear growth rate is estimated by a linear fit
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of the exponential growth of
∫
φ2 d3x d3v during the linear phase. An example of this exponential

growth is plotted at the top of Figure 4.7 for the smallest kθρs = |n|q(rpeak)ρ∗/rpeak = 0.078. So
the linear fit is performed on a time interval ΩC0 [tinit, tend] depending on the duration of this linear
phase. This interval is taken equal to [5000, 50000] for kθρs = 0.078 and [4000, 18000] for the others.
The frequency is estimated on the same time intervals by spectra analysis. Both have been compared
with GENE results [LMG+10] and show a very good agreement (see Figure 4.6). This work is in
progress in the framework of the Eurofusion project [GTH+16]. The smallest runs were performed
on Poincare machine on 512 cores (with (pr, pθ, pµ, Nthread) = (2, 4, 16, 4)) with a CPU time cost of
9k hours/monoprocessor (for 1300 iterations). The two largest cases ran on Turing (IDRIS-France)
BlueGene machine using 32768 processors ((pr, pθ, pµ, Nthread) = (8, 4, 16, 64)) with an expensive CPU
time cost of 1.7 millions of monoprocessor hours for 2000 iterations (equivalent to 1.3 106 h. on an
INTEL machine as Curie (CCRT-France)). Such simulations are definitively more expensive for a
global full-f code than for δf flux-tube codes. This explains why the two last points performed by
GENE for kθρ∗ > 0.5 (Fig. 4.6) have not been simulated with GYSELA. Nevertheless, the global
aspect can give access to useful information like the time evolution of the radial structure of poloidal
modes (for toroidal mode |n|=5). This radial structure is plotted at 4 different times on Figure
4.7, going from initialization to the end of the linear phase. It shows that the linear phase, i.e the
exponential growth, starts as soon as the global eigenmode –characterized by a single n and several
m mode numbers– acquires its radial structure. The process of mode reorganization and the main
physical parameters involved (as q profile, 1/LT shape or ...) would be interesting to investigate in
more detail.

n mmax Nθ Nϕ kθρs ΩC0∆t ΩC0 [tinit, tend] γ errγ ω

−5 7 256 128 0.078 40. [5000, 50000] 0.045 0.00258 0.106

−10 14 256 128 0.156 40. [4000, 18000] 0.158 0.0069 0.238

−15 21 256 128 0.233 40. [4000, 18000] 0.217 0.00123 0.476

−20 25 256 128 0.311 10. [4000, 18000] 0.257 0.00127 0.636

−25 35 512 256 0.389 10. [4000, 18000] 0.271 0.00468 0.827

−30 42 512 256 0.467 10. [4000, 18000] 0.253 0.002 0.978

Table 4.10: CBC results: Linear growth rate γ and frequencies ω estimated in the time interval
ΩC0 [tinit, tend] for 6 different toroidal mode numbers n. The poloidal wave number kθ is computed
as kθρs = |n|q(rpeak)ρ∗/rpeak = |n| × 1.4/(2 × 180), rpeak being the middle of the radial box. These
results are compared to GENE results in Figure 4.6

Figure 4.6: Benchmark between GYSELA and GENE codes for the Cyclone base Case for 6 different
kθρs values: (Left) Linear growth rate (plotted with the error bar defined in Table 4.10), (Right)
Linear frequency.

78



CHAPTER 4. GYSELA VERIFICATION

Figure 4.7: Radial structure of the electrostatic potential for (m,n) = (7, 5) and a bandwidth of
m ± 3 modes, at different times: (i) initial time, (ii) beginning of the linear phase t = 7200Ω−1

C0
, (iii)

t = 36000Ω−1
C0

and (iv) end of the linear phase t = 50400Ω−1
C0

.

4.4 Local conservation laws for gyrokinetics

Verifying adequate conservation laws is an essential step in providing a correct description of mean
flows. Since the controversy on the suitability of gyrokinetic codes for describing toroidal momentum
transport [PC08, PC10] a specific effort has been devoted to address conservation equations both
in the context of a reduced gyrofluid model [Bri10] or gyrokinetic field theory [SS10, BT11]. As
shown in this section, it is also possible [AGG+11] to derive local conservation equations for density,
energy and toroidal momentum from the gyrokinetic electrostatic model (2.7)-(2.13) implemented
in the Gysela code (more detailed calculations can be found in Abiteboul’s PhD [Abi12]). The
radial force balance is presented in section 4.4.1 while the conservation laws are detailed for: (i)
charge density in section 4.5, (ii) energy in section 4.5.1 and toroidal momentum in section 4.5.2.
As explained in [AGG+11], the force balance equation added to the energy and toroidal momentum
conservation equations ensures a self-consistent treatment of the radial electric field and flows. We
present for each property an example of numerical results, (see Figures 4.8 to 4.13) for a simulation
close to the non-linear CBC simulation proposed in [LMG+10] for ρ∗ = 1/180. It corresponds to a
collisionless simulation, with Dirichlet boundary conditions and without diffusion or Krook operators.
Contrary to the linear case, there is no filtering on the toroidal modes. The initial perturbation is
defined as p(r, θ, vG‖) = ε

∑mmax
m=1

∑nmax
n=1 cos(mθ + nϕ+ δmn)feq(r, θ, vG‖)/(mmaxnmax) for mmax = 28

and nmax = 20 and random values for δmn phases. The perturbation amplitude ε is equal to 10−6.
The equilibrium distribution function feq is a local Maxwellian function given by eq.(2.20). The
other numerical parameters of this simulation are summarized in Table 4.11. The conservation
equations are derived at second order in ρ∗. Accurate results (error of 2%) were already shown with
the code for force balance and toroidal momentum for a simulation with ρ∗ = 1/512 (see Figure 2
in [AGG+11]). For a larger ρ∗ = 1/180 the results are still accurate with a relative error of 5 to
10%. As expected, boundary conditions play a more important role leading to a degradation of the
accuracy outside an internal region 0.4 ≤ r/a ≤ 0.7. Comparing to relative errors for all conservation
properties (Figures 4.8 to 4.13), the local energy conservation (Fig. 4.11) is the least accurate. It
was not possible to analyze the energy behaviour for smaller ρ∗ (as 1/300 and 1/512) because such
simulations are extremely expensive (several millions of mono-processor hours) and the diagnostic was
not fully implemented in large simulations until present. This will be investigated in more details on
the upcoming big simulations. Complete flux driven simulations with source terms and collisions have
also been analyzed (but not presented here). Even for large ρ∗ = 1/150, the force balance equation,
local charge density and toroidal momentum are conserved with less than 10% error even at times
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Nr Nθ Nϕ NvG‖ Nµ nbvth0 µmax

256 256 128 64 16 7. 12.

ρ∗ R0/a rint/a rext/a Torus Zs As Ωc0∆t

1/180 2.78 0.1 0.9 1/2 1. 1. 10.

q1 q2 q3 κns0 ∆ns0 κTs0 ∆Ts0 Ti/Te

0.86 −0.16 2.52 2.23 0.3 6.96 0.3 1.

Table 4.11: Main parameters of the ρ∗ = 1/180 simulation used to check conservation law properties.
The velocity phase space is defined by −nbvth0vTs0 ≤ vG‖ ≤ nbvth0vTs0 and 0 ≤ µ ≤ µmaxT0/B0.
Torus indicates the fraction of the torus simulated. The safety factor radial profile is defined as
q(r) = q1 + q2(r/a) + q3(r/a)2. The radial density profile is defined by its gradient as d log ns0(r)/dr =
−κns0 cosh−2 ((r − 0.5)/∆rns0). The same analytical expression is used for the temperature with κTs0
and ∆rTs0 .

when turbulence is fully developed. The fact that this requirement is not met for energy is still under
investigation.

4.4.1 Radial force balance equation

In the fluid description, the radial electric field and the flows are related via the force balance equation.
It was verified that this relation holds also in gyrokinetics [DPGS+08a, GDPN+09]. Indeed the radial
force balance can be recovered analytically from the conventional first order gyrokinetic equations (see
Appendix E in [AGG+11]), yielding the standard fluid expression

∂χφeq +
∂χPeq
neqe

+
B

I
V‖eq = q

B2R2

I2
(V · ∇θ) (4.1)

where the equilibrium density neq, pressure Peq, velocity V‖eq and potential φeq are functions of −Pϕ/e
(which is approximately equal to χ at first order in ρs). The label of flux surfaces χ is chosen as the op-
posite of the poloidal flux of the magnetic field, i.e χ ≡ −ψpol with ψpol = −(2π)−1

∫
Sθ
dSB ·∇θ/|∇θ|.

Considering the form of the magnetic field used presently in the code B = (B0R0/R(r, θ)) [ζ(r)eθ + eϕ]
with ζ(r) = r/(qR0), the label χ is determined by χ = B0

∫ r
0 r
′/q(r′)dr′ which implies dχ/dr = B0r/q.

In order to check that the force balance equation is verified numerically, we compare vGYS
θ the

poloidal velocity directly computed within Gysela –from the distribution function as the sum of
the poloidal ExB, curvature, grad-B and magnetization flows– with the expected velocity from the
force balance equation, namely vFB

θ corresponding to the left-hand side of eq.(4.1) (see Figure 4.8
(left)). This agreement was robustly verified in Gysela simulations for a wide range of parameters
for temperature gradient, collisionality and normalized gyroradius ρs [DPGS+09, DPDG+11]. A
precision of 2% was obtained for a ITER parameter case with ρ∗ = 1/512 [AGG+11]. In Figure 4.8
(right), we recover this good agreement for the case ρ∗ = 1/180 described in Table 4.11. Indeed, even
for a larger ρ∗ = 1/180, the relative error –defined here as the difference normalized to the quadratic
mean– is smaller than 0.08 at time t = 20040Ω−1

C0
which corresponds to the beginning of the non-linear

phase.

4.5 Local charge density conservation

To obtain local conservation equations, we perform integrations of the conservative form of the
gyrokinetic equation (2.7) over the velocity space and over the magnetic flux surfaces, i.e. over
dτ∗ ≡ Jx dθ dϕ d3v with d3v = Jv dvG‖ dµs. We recall that Jx = 1/(B · ∇θ) is the Jacobian in real
space and Jv = 2πB∗‖s/ms is the Jacobian in gyro-center velocity-space.
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Figure 4.8: Left: Numerical test of the radial force balance equation (4.1) at time t = 20040Ω−1
C0

,

comparing the poloidal velocity vGYS
θ directly computed in the code and vFB

θ the sum of the three
contributions −Er, ∇∇∇p/ne and vφBθ. Right: Relative error between both. The parameters used for
this simulation are summarized in Table 4.11.

We consider a radial region outside the buffer region and without source terms, i.e we consider the
following simplified version of the conservative Boltzmann equation (2.7)

dF̄s
dt

=
∂F̄s
∂t

+
1

B∗‖s
∇z ·

(
żB∗‖sF̄s

)
= C(F̄s) (4.2)

where z = (χ, θ, ϕ, vG‖, µs) and ż = dz
dt . We integrate Eq. (4.2) in a small phase-space volume between

two surfaces χ and χ+ δχ and apply a divergence theorem5. The label of flux surfaces χ is chosen as
the opposite of the poloidal flux of the magnetic field, i.e

χ ≡ −ψpol with ψpol = − 1

2π

∫

Sθ

dS B · ∇θ|∇θ| (4.3)

which is equivalent to6

χ = B0

∫ r

0

r′

q(r′)
dr′ which implies

dχ

dr
= B0

r

q
(4.4)

by considering the form of the magnetic field imposed in the code B = B0R0
R(r,θ) [ζ(r)eθ + eϕ] with

ζ(r) = r
qR0

. Using the collision operator conservation property
∫
C(F̄s) dτ∗ = 0 and summing over all

species, this leads directly to the usual expression for local transport of charge density 7

∂tρ̄+ ∂χJ
χ = 0 (4.5)

5If V is a volume enclosed by a surface S and dS = ndS, where n is the unit normal outward from V ,
∫
V

dV∇ ·A =∫
S

dS ·A for all vector A.

6 According to equation (4.3) and the fact that dS = R dr dϕ and |∇θ| = 1/r,

ψ = −
∫ r

0

(B · ∇θ) r′R dr′ = −
∫ r

0

(B · eθ)R dr′ = −
∫ r

0

B0R0

R

r′

q R0
R dr′ = −B0

∫ r

0

r′

q(r′)
dr′

7Integrating (4.2) over dτ∗, using the property
∫

dτ∗C(F̄s) = 0 and summing over all species leads to
∑
s

∫
dτ∗ ∂F̄s

∂t
+∑

s

∫
dτ∗ 1

B∗‖s
∇z ·

(
żB∗‖sF̄s

)
= 0. Integrating in a small phase-space volume between two surfaces χ and χ + δχ

and applying a divergence theorem, the second term of the previous equation reads
∑
s qs

∫
dτ∗ 1

B∗‖s
∇z ·

(
żB∗‖sF̄s

)
=

∂χ
∫ χ+δχ

χ

∑
s qs

∫
dτ∗ 1

B∗‖s
∇z ·

(
żB∗‖sF̄s

)
= ∂χ

∑
s qs

[∫
dτ∗ 1

B∗‖s

(
żB∗‖sF̄s

)
· ∇χ

]
.
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where ρ̄ is the charge density and Jχ is the radial current of gyrocenters:

ρ̄ =
∑

species

qs

∫
dτ∗F̄s (4.6)

Jχ =
∑

species

qs

∫
dτ∗(ż · ∇χ)F̄s (4.7)

In the case of electrostatic simulations with adiabatic electron response, boundary conditions impose
a vanishing radial current at the edges of the simulation domain. Therefore the radial current Jχ is
expected to be small in such simulations. Figure 4.9 shows that equation (4.5) is numerically satisfied
with an error of less than 1%. Part of this error is due to the fact that the time derivative ∂tρ̄ is
computed from post-processed data (ρ̄ is not saved at each time step ∆t but at each diagnostic time step
(∆t diag = 12∆t for this simulation)). Another error source is the fact that the terms∇⊥·(B∗‖sdtχG) and

∂ϕ(B∗‖sdtϕ) are neglected in the splitting algorithm (see section 3.1). For information the contribution

of the two terms (4.6) and (4.7) are plotted in figure 4.10.

Figure 4.9: Numerical test of the charge density conservation for simulation defined in Table 4.11. All
the quantities are flux-surface averaged. Left: Comparison of the two terms −∂χJχ and dρ/dt which
must be equivalent according to equation eq.(4.5). Right: Relative error (defined as the difference
normalized to the quadratic mean).

Figure 4.10: Contribution of the neoclassical and turbulent parts in the charge density conservation
equation for simulation defined in Table 4.11. All the quantities are flux-surface averaged.
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4.5.1 Local energy conservation

Similarly, a conservation equation for the total energy can be derived by multiplying the gyrokinetic
equation (4.2) by the gyrocenter Hamiltonian, which reads

H̄s =
1

2
msv

2
G‖ + µsB + qsŪ with Ū = J0 · U (4.8)

Using the fact that our collision operator is constructed to conserve the total Hamiltonian (see appendix
F.1 for more details) and integrating over dτ∗ yields

∂t

∫
dτ∗

(
1

2
msv

2
G‖ + µsB

)
F̄s +

∫
dτ∗qsŪ∂tF̄s +

∫
dτ∗H̄s

1

B∗‖s
∇z ·

(
żB∗‖sF̄s

)
= 0 (4.9)

The first term in Eq. (4.9) is equal to ∂tEKs where EKs corresponds to the kinetic energy of the
gyrocenters for the species considered and is defined as

EKs ≡
∫

dτ∗
(

1

2
msv

2
G‖ + µsB

)
F̄s (4.10)

To compute the third term, we integrate again over a phase-space volume between χ and χ+ δχ and
we use again the divergence theorem. Because ż · ∇zH̄s = 0, this leads to 8

∫
dτ∗H̄s

1

B∗‖s
∇z ·

(
żB∗‖sF̄s

)
= ∂χ

∫
dτ∗H̄s (ż · ∇χ) F̄s (4.11)

This term yields the radial flux of energy Qs defined as

Qs =

∫
dτ∗H̄s (ż · ∇χ) F̄s (4.12)

Then, for each species s, equation (4.9) can be rewritten as an equation for the radial energy transport
as

∂tEKs + ∂χQs = Ws (4.13)

where the right-hand side appears as a kinetic energy source Ws = −qs
∫

dτ∗Ū∂tF̄s. This term
corresponds to an exchange of energy between a given species and the turbulence, and is generally
referred to as turbulent heating [MOT77, WSD+97, HW06, WS08, GES+13]. It corresponds to a
transfer of energy between particles and the electromagnetic field. The numerical computation of
this term is expensive because it requires saving the 5D distribution function of each species at two
successive time steps which corresponds to a large amount of memory. So to obtain a local conservation
equation with no source term, we consider the total energy by summing (4.13) over all species. Then,

∂tEK + ∂χQ = W with EK =
∑

s

EKs , Q =
∑

s

Qs and W =
∑

s

Ws (4.14)

The term W is decomposed into two parts as

∑

s

qs

∫
dτ∗Ū∂tF̄s =

∑

s

qs

∫
dτ∗U

(
J0 · ∂tF̄s

)

+
∑

s

qs

∫
dτ∗

{
(J0 · U) ∂tF̄s − U

(
J0 · ∂tF̄s

)}
(4.15)

8Due to the fact that ż · ∇zH̄s = 0,
∫

dτ∗H̄s 1
B∗‖s
∇z ·

(
żB∗‖sF̄s

)
=

∫
dτ∗ 1

B∗‖s
∇z ·

(
H̄sżB

∗
‖sF̄s

)
=

∂χ

[∫ χ+δχ

χ

∫
dτ∗ 1

B∗‖s
∇z ·

(
H̄sżB

∗
‖sF̄s

)]
= ∂χ

[∫
dτ∗

(
H̄sżF̄s

)
· ∇χ

]
.
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As detailed in Appendix M.2 the first term in Eq.(M.5) can be expressed in function of the potential
energy Ep as

∑

species

qs

∫
dτ∗U

(
J0 · ∂tF̄s

)
≡ ∂tEp with Ep ≡

1

2

∑

species

qs

∫
dτ∗U

(
J0 · F̄s

)

Besides, the second term
∑

s qs
∫

dτ∗
{

(J0 · U) ∂tF̄s − U
(
J0 · ∂tF̄s

)}
in Eq.(M.5) corresponds to a

polarization term, due to the difference between particles and gyro-center densities. As a remark,
considering that the gyro-average operator J0 is a self-adjoint operator, this term vanishes when
integrating over the whole phase-space volume. It is indeed the divergence of a flux in the local
conservation equation. To express this term explicitly as a flux contribution, let us consider the low
wavenumber approximation of the gyro-average operator used in the code, i.e the Padé approximation

J0 ' 1 + 1
2∇ ·

(
msµs
q2
sB
∇⊥
)

(see section 2.4.1 for more details). Using this approximation, IE can be

expressed for each species as

IE =
ms

2qs
∂χ

[∫
dτ∗ ∂tF̄s

µ

B
∇χ · ∇⊥U −

∫
dτ∗ U

µ

B
∇χ · ∇⊥(∂tF̄s)

]

It can also be expressed in a more compact form using the gyrocenter perpendicular stress Ps,⊥ =∫
d3vF̄sµsB. This leads to the following conservation equation summed over all species

∂t (EK + Ep) + ∂χ (Q+Qpot +Qpol) = 0 (4.16)

where EK =
∑

sEKs , Ep =
∑

sEps , Q =
∑

sQs, Qpot =
∑

sQs, pot and Qpol =
∑

sQs, pol with

EKs =

∫
dτ∗EsF̄s with Es =

1

2
msv

2
G‖ + µsB (4.17)

Eps =
qs
2

∫
dτ∗U(J0 · F̄s) (4.18)

Qs =

∫
dτ∗Es(ż · ∇χ)F̄s (4.19)

Qs,pot =

∫
dτ∗(J0 · U)(ż · ∇χ)F̄s (4.20)

Qs,pol =
ms

2qs

∫
Jx dθ dϕ

1

B2

{
∂tPs,⊥∇U · ∇χ− U∇(∂tPs,⊥) · ∇χ

}
(4.21)

We recall that, although the polarization term is necessarily the divergence of a flux term, the expres-
sion for Qpol given here is not exact as it relies on an approximation of the gyro-average operator.
Qs corresponds to the energy flux of species s while Qs, pot corresponds to the flux due to the electric
potential. For the numerical results presented in Figure 4.11 the term Qs, pol is not taken into account.
Indeed, it requires 3D values of U and Ps,⊥ which were not saved for this simulation because this
possibility has been more recently implemented in the code. Analyzing recent non-linear flux-driven
simulations where this computation is available shows that the assumption Qs,pot ≈ 0 is justified.
Even in regimes where turbulence is well developed the term Qs, pot stays sufficiently small to have no
impact on the local energy conservation law.

The numerical validation of equation (4.16) is performed on flux surface average quantities. The
comparison between 〈 ∂χ (Q+Qpot +Qpol) 〉FS and 〈 (EK + Ep) 〉FS seen in Figure 4.11 shows an
agreement better than 15% at time t = 20040Ω−1

C0
. The separate contribution of each terms given by

equations (4.17)-(4.21) are plotted at Figure 4.12 showing that this energy conservation derives from
the compensation of different complex radial profiles.
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Figure 4.11: Numerical test for local energy conservation for simulation defined in Table 4.11. Left:
Comparison between −〈 ∂χQ 〉FS and d〈 E 〉FS/dt with Q = Qs +Qs, pot +Qs, pol and E = EKs + Eps
defined by eqs.(4.16)-(4.21). Right: Relative error (defined here as the difference normalized to the
quadratic mean).

Figure 4.12: Detailed contribution of each terms in the local energy conservation for simulation defined
in Table 4.11.

4.5.2 Local toroidal momentum conservation

Formally, the derivation of a conservation law for toroidal angular momentum is very similar to that for
energy in the previous section. The general idea is to multiply the conservative gyrokinetic equation
(4.2) by an invariant of motion. For the energy, this invariant was the gyro-center Hamiltonian H̄s

given by Eq. (4.8). For this conservation law, let us consider the gyrocenter toroidal canonical
momentum Pϕ defined as

Pϕ = msuϕ − qsχ (4.22)

with the notation uϕ = (I/B)vG‖ = R2b·∇ϕvG‖. Pϕ is an exact invariant of the unperturbed gyrocenter

motion described by the Hamiltonian H̄s,eq = 1
2msv

2
G‖+µsB+ Ūeq, which corresponds to collisionless

motion in a fully axisymmetric system. Ūeq is the gyro-average of the equilibrium electric potential Ueq

independent on the toroidal angle. When axisymmetry is broken, which can occur for instance due to
turbulence or magnetic field ripple, Pϕ is no longer a motion invariant. In particular, when the electric
potential becomes non-axisymmetric, the evolution of Pϕ is governed by the equation dtPϕ = −qs∂ϕŪ .
This result can be obtained by using the expression of the gyrokinetic Poisson brackets Eq. (1.38).
Details of the calculation are presented in appendix M.3. From the definition of Pϕ given by Eq.
(4.22), we define the local toroidal angular momentum as

Lϕ =
∑

species

ms

∫
dτ∗uϕF̄s (4.23)
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Note that Lϕ is the momentum for gyrocenter, which differs from the particle momentum by terms of
order O(ρ2

s). As said before, in order to derive a local conservation equation for Lϕ, we multiply the
conservative gyrokinetic equation (4.2) by Pϕ and integrate over all variables other than χ, leading to

∫
dτ∗ Pϕ

∂F̄s
∂t

+

∫
dτ∗ Pϕ

1

B∗‖s
∇z ·

(
żB∗‖sF̄s

)
=

∫
dτ∗ Pϕ C(F̄s)

Using the conservation properties of the collision operator
∫

dτ∗ Pϕ C(F̄s) = 0 and integrating by parts
the second term, then

∂t

(∫
dτ∗ PϕF̄s

)
−
∫

dτ∗ F̄s
∂Pϕ
∂t
−
∫

dτ∗ F̄s
1

B∗‖s
∇z ·

(
żB∗‖sPϕ

)
+ ∂χ

∫
dτ∗(ż · ∇χ)F̄s Pϕ = 0

Finally, using the fact that dtPϕ = −qs∂ϕŪ , we obtain for each species s,

ms∂t

∫
dτ∗uϕF̄s − qs

∫
dτ∗χ∂tF̄s + qs

∫
dτ∗F̄s∂ϕŪ + ∂χ

∫
dτ∗(ż · ∇χ)F̄s Pϕ = 0 (4.24)

Summing over all species, this leads to

∂t

(∑

s

ms

∫
dτ∗uϕF̄s

)
− χ

∑

s

qs

∫
dτ∗∂tF̄s +

∑

s

qs

∫
dτ∗F̄s∂ϕŪ+

∂χ

(∑

s

ms

∫
dτ∗(ż · ∇χ)F̄suϕ

)
− ∂χ

(
qs
∑

s

χ

∫
dτ∗(ż · ∇χ)F̄s

)
= 0

Using the local particle conservation Eq. (4.5), the second term can be written as χ∂χJ
χ. We also

identify the last term as −∂χ(χJχ). Then the conservation equation of the local toroidal momentum
Lϕ =

∑
sms

∫
dτ∗uϕF̄s reads

∂tLϕ + ∂χΠχ
ϕ + Tχpol = Jχ (4.25)

where

Πχ
ϕ =

∑

species

ms

∫
dτ∗F̄suϕv

χ
G (4.26)

Tχpol =
∑

species

qs

∫
dτ∗F̄s∂ϕŪ (4.27)

Jχ =
∑

species

qs

∫
dτ∗vχGF̄s (4.28)

Equation (4.25) is an exact equation for the transport of gyrocenter toroidal momentum, in the sense
that it was obtained directly from the gyrokinetic model, with no additional assumptions of orderings.
The term Tχpol corresponds to a polarization flux of momentum term. The numerical results obtained
with the code are presented in Figure 4.13 (left). The relative error plotted in Figure 4.13 (right) shows
an accuracy better than 10%. The contribution of the different terms of equation (4.25) averaged on
the flux surface are shown in Figure 4.14.

86



CHAPTER 4. GYSELA VERIFICATION

Figure 4.13: Numerical test for local toroidal momentum conservation for simulation detailed in Table
4.11. All the quantities are flux-surface averaged. Left: Comparison between ∂tLϕ and Jχ−∂χΠχ

ϕ−Tχpol

which must be equal according to eq.(4.25). Right: Relative error (defined here as the difference
normalized to the quadratic mean).

Figure 4.14: Detailed contributions of neoclassical and turbulent parts in local toroidal momentum
conservation for simulation detailed in Table 4.11. All the quantities are flux-surface averaged.
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Conclusion

All the work presented in this manuscript has been performed in strong collaboration with my CEA
colleagues: Xavier Garbet, Philippe Ghendrih, Guilhem Dif-Pradalier, Chantal Passeron, Guillaume
Latu and Yanick Sarazin and thanks to all the students which have been associated to the Gysela
project since its beginning. The list below attests that PhD and post-doc works are strongly linked
to Gysela story. It is certainly limiting to associate each student to one specific major step because
it has always been a teamwork where each one has been involved in several multidisciplinary tasks.
All of them have actively contributed to the fact that Gysela is now the unique semi-Lagrangian 5D
non-linear gyrokinetic code being global, full-f , flux-driven and able to tackle both neoclassical and
turbulent ion transport in Tokamak plasma.

• Guilhem Dif-Pradalier (2005-2008) - First-principle description of collisional gyrokinetic turbu-
lence in tokamak plasmas, Thèse Université de Provence Aix-Marseille I, oct. 2008.

• Paolo Angelino (Post-Doc: nov 2006-nov 2008) : Linear and non-linear benchmarks between
semi-lagrangian Gysela code and Particle In Cell ORB5 code.

• Antoine Strugarek (2009-2012) - Turbulence, transport et confinement: des tokamaks au magnétisme
des étoiles, Thèse Université Paris-Diderot - Paris VII, dec 2012.

• David Zarzoso (2009-2012) - Kinetic description of the interaction between energetic particles
and waves in fusion plasmas, Thèse Ecole Polytechnique, Palaisau, nov. 2012.

• Jérémie Abiteboul (2009-2012) - Aspect multi-échelle du transport cinétique des électrons et des
ions dans la turbulence plasma d’ITER, Thèse Université de Provence Aix-Marseille I, novembre
2012.

• Simon Allfrey (Post-Doc: may 2009-may 2011) : Multi-species version of the Gysela code.

• Thomas Cartier-Michaud (2011-2014) - Réduction fluide sous-jacente lors de l’évolution cinétique
de la turbulence plasma dans ITER, Thèse Université de Provence Aix-Marseille , oct. 2015.

• Claudia Norscini (2012-2015) - Transport turbulent non-local dans les plasmas d’ITER.

• Fabien Rozar (2012-2015) - Peta and exascale algorithms for turbulence simulation of fusion
plasmas, Thèse Université de Bordeaux, nov. 2015.

• Damien Estève (2012-2015) - Interaction gyrocinétique entre deux espèces de particules en tur-
bulence de plasma de fusion, Thèse Université de Provence Aix-Marseille I, dec. 2015.

This highly parallel code has already shown good efficiency up to hundreds of thousands cores. Non-
linear simulations currently run on several thousands of cores during several dozens of days. The
capacities of the code to simulate ion plasma turbulence is already large. Let us mention, in this wide
spectrum, some crucial topics for ITER tokamak where Gysela results have already contributed, as:

- Transport barriers,

- Interaction between energetic particles and turbulence, namely the role of energetic geodesic
accoustic modes (EGAMs),
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- Impurity transport,

- Synergy between neoclassical and turbulent transport.

The two main weakness of the code are that: (i) electrons are assumed adiabatic that does not
permit to study particle transport and (ii) the toroidal geometry takes only into account simplified
circular magnetic configurations. New developments are under progress to relax these two limitations.
Concerning more complex magnetic configurations, the development of a new numerical approach
based on an hybrid semi-Lagrangian scheme is still under tests in the SELALIB plateform. The next
step, which will be the implementation in Gysela is foreseen for 2017 via a new post-doc project.
The implementation of full kinetic electrons has been recently achieved in the code and is now under
verification and validation. First results on collisionless Rosenbluth-Hinton test are promising. First
non-linear simulations with both kinetic ions and electrons have been also performed but for a large
ρ∗ = 1/100 on a small corona (from rmin = 0.4ρ∗ to rmax = 0.7ρ∗) with a non-realistic mass aspect ratio
mi/me = 100. Even for such constrained parameters, simulations are already very demanding both in
terms of CPU time and memory consumption. Knowing that, for equal temperatures, electrons have
a much larger parallel speed of a ratio (mi/me)

1/2 compared to ions, simulations with realistic mass
aspect ratio (mi/me ∼ 3600) will be rapidly extremely prohibitive. Indeed, to accurately capture
electron dynamics, the numerical time step has to be reduced by the same factor (mi/me)

1/2 as
compared to simulations with adiabatic electrons while the number of mesh points should be increased
by a factor (

√
mi/me)

3 ∼ 603. Several ideas are currently being explored simultaneously to limit these
strong constraints and to improve kinetic electron simulations:

(i) The possibility to filter between trapped and passing electrons by considering kinetically (deeply)
trapped electrons only, while continuing to assume an adiabatic response for other electrons
(passing and barely trapped). This will reduce the parallel velocity of the electrons kinetically
treated.

(ii) The using of aligned coordinates to reduce the number of points in toroidal direction. First
results on non-linear simulations with adiabatic electrons have already proved a possible gain of
a factor 4 which will be even better for kinetic electrons.

(iii) The present simplified version of the multi-species collision operator is only valid for trace im-
purities. A new collision operator will be necessary to take correctly into account ion-electron
collisions. One of the main difficulty is that the simplification based on a linearized operator in
parallel velocity direction, which had been designed to optimize the code parallelization, is no
more possible. The development of a (v‖, v⊥) collision operator is under progress and will be
first validated for heavy impurities.

(iv) The optimization of the global parallelization of the code is actively pursued to prepare the next
future exascale simulations.

All these improvements are again strongly associated to PhD works:

• Laura Mendoza (at IPP Garching/Germany) (2012-2016) - Realistic magnetic equilibrium and
field-aligned coordinates for high performance computing of gyrokinetic turbulence in tokamaks.

• Charles Ehrlacher (nov 2014-nov 2017) - Contribution des électrons cinétiques au transport tur-
bulent dans les plasmas de fusion.

• Peter Donnel (nov 2015-nov 2018) - Transports néoclassique et turbulent des impuretés dans les
plasmas de fusion: compétition et synergie.

• Nicolas Bouzat (nov 2015-nov 2018) - Parallélisation de l’opérateur de gyromoyenne, optimisa-
tion et parallélisation de la méthode alignée dans GYSELA.

To conclude, let’s say that Gysela adventure has been the opportunity of plenty of collaborations
with national laboratories (IRMA from Strasbourg, Maison de la Simulation from Saclay, LPII from
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Nancy, LPIIM and CPT from Marseille, LPP from Ecole Polytechnique, LABRI from Bordeaux,
...) but also with IPP Garching (Germany) and Swiss Plasma Center from Lausanne. Gysela
project has been supported by several national and European grants. It has been the main basis
of two consecutive ANR (National Research Agency): ANR EGYPT (2008-2011) followed by ANR
GYPSI (2011-2015) and part of ANR Nufuse G8@exascale (2012-2016). The code is involved in two
INRIA Project Labs as well: the first one dedicated to fusion (IPL FRATRES) and the second one
to exascale (IPL C2S@Exa). It has also been one of the basis for the development of the SELALIB
test platform for numerical methods applied to Vlasov equation solving which was supported by
an INRIA ADT (Technological Development Action) from 2011 to 2015. At the European level,
benchmark activity and improvement of numerical schemes are actually granted by the European
Fusion project “Verification and development of new algorithms for gyrokinetic codes” (2013-2017)
leaded by E. Sonnendrücker at Garching. Finally, research and development to prepare the code to
exascale architectures are supported by the EoCoE (Energy Oriented Center of Excellence) H2020
project leaded by Maison de la simulation at Paris (2015-2018).

Quand on voyage vers un objectif, il est très important de prêter
attention au chemin. C’est toujours le chemin qui nous enseigne la
meilleure façon d’y parvenir, et il nous enrichit à mesure que nous le
parcourons. - Paul Coelho
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Appendix A

Relationship between Fs(x,v, t) and
F̄s(xG,vG, t)

The old canonical coordinates (x,p) – that of the particle – and the new ones (x′,p′) – those of
the guiding-center, only differ by infinitesimal quantities of order ε ∼ ρ∗. In such a case, they can
be shown to be related, at first order in the small parameter ε, by the generating function S(x,p)1

(which remains to be determined) as follows [GPS02] :

x− x′ = ∂p′S

p− p′ = −∂x′S
Any field f evaluated at the position (x,p) can then be expressed in terms of its value at (x′,p′),
namely:

f(x,p) = f(x′,p′) + [f, S]x′,p′ + o(ε) (A.1)

This is especially the case for the Hamiltonian H:

H(x,p) = H(x′,p′) + [H,S]x′,p′ + o(ε) (A.2)

Since the generating function does not explicitly depend on time, H(x′,p′) also stands for the new
Hamilonian with respect to which the new coordinates are canonically conjugated. To avoid any con-
fusion with H, we will denote it H̄(x′,p′) hereafter. As far as the gyrokinetic theory is concerned, the
transformation acts on the first pair of conjugate coordinates, namely (ϕc, J1), with J1 = −msµs/qs.
From eq. (A.2), it comes:

H(x,p) = H̄(xG,pG) + [H̄, S]ϕc,J1

= H̄(xG,pG) + Ωs ∂ϕcS + ∂ϕcH̄ ∂µS
(A.3)

with Ωs = (qs/ms)∂µH̄ the cyclotron frequency. The additional imposed constraint is that H̄ should
not depend on the gyro-angle ϕc. In this case, the last term on the right hand side of eq. (A.3) vanishes.
This allows one to express the generating function S as function of the old and new Hamiltonians:

S(x,p) =

∫
dϕc
Ωs

{
H(x,p)− H̄(xG,pG)

}

=

∫
ms dϕc
B

{
U(x)− Ū(xG,pG)

} (A.4)

Injecting the expression of S, eq. (A.4), in equation (A.1), the distribution function of particles Fs
can then be related to the one of the gyro-centers F̄s:

Fs(x,v, t) = F̄s(xG,vG, t) +
qs
B

{
U(x, t)− Ū(xG,vG, t)

}
∂µF̄s,eq(xG,vG)

Since the computation is performed at order one in ε, the equilibrium distribution function F̄s,eq only
is retained in the last term.

1 Rigorously speaking, the generating function G is G = x.p′ + εS, where x.p′ can be shown to be the identity
transform.
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Appendix B

Some useful linear algebra expressions

This appendix is just a reminder of some simple but useful linear algebra used all along the manuscript.

B.1 Some useful expressions of the main vectorial operators for a
general metric tensor

The Einstein notation will be used in this section. Let us consider a set of coordinates labelled {xi},
the metric tensor {gij} is defined via the length element

ds2 = gij dxi dxj

It is the product of the transpose Jacobian matrix JT and the Jacobian matrix J , i.e {gij} = JT J .
Let g represents the determinant of the metric tensor (i.e g = det{gij}), then the jacobian in space Jx

is defined as Jx =
√
g and so equal to Jx =

[(
∇∇∇x1 ×∇∇∇x2

)
· ∇∇∇x3

]−1
. The tensor {gij} is the inverse

of the tensor {gij}. The element of the contravariant metric tensor verify the relation gij =∇∇∇xi ·∇∇∇xj ,
i.e:

{gij} =



g11 g12 g13

g21 g22 g23

g31 g32 g33


 =



∇∇∇x1 · ∇∇∇x1 ∇∇∇x1 · ∇∇∇x2 ∇∇∇x1 · ∇∇∇x3

∇∇∇x2 · ∇∇∇x1 ∇∇∇x2 · ∇∇∇x2 ∇∇∇x2 · ∇∇∇x3

∇∇∇x3 · ∇∇∇x1 ∇∇∇x3 · ∇∇∇x2 ∇∇∇x3 · ∇∇∇x3


 (B.1)

With these notations, any vector A is defined by:

A = Ai∇∇∇xi

and the equivalent norm is given by:

‖A‖ =
√

(A1)2g11 + (A2)2g22 + (A3)2g33

The covariant coordinates are expressed as

Ai = Jx
εijk
2

(
∇∇∇xj ×∇∇∇xk

)
·A

or alternatively as

A = Jx
εijk
2
Ai
(
∇∇∇xj ×∇∇∇xk

)

where the contravariant coordinates are

Ai = A · ∇∇∇xi

Therefore, the contra and covariant coordinates are related by the relations

Ai = gijAj and Ai = gijA
j

The vector divergence and the laplacian can be defined by

∇ ·A =
1

Jx
∂xi
(
JxA

i
)

and ∇2φ =
1

Jx
∂xi(Jxg

ij∂xjφ)
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B.2. POISSON BRACKETS DEFINED AS [F,G] = B · (∇∇∇F ×∇∇∇G)

The gradient can be written
∇∇∇φ = ∂xiφ∇xi

from which one deduces the components of a rotational

(∇∇∇×B)i =
1

Jx
εijk∂xjBk

B.2 Poisson brackets defined as [F,G] = b · (∇∇∇F ×∇∇∇G)

For the following, let us defined the Poisson bracket by [F,G] = b · (∇∇∇F ×∇∇∇G) with b = B/‖B‖ the
unitary magnetic field. Let bk represent the covariant components of b and Jx be the jacobian of the
system, then it can be easily checked that:

[F,G] = J −1
x εijk∂xiF∂xjGbk (B.2)

with εijk the Levi-Civita symbol. Using the previous expression (B.2), a more explicit form of the
Poisson bracket [F,G] reads:

[F,G] =
b1
Jx

( ∂x2F ∂x3G− ∂x3F ∂x2G) +
b2
Jx

( ∂x3F ∂x1G− ∂x1F ∂x3G)

+
b3
Jx

( ∂x1F ∂x2G− ∂x2F ∂x1G)

[F,G] =
B1

JxB
( ∂x2F ∂x3G− ∂x3F ∂x2G) +

B2

JxB
( ∂x3F ∂x1G− ∂x1F ∂x3G)

+
B3

JxB
( ∂x1F ∂x2G− ∂x2F ∂x1G) (B.3)
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Appendix C

Quasi-neutrality solver

C.1 How to overcome the difficulty due to 〈 U 〉FS term ?

In this appendix, we describe the numerical solving of the quasi-neutrality equation (2.13). In partic-
ular, we explain what is done to overcome the problem of the term 〈 〉Flux Surf in Fourier space.
For the following, let us first notice that equation (2.13) can be re-written as

LU +
e

Te(r)
[U − λ〈 U 〉Flux Surf ] = ρ(r, θ, ϕ) (C.1)

where the differential operator of second order L is defined as:

L = − 1

ne0(r)

∑

s

Zs∇⊥ ·
(
ns,eq(r)

BΩs
∇⊥
)

In the present version of the code, two assumptions are done for this operator: (i) B(r, θ) is assumed
constant equal to B0 the magnetic field on the magnetic axis and (ii) ns,eq = ns0 where ns0 is the
initial radial density profile. Therefore, the differential operator reads

L = − 1

ne0(r)

∑

s

Zs
B0Ωs

∇⊥ · (ns0(r)∇⊥)

= − 1

ne0(r)

∑

s

Zs
B0Ωs

ns0(r)

{
∂2

∂r2
+

[
1

r
+

1

ns0(r)

dns0(r)

dr

]
∂

∂r
+

1

r2

∂2

∂θ2

}

The right hand side reads

ρ(r, θ, ϕ) =
1

ne0(r)

∑

s

Zs [nGs(r, θ, ϕ)− nGs,eq(r, θ)]

where nGs and nGs,eq are respectively defined by equations (2.14) and (2.15). The constant λ can be
chosen equal to 1 (by default) or equal to 0.
Let for all function g, 〈 g 〉θ, ϕ being the radial function equal to

〈 g(r) 〉θ, ϕ =
1

LθLϕ

∫ ∫
g(r, θ, ϕ) dθ dϕ

By applying the integration 1
LθLϕ

∫ ∫
·dθ dϕ to the previous equation (C.1) and by using the fact that

〈 〈 U 〉θ, ϕ 〉Flux Surf = 〈 U 〉Flux Surf then:

L〈 U 〉θ, ϕ +
e

Te
[〈 U 〉θ, ϕ − λ〈 U 〉Flux Surf ] = 〈 ρ 〉θ, ϕ (C.2)

Let U being U = U − 〈 U 〉θ, ϕ then, by subtracting (C.2) to (C.1), and by using Dirichlet boundary
conditions we obtain ∀λ ∈ R, ∀θ ∈ [0, Lθ] and ∀ϕ ∈ [0, Lϕ]:





(
L+ e

Te

)
U(r, θ, ϕ) = %(r, θ, ϕ) with % = ρ− 〈 ρ 〉θ, ϕ ∀r ∈ [rmin, rmax]

U(rmin, θ, ϕ) = U(rmax, θ, ϕ) = 0

(C.3)
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C.2. SOLVING: FINITE DIFFERENCES AND FOURIER PROJECTIONS

Besides, (C.2) can be written as

L (〈 U 〉θ, ϕ − 〈 U 〉Flux Surf) + L〈 U 〉Flux Surf

+
e

Te
[(〈 U 〉θ, ϕ − 〈 U 〉Flux Surf) + 〈 U 〉Flux Surf − λ〈 U 〉Flux Surf ] = 〈 ρ 〉θ, ϕ

Then using the fact that 〈U 〉Flux Surf = 〈U 〉Flux Surf −〈 〈 U 〉θ, ϕ 〉Flux Surf and using Dirichlet boundary
conditions, the previous equation leads to the following system:





(
L+ (1− λ) e

Te

)
〈 U 〉Flux Surf = 〈 ρ 〉θ, ϕ +

(
L+ e

Te

)
〈 U 〉Flux Surf

〈 U 〉Flux Surf(rmin) = 〈 U 〉Flux Surf(rmax) = 0

(C.4)

Using the definition of U , then

〈 U 〉Flux Surf = 〈 U 〉Flux Surf − 〈 〈 U 〉θ, ϕ 〉Flux Surf

= 〈 U 〉Flux Surf − 〈 U 〉θ, ϕ (because 〈 〈 U 〉θ, ϕ 〉Flux Surf = 〈 U 〉θ, ϕ)

so 〈 U 〉θ, ϕ = 〈 U 〉Flux Surf − 〈 U 〉Flux Surf

and using the fact that U = U + 〈 U 〉θ, ϕ, we obtain the expression of the electric potential U as:

U(r, θ, ϕ) = U(r, θ, ϕ)− 〈 U 〉Flux Surf(r) + 〈 U 〉Flux Surf(r) (C.5)

To summarize, the solving of the equation (2.13) can be replaced by the solving of two simpler equations
(C.3) and (C.4). Indeed, the equation (C.4) is a differential equation only depending on the radial
direction. Besides, in (C.3) the variable ϕ plays the role of a parameter, then the discretization of the
equation can be performed by projecting in Fourier space in θ direction and by using finite differences
in the radial direction as described in the following paragraph.

However, it is important to realize that the boundary conditions are not directly applied on U but
on U = U − 〈 U 〉θ, ϕ. So the fact to impose U(rmin) = 0 does not imply U(rmin) = 0 but U(rmin) =
〈 U 〉θ, ϕ(rmin) (same remark can be done at r = rmax). Another treatment is available when rmin is
sufficiently close to 0 (rmin < 10−2 in the code). Indeed, let us assume that in this case Jx(rmin, θ) is
equal to a constant. Then, for all function g,

〈 g 〉FS(rmin) =

∫
gJx(rmin, θ) dθ dϕ∫
Jx(rmin, θ) dθ dϕ

=
1

4π
〈 g 〉θ, ϕ ∀ |rmin| � 1

In this case employing a Neumann boundary condition on the (0, 0) mode at the axis (i.e ∂r〈U〉θ, ϕ(rmin) =
0) is equivalent to applying ∂r〈 U 〉FS(rmin) = 0 in the matrix system (C.4).

C.2 Finite differences in radial direction and Fourier projections in
θ and φ

C.2.1 Solving of the equation system (C.3)

Let U and % be represented in terms of the Fourier expansion as

{
U(r, θ, ϕ) =

∑
m Um(r, ϕ) exp(imθ)

%(r, θ, ϕ) =
∑

m %
m(r̂, ϕ) exp(imθ)

then the equation (C.3) can be rewritten in the wave number representation, for each poloidal mode
m and for each independent value of ϕ, as the following differential equation:

(
Lm +

e

Te(r)

)
Um(r, ϕ) = %m(r̂, ϕ) (C.6)
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with the operator Lm defined as

Lm = − 1

ne0(r)

∑

s

Zs
B0Ωs

ns0(r)

{
∂2

∂r2
+

[
1

r
+

1

ns0(r)

dns0(r)

dr

]
∂

∂r
− m2

r2

}
(C.7)

and where Um (resp. %m) is the Fourier transform in θ of U (resp. %). Let Nr be the number of radial
points and let assumes that the radial domain is defined inside [r1, rNr ] (i.e rmin = r1 and rmax = rNr),
then up to second order in ∆r, the system of equations (C.3) leads to the tridiagonal (Nr−2)×(Nr−2)
system:




dmr2 ur2 0
lr3 dmr3 ur3 0

. . .
. . .

. . .

0 lrNr−2 dmrNr−2
urNr−2

0 lrNr−1 dmrNr−1







Um2
Um3

...
UmNr−2

UmNr−1




=




%m2
%m3
...

%mNr−2

%mNr−1




(C.8)

with for each ri ∈ [r1, rNr ] 



lri = −
(
β(ri)
∆r2 − α(ri)

2∆r

)

dmri = β(ri)
(

2
∆r2 + m2

r2
i

)
+ e

Te(ri)

uri = −
(
β(ri)
∆r2 + α(ri)

2∆r

)

%m = %m(ri)

(C.9)

with 



α(ri) =
∑

s
Zs
B0Ωs

ns0 (ri)

ne0 (ri)

(
1
ri

+ 1
ns0 (ri)

dns0 (ri)
dr

)

β(ri) =
∑

s
Zs
B0Ωs

ns0 (ri)

ne0 (ri)

(C.10)

and where Um1 = UmNr = 0.
Solving the previous matrix system (C.8) is equivalent to solve a matrix system of the form Ax = b
where A is of the form (E.1) where the three diagonals are defined by:

[l1, · · · , lN ] = [0, lr3 , · · · , lrNr−1 ]

[d1, · · · , dN ] = [dr2 , dr3 , · · · , drNr−1 ]

[u1, · · · , uN ] = [ur2 , · · · , urNr−2 , 0]

and the right side vector b corresponds to

[b1, · · · , bN ] = [%m(r2), · · · , %m(rNr−1)]

while the result vector Um is given by:

[Um1 , · · · ,UmNr ] = [0, x1, x2, · · · , xN , 0]

C.2.2 Solving of the equation system (C.4)

In the following 〈·〉Flux Surf is replaced by 〈·〉FS for more readability. The system (C.4) can be rewritten
as: 




(
L+ (1− λ) e

Te(ri)

)
〈 U 〉FS(ri) = Γ(ri) for each ri ∈ [r1, rNr ]

〈 U 〉FS(rmin) = 〈 U 〉FS(rmax) = 0

99



C.2. SOLVING: FINITE DIFFERENCES AND FOURIER PROJECTIONS

with Γ(ri) = 〈 ρ 〉θ, ϕ(ri) +
(
L+ e

Te(ri)

)
〈 U 〉FS where 〈 ρ 〉θ, ϕ(ri) = 1

LθLϕ

∫ ∫
ρ(ri, θ, ϕ) dθ dϕ which is

equivalent (by using the same notation than for the previous matrix system (C.8)) to:




dr2 ur2 0
lr3 dr3 ur3 0

. . .
. . .

. . .

0 lrNr−2 drNr−2 urNr−2

0 lrNr−1 drNr−1







〈 U 〉FS(r2)
〈 U 〉FS(r3)

...
〈 U 〉FS(rNr−2)
〈 U 〉FS(rNr−1)




=




Γ(r2)
Γ(r3)

...
Γ(rNr−2)
Γ(rNr−1)




(C.11)

with for each ri ∈ [r2, rNr−1]



lri = −
(
β(ri)
∆r2 − α(ri)

2∆r

)

dri = 2
∆r2β(ri) + (1− λ) e

Te(ri)

uri = −
(
β(ri)
∆r2 + α(ri)

2∆r

)

Γ(ri) = 〈 ρ 〉θ, ϕ(ri) +
(
L+ e

Te(ri)

)

where α(ri) and β(ri) are defined by (C.10). Let us remark that the super-diagonal (uri)i=2,··· ,Nr−2

and the lower-diagonal (lri)i=3,··· ,Nr−1 are the same than the ones in the previous matrix system
(C.8), while the diagonal can be deduced from the previous diagonal of the poloidal mode m = 0 (i.e(
dmri
)
i=2,··· ,Nr−1

for m = 0) by the relation

dri = d0
ri − λ

e

Te(ri)

C.2.3 Global algorithm for the quasi-neutrality solver

Then the different steps for solving (C.1) and obtaining U are the following:

1. Compute and save ρ,

2. Solve (C.3) to obtain U and save the 3D array U ,

3. Compute 〈 U 〉Flux Surf and save this 1D array,

4. Compute the RHS of (C.4), i.e 〈 ρ 〉θ, ϕ +
(
L+ e

Te

)
〈 U 〉Flux Surf and save this 1D array,

5. Solve (C.4) to obtain 〈 U 〉Flux Surf and store it,

6. Compute U(r, θ, ϕ) by using (C.5)

where the matrix systems (C.3) and (C.4) are both solved by using finite differences in radial direction
and Fourier projection in θ direction. Fourier space is also used in φ direction for (C.4).
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Appendix D

Padé approximation for gyro-average
operator

This appendix focuses on the implementation of the gyro-average operator in the code when the
choice of a Padé approximation is done. This option is still currently the default choice in the code.
The implementation detailed below is directly accessible in Gysela source files. The second choice
based on an integration on the gyro-circles by using Hermite interpolation will not be presented in
the following. This option is still for the moment compiled as an external library. All details of
computation can be founded in Steiner’s paper [SMC+15] and Rozar’s paper [RSM+15]. Let us first
recall that this gyro-average operator take the form

ḡ(xG, v⊥) =

∫ +∞

−∞

d3k

(2π)3
J0(k⊥ρs)ĝ(k)eik·xG (D.1)

where ρs is the Larmor radius (ρs = v⊥/Ωs with Ωs = qsB0/ms). We can first notice that ϕ plays
the role of a parameter. The Fourier projection can be used along the periodic direction θ but not in
the radial one. This is one of the drawback of global codes. A possibility is to use finite differences
in the radial direction. However, such a representation does not provide ~k⊥ involved in gyro-average
definition (D.1). To overcome this difficulty, the Bessel function is replaced by the following Padé
approximation:

J0(k⊥ρs) ∼
1

1 + (k⊥ρs)2

4

(D.2)

This approximation gives the right limit at vanishing k⊥ρs, while keeping J0 finite in the opposite
limit k⊥ρs →∞. Using the equivalence i~k⊥ ↔∇∇∇⊥, the gyro-average operation of any g function then
leads to the following implicit equation:

(
1− ρ2

s

4
∇2
⊥

)
ḡ(r, θ, ϕ) = g(r, θ, ϕ) (D.3)

where we recall that ∇2
⊥ = 1

r
∂
∂r

(
r ∂∂r
)

+ 1
r2

∂2

∂θ2 = ∂2

∂r2 + 1
r
∂
∂r + 1

r2
∂2

∂θ2 .

So the equation (D.3) expressed in terms of µs (v⊥ =
√

2B(r, θ)µs/ms) reads:

(
1− 1

2Ω2
s

B(r, θ)

ms
µs∇2

⊥

)
ḡ(r, θ, ϕ) = g(r, θ, ϕ) (D.4)

At first approximation and to be consistent with the solving of the quasi-neutrality equation B(r, θ) is
replaced by B0, such that each m Fourier mode of ḡ is the solution of the equation:

[
1− 1

2Ω2
s

B0

ms
µs

(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2

)]
ḡm(r, ϕ) = gm(r, ϕ)

For the discrete problem, we consider (Nr+1) grid points in the radial direction, such that ri ∈ [r0, rNr ].
Then, using a Taylor expansion of second order for the first and second derivatives gives the following
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discrete problem, ∀i = 1, · · · , Nr − 1:

−Ks
µs
2

(
1

∆r2
− 1

2ri∆r

)
ḡmi−1(ϕ)

+

[
1 +Ks

µs
2

(
2

∆r2
+
m2

r2
i

)]
ḡmi (ϕ)−Ks

µs
2

(
1

∆r2
+

1

2ri∆r

)
ḡmi+1(ϕ) = gmi (ϕ)

where the constant Ks is defined as Ks = B0/(msΩ
2
s). This is equivalent to the matrix system

ari ḡ
m
i−1(ϕ) + bri ḡ

m
i (ϕ) + cri ḡ

m
i+1(ϕ) = gmi (ϕ) ∀i = 1, · · · , Nr − 1

with 



ari = −Ks
µs
2

(
1

∆r2 − 1
2ri∆r

)

bri = 1 +Ks
µs
2

(
2

∆r2 + m2

r2
i

)

cri = −Ks
µs
2

(
1

∆r2 + 1
2ri∆r

)

Since Neumann boundary conditions are assumed (i.e ∂rḡ(r0) = ∂rḡ(rNr) = 0) solving the equation
requires, for each ϕ, the inversion of the following tridiagonal (Nr − 1)× (Nr − 1) system:




ar1 + br1 cr1 0
ar2 br2 cr2 0

. . .
. . .

. . .

0 arNr−2 brNr−2 crNr−2

0 arNr−1 brNr−1 + crNr−1







ḡm1 (ϕ)
ḡm2 (ϕ)

...
ḡmNr−2(ϕ)

ḡmNr−1(ϕ)




=




gm1 (ϕ)
gm2 (ϕ)

...
gmNr−2(ϕ)

gmNr−1(ϕ)




(D.5)

then ḡm0 = ḡm1 and ḡmNr = ḡmNr−1. The projection in Fourier space in the poloidal direction is performed
by FFT. And for each point ϕk in the toroidal direction the previous tridiagonal (Nr − 1)× (Nr − 1)
system is solved with a modified Thomas algorithm (see Appendix E for details of the implementation
in the code).
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Appendix E

LU factorization with a modified
Thomas algorithm

The choice which has been done to perform the LU factorization (which appears in the quasi-neutrality
equation solving (see Appendix C) and in the gyro-average operator (see Appendix D) is to use a
modified version of Thomas algorithm. Details of this widespread numerical algorithm are the subject
of this appendix. Let us consider a N ×N linear system of the form:

Ax = b

where we denote by A = (aij) ∈ RN×N the coefficient matrix, by b = (bi) ∈ RN the right side vector
and by x = (bi) ∈ RN the unknown vector, respectively.

E.1 Tridiagonal Matrices

Consider the particular case of a linear system with N ×N nonsingular tridiagonal matrix A given by

A =




d1 u2 0

l2 d2
. . .

. . .
. . . uN−1

0 lN dN




(E.1)

In such an event, the matrices L and U of the LU factorization of A are bidiagonal matrices of the
form:

L =




1 0
β2 1

. . .
. . .

0 βN 1


 U =




α1 u2 0

α2
. . .
. . . uN−1

0 αN




E.1.1 Thomas algorithm

The coefficients αi and βi can be easily be computed by the following relations

α1 = l1 , βi =
li

αi−1
, αi = di − βiui−1 , i = 2, · · · , N (E.2)

This is known as the Thomas algorithm and can be regarded as a particular instance of the Doolittle
factorization, without pivoting. When one is not interested in storing the coefficients of the original
matrix, the entries αi and βi can be overwritten on A. The Thomas algorithm can also be extended to
solve the whole tridiagonal system Ax = b. This amounts to solving two bidiagonal systems Ly = b
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E.1. TRIDIAGONAL MATRICES

and Ux = y, for which the following formulae hold:

(Ly = b) : y1 = b1, yi = bi − βi yi−1, i = 2, · · · , N (E.3)

(Ux = y) : xn =
yn
αn
, xi = (yi − ui xi+1)/αi, i = N − 1, · · · , 1 (E.4)

The algorithm requires only 8N − 7 flops: precisely, 3(N − 1) flops for the factorization (E.2) and
5N − 4 flops for the substitution procedure (E.3)-(E.4).

E.1.2 Modified version of Thomas algorithm

The Thomas algorithm can be implemented in several ways. In particular, when implementing it
on computers where divisions are more costly than multiplications, it is possible (and convenient) to
devise a version of the algorithm without divisions in (E.4), by resorting to the following form of the
factorization

A = LDMT =




γ−1
1 0 0

l2 γ−1
2

. . .
. . .

. . . 0

0 lN γ−1
N







γ1 0
γ2

. . .

0 γN







γ−1
1 u2 0

0 γ−1
2

. . .
. . .

. . . uN−1

0 0 γ−1
N




The coefficients γi can be recursively computed by the formulae

γi = (di − li γi−1 ui−1)−1, i = 1, · · · , N (E.5)

where γ0 = 0, l1 = 0 and uN = 0 have been assumed. The forward and backward substitutions
algorithms respectively read:

(Ly = b) : y1 = γ1 b1, yi = γi(bi − li yi−1), i = 2, · · · , N (E.6)

(Ux = y) : xn = yn, xi = yi − γi ui xi+1, i = N − 1, · · · , 1 (E.7)
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Appendix F

Numerical implementation of the
collision operator in Gysela

In this appendix, the simplified expression of the Lorentz-type operator which is used in Gysela is
detailed. The expression of this collision operator (including the perpendicular direction, which is not
yet implemented in Gysela ) is

C(F̄s) =
1

B∗‖s
∂vG‖

{
B∗‖sD‖sF̄Ms∂vG‖

(
F̄s
F̄Ms

)}
+

1

B∗‖s
∂µ

{
B∗‖sD⊥sF̄Ms

1

B2
∂µ

(
F̄s
F̄Ms

)}
(F.1)

where B∗‖s(r, θ, vG‖) = B(r, θ) + vG‖b · ∇ × b is the Jacobian of the guiding-center coordinates, and

F̄Ms is the following shifted Maxwellian distribution

F̄Ms =
ns0

(2πTs,coll/ms)
3/2

exp

(
−
ms

(
vG‖ − V‖s,coll

)2

2Ts,coll
− µsB

Ts,coll

)
(F.2)

with the mean temperature Ts,coll = Ts,coll(r, θ, ϕ) and the mean velocity V‖s,coll = V‖s,coll(r, θ, ϕ).
F̄Ms is such that C(F̄s) = 0. The collision term D‖s is defined by the equations (2.27)-(2.29). The
expression of Ts,coll and V‖s,coll are constrained such that the collision operator is momentum and
energy preserving. These calculations and expressions are detailed in a first paragraph F.1 while the
numerical implementation based on a semi-implicit second order Crank-Nicolson scheme is described
in the second one F.2.

F.1 Expressions of the mean temperature Ts,coll and mean velocity
V‖s,coll for the collision operator

While this simplified collision operator obviously conserves the number of particles, the profiles
Ts,coll(r, θ, ϕ) and V‖s,coll(r, θ, ϕ) must be chosen so that the operator is also compatible with the
conservations of momentum and energy

∫
Jv dµs dvG‖ msvG‖C(F̄s) = 0 (F.3)

∫
Jv dµs dvG‖

(
µsB +

1

2
msv

2
G‖

)
C(F̄s) = 0 (F.4)

where Jv = 2πB∗‖s/ms is the jacobian in velocity space. Let us first consider only the contribution of

collisions in the parallel direction. We use the expression of the collision operator (F.1) and integrate
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F.1. EXPRESSIONS OF THE MEAN TEMPERATURE TS,COLL AND MEAN
VELOCITY V‖S,COLL FOR THE COLLISION OPERATOR

Eq. (F.3) by parts twice in the variable vG‖

(F.3)‖ =

∫ 2πB∗‖s
ms

dµs dvG‖ msvG‖
1

B∗‖s
∂vG‖

{
B∗‖sD‖sF̄Ms∂vG‖

(
F̄s
F̄Ms

)}

= −2π

∫
dµs dvG‖ B

∗
‖sD‖sF̄Ms∂vG‖

(
F̄s
F̄Ms

)

= 2π

∫
dµs dvG‖

F̄s
F̄Ms

∂vG‖(B
∗
‖sD‖sF̄Ms)

= 2π

∫
dµs dvG‖

{
F̄s
F̄Ms

B∗‖sD‖s∂vG‖F̄Ms + F̄s∂vG‖(B
∗
‖sD‖s)

}

Using the fact that ∂vG‖F̄Ms = −F̄Ms

ms(vG‖−V‖s,coll)

Ts,coll
, we obtain

(F.3)‖ =
2π

Ts,coll

∫
B∗‖s dµs dvG‖

{
Ts,collF̄s
B∗‖s

∂vG‖(B
∗
‖sD‖s)−D‖sF̄sms(vG‖ − V‖s,coll)

}

=
ms

Ts,coll

{
V‖s,coll

〈
msD‖s

〉
−
〈
msD‖svG‖

〉
+ Ts,coll

〈
1

B∗‖s
∂vG‖(B

∗
‖sD‖s)

〉}
(F.5)

where

〈...〉 =

∫
Jv dµs dvG‖ F̄s... (F.6)

We perform similar operations on the contribution to Eq. (F.4) of collisions in the parallel direction:

(F.4)‖ =

∫
Jv dµs dvG‖(µsB +

1

2
msv

2
G‖)

1

B∗‖s
∂vG‖

{
B∗‖sD‖sF̄Ms∂vG‖

(
F̄s
F̄Ms

)}

= −2π

∫
dµs dvG‖ B

∗
‖sD‖sF̄MsvG‖∂vG‖

(
F̄s
F̄Ms

)

= 2π

∫
dµs dvG‖

F̄s
F̄Ms

∂vG‖(B
∗
‖sD‖svG‖F̄Ms)

=
2π

Ts,coll

∫
B∗‖s dµs dvG‖

{
−vG‖D‖sF̄sms(vG‖ − V‖s,coll) +

Ts,coll

B∗‖s
F̄s∂vG‖(B

∗
‖svG‖D‖s)

}

=
ms

Ts,coll

{
V‖s,coll

〈
msD‖svG‖

〉
−
〈
msD‖sv2

G‖
〉

+ Ts,coll

〈
1

B∗‖s
∂vG‖(B

∗
‖sD‖svG‖)

〉}
(F.7)

For collisions in the perpendicular direction, Eq. (F.3) is trivially verified. We perform two
integrations by parts in the variable µs for Eq. (F.4)

(F.4)⊥ =

∫
Jv dvG‖ dµs (µsB +

1

2
msv

2
G‖)

1

B∗‖s
∂µ

{
B∗‖sD⊥sF̄Ms

1

B2
∂µ

(
F̄s
F̄Ms

)}

= − 2π

ms

∫
dvG‖ dµs

B∗‖s
B
D⊥sF̄Ms∂µ

(
F̄s
F̄Ms

)

=
2π

ms

∫
dvG‖ dµs

F̄s
F̄Ms

1

B
∂µ(B∗‖sD⊥sF̄Ms)

Using the fact that ∂µF̄Ms = −F̄Ms
B

Ts,coll
, we obtain

(F.4)⊥ =
2π

ms

∫
dvG‖ dµs

{
F̄s
B
∂µ(B∗‖sD⊥s)−B∗‖sD⊥s

1

Ts,coll
F̄s

}

=
1

Ts,coll

{〈
1

BB∗‖s
∂µ(B∗‖sD⊥s)

〉
Ts,coll − 〈D⊥s〉

}
(F.8)
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APPENDIX F. COLLISION OPERATOR

Using Equations (F.5), (F.7) and (F.8), the conservation equations (F.3) and (F.4) form a linear
system in Ts,coll(r, θ, ϕ) and V‖s,coll(r, θ, ϕ) as follows

V‖s,coll

〈
msD‖s

〉
+ Ts,coll

〈
1

B∗‖s
∂vG‖(B

∗
‖sD‖s)

〉
=

〈
msD‖svG‖

〉

V‖s,coll

〈
m2
sD‖svG‖

〉
+ Ts,coll

〈
ms

B∗‖s
∂vG‖(B

∗
‖sD‖svG‖) +

1

BB∗‖s
∂µ(B∗‖sD⊥s)

〉
=

〈
m2
sD‖sv2

G‖ +D⊥s
〉

Solving this system, we find that the conservation constraints are verified if the profiles V‖s,coll(r, θ, ϕ)
and Ts,coll(r, θ, ϕ) for the collision operator are defined as follows

msPV‖s,coll =

〈
ms

B∗‖s
∂vG‖(B

∗
‖sD‖svG‖) +

1

BB∗‖s
∂µ(B∗‖sD⊥s)

〉
〈
msD‖svG‖

〉

−
〈

1

B∗‖s
∂vG‖(B

∗
‖sD‖s)

〉〈
m2
sD‖sv2

G‖ +D⊥s
〉

PTs,coll =
〈
D‖s
〉 〈
m2
sD‖sv2

G‖ +D⊥s
〉
−
〈
msD‖svG‖

〉2

where

P =
〈
D‖s
〉
〈
ms

B∗‖s
∂vG‖(B

∗
‖sD‖svG‖) +

1

BB∗‖s
∂µ(B∗‖sD⊥s)

〉
−
〈
msD‖svG‖

〉
〈

1

B∗‖s
∂vG‖(B

∗
‖sD‖s)

〉

We recall that

〈...〉 =

∫
Jv dµs dvG‖F̄s... with Jv = 2πB∗‖s/ms

Let us remind that only collisions in the parallel direction are taken into account at the moment in
the code, i.e D⊥s = 0 in above expressions. Then, let us define the 5 following integrals:

I0 = 〈D‖s〉 ; I1 = 〈msD‖svG‖〉 ; I2 = 〈m2
sD‖sv2

G‖〉

I3 = 〈 1

B∗‖s
∂vG‖

(
B∗‖sD‖s

)
〉 and I4 = 〈ms

B∗‖s
∂vG‖

(
B∗‖s vG‖D‖s

)
〉

Therefore the mean velocity and mean temperature can be simply expressed as:

msV‖s,coll = P−1 (I4 × I1 − I2 × I3)

Ts,coll = P−1
(
I0 × I2 − I2

1

)

P = I0 × I4 − I1 × I3

F.2 Crank-Nicolson scheme for collision operator solving

In the following, the semi-implicit second-order Crank-Nicolson scheme which is implemented in Gy-
sela to take into account the collisional effects as

∂tF̄s = Css(F̄s) =
1

B∗‖s
∂vG‖

{
B∗‖sD∂vG‖F̄s −B∗‖sVF̄s

}
(F.9)

is detailed. The diffusion term D is defined as D = D‖s(r, v) = A(r)
(

Φ(v)−G(v)
2v

)
with A(r) =

3
√
π

2

v3
Ts0

ε3/2

qR0
ν∗ while the expression of the drag term V is given by V = V‖s(r, v) = −(vG‖−V‖s,coll)

v2
Ts,coll

D‖s(r, v).
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Classically, let us write: fnj ≡ F̄s(r, θ, ϕ, vG‖,j , tn), where subscript j ∈ {0, . . . , N} refers to the discre-
tised index in parallel velocity space and superscript n refers to the time. For each value of µs, each
term in Eq. (F.9) reads:

B∗‖s∂tf → B∗‖s,j
fn+1
j − fnj

∆t
(F.10)

∂vG‖

(
B∗‖sD∂vG‖f

)
→ 1

2∆v2
G‖

{
B∗‖s,j+ 1

2

Dj+ 1
2

[
fn+1
j+1 − fn+1

j + fnj+1 − fnj
]

−B∗‖s,j− 1
2

Dj− 1
2

[
fn+1
j − fn+1

j−1 + fnj − fnj−1

]}
(F.11)

∂vG‖

(
B∗‖sVf

)
→

B∗‖s,j+1Vj+1

[
fn+1
j+1 + fnj+1

]
−B∗‖s,j−1Vj−1

[
fn+1
j−1 + fnj−1

]

4∆vG‖
(F.12)

where we use the fact that B∗‖s is linear in vG‖, i.e. the expression B∗‖s,j± 1
2

= 1
2

(
B∗‖s,j +B∗‖s,j±1

)

is exact. Then, using expressions (F.10), (F.11) and (F.12) in the equation (F.9) gives, for all j =
0, · · · , N :

Ajf
n+1
j−1 +Bjf

n+1
j + Cjf

n+1
j+1 = −Ajfnj−1 +

(
2B∗‖s,j

∆t
−Bj

)
fnj − Cjfnj+1 (F.13)

where the coefficients Aj , Bj and Cj are defined as:

Aj = −
αj− 1

2

2∆v2
G‖
− βj−1

4∆vG‖
(F.14)

Bj =
B∗‖s,j
∆t

+
αj+ 1

2
+ αj− 1

2

2∆v2
G‖

(F.15)

Cj = −
αj+ 1

2

2∆v2
G‖

+
βj+1

4∆vG‖
(F.16)

with
αj = B∗‖s,jDj and βj = B∗‖s,jVj (F.17)

To compute the terms α−1/2, β−1, αN+1/2 and βN+1 required for A0, B0, BN and CN calculations,
the boundary conditions ∂2D/∂v2

G‖ = 0 and ∂2V/∂v2
G‖ = 0 are imposed, i.e :

D− 1
2

= 2D0 −D 1
2

and V−1 = 2V0 − V1 (F.18)

DN+ 1
2

= 2DN −DN− 1
2

and VN+1 = 2VN − VN−1 (F.19)

and the fact that B∗‖ is linear in vG‖ is used, i.e 1:

B∗‖s,− 1
2

=
1

2

(
3B∗‖s,0 −B∗‖s, 1

2

)
; B∗‖s,−1 = 2B∗‖s,0 −B∗‖s,1 (F.20)

B∗‖s,N+ 1
2

=
1

2

(
3B∗‖s,N −B∗‖s,N− 1

2

)
; B∗‖s,N+1 = 2B∗‖s,N −B∗‖s,N−1 (F.21)

Finally, let us consider that the second derivative of f is vanishing at domain boundaries, i.e

f−1 = 2f0 − f1 and fN+1 = 2fN − fN−1

then

(B0 + 2A0)fn+1
0 + (C0 −A0)fn+1

1 =

(
2B∗‖s,0

∆t
−B0 − 2A0

)
fn0 − (C0 −A0)fn1

(AN − CN )fn+1
N−1 + (BN + 2AN )fn+1

N = −(AN − CN )fnN−1 +

(
2B∗‖s,N

∆t
−BN − 2CN

)
fnN

1

B∗‖s,− 1
2

= 2B∗‖s,0 −B∗‖s, 1
2

= 2B∗‖s,0 −
1

2

(
B∗‖s,0 +B∗‖s,1

)
=

3

2
B∗‖s,0 −

1

2
B∗‖s,1
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The system can be rewritten in the compact tridiagonal form:




B0 + 2A0 C0 −A0

A1 B1
. . .

. . .
. . . CN−1

AN − CN BN + 2AN







fn+1
0
...
...

fn+1
N




=




Rn0
...
...
RnN




(F.22)

and (Rn0 , · · · , RnN )t = R (fn0 , · · · , fnN )t with the matrix R defined as

R =




−2A0 −B0 +
2B∗‖s,0

∆t −(C0 −A0)

−A1 −B1 +
2B∗‖s,1

∆t

. . .
. . .

. . . −CN−1

−(AN − CN ) −2CN −BN +
2B∗‖s,N

∆t




(F.23)

The tridiagonal system (F.22)-(F.23) is solved by using a modified Thomas algorithm (see Appendix
E).
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Appendix G

Expressions for simplified collisional
transfer between two species

In previous appendix F, we have described the intra-species collision operator. With the capability to
consider not only an unique species but also impurities, it was primordial to take into account inter-
species collisions. We describe in this appendix the first inter-species collision operator implemented
in the code. It corresponds to a highly simplified version which ensures both conservative momentum
and energy transfers between species by the sum of two linearized operators described below.

G.1 Conservation properties of collisional energy transfer

Let us consider the energy exchange between two species defined by equations (2.36)-(2.41), i.e.
dF̄s/ dt = CEss′(Ess′) and dF̄s′/ dt = CEs′s(Es′s) with

CEss′(Ess′) ≡ −
ηEss′

(2πTmean/ms)
3/2

∆Tss′

Tmean

( Ess′
Tmean

− 3

2

)
exp

(
− Ess′
Tmean

)

CEs′s(Es′s) ≡ −
ηEss′

(2πTmean/ms′)
3/2

∆Ts′s
Tmean

( Es′s
Tmean

− 3

2

)
exp

(
− Es′s
Tmean

)

with Ess′ , Es′s defined by equation (2.40) and Tmean, ∆Tss′ defined by equation (2.38). Let us consider
the brackets 〈·〉s defined as

〈 · 〉v,T =
1

(2πT/ms)
3/2

∫ ∫
· exp

(
− v

2

2T
− µB

T

)
2π

ms
B∗‖s dµs dv (G.1)

Let us define v̄‖ = vG‖ − Vmean. Then, using the fact that 〈 1 〉v̄‖,Tmean
= 1 and

〈
msv̄

2
‖

〉
v̄‖,Tmean

=

〈 µsB 〉v̄‖,Tmean
= Tmean, it is straightforward to show that such a collision operator conserves both

particles and parallel momentum, i.e that

〈
CEss′(Es)

〉
=
〈
CEs′s(Es′)

〉
= 0 and

〈
vG‖C

E
ss′(Es)

〉
+
〈
vG‖C

E
s′s(Es′)

〉
= 0 where 〈·〉 =

∫
· d3v

The parameters ηEss′ and ηEs′s are designed such that the collisional energy exchange between species
satisfy

〈
Es CEss′(Es)

〉
= −

〈
Es′ CEs′s(Es′)

〉
. So let us compute the following integral in velocity space,

〈
Es CEss′

〉
=

∫
Es CEss′ d3v = −ηEss′

∆Tss′

Tmean

〈
Es
( Ess′
Tmean

− 3

2

)〉

v̄‖,Tmean
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MOMENTUM TRANSFER

which is equivalent to
〈
Es CEss′

〉
= −ηEss′ (∆Tss′/Tmean) I, where

I =

〈
ms

v̄2
‖
2

+ms

(
V 2
‖s − V 2

mean

)

2
−ms

(
v̄‖ + Vmean

) ∆Vss′

2
+ µsB



(

1

2
ms

v̄2
‖

Tmean
+

µsB

Tmean
− 3

2

)〉

v̄‖,Tmean

=

〈(
ms

v̄2
‖
2
−ms

∆Vss′

2
v̄‖ +ms

∆V 2
ss′

8
+ µsB

)(
1

2
ms

v̄2
‖

Tmean
+

µsB

Tmean
− 3

2

)〉

v̄‖,Tmean

=

〈
m2
s v̄

4
‖

4Tmean
+

(
ms

v̄2
‖
2

+ µsB

)(
ms

∆V 2
s′s

8Tmean
− 3

2

)
+
msv̄

2
‖µsB

Tmean
+
µ2
sB

2

Tmean
−ms∆Vss′

3

16

〉

v̄‖,Tmean

Then, using the properties,
〈
m2
s v̄

4
‖

〉
v̄‖,Tmean

= 3T 2
mean and

〈
µ2
sB

2
〉
v̄‖,Tmean

= 2T 2
mean and

〈
msv̄

2
‖µsB

〉
v̄‖,Tmean

=

T 2
mean, the collisional energy exchange between species occurs at the following rate

〈
Es CEss′

〉
= −ηEss′

3∆Tss′

2

(
1− ∆Vss′

2

8Tmean

)
(G.2)

Let us use the property that the energy exchange term between two species is of the form (cf. [HM03],
p.184)

Wss′ = − 4√
π

γss′

ms′

nsns′(Ts − Ts′)(
v2
Ts + v2

Ts′
)3/2 ≡

∫
d3v

1

2
msv

2Css′ with γss′ ∼
msvT>v

2
Ts

ns′
νss′

where vT> = max(vTs , vT ′s) and the collision frequency νss′ is deduced from the ion-ion collision fre-
quency νss as

νss′ =

(
Zs′

Zs

)2 ns′

ns

vTs
vT>

νss and νss =
ε3/2

qR0

(
Ts,coll

ms

)1/2

ν∗s (G.3)

Therefore

Wss′ = − 4√
π
νss′

vT>
vTs

ns
ms

ms′
∆Tss′

(
1 +

v2
T ′s

v2
Ts

)−3/2

(G.4)

Finally, by analogy between (G.2) and eq. (G.4) (considering ∆V 2
ss′/8Tmean � 1 ), this provides for

the effective collision frequency ηEss′ the following expression,

ηEss′ =
8 ε3/2

3
√
π
ns′

ms

ms′

(
Zs′

Zs

)2
(

1 +
v2
T ′s

v2
Ts

)−3/2 √
Ts,coll/ms

qR0
ν∗s

which is equivalent to the one given by equation (2.41).

G.2 Conservation properties of collisional parallel momentum trans-
fer

Let us consider the parallel momentum transfer defined by equations (2.42)-(2.44), i.e dF̄s/ dt =
C
vG‖
ss′ (Es) and dF̄s′/ dt = C

vG‖
s′s (Es′) with

C
vG‖
ss′ (Es) ≡ −η

vG‖
ss′ ∆Vss′vG‖ exp

(
− Es
Tmean

)
and C

vG‖
s′s (Es′) ≡ −η

vG‖
s′s ∆Vs′svG‖ exp

(
− Es′

Tmean

)

Considering this approximation, the momentum exchanges between two species reads 1

〈
msvG‖C

vG‖
ss′ (Es)

〉
=

∫
d3v msvG‖

dF̄s
dt

= −ηvG‖ss′ ∆Vss′

(
2π

ms

)3/2

T 5/2
mean (G.5)

〈
msvG‖C

vG‖
s′s (Es′)

〉
=

∫
d3v ms′vG‖

dF̄s′

dt
− ηvG‖s′s ∆Vs′s

(
2π

ms′

)3/2

T 5/2
mean (G.6)

1
〈
msvG‖C

vG‖
ss′

〉
= −ηvG‖ss′ ∆Vss′

(
2πTmean
ms

)3/2 〈
msv

2
G‖
〉
vG‖,Tmean

= −ηvG‖ss′ ∆Vss′
(

2πTmean
ms

)3/2

Tmean
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Therefore, the action-reaction principle
〈
msvG‖C

vG‖
ss′

〉
= −

〈
msvG‖C

vG‖
s′s

〉
, leads to the first constraint

η
vG‖
s′s = (ms′/ms)

3/2η
vG‖
ss′ . The second constraint comes from the neoclassical friction relation,

−
∫

d3v ms′vG‖
dF̄s′

dt
= msnsνss′∆Vss′ = −ms′ns′νs′s∆Vs′s

then using equation (G.5) leads to

η
vG‖
ss′ = msns

(
2π

ms

)−3/2

T−5/2
meanνss′

Finally, using the relation (G.3) for νss′ expression, η
vG‖
ss′ can be expressed as

η
vG‖
ss′ = ns′m

2
s

( ε

2π

)3/2 1

qR0

√
Ts,coll

T
5/2
mean

(
Zs′

Zs

)2 vTs
vT>

ν∗s

which is equivalent to equation (2.44).
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Appendix H

Source terms

In this appendix, we first detail the construction of the prescribed source developed in Gysela to drive
the system. As described in the following this source consists of the sum of the product of Hermite
and Laguerre polynomials in vG‖ and µ. It is versatile enough to allow for separate injection of heat,
parallel momentum and vorticity. In a second part, we present the numerical time scheme used in the
global algorithm of the code. Let us focus on the time evolution of the distribution function F̄s due
to the source term S, i.e

dF̄s
dt

= S (H.1)

This source is defined as the product of two terms as

S ≡ SE(r, θ, vG‖, µs)Sr(r) (H.2)

The prescribed radial source profile Sr(r) is defined as the sum of two hyperbolic tangents

Sr(r) = −1

2

[
tanh

(
ρ− ρS − 3LS

LS

)
+ tanh

(
ρS − 3LS − ρ

LS

)]
(H.3)

where ρS and LS are input data and ρ = (r − rmin)/Lr where Lr is the length of the radial box. The
energy dependent part of the source is decomposed on the basis of orthogonal Hermite and Laguerre
poynomials (cf. next section H.1 as a reminder):

SE(r, θ, vG‖, µs) =
+∞∑

`=0

+∞∑

h=0

ch`Hh(v̄G‖s)L`(µ̄s)e
−v̄2

G‖s
−µ̄s

(H.4)

where the ch` coefficients depend on the space coordinates only. The following definitions have been
introduced:

µ̄s ≡
µsB

Ts,srce
; v̄G‖s ≡

vG‖√
2Ts,srce/ms

(H.5)

with Ts,srce the normalized source temperature.

H.1 Hermite and Laguerre polynomials

The Hermite and Laguerre poynomials form the set of orthogonal basis with respect to the following
scalar products:

Laguerre L`(x) :

∫ +∞

0
L`L`′e

−x dx = δ``′ |L`|2 (H.6)

Hermite Hh(x) :

∫ +∞

−∞
HhHh′e

−x2
dx = δhh′ |Hh|2 (H.7)

115



H.2. CORRESPONDING SOURCES FOR FLUID MOMENTS

The Laguerre polynomials are normalized: |L`|2 = 1. The norm of the Hermite polynomials is:

|Hh|2 ≡
∫ +∞

−∞
H2
h e−x

2
dx =

√
π 2hh! (H.8)

The five first Laguerre and Hermite polynomials are:

L0(x) = 1
L1(x) = 1− x
L2(x) = 1

2(2− 4x+ x2)
L3(x) = 1

6(6− 18x+ 9x2 − x3)
L4(x) = 1

24(24− 96x+ 72x2 − 16x3 + x4)

(H.9)

and

H0(x) = 1 → |H0|2 =
√
π

H1(x) = 2x → |H1|2 = 2
√
π

H2(x) = −2 + 4x2 → |H2|2 = 8
√
π (H.10)

H3(x) = −12x+ 8x3 → |H3|2 = 48
√
π

H4(x) = 12− 48x2 + 16x4 → |H4|2 = 384
√
π

H.2 Corresponding sources for fluid moments

Let’s derive the corresponding source of matter Sn, of parallel momentum SvG‖ , of energy SE and of
vorticity SΩ. With the adopted definitions,

B∗‖s = B(1 + J‖B v̄G‖s) and J‖B ≡
√
ms

qs

√
2Ts,srce

B2
µ0J‖ (H.11)

The parallel current µ0J‖ = µ0b.J is prescribed in GYSELA. Then, the integral over the velocity
space reads as follows:

∫
d3v ≡

∫ +∞

−∞
dvG‖

∫ +∞

0

2πB∗‖s
ms

dµs

=
1√
π

(
2πTs,srce

ms

)3/2 ∫ +∞

−∞
(1 + J‖B v̄G‖s) dv̄G‖s

∫ +∞

0
dµ̄s

Notice that (1 + J‖B v̄G‖s) = H0(v̄G‖s) +
J‖B

2 H1(v̄G‖s) and L0(µ̄s) = 1.

H.2.1 Source of matter (guiding-centers)

The fluid source of matter Sn is simply Sn ≡
∫

d3v SESr. Using the decomposition of SE on the basis
of orthogonal polynomials (H.4), the source of matter becomes 1 :

Sn =

(
2πTs,srce

ms

)3/2 (
c00 + J‖B c10

)
Sr (H.12)

1Let us define β ≡ 1√
π

(
2πTs,srce

ms

)3/2

, then the integral of SESr in velocity space is equal to

∫
d3v SESr = β

∫ +∞

−∞
dv̄G‖s

∫ +∞

0

dµ̄s

[
L0(µ̄s)

(
H0(v̄G‖s) +

J‖B
2
H1(v̄G‖s)

) +∞∑
`=0

+∞∑
h=0

ch`Hh(v̄G‖s)L`(µ̄s)e
−v̄2G‖s−µ̄s

]

which gives, according to Laguerre and Hermite properties∫
d3v SESr = β L2

0(µ̄s)

(
c00H

2
0 (v̄G‖s) + c10

J‖B
2
H2

1 (v̄G‖s)

)
Sr

= β

(
c00

√
π + c10

J‖B
2

(2
√
π)

)
=

(
2πTs,srce

ms

)3/2(
c00 + c10

J‖B
2

)
Sr
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H.2.2 Source of parallel momentum

The fluid source of parallel momentum SvG‖ reads as follows: SvG‖ ≡
∫

d3v vG‖SESr. Following the
same procedure than for the density source, one finally obtains:

SvG‖ = 2π3/2

(
Ts,srce

ms

)2 [
2c10 + J‖B(c00 + 4c20)

]
Sr (H.13)

Source of energy – heating

The fluid source of energy SE is defined as follows: SE ≡
∫

d3v

(
ms

v2
G‖
2 + µsB

)
SESr. Notice that

(msv
2
G‖/2 + µsB) = Ts,srce(v̄

2
G‖s

+ µ̄s). Again, the energy source can also be recast in terms of the ch`
coefficients:

SE =

(
2πTs,srce

ms

)3/2

Ts,srce

[
2 c20 +

3

2
c00 − c01 +

5

2
J‖B c10 + 6J‖B c30 − J‖B c11

]
Sr (H.14)

Source of vorticity

The fluid source of vorticity SΩ is simply: SΩ ≡
∫

d3v J0s .(SESr), where J0s is the gyro-average
operator. We use the Padé approximation:

J0s ≈ 1 +
ms

q2
s

µs
2B
∇2
⊥ = 1 + α µ̄s ∇2

⊥ with α =
ms

q2
s

Ts,srce

2B2

Again, the vorticity source can be recast in terms of the ch` coefficients 2 :

SΩ = Sn + α

(
2πTs,srce

ms

)3/2 [
∇2
⊥ ((c00 − c01)Sr) + J‖B∇2

⊥ ((c10 − c11)Sr)
]

(H.15)

H.2.3 Pure sources of momentum, energy and vorticity

The expressions of Sn (eq. (H.12)), SvG‖ (eq. H.13), SE (eq. (H.14)) and SΩ (eq. (H.15)) provide
the constraints on the ch` coefficients in order to impose independently zero source of density, of
momentum, of energy or of vorticity. Let’s consider three cases:

• Non vanishing source of energy, with no injection of particles nor of momentum.

• Non vanishing source of momentum, with no injection of particles nor of energy.

• Non vanishing source of vorticity, with no injection of particles, of momentum nor of energy.

2Let us define β ≡ 1√
π

(
2πTs,srce

ms

)3/2

, then

SΩ = β
∑
h,l

∫ +∞

0

dµ̄s

∫ +∞

−∞
dv̄G‖sHh(v̄G‖s)Ll(µ̄s)e

−v̄2G‖s−µ̄s
(1 + J‖B v̄G‖s)

(
1 + α µ̄s ∇2

⊥
)
ch`Sr

= Sn + β
∑
h,l

∫ +∞

0

dµ̄s

∫ +∞

−∞
dv̄G‖sHh Ll e

−v̄2G‖s−µ̄s
α

(
H0 +

J‖B
2
H1

)
(L0 − L1)∇2

⊥(ch`Sr)

= Sn + β α

[
|H0|2∇2

⊥(c00Sr)− |H0|2∇2
⊥(c01Sr) +

J‖B
2
|H1|2∇2

⊥(c10Sr)−
J‖B

2
|H1|2∇2

⊥(c11Sr)

]
= Sn + α

(
2πTs,srce

ms

)3/2 [
∇2
⊥(c00Sr)−∇2

⊥(c01Sr) +
J‖B

2

(
∇2
⊥(c10Sr)−∇2

⊥(c11Sr)
)]
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These three cases are considered hereafter. Imposing zero source of matter, the fluid sources of parallel
momentum, of energy and of vorticity are proportional to:

Sn = 0 ⇒ c00 + J‖B c10 = 0 (H.16)

SvG‖ ∝
(

2− J2
‖B
)
c10 + 4J‖B c20 (H.17)

SE ∝ 2c20 − c00 + 6J‖B c30 − c01 − J‖B c11 (H.18)

SΩ ∝ −∇2
⊥
(
J‖B c10Sr

)
+ J‖B∇2

⊥ (c10Sr)−∇2
⊥ (c01Sr)− J‖B∇2

⊥ (c11Sr) (H.19)

Pure source of energy

Killing the fluid sources of particles, momentum and vorticity, while keeping finite the fluid source of
energy, imposes eq. (H.17) and eq (H.19) to vanish. Several solutions can be envisaged. Let’s choose
c30 = 0 and (c01 + J‖B c11) = 0, with (2c20 − c00) 6= 0. Then, the fluid source of vorticitiy trivially
vanishes for c10 = c11

3 . To summarize, we propose the following set of coefficients for a pure source
of energy: 




c11 = c10 = − 4J‖B
2−J2

‖B
c20

c00 = c01 =
4J2
‖B

2−J2
‖B

c20

c30 = 0

(H.20)

with c20 6= 0.

In order to inject solely energy into the system, the source term that should appear in the right hand
side of the gyrokinetic equation would then take the following form:

SE = Sr (c00 + c01L1 + c10H1 + c11H1L1 + c20H2) e
−v̄2

G‖s
−µ̄s

= 4 c20Sr

[
v̄2
G‖s −

1

2
+

J‖B
2− J2

‖B
(2− µ̄s)(J‖B − 2v̄G‖s)

]
e
−v̄2

G‖s
−µ̄s

due to (H.20)

while the fluid source of energy SE would have the following magnitude:

SE =

(
2πTs,srce

ms

)3/2

Ts,srce(2 c20 − c00)Sr according to (H.14) and (H.20)

= 2

(
2πTs,srce

ms

)3/2

Ts,srce

(
1−

2J2
‖B

2− J2
‖B

)
c20Sr

Let us introduce the normalized intensity:

SE0 ≡ 2 c20

(
2πTs,srce

ms

)3/2

Ts,srce (H.21)

the previous equality becomes,

SE =

(
1−

2J2
‖B

2− J2
‖B

)
SE0 Sr (H.22)

Then, up to small terms proportional to J‖B, Sr provides the radial shape of the energy source, while

SE0 gives its magnitude4. Finally, SE can be expressed as:

SE =
SE0 Sr

√
2
(
πTs,srce

ms

)3/2
Ts,srce

[
v̄2
G‖s −

1

2
−

J‖B
2− J2

‖B
(2− µ̄s)

(
2v̄G‖s − J‖B

)]
e
−v̄2

G‖s
−µ̄s

(H.23)

with J‖B defined by (H.11).

3 Using the choice (c01 + J‖B c11) = 0, the equation (H.19) is equivalent to

SΩ ∝ −c10Sr∇2
⊥J‖B +∇2

⊥
(
J‖B c11Sr

)
− J‖B∇2

⊥(c11Sr) = (−c10Sr + c11Sr)∇2
⊥J‖B

4Provided Sr is properly normalized, i.e. such that its volume integral is equal to unity.
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Pure parallel momentum

Killing the fluid sources of particles, energy and vorticity, while keeping finite the fluid source of parallel
momentum, imposes equations (H.18)-(H.19) to vanish. Again, several options could be considered.
Following the same strategy as for the energy, namely:

{
c11 = c10

c00 = c01 = −J‖B c10

then the source of energy vanishes if c30 = 0 and 2 c20 = c00.

Consistently, in order to inject only parallel momentum, the following source is proposed 5 :

SvG‖ =
S
vG‖
0 Sr

4π3/2
(
Ts,srce

ms

)2

[
2v̄G‖s(2− µ̄s)− J‖B

(
1 + 2v̄2

G‖s − µ̄s
)]

e
−v̄2

G‖s
−µ̄s

(H.24)

where the the normalized intensity S
vG‖
0 is defined as

S
vG‖
0 ≡ 4π3/2

(
Ts,srce

ms

)2

c10 (H.25)

The corresponding fluid source of momentum is (according to (H.13)):

SvG‖ =

(
1−

3J‖B
2

2
)
S
vG‖
0 Sr (H.26)

Then, at leading order in J‖B, Sr corresponds to the radial shape of the momentum source, and S
vG‖
0

to its magnitude.

Pure source of vorticity

So as to inject vorticity only, the simplest choice appears to be: c00 = c10 = c11 = 0 and c20 = 0.
Then the source of vorticitiy is governed by the c01 coefficient only: SΩ ∝ −∇2

⊥(c01Sr), while that
of momentum eq. (H.17) is set to zero. The source of energy eq. (H.18) vanishes provided that
c30 = (1/6J‖B) c01. Obviously, such a constraint is invalid for those simulations performed at vanishing
parallel current.

Alternatively, one decides to allow for some parallel momentum injection by taking c20 = c01/2 6= 0
and c30 = 0. Then, the source term to be considered is the following 6 :

SΩ = − SΩ
0 Sr

α
(

2πTs,srce

ms

)3/2

[
2v̄2
G‖s − µ̄s

]
e
−v̄2

G‖s
−µ̄s

with α =
ms

q2
s

Ts,srce

2B2
(H.27)

where the normalized intensity SΩ
0 is defined by:

SΩ
0 ≡ −c01α

(
2πTs,srce

ms

)3/2

(H.28)

5According to expression (H.4),

SvG‖ = Sr [c00 + c01L1 + c20H2 + (c10 + c11L1)H1] e
−v̄2G‖s−µ̄s

= c10Sr
[
2v̄G‖s(2− µ̄s)− J‖B(1 + 2v̄G‖s − µ̄s

]
e
−v̄2G‖s−µ̄s

6Taking into account the constraints c00 = c10 = c11 = c30 = 0 and c20 = c01/2,

SΩ = Sr(c01L1 + c20H2)e
−v̄2G‖s−µ̄s

= c01Sr
[
1− µ̄s + (2v̄2

G‖s − 1)
]

e
−v̄2G‖s−µ̄s

= c01Sr
[
2v̄2
G‖s − µ̄s

]
e
−v̄2G‖s−µ̄s

which is equivalent to (H.27) by expressing c01 with definition (H.28).
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and the resulting fluid source of vorticity is:

SΩ = SΩ
0 ∇2
⊥ (Sr) (H.29)

We recall that such a source does inject some momentum as well. However, its magnitude remains

small, and equal to (− 1
α

√
2ms
Ts
J‖B SΩ

0 Sr)
7 .

Another possibility for the heating source

There exists a simplified version of the heating source possible in the code which is not exactly a pure
source of heating. In this case the energy dependent part of the source is defined as:

SE(r, θ, vG‖, µs) =
SE0

3
√

2
(
πTs,srce

ms

)3/2
Ts,srce

(
E

Ts,srce
− 3

2

)
exp

(
− E

Ts,srce

)
(H.30)

where E the energy is equal to E = 1
2msvG‖ + µsB. Therefore,

∫ ∞

−∞
dvG‖

∫ ∞

0

2πB∗‖s
ms

dµs E SE = SE0

H.2.4 A source of impurities

According to equation (H.15), it is clear that in this source formalism it is complicate to generate
a source of matter without injecting a source of vorticity. So as first choice, we take c00 = c01 and
c10 = c11 = 0, such that SΩ = Sn. The injection of momentum and energy can be avoided by
imposing in equations (H.13) and (H.14), c00 + 4c20 = 0 and 2c20 + (3/2)c00 − c01 + 6J‖Bc30 = 0.
Due to the previous assumptions, this leads to c30 = 0. Therefore, using the fact that c01 = c00 and
c20 = −(1/4)c00, the matter source term take the form 8

Sn = Src00

(
5

2
− µ̄s − v̄2

G‖s

)
e
−v̄2

G‖s
−µ̄s

Then, according to equation (H.12) and considering the normalized matter source Sn0 = (2πTs,srce/ms)
3/2c00,

Sn =
Sn0 Sr(

2πTs,srce

ms

)3/2

(
5

2
− µ̄s − v̄2

G‖s

)
e
−v̄2

G‖s
−µ̄s

(H.31)

Let us denote by Sns (resp. Sns′ ) the source of matter associated to the majority species s (resp.
to the impurity species s′). The injection of impurity must be compensated by the injection of the
majority species such that

Zs

∫
SnsJvs dvG‖ dµs + Zs′

∫
Sns′Jvs′ dvG‖ dµs′ = 0

7Considering the constraints c10 = c00 = 0 and c20 = c01/2 in SvG‖ expression’s (H.13)

SvG‖ = 4π3/2

(
Ts,srce

ms

)2

J‖B c01 = −4π3/2

(
Ts,srce

ms

)2

J‖BS
Ω
0

1

α

(
ms

2πTs,srce

)3/2

Sr = − 1

α

√
2ms

Ts,srce
J‖BS

Ω
0 Sr

8The projection of the matter source on the Hermite and Laguerre polynomials gives

Sn = Src00

(
1 + L1(µ̄s)− 1

4
H2(v̄G‖s)

)
e
−v̄2G‖s−µ̄s

= Src00

[
1 + 1− µ̄s − 1

4

(
−2 + 4v̄2

G‖s)
)]

e
−v̄2G‖s−µ̄s
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H.2.5 Numerical treatment of the source terms

The source terms are taken into account by solving dtF̄s = SE + SvG‖ + SΩ + Sn with SE defined by
eq. (H.23), SvG‖ by eq. (H.24), SΩ by eq. (H.27) and Sn by eq. (H.31). For the following, let us use
the fact that each source is of the form SE(r(t), θ(t), vG‖(t), µs)Sr(r(t)). For more readability let us
consider one unique source knowing that the numerical method described below can be generalized to
a sum of sources. Let us integrate in time between t and t+ ∆t the equation

dF̄s
dt

(r, θ, ϕ, vG‖, µ) = S(t) with S(t) = SE(r(t), θ(t), vG‖(t), µs)Sr(r(t))

then

F̄s(t+ ∆t)− F̄s(t) =

∫ t+∆t

t
S(t′) dt′

Let us consider a Taylor expansion of second order for Sr as

Sr(r(t
′)) = Sr(r(t+ ∆t)) +

[
r(t′)− r(t+ ∆t)

] ∂Sr
∂r

(r(t+ ∆t))

= Sr(r(t+ ∆t)) +

[
r(t+ ∆t) + (t′ − t−∆t)

dr

dt
|t+∆t − r(t+ ∆t)

]
∂Sr
∂r

(r(t+ ∆t))

= Sr(r(t+ ∆t)) + (t′ − t−∆t)
dr

dt
|t+∆t

∂Sr
∂r

(r(t+ ∆t)) +O(∆t2)

Besides, let us define SE(t′) = SE(r(t′), θ(t′), vG‖(t′), µs), then

SE(t′) = SE(r(t+ ∆t), θ(t′), vG‖(t
′), µs) +

(t′ − t−∆t)
dr

dt
|t+∆t

∂SE
∂r

(r(t+ ∆t), θ(t′), vG‖(t
′), µs) +O(∆t2)

= SE
(
r(t+ ∆t), θ(t+ ∆t), vG‖(t

′), µs
)

+

(t′ − t−∆t)

[
dr

dt
|t+∆t

∂SE
∂r

(r(t+ ∆t), θ(t′), vG‖(t
′), µs)+

dθ

dt
|t+∆t

∂SE
∂θ

(r(t+ ∆t), θ(t+ ∆t), vG‖(t
′), µs)

]
+O(∆t2)

= SE(r(t+ ∆t), θ(t+ ∆t), vG‖(t+ ∆t), µs) +

(t′ − t−∆t)

[
dr

dt
|t+∆t

∂SE
∂r

(r(t+ ∆t), θ(t′), vG‖(t
′), µs)+

dθ

dt
|t+∆t

∂SE
∂θ

(r(t+ ∆t), θ(t+ ∆t), vG‖(t
′), µs)+

dvG‖
dt
|t+∆t

∂SE
∂vG‖

(r(t+ ∆t), θ(t+ ∆t), vG‖(t+ ∆t), µs)

]
+O(∆t2)

≈ SE(r(t+ ∆t), θ(t+ ∆t), vG‖(t+ ∆t), µs) +

(t′ − t−∆t)

[
dr

dt
|t+∆t

∂SE
∂r

(r(t+ ∆t), θ(t+ ∆t), vG‖(t+ ∆t), µs)+

dθ

dt
|t+∆t

∂SE
∂θ

(r(t+ ∆t), θ(t+ ∆t), vG‖(t+ ∆t), µs)+

dvG‖
dt
|t+∆t

∂SE
∂vG‖

(r(t+ ∆t), θ(t+ ∆t), vG‖(t+ ∆t), µs)

]
+O(∆t2)
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Therefore, the distribution function F̄s at time t+ ∆t is given at second order in time by

F̄s(t+ ∆t) = F̄s(t) +

∫ t+∆t

t
SE(t′)

[
Sr(t+ ∆t) + (t′ − t−∆t)

dr

dt
|t+∆t

∂Sr
∂r
|t+∆t

]
dt′

= F̄s(t) +

∫ t+∆t

t
SE(t+ ∆t)Sr(t+ ∆t) dt′ +

∫ t+∆t

t
(t′ − t−∆t)

{
SE(t+ ∆t)

dr

dt
|t+∆t

∂Sr
∂r
|t+∆t + Sr(t+ ∆t)

[
dr

dt
|t+∆t

∂SE
∂r
|t+∆t +

dθ

dt
|t+∆t

∂SE
∂θ
|t+∆t +

dvG‖
dt
|t+∆t

∂SE
∂vG‖

|t+∆t

]}
dt′

so

F̄s(t+ ∆t) = F̄s(t) + ∆tSE(t+ ∆t)Sr(t+ ∆t)−
∆t2

2

[
SE(t+ ∆t)

dr

dt
|t+∆t

∂Sr
∂r
|t+∆t + Sr(t+ ∆t)

(
dr

dt
|t+∆t

∂SE
∂r
|t+∆t+

dθ

dt
|t+∆t

∂SE
∂θ
|t+∆t +

dvG‖
dt
|t+∆t

∂SE
∂vG‖

|t+∆t

)]

In the code, the radial derivatives of the sources of: (i) energy ∂rSE , (ii) momentum ∂rSvG‖ , (iii)
vorticity ∂rSΩ and (iv) density ∂rSn are computed numerically as well as the poloidal derivatives. On
the other hand, the derivatives in vG‖ direction are expressed analytically for:

(i) the pure source of energy 9 :

∂SE
∂vG‖

=
SE0 Sr

√
2
(
πTs,srce

ms

)3/2
Ts,srce

1√
2Ts,srce

exp
(
−v̄2

G‖s − µ̄s
)
×

[
−2Kh(2− µ̄s)− 2v̄G‖s

{
v̄2
G‖s −

3

2
−Kh(2− µ̄s)

(
2v̄G‖s − J‖B

)}]

(ii) the pure source of momentum 10 :

∂SvG‖
∂vG‖

=
S
vG‖
0 Sr

4π3/2
(
Ts,srce

ms

)2

1√
2Ts,srce

exp
(
−v̄2

G‖s − µ̄s
)
×

[
2(2− µ̄s)

(
1− 2v̄2

G‖s

)
+ 2J‖B v̄G‖s

(
−1 + 2v̄2

G‖s − µ̄s
)]

(iii) the pure source of vorticity (according to eq. (H.27)):

∂SΩ

∂vG‖
= − SΩ

0 Sr

α
(

2πTs,srce

ms

)3/2

1√
2Ts,srce

exp
(
−v̄2

G‖s − µ̄s
) [

4v̄G‖s − 2v̄G‖s

(
2v̄2
G‖s − µ̄s

)]

9 According to eq. (H.23), the derivative of SE reads

∂SE
∂vG‖

= g1(r)
1√

2Ts,srce

[
2v̄G‖s − 2Kh(2− µ̄s)2v̄G‖s

{
v̄2
G‖s −

1

2
−Kh(2− µ̄s)

(
2v̄G‖s − J‖B

)}]
e
−v̄2G‖s−µ̄s

with the radial function g1(r) = SE0 Sr/

(√
2
(
πTs,srce

ms

)3/2

Ts,srce

)
and Kh = J‖B/

(
2− J2

‖B
)
.

10 According to eq. (H.24), the derivative of SvG‖ reads

∂SvG‖
∂vG‖

= g2(r)
1√

2Ts,srce

[
2(2− µ̄s)− 4v̄G‖sJ‖B − 2v̄G‖s

(
2v̄G‖s(2− µ̄s)− J‖B

(
1 + 2v̄2

G‖s − µ̄s
))]

e
−v̄2G‖s−µ̄s

with the radial function g2(r) defined as g2(r) = S
vG‖
0 Sr/

(
4π3/2

(
Ts,srce

ms

)2
)

.
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(iv) the source of impurity (according to eq. (H.31)):

∂Sn
∂vG‖

=
Sn0 Sr(

2πTs,srce

ms

)3/2

1√
2Ts,srce

exp
(
−v̄2

G‖s − µ̄s
)[
−2v̄G‖s

(
7

2
− µ̄s − v̄2

G‖s

)]
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Appendix I

A Crank-Nicolson scheme for diffusion
terms

In this appendix the semi-implicit Crank-Nicolson scheme, which is implemented in Gysela to take
into account a diffusion term of the form

∂tF̄s =
1

r
∂r
(
rχ(r)∂rF̄s

)
(I.1)

is detailed. Classically, let us write: fni ≡ F̄s(ri, θ, ϕ, vG‖, tn), where subscript j ∈ {0, . . . , N} refers
to the discretised index in radial direction and superscript n refers to the time. Let us also define
D ≡ rχ(r) with χ(r) = χ0Hbuff(r). The diffusion amplitude χ0 is modulated by a radial profile Hbuff

which is equal to 1 in the buffer region and equal to 0 elsewhere. For each value of µs, each term in
Eq. (I.1) reads 1 for all i = 0, · · · , N :

fn+1
i = fni +

∆t

2 ∆r2 ri

{
Di+ 1

2

[(
fn+1
i+1 − fn+1

i

)
+
(
fni+1 − fni

)]

−Di− 1
2

[(
fn+1
i − fn+1

i−1

)
+
(
fni − fni−1

)]}
(I.2)

Let us introduce αi = ∆t
2 ∆r2 ri

, then

−αiDi− 1
2
fn+1
i−1 +

[
1 + αi

(
Di− 1

2
+Di+ 1

2

)]
fn+1
i − αiDi+ 1

2
fn+1
i+1 = Rni

with
Rni = αiDi− 1

2
fni−1 +

[
1− αi

(
Di− 1

2
+Di+ 1

2

)]
fni + αiDi+ 1

2
fni+1

Therefore, for all i = 0, · · · , N ,

Aif
n+1
i−1 +Bif

n+1
i + Cif

n+1
i+1 = −Aifni−1 + (2−Bi) fni − Cifni+1 (I.3)

1 Let us defined the temporary variable Υ = rχ(r)∂rF̄s, then applying a Crank-Nicolson scheme is equivalent to write:

fn+1
i − fni

∆t
=

1

2ri


Υn+1

i− 1
2

−Υn+1

i+ 1
2

∆r

+

(
Υn
i− 1

2
−Υn

i+ 1
2

∆r

)
=

1

2ri


Di− 1

2
∂rf

n+1

i− 1
2

−Di+ 1
2
fn+1

i+ 1
2

∆r

+

(Di− 1
2
∂rf

n
i− 1

2
−Di+ 1

2
fn
i+ 1

2

∆r

)
=

1

2ri∆r

{
Di− 1

2

(
fn+1
i−1 − fn+1

i

∆r

)
−Di+ 1

2

(
fn+1
i − fn+1

i+1

∆r

)

+Di− 1
2

(
fni−1 − fni

∆r

)
−Di+ 1

2

(
fni − fni+1

∆r

)}
=

1

2 ri ∆r2

{
Di+ 1

2

[(
fn+1
i+1 − fn+1

i

)
+ (fni+1 − fni )

]
−Di− 1

2

[(
fn+1
i − fn+1

i−1

)
+ (fni − fni−1)

]}
which is equivalent to (I.2).
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where the coefficients Ai, Bi and Ci are defined as:

Ai = −αiDi− 1
2

(I.4)

Bi = 1 + αi

(
Di− 1

2
+Di+ 1

2

)
(I.5)

Ci = −αiDi+ 1
2

(I.6)

Using the fact that ri±1/2 = 0.5 (ri + ri±1),

Di± 1
2

=
1

4
(riχi + ri±1χi + riχi±1 + ri±1χi±1) (I.7)

Concerning the boundary conditions, let us consider that the second derivative of the radial profile χ

is equal to 0 at the boundaries (i.e ∂2χ
∂r2 |rmin = ∂2χ

∂r2 |rmax = 0) , then 2

D− 1
2

=
1

2

(
r0 −

∆r

2

)
(3χ0 − χ1) and DN+ 1

2
=

1

2

(
rN +

∆r

2

)
(3χN − χN−1)

Besides, a non-homogeneous Dirichlet boundary condition is applied to the outer radial bound-
ary such that F̄s(r = rmax, θ, ϕ, vG‖, µs) = F̄s,eq(r = rmax, θ, vG‖, µs). Concerning the inner ra-
dial boundary, there are two possibility: (i) non-homogeneous Dirichlet boundary condition F̄s(r =
rmin, θ, ϕ, vG‖, µs) = F̄s,eq(r = rmin, θ, vG‖, µs) in the case of thermal bath or (ii) Neumann boundary
conditions (i.e f−1 = f1) in the case of flux-driven simulation. Let us consider the boolean κ which
is equal to 1 if Neumann boundary conditions are applied (i.e in the case of flux driven boundary
conditions) and is equal to 0 otherwise. The system can be rewritten in the compact tridiagonal form:




(1− κ) + κB0 κ(A0 + C0)

A1 B1
. . .

. . .
. . . CN−2

AN−1 BN−1 CN−1

0 0 1







fn+1
0

...

fn+1
N




=




Rn0

...

RnN




(I.8)

with




Rn0

...

RnN




=




(1− κ) + κ(2−B0) −κ(A0 + C0)

−A1 (2−B1)
. . .

. . .
. . . −CN−2

−AN−1 (2−BN−1) −CN−1

0 0 1







fn0

...

fnN




The tridiagonal system (I.8) is solved by using a modified Thomas algorithm (see Appendix E).

Let us notice that it is also possible in the code to apply diffusion in the poloidal direction. The same
strategy than above is adopted. The resulting matrix system differs from (I.8) by first and last lines
due to boundary conditions which are periodic in θ.

2Using the fact that χ−1 = χ0 in (I.7),

D− 1
2

=
1

4
(r0 + r−1) (χ0 + χ−1) =

1

4
(r0 + (r0 −∆r)) (χ0 + (2χ0 − χ1)) =

1

2

(
r0 − ∆r

2

)
(3χ0 − χ1)
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Appendix J

Interpolation by cubic splines

One of the important time consuming step of the semi-Lagrangian scheme is the interpolation step. In
the code all the interpolations are performed with cubic splines, in 1D in ϕ and vG‖ directions and in
2D in (r, θ) planes. The numerical implementation of these cubic splines is detailed in the first section
of this appendix. However, the drawback of such an interpolation is the fact that computing one
interpolated value requires to know the function on all the nodes of the mesh. This global dependency
is not adapted at all to a competitive parallelization. The new approach presented in the second part
of this appendix, has been explicitly developed to overcome this problem (cf [CLS09]). This approach
is based on a domain decomposition, where cubic splines are locally applied. The gain in terms of
CPU time and memory size is tackled in the last part.

J.1 Interpolation with classical cubic splines

J.1.1 Cubic spline interpolation in 1D

Let g(x) be a function defined in the x direction with x ∈ [x0, xNx ] where Nx represents the number
of points in x (the step h being constant). Using a cubic spline for the interpolation of g consists in
representing this function in terms of piecewise cubic polynomials Λα, twice continuously differentiable
[DeB01] as:

g(x) ' s(x) =

Nx+1∑

α=−1

cαΛα(x)

where

Λα(x) =
1

6h3





(x− xα−2)3 if xα−2 ≤ x ≤ xα−1

h3 + 3h2(x− xα−1) + 3h(x− xα−1)2

−3(x− xα−1)3 if xα−1 ≤ x ≤ xα
h3 + 3h2(xα+1 − x) + 3h(xα+1 − x)2

−3(xα+1 − x)3 if xα ≤ x ≤ xα+1

(xα+2 − x)3 if xα+1 ≤ x ≤ xα+2

0 otherwise

(J.1)

with h = |xNx − x0| /Nx. The useful properties of these piecewise cubic polynomials (summarized in
table J.1) show that the only cubic B-spline which are not vanishing at point xi are Λi±1(xi) = 1/6
and Λi(xi) = 2/3. So the interpolating spline s is uniquely determined by the (Nx + 1) interpolating
conditions

g(xi) = s(xi) =
1

6
ci−1 +

2

3
ci +

1

6
ci+1 i = 0, · · · , Nx (J.2)

and by 2 equations given by boundary conditions. In the case of periodic boundary conditions, these
two equations are given by:

{
g′(x0) = g′(xNx)

g′′(x0) = g′′(xNx)
⇒

{
−1
2h c−1 + 1

2hc1 + 1
2hcNx−1 − 1

2hcNx+1 = 0
1
h2 c−1 − 2

h2 c0 + 1
h2 c1 − 1

h2 cNx−1 + 2
h2 cNx − 1

h2 cNx+1 = 0
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x xα−2 xα−1 xα xα+1 xα+2

Λα(x) 0 1/6 2/3 1/6 0

Λ′α(x) 0 1/2h 0 −1/2h 0

Λ′′α(x) 0 1/h2 −2/h2 1/h2 0

Table J.1: Values of the cubic spline function Λα(x) and its first and second derivative.

i.e, {
−c−1 + c1 + cNx−1 − cNx+1 = 0

c−1 − 2c0 + c1 − cNx−1 + 2cNx − cNx+1 = 0
(J.3)

In the case of non-periodic boundary conditions, these two equations can be given by Hermite boundary
conditions, as follow: {

g′(x0) = s′(x0) = − 1
2hc−1 + 1

2hc1

g′(xNx) = s′(xNx) = − 1
2hcNx−1 + 1

2hcNx+1

(J.4)

or by boundary conditions based on the second derivatives:

{
g′′(x0) = s′′(x0) = 1

h2 c−1 − 2
h2 c0 + 1

h2 c1

g′′(xNx) = s′′(xNx) = 1
h2 cNx−1 − 2

h2 cNx + 1
h2 cNx+1

The choice made in the code is the one based on Hermite boundary conditions. In the case of Neumann
boundary conditions (first derivative equal to 0) g′(x0) = g′(xNx) = 0 but in the general case (which
is the most common in the code) there is no information on these derivatives. In our case these
derivatives are approximated by a cubic Lagrange polynomial fit of g, i.e:

λ(3)(x) =

3∑

i=0

g(xi)Li(x) with Li(x) =

3∏

j=0,j 6=i

(
x− xi
xi − xj

)

and then g′(x0) = λ′(3)(x0) and g′(xNx) = λ′(3)(xNx) which gives the two following conditions:

{
− 1

2hc−1 + 1
2hc1 = − 11

6hg(x0) + 3
hg(x1)− 3

2hg(x2) + 1
3hg(x3)

− 1
2hcNx−1 + 1

2hcNx+1 = − 1
3hg(xNx−3) + 3

2hg(xNx−2)− 3
hg(xNx−1) + 11

6hg(xNx)

i.e {
−c−1 + c1 = −11

3 g(x0) + 6g(x1)− 3g(x2) + 2
3g(x3)

−cNx−1 + cNx+1 = −2
3g(xNx−3) + 3g(xNx−2)− 6g(xNx−1) + 11

3 g(xNx)
(J.5)

In the both cases (J.2)+(J.3) or (J.2)+(J.5), the spline coefficients cα are determined by solving the
(Nx + 3, Nx + 3) matrix system

A

(
u
v

)
=

(
b
c

)
with





u = (c0, · · · , cNx)t

v = (cNx+1, c−1)t

b = (g(x0), · · · , g(xNx))t

c = (σ1, σ2)t

and A =

(
Atridiag γ

λ δ

)
(J.6)

where




·Atridiag is the (Nx + 1)× (Nx + 1) tridiagonal symmetric matrix :




4 1
1 4 1

. . .
. . .

. . .
1 4 1

1 4


 ,

· γ is equal to the (Nx + 1)× 2 matrix : ( 1 0 ··· 0
0 ··· 0 1 )

t
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and in the case of periodic boundary conditions (according to (J.3)):





· c = (σ1, σ2)t = (0, 0)t,

· λ =
(

0 1 0 ··· 0 1 0
−2 1 0 ··· 0 −1 2

)
and

· δ =
(
ξ1 ξ2
ξ3 ξ4

)
=
(−1 −1
−1 1

)

while in the case of non-periodic boundary conditions (according to (J.4)):





· σ1 = −2
3g(xNx−3) + 3g(xNx−2)− 6g(xNx−1) + 11

3 g(xNx),

· σ2 = −11
3 g(x0) + 6g(x1)− 3g(x2) + 2

3g(x3),

· λ =
(

0 ··· 0 −1 0
0 1 0 ··· 0

)
and

· δ =
(
ξ1 ξ2
ξ3 ξ4

)
=
(

1 0
0 −1

)

The solving of the matrix system (J.6) is performed by taking advantage of the fact that A can be
factorized in a LU form, like:

A =

(
Atridiag 0
λ δ̄

)
×
(
I A−1

tridiagγ

0 I

)
with δ̄ = δ − λA−1

tridiagγ

With this LU factorization the matrix system is solved by forward and backward substitutions with
the two successive sequences:

(
Atridiag 0
λ δ̄

)
×
(
u′

v′

)
=

(
b
c

)
and then

(
I A−1

tridiagγ

0 I

)
×
(
u
v

)
=

(
u′

v′

)

So computation of the interpolation coefficients ~c = [c−1, c0, · · · , cNx , cNx+1] can be summarized in
the following steps:

1. Initialization:

(a) Factorize and store Atridiag in a LDLt form,

(b) Compute and store A−1
tridiagγ using the previous factorization and

(c) Assemble the (2× 2) matrix δ̄ = δ − λA−1
tridiagγ.

2. Time loop:

(a) Compute and store u′ = A−1
tridiagb using the stored factorization of Atridiag,

(b) Assemble c− λA−1
tridiagb,

(c) Solve the (2 × 2) system δ̄v′ = c − λA−1
tridiagb using the Cramer formula for δ̄ inverse com-

putation δ̄−1 = 1
det(δ̄)

(
ξ̄4 −ξ̄2
−ξ̄3 ξ̄1

)
and

(d) Compute u using the previous storage of A−1
tridiagγ by u = u′−A−1

tridiagγv, where v is trivially
equal to v′.

J.1.2 Cubic spline interpolation in 2D

Let g(x, y) be a function defined in the x and y directions with x ∈ [x0, xNx ] and y ∈ [y0, yNy ] where
Nx and Ny represent respectively the number of points in x and y directions. As for the previous 1D
case, the function g(x, y) can be interpolated with cubic B-splines as:

g(x, y) ' s(x, y) =

Nx+1∑

α=−1

Ny+1∑

β=−1

cα,βΛα(x)Λβ(y)
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where the piecewise cubic polynomials Λα and Λβ are defined by (J.1). Let assume g non-periodic
in x direction and periodic in y direction. The interpolation coefficient cα,β are computed by first
solving the (Ny + 1) unidimensional non-periodic systems (for j = 0, · · · , Ny) with Hermite boundary
conditions (∂xg(x0, y) = ∂xs(x0, y) and ∂xg(xNx , y) = ∂xs(xNx , y)):

Nx+1∑

α=−1

γα(yj)Λα(xi) = g(xi, yj) ∀i = 0, · · · , Nx

−γ−1(yj) + γ1(yj) = −11

3
g(x0, yj) + 6g(x1, yj)− 3g(x2, yj) +

2

3
g(x3, yj)

−γNx−1(yj) + γNx+1(yj) = −2

3
g(xNx−3, yj) + 3g(xNx−2, yj)− 6g(xNx+1, yj) +

11

3
g(xNx , yj) (J.7)

The second step consists in solving the (Nx + 3) following unidimensional periodic systems (for α =
−1, · · · , Nx + 1):

γα(yj) =

Ny+1∑

β=−1

cα,βΛβ(yj) ∀j = 0, · · · , Ny

−γα(y−1) + γα(y1) + γα(yNy−1)− γα(yNy+1) = 0

γα(y−1)− 2γα(y0) + γα(y1)− γα(yNy−1) + 2γα(yNy)− γα(yNy+1) = 0 (J.8)

J.2 A new interpolation approach for Semi-Lagrangian scheme

Interpolation represents one of the steps of semi-Lagrangian numerical schemes which require much
CPU time. It is most often performed using cubic splines. The drawback of splines is that the
knowledge of the function on all the mesh nodes is required to interpolate this function on any
single point. This global dependency conflicts with any tentative of competitive parallelization. The
original approach presented in this appendix has been explicitly developed to overcome this problem
(cf [CLS09]). The basic idea of this so-called local spline approach is to split the global domain in
separated sub-domains, where standard cubic splines are applied ([ANW67, DeB01]). The difficulty
then relies on the choice of appropriated boundary conditions for these sub-domains.

Domain decomposition in 1D

Let g(x) be any function defined on the global domain [x0, xNx ] ⊂ R. Let us split this domain
into several sub-domains, each being associated to one processor. The sub-domain associated to
processor p is generically called [xp0, xpK ] with the notation xpi = xp0 + ih, where h is the cell size
h = (xpK − xp0) /K and K ∈ N the number of cells in the sub-domain. Let us now restrict the study of
g to g : x 7→ g(x) on the interval [xp0, xpK ]. Boundary conditions are non-periodic in this sub-domain.
The projection sloc of g on the basis of cubic splines reads:

g(x) ' sloc(x) =

K+1∑

α=−1

cαΛα(x)

with Λα the piecewise cubic polynomials defined as follows, for any integer α in the interval −1 ≤ α ≤
K + 1:

Λα(x) =
1

6h3





(x− xα−2)3 if xα−2 ≤ x ≤ xα−1

h3 + 3h2(x− xα−1) + 3h(x− xα−1)2

−3(x− xα−1)3 if xα−1 ≤ x ≤ xα
h3 + 3h2(xα+1 − x) + 3h(xα+1 − x)2

−3(xα+1 − x)3 if xα ≤ x ≤ xα+1

(xα+2 − x)3 if xα+1 ≤ x ≤ xα+2

0 otherwise

(J.9)
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Using Hermite boundary conditions, the interpolated quantity sloc is uniquely determined by the
(K + 3) following equations:

g(xpi) = sloc(xpi) =
1

6
ci−1 +

2

3
ci +

1

6
ci+1 ∀i = 0, · · · ,K (J.10)

g′(xpi) = s′loc(xpi) = − 1

2h
ci−1 +

1

2h
ci+1 for i = 0 and i = K (J.11)

Finally, the spline coefficient vector c = [c−1, · · · , cK+1]T fulfills the (K + 3)× (K + 3) linear system
Ac = g, where g is the vector g = [g′(xp0), g(xp0), · · · , g(xpK), g′(xpK)] and A the matrix:

A =
1

6




−3/h 0 3/h 0 · · · 0
1 4 1

. . .
. . .

. . .

1 4 1
0 · · · 0 −3/h 0 3/h




Notice that the A matrix can easily be factorized in LU form, where L is a lower triangular matrix
with all diagonal terms equal to 1, and U is an upper triangular matrix. The standard algorithm
leading to LU factorization is based on Gauss elimination 1:

L =




1 0 0 ··· ··· 0

−h/3 1 0
. . .

...

0 l1 1
. . .

0 0
. . .

. . . 0
...

...
. . .

. . . lK 1 0
0 ··· 0 −(3lK)/h (3lK+1)/h 1




and U =
1

6




−3/h 0 3/h 0 ··· 0

0 d1 2 0
...

0 0 d2 1
. . .

...

0 0
. . .

. . .
. . . 0

...
. . .

. . .
. . . dK+1 1

0 ··· 0 0 0 (3dK+2)/h




where li and di are obtained as follows:
d1 = 4, l1 = 1/4, d2 = 4− 2l1 = 7/2,
for i = 2,K
. li = 1/di,
. di+1 = 4− li,
end for
lK+1 = 1/dK+1, dK+2 = 1− lK+1

The LU decomposition of A needs only be computed ones, at the beginning of the numerical code.

1Let L and U be defined by

L =


1 0 · · · · · · 0
l2,1 1 0 · · · 0
l3,1 l3,2 1 · · · 0

...
...

. . .
. . .

ln,1 ln,2 · · · ln,n 1

 and U =


u1,1 u1,2 · · · u1,n

0 u2,2 · · · u2,n

0 0
. . .

...
0 · · · 0 un,n


The algorithm of LU factorization reads as follows:
u1,1 = a1,1

for j = 2, · · · , n
. u1,j = a1,j

. lj,1 = aj,1/a1,1

end for
for i = 2, · · · , n− 1

. ui,i = ai,i −
∑i−1
k=1 li,k uk,i

. for j = i+ 1, · · · , n

. ui,j = ai,j −
∑i−1
k=1 li,k uk,j

. li,j = 1
ui,i

[
aj,i −

∑i−1
k=1 lj,k uk,i

]
. end for
end for

un,n = an,n −
∑n−1
k=1 ln,k uk,n
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At each time step, the matrix system Ac = g is then solved in two steps. The lower triangular matrix
system Lx = g is first solved. The second step then consists in solving the upper triangular matrix
system Uc = x.

Approximation of the interface derivatives

One of the most delicate points in the local cubic splines approach is to provide ”good” approximations
of the interface derivatives g′(xp0) and g′(xpK). Good approximations correspond to minimal error
between the local and the global splines. Several classical solutions, like finite differences of various
orders, or ad-hoc cubic spline approximations, have been explored in reference [CLS09]. These authors
show that the most robust approximation which remains valid with a relatively small number of grid
points employs special combinations of cubic spline coefficients. Let us detail this method. According
to Eq. (J.11), ci−1 = 3

2gi−1 − 1
4ci−2 − 1

4ci and ci+1 = 3
2gi+1 − 1

4ci − 1
4ci+2 where gi+1 (resp. gi−1)

represents the value of g at point xp(i+1) (resp. xp(i−1)). Replacing ci−1 and ci+1 by these expressions
in Eq. (J.10) leads to the iterative equality:

s′i =
3

4h
(gi+1 − gi−1)− 1

4
(s′i+1 + s′i−1) (J.12)

with the notation s′i = s′loc(xpi). s′i+1 and s′i−1 can be computed using the same procedure. These
derivatives involve s′i+2 and s′i−2. Injecting these expressions in Eq. (J.12) then yields:

s′i =
6

7h
(gi+1 − gi−1)− 3

14h
(gi+2 − gi−2) +

1

14
(s′i+2 + s′i−2) (J.13)

Again, s′i+2 and s′i−2 can be evaluated from Eq. (J.13), provided s′i+4 and s′i−4 are introduced. Incor-
porating these expressions in Eq. (J.13) then leads to the following approximation of s′i:

s′i =
39

49αh
(gi+1 − gi−1)− 3

14αh
(gi+2 − gi−2) +

3

49αh
(gi+3 − gi−3)

− 3γ

h
(gi+4 − gi−4) + γ(s′i+4 + s′i−4)

where α = 1 − 2/142 and γ = 1/(142α). The procedure is iterated once more, leading to the final
retained approximation for s′i, namely:

βh s′i =
1

49α
(39− 3γ)(gi+1 − gi−1)− 3

14α
(1− γ)(gi+2 − gi−2)

+
1

49α
(3− 39γ)(gi+3 − gi−3)− 3γ(gi+4 − gi−4)

+
39γ

49α
(gi+5 − gi−5)− 3γ

14α
(gi+6 − gi−6) +

3γ

49α
(gi+7 − gi−7)

+ 3γ2(gi+8 − gi−8)− γ2h(s′i+8 + s′i−8)

with β = 1 − 2γ2. So as to close the system, s′i+8 and s′i−8 are evaluated using 4th order finite
differences: {

s′i+8 = (gi+6 − 8gi+7 + 8gi+9 − gi+10)/12h

s′i−8 = (gi−10 − 8gi−9 + 8gi−7 − gi−6)/12h

For instance, when using 20 values of g, the approximation of s′loc(xpi) is given by (notice that w0 = 0):

s′loc(xpi) =

10∑

j=1

wj
(gi+j − gi−j)

h

where the wj coefficients are given in table J.2 This approach can be viewed as the generalization of
the standard cubic splines. Indeed, should the number of sub-domains be equal to one, corresponding
actually to the full domain, this technique turns out to be equivalent to cubic splines.
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w1 w2 w3 w4

15126/18817 −4053/18817 1086/18817 −291/18817
0.8038475846 −0.2153903385 0.05771376946 −0.01546473933

w5 w6 w7 w8

78/18817 −503/451608 17/56451 −3/37634
4.145187862E − 3 −1.113797807E − 3 3.011461267E − 4 −7.971515119E − 5

w9 w10

1/56451 −1/451608
1.771447804E − 5 −2.214309755E − 6

Table J.2: Coefficients for the approximation of the interface derivatives
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Appendix K

Gysela normalized equations

This appendix contains expressions of all the normalized quantities and normalized equations imple-
mented in the code Gysela . The second part corresponds to the detailed proofs of the normalized
equations. They are just calculation exercises. Therefore, part K.2 can be skipped by all readers not
interested in the precise form of each terms involved in Gysela equations.

K.1 Gysela normalization

Let us first briefly remind the normalization used in Gysela code. For this let us consider m0 = A0mp

(Kilogram) a reference ion mass, q0 = Z0e (Coulomb) a reference ion charge, B0 (Tesla) a reference
magnetic induction and T0 (eV ) a reference thermal velocity. A0 and Z0 are the (dimensionless) mass
number and charge state of the main ion species and e the modulus of the electron charge. These
quantities are used to define the reference ion cyclotron frequency Ωc0 , the reference thermal speed
vT0 and the reference Larmor-radius ρ0 as

Ωc0 =
Z0 e B0

m0
; vT0 =

√
T0

m0
; ρ0 =

vT0

Ωc0

=

√
T0m0

Z0 e B0
(K.1)

Actually, the seven normalizing quantities (A0, Z0, n0, T0, B0, a, R0) are not completely free. Three
dimensionless parameters are further specified in the input data, which provide relationships between
these seven parameters. These are the aspect ratio A = R0/a, rhostar ρ∗0 =

√
A0mpT0/Z0eB0 and

nustar ν∗0 = ε−3/2(qR0/vT0) νcoll.0 ∼ Z4
0n0R0/T

2
0 (where ε and q are taken at rpeak = rmin +0.5(rmax−

rmin)). It follows that, given A, ρ∗0 and ν∗0, it remains only four free normalizing quantities. Hereafter,
X̂ refers to the dimensionless expression of the X quantity. The normalizations used in the code are
summarized in the table K.1. Notice that the parallel velocity is normalized to vTs0 while all drift

ms = m0Âs
qs = Z0 eẐs
l = ρ0 l̂

t = t̂/Ωc0

ns = n0 n̂s
Ts = T0T̂s
B = B0B̂

⇒

vG‖ = vTs0 v̂G‖s
= (vT0/

√
Âs)v̂G‖s

vE×Bs = vT0 v̂E×Bs
vDs = vT0 v̂Ds
µs = (T0/B0)µ̂s
U = [T0/(Z0 e)]φ̂

E = (vT0B0)Ê

Fs = (n0/v
3
Ts0

)F̂s

and

χ = ρ2
0 Ωc0 χ̂

ν = Ωc0 ν̂

D‖s = v2
Ts0

Ωc0 D̂‖s
V‖s = vTs0 Ωc0 V̂‖s
SE0 = n0ΩC0T0Ŝ

E
0

S
vG‖
0 = n0ΩC0vTs0Ŝ

vG‖
0

SΩ
0 =

n0ΩC0

ρ2
0
ŜΩ

0

Table K.1: Links between physical and normalized quantities.

velocities are normalized to vT0 . This appendix is divided in two parts. The first part contains a
summarize of all the normalized equations used in Gysela . The second part contains the details of
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the computation for obtaining these normalized expressions.
The normalized system of equations is made of the 5D gyrokinetic equation (including source terms
and collisions) self-consistently coupled to the 3D quasi-neutrality. The gyrokinetic equation involves
Poisson brackets [·, ·]. Introducing the unit vector b = B/‖B‖ along the magnetic field, its covariant
components bk, and the jacobien Jx of the configuration space, these brackets read as follows:

[F,G] = b · (∇∇∇F ×∇∇∇G) = J −1
x εijk∂iF∂jGbk (K.2)

K.1.1 Normalized Boltzmann equation

The evolution of the guiding-center distribution function ˆ̄Fs is governed by the following normalized
Boltzmann equation:

∂ ˆ̄Fs

∂t̂
+

1

B̂∗‖s
∇̂∇∇ ·

(
B̂∗‖s

dx̂G

dt̂
ˆ̄Fs

)
+

1

B̂∗‖s

∂

∂v̂G‖s

(
B̂∗‖s

dv̂G‖s
dt̂

ˆ̄Fs

)
= D̂r( ˆ̄Fs) + K̂( ˆ̄Fs) + Ĉ( ˆ̄Fs) + Ŝ (K.3)

where D̂r and K̂ are respectively a diffusion term and a Krook operator applied on a radial buffer
region (see section K.1.3), while Ĉ refers to a collision operator (see section K.1.4) and Ŝ corresponds to
source terms (see section K.1.6 for detailed expressions). The evolution of the gyro-center coordinates
(xG, vG‖, µs) of species s is given by:

dx̂iG
dt̂

=
1√
Âs
v̂G‖sb̂

∗
s · ∇̂∇∇xi + v̂E×Bs · ∇̂∇∇xi + v̂Ds · ∇̂∇∇xi (K.4)

dv̂G‖s
dt̂

= − 1√
Âs
µ̂sb̂

∗
s · ∇̂∇∇B̂ −

Ẑs√
Âs

b̂∗s · ∇̂∇∇ ˆ̄φ+K∇B v̂G‖sv̂E×Bs ·
∇̂∇∇B̂
B̂

(K.5)

The i-th covariant coordinates of the normalized drift velocities are given by:

v̂E×Bs · ∇̂∇∇xi = v̂iE×Bs =
1

B̂∗‖s

[
ˆ̄φ, x̂i

]
(K.6)

and

v̂Ds · ∇̂∇∇xi = v̂iDs = K∇B

(
v̂2
G‖s + µ̂sB̂

ẐsB̂∗‖sB̂

)[
B̂, x̂i

]
(K.7)

while b̂∗s and B̂∗‖s are defined as:

b̂∗s =
1

B̂∗‖s

(
B̂ +

√
Âs

Ẑs

v̂G‖s
B̂

Ĵ

)
and B̂∗‖s = B̂ +

√
Âs

Ẑs

v̂G‖s
B̂

b · Ĵ (K.8)

The normalized magnetic field B̂ is defined as

B̂ =
R̂0

R̂(r, θ)
[ζ(r̂)eθ + eϕ] with ζ(r̂) =

r̂

qR̂0

(K.9)

while the normalized current reads

Ĵ = ĴT R̂∇̂∇∇ϕ with ĴT =
R̂0

R̂

ζ

r̂

(
1 +

r̂

ζ

dζ

dr̂
− r̂

R̂
cos θ

)
(K.10)

The constant K∇B has been added for tests in the code. K∇B is equal to 1 if the curvature of
the magnetic field is taken into account and 0 otherwise. In equations (K.4) and (K.5) the parallel

projection ∇̂∇∇∗‖F is computed as b̂∗s · ∇̂∇∇F = b̂∗i∂̂iF . In equations (K.6) and (K.7), the Poisson brackets

are defined as [F,G] = b̂ ·
(
∇̂∇∇F ×∇̂∇∇G

)
(detailed expressions are given by (K.11)-(K.13) and (K.14)-

(K.16)).
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Expression of the Poisson Bracket in GYSELA code

For readability, the hat symbols are omitted for this paragraph. Using the Poisson bracket definition
(B.2) and its explicit form (B.3), then the three components of [φ̄, xi] are given by:

[
φ̄, x1

]
=

1

Jx

{
b2 ∂x3 φ̄− b3 ∂x2 φ̄

}
=

1

JxB

{
B2 ∂x3 φ̄−B3 ∂x2 φ̄

}
(K.11)

[
φ̄, x2

]
=

1

Jx

{
−b1 ∂x3 φ̄+ b3 ∂x1 φ̄

}
=

1

JxB

{
−B1 ∂x3 φ̄+B3 ∂x1 φ̄

}
(K.12)

[
φ̄, x3

]
=

1

Jx

{
b1 ∂x2 φ̄− b2 ∂x1 φ̄

}
=

1

JxB

{
B1 ∂x2 φ̄−B2 ∂x1 φ̄

}
(K.13)

Besides, in the case where B only depends on x1 and x2, [B, xi] is defined as:

[
B, xi

]
=

1

Jx

{
b1 ∂x2B ∂x3xi − b2 ∂x1B ∂x3xi + b3

(
∂x1B ∂x2xi − ∂x2B ∂x1xi

)}

=
1

JxB

{
B1 ∂x2B ∂x3xi −B2 ∂x1B ∂x3xi +B3

(
∂x1B ∂x2xi − ∂x2B ∂x1xi

)}

which corresponds for each components to:

[
B, x1

]
= − 1

Jx
× b3 ∂x2B = − 1

JxB
×B3 ∂x2B (K.14)

[
B, x2

]
=

1

Jx
× b3 ∂x1B =

1

JxB
×B3 ∂x1B (K.15)

[
B, x3

]
=

1

Jx
(b1 ∂x2B − b2 ∂x1B) =

1

JxB
(B1 ∂x2B −B2 ∂x1B) (K.16)

In the case where B depends on the three coordinates x1, x2 and x3 (i.e the ripple is taken into
account), the Poisson bracket

[
B, xi

]
is defined by (K.11) to (K.13) by replacing φ̄ by B. And finally,[

B, φ̄
]

is given by (B.3) by replacing F by B and G by φ̄.

K.1.2 Normalized quasi-neutrality equation

The normalized quasi-neutrality equation is

− 1

n̂e0

∑

s

Âs∇̂⊥ ·
(
n̂s0

B̂0

∇̂⊥φ̂
)

+
1

Z2
0 T̂e

[
φ̂− λ〈 φ̂ 〉FS

]
=

1

n̂e0

∑

s

Ẑs [n̂Gs − n̂Gs,eq] (K.17)

where the normalized electron density n̂e0 is defined as n̂e0 =
∑

s Z0Ẑsn̂s0 . Notice that, in the

polarization term (first term of eq. (K.17)), B̂ has been replaced by B̂0 = 1. The integral 〈 φ̂ 〉FS =∫
φ̂Ĵx dθ dϕ/

∫
Ĵx dθ dϕ represents the flux surface average of φ̂ (with Ĵx = 1/(B̂ · ∇̂θ) being the

normalized jacobian space). The parameter λ has been added for tests. It can be chosen equal to 1
or 0. The normalized guiding-center density n̂Gs of species s is given by:

n̂Gs =

∫
dµ̂s

∫
Ĵv dv̂G‖s Ĵ0s · ˆ̄Fs (K.18)

with the normalized jacobian in velocity equal to Ĵv = 2πB̂∗‖s. The correction term n̂Gs,eq in the right
hand side is defined as follows:

n̂Gs,eq =

∫
dµ̂s

∫
Ĵv dv̂G‖s Ĵ0s · ˆ̄Fs,eq (K.19)

where the normalized equilibrium distribution function is defined as

ˆ̄Fs,eq = cs
n̂s0

(2πT̂s)3/2
exp


−

(
v̂2
G‖s/2 + µ̂sB̂

)

T̂s


 (K.20)
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represents the equilibrium part of the distribution function. The concentration cs is such that∑
s csZ0Ẑs = 1. The normalized gyro-average operator Ĵ0s approximated by Padé corresponds to:

Ĵ0s ≈ 1 +
1

2

Âs

Ẑ2
s

µ̂s

B̂
∇̂2
⊥ (K.21)

where, as in the quasi-neutrality equation, B̂ is replaced by B̂0 = 1 in the code. Let us notice that
in the code, to avoid the expensive gyro-average operation for each value of vG‖ –which occur for the
computation of the RHS of the quasi-neutrality equation (K.17)– we use the definition (K.8) of B∗‖s
and therefore the fact that the term n̂Gs − n̂Gs,eq can be expressed as:

n̂Gs − n̂Gs,eq = 2π

∫
dµ̂s

(
B̂ Ĵ0s · I0(r̂, θ, ϕ, µ̂s) +

√
Âs

Ẑs

v̂G‖s
B̂

b · Ĵ Ĵ0s · I1(r̂, θ, ϕ, µ̂s)

)

where the integrals I0 and I1 are defined by:

I0(r̂, θ, ϕ, µ̂s) =

∫ (
ˆ̄Fs − ˆ̄Fs,eq

)
dv̂G‖s and I1(r̂, θ, ϕ, µ̂s) =

∫
v̂G‖s

(
ˆ̄Fs − ˆ̄Fs,eq

)
dv̂G‖s

K.1.3 Normalized diffusion terms and Krook operator in buffer regions

A radial diffusion and an artificial damping are applied in buffer regions. These buffer regions are
defined at each boundaries of the radial domain r̂ ∈ [r̂min, r̂max] as a sum of hyperbolic tangents:

Ĥbuff(r̂) = 1 +
1

2

[
tanh

(
r̂ − r̂max +BL L̂r

BS L̂r

)
− tanh

(
r̂ − r̂min −BL L̂r

BS L̂r

)]
(K.22)

where L̂r is the normalized length of the radial domain. BL and BS are respectively the location and
the stiffness of the buffer regions. The function Ĥbuff plays the role of a mask which is equal to 1 in
the buffer regions and equal to 0 elsewhere.
A radial diffusion is applied on this buffer region by solving the following equation

∂ ˆ̄Fs

∂t̂
= D̂r( ˆ̄Fs) with D̂r( ˆ̄Fs) =

1

r̂B̂∗‖s

∂

∂r̂

(
r̂χ̂(r̂)

∂

∂r̂

(
B̂∗‖s

ˆ̄Fs

))
(K.23)

where χ̂(r̂) = χ̂0Ĥbuff(r̂), where the normalized magnitude χ̂0 of the diffusion coefficient in the buffer
region is χ̂0 = χ0/ρ

2
0Ωc0 .

A Krook operator is applied by solving

∂ ˆ̄Fs

∂t̂
= K̂r( ˆ̄Fs) with K̂r( ˆ̄Fs) = −ν̂(r̂)( ˆ̄Fs − ˆ̄Fs,eq) (K.24)

where ν̂(r̂) = ν̂0Ĥbuff(r̂) such that ν̂(r̂) = ν(r)/Ωc0 .

K.1.4 Normalized collision operator

A collision operator Cs is present on the RHS of the normalized Vlasov equation (K.3), such that the
normalized Boltzmann equation reads:

d ˆ̄Fs

dt̂
= Ĉs( ˆ̄Fs) with Ĉs( ˆ̄Fs) =

1

B̂∗‖s

∂

∂v̂G‖s

[
B̂∗‖s

(
D̂‖s

∂ ˆ̄Fs
∂v̂G‖s

− V̂‖s ˆ̄Fs

)]
(K.25)

where the diffusion term D̂‖s and the drag term V̂‖s in the parallel direction are defined as:

D̂‖s(r̂, v̂) = Âs(r̂)
(

Φ(v̂)−G(v̂)

2v̂

)
; V̂‖s(r̂, v̂) = −

(
v̂G‖s − V̂‖s,coll

)

v̂2
Ts,coll

D̂‖s(r̂, v̂) (K.26)
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where

v̂ =

√
1

T̂s,coll

(
1

2
v̂2
G‖s + µ̂sB̂axis

)
(K.27)

while the Chandrasekhar function G is defined as follows:

G(v̂) =
Φ(v̂)− v̂Φ′(v̂)

2v̂2
; Φ(v̂) =

2√
π

∫ v̂

0
e−x

2
dx ; Φ′(v̂) =

2√
π
e−v̂

2
(K.28)

The radial profile Âs is given the form

Âs(r̂) =
1√
Âs

(
3

√
π

2

v̂3
Ts,coll

ε3/2

q(r̂)R̂0

)
ν̂∗s (K.29)

The normalized collisionality ν̂∗s is an input data. The normalized collisional frequency is then ob-
tained as follows:

ν̂ss =
1√
Âs

(
v̂Ts,coll

ε3/2

q(r̂)R̂0

)
ν̂∗s (K.30)

Considering that the species s is the major ion species, the collisionality ν̂∗s′ of each minority ion
species s′ is determined by

ν̂∗s′ =

(
n̂s′

n̂s

)(
Ẑs′

Ẑs

)4(
T̂s,coll

T̂s′,coll

)2

ν̂∗s (K.31)

In practice, T̂s,coll/T̂s′,coll is approximated by T̂s/T̂s′ . The ratio n̂s′/n̂s and T̂s,coll/T̂s′,coll are com-
puted at the radial point r̂p which usually corresponds to the middle of the simulation radial domain.
The normalized mean velocity V̂‖s,coll and the normalized mean temperature T̂s,coll can be calculated
as follows:

V̂‖s,coll = P̂−1
(
Î4 × Î1 − Î2 × Î3

)
; T̂s,coll = P̂−1

(
Î0 × Î2 − Î2

1

)
(K.32)

with the normalized mean pressure defined by

P̂ = Î0 × Î4 − Î1 × Î3 (K.33)

and where the five integrals Î0, Î1, Î2, Î3 and Î4 are

Î0 = 〈D̂‖s〉 ; Î1 = 〈D̂‖sv̂G‖s〉 ; Î2 = 〈D̂‖sv̂2
G‖s〉 (K.34)

Î3 = 〈 1

B̂∗‖s
∂v̂G‖s

(
B̂∗‖s D̂‖s

)
〉 and Î4 = 〈 1

B̂∗‖s
∂v̂G‖s

(
B̂∗‖s v̂G‖s D̂‖s

)
〉 (K.35)

with the brackets 〈·〉 =
∫
· ˆ̄FsĴv dv̂G‖s dµ̂s.

K.1.5 Normalized collisional transfers between two species

Normalized collisional energy transfer Energy exchange between two species can be expressed
by the following reduced collision operator:

d ˆ̄Fs

dt̂
= − η̂Ess′(

2πT̂mean

)3/2

∆T̂ss′

T̂mean

(
Êss′
T̂mean

− 3

2

)
exp

(
− Êss′
T̂mean

)
(K.36)

d ˆ̄Fs′

dt
= − η̂Ess′(

2πT̂mean

)3/2

∆T̂s′s

T̂mean

(
Ês′s
T̂mean

− 3

2

)
exp

(
− Ês′s
T̂mean

)
(K.37)
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with

T̂mean =
T̂s + T̂s′

2
; ∆T̂ss′ = T̂s − T̂s′ = −∆T̂s′s ; V̂mean =

V̂‖s + V̂‖s′

2

Êss′ =

(
v̂G‖s − V̂mean

)2

2
+ µ̂sB̂ and Ês′s =

(
v̂G‖s′ − V̂mean

)2

2
+ µ̂sB̂

and

η̂Ess′(r̂) =
8 ε̂3/2

3
√
π

√
Âs

Âs′

(
Ẑs′

Ẑs

)2
n̂s′
√
〈 T̂s,coll 〉FS

qR̂0

(
1 +

Âs

Âs′

T̂ 2
s′

T̂ 2
s

)−3/2

ν̂∗s (K.38)

Let us notice that in practice, the flux surface average of T̂s,coll is used (compare to the general expres-
sion given by (2.44)), to consider only the radial dependency of η̂Ess′ . The normalized fluid moments

V̂‖s and T̂s are computed as 3T̂s(r)/2 = 〈
∫
Ês ˆ̄Fs d3v̂ 〉FS/N̂s(r) and V̂‖s(r) = 〈

∫
v̂G‖s

ˆ̄Fs d3v̂ 〉FS/N̂s(r)

where Ês is defined as Ês = 1
2

(
v̂G‖s − V̂‖s

)2
+ µ̂sB̂ while N̂s(r) = 〈

∫ ˆ̄Fs d3v̂ 〉FS.

Normalized collisional momentum transfer Momentum exchange between two species can be
expressed by the following reduced collision operator

d ˆ̄Fs

dt̂
= −η̂vG‖Â−1/2

s ∆V̂ss′ v̂G‖s exp

(
− Ês

T̂mean

)
(K.39)

d ˆ̄Fs′

dt̂
= −η̂vG‖Â−1/2

s′ ∆V̂s′sv̂G‖s′ exp

(
− Ês′

T̂mean

)
(K.40)

with
∆V̂ss′ = V̂‖sÂ

−1/2
s − V̂‖s′Â−1/2

s′ (K.41)

The averages T̂mean and V̂mean have already been introduced. The energy Ês is equal to 1
2 v̂

2
G‖s + µ̂sB̂.

The radial profile η̂vG‖ reads:

η̂vG‖(r) =
( ε

2π

)3/2 1

qR̂0

n̂s′

v̂T>

√
T̂s

√
〈 T̂s,coll 〉FS

T̂
5/2
mean

(
Ẑs′

Ẑs

)2

ν̂∗s (K.42)

where the velocity v̂T> is calculated as v̂T> = max(Â
−1/2
s v̂Ts , Â

−1/2
s′ v̂Ts′ ) where v̂Ts =

√
T̂s and v̂Ts′ =√

T̂s′ and the collision frequencies ν̂∗s, ν̂∗s′ are linked by the relation (K.31).

K.1.6 Normalized source terms

Focusing on the source term, the gyrokinetic equation is:

d ˆ̄Fs

dt̂
= Ŝheat(r̂, θ, v̂G‖s, µ̂s) + Ŝmoment(r̂, θ, v̂G‖s, µ̂s) + Ŝvorticity(r̂, θ, v̂G‖s, µ̂s) (K.43)

where the heat source can be defined as

Ŝheat =
ŜE0

3
√

2
(
πT̂s,srce

)3/2
T̂s,srce

(
Ês

T̂s,srce

− 3

2

)
exp

(
− Ês

T̂s,srce

)
ŜEr (K.44)

with Ês = 1
2 v̂G‖s + µ̂sB̂ or as a pure source of heating

Ŝheat =





[
ˆ̄v2
G‖s −

1

2
−

Ĵ‖B
2− Ĵ2

‖B
(2− ˆ̄µs)

(
2ˆ̄vG‖s − Ĵ‖B

)] 2ŜE0(
2πT̂s,srce

)3/2
T̂s,srce

ŜEr





e
−ˆ̄v2

G‖s
− ˆ̄µs

(K.45)
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with ˆ̄µs = µ̂sB̂

T̂s,srce
, ˆ̄vG‖s =

v̂G‖s√
2T̂s,srce

and Ĵ‖B ≡
√
Âs
Ẑs

√
2T̂s,srce

B̂2
µ0Ĵ‖. The source Ŝmoment is a pure source

of momentum expressed as

Ŝmoment =

{[
2ˆ̄vG‖s(2− ˆ̄µs)− Ĵ‖B

(
1 + 2ˆ̄vG‖s − ˆ̄µs

)] Ŝ
vG‖
0

4π3/2T̂ 2
s,srce

Ŝ
vG‖
r

}
e
−ˆ̄v2

G‖s
− ˆ̄µs

(K.46)

and the Ŝvorticity is a pure source of vorticity is defined as

Ŝvorticity = −





[
2ˆ̄v2
G‖s − ˆ̄µs

] ŜΩ
0

α
(

2πT̂s,srce

)3/2
ŜΩ
r





e
−ˆ̄v2

G‖s
− ˆ̄µs

with α̂ =
Âs

Ẑ2
s

T̂s,srce

2B̂2
(K.47)

The radial components of the sources (i.e ŜEr , Ŝ
vG‖
r and ŜΩ

r ) are defined as:

Ŝxr (r̂) = −1

2

[
tanh

(
ρ̂− (ρ̂xS + 3L̂xS)

L̂xS

)
+ tanh

(
− ρ̂− (ρ̂xS − 3L̂xS)

L̂xS

)]
(K.48)

where ρ̂ = (r̂ − r̂min)/L̂r. ρ̂xS and L̂xS are input data corresponding to the radial position and the
normalized width of the different sources. These radial parts are normalized such that

∫ r̂max

r̂min

r̂ dr̂Ŝxr (r̂) = 1

K.1.7 Normalized source of impurity

Let us consider the species s as the major species and the species s′ as an impurity species. Then, it
is possible to add a source of impurities, by adding to the right hand side of equation (K.43) a source
of matter. The source Ŝns′ (r̂, θ, v̂G‖s, µ̂s) of impurity s′ is defined by

Ŝns′ =
Ŝ
n′s
0 Ŝr(

2πT̂s′,srce

)3/2

(
5

2
− ˆ̄µs′ − ˆ̄v2

G‖s′

)
exp

(
−ˆ̄v2

G‖s′ − ˆ̄µs′
)

(K.49)

where ˆ̄vG‖s′ = v̂G‖s′/
√

2T̂s′,srce and ˆ̄µs′ = µ̂s′B̂/T̂s′,srce. Ŝ
n′s
0 corresponds to the normalized intensity

of the source. To avoid any injection of charges, the injection of impurities must be compensated by
the injection of source of matter for the majority species such that

Zs

∫
SnsJvs dvG‖ dµs + Zs′

∫
Sns′Jvs′ dvG‖ dµs′ = 0

with Jvs (resp. Jvs′ ) the jacobian in velocity space for species s (resp. species s′). The normalized

radial profiles of the sources are assumed equal to Ŝr. Therefore,

Ŝns =
Ŝns0 Ŝr(

2πT̂s,srce

)3/2

(
5

2
− ˆ̄µs − ˆ̄v2

G‖s

)
e
−ˆ̄v2

G‖s
− ˆ̄µs

with Ŝns0 = − Ẑs′
Ẑs

(
T̂s′,srce

T̂s,srce

)3/2

Ŝ
ns′
0 (K.50)

In the code, the temperature profile of the density sources are taken equal, i.e T̂s,srce = T̂s′,srce.

K.2 Proofs for Gysela normalized equations

In this section, the derivation from the general equations to the normalized equations used in the
Gysela code is detailed. This derivation is performed by using the normalization defined in table
K.1. The following notes play the role of archives.
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K.2.1 Proof for gyro-average operator normalization (eq.(K.21))

J0s ≈ 1 +
1

4
ρ2
s∇2
⊥ with ρ2

s =

(
msv⊥
Zs e B

)2

=
ms

(Zs e)2

2µs
B

≈ 1 +
ms

(Zs e)2

µs
2B
∇2
⊥ = 1 +

m0Âs(
Z0Ẑse

)2

T0

B0
µ̂s

1

2B0B̂

1

ρ2
0

∇̂2
⊥ = 1 +

Âs

Ẑ2
s

µ̂s

2B̂
∇̂2
⊥

K.2.2 Proof for velocity space integral normalization

The velocity space integral is defined as
∫

d3v =
∫
Jv dvG‖ dµs where Jv the jacobian in velocity space

is equal to Jv = 2πB∗‖s/ms. Therefore,

∫
Jv dvG‖ dµs =

∫ 2πB0B̂
∗
‖s

m0Âs
× vTs0 dv̂G‖s ×

T0

B0
dµ̂s =

B0

m0
× T0

B0
× vTs0

Âs

∫
2πB̂∗‖s dv̂G‖s dµ̂s

then ∫
Jv dvG‖ dµs = v3

Ts0

∫
Ĵv dv̂G‖s dµ̂s with Ĵv = 2πB̂∗‖s (K.51)

K.2.3 Proof for normalized equilibrium function (eq.(K.20))

Fs,eq =
n0

(2πTs/ms)3/2
exp

(
−
[
msv

2
G‖

2Ts
+
µsB

Ts

])

=
n0

(2πT̂s)3/2

(
Âsm0

T0

)3/2

exp

(
− 1

T0T̂s

[
v̂2
G‖sv

2
Ts0
Âsm0

2
+ µ̂sB̂

T0

B0
B0

])

=
n0

(2πT̂s)3/2

1

v3
Ts0

exp

(
− 1

T̂s

[
v̂2
G‖s
2

+ µ̂sB̂

])

then

Fs,eq =
n0

v3
Ts0

F̂s,eq with F̂s,eq =
1

(2πT̂s)3/2
exp

(
− 1

T̂s

[
v̂2
G‖s
2

+ µ̂sB̂

])
(K.52)

K.2.4 Proof for normalization of motion equations (eq.(K.4)-(K.10))

Let remind that the motion equations for the guiding-centers in the 3D real space read (cf eq. (1.48)),

dxG
dt

= vG‖b
∗
s + vE×Bs + vDs (K.53)

with

b∗s ≡
B

B∗‖s
+

msvG‖
qsB∗‖sB

∇∇∇×B where B∗‖s ≡ B +
msvG‖
qsB

b · (∇∇∇×B)

The drift-velocities are defined as:

vE×Bs =
1

B∗‖s
b×∇∇∇Ū ; vDs =

(
msv

2
G‖ + µsB

qsB∗‖s

)
b× ∇∇∇B

B

First of all, let express B∗‖s in function of the normalized quantities,

B∗‖s = B +ms

vG‖
qsB

µ0b · J

= B0B̂ +
m0ÂsvTs0 v̂G‖s
eZ0ẐsB0B̂

b · ĴB0

ρ0
= B0

[
B̂ +

√
Âs
v̂G‖s
ẐsB̂

b · Ĵ
]

(K.54)
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then

B∗‖s = B0B̂
∗
‖s with B̂∗‖s = B̂ +

√
Âs

Ẑs

v̂G‖s
B̂

b · Ĵ (K.55)

and

b∗s ≡
1

B∗‖s

(
B +

msvG‖
qsB

µ0J

)
=

1

B0B̂∗‖s

(
B0B̂ +

Âsm0 vTs0 v̂G‖s
Z0 e Ẑs B0B̂

Ĵ
B0

ρ0

)

=
1

B̂∗‖s

(
B̂ +Ks

v̂G‖s
ẐsB̂

Ĵ

)

with the constant Ks defined as

Ks =
Âsm0vTs0
eZ0B0ρ0

= Âs
vTs0
ρ0

m0

eB0Z0
= Âs

vTs0
vT0

=

√
Âs

then the expression of b∗s is equivalent to equation (K.8). The first term of the right hand side of
equation (K.53) expressed with the normalized quantities gives :

vG‖b
∗
s = vTs0 v̂G‖sb̂

∗
s

The second term of the right hand side of equation (K.53) reads

vE×Bs =
1

B0B̂∗‖s

(
b̂×∇̂∇∇

(
T0

Z0 e
ˆ̄φ

))
1

ρ0
= vT0

1

B̂∗‖s

(
b̂×∇̂∇∇ ˆ̄φ

)

The third term of the right hand side of equation (K.53) gives

vDs =

(
Âsm0v

2
T0
v̂2
G‖s + µ̂sT0B̂

Z0ẐseB2
0B̂
∗
‖sB̂

)(
b̂×∇̂∇∇B̂

) B0

ρ0

and
Âsm0v

2
Ts0

Z0eB0ρ0
=
Âsv

2
Ts0

Ωc0ρ0
=
Âsv

2
Ts0

vT0

= vT0 ;
T0

Z0eB0ρ0
=

T0

m0Ωc0ρ0
= vT0

so

vDs = vT0

(
v̂2
G‖s + µ̂sB̂

ẐsB̂∗‖sB̂

)(
b̂×∇̂∇∇B̂

)

Therefore, using the fact that the parallel velocity is normalized to vTs0 while the drift velocities are
normalized to vT0 ,

dx̂G
dt

=
1√
Âs
v̂G‖sb̂

∗
s + v̂E×Bs + v̂Ds

with

v̂E×Bs =
1

B̂∗‖s

(
b̂×∇̂∇∇φ̂

)
and v̂Ds =

(
v̂2
G‖s + µ̂sB̂

ẐsB̂∗‖sB̂

)(
b̂×∇̂∇∇B̂

)

which is equivalent to equation (K.4).
According to equation (1.49), the time derivative of vG‖ reads:

ms

dvG‖
dt

= −µsb∗s · ∇∇∇B − qsb∗s · ∇∇∇φ̄+msvG‖vE×Bs ·
∇∇∇B
B

then
dv̂G‖s

dt
=

1

K

(
−µsb∗s · ∇∇∇B − qsb∗s · ∇∇∇φ̄+msvG‖vE×Bs ·

∇∇∇B
B

)
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with K = Âsm0vTs0Ω0. Therefore, the first term of the right hand side of previous equation reads

1

K
µsb

∗
s · ∇∇∇B =

1

Âsm0vTs0Ω0

T0

B0
µ̂sb

∗
s · ∇̂∇∇B̂

B0

ρ0
=

1

Âs

v2
T0

vTs0

1

vT0

µ̂sb
∗
s · ∇̂∇∇B̂ =

1√
Âs
µ̂sb

∗
s · ∇̂∇∇B̂

The second term reads

1

K

(
qsb
∗
s · ∇∇∇φ̄

)
= Z0Ẑseb

∗
s

1

ρ0

T0

Z0 e
∇̂∇∇ ˆ̄φ

1

Âsm0vTs0Ω0

=
T0

Âsm0vTs0vT0

Ẑsb
∗
s · ∇̂∇∇ ˆ̄φ =

1√
Âs
Ẑsb

∗
s · ∇̂∇∇ ˆ̄φ

and finally the last term of the right hand side reads:

1

K

(
msvG‖vE×Bs ·

∇∇∇B
B

)
=

1

Âsm0vTs0Ω0

m0ÂsvTs0 v̂G‖s(vT0 v̂E×Bs) ·
∇̂∇∇ ln B̂

ρ0
= v̂G‖sv̂E×Bs · ∇̂∇∇ ln B̂

Therefore, the time derivative of the normalized velocity v̂G‖s is given by:

dv̂G‖s
dt

= − 1√
Âs
µ̂sb

∗
s · ∇̂∇∇B̂ −

Ẑs√
Âs

b∗s · ∇̂∇∇ ˆ̄φ+ v̂G‖sv̂E×Bs · ∇̂∇∇ ln B̂

which is equivalent to the expression (K.5).

K.2.5 Proof for quasi-neutrality equation normalization (eq.(K.17))

As seen in section 1.4.4, the Poisson equation reads:

−ε0∇2U −
∑

s

Zse∇⊥ ·
(
ns,eq

BΩs
∇⊥U(x, t)

)
+ e2ne0

[
U − 〈 U 〉FS

Te

]
=
∑

s

qsnGs − ene0

Due to the expression of cyclotron frequency Ωs = qsB0/ms, the previous equation is equivalent to:

−ε0∇2U −
∑

s

ms∇⊥ ·
(
ns,eq

BB0
∇⊥U(x, t)

)
+ e2ne0

[
U − 〈 U 〉FS

Te

]
=
∑

s

qsnGs − ene0

Then using the fact that λ0 = [ε0T0/(Z
2
0e

2n0)]1/2 and the fact that nGs = n0n̂Gs
1 with n̂Gs defined

by (K.18),

−
(
λ0

ρ0

)2 Z2
0e

2n0

T0
∇̂2

(
T0

Z0 e
φ̂

)
−
∑

s

∇̂⊥
(
m0Âsn0n̂s,eq

ρ2
0B

2
0B̂

)
∇̂⊥

(
T0

Z0 e
φ̂

)

+
e2n0n̂e0T0

Z0 e T0

[
φ̂− 〈 φ̂ 〉FS

T̂e

]
=
∑

s

Z0Ẑsen0n̂Gs − en0n̂e0

Therefore, assuming that n̂s,eq = n̂Gs,eq (with n̂Gs,eq defined by equation (K.19)) and using the fact

that n̂e0 =
∑

s Z0Ẑsn̂s,eq, the RHS of the previous equation is equivalent to
∑

s Ẑs (n̂Gs − n̂Gs,eq) and
the previous equation reads

(
λ0

ρ0

)2

∇̂2φ̂−
∑

s

∇̂⊥
(
Âsn̂s,eq

B̂
∇̂⊥φ̂

)
+
n̂e0
Z2

0

[
φ̂− 〈 φ̂ 〉FS

T̂e

]
=
∑

s

Ẑs (n̂Gs − n̂Gs,eq)

Besides, in the quasi-neutral limit, i.e λ0 � ρ0, the first term 1
n̂e0

(
λ0
ρ0

)2
∇̂2φ̂ can be dropped out and

the previous equation is then equivalent to the normalized quasi-neutrality equation (K.17).

1Due to the normalization of the velocity space integral given by (K.51),

nGs =

∫
Jv dvG‖ dµs J0s · F̄s = v3

Ts0

∫
Ĵv dv̂G‖s dµ̂s Ĵ0s ·

(
ˆ̄Fs

n0

v3
Ts0

)
= n0

∫
Ĵv dv̂G‖s dµ̂s Ĵ0s · ˆ̄Fs
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K.2.6 Proof for buffer region normalization (eq.(K.23)-(K.24))

As seen in section 2.8.4, a radial diffusion and a Krook operator are applied on a buffer region by
solving an equation equivalent to

∂F̄s
∂t

=
1

B∗‖s

[
1

r

∂

∂r

(
DrB∗‖s

∂

∂r
F̄s

)]
− ν(r)(F̄s − F̄s,eq)

with Dr = rχ0Hbuff(r) and ν(r) = ν0Hbuff(r). Then, using Gysela normalization, the previous
equation becomes

Ωc0

∂(n0/v
3
Ts0

) ˆ̄Fs

∂t̂
=

(
1

B0B̂∗‖s

)(
1

ρ0

1

r̂

)
1

ρ0

∂

∂r̂

(
ρ0r̂χ(r)

(
B0B̂

∗
‖s
) 1

ρ0

∂(n0/v
3
Ts0

) ˆ̄Fs

∂r̂

)
−ν(r)

n0

v3
Ts0

( ˆ̄Fs− ˆ̄Fs,eq)

which is equivalent to

∂ ˆ̄Fs

∂t̂
=

1

B̂∗‖s

[
1

r̂

∂

∂r̂

(
r̂B̂∗‖sχ̂

∂ ˆ̄Fs
∂r̂

)]
− ν̂(r̂)( ˆ̄Fs − ˆ̄Fs,eq)

with χ(r) = ρ2
0Ω0χ̂(r̂) and ν(r) = Ωc0 ν̂(r̂).

K.2.7 Proof for collision operator normalization (eqs.(K.25)-(K.35))

Let v(r, vG‖) be defined as v(r, vG‖) =

√
1

Ts,coll

(
1
2msv2

G‖ + µsBaxis(r)
)

then

v̂ = v(r̂, v̂G‖s) =

√
1

T0T̂s,coll

(
1

2
m0Âsv2

Ts0
v̂2
G‖s +

T0

B0
µ̂sB0B̂axis

)
=

√
1

T̂s,coll

(
1

2
v̂2
G‖s + µ̂sB̂axis

)

Let a function Φ and the Chandrasekhar function G be defined as

Φ(v̂) =
2√
π

∫ v̂

0
e−x

2
dx ; Φ′(v̂) =

2√
π
e−v̂

2
and G(v̂) =

Φ(v̂)− v̂Φ′(v̂)

2v̂2

The diffusion term D‖s can be expressed in function of these functions as

D‖s = v2
Ts0Ωc0D̂‖s with D̂‖s(r̂, v̂) = Âs(r̂)

(
Φ(v̂)−G(v̂)

2v̂

)
(K.56)

where the normalised radial profile Âs is given by 2 :

Âs(r̂) = 3

√
π

2

v̂3
Ts,coll

ε̂3/2

√
Âsq(r̂)R̂0

ν̂∗s

The collisionality ν̂∗s being the scalar value given as input data in the code. The scalar values ν̂∗s′ for
the minority ion species s′ are deduced from ν̂∗s as:

ν̂∗s′ =

(
n̂s′

n̂s

)(
Ẑs′

Ẑs

)4(
T̂s,coll

T̂s′,coll

)2

ν̂∗s

2

Because, As(r) = 3

√
π

2

v3
Ts,coll

ε3/2

qR0
ν∗s = 3

√
π

2

v3
Ts0

v̂3
Ts,coll

ε̂3/2

q(r̂)ρ0R̂0

ν̂∗s = v2
Ts0

vT0√
Âs

1

ρ0

(
3

√
π

2

v̂3
Ts,coll

ε̂3/2

q(r̂)R̂0

)
ν̂∗s

= v2
Ts0

Ωc0
1√
Âs

(
3

√
π

2

v̂3
Ts,coll

ε̂3/2

q(r̂)R̂0

)
ν̂∗s
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by using the equality ν∗s′ = (ns′/ns)(Zs′/Zs)
4(Ts,coll/Ts′,coll)

2ν∗s. By using the previous equality D‖s =

v2
Ts0

Ωc0D̂‖s, the parallel velocity drag V‖s can be expressed as

V‖s(r, v) = −
(
vG‖ − V‖s,coll

)

v2
Ts,coll

D‖s(r, v) = −
vTs0

(
v̂G‖s − V̂‖s,coll

)

v2
Ts0
v̂2
Ts,coll

(
v2
Ts0Ωc0D̂‖s

)

i.e

V‖s(r, v) = vTs0Ωc0V̂‖s(r̂, v̂) with V̂‖s(r̂, v̂) = −

(
v̂G‖s − V̂‖s,coll

)

v̂2
Ts,coll

D̂‖s(r̂, v̂) (K.57)

Finally, the Boltzmann equation

dF̄s
dt

= Cs(F̄s) with Cs(F̄s) =
1

B∗‖s
∂vG‖

{
B∗‖sD‖s∂vG‖F̄s −B∗‖sV‖sF̄s

}

is equivalent to (by using the normalized quantities and the two equalities (K.56) and (K.57)):

Ωc0

(
n0

v3
Ts0

)
d ˆ̄Fs

dt̂
=

1

B0B̂∗‖s

1

vTs0

∂

∂v̂G‖s

{
B0B̂

∗
‖s
n0

v3
Ts0

×
[(
v2
Ts0Ωc0D̂‖s

) 1

vTs0

∂

∂v̂G‖s
ˆ̄Fs − vTs0Ωc0V̂‖s ˆ̄Fs

]}

Therefore,

d ˆ̄Fs

dt̂
with Ĉs(F̄s) =

1

B̂∗‖s

∂

∂v̂G‖s

[
B̂∗‖s

(
D̂‖s

∂ ˆ̄Fs
∂v̂G‖s

− V̂‖s ˆ̄Fs

)]

Concerning the computation of the mean velocity and the mean temperature, then the integrals
involved read:

I0 = 〈msD‖s〉 =

∫ 2πB∗‖s
ms

msD‖sF̄s dvG‖ dµs

=

∫
2πB0B̂

∗
‖s(Ωc0v

2
Ts0D̂‖s)

(
n0

v3
Ts0

ˆ̄Fs

)
vTs0 dv̂G‖s

T0

B0
dµ̂s

= (n0 Ωc0 T0) Î0 with Î0 =

∫
ˆ̄FsD̂‖s Ĵv dv̂G‖s dµ̂s = 〈D̂‖s〉

I1 = 〈msD‖svG‖〉 = (n0 Ωc0 T0 vTs0) Î1

with Î1 =

∫
v̂G‖sD̂‖s ˆ̄Fs Ĵv dv̂G‖s dµ̂s = 〈D̂‖sv̂G‖s〉

I2 = 〈m2
sD‖sv2

G‖〉 =
(
Âsm0n0 Ωc0 T0 v

2
Ts0

)
Î2

with Î2 =

∫
v̂2
G‖sD̂‖s ˆ̄Fs Ĵv dv̂G‖s dµ̂s = 〈D̂‖sv̂2

G‖s〉

I3 = 〈 1

B∗‖s
∂vG‖

(
B∗‖sD‖s

)
〉 =

(
1

Âsm0

n0 Ωc0 T0

vTs0

)
Î3 with Î3 = 〈 1

B̂∗‖s
∂v̂G‖s

(
B̂∗‖s D̂‖s

)
〉

I4 = 〈ms

B∗‖s
∂vG‖

(
B∗‖s vG‖D‖s

)
〉 = (n0 Ωc0 T0) Î4 with Î4 = 〈 1

B̂∗‖s
∂v̂G‖s

(
B̂∗‖s D̂‖s

)
〉

where 〈·〉 =
∫
· ˆ̄FsĴv dv̂G‖s dµ̂s. Finally,

P = I0 × I4 −msI1 × I3 = (n0 Ωc0 T0)2 Î0Î4 − Âsm0 (n0 Ωc0 T0 vTs0) Î1
n0 Ωc0 T0

Âsm0vTs0
Î3

= (n0 Ωc0 T0)2 P̂ with P̂ =
[
Î0Î4 − Î1Î3

]
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and

V‖s,coll = P−1 (I4 × I1 − I2 × I3) =
P̂−1

(n0 Ωc0 T0)2

[
(n0 Ωc0 T0)2

{
vTs0 Î4Î1 −

Âsm0v
2
Ts0

Âsm0vTs0
Î2Î3

}]

= vTs0 V̂‖s,coll with V̂‖s,coll = P̂−1
[
Î4Î1 − Î2Î3

]

and

Ts,coll = P−1
(
I0 × I2 −msI

2
1

)
= P̂−1

(
Âsm0v

2
Ts0 Î0Î2 − Âsm0v

2
Ts0 Î

2
1

)

= Âsm0
T0

m0

(
1√
Âs

)2

P̂−1
(
Î0Î2 − Î2

1

)

Ts,coll = T0T̂s,coll with T̂s,coll = P̂−1
(
Î0Î2 − Î2

1

)

K.2.8 Proof for normalization of collisional energy transfers (eqs.(K.36)-(K.37))

According to (2.36) and (2.37) the energy exchange between two species is taken into account as:

dF̄s
dt

= − ηEss′

(2πTmean/ms)
3/2

∆Tss′

Tmean

( Ess′
Tmean

− 3

2

)
exp

(
− Ess′
Tmean

)

dF̄s′

dt
= − ηEs′s

(2πTmean/ms′)
3/2

∆Ts′s
Tmean

( Es′s
Tmean

− 3

2

)
exp

(
− Es′s
Tmean

)

Therefore, using Gysela normalizations, the previous first equation reads:

Ωc0

(
n0

v3
Ts0

)
d ˆ̄Fs

dt̂
= − ηEss′(

2πT0T̂mean/(Âsm0)
)3/2

∆T̂ss′

T̂mean

(
Êss′
T̂mean

− 3

2

)
exp

(
− Êss′
T̂mean

)

d ˆ̄Fs

dt̂
= − 1

n0Ωc0

ηEss′(
2πT̂mean

)3/2

∆T̂ss′

T̂mean

(
Êss′
T̂mean

− 3

2

)
exp

(
− Êss′
T̂mean

)

Besides,

ηEss′ =
8 ε3/2

3
√
π

ms

ms′

(
Zs′

Zs

)2 ns′
√
Ts,coll/ms

qR0

(
1 +

v2
T ′s

v2
Ts

)−3/2

ν∗s

=
8 ε̂3/2

3
√
π

Âs

Âs′

(
Ẑs′

Ẑs

)2

n0n̂s′

√
T0T̂s,coll/(Âsm0)

q̂R̂0ρ0

(
1 +

Âs

Âs′

T̂ 2
s′

T̂ 2
s

)−3/2

ν̂∗s

Then,

η̂Ess′ =

(
n0vT0

ρ0

)
η̂Ess′ with η̂Ess′ =

8 ε̂3/2

3
√
π

√
Âs

Âs′

(
Ẑs′

Ẑs

)2

n̂s′

√
T̂s,coll

q̂R̂0

(
1 +

Âs

Âs′

T̂ 2
s′

T̂ 2
s

)−3/2

ν̂∗s

Finally, using the relation Ωc0 = vT0/ρ0,

d ˆ̄Fs

dt̂
= − η̂Ess′(

2πT̂mean

)3/2

∆T̂ss′

T̂mean

(
Êss′
T̂mean

− 3

2

)
exp

(
− Êss′
T̂mean

)

The same kind of proof can be done for
d ˆ̄Fs′
dt̂

.
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K.2.9 Proof for normalization of collisional momentum transfers (eqs.(K.39) -
(K.40))

According to equation (2.42),

dF̄s
dt

= −η̂vG‖ss′ ∆Vss′vG‖ exp

(
− Es
Tmean

)

n0Ω0

v3
Ts0

d ˆ̄Fs

dt̂
= −η̂vG‖ss′ vT0∆V̂ss′vTs0 v̂G‖s exp

(
− Ês

T̂mean

)

d ˆ̄Fs

dt̂
= −

(
v4
Ts0
vT0

n0Ω0

)
η̂
vG‖
ss′ ∆V̂ss′ v̂G‖s exp

(
− Ês

T̂mean

)

with ∆V̂ss′ = V̂‖sÂ
−1/2
s − V̂‖s′Â−1/2

s′ . Besides, according to equation (2.44),

η
vG‖
ss′ = ns′m

2
s

( ε

2π

)3/2 1

qR0

√
Ts,coll

T
5/2
mean

(
Zs′

Zs

)2 vTs
vT>

ν∗s

where vT> = max(vTs , vT ′s) = vT0 v̂T> with v̂T> = max(Â
−1/2
s v̂Ts , Â

−1/2
s′ v̂T ′s). Therefore,

η
vG‖
ss′ = ns′m

3/2
s

( ε

2π

)3/2 1

qR0

√
Ts,coll

T
5/2
mean

(
Zs′

Zs

)2 √Ts
vT>

ν∗s

= n0n̂s′m
3/2
0 Â3/2

s

( ε

2π

)3/2 1

qR̂0ρ0

√
T0

√
T̂s,coll

T
5/2
0 T̂

5/2
mean

(
Ẑs′

Ẑs

)2 √
T0

√
T̂s

vT0 v̂T>
ν∗s

which leads to

η
vG‖
ss′ =

n0m
3/2
0

ρ0

T0

T
5/2
0 vT0

Â3/2
s n̂s′

( ε

2π

)3/2 1

qR̂0

√
T̂s,coll

T̂
5/2
mean

(
Ẑs′

Ẑs

)2 √
T̂s

v̂T>
ν∗s

=
n0Ω0

v4
T0

Â
3/2
s

vT0

n̂s′
( ε

2π

)3/2 1

qR̂0

√
T̂s,coll

T̂
5/2
mean

(
Ẑs′

Ẑs

)2 √
T̂s

v̂T>
ν∗s because ρ0 =

vT0

Ω0

= Â−1/2
s

n0Ω0

v4
Ts0
vT0

n̂s′
( ε

2π

)3/2 1

qR̂0

√
T̂s,coll

T̂
5/2
mean

(
Ẑs′

Ẑs

)2 √
T̂s

v̂T>
ν∗s because vT0 =

√
Âs vTs0

Finally,

η
vG‖
ss′ =

n0Ω0

v4
Ts0
vT0

η̂
vG‖
ss′ with η̂

vG‖
ss′ = Â−1/2

s n̂s′
( ε

2π

)3/2 1

qR̂0

√
T̂s

√
T̂s,coll

v̂T> T̂
5/2
mean

(
Ẑs′

Ẑs

)2

ν∗s

Using previous η
vG‖
ss′ expression gives equation (K.39).

The same kind of computations can be done to prove equation (K.40).

K.2.10 Proof for source term normalization (eqs.(K.43) -(K.48))

As a reminder the source terms are defined as

dF̄s
dt

= Sheat(r, θ, vG‖, µs) + Smoment(r, θ, vG‖, µs) + Svorticity(r, θ, vG‖, µs) (K.58)
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with

Sheat = Kh(v̄G‖s, µ̄s, J‖B)
2SE0(

2πTs,srce

ms

)3/2
Ts,srce

SEr e
−v̄2

G‖s
−µ̄s

(K.59)

Smoment = Km(v̄G‖s, µ̄s, J‖B)
S
vG‖
0

4π3/2
(
Ts,srce

ms

)2 S
vG‖
r e

−v̄2
G‖s
−µ̄s

(K.60)

Svorticity = −
[
2v̄2
G‖s − µ̄s

] SΩ
0

α
(

2πTs,srce

ms

)3/2
SΩ
r e
−v̄2

G‖s
−µ̄s

(K.61)

where

Kh(v̄G‖s, µ̄s, J‖B) =

[
v̄2
G‖s −

1

2
−

J‖B
2− J2

‖B
(2− µ̄s)

(
2v̄G‖s − J‖B

)]

Km(v̄G‖s, µ̄s, J‖B) =
[
2v̄G‖s(2− µ̄s)− J‖B

(
1 + 2v̄G‖s − µ̄s

)]

and

µ̄s = µsB/Ts,srce, v̄G‖s =
vG‖√

2Ts,srce/ms

, J‖B ≡
√
ms

qs

√
2Ts,srce

B2
µ0J‖ and α =

ms

q2
s

Ts,srce

2B2
(K.62)

Using the Gysela normalization, the previous quantities defined by equations (K.62) reads

µ̄s =
µsB

Ts,srce
= µ̂s

T0

B0

B0B̂

T0T̂s,srce

=
µ̂sB̂

T̂s,srce

= ˆ̄µs

v̄G‖s =
vG‖√
2Ts,srce

ms

=
vTs0 v̂G‖s√

2T0T̂s,srce

Âsm0

=
vTs0
vT0

√
Âs

v̂G‖s√
2T̂s,srce

=
v̂G‖s√
2T̂s,srce

= ˆ̄vG‖s

while

J‖B =

√
Âsm0

Z0eẐs

√
2T0T̂s,srce

B2
0B̂

2
µ0Ĵ‖

B0

ρ0
=

√
Âs

Ẑs

√
m0

Z0eB0

√
T0

ρ0

√
2T̂s,srce

B̂2
µ0Ĵ‖

=

√
Âs

Ẑs

√
2T̂s,srce

B̂2
µ0Ĵ‖ = Ĵ‖B

and

α =
ms

q2
s

Ts,srce

2B2
=

Âsm0

Z2
0e

2Ẑ2
s

T0T̂s,srce

2B2
0B̂

2
=

m2
0

Z2
0e

2B2
0

T0

m0

Âs

Ẑ2
s

T̂s,srce

2B̂2
=
v2
T0

Ω2
c0

Âs

Ẑ2
s

T̂s,srce

2B̂2

=
1

ρ2
0

Âs

Ẑ2
s

T̂s,srce

2B̂2
=

1

ρ2
0

α̂ with α̂ =
Âs

Ẑ2
s

T̂s,srce

2B̂2

The prescribed radial source profiles (SEr , S
vG‖
r and SΩ

r ) are defined as

Sxr (r) = −1

2

[
tanh

(
ρ− (ρxS + 3LxS)

LxS

)
+ tanh

(
−ρ− (ρxS − 3LxS)

LxS

)]

= −1

2

[
tanh

(
ρ̂− (ρ̂xS + 3L̂xS)

L̂xS

)
+ tanh

(
− ρ̂− (ρ̂xS − 3L̂xS)

L̂xS

)]
= Ŝxr (r̂)
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According to definition (K.59)

Sheat = K̂h
2SE0(

2πT0T̂s,srce

Âsm0

)3/2
T0Ts,srce

ŜEr exp
(
−ˆ̄v2

G‖s − ˆ̄µs

)

=
1

v3
Ts0
T0
K̂h

2SE0(
2πT̂s,srce

)3/2
Ts,srce

ŜEr exp
(
−ˆ̄v2

G‖s − ˆ̄µs

)

with

K̂h(ˆ̄vG‖s, ˆ̄µs, Ĵ‖B) =

[
ˆ̄v2
G‖s −

1

2
−

Ĵ‖B
2− Ĵ2

‖B
(2− ˆ̄µs)

(
2ˆ̄vG‖s − Ĵ‖B

)]

According to definition (K.60)

Smoment = K̂m
S
vG‖
0

4π3/2
(
T0T̂s,srce

Âsm0

)2 Ŝ
vG‖
r exp

(
−ˆ̄v2

G‖s − ˆ̄µs

)

=
1

v4
Ts0

K̂m
S
vG‖
0

4π3/2T̂ 2
s,srce

Ŝ
vG‖
r exp

(
−ˆ̄v2

G‖s − ˆ̄µs

)

with K̂m(ˆ̄vG‖s, ˆ̄µs, Ĵ‖B) =
[
2ˆ̄vG‖s(2− ˆ̄µs)− Ĵ‖B

(
1 + 2ˆ̄vG‖s − ˆ̄µs

)]
. Finally, according to (K.61)

Svorticity = −
[
2ˆ̄v2
G‖s − ˆ̄µs

] SΩ
0

α
(

2πT0T̂s,srce

Âsm0

)3/2
ŜΩ
r exp

(
−ˆ̄v2

G‖s − ˆ̄µs

)

= − ρ2
0

v3
Ts0

[
2ˆ̄v2
G‖s − ˆ̄µs

] SΩ
0

α̂
(

2πT̂s,srce

)3/2
ŜΩ
r exp

(
−ˆ̄v2

G‖s − ˆ̄µs

)

Replacing Sheat, Smoment and Svorticity by these new expressions in equation (K.58) leads to

n0ΩC0

v3
Ts0

d ˆ̄Fs

dt̂
= exp

(
−ˆ̄v2

G‖s − ˆ̄µs

)

 1

v3
Ts0
T0
K̂h

2SE0(
2πT̂s,srce

)3/2
Ts,srce

ŜEr +

1

v4
Ts0

K̂m
S
vG‖
0

4π3/2T̂ 2
s,srce

Ŝ
vG‖
r − ρ2

0

v3
Ts0

[
2ˆ̄v2
G‖s − ˆ̄µs

] SΩ
0

α̂
(

2πT̂s,srce

)3/2
ŜΩ
r




Then, using the following normalizations

SE0 = n0ΩC0T0Ŝ
E
0 ; S

vG‖
0 = n0ΩC0vTs0Ŝ

vG‖
0 and SΩ

0 =
n0ΩC0

ρ2
0

ŜΩ
0

permits to recover equations (K.43) to (K.48).

K.2.11 Proof for normalization of source of impurity (eqs.(K.49)-(K.50))

Let us consider Sns′ the source of impurity s′,

Sns′ =
S
ns′
0 Sr(

2πTs′,srce

ms′

)3/2

(
5

2
− µs′B

Ts′,srce
−
ms′v

2
G‖

2Ts′,srce

)
exp

(
−
ms′v

2
G‖

2Ts′,srce
− µs′B

Ts′,srce

)
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then

Sns′ =
Ŝ
ns′
0 Ŝr(

2πT0T̂s′,srce

Âs′m0

)3/2

(
5

2
− T0

B0

µ̂s′B0B̂

T0T̂s′,srce

−
m0Âs′v

2
Ts0
v̂2
G‖s′

2T0T̂s′,srce

)

× exp

(
−
m0Âs′v

2
Ts0
v̂2
G‖s′

2T0T̂s′,srce

− T0µ̂s′

B0

B0B̂

T0T̂s′,srce

)

=
1

v3
Ts0

Ŝ
ns′
0 Ŝr(

2πT̂s′,srce

)3/2

(
5

2
− µ̂s′B̂

T̂s′,srce

−
v̂2
G‖s′

2T̂s′,srce

)
exp

(
−

v̂2
G‖s′

2T̂s′,srce

− µ̂s′B̂

T̂s′,srce

)

Finally,

Sns′ =
Ŝns′

v3
Ts0

with Ŝns′ =
Ŝ
ns′
0 Ŝr(

2πT̂s′,srce

)3/2

(
5

2
− ˆ̄µs′ − ˆ̄v2

G‖s′

)
exp

(
−ˆ̄v2

G‖s′ − ˆ̄µs′
)

(K.63)

where ˆ̄vG‖s′ = v̂G‖s′/
√

2T̂s′,srce and ˆ̄µs′ = µ̂s′B̂/T̂s′,srce. This source of impurity Sns′ is compensated
by a negative source of major ion Sns such that

Zs

∫
SnsJvs dvG‖ dµs + Zs′

∫
Sns′Jvs′ dvG‖ dµs′ = 0

which gives, due to equations (K.51) and (K.63), the following expression in normalized quantities,

Z0Ẑs

∫
Ŝns
v3
Ts0

v3
Ts0Ĵvs dv̂G‖s dµ̂s + Z0Ẑs′

∫
Ŝns′

v3
Ts0

v3
Ts0Ĵvs′ dv̂G‖s′ dµ̂s′ = 0

Let us define the function H(v, µ) =
(

5
2 − µ− v2

)
exp

(
−v2 − µ

)
, then the previous equation reads,

Ẑs

∫
Ŝns0 Ŝr(

2πT̂s,srce

)3/2
H(v̂G‖s, µ̂s)Ĵvs dv̂G‖s dµ̂s

+ Ẑs′

∫
Ŝ
ns′
0 Ŝr(

2πT̂s′,srce

)3/2
H(v̂G‖s′ , µ̂s′)Ĵvs′ dv̂G‖s′ dµ̂s′ = 0


Ẑs

Ŝns0 Ŝr(
2πT̂s,srce

)3/2
+ Ẑs′

Ŝ
ns′
0 Ŝr(

2πT̂s′,srce

)3/2



∫
H(v̂G‖s, µ̂s)Ĵvs dv̂G‖s dµ̂s = 0

This gives the expression of Ŝns0 in function of Ŝ
ns′
0 as, Ŝns0 = − Ẑs′

Ẑs

(
T̂s′,srce

T̂s,srce

)3/2

Ŝ
ns′
0 , therefore accord-

ing to (K.63):

Ŝns = − Ẑs′
Ẑs

(
T̂s′,srce

T̂s,srce

)3/2
Ŝ
ns′
0 Ŝr(

2πT̂s,srce

)3/2

(
5

2
− ˆ̄µs − ˆ̄v2

G‖s

)
exp

(
−ˆ̄v2

G‖s − ˆ̄µs

)

In the code, the radial temperature profiles T̂s,srce and T̂s′,srce are imposed equal.
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Appendix L

Invariance

Let us consider a reference simulation without source terms. Let us also define a second simulation
similar to the reference one but where the mass and charge have been respectively multiplied by a
factor αA and αz. Then, it is shown in this appendix that 7 control parameters (αx, αt, αTe , αφ,
αcoll, αdiff and αKrook that respectively rescale the space, the time, the electron temperature, the
electrostatic potential, the collision operator, the diffusion term and the Krook operator) are sufficient
to ensure that both simulations –reference and scaled– are equivalent. The constraints on the different
control parameters are summarized in table L.1 and the proof follows.

Charge Mass Length Time Te Elec. potential

Scaling αZ αA
√
αA/αZ αA/αZ α−1

Z α−1
Z

Collision Krook Diffusion

Scaling 1 αZ/αA α−1
Z

Table L.1: Scaling which must be applied to the different characteristic quantities to obtain an equiv-
alence between any reference simulation and a scaled simulation

For the proof let us first consider the following normalized reference Vlasov equation (deduced
from eqs.(K.3) to (K.8)) for a species of charge Ẑs and mass Âs

∂ ˆ̄Fs

∂t̂
+

{
1√
Âs
v̂G‖b̂

∗
s +

(
v̂2
G‖ + µ̂sB̂

ẐsB̂∗‖sB̂

)(
b×∇̂∇∇B̂

)
+

1

B̂∗‖s

(
b×∇̂∇∇ ˆ̄φ

)}
· ∇̂∇∇ ˆ̄Fs

+

(
− 1√

Âs
µ̂sb̂

∗
s · ∇̂B̂ −

Ẑs√
Âs

b̂∗s · ∇̂ ˆ̄φ+ v̂G‖v̂E×Bs · ∇̂ ln B̂

)
∂ ˆ̄Fs
∂v̂G‖

=
1

B̂∗‖s

∂

∂v̂G‖


B̂∗‖sD̂‖s


 ∂ ˆ̄Fs
∂v̂G‖

+

(
v̂G‖s − V̂‖s,coll

)

v̂2
Ts,coll

ˆ̄Fs




+

1

B̂∗‖s

[
1

r̂

∂

∂r̂

(
r̂χ̂B̂∗‖s

∂ ˆ̄Fs
∂r̂

)]

− ν̂(r̂)( ˆ̄Fs − ˆ̄Fs,eq)

where

b̂∗s =
1

B̂∗‖s

(
B̂ +

√
Âs

v̂G‖
ẐsB̂
∇̂∇∇× B̂

)

and

D̂‖s(r̂, v̂) = Âs(r̂)
(

Φ(v̂)−G(v̂)

2v̂

)
with Âs(r̂) =

1√
Âs

(
3

√
π

2

v̂3
Ts,coll

ε̂3/2

q(r̂)R̂0

)
ν̂∗s

The Chrandrasekhar function G and the function Φ are defined by equation (K.28). Let us apply a
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scaling with the control parameters defined below, this leads to the following new Vlasov equation

1

αt

∂ ˆ̄Fs

∂t̂
+

{
1√
αAÂs

v̂G‖b̂
∗
s +

(
v̂2
G‖ + µ̂sB̂

αZẐsB̂∗‖sB̂

)(
b× 1

αx
∇̂∇∇B̂

)
+

1

B̂∗‖s

(
b× 1

αx
∇̂∇∇(αφ

ˆ̄φ)

)}
· ∇̂∇∇

ˆ̄Fs
αx

+

(
− 1√

αAÂs
µ̂sb̂

∗
s ·
∇̂B̂
αx
− αZẐs√

αAÂs
b̂∗s ·
∇̂(αφ

ˆ̄φ)

αx
+ v̂G‖

αφ
αx

v̂E×Bs ·
1

αx
∇̂ ln B̂

)
∂ ˆ̄Fs
∂v̂G‖

=
1

B̂∗‖s

∂

∂v̂G‖


B̂∗‖s

αcoll√
αAαx

D̂‖s


 ∂ ˆ̄Fs
∂v̂G‖

+

(
v̂G‖s − V̂‖s,coll

)

v̂2
Ts,coll

ˆ̄Fs






+
1

B̂∗‖s

[
1

αxr̂

∂

∂r̂

(
r̂αdiff χ̂B̂

∗
‖s

1

αx

∂ ˆ̄Fs
∂r̂

)]
− αKrookν̂(r̂)( ˆ̄Fs − ˆ̄Fs,eq)

with

b̂∗s =
1

B̂∗‖s

(
B̂ +

√
αAÂs

v̂G‖
αZẐsB̂

∇̂∇∇× B̂

αx

)

Concerning the left hand side, this equation is equivalent to the reference one, if and only if:

1

αt
=

1√
αAαx

=
1

αZα2
x

=
αφ
α2
x

(L.1)

1√
αA αx

=
αZ αφ√
αAαx

=
αφ
α2
x

(L.2)

Therefore, according to the last equality of equation (L.2), αx =
√
αA/αZ . Besides, due to the

last equality of equation (L.1), αφ = α−1
Z . And finally, due to the first equality of equation (L.1),

αt =
√
αA/αx, so αt = αA/αZ . Taking into account the collision operator 1/αt = αcoll/(

√
αAαx) which

gives αcoll = 1. In addition, the equivalence condition for the Krook operator leads to 1/αt = αKrook

thus αKrook = αZ/αA while for the diffusion term the condition reads 1/αt = αdiff/α
2
x, i.e αdiff = α−1

Z .
Concerning the equivalence for the quasi-neutrality let us consider normalized equation

−
∑

s

Âs∇̂∇∇⊥
(
n̂s,eq

B̂
∇̂∇∇⊥φ̂

)
+

1

Z0T̂e

∑

s

Ẑsn̂s,eq

[
φ̂− 〈 φ̂ 〉FS

]
=
∑

s

Ẑs

∫
Ĵ0

(
ˆ̄Fs − ˆ̄Fs,eq

)
d3v̂

Therefore, the rescaled equation reads:

−αAαφ
α2
x

∑

s

Âs∇̂∇∇⊥
(
n̂s,eq

B̂
∇̂∇∇⊥φ̂

)
+
αZαφ
αTe

1

Z0T̂e

∑

s

Ẑsn̂s,eq

[
φ̂− 〈 φ̂ 〉FS

]
=
∑

s

αZẐs

∫
Ĵ0

(
ˆ̄Fs − ˆ̄Fs,eq

)
d3v̂

The equivalence between reference and rescaled QN equations is ensured if and only if:

αAαφ
α2
x

=
αZαφ
αTe

⇒ αTe =
α2
xαZ
αA

and αZ =
αZαφ
αTe

⇒ αφ = αTe

Therefore αTe = 1/αZ which confirms the previous equality αφ = α−1
Z .

Finally, regarding the gyroaverage operator in the case of a Padé approximation, i.e : Ĵ0 ∼ 1 +
1
2
Âs
Ẑ2
s

µ̂s
B̂
∇̂∇∇2

⊥. its invariance is ensured provided the equality αA = α2
Zα

2
x is fulfilled. This equality is

already satisfied by the previous constraints.
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Appendix M

Detailed computations for local
conservation laws

In this appendix, we present several detailed calculations useful for the derivation of the gyrokinetic
conservation laws in section 4.4.

M.1 Useful integrals

Let us consider two arbitrary fields X, Y and Z. The aim of this paragraph is to compute the general
integral

I ≡
∫
Jx dχ dθ dϕX∇ · (Y∇⊥Z) (M.1)

where Jx is the jacobian is space, i.e Jx =
√
g with g representing the determinant of the metric

tensor. in order to perform this integration it is useful to write the operator ∇ · (Y∇⊥Z) by using
Einstein notations. Given that ∇ϕ · ∇θ = ∇ϕ · ∇χ = 0, we can write this operator as

∇ · (Y∇⊥Z) =
1√
g
∂i
(√
gY gij∂jZ

)
+

1√
g
∂ϕ (
√
gY gϕϕ∂ϕZ)

where i and j correspond to χ or θ. With these covariant notations, the perpendicular Laplacian-type
operator we consider is equivalent to 1

∇ · (Y∇⊥Z) = ∇⊥ · (Y∇⊥Z) =
1√
g
∂i
(√
gY gij∂jZ

)

Then, the previous integral (M.1) can be written as

I =

∫
Jx dχ dθ dϕX

{
1

Jx
∂i
(
Y Jx g

ij∂jZ
)}

Then, using an integration by parts on the coordinate i

I = −
∫

dχdθdϕ(∂iX)Y Jx g
ij(∂jZ)+

[∫
dθ dϕX Y Jx g

χj(∂jZ)

]

∂Lχ

+

[∫
dθ dϕX Y Jx g

θj(∂jZ)

]2π

0

where i and j are still θ or χ. Because of the periodicity in θ, the surface term resulting from the
integration by parts on i = θ (i.e last term of previous equation) is equal to 0. Therefore,

I = −
∫

dχ dθ dϕ(∂iX)Y Jx g
ij(∂jZ) +

[∫
dθ dϕX Y Jx g

χj(∂jZ)

]

∂Lχ

(M.2)

1 The direction ⊥ corresponds to an approximation of the poloidal plane because it is actually perpendicular to ∇ϕ
rather than B.
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M.2. EXPRESSION OF
∑

S QS
∫

Dτ∗Ū∂T F̄S FOR LOCAL ENERGY CONSERVATION

Using the fact that gij = ∇xi · ∇xj and ∇X = (∂iX)∇xi for all field X, then

I = −
∫
Jx dχ dθ dϕ

[
Y (∂iX)∇xi · ∇xj(∂jZ)

]
−
∫
Jx dθ dϕX Y∇χ · ∇xj(∂jZ)

therefore,

I = −
∫
Jx dχ dθ dϕ [Y∇⊥X · ∇⊥Z] +

∫
Jx dθ dϕX Y∇χ · ∇⊥Z (M.3)

Then, using again an integration by parts on the coordinate j for equation (M.2) and the fact that

the surface term
[∫

dχ dϕ (∂iX)Y Jx g
iθZ
]2π
0

= 0 due to periodicity in θ,

I =

∫
dχ dθ dϕ∂j

(
Y Jx g

ij∂iX
)
Z −

[∫
dθ dϕ (∂iX)Y Jx g

iχZ

]

∂Lχ

+

[∫
dθ dϕX Y Jx g

χj(∂jZ)

]

∂Lχ

Finally, previous equation gives

∫
Jx dχ dθ dϕX∇⊥ · (Y∇⊥Z) =

∫
Jx dχ dθ dϕ∇⊥ · (Y∇⊥X)Z

−
[∫
Jx dθ dϕY gχj {(∂jX)Z −X(∂jZ)}

]

∂Lχ

(M.4)

M.2 Expression of
∑

s qs
∫

dτ ∗Ū∂tF̄s for local energy conservation

The opposite of the total energy source −W =
∑

s qs
∫

dτ∗Ū∂tF̄s can be divided into two parts

∑

s

qs

∫
dτ∗Ū∂tF̄s =

∑

s

qs

∫
dτ∗U

(
J0 · ∂tF̄s

)
+
∑

s

qs

∫
dτ∗

{
(J0 · U) ∂tF̄s − U

(
J0 · ∂tF̄s

)}
(M.5)

Then, using the quasi-neutrality equation (2.13), the first term in eq.(M.5) can be expressed as

∑

species

qs

∫
dτ∗U

(
J0 · ∂tF̄s

)
= −

∑

species

qs

∫
Jx dθ dϕ U ∇⊥ ·

(
ns,eq

BΩs
∇⊥∂tU

)

Besides, using the general following equality (M.3) the previous equation is equivalent to

∑

species

qs

∫
dτ∗U

(
J0 · ∂tF̄s

)
= −1

2

∑

species

qs ∂t

∫
Jx dθ dϕ U ∇⊥ ·

(
ns,eq

BΩs
∇⊥U

)

Let us define the potential energy as Ep ≡ 1
2

∑
species qs

∫
dτ∗U

(
J0 · F̄s

)
this term can be identified

to the time derivative of potential energy,

∑

species

qs

∫
dτ∗U

(
J0 · ∂tF̄s

)
= ∂t


1

2

∑

species

qs

∫
dτ∗U

(
J0 · F̄s

)

 ≡ ∂tEp

Let us consider the low wavenumber approximation of the gyroaverage operator used in the code, i.e

the Padé approximation J0 ' 1 + 1
2∇ ·

(
msµs
q2
sB
∇⊥
)

(see section 2.4.1 for more details) then for each

species

IE = qs

∫
dτ∗

{
(J0 · U) ∂tF̄s − U

(
J0 · ∂tF̄s

)}

=
ms

2qs

∫
dτ∗

{
∂tF̄s ∇ ·

(µs
B
∇⊥U

)
− U ∇ ·

(µs
B
∇⊥∂tF̄s

)}
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APPENDIX M. DETAILS FOR LOCAL CONSERVATION LAWS

and using the result (M.3) of Appendix M.

IE =
ms

2qs
∂χ

[∫
dτ
{
∂tF̄s ∇ ·

(µs
B
∇⊥U

)
− U ∇ ·

(µs
B
∇⊥∂tF̄s

)}]
with dτ = dχ dτ∗

=
ms

2qs
∂χ

[
−
∫
Jx dχ dθ dϕ d3v

µ

B
∇⊥(∂tF̄s) · ∇⊥U +

∫
Jx dθ dϕ d3v ∂tF̄s

µ

B
∇χ · ∇⊥U

]

+
ms

2qs
∂χ

[∫
Jx dχ dθ dϕ d3v

µ

B
∇⊥U · ∇⊥(∂tF̄s)−

∫
Jx dθ dϕ d3v U

µ

B
∇χ · ∇⊥(∂tF̄s)

]

The first and third terms cancel each other out. The remaining terms

IE =
ms

2qs
∂χ

[∫
dτ∗ ∂tF̄s

µ

B
∇χ · ∇⊥U −

∫
dτ∗ U

µ

B
∇χ · ∇⊥(∂tF̄s)

]

So finally, using the gyrocenter perpendicular stress Ps,⊥ =
∫

d3vF̄sµsB,

∑

s

qs

∫
dτ∗Ū∂tF̄s = ∂tEp +

ms

2qs
∂χ

[∫
dτ∗ ∂tF̄s

µ

B
∇χ · ∇⊥U −

∫
dτ∗ U

µ

B
∇χ · ∇⊥(∂tF̄s)

]

M.3 Effect of the electric potential on the toroidal canonical mo-
mentum

The objective of this section is to prove that

dtPϕ = −qs∂ϕŪ with Pϕ = −qsχ+
msI

B
vG‖

Due to the fact that Pϕ is an invariant of the equilibrium motion, this result is equivalent to proving
that [

qsŪ , Pϕ
]
GC

= qs∂ϕŪ (M.6)

where [·, ·]GC indicate the Poisson brackets in the gyro-center coordinates. In the gyrokinetic frame-
work, we recall the expression of the Poisson brackets for two given fields X and Y

B∗‖s [X,Y ]GC =
B∗s
ms
·
(
∇∇∇X∂vG‖Y − ∂vG‖X∇∇∇Y

)
− b

qs
· (∇∇∇X ×∇∇∇Y )

where b = B/B is the unit vector parallel to the magnetic field. The quantities B∗s and B∗‖s are

respectively defined by eq.(1.39) and B∗‖s = B∗s · B/B, i.e B∗s ≡ B + ms
qs
vG‖∇∇∇ × b and B∗‖s ≡ B +

ms
qs
vG‖b · (∇∇∇× b).

− qsB∗‖s
[
Ū , Pϕ

]
GC

= −qs∇∇∇Ū ·
(
I

B
B− b×∇∇∇χ+

msvG‖
qs

[
I

B
(∇∇∇× b)−∇∇∇

(
I

B

)
× b

])
(M.7)

In the chosen coordinate system, we recall that the magnetic field B can be written as B = I(χ)∇ϕ+
∇ϕ×∇χ with I a flux function, then

B×∇χ = IB− I2∇ϕ = IB−B2R2∇ϕ (M.8)

∇×B = −(∂χI)B−R2∂χP∇ϕ (M.9)

Besides,

∇∇∇
(
I

B

)
× b = − I

B2
(∇∇∇B × b) +

1

B
(∇∇∇I × b) = − I

B2
(∇∇∇B × b) +

1

B
(∂χI∇χ)× b

=
I

B2
(b×∇∇∇B)− 1

B
(∂χI) b×∇χ (M.10)
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M.3. EFFECT OF THE ELECTRIC POTENTIAL ON THE TOROIDAL
CANONICAL MOMENTUM

Then according to (M.8) and (M.10), equation (M.7) becomes

−qsB∗‖s
[
Ū , Pϕ

]
GC

= −qs∇∇∇Ū ·
[
R2B∇ϕ+

msvG‖
qs

(
I

B
(∇∇∇× b)− I

B2
(b×∇∇∇B) +

1

B
(∂χI) b×∇χ

)]

Using the fact that ∇× b = b× ∇BB + 1
B∇×B, the previous equation reads

− qsB∗‖s
[
Ū , Pϕ

]
GC

= −qs∇∇∇Ū ·
(
R2B∇ϕ+

msvG‖
qs

[
I

B2
∇×B +

1

B
(∂χI) b×∇χ

])
(M.11)

Therefore,
I

B2
∇×B +

1

B
(∂χI) b×∇χ = −R2∇ϕ

(
I

B2
∂χP + ∂χI

)

So, using the fact that the volume element in guiding-center velocity space B∗‖s can be expressed as

B∗‖s = B − ms

qs
vG‖

(
∂χI +

I

B2
∂χP

)
(M.12)

equation (M.11) becomes

−qsB∗‖s
[
Ū , Pϕ

]
GC

= −qs∇∇∇Ū ·
(
R2B∗‖s∇ϕ

)
= −qs∂ϕŪ∇ϕ · ∇ϕR2B∗‖s = −qsB∗‖s∂ϕŪ

which is equivalent to equation (M.6).
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Appendix N

Diagnostics for local conservation laws
in GYSELA

As shown in chapter 4, the local conservation (i.e with a radial dependency) of density, momentum
and energy are parts of the validation of the global algorithm implemented in Gysela. They are
checked for each simulations. Good accuracy is a necessary (but not sufficient) proof for validation of
the physical results. Main terms required for these local conservation laws are directly computed in
the code and saved in HDF5 output files (for details see appendix O). In this appendix, we describe the
exact equations which have been implemented as post-processing of the code via Python diagnostics.
Let us remind that for the following the hat symbols refer to normalized quantities (see appendix K
for more details on Gysela normalization). Most of the quantities saved in the code are averaged on
the magnetic flux surfaces. Let us define this average for all function f as

〈 f 〉FS ≡
1

V ′

∫
fJx dθ dϕ where V ′ =

∫
Jx dθ dϕ

then in normalized coordinates 〈 f 〉FS ≡ 1
V̂ ′

∫
f Ĵx dθ dϕ with V̂ ′ =

∫
Ĵx dθ dϕ and Ĵx the normalized

jacobian. For the following, we remind that,

F̄s =
n0

v3
Ts0

ˆ̄Fs ; U =
T0

eZ0
φ̂ ;

∫
Jv dvG‖ dµs = v3

Ts0

∫
Ĵv dv̂G‖s dµ̂s (N.1)

and that the label of flux surfaces χ satisfy 1 χ = ρ2
0B0χ̂ i.e

∂χ =
1

ρ2
0B0

∂χ̂ with ∂χ̂ =
q

r̂
∂r̂ and ∇χ = ρ0B0∇̂χ̂ and ∇̂χ̂ =

r̂

q
∇̂r̂ (N.2)

Therefore,

vE×Bs · ∇χ = ρ0B0vT0

(
v̂E×Bs · ∇̂χ̂

)
with v̂E×Bs · ∇̂χ̂ =

1

B̂∗‖s

[
ˆ̄φ, χ̂
]

(N.3)

vDs · ∇χ = ρ0B0vT0

(
v̂Ds · ∇̂χ̂

)
with v̂Ds · ∇̂χ̂ =

(
v̂2
G‖s + µ̂sB̂

ẐsB̂∗‖sB̂

)[
B̂, χ̂

]
(N.4)

Es = T0Ês with Ês =
1

2
v̂2
G‖s + µ̂sB̂ (N.5)

1 The label of flux surfaces χ is defined as

χ = B0

∫ r

0

r′

q(r′)
dr′ = B0

∫ r̂

0

ρ0r̂
′

q(r̂′)
ρ0 dr̂′ = B0ρ

2
0χ̂ with χ̂ =

∫ r̂

0

r̂′

q(r̂′)
dr̂′

which gives
dχ

dr
= B0

r

q
therefore

∂

∂χ
=
∂r

∂χ

∂

∂r
=

q

rB0

∂

∂r
=

1

ρ2
0B0

∂

∂χ̂
with

∂

∂χ̂
=
q

r̂

∂

∂r̂

and

∇χ =
dχ

dr
∇r =

B0r

q
∇r = B0ρ0∇̂χ̂ with ∇̂χ̂ =

r̂

q
∇̂r̂
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N.1. LOCAL CHARGE DENSITY CONSERVATION

N.1 Local charge density conservation

Then, local charge density conservation (4.5) can be expressed with the flux surface average of the
guiding-center density 〈 nGs 〉FS and the flux surface average of the turbulent (resp. neoclassical) flux
of the guiding-centers 〈 ΓGCs, turb 〉FS (resp. 〈 ΓGCs, neo 〉FS) as

∑

s

qs

[
V ′∂t〈 nGs 〉FS + ∂χ

(
V ′
{
〈 ΓχGCs, turb 〉FS + 〈 ΓχGCs, neo 〉FS

})]
= 0

where

〈 nGs 〉FS = 〈
∫

d3v F̄s 〉FS with d3v = Jv dvG‖ dµs

〈 ΓχGCs, turb 〉FS = 〈
∫

d3v (vE×Bs · ∇χ) F̄s 〉FS

〈 ΓχGCs, neo 〉FS = 〈
∫

d3v (vDs · ∇χ) F̄s 〉FS

According to Eqs. (N.1)-(N.4), the previous equation leads to the normalized local density conservation

∑

s

Ẑs

[
∂

∂t̂
〈 n̂Gs 〉FS +

1

V̂ ′
q

r̂

∂

∂r̂

(
V̂ ′

r̂

q

{
〈 Γ̂rGCs, turb 〉FS + 〈 Γ̂rGCs, neo 〉FS

})]
= 0 (N.6)

with
∫
· d3v̂ =

∫
· Ĵv dv̂G‖s dµ̂s and

〈 n̂Gs 〉FS = 〈
∫

d3v̂ ˆ̄Fs 〉FS (N.7)

〈 Γ̂rGCs, turb 〉FS = 〈
∫

d3v̂
(
v̂E×Bs · ∇̂r̂

)
ˆ̄Fs 〉FS (N.8)

〈 Γ̂rGCs, neo 〉FS = 〈
∫

d3v̂
(
v̂Ds · ∇̂r̂

)
ˆ̄Fs 〉FS (N.9)

where the normalization of the guiding-center density reads 〈nGs 〉FS = n0〈 n̂Gs 〉FS while the guiding-
center turbulent and neoclassical fluxes respectively satisfy 〈 ΓrGCs, turb 〉FS = n0B0ρ0vT0〈 Γ̂rGCs, turb 〉FS

and 〈 ΓrGCs, neo 〉FS = n0B0ρ0vT0〈 Γ̂rGCs, neo 〉FS.

Code comment: In the code, 〈 n̂Gs 〉FS ≡ densGC FSavg, 〈 Γ̂rGCs, turb 〉FS ≡ GammaGC turb r FSavg and

〈 Γ̂rGCs, neo 〉FS ≡ GammaGC neo r FSavg.

N.2 Local energy conservation

The local energy conservation (4.16) is expressed in function of the magnetic flux surface averages as

∑

s

[
V ′∂t (〈 EKs 〉FS + 〈 Eps 〉FS) + ∂χ

(
V ′〈Qχs, turb 〉FS

)
+

∂χ

(
V ′〈Qχs, neo 〉FS

)
+ ∂χ

(
V ′〈Qχs,pot 〉FS

)
+ ∂χ

(
V ′〈Qχs, pol 〉FS

)]
= 0

with the flux surface average of kinetic and potential energies defined as

〈 EKs 〉FS = 〈
∫

d3v Es F̄s 〉FS where Es =
1

2
msv

2
G‖ + µsB

〈 Eps 〉FS = qs〈
1

2

∫
d3vU (J0 · F̄s) 〉FS =

qs
2
〈 U
∫

d3v (J0 · F̄s) 〉FS
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APPENDIX N. LOCAL CONSERVATION LAWS IN GYSELA

and the different energy fluxes averaged on the flux surfaces given by

〈Qχs, turb 〉FS = 〈
∫

d3v Es vχE×Bs F̄s 〉FS

〈Qχs, neo 〉FS = 〈
∫

d3v Es vχDs F̄s 〉FS

〈Qχs, pot 〉FS = qs〈
∫

d3v (J0s · U)
(
vχE×Bs + vχDs

)
F̄s 〉FS

〈Qχs, pol 〉FS =
ms

2qs
〈 1

B2
(∂tPs,⊥∇U · ∇χ− U∇(∂tPs,⊥) · ∇χ) 〉FS

where the integral in velocity space is defined as
∫
· d3v =

∫
· Jv dvG‖ dµs and the contravariant

components of the velocities are vχE×Bs = vE×Bs · ∇χ and vχDs = vDs · ∇χ. The perpendicular stress
Ps,⊥ which is equivalent to the perpendicular pressure ps,⊥ is defined as Ps,⊥ = ps,⊥ =

∫
d3vF̄sµsB.

For the following we use the perpendicular pressure notation. Then, the normalized local energy
conservation reads

∑

s

[
V̂ ′

∂

∂t̂

(
〈 ÊKs 〉FS + 〈 Êps 〉FS

)
+

q

r̂

∂

∂r̂

(
V̂ ′

r̂

q

{
〈 Q̂rs, turb 〉FS + 〈 Q̂rs, neo 〉FS + 〈 Q̂rs, pot 〉FS + 〈 Q̂rs, pol 〉FS

})]
= 0 (N.10)

with

〈 ÊKs 〉FS = 〈
∫

d3v̂ Ês ˆ̄Fs 〉FS ; 〈 Êps 〉FS = Ẑs〈
1

2
φ̂

∫
d3v̂ (J0 · ˆ̄Fs) 〉FS (N.11)

〈 Q̂rs, turb 〉FS = 〈
∫

d3v̂ Ês
(
v̂E×Bs · ∇̂r̂

)
ˆ̄Fs 〉FS (N.12)

〈 Q̂rs, neo 〉FS = 〈
∫

d3v̂ Ês
(
v̂Ds · ∇̂r̂

)
ˆ̄Fs 〉FS (N.13)

〈 Q̂rs, pot 〉FS = Ẑs〈
∫

d3v̂ (J0 · φ̂)
[(

v̂E×Bs · ∇̂r̂
)

+
(
v̂Ds · ∇̂r̂

)]
ˆ̄Fs 〉FS (N.14)

〈 Q̂rs, pol 〉FS =
1

2

Âs

Ẑs
〈 1

B̂2

(
∂p̂s,⊥
∂t̂
∇̂φ̂ · ∇̂r̂ − φ̂∇̂

(
∂p̂s,⊥
∂t̂

)
· ∇̂r̂

)
〉FS (N.15)

where Es = T0Ês, 〈EKs 〉FS = n0T0〈 ÊKs 〉FS, 〈Eps 〉FS = n0T0〈 Êps 〉FS and where all the energy fluxes
are normalized as 2 〈Qs 〉FS = n0T0vT0B0ρ0〈 Q̂s 〉FS. The normalized perpendicular pressure is given

2Let us take the example of the flux surface average of Qχs, pol which is given by

〈Qχs, pol 〉FS =
ms

2qs
〈 1

B2
(∂tps,⊥∇U · ∇χ− U∇(∂tps,⊥ · ∇χ) 〉FS

=
Âsm0

2Z0 eẐs

[
〈 1

B2
0B̂

2

(
ΩC0

∂(n0T0p̂s,⊥)

∂t̂

1

ρ0
∇̂
(
T0

eZ0
φ̂

)
·
(
ρ0B0∇̂χ̂

))
〉FS

− 〈 1

B2
0B̂

2

(
T0

eZ0
φ̂

1

ρ0
∇̂
(

ΩC0

∂(n0T0p̂s,⊥)

∂t̂
·
(
ρ0B0∇̂χ̂

)))
〉FS

]

= KQ, norm
Âs

2Ẑs

[
〈 1

B̂2

(
∂p̂s,⊥
∂t̂
∇̂φ̂ · ∇̂χ̂− φ̂∇̂

(
∂p̂s,⊥
∂t̂

· ∇̂χ̂
))
〉FS

]
where due to the relations vT0 = ρ0ΩC0 and ΩC0 = Z0 e B0/m0, the normalization coefficient reads

KQ, norm =
m0

Z0 e

1

B2
0

ΩC0

n0T0

ρ0

T0

Z0 e
ρ0B0 = n0T0

1

Ω2
C0

v2
T0

ΩC0

ρ0
ρ0B0 = n0T0vT0ρ0B0

Then, 〈Qχs, pol 〉FS = n0T0vT0B0ρ0〈 Q̂χs, pol 〉FS with

〈 Q̂χs, pol 〉FS =
Âs

2Ẑs

[
〈 1

B̂2

(
∂p̂s,⊥
∂t̂
∇̂φ̂ · ∇̂χ̂− φ̂∇̂

(
∂p̂s,⊥
∂t̂

· ∇̂χ̂
))
〉FS

]
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by p̂s,⊥ =
∫

d3v̂ ˆ̄Fsµ̂sB̂ such that ps,⊥ = n0T0p̂s,⊥.

Code comment: In the code, the energies are labelled as 〈 ÊKs 〉FS ≡ Enkin FSavg and 〈 Êps 〉FS ≡
Enpot FSavg. The energy fluxes are called 〈 Q̂rs, x 〉FS ≡ QGC x r FSavg for x ∈ {turb,neo, pot, pol}
while the perpendicular pressure is defined as p̂s,⊥ ≡ press perp FSavg and ∂tp̂s,⊥ ≡ dpress perp dt FSavg.

The term 〈 Q̂rs, pol 〉FS requires the time derivative of the 3D perpendicular pressure p̂s,⊥(r, θ, ϕ).
Therefore, to avoid to save this 3D field, the energy flux term due to polarization is computed in
post-processing by using the 3D diagnostic savings.

Other normalized quantities as the pressure and the heat fluxes (not required for the energy conser-
vation laws but interesting as physical quantities) are saved. The pressure terms are called 〈 p̂s 〉FS ≡
pressGC FSavg and 〈 p̂s, ‖ 〉FS ≡ pressGC par FSavg where

〈 p̂s 〉FS = 〈 p̂s, ‖ 〉FS + 〈 p̂s,⊥ 〉FS with and

〈 p̂s, ‖ 〉FS = 〈
∫

d3v̂
1

2

(
v̂G‖ − V̂‖

)2 ˆ̄Fs 〉FS

The normalized parallel velocity V̂‖ is defined as

V̂‖(r, θ, ϕ) =

∫
d3v̂ v̂G‖

ˆ̄Fs
∫

d3v̂ ˆ̄Fs
≡ nVparGC

nGC
≡ VparGC

The normalized heat fluxes are called 〈q̂s, turb〉FS ≡ HfluxGC turb r FSavg and 〈q̂s, neo〉FS ≡ HfluxGC neo r FSavg

where

〈 q̂s, turb 〉FS = 〈
∫

d3v̂

[
1

2

(
v̂G‖ − V̂‖

)2
+ µ̂B̂

](
v̂E×Bs · ∇̂r̂

)
ˆ̄Fs 〉FS

〈 q̂s, neo 〉FS = 〈
∫

d3v̂

[
1

2

(
v̂G‖ − V̂‖

)2
+ µ̂B̂

](
v̂Ds · ∇̂r̂

)
ˆ̄Fs 〉FS

N.3 Local conservation of the toroidal momentum

In the code, the local conservation of the toroidal momentum (4.25) is expressed as

∑

s

[
∂t〈 Lϕ, s 〉FS +

1

V ′
∂χ

(
V ′
{
〈Πχ

ϕ s, turb 〉FS + 〈Πχ
ϕ s, neo 〉FS

})
+ 〈 Tχs, pol 〉FS

]

=
∑

s

[
〈 Jχs, turb 〉FS + 〈 Jχs, neo 〉FS

]

with uϕ = (I/B)vG‖ = R2(b · ∇ϕ)vG‖ and

〈 Lϕ, s 〉FS = ms〈
∫

d3v uϕF̄s 〉FS

〈Πχ
ϕ s, turb 〉FS = ms〈

∫
d3v uϕ v

χ
E×Bs F̄s 〉FS

〈Πχ
ϕ s, neo 〉FS = ms〈

∫
d3v uϕ v

χ
Ds
F̄s 〉FS

〈 Tχs, pol 〉FS = qs〈
∫

d3v F̄s ∂ϕ(J0 · U) 〉FS

〈 Jχs, turb 〉FS = qs〈
∫

d3v vχE×Bs F̄s 〉FS and 〈 Jχs, neo 〉FS = qs〈
∫

d3v vχDs F̄s 〉FS
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Then, using the following equivalences with the normalized quantities for the toroidal momentum
3 〈 Lϕ, s 〉FS = n0m0ρ0vTs0〈 L̂ϕ, s 〉FS, for the polarization flux of momentum term 〈 Tχs, pol 〉FS =

n0T0〈 T̂χs,pol 〉FS, for the Reynold stress 4 〈 Πχ
ϕs 〉FS = n0m0vT0vTs0ρ

2
0B0〈 Π̂χ

ϕs 〉FS, and finally for the

radial current 5 〈Jχs 〉FS = n0Z0 e vT0(ρ0B0)〈 Ĵχs 〉FS, the normalized equation for the local conservation
of the toroidal momentum reads 6 :

∑

s

[
∂

∂t̂
〈 L̂ϕ, s 〉FS +

1

V̂ ′
q

r̂

∂

∂r̂

(
r̂

q
V̂ ′
{
〈 Π̂r

ϕ s, turb 〉FS + 〈 Π̂r
ϕ s, neo 〉FS

})
+

√
Âs〈 T̂χs, pol 〉FS

]
=
∑

s

√
Âs
r̂

q

[
〈 Ĵrs, turb 〉FS + 〈 Ĵrs, neo 〉FS

]
(N.16)

3 Using the following relation,

uϕ = R2(b · ∇ϕ)vG‖ = ρ2
0R̂

2

(
b̂ · 1

ρ0
∇̂ϕ
)
vTs0 v̂G‖s = ρ0vTs0 ûϕ with ûϕ = R̂2

(
b̂ · ∇̂ϕ

)
v̂G‖s

the flux surface average of the toroidal momentum can be expressed as

〈 Lϕ, s 〉FS = ms〈
∫

d3v uϕF̄s 〉FS = Âsm0n0〈
∫

d3v̂(ρ0vTs0 ûϕ) ˆ̄Fs 〉FS

= n0m0ρ0vTs0〈 L̂ϕ, s 〉FS with L̂ϕ, s = Âs〈
∫

d3v̂ûϕ
ˆ̄Fs 〉FS

4 The Reynold stress can be expressed as

〈Πχ
ϕs
〉FS = ms〈

∫
d3v uϕ

(
vχE×Bs

+ vχDs

)
F̄s 〉FS

= Âsm0n0〈
∫

d3v̂ (ρ0vTs0 ûϕ) (ρ0B0vT0)
(
v̂E×Bs · ∇̂χ̂+ v̂Ds · ∇̂χ̂

)
ˆ̄Fs 〉FS

Therefore, 〈Πχ
ϕs
〉FS = n0m0ρ

2
0B0vTs0vT0〈 Π̂χ

ϕs
〉FS with 〈 Π̂χ

ϕs
〉FS = Âs〈

∫
d3v̂ûϕ(v̂G · ∇̂χ̂) ˆ̄Fs 〉FS.

5The radial current can be expressed as

〈 Jχs 〉FS = qs〈
∫

d3v
(
vχE×Bs

+ vχDs

)
F̄s 〉FS

= Z0 eẐsn0〈
∫

d3v̂ ρ0B0vT0

(
v̂E×Bs · ∇̂χ̂+ v̂Ds · ∇̂χ̂

)
ˆ̄Fs 〉FS

Therefore, 〈 Jχs 〉FS = n0Z0 e vT0(ρ0B0)〈 Ĵχs 〉FS with 〈 Ĵχs 〉FS = Ẑs〈
∫

d3v̂
(
v̂G · ∇̂χ̂

)
ˆ̄Fs 〉FS.

6According to the equivalence 〈 Lϕ, s 〉FS = n0m0ρ0vTs0〈 L̂ϕ, s 〉FS, 〈 Tχs, pol 〉FS = n0T0〈 T̂χs, pol 〉FS, 〈 Πχ
ϕs
〉FS =

n0m0vT0vTs0ρ
2
0B0〈 Π̂χ

ϕs
〉FS and 〈 Jχs 〉FS = n0Z0 e vT0(ρ0B0)〈 Ĵχs 〉FS, the local conservation of the toroidal momentum

reads: ∑
s

[
ΩC0n0m0ρ0vTs0∂t̂〈 L̂ϕ, s 〉FS +

1

V̂ ′
1

ρ2
0B0

∂χ̂
(
V̂ ′
{
n0m0vT0vTs0ρ

2
0B0〈 Π̂χ

ϕs
〉FS

})
+ n0T0〈 Tχs, pol 〉FS

]
=
∑
s

n0Z0 e ρ0B0vT0〈 Jχs 〉FS

∑
s

[
∂t̂〈 L̂ϕ, s 〉FS +

1

V̂ ′
∂χ̂
(
V̂ ′
{
〈 Π̂χ

ϕs
〉FS

})
+KT, norm〈 Tχs, pol 〉FS

]
=
∑
s

KJ, norm〈 Jχs 〉FS

with KT, norm = T0/ (m0vT0vTs0) = vT0/vTs0 =
√
Âs and KJ, norm =

Z0 e ρ0B0vT0
m0vT0

vTs0
=

ΩC0
ρ0

vTs0
=
√
Âs.
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where

〈 L̂ϕ, s 〉FS = Âs〈
∫

d3v̂ûϕ
ˆ̄Fs 〉FS with ûϕ =

(
R̂2b̂ · ∇̂ϕ

)
v̂G‖s (N.17)

〈 Π̂r
ϕ s, turb 〉FS = Âs〈

∫
d3v̂ ûϕ

(
v̂E×Bs · ∇̂r̂

)
ˆ̄Fs 〉FS (N.18)

〈 Π̂r
ϕ s, neo 〉FS = Âs〈

∫
d3v̂ ûϕ

(
v̂Ds · ∇̂r̂

)
ˆ̄Fs 〉FS (N.19)

〈 T̂χs,pol 〉FS = Ẑs〈
∫

d3v̂ ∂ϕ(J0 · φ̂) ˆ̄Fs 〉FS (N.20)

〈 Ĵrs, turb 〉FS = Ẑs〈
∫

d3v̂
(
v̂E×Bs · ∇̂r̂

)
ˆ̄Fs 〉FS and (N.21)

〈 Ĵrs, neo 〉FS = Ẑs〈
∫

d3v̂
(
v̂Ds · ∇̂r̂

)
F̄s 〉FS (N.22)

Let us notice that the radial currents are related to the guiding-center fluxes as 〈 Ĵrs, turb 〉FS =

Ẑs〈 Γ̂rGCs, turb 〉FS with 〈 Γ̂rGCs, turb 〉FS defined by (N.8) and 〈 Ĵrs, neo 〉FS = Ẑs〈 Γ̂rGCs, neo 〉FS with

〈 Γ̂rGCs, neo 〉FS defined by (N.9).

Code comment: In the code, 〈 L̂ϕ, s 〉FS ≡ Lphi GC FSavg while the Reynold stresses are defined
as 〈 Π̂r

ϕ s, turb 〉FS ≡ RSphiGC turb r FSavg and 〈 Π̂r
ϕ s, neo 〉FS ≡ RSphiGC neo r FSavg. 〈 T̂χs, pol 〉FS ≡

TpolGC chi FSavg, 〈Ĵrs, turb〉FS ≡ Ẑs× GammaGC turb r FSavg and finally 〈Ĵrs, neo〉FS ≡ Ẑs× GammaGC neo r FSavg.
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N.4 Input data files

This appendix contains the input data files of simulations presented in this report.

15/01/2015 A150_FD_allwcoll2_semitore 1

file:///home/virginie/Writing_git/article_GYSELA_2014/Work_tools/A150_FD_allwcoll2_semitore

#******************************************
# job parameters
#******************************************
NB_RESTART   = 5
TIME         = 10:00:00
JOBNAME      = A75_A1Z1

#*******************************************
#  Variables used to specify if the
#   simulation is a restart from
#   another one
#*******************************************
SEARCH_SP0   = 0           ! 0 if no restart, 1 otherwise
DIR_SP0      =             ! if SEARCH_SP0=1, name of the directory

                   !   containing the major species restart
files

#*******************************************
#  Variables for parallelization
#*******************************************
NSPECIES = 1
NPROC_R  = 2
NPROC_TH = 4
NPROC_MU = 16
NTHREAD  = 4         

#*******************************************
#  Variables for radial profile input files
#*******************************************
ns0_sp0_filename = ns0_sp0_test.dat
ns0_sp1_filename = ns0_sp1_test.dat
Ts0_sp0_filename = Ts0_sp0_test.dat
Ts0_sp1_filename = Ts0_sp1_test.dat
q_filename       = safety_factor_test.dat

#******************************************
# gysela input datas
#******************************************
&PARALLEL
  Nspecies       = $NSPECIES
  Nbproc_r       = $NPROC_R
  Nbproc_theta   = $NPROC_TH
  Nbproc_mu      = $NPROC_MU
  bloc_phi       = $NTHREAD
  Nbthread       = $NTHREAD
  large_platform = .true.
  distrib3D      = .true.,
/

&MESH
  CylindricalGeometry = .false.
  Nr                  = 255
  Ntheta              = 256
  Nphi                = 128
  Nvpar               = 127
  Nmu                 = $((NPROC_MU-1))
  a                   = 150.              
  rhomin              = 0.15
  rhomax              = 0.85

15/01/2015 A150_FD_allwcoll2_semitore 2

file:///home/virginie/Writing_git/article_GYSELA_2014/Work_tools/A150_FD_allwcoll2_semitore

  Ltheta              = 6.283185307179586476925286766559005768394
  Lphi                = 3.141592653589793238462643383279502884197
  aspect_ratio        = 3.3
  nb_vth0             = 7.
  Lmu                 = 12.
  mumin               = 0.,
/

&EQUIL
  canonical_profile          = 0
  tau0                       = 1.
  A0                         = 1.
  Z0                         = 1.
  As                         = 1.
  Zs                         = 1.
  species_frac               = 1.
  read_ns0                   = .false.
  read_Ts0                   = .false.
  read_q                     = .false.
  read_Vpar0                 = .false.
  profile_choice             = 2
  rpeak                      = 0.5
  kappa_ns0                  = 2.2
  kappa_Ts0                  = 8.
  deltar_ns0                 = 0.04   
  deltar_Ts0                 = 0.04 
  q_profile                  = 2
  q_param1                   = 1.5
  q_param2                   = 1.7
  q_param3                   = 2.8
  q_param4                   = 1.
  magnetic_drift             = .true.
  perturb_amplitude          = 0.001
  perturb_choice             = 2
  m                          = 28
  n                          = 10
  FFTpotential_filter        = 0
  FFTpotential_filter_deltam = 0.
  !--> Gyroaverage tunable input parameters
  gyroaverage                = .true.
! gyro_strategy              = ""
! All possible choices for gyro_strategy (by default "PADE")
! ("PADE", "LIBGYROAVG_HERMITE", "LIBGYROAVG_HERMITE_C1", 
!  "LIBGYROAVG_HERMITE_C1_PRE_COMP")
! gyro_Nbpoints              = 32,     ! usefull only if
gyro_strategy=LIBGYROAVG_*
  TF_ripple                  = .false.
  delta_ripple               = 0
  N_ripple                   = 0,
/

&COLLISION_OPERATOR
  collisions      = .true.
  version_coll    = 2
  energy_transfer = .false.
  moment_transfer = .false.
  nustar          = 0.28
  coll_FMrefresh  = 10
  coll_nbstep     = 1,

15/01/2015 A150_FD_allwcoll2_semitore 3

file:///home/virginie/Writing_git/article_GYSELA_2014/Work_tools/A150_FD_allwcoll2_semitore

/

&BUFFER_REGION
  coef_krook       = 0.01
  coef_diffr       = 0.015
  coef_diffth      = 0.0
  coef_nustar      = 20.
  buffer_asymmetry = .false.
  right_buffer_only = .true.
  buffer_location  = 0.06
  buffer_stiffness = 0.017635,
/

&ALGORITHM
  Vlasov_scheme = "BSL"
  limiter       = 0
  deltat        = 5.
  nbiter        = 250
  dt_diag       = 50.,
/

&SOURCE
  gradient_driven = .false.
  grad_version    = 1
  flux_driven     = .false.
  heat_source     = .false.
  heat_version    = 0
  Sce0            = 0.0217
  TS              = 1.5
  rhoS            = 0.
  LS              = 0.12
  dens_source     = .false.
  Sce_dens        = 0.01
  TS_dens         = 1.
  rhoS_dens       = 0.1
  LS_dens         = 0.01
  mom_source      = .false.
  Sce_mom         = -0.001
  TS_mom          = 1.5
  rhoS_mom        = 0.
  LS_mom          = 0.1
  vor_source      = .false.
  Sce_vor         = 0.03
  TS_vor          = 1.
  rhoS_vor        = 0.1
  LS_vor          = 0.01,
/

&TEST
  !--> Tests for general numerics
  integral_vperp       = .true.
  integration_scheme   = 2
  !--> Tests for QN solver
  solve_QN             = .true.
  QN_version           = 5
  QN_comm_version      = 1
  QN_coef_polarization = 1.
  QN_coef_Phi00        = 1
  Phi00_BCrmin_Neumann = .false.

15/01/2015 A150_FD_allwcoll2_semitore 4

file:///home/virginie/Writing_git/article_GYSELA_2014/Work_tools/A150_FD_allwcoll2_semitore

  QN_species_impact    = 1.
  !--> Tests for Vlasov solver
  adaptive_deltat      = .false.
  advec2D_deltat       = 0.
  reduced_deltat       = 0.
  reduced_begin        = 800000.
  reduced_end          = 400000.
! hffilter_strategy    = "" ! ("DEFAULT", "NONE", "FFT", "WAVELET")
! hffilterfreq         = 0
! hffilterfref         = 0
  deltaF_in_diff       = .true.
  avoidtaylor          = .false.
  deltaF_in_advec      = .false.
  split_linear         = .false.
  clampv               = .false.
  cancel_nonlin        = .false.
  diagf                = .false.
  !--> Tests for RHS of Boltzmann equation
  RHS_only             = .false.
  !--> Tests for equilibrium definition
  feq_choice           = 1
  canonical_vpar0      = 4
  hvpar_in_fperturb    = .true.
  !--> Tests with simplified physics
  BstareqB             = .false.
  single_m             = .false.
  single_n             = .false.
  Rosenbluth_Hinton    = .false.
  !--> Tests for computer sciences
  ask_for_checksum     = 1
  modulo_restart_iter  = 150
! compact_rstfile = .false. ! 
  checkoverflow        = .false.,
/

&OUTPUT
  integration_CS       = .true.
  diag_level           = 7
  Phi3D_saving         = .false.
  Moments3D_saving     = .false.
  fluxes3D_GC_saving   = .false.
  f5D_saving           = .false.
  Phi3D_dt_diag        = 500.
  Moments3D_dt_diag    = 500.
  fluxes3D_GC_dt_diag  = 500.
  f5D_dt_diag          = 500.
  spectra_saving       = .false.
  spectra_dt_diag      = 10.
  r_diags              = 31
  doubleSP_m           = 2
  doubleSP_n           = 0
  iter_beg_write_trace = 1
  iter_end_write_trace = 3,
/

Figure N.1: Input data file used in the code for the first simulation for invariance tests (see section
4.2).
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26/01/2015 test_RH_q1.9_Nr64Ntheta64Nvpar128_dt5 1

file:///home/virginie/Writing_git/article_GYSELA_2014/Work_tools/test_RH_q1.9_Nr64Ntheta64Nvpar128_dt5

#******************************************
# job parameters
#******************************************
NB_RESTART   = 0
TIME         = 08:00:00
MACHINE_FILE = 
JOBNAME      = gysela5D

#*******************************************
#  Variables used to specify if the
#   simulation is a restart from
#   another one
#*******************************************
SEARCH_SP0   = 0           ! 0 if no restart, 1 otherwise
DIR_SP0      =             ! if SEARCH_SP0=1, name of the directory

                   !   containing the major species restart
files

#*******************************************
#  Variables for parallelization
#*******************************************
NSPECIES = 1
NPROC_R  = 2
NPROC_TH = 1
NPROC_MU = 16
NTHREAD  = 4

#*******************************************
#  Variables for radial profile input files
#*******************************************
ns0_sp0_filename = ns0_sp0_test.dat
ns0_sp1_filename = ns0_sp1_test.dat
Ts0_sp0_filename = Ts0_sp0_test.dat
Ts0_sp1_filename = Ts0_sp1_test.dat
q_filename       = safety_factor_test.dat
Vpar0_filename   = Vpar0_test.dat
ripple_filename  = ripple_test.dat

#******************************************
# gysela input datas
#******************************************
&PARALLEL
  Nspecies       = $NSPECIES
  Nbproc_r       = $NPROC_R
  Nbproc_theta   = $NPROC_TH
  Nbproc_mu      = $NPROC_MU
  bloc_phi       = $NTHREAD
  Nbthread       = $NTHREAD
  large_platform = .true.
  distrib3D      = .false.,
/

&MESH
  CylindricalGeometry = .false.
  Nr                  = 63
  Ntheta              = 64
  Nphi                = 32
  Nvpar               = 127
  Nmu                 = $((NPROC_MU-1)) 

26/01/2015 test_RH_q1.9_Nr64Ntheta64Nvpar128_dt5 2

file:///home/virginie/Writing_git/article_GYSELA_2014/Work_tools/test_RH_q1.9_Nr64Ntheta64Nvpar128_dt5

  a                   = 100.
  rhomin              = 0.2
  rhomax              = 0.8
  Ltheta              = 6.283185307179586476925286766559005768394
  Lphi                = 6.283185307179586476925286766559005768394
  aspect_ratio        = 2.78
  nb_vth0             = 7.
  Lmu                 = 12.
  mumin               = 0.,
/

&EQUIL
  canonical_profile          = 1
  tau0                       = 1.
  A0                         = 1.
  Z0                         = 1.
  As                         = 1.
  Zs                         = 1.
  species_frac               = 1.
  read_ns0                   = .false.
  read_Ts0                   = .false.
  read_q                     = .false.
  read_Vpar0                 = .false.
  profile_choice             = 1
  rpeak                      = 0.5
  kappa_ns0                  = 0.0000001
  kappa_Ts0                  = 0.0000001
  deltar_ns0                 = 0.2
  deltar_Ts0                 = 0.1
  q_profile                  = 2
  q_param1                   = 1.9
  q_param2                   = 0
  q_param3                   = 1.9
  q_param4                   = 0.
  magnetic_drift             = .true.
  perturb_amplitude          = 0.001
  perturb_choice             = 1
  m                          = 0
  n                          = 0
  FFTpotential_filter        = 0
  FFTpotential_filter_deltam = 0.
  !--> Gyroaverage tunable input parameters
  gyroaverage                = .true.
! gyro_strategy              = ""
! All possible choices for gyro_strategy (by default "PADE")
! ("PADE", "LIBGYROAVG_HERMITE", "LIBGYROAVG_HERMITE_C1", 
!  "LIBGYROAVG_HERMITE_C1_PRE_COMP")
! gyro_Nbpoints              = 32,     ! usefull only if
gyro_strategy=LIBGYROAVG_*
  TF_ripple                  = .false.
  read_ripple                = .false.
  delta_ripple               = 0
  N_ripple                   = 0,
/

&COLLISION_OPERATOR
  collisions      = .false.
  version_coll    = 2
  energy_transfer = .false.
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  moment_transfer = .false.
  nustar          = 0.1
  coll_FMrefresh  = 2
  coll_nbstep     = 1,
/
  
&BUFFER_REGION
  coef_krook       = 0.0
  coef_diffr       = 0.0
  coef_diffth      = 0.0
  coef_nustar      = 0.
  buffer_asymmetry = .false.
  buffer_location  = 0.1
  buffer_stiffness = 0.1,
/

&ALGORITHM
  Vlasov_scheme = "BSL"
  limiter       = 0
  deltat        = 5.
  nbiter        = 4000
  dt_diag       = 50.,
/

&SOURCE
  gradient_driven = .false.
  grad_version    = 1
  flux_driven     = .false.
  heat_source     = .false.
  heat_version    = 0
  Sce0            = 0.01
  TS              = 1.
  rhoS            = 0.1
  LS              = 0.01
  dens_source     = .false.
  Sce_dens        = 0.01
  TS_dens         = 1.
  rhoS_dens       = 0.1
  LS_dens         = 0.01
  mom_source      = .false.
  Sce_mom         = 0.02
  TS_mom          = 1.
  rhoS_mom        = 0.1
  LS_mom          = 0.02
  vor_source      = .false.
  Sce_vor         = 0.03
  TS_vor          = 1.
  rhoS_vor        = 0.1
  LS_vor          = 0.03
  fp_source       = .false.
  fast_part       = .false.
  Sce_fp          = 0.01
  Sce_fpplus      = 0.6
  TS_fp           = 0.5
  v0_fp           = 2.
  rhoS_fp         = 0.5
  LS_fp           = 0.015
  alpha_trapp     = 1.,
/
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&FAST_PARTICLES
  bump_on_tail  = .false.
  fp_rshape     = .false.
  fp_lambda     = .true.
  fp_mom        = .false.
  fp_energy     = .true.
  fp_momgauss   = .false.
  Eb_fp         = 50.
  Emin_fp       = 0.
  n_fp          = 0.
  dn_fp         = 0.
  E_critfp      = 5.
  rho_0fp       = 0.5
  deltarhofp    = 0.01
  Lambda_0fp    = 0.5
  deltaLambdafp = 0.2
  psi_0fp       = 0.5
  deltapsifp    = 0.01
  zetabar       = 4.
/

&TEST
  !--> Tests for general numerics
  integral_vperp       = .true.
  integration_scheme   = 2
  !--> Tests for QN solver
  solve_QN             = .true.
  QN_version           = 3
  QN_comm_version      = 1
  QN_coef_polarization = 1.
  QN_coef_Phi00        = 1
  Phi00_BCrmin_Neumann = .false.
  QN_species_impact    = 1.
  !--> Tests for Vlasov solver
  adaptive_deltat      = .false.
  advec2D_deltat       = 0.
  reduced_deltat       = 0.
  reduced_begin        = 800000.
  reduced_end          = 120000.
  hffilterfreq         = 0  
! hffilter_strategy    = "" ! ("DEFAULT", "NONE", "FFT", "WAVELET")
  hffilterfref         = 0
  deltaF_in_diff       = .false.
  avoidtaylor          = .false.
  deltaF_in_advec      = .false.
  split_linear         = .false.
  clampv               = .false.
  cancel_nonlin        = .false.
  diagf                = .false.
  !--> Tests for RHS of Boltzmann equation
  RHS_only             = .false.
  !--> Tests for equilibrium definition
  feq_choice           = 1
  canonical_vpar0      = 3
  hvpar_in_fperturb    = .true.
  !--> Tests with simplified physics
  BstareqB             = .false.
  single_m             = .false.

Figure N.2: Example of input data file used for Rosenbluth-Hinton test (see section 4.3.1).
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#******************************************
# job parameters
#******************************************
NB_RESTART   = 8
TIME         = 08:00:00
MACHINE_FILE =
JOBNAME      = A180_m7n5

#*******************************************
#  Variables used to specify if the
#   simulation is a restart from
#   another one
#*******************************************
SEARCH_SP0   = 0           ! 0 if no restart, 1 otherwise
DIR_SP0      =             ! if SEARCH_SP0=1, name of the directory

                   !   containing the major species restart
files

#*******************************************
#  Variables for parallelization
#*******************************************
NSPECIES = 1
NPROC_R  = 2              !150:4
NPROC_TH = 4              !150:4
NPROC_MU = 16             !150:32
NTHREAD  = 4              !150:4

#*******************************************
#  Variables for radial profile input files
#*******************************************
ns0_sp0_filename = ns0_sp0_test.dat
ns0_sp1_filename = ns0_sp1_test.dat
Ts0_sp0_filename = Ts0_sp0_test.dat
Ts0_sp1_filename = Ts0_sp1_test.dat
Te0_filename     = Te0_test.dat
q_filename       = safety_factor_test.dat

#******************************************
# gysela input datas
#******************************************
&PARALLEL
  Nspecies       = $NSPECIES
  Nbproc_r       = $NPROC_R
  Nbproc_theta   = $NPROC_TH
  Nbproc_mu      = $NPROC_MU
  bloc_phi       = $NTHREAD
  Nbthread       = $NTHREAD
  transpose4D    = .true.
  large_platform = .true.
  distrib3D      = .false.,
/

&MESH
  CylindricalGeometry = .false.
  Nr                  = 255
  Ntheta              = 256
  Nphi                = 128 
  Nvpar               = 64
  Nmu                 = $((NPROC_MU-1))
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  a                   = 180.
  rhomin              = 0.1
  rhomax              = 0.9
  Ltheta              = 6.283185307179586476925286766559005768394
  Lphi                = 6.283185307179586476925286766559005768394
  aspect_ratio        = 2.78
  nb_vth0             = 6.
  Lmu                 = 7.
  mumin               = 0.,
/

&EQUIL
  canonical_profile          = 0
  tau0                       = 1.
  A0                         = 1.
  Z0                         = 1.
  As                         = 1.
  Zs                         = 1.
  species_frac               = 1.
  read_ns0                   = .false.
  read_Ts0                   = .false.
  read_Te0                   = .false.
  read_q                     = .false.
  profile_choice             = 5
  rpeak                      = 0.5
  kappa_ns0                  = 2.23
  kappa_Ts0                  = 6.96
  kappa_Te0                  = 6.96
  deltar_ns0                 = 0.3   
  deltar_Ts0                 = 0.3  
  deltar_Te0                 = 0.3  
  q_profile                  = 4
  q_param1                   = 0.86      
  q_param2                   = -0.16
  q_param3                   = 2.52
  q_param4                   = 0.
  magnetic_drift             = .true.
  perturb_amplitude          = 0.001 
  perturb_choice             = 2
  m                          = 7
  n                          = 5
  FFTpotential_filter        = 0
  FFTpotential_filter_deltam = 0.
  TF_ripple                  = .false.
  delta_ripple               = 0
  N_ripple                   = 0,
/

&COLLISION_OPERATOR
  collisions      = .false.
  version_coll    = 3
  energy_transfer = .false.
  moment_transfer = .false.
  nustar          = 1.
  coll_FMrefresh  = 15                   !150:10
  coll_nbstep     = 4,
/

&BUFFER_REGION
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  coef_krook       = 0.
  coef_diffr       = 0.0                !150: 0.04
  coef_diffth      = 0.0                !150: 0.04
  coef_nustar      = 20                 !75: 100.
  buffer_asymmetry = .false.            !.true.
  buffer_location  = 0.05               !75: 0.1  !150: 0.08
  buffer_stiffness = 0.025,             !75: 0.02,    !150: 0.018
/

&ALGORITHM
  Vlasov_scheme = "BSL"
  limiter       = 0
  deltat        = 40.
  nbiter        = 200
  dt_diag       = 240.,
/

&SOURCE
  gradient_driven = .false.
  flux_driven     = .false.
  heat_source     = .false.
  heat_version    = 0      
  Sce0            = 0.009  
  TS              = 1.
  rhoS            = 0.1
  LS              = 0.01
  dens_source     = .false.
  Sce_dens        = 0.009
  TS_dens         = 1.
  rhoS_dens       = 0.1
  LS_dens         = 0.01
  mom_source      = .false.
  Sce_mom         = 0.018
  TS_mom          = 1.
  rhoS_mom        = 0.1
  LS_mom          = 0.02
  vor_source      = .false.
  Sce_vor         = 0.009
  TS_vor          = 1.
  rhoS_vor        = 0.1
  LS_vor          = 0.01,
/

&TEST
  gyroaverage          = .true.
  integral_vperp       = .true.
  BstareqB             = .false.
  Rosenbluth_Hinton    = .false.
  solve_QN             = .true.
  QN_version           = 4
  QN_comm_version      = 1
  QN_coef_polarization = 1.
  QN_coef_Phi00        = 0
  Phi00_BCrmin_Neumann = .false.
  single_m             = .false.
  single_n             = .true.
  RHS_only             = .false.
  feq_choice           = 1
  canonical_vpar0      = 3
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  hvpar_in_fperturb    = .true.
  adaptive_deltat      = .false.
  advec2D_deltat       = 0.
  reduced_deltat       = 0.
  reduced_begin        = 8000000.
  reduced_end          = 40000000.
  hffilterfreq         = 0
  hffiltertype         = 0
  hffilterfref         = 0
  deltaF_in_diff       = .true.
  asynchrone_writing   = .false.
  ask_for_checksum     = 1
  modulo_restart_iter  = 100,
  checkoverflow        = .false.
  avoidtaylor          = .false.
  deltaF_in_advec      = .false.
  split_linear         = .false.
  clampv               = .false.
  cancel_nonlin        = .false.
  diagf                = .false.,
/

&OUTPUT
  integration_CS       = .true.
  diag_level           = 6
  Phi3D_saving         = .false.
  Moments3D_saving     = .false.
  f5D_saving           = .false.
  Phi3D_dt_diag        = 1800.
  Moments3D_dt_diag    = 1800.
  f5D_dt_diag          = 1800.
  spectra_saving       = .false.
  spectra_dt_diag      = 10.
  r_diags              = 31
  doubleSP_m           = 2
  doubleSP_n           = 0
  rst_saving           = .true.
  iter_beg_write_trace = 1
  iter_end_write_trace = 3,
/

Figure N.3: Example of input data file used for the Cyclone Base Case benchmark with GENE code
(see section 4.3.2).
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Appendix O

GYSELA diagnostics

As imagined, one difficulty for gyrokinetic code is that they have to manipulate several 5D distribution
functions. It is even more true for global codes as Gysela which have to tackle huge 5D meshes. To
get an idea, the memory size of a distribution function for meshes commonly used in Gysela is of
the order of several hundreds Gigabytes. Knowing that a flux-driven Gysela simulation can contain
several hundreds of thousands of iterations, you immediately see the issue linked to big data storage.
It is absolutely not possible to envisage a frequent saving of these 5D distribution functions. One
challenge for physicists is to find a good compromise between acceptable amounts of data to store and
enough pertinent information to analyze plasma turbulence properties. We present here a summary,
as complete as possible, of all the physical quantities which are saved all along a Gysela simulation.
In Gysela, there are several level of diagnostics: (i) 3D quantities corresponding mainly to first fluid
moments (see O.2 for details); (ii) 2D cross-sections of F̄s and the electrostatic potential φ; (iii) 1D
radial profiles generally related to flux-surface average (cf details in O.1) and (iv) scalars for quantities
integrated on the whole phase space (e.g. number of ion species, number of electrons, ...).
Just a few 0D data are saved at each iterations. On the other hand 1D quantities are only saved
every <time diag> times. The frequency with which 3D diagnostics are computed is generally ten to
hundred times lower.

O.1 Radial diagnostics

In this section all the quantities considered are normalized quantities but the hat symbols are omitted
for more readability. In the following, 〈 · 〉FS corresponds to the flux surface average, i.e

〈 · 〉FS =
1

V ′

∫
·Jx dθ dϕ where V ′ =

∫
Jx dθ dϕ

with Jx being the jacobian in space.

O.1.1 Diagnostics concerning guiding-centers

At the following, different colors are associated to the different values which are saved. The color
coding is the following:

• For local charge density conservation

• For local conservation of the toroidal momentum

• For local energy conservation

• For parallel pressure balance

• For perpendicular pressure balance
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O.1. RADIAL DIAGNOSTICS

Concerning notations v̄E×Bs corresponds to the E × B drift associated to the guiding-center, i.e
depends on J0φ.

new name old name formula

1. densGC FSavg niGCr 〈
∫
F̄s d3v 〉FS

2. nvpoloGC turb FSavg nvpoloGCr turb 〈
∫

(vE×Bs · eθ) F̄s d3v 〉FS

3. nvpoloGC neo FSavg nvpoloGCr neo 〈
∫

(vDs · eθ) F̄s d3v 〉FS

4. nvpoloGC vpar FSavg nvpoloGCr vpar 〈
∫

(b∗s · eθ) F̄s d3v 〉FS

5. pressGC perp FSavg pressGCr perp ps,⊥ = 〈
∫
µBF̄s d3v 〉FS

6. pressGC par FSavg ps, ‖ = 〈
∫

1

2
U2F̄s d3v 〉FS

with U =
(
vG‖ − Vs,‖

)

7. stressGC par FSavg pressGCr par Ps, ‖ = 〈
∫
v2
G‖F̄s d3v 〉FS

8. LtorGC FSavg LphiGCr Lϕ, s = 〈
∫
uϕF̄s d3v 〉FS

with uϕ = R2(b · ∇ϕ)vG‖

9. TpolGC chi FSavg TpolGCr 〈
∫
∂ϕ(J0s · φ) F̄s d3v 〉FS

10. GammaGC turb r FSavg GammaGCr turb 〈
∫

(v̄E×Bs · ∇∇∇r) F̄s d3v 〉FS

11. GammaGC neo r FSavg GammaGCr neo 〈
∫

(vDs · ∇r) F̄s d3v 〉FS

12. RSphiGC turb r FSavg RSphiGCr turb 〈
∫
uϕ (v̄E×Bs · ∇∇∇r) F̄s d3v 〉FS

with uϕ = R2(b · ∇ϕ)vG‖

13. RSphiGC neo r FSavg RSphiGCr neo 〈
∫
uϕ (vDs · ∇r) F̄s d3v 〉FS

with uϕ = R2(b · ∇ϕ)vG‖

14. dLtorGC dt FSavg dLphiGCr dt d
dtLϕ, s

15. QGC perp turb r FSavg QGCr perp turb 〈
∫
µB (v̄E×Bs · ∇∇∇r) F̄s d3v 〉FS

16. QGC perp neo r FSavg QGCr perp neo 〈
∫
µB (vDs · ∇r) F̄s d3v 〉FS

17. QGC par turb r FSavg QGCr par turb 〈
∫

1

2
v2
G‖ (v̄E×Bs · ∇∇∇r) F̄s d3v 〉FS

18. QGC par neo r FSavg QGCr par neo 〈
∫

1

2
v2
G‖ (vDs · ∇r) F̄s d3v 〉FS
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new name old name formula

19. QGC dtvpar FSavg QGCr dtvpar 〈
∫
vG‖

dvG‖
dt

F̄s d3v 〉FS

20. Qpot r FSavg 〈
∫

(J0s · φ) v̄drift · ∇r d3v 〉FS

with v̄drift = v̄E×Bs · ∇∇∇r + vDs · ∇r

21. dpressGC dt perp FSavg dpGCr dt perp d
dtps,⊥

22. dstressGC dt par FSavg dpGCr dt par d
dtPs, ‖

23. Enkin FSavg 〈
∫
EF̄s d3v 〉FS

with E = 1
2v

2
G‖ + µB

24. SGC Pperp par FSavg SGCr Pperp par 〈
∫
µB

(
vG‖ ·

∇‖B
B

)
F̄s d3v 〉FS

25. SGC Pperp turb FSavg SGCr Pperp turb 〈
∫
µB

(
v̄E×Bs ·

∇‖B
B

)
F̄s d3v 〉FS

26. heatexGC turb FSavg heatexGCr turb −〈
∫

(v̄E×Bs · ∇(J0sφ)) F̄s d3v 〉FS

it should be zero ??

27. heatexGC neo FSavg heatexGCr neo −〈
∫

(vDs · ∇(J0s · φ)) F̄s d3v 〉FS

28. HfluxGC par turb r FSavg 〈
∫

1

2
U2 (v̄E×Bs · ∇∇∇r) F̄s d3v 〉FS

with U =
(
vG‖ − Vs,‖

)

29. HfluxGC par neo r FSavg 〈
∫

1

2
U2 (vDs · ∇r) F̄s d3v 〉FS

with U =
(
vG‖ − Vs,‖

)

2D diagnostics in (r, θ)

30. QGC rtheta QGC loc 1
Lϕ

∫
E (v̄E×Bs · ∇∇∇r) F̄s d3v dϕ

with E = 1
2v

2
G‖ + µB

31. RSphiGC rtheta RSphiGC loc 1
Lϕ

∫
uϕ (v̄E×Bs · ∇∇∇r) F̄s d3v dϕ

with uϕ = R2(b · ∇ϕ)vG‖

0D diagnostics

32. entropy tot entropy

∫
F̄s log |F̄s| d3x d3v

with d3x = Jx dr dθ dϕ
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new name old name formula

33. L2norm tot L2norm

∫
F̄ 2
s d3x d3v

with d3x = Jx dr dθ dϕ

34. deltaEnkin tot Enkin

∫
E(F̄s − F̄s,eq) d3x d3v

with d3x = Jx dr dθ dϕ

and with E = 1
2v

2
G‖ + µB

O.1.2 Diagnostics concerning test particles

new name old name formula

1. dens FSavg nir 〈
∫

(J0 · F̄s) d3v 〉FS

2. dens trapped FSavg nir 〈
∫

trapped
(J0 · F̄s) d3v 〉FS where particles are

trapped if v2
G‖ < 2µ(B(r, θ = π)−B(r, θ))

3. nupar FSavg nuparr 〈
∫
vG‖(J0 · F̄s) d3v 〉FS

4. nvpolo mag FSavg nvpolor mag 〈
∫
µ bϕ (J0 · F̄s) d3v 〉FS

with bϕ = Bϕ/B

5. stress FSavg pressr 〈
∫
E(J0 · F̄s) d3v 〉FS

with E = 1
2v

2
G‖ + µB

6. Q turb r FSavg Qr turb 〈
∫
E (vE×Bs · ∇r) (J0 · F̄s) d3v 〉FS

with E = 1
2v

2
G‖ + µB

7. Q neo r FSavg Qr neo 〈
∫
E (vDs · ∇r) (J0 · F̄s) d3v 〉FS

with E = 1
2v

2
G‖ + µB

8. Gamma turb r FSavg Gammar turb 〈
∫

(vE×Bs · ∇r) (J0 · F̄s) d3v 〉FS

9. Gamma neo r FSavg Gammar neo 〈
∫

(vDs · ∇r) (J0 · F̄s) d3v 〉FS

10. RStheta r FSavg RSthetar 〈
∫
J0 ·

[
(vE×Bs · ∇r) · F̄s

]
d3v 〉FS
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new name old name formula

11. Enpot FSavg 1
2〈 φ

∫
(J0 · F̄s) d3v 〉FS

0D diagnostics

12. deltaEnpot tot Enpot 〈
∫

1

2

(
J0 · F̄s − J0 · F̄s,eq

)
d3x d3v 〉FS

with d3x = Jx dr dθ dϕ

O.2 3D diagnostics

All the 3D diagnostics are related to the guiding-centers.

- Densities

densGC nGs =

∫
F̄s d3v

densGC trapped nGs,trapped =

∫

trapped
F̄s d3v where guiding-centers are

trapped if v2
G‖ < 2µ(B(r, θ = π)−B(r, θ))

- Parallel velocity

VparGC Vs,‖ =
1

nGs

∫
vG‖F̄s d3v

- Parallel and perpendicular pressures

pressGC par ps,‖ =

∫ (
vG‖ − Vs,‖

)2
F̄s d3v

presssGC perp ps,⊥ =

∫
µB F̄s d3v

presssGC perp trapped ps,⊥ trapped =

∫

trapped
µB F̄s d3v

- Turbulent flux

GammmaGC perp r Γrs,⊥ =

∫
(vE×Bs · ∇∇∇r) F̄s d3v

- Heat fluxes

HfluxGC turb r Epar qrs,turb‖ =

∫
1

2

(
vG‖ − Vs,‖

)2
(vE×Bs · ∇∇∇r) F̄s d3v

HfluxGC turb r Eperp qrs,turb⊥ =

∫
µB (vE×Bs · ∇∇∇r) F̄s d3v
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HfluxGC neo r Epar qrs,neo‖ =

∫
1

2

(
vG‖ − Vs,‖

)2
(vDs · ∇∇∇r) F̄s d3v

HfluxGC neo r Eperp qrs,neo⊥ =

∫
µB (vDs · ∇∇∇r) F̄s d3v

HfluxGC par Epar qs,par‖ =

∫
1

2

(
vG‖ − Vs,‖

)3
F̄s d3v
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for a parallel solving of the Vlasov-Poisson equation. Internal Journal of Applied Math-
ematics and Computer Science, 17(3):335–349, 2007.

[CLS09] Nicolas Crouseilles, Guillaume Latu, and Eric Sonnendrücker. A parallel vlasov solver
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Panoramas et synthèses, (39-40):91–176, 2013.

[GSA+07] V. Grandgirard, Y. Sarazin, P. Angelino, A. Bottino, N. Crouseilles, G. Darmet, G. Dif-
Pradalier, X. Garbet, Ph. Ghendrih, S. Jolliet, G. Latu, E. Sonnendrücker, and L. Vil-
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[Wes97] J. Wesson. Tokamaks. Okford Science Publications, 1997.

[WHL+07] W. X. Wang, T. S. Hahm, W. W. Lee, G. Rewoldt, J. Manickam, and W. M. Tang.
Nonlocal properties of gyrokinetic turbulence and the role of ExB flow shear. Phys.
Plasmas, 14(7):072306, 2007.

[WS08] R. E. Waltz and G. M. Staebler. Gyrokinetic theory and simulation of turbulent energy
exchange. Phys. Plasmas, 15(1):014505, 2008.

[WSD+97] R. E. Waltz, G. M. Staebler, W. Dorland, G. W. Hammett, M. Kotschenreuther, and
J. A. Konings. A gyro-Landau-fluid transport model. Phys. Plasmas, 4(7):2482–2496,
1997.

[XC06] Yong Xiao and Peter J. Catto. Short wavelength effects on the collisionless neoclassical
polarization and residual zonal flow leve. Phys. Plasmas, 13(10), 2006.

[XR91] X.Q. Xu and M.N. Rosenbluth. Numerical simulation of Ion-Temperature-Gradient-
driven modes. Physics of Fluids B: Plasma Physics, 3, 1991.

[ZCS96] F. Zonca, L. Chen, and R.A Santoro. Kinetic theory of low-frequency alfvén modes in
tokamaks. Plasma Physics and Controlled Fusion, 38(11):2011, 1996.

[ZGS+12] D. Zarzoso, X. Garbet, Y. Sarazin, R. Dumont, and V. Grandgirard. Fully kinetic
description of the linear excitation and nonlinear saturation of fast-ion-driven geodesic
acoustic mode instability. Phys. Plasmas, 19(2), 2012.

[ZSG+13] D. Zarzoso, Y. Sarazin, X. Garbet, R. Dumont, A. Strugarek, J. Abiteboul, T. Cartier-
Michaud, G. Dif-Pradalier, Ph. Ghendrih, V. Grandgirard, G. Latu, Ch. Passeron, and
O. Thomine. Impact of Energetic-Particle-Driven Geodesic Acoustic Modes on turbu-
lence. Phys. Rev. Lett., 110:125002, Mar 2013.

[ZWS02] M. Zerroukat, N. Wood, and A. Staniforth. SLICE: A semi-Lagrangian inherently con-
serving and efficient scheme for transport problems. Quarterly Journal of the Royal
Meteorological Society, 128(586):2801–2820, 2002.

[ZWS07] M. Zerroukat, N. Wood, and A. Staniforth. Application of the parabolic spline method
(PSM) to a multi-dimensional conservative semi-lagrangian transport scheme (SLICE).
J. Comput. Phys., 225(1):935–948, 2007.

184



G
Y
R
O
K
IN

E
T
IC

S
IM

U
L
A
T
IO

N
S

O
F

M
A
G
N
E
T
IC

F
U
S
IO

N

P
L
A
S
M

A
S

by

V
ir
gi
n
ie

G
ra
n
d
gi
ra
rd
,
Y
an

ic
k
S
ar
az
in

A
b
st
ra

c
t.

—
T
h
is
le
ct
u
re

p
re
se
n
ts

th
e
g
y
ro
k
in
et
ic

fr
a
m
ew

o
rk

a
n
d
d
et
a
il
s
th
e

va
ri
o
u
s
n
u
m
er
ic
a
l
sc
h
em

es
u
se
d
in

n
o
n
li
n
ea
r
si
m
u
la
ti
o
n
s
to

co
m
p
u
te

tu
rb
u
le
n
t

tr
a
n
sp

o
rt

in
m
a
g
n
et
ic

fu
si
o
n
p
la
sm

a
s.

T
h
e
b
a
si
c
fe
a
tu
re
s
o
f
to
ka
m
a
k
m
a
g
n
et
ic

co
n
fi
g
u
ra
ti
o
n

a
n
d

o
f
fu
si
o
n

p
la
sm

a
s
a
re

re
ca
ll
ed

.
F
u
n
d
a
m
en
ta
l
el
em

en
ts

o
f

th
e
g
y
ro
k
in
et
ic

th
eo
ry

a
re

ca
re
fu
ll
y

in
tr
o
d
u
ce
d
,
in
cl
u
d
in
g
th
e
d
er
iv
a
ti
o
n

o
f

v
el
o
ci
ty

d
ri
ft
s
a
n
d
o
f
th
e
q
u
a
si
-n
eu

tr
a
li
ty
.
F
ro
m

th
e
n
u
m
er
ic
a
l
p
o
in
t
o
f
v
ie
w
,

th
e
m
a
in

fo
cu

s
is

p
u
t
o
n

th
e
th
re
e
ex
is
ti
n
g

cl
a
ss
es

o
f
n
u
m
er
ic
a
l
m
et
h
o
d
s,

n
a
m
el
y
P
a
rt
ic
le
-I
n
-C

el
l,
E
u
le
ri
a
n
a
n
d
se
m
i-
L
a
g
ra
n
g
ia
n
.
T
h
ei
r
p
ro
p
er
ti
es

a
re

d
is
cu

ss
ed

,
a
n
d
th
ei
r
st
re
n
g
th
s
a
n
d
w
ea
k
n
es
se
s
a
re

ex
h
a
u
st
iv
el
y
re
v
ie
w
ed

.

1
.
In

tr
o
d
u
c
ti
o
n

In
m
ag
n
et
ic
fu
si
on

d
ev
ic
es
,
th
e
p
ow

er
ga
in

st
ro
n
gl
y
in
cr
ea
se
s
w
it
h
th
e
en
er
gy

co
n
fi
n
em

en
t
ti
m
e.

A
s
a
m
at
te
r
of

fa
ct
,
th
e
q
u
al
it
y
of

th
e
p
la
sm

a
en
er
gy

co
n
-

fi
n
em

en
t
la
rg
el
y
d
et
er
m
in
es

th
e
si
ze

an
d
th
er
ef
or
e
th
e
co
st

of
a
fu
si
on

re
ac
to
r.

T
h
is
co
n
fi
n
em

en
t
ti
m
e
tu
rn
s
ou

t
to

b
e
m
ai
n
ly

go
v
er
n
ed

b
y
th
e
p
la
sm

a
tu
rb
u
-

le
n
ce

w
h
ic
h
d
ev
el
op

s
in

su
ch

d
ev
ic
es

–
of

re
la
ti
v
e
m
ag
n
it
u
d
e
of

a
fe
w

p
er
ce
n
ts

in
th
e
h
ot

co
re

–
an

d
th
e
as
so
ci
at
ed

tr
an

sp
or
t.

U
n
d
er
st
an

d
in
g
it
s
or
ig
in

an
d

p
ro
p
er
ti
es

in
v
ie
w

of
it
s
p
os
si
b
le

co
n
tr
ol

is
on

e
of

th
e
cr
it
ic
al

is
su
es

in
fu
si
on

sc
ie
n
ce

[3
7
].

S
u
ch

a
q
u
es
t
b
el
on

gs
to

th
e
m
or
e
ge
n
er
al

fr
am

ew
or
k
of

ge
n
er
al

st
u
d
ie
s
on

tu
rb
u
le
n
ce
,
w
h
ic
h
is
co
n
si
d
er
ed

as
on

e
of

th
e
m
os
t
d
iffi

cu
lt
p
ro
b
le
m
s

in
p
h
y
si
cs
,
b
ec
au

se
of

it
s
in
h
er
en
t
n
on

li
n
ea
r
ch
ar
ac
te
r
w
it
h
m
an

y
d
eg
re
es

of
fr
ee
d
om

.
P
la
sm

a
tu
rb
u
le
n
ce

is
ri
ch

of
at

le
as
t
th
re
e
ad

d
it
io
n
al

p
ro
p
er
ti
es

w
it
h

re
sp
ec
t
to

n
eu
tr
al

fl
u
id
s:

(i
)
M
u
lt
ip
le
fl
u
id
s
(a
n
el
ec
tr
on

fl
u
id

an
d
ot
h
er

io
n
fl
u
-

id
s)

w
it
h
co
n
si
d
er
ab

ly
d
iff
er
en
t
m
ob

il
it
y
ar
e
co
u
p
le
d
th
ro
u
gh

el
ec
tr
om

ag
n
et
ic

fi
el
d
s
an

d
w
ea
k
co
ll
is
io
n
al

in
te
ra
ct
io
n
s.

(i
i)
S
tr
on

g
co
n
fi
n
em

en
t
m
ag
n
et
ic
fi
el
d
s

p
ro
v
id
e
h
ig
h
ly

an
is
ot
ro
p
ic

tu
rb
u
le
n
t
st
ru
ct
u
re
s.

(i
ii
)
T
h
e
in
h
om

og
en
ei
ti
es

in
d
en
si
ty
,
te
m
p
er
at
u
re
,
an

d
m
ag
n
et
ic

fi
el
d
s
p
la
ce

th
e
p
la
sm

a
n
at
u
ra
ll
y
ou

t
of

2
V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

th
er
m
o
d
y
n
am

ic
al

eq
u
il
ib
ri
u
m
,
an

d
te
n
d

to
ex
ci
te

se
v
er
al

m
ic
ro
-i
n
st
ab

il
it
ie
s

ov
er

a
w
id
e
sp
ec
tr
al

ra
n
ge
.
In

p
ar
ti
cu
la
r,

th
e
to
ro
id
al

m
ag
n
et
ic

co
n
fi
gu

ra
ti
on

st
ro
n
gl
y
aff

ec
ts

th
e
li
n
ea
r
p
ro
p
er
ti
es

of
m
ic
ro
-i
n
st
ab

il
it
ie
s
as

w
el
l
as

n
on

li
n
-

ea
rl
y
ev
ol
v
ed

tu
rb
u
le
n
t
st
ru
ct
u
re
s.

F
in
al
ly
,
b
ec
au

se
of

th
e
w
ea
k
co
ll
is
io
n
al
it
y

in
th
e
h
ot

co
re

of
fu
si
on

p
la
sm

as
,
w
h
ic
h
is

of
te
n
sa
id

to
b
e
co
ll
is
io
n
le
ss

(f
or

th
er
m
al

p
ar
ti
cl
es
,
th
e
m
ea
n
fr
ee

p
at
h
is
ex
p
ec
te
d
to

b
e
of

th
e
or
d
er

of
se
ve
ra
l

k
il
o
m
et
er
s
in

IT
E
R
),

k
in
et
ic

re
so
n
an

ce
s
as

w
el
l
as

si
gn

ifi
ca
n
t
d
ev
ia
ti
on

s
fr
om

th
e
M
ax

w
el
li
an

of
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
of

th
e
va
ri
ou

s
sp
ec
ie
s
an

d
p
ar
ti
cl
e

or
b
it

eff
ec
ts

ca
n
n
ot

b
e
ig
n
or
ed
.
B
ec
au

se
of

th
is

al
m
os
t
co
ll
is
io
n
le
ss

ch
ar
ac
-

te
r,
co
n
v
en
ti
on

al
fl
u
id

m
o
d
el
s
b
ec
om

es
in
su
ffi
ci
en
t,
an

d
k
in
et
ic

d
es
cr
ip
ti
on

s
of

th
e
p
la
sm

a
in

p
h
as
e
sp
ac
e
ar
e
re
q
u
ir
ed
.
K
in
et
ic

m
o
d
el
s
ar
e
d
ra
st
ic
al
ly

m
or
e

d
em

an
d
in
g
in

te
rm

s
of

n
u
m
er
ic
al

re
so
u
rc
es

th
an

fl
u
id

m
o
d
el
s.

In
su
ch

fi
rs
t-

p
ri
n
ci
p
le

d
es
cr
ip
ti
on

s
of

p
la
sm

as
,
th
e
si
x
d
im

en
si
on

al
ev
ol
u
ti
on

eq
u
at
io
n
fo
r

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
–
V
la
so
v
or

F
ok

k
er
-P

la
n
ck

eq
u
at
io
n
s
–
is

so
lv
ed

fo
r

ea
ch

sp
ec
ie
,
co
u
p
le
d
to

th
e
se
lf
-c
on

si
st
en
t
eq
u
at
io
n
s
fo
r
th
e
el
ec
tr
om

ag
n
et
ic

fi
el
d
s,

n
am

el
y
M
ax

w
el
l’
s
eq
u
at
io
n
s.

T
h
es
e
co
u
p
le
d
eq
u
at
io
n
s
ar
e
n
on

-l
in
ea
r.

N
o
ge
n
er
al

an
al
y
ti
c
so
lu
ti
on

of
th
es
e
eq
u
at
io
n
s
ex
is
ts
,
su
ch

th
at

n
u
m
er
ic
al

si
m
u
la
ti
on

s
ar
e
n
ec
es
sa
ry
.

F
or
tu
n
at
el
y,

as
fa
r
as

tu
rb
u
le
n
t
fl
u
ct
u
at
io
n
s
ar
e

co
n
ce
rn
ed
,
th
ey

d
ev
el
op

at
m
u
ch

lo
w
er

ty
p
ic
al

fr
eq
u
en
ci
es

th
an

th
e
h
ig
h
fr
e-

q
u
en
cy

cy
cl
ot
ro
n
m
ot
io
n
.
T
h
er
ef
or
e,
th
is
6D

p
ro
b
le
m

ca
n
b
e
re
st
ri
ct
ed

to
a
5D

on
e
b
y
in
co
rp
or
at
in
g
p
ar
t
of

th
is
sm

al
l
sc
al
e
te
m
p
or
al

b
eh
av
io
r
in
to

th
e
la
rg
er

sc
al
es

te
m
p
or
al

d
y
n
am

ic
s
of

b
ot
h
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
an

d
th
e
fi
el
d
s.

T
h
e

u
se
fu
l
p
ar
t
of

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
th
en

ev
ol
v
es

in
a
fi
v
e
d
im

en
si
on

al
p
h
as
e

sp
a
ce

ge
n
er
at
ed

b
y
fo
u
r
sl
ow

va
ri
ab

le
s
an

d
an

ad
ia
b
at
ic

in
va
ri
an

t.
T
h
is
m
o
d
el

is
k
n
ow

n
as

th
e
gy
ro
ki
n
et
ic

m
o
d
el
.
In

a
fi
rs
t
ap

p
ro
x
im

at
io
n
,
th
e
gy

ro
k
in
et
ic

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
ca
n
b
e
th
ou

gh
t
of

as
d
ed
u
ce
d
fr
om

it
s
si
x
-d
im

en
si
on

al
k
i-

n
et
ic

an
al
og
u
e
b
y
an

av
er
ag
e
p
ro
ce
d
u
re

ov
er

th
e
fa
st
-v
ar
y
in
g
gy

ro
p
h
as
e
an

gl
e.

T
h
is
m
o
d
el

co
n
se
n
su
al
ly

p
ro
v
id
es

to
d
ay
’s
d
ee
p
es
t
in
si
gh

t
on

p
la
sm

a
b
eh
av

io
r.

B
u
t
ev
en

w
it
h
th
is

d
im

en
si
on

al
re
d
u
ct
io
n
,
th
e
ta
sk

is
n
ot

ea
sy

at
al
l.

S
ol
v
in
g

5D
gy

ro
k
in
et
ic

eq
u
at
io
n
s
fo
r
ea
ch

sp
ec
ie

re
v
ea
ls
ex
tr
em

el
y
ch
al
le
n
gi
n
g.

F
ir
st
-

p
ri
n
ci
p
le
gy

ro
k
in
et
ic
co
d
es
,
w
h
ic
h
h
av
e
b
ee
n
d
ev
el
op

ed
fo
r
th
is
st
ag
e,

m
ak
e
an

in
te
n
si
v
e
u
se

of
m
as
si
v
el
y
p
ar
al
le
l
su
p
er
co
m
p
u
te
rs

an
d
re
q
u
ir
e
st
at
e-
of
-t
h
e-
ar
t

h
ig
h

p
er
fo
rm

an
ce

co
m
p
u
ti
n
g
(H

P
C
).

T
h
ey

h
av
e
gr
ea
tl
y
b
en
efi
te
d

fr
om

th
e

d
ra
st
ic

in
cr
ea
se

of
b
ot
h
h
ar
d
w
ar
e
ca
p
ab

il
it
ie
s
(a
t
p
re
se
n
t,
P
et
afl

op
ca
lc
u
la
to
rs

ar
e
ab

le
to

p
ro
ce
ss

10
1
5
fl
oa
ti
n
g
p
oi
n
t
op

er
at
io
n
s
p
er

se
co
n
d
)
an

d
of

n
ew

co
m
-

p
u
ta
ti
on

al
te
ch
n
iq
u
es

b
as
ed

on
fa
st

so
lv
er
s,

m
as
si
v
e
p
ar
al
le
li
za
ti
on

p
ro
to
co
ls
,

et
c.

T
h
es
e
n
u
m
er
ic
al

to
ol
s
h
av
e
al
re
ad

y
p
la
y
ed

an
im

p
or
ta
n
t
ro
le

in
cl
ar
if
y
in
g

a
n
u
m
b
er

of
p
en
d
in
g
is
su
es

in
tu
rb
u
le
n
t
tr
an

sp
or
t.

E
n
li
gh

te
n
in
g
ex
h
au

st
iv
e

re
v
ie
w
s
on

th
e
su
b
je
ct

ca
n
b
e
fo
u
n
d
in

re
fe
re
n
ce
s
[1
4
2
,
1
3
2
,
7
9
,
5
8
],
li
st
ed

in
ch
ro
n
ol
og
ic
al

or
d
er
.

T
h
e
d
ev
el
op

m
en
t
of

su
ch

gy
ro
k
in
et
ic

co
d
es

w
ou

ld
n
ot

b
e
p
os
si
b
le

w
it
h
ou

t
a
st
ro
n
g
co
ll
ab

or
at
io
n
b
et
w
ee
n
p
h
y
si
ci
st
s,
m
at
h
em

at
ic
ia
n
s
an

d
n
ow

co
m
p
u
te
r



G
Y
R
O
K
IN

E
T
IC

S
IM

U
L
A
T
IO

N
S

O
F

M
A
G
N
E
T
IC

F
U
S
IO

N
P
L
A
S
M
A
S

3

sc
ie
n
ti
st
s.

T
h
e
n
u
m
er
ic
al

sc
h
em

es
,
d
ev
el
op

ed
fo
r
V
la
so
v
eq
u
at
io
n
s
in

2
to

6
d
im

en
si
on

al
p
h
as
e
sp
ac
es
,
h
av
e
ev
ol
v
ed

al
l
al
on

g
th
e
la
st

tw
en
ty
-fi
v
e
y
ea
rs
,
in

d
ir
ec
t
li
n
k
w
it
h
th
e
ev
ol
u
ti
on

of
H
P
C

re
so
u
rc
es
.
H
is
to
ri
ca
ll
y,

p
ar
ti
cl
e
in

ce
ll

m
et
h
o
d
s
(P

IC
)
[1
6
]
h
av
e
b
ee
n
m
os
t
p
op

u
la
r,

an
d
re
p
re
se
n
t
w
id
el
y
ad

op
te
d

ap
p
ro
ac
h
es

to
n
u
m
er
ic
al

si
m
u
la
ti
on

s
of

k
in
et
ic

p
la
sm

as
.

T
h
ey

u
se
d

to
b
e

co
n
si
d
er
ed

as
th
e
m
os
t
effi

ci
en
t
to
ol

to
d
es
cr
ib
e
p
la
sm

a
d
y
n
am

ic
s,

es
se
n
ti
al
ly

b
ec
au

se
th
ey

ar
e
ca
p
ab

le
of

d
es
cr
ib
in
g
m
an

y
p
h
y
si
ca
l
p
h
en
om

en
a
in

th
e
fu
ll

d
im

en
si
on

al
ca
se
,
at

re
la
ti
v
el
y
sm

al
l
co
m
p
u
ta
ti
on

al
co
st
s.

H
ow

ev
er
,
it

is
w
el
l

k
n
ow

n
th
at

th
e
n
u
m
er
ic
al

n
oi
se

in
h
er
en
t
to

P
IC

m
et
h
o
d
s
co
n
st
it
u
te
s
a
st
ro
n
g

li
m
it
in
g
fa
ct
or

to
ac
cu
ra
te
ly

d
es
cr
ib
e
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
in

p
h
as
e
sp
a
ce

on
lo
n
g
ti
m
e
sc
al
es
.
M
or
eo
v
er
,
th
e
n
u
m
er
ic
al

n
oi
se

on
ly

sl
ow

ly
d
ec
re
as
es
,
li
k
e

1
/
√
N
,
w
h
en

th
e
n
u
m
b
er

N
of

p
ar
ti
cl
es

is
in
cr
ea
se
d
.
T
o
re
m
ed
y
th
is
p
ro
b
le
m
,

al
te
rn
at
iv
e
m
et
h
o
d
s
h
av
e
al
so

b
ee
n
d
ev
el
op

ed
.
E
u
le
ri
an

m
et
h
o
d
s,

in
w
h
ic
h

th
e
V
la
so
v
eq
u
at
io
n
is
d
is
cr
et
iz
ed

on
a
m
es
h
of

p
h
as
e
sp
ac
e,

ar
e
on

e
of

th
os
e.

A
m
on

g
th
em

,
th
e
F
ou

ri
er

tr
an

sf
or
m

u
se
s
fa
st

F
ou

ri
er

tr
an

sf
or
m

of
th
e
d
is
tr
i-

b
u
ti
on

fu
n
ct
io
n
in

p
h
as
e
sp
ac
e.

O
th
er

m
et
h
o
d
s
li
k
e
th
e
F
ou

ri
er
-H

er
m
it
e
or

H
er
m
it
e
tr
an

sf
or
m

m
et
h
o
d
s
ex
p
lo
it

th
e
fa
ct

th
at

th
e
H
er
m
it
e
b
as
is

ca
n
off

er
so
m
e
ad

va
n
ta
ge

w
h
en

m
o
d
el
in
g
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
s
w
it
h
G
au

ss
ia
n
-s
h
ap

ed
p
ro
fi
le
s.

H
ow

ev
er
,
d
u
e
to

w
av
e-
p
ar
ti
cl
e
re
so
n
an

ce
s
w
h
ic
h
p
la
y
an

im
p
or
ta
n
t

ro
le

in
th
e
co
ll
is
io
n
le
ss

or
w
ea
k
ly

co
ll
is
io
n
al

re
gi
m
e,

fi
n
e-
sc
al
e
st
ru
ct
u
re
s
in
-

h
er
en
tl
y
d
ev
el
op

in
v
el
o
ci
ty

sp
ac
e.

T
h
is

re
q
u
ir
es

th
e
sp
ec
tr
al

ex
p
an

si
on

of
a

la
rg
e
n
u
m
b
er

of
H
er
m
it
e
m
o
d
es

to
ac
h
ie
v
e
h
ig
h
ac
cu
ra
cy
.
S
om

e
of

th
es
e
al
go
-

ri
th
m
s
u
se

ar
ti
fi
ci
al

d
am

p
in
g
to

sm
o
ot
h
ou

t
th
es
e
fi
n
e-
sc
al
e
st
ru
ct
u
re
s
[1
2
4
].

T
h
e
d
ra
w
b
ac
k
is

th
at

th
e
co
ll
is
io
n
le
ss

n
at
u
re

of
th
e
sy
st
em

is
lo
st
,
le
ad

in
g

to
d
is
to
rt
io
n
s
of

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
[1
2
3
].

A
n
ot
h
er

d
ra
w
b
ac
k
of

su
ch

m
et
h
o
d
s
is
th
at

th
ey

ar
e
on

ly
va
li
d
fo
r
p
er
io
d
ic

b
ou

n
d
ar
y
co
n
d
it
io
n
s
[8
7
,
8
8
].

C
on

se
q
u
en
tl
y,

fo
r
n
on

-p
er
io
d
ic

b
ou

n
d
ar
y
co
n
d
it
io
n
s,

G
ib
b
s
os
ci
ll
at
io
n
s
fo
rm

at
th
e
b
ou

n
d
ar
y
of

th
e
gr
id

an
d
le
ad

to
sp
u
ri
ou

s
os
ci
ll
at
io
n
s
w
h
ic
h
ca
n
p
ro
p
-

ag
at
e
to

th
e
en
ti
re

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
.
A

fi
n
it
e
el
em

en
t
m
et
h
o
d
h
as

al
so

b
ee
n
p
ro
p
o
se
d
[1
5
9
,
1
5
8
].

A
lt
h
ou

gh
it

is
w
el
l
su
it
ed

fo
r
co
m
p
le
x
b
ou

n
d
a
ry

co
n
d
it
io
n
s
w
h
ic
h
m
ay

ar
is
e
in

m
an

y
p
ra
ct
ic
al

ap
p
li
ca
ti
on

s,
th
e
n
u
m
er
ic
al

re
s-

ol
u
ti
on

ca
n
b
ec
om

e
cu
m
b
er
so
m
e
w
h
en

d
ea
li
n
g
w
it
h
th
e
V
la
so
v
eq
u
at
io
n
in

h
ig
h
d
im

en
si
on

.
A
n
ot
h
er

sc
h
em

e
fo
r
th
e
V
la
so
v
eq
u
at
io
n
is
th
e
fl
u
x
co
rr
ec
te
d

tr
an

sp
or
t
(F

C
T
)
[1
8
,
1
7
],
or

m
or
e
re
ce
n
tl
y
th
e
fl
u
x
b
al
an

ce
m
et
h
o
d
(F

B
M
)

[5
3
]:
th
e
b
as
ic

id
ea

is
to

co
m
p
u
te

th
e
av
er
ag
e
of

th
e
V
la
so
v
eq
u
at
io
n
so
lu
ti
on

in
ea
ch

ce
ll
of

th
e
p
h
as
e
sp
ac
e
gr
id

b
y
a
co
n
se
rv
at
iv
e
m
et
h
o
d
.

O
n
e
of

th
e

co
m
m
on

fl
aw

s
of

th
es
e
al
go
ri
th
m
s
is

th
e
n
on

-p
re
se
rv
at
io
n

of
th
e
p
os
it
iv
it
y,

w
h
ic
h
re
v
ea
ls
p
ro
b
le
m
at
ic

fo
r
lo
n
g
si
m
u
la
ti
on

ru
n
s
si
n
ce

n
u
m
er
ic
al

os
ci
ll
at
io
n
s

d
ev
el
op

.
A
tt
em

p
ts

to
ov
er
co
m
e
th
is

p
ro
b
le
m

of
th
e
p
os
it
iv
e
an

d
fl
u
x
co
n
-

se
rv
at
iv
e
(P

F
C
)
m
et
h
o
d
s
h
av
e
b
ee
n
tr
ie
d
[5
5
].

F
in
al
ly
,
th
e
se
m
i-
L
ag
ra
n
gi
an

4
V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

m
et
h
o
d
ai
m
s
at

ta
k
in
g
ad

va
n
ta
ge
s
of

b
ot
h
L
ag
ra
n
gi
an

an
d
E
u
le
ri
an

n
u
m
er
-

ic
al

sc
h
em

es
.
It

co
n
si
st
s
of

co
m
p
u
ti
n
g
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
at

ea
ch

gr
id

p
oi
n
t
b
y
fo
ll
ow

in
g
th
e
p
ar
ti
cl
e
tr
a
je
ct
or
ie
s
b
ac
k
w
ar
d

in
ti
m
e.

T
o
co
m
p
u
te

th
e
or
ig
in

of
th
e
ch
ar
ac
te
ri
st
ic
s,
h
ig
h
-o
rd
er

in
te
rp
ol
at
io
n
m
et
h
o
d
s
ar
e
n
ee
d
ed
.

E
.
S
on

n
en
d
rü
ck
er

et
al
.
p
ro
p
os
ed

th
e
cu
b
ic

sp
li
n
e
re
co
n
st
ru
ct
io
n
w
h
ic
h
gi
v
es

v
er
y
go

o
d
re
su
lt
s
[1
2
6
],
at

th
e
ex
p
en
se

of
th
e
lo
ss

of
th
e
lo
ca
l
ch
ar
ac
te
r
of

th
e
re
co
n
st
ru
ct
io
n
.
N
ak
am

u
ra

an
d
Y
ab

e
al
so

p
re
se
n
te
d
th
e
cu
b
ic

in
te
rp
ol
at
ed

p
ro
p
ag
at
io
n

(C
IP

)
m
et
h
o
d

b
as
ed

on
th
e
ap

p
ro
x
im

at
io
n

of
th
e
gr
ad

ie
n
ts

of
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
in

or
d
er

to
u
se

a
H
er
m
it
e
in
te
rp
ol
at
io
n
[1
0
7
].

T
h
is

m
et
h
o
d
is

v
er
y
st
ab

le
b
u
t
v
er
y
ex
p
en
si
v
e
in

te
rm

s
of

co
m
p
u
ta
ti
on

al
m
em

or
y

si
n
ce

it
re
q
u
ir
es

th
e
st
or
ag
e
n
ot

on
ly

of
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f
,
b
u
t
al
so

of
it
s
gr
ad

ie
n
ts
∇

x
f
an

d
∇

v
f
.
S
u
ch

a
co
n
st
ra
in
t
is
al
so

p
re
se
n
t
fo
r
th
e
M
or
in
-

is
h
i’
s
sc
h
em

e
[1
0
4
].
A
s
w
il
l
b
e
d
et
ai
le
d
in

th
es
e
n
ot
es
,
al
l
th
e
va
ri
ou

s
sc
h
em

es
h
av
e
b
ot
h
ad

va
n
ta
ge
s
an

d
d
ra
w
b
ac
k
s.

T
h
e
d
iv
er
si
ty

of
n
u
m
er
ic
al

ap
p
ro
ac
h
es

ex
is
ti
n
g
n
ow

in
gy

ro
k
in
et
ic

co
d
es

cl
ea
rl
y
co
n
st
it
u
te

a
st
re
n
gt
h
w
it
h
re
ga
rd

to
th
e
co
m
p
le
x
it
y
of

th
e
p
h
y
si
ca
l
p
ro
b
le
m
.
A
s
a
re
su
lt
,
b
en
ch
m
ar
k
s
b
ec
om

e
cr
u
-

ci
al
,
as

ex
em

p
li
fi
ed

b
y
th
e
gr
ow

in
g
n
u
m
b
er

of
p
ap

er
s
d
ev
ot
ed

to
th
is

d
iffi

cu
lt

ta
sk

in
th
e
co
m
m
u
n
it
y
of

gy
ro
k
in
et
ic

co
d
e
d
ev
el
op

m
en
t.

T
h
e
re
m
in
d
er

of
th
e
p
ap

er
is

or
ga
n
iz
ed

as
fo
ll
ow

s.
A
ft
er

a
ge
n
er
al

in
tr
o-

d
u
ct
io
n
in

se
ct
io
n
1,

w
e
b
ri
efl
y
d
es
cr
ib
e
th
e
b
as
ic

fe
at
u
re
s
of

m
ag
n
et
ic

fu
si
on

re
se
ar
ch

an
d
of

fu
si
on

p
la
sm

as
in

se
ct
io
n
2.

In
se
ct
io
n
3,

w
e
d
es
cr
ib
e
a
th
e-

or
et
ic
al

h
ie
ra
rc
h
y
of

p
la
sm

a
p
h
y
si
cs
,
w
it
h
a
fo
cu
s
on

p
la
sm

a
k
in
et
ic

th
eo
ry

in
se
ct
io
n
4.

T
h
e
gy

ro
k
in
et
ic

ap
p
ro
ac
h
sp
ec
ifi
c
to

m
ag
n
et
ic

fu
si
on

p
la
sm

as
is

d
es
cr
ib
ed

in
se
ct
io
n
5.

S
ec
ti
on

6
is
d
ev
ot
ed

to
th
e
d
es
cr
ip
ti
on

of
th
e
n
u
m
er
ic
al

m
et
h
o
d
s
u
se
d
in

gy
ro
k
in
et
ic

co
d
es
,
d
iv
id
ed

in
th
re
e
ca
te
go
ri
es

P
IC

,
E
u
le
ri
an

an
d
S
em

i-
L
ag
ra
n
gi
an

ap
p
ro
ac
h
.
In

se
ct
io
n
7,

so
m
e
d
iff
er
en
ce
s
am

on
g
th
e
va
r-

io
u
s
m
et
h
o
d
s
re
ga
rd
in
g
th
e
tr
ea
tm

en
t
of

so
m
e
of

th
e
m
ai
n
p
h
y
si
ca
l
p
la
sm

a
p
ro
p
er
ti
es

ar
e
h
ig
h
li
gh

te
d
.
F
in
al
ly
,
a
su
m
m
ar
y
is

gi
v
en

in
se
ct
io
n
8.

2
.
B
ri
e
f
in
tr
o
d
u
c
ti
o
n

to
p
la
sm

a
fu
si
o
n

T
h
e
in
cr
ea
se

in
en
er
gy

n
ee
d
s
an

d
th
e
fa
ct

th
at

fo
ss
il
fu
el
s
ar
e
ru
n
n
in
g
ou

t
m
ak
e
in
d
is
p
en
sa
b
le

th
e
d
ev
el
op

m
en
t
of

n
ew

so
u
rc
es

of
en
er
gi
es
.
T
o
p
ro
d
u
ce

en
er
gy

ou
t
of

m
at
te
r,

it
is

n
ec
es
sa
ry

to
ca
rr
y
ou

t
a
tr
an

sf
or
m
at
io
n
in

w
h
ic
h
,

b
et
w
ee
n
th
e
in
it
ia
l
an

d
fi
n
al

st
at
e,

a
sm

al
l
p
ro
p
or
ti
on

of
th
e
b
o
d
y
m
as
s
in
-

v
ol
v
ed

d
is
ap

p
ea
rs
.
T
h
is
m
as
s
d
ef
ec
t
m
ay

th
en

b
e
fo
u
n
d
in

th
e
fo
rm

of
en
er
gy

th
ro
u
gh

th
e
w
el
l-
k
n
ow

n
fo
rm

u
la

E
=

m
c2
,
w
h
er
e
E

is
th
e
p
ro
d
u
ce
d
en
er
gy
,

m
th
e
m
as
s
th
at

h
as

d
is
ap

p
ea
re
d
an

d
c
th
e
sp
ee
d
of

li
gh

t.
C
h
em

ic
al

re
ac
ti
on

s
in
v
ol
v
e
at
om

s
or

m
ol
ec
u
le
s
an

d
th
ei
r
el
ec
tr
on

s.
A
s
su
ch
,
th
e
co
rr
es
p
on

d
in
g

en
er
gi
es

li
e
in

th
e
te
n
s
of

el
ec
tr
on

-V
ol
t
ra
n
ge

(t
h
e
io
n
is
at
io
n
en
er
gy

of
h
y
d
ro
-

ge
n
is
13
.6
eV

).
A
s
fa
r
as

n
u
cl
ea
r
re
ac
ti
on

s
ar
e
co
n
ce
rn
ed
,
th
er
e
ex
is
t
tw

o
m
ai
n



G
Y
R
O
K
IN

E
T
IC

S
IM

U
L
A
T
IO

N
S

O
F

M
A
G
N
E
T
IC

F
U
S
IO

N
P
L
A
S
M
A
S

5

ty
p
es
,
b
ot
h
in

th
e
ra
n
ge

of
M
eg
a
el
ec
tr
on

-V
ol
t(
1
) .

T
h
e
fi
ss
io
n
re
ac
ti
on

co
n
si
st
s

in
sp
li
tt
in
g
th
e
n
u
cl
eu
s
of

a
su
ffi
ci
en
tl
y
h
ea
v
y
at
om

(s
u
ch

as
th
e
u
ra
n
iu
m

or
p
lu
to
n
iu
m

at
om

s)
to

m
ak
e
li
gh

te
r
at
om

s.
C
on

v
er
se
ly
,
v
er
y
li
gh

t
at
om

ic
n
u
cl
ei

ar
e
jo
in
ed

to
ge
th
er

in
th
e
fu
si
on

re
ac
ti
on

to
b
u
il
d
h
ea
v
ie
r
at
om

s.
F
is
si
on

is
at

w
or
k
in

p
re
se
n
t
n
u
cl
ea
r
re
ac
to
rs

w
h
il
e
fu
si
on

is
st
il
l
at

th
e
st
ag
e
of

re
se
ar
ch
.

T
h
es
e
re
se
ar
ch
es

on
co
n
tr
ol
le
d
fu
si
on

ar
e
co
n
d
u
ct
ed

on
th
e
m
os
t
ac
ce
ss
ib
le

fu
si
on

re
ac
ti
on

w
h
ic
h
is
th
e
D
eu
te
ri
u
m
-T
ri
ti
u
m

re
ac
ti
on

.
In

th
is
re
ac
ti
on

tw
o

n
u
cl
ei

of
D
eu
te
ri
u
m

an
d
T
ri
ti
u
m

(t
h
e
h
ea
v
y
is
ot
op

es
of

h
y
d
ro
ge
n
,
re
sp
ec
ti
v
el
y

w
it
h
1
an

d
2
n
eu
tr
on

s)
co
m
b
in
e
in
to

an
al
p
h
a
p
ar
ti
cl
e
(H

el
iu
m

n
u
cl
eu
s)

an
d

a
n
eu
tr
on

.

(1
)

D
+
T
→

4
H
e
(3
.5
2M

eV
)
+

n
(1
4.
06
M

eV
)

T
h
e
to
ta
l
k
in
et
ic

en
er
gy

re
tr
ie
v
ed

fr
om

th
e
re
ac
ti
on

is
ab

ou
t
17
.6
M

eV
,
o
n
e

fi
ft
h
ca
rr
ie
d
ou

t
b
y
th
e
H
el
iu
m

n
u
cl
eu
s,
th
e
re
m
ai
n
d
er

b
y
th
e
n
eu
tr
on

(t
h
is
ra
-

ti
o
co
m
es

fr
om

th
e
co
n
se
rv
at
io
n
of

m
om

en
tu
m

d
u
ri
n
g
th
e
re
ac
ti
on

:
m

H
e
v H

e
=

m
n
v n

,
w
h
ic
h
im

p
li
es

th
at

E
H
e
=

1 2
m

H
e
v
2 H
e
=

m
H

e
m

n

v
2 H

e
v
2 n
E

n
=

1 4
E

n
).

D
eu
te
ri
u
m

is
w
id
el
y

av
ai
la
b
le

fr
om

w
at
er
,
si
n
ce

it
co
n
st
it
u
te
s
0.
01
5%

of
al
l
h
y
d
ro
ge
n

at
om

s.
T
ri
ti
u
m

is
ra
d
io
ac
ti
v
e
w
it
h
a
re
la
ti
v
el
y
sh
or
t
h
al
f-
li
fe

of
12
.3

y
ea
rs
,

so
th
at

it
s
n
at
u
ra
l
o
cc
u
rr
en
ce

is
n
eg
li
gi
b
le
.

It
h
as

to
b
e
p
ro
d
u
ce
d
.

F
or
tu
-

n
at
el
y,

th
e
n
eu
tr
on

w
h
ic
h
is

cr
ea
te
d
b
y
th
e
re
ac
ti
on

(1
)
ca
n
b
e
u
se
d
to

b
re
ed

n
ew

tr
it
iu
m

ou
t
of

li
th
iu
m

d
ir
ec
tl
y
in

th
e
w
al
l
of

th
e
re
ac
ti
on

v
es
se
l.

In
or
-

d
er

to
ov
er
co
m
e
th
e
el
ec
tr
os
ta
ti
c
re
p
u
ls
io
n

b
et
w
ee
n

th
em

,
th
e
n
u
cl
ei

m
u
st

h
av
e
a
te
m
p
er
at
u
re

gr
ea
te
r
th
an

a
h
u
n
d
re
d
m
il
li
on

d
eg
re
es

(2
)
or

ab
ou

t
10
k
eV

(1
eV

≈
11

60
0

o
C
).

A
t
su
ch

te
m
p
er
at
u
re
s,

el
ec
tr
on

s
ar
e
co
m
p
le
te
ly

d
et
ac
h
ed

fr
om

th
e
n
u
cl
ei
,
su
ch

th
at

th
e
h
ot

“g
as
”
is

n
o
lo
n
ge
r
co
m
p
os
ed

of
n
eu
tr
al

at
om

s,
b
u
t
of

p
os
it
iv
el
y
(i
on

s)
an

d
n
eg
at
iv
el
y
(e
le
ct
ro
n
s)

ch
ar
ge
d
p
ar
ti
cl
es
.

T
h
is

fo
u
rt
h
st
at
e
of

m
at
te
r
is

ca
ll
ed

p
la
sm

a.
D
u
e
to

th
e
p
re
se
n
ce

of
th
es
e

ch
ar
ge

ca
rr
ie
rs
,
th
e
p
la
sm

a
is

el
ec
tr
ic
al
ly

co
n
d
u
ct
iv
e
so

th
at

it
st
ro
n
gl
y
re
-

sp
on

d
s
to

el
ec
tr
om

ag
n
et
ic

fi
el
d
s.

M
ag
n
et
ic

co
n
fi
n
em

en
t
fu
si
on

at
te
m
p
ts

to

(1
)
T
h
e
ra
ti
o
b
et
w
ee
n
th
e
en

er
g
y
re
tr
ie
v
ed

fr
o
m

ch
em

ic
a
l
a
n
d
n
u
cl
ea
r
re
a
ct
io
n
s
d
ir
ec
tl
y
re
la
te
s

to
th
e
ch
a
ra
ct
er
is
ti
c
in
te
ra
ct
io
n
le
n
g
th
s
o
f
th
e
u
n
d
er
ly
in
g
fo
rc
es
:
th
e
C
o
u
lo
m
b
in
te
ra
ct
io
n

li
n
k
s
el
ec
tr
o
n
s
to

th
e
n
u
cl
eu

s
o
n
d
is
ta
n
ce
s
rC

o
u
lo

m
b
o
f
th
e
o
rd
er

o
f
a
fe
w

te
n
s
o
f
A
n
g
st
rö
m

(1
Å

=
1
0
−
1
0
m
),

w
h
il
e
th
e
n
u
cl
ea
r
fo
rc
e
(a
ls
o
ca
ll
ed

re
si
d
u
a
l
st
ro
n
g
fo
rc
e)

b
in
d
s
n
eu

tr
o
n
s

a
n
d
p
ro
to
n
s
in

n
u
cl
ei

a
t
d
is
ta
n
ce
s
rn

u
c
le
a
r
o
f
th
e
o
rd
er

o
f
o
n
e
F
er
m
i
(1
F
er
m
i
=

1
0
−
1
5
m
).

S
in
ce

th
e
p
o
te
n
ti
a
l
en

er
g
y
a
ss
o
ci
a
te
d
to

ea
ch

o
f
th
es
e
ce
n
tr
a
l
fo
rc
es

(t
h
er
e
a
ls
o
ex
is
ts

a
w
ea
k

n
o
n
ce
n
tr
a
l
co
m
p
o
n
en
t
o
f
th
e
n
u
cl
ea
r
fo
rc
e)

d
ec
ay

s
li
k
e
1
/
r,

w
it
h
r
th
e
d
is
ta
n
ce

b
et
w
ee
n
th
e

tw
o
in
te
ra
ct
in
g
p
a
rt
ic
le
s,

it
co
m
es
:
E

C
o
u
lo

m
b

p
o
t

/
E

n
u
c
le
a
r

p
o
t

∼
rn

u
c
le
a
r
/
rC

o
u
lo

m
b
∼

1
0
−
6
.

T
h
e

p
re
ci
se

ra
ti
o
in
v
o
lv
es

th
e
in
te
ra
ct
io
n
co
n
st
a
n
ts

fo
r
ea
ch

o
f
th
es
e
fo
rc
es
.

(2
)
A
s
a
m
a
tt
er

o
f
fa
ct
,
th
e
m
in
im

a
l
d
is
ta
n
ce

b
et
w
ee
n
tw

o
co
ll
id
in
g
th
er
m
a
l
p
a
rt
ic
le
s
a
t
su
ch

a
te
m
p
er
a
tu
re

is
a
b
o
u
t
1
0
−
1
3
m
,
st
il
l
m
u
ch

to
o
la
rg
e
fo
r
th
e
n
u
cl
ea
r
fo
rc
e
to

ov
er
co
m
e
th
e

re
p
u
ls
iv
e
C
o
u
lo
m
b
fo
rc
e.

F
u
si
o
n
re
a
ct
io
n
s
ta
k
e
p
la
ce

th
a
n
k
s
to

th
e
tu
n
n
el

eff
ec
t
o
f
q
u
a
n
tu
m

m
ec
h
a
n
ic
s.

6
V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

cr
ea
te

th
e
co
n
d
it
io
n
s
n
ee
d
ed

fo
r
fu
si
on

en
er
gy

p
ro
d
u
ct
io
n

b
y
co
n
fi
n
in
g
th
e

p
la
sm

a
w
it
h
st
ro
n
g
m
ag
n
et
ic

fi
el
d
s.

A
n
y
st
at
ic

an
d
h
om

og
en
eo
u
s
m
ag
n
et
ic

fi
el
d
re
st
ri
ct
s
th
e
p
er
p
en
d
ic
u
la
r
(t
o
th
e
m
ag
n
et
ic
fi
el
d
li
n
es
)
m
ot
io
n
of

ch
ar
ge
d

p
ar
ti
cl
es

to
gy

ro
-o
rb
it
s.

P
ar
al
le
l
to

th
e
fi
el
d
li
n
es
,
p
ar
ti
cl
es

m
ov
e
fr
ee
ly

(u
p
to

m
ag
n
et
ic
,
an

d
p
os
si
b
ly

el
ec
tr
ic
,
m
ir
ro
r
eff

ec
ts
).

In
or
d
er

to
k
ee
p
th
e
v
ol
u
m
e

of
th
e
co
n
ta
in
er

fi
n
it
e,

th
e
fi
el
d

li
n
es

ar
e
u
su
al
ly

b
en
t
to

a
to
ru
s.

It
tu
rn
s

ou
t
th
at

ch
ar
ge
d
p
ar
ti
cl
es

im
m
er
se
d
in

a
cu
rv
ed

m
ag
n
et
ic

fi
el
d
ar
e
su
b
je
ct

to
d
ri
ft
s.

S
h
ou

ld
th
e
m
ag
n
et
ic

fi
el
d
b
e
p
u
re
ly

to
ro
id
al

(i
.e
.
w
it
h
ci
rc
u
la
r
fi
el
d

li
n
es
),
th
es
e
d
ri
ft
s
w
ou

ld
b
e
st
ro
n
g
en
ou

gh
to

p
re
v
en
t
an

y
co
n
fi
n
em

en
t
on

lo
n
g

ti
m
e
d
u
ra
ti
on

s
in

a
v
ol
u
m
e
of

ac
ce
p
ta
b
le

si
ze

[1
4
9
].

T
h
is

p
ro
b
le
m

is
so
lv
ed

b
y
tw

is
ti
n
g
th
e
m
ag
n
et
ic

fi
el
d
li
n
es
,
th
an

k
s
to

th
e
cr
ea
ti
on

of
an

ad
d
it
io
n
al

p
ol
o
id
al

co
m
p
on

en
t
of

th
e
m
ag
n
et
ic

fi
el
d
.
T
h
e
av
er
ag
e
p
it
ch

of
th
e
fi
el
d
li
n
e,

d
efi
n
ed

b
y
th
e
ra
ti
o
of

to
ro
id
al

re
v
ol
u
ti
on

s
p
er

p
ol
oi
d
al

re
v
ol
u
ti
on

of
a
fi
el
d

li
n
e,

co
rr
es
p
on

d
s
to

th
e
so
-c
al
le
d
sa
fe
ty

fa
ct
or

q.
If
q
is
n
ot

a
ra
ti
on

al
n
u
m
b
er
,

th
e
fi
el
d
li
n
e
co
v
er
s
a
so
-c
al
le
d
fl
u
x
su
rf
ac
e.

T
h
e
fi
el
d
li
n
es

at
d
iff
er
en
t
ra
d
ia
l

p
os
it
io
n
s
in
si
d
e
th
e
to
ro
id
al

p
la
sm

a
v
es
se
l
d
efi
n
e
n
es
te
d
fl
u
x
su
rf
ac
es
.
T
h
e
tw

o
m
os
t
im

p
or
ta
n
t
co
n
ce
p
ts

fo
r
m
ag
n
et
ic

co
n
fi
n
em

en
t
fu
si
on

es
se
n
ti
al
ly

d
iff
er

in
th
e
w
ay

th
e
tw

is
ti
n
g
of

th
e
fi
el
d
li
n
es

is
ac
h
ie
v
ed
.

In
st
el
la
ra
to
rs
,
as

W
en
-

d
el
st
ei
n
7-
X

in
co
n
st
ru
ct
io
n
at

G
re
if
sw

al
d
in

G
er
m
an

y,
th
e
tw

is
te
d
m
ag
n
et
ic

fi
el
d
th
at

is
n
ee
d
ed

fo
r
co
n
fi
n
em

en
t
is

en
ti
re
ly

ge
n
er
at
ed

b
y
th
e
ex
te
rn
al

fi
el
d

co
il
s.

In
to
ka
m
ak

s
(F

ig
.
1)
,
th
e
se
t
of

ex
te
rn
al

fi
el
d
co
il
s
p
ro
d
u
ce
s
a
p
u
re
ly

to
ro
id
al

m
ag
n
et
ic

fi
el
d
.
T
h
e
p
ol
oi
d
al

co
m
p
on

en
t
of

th
e
m
ag
n
et
ic

fi
el
d
is

cr
e-

at
ed

b
y
th
e
st
ro
n
g
el
ec
tr
ic

cu
rr
en
t
in
d
u
ce
d
in

th
e
p
la
sm

a
al
on

g
th
e
to
ro
id
al

d
ir
ec
ti
on

.
M
os
t
of

fu
si
on

ex
p
er
im

en
ts

in
th
e
w
or
ld
,
in
cl
u
d
in
g
th
e
In
te
rn
a-

ti
on

al
T
h
er
m
on

u
cl
ea
r
E
x
p
er
im

en
ta
l
R
ea
ct
or

(I
T
E
R
),
n
ow

u
n
d
er

co
n
st
ru
ct
io
n

at
C
ad

ar
ac
h
e,

F
ra
n
ce
,
fo
ll
ow

th
is

co
n
ce
p
t.

In
v
ie
w
of

p
ro
d
u
ci
n
g
en
er
gy
,
th
e
ra
ti
o
b
et
w
ee
n
th
e
p
ow

er
fr
om

fu
si
on

re
ac
ti
on

s
P
f
u
si
o
n
an

d
th
e
ex
te
rn
al

ad
d
it
io
n
al

p
ow

er
P
a
d
d
su
p
p
li
ed

to
th
e
p
la
sm

a
b
y
th
e

h
ea
ti
n
g
sy
st
em

s
m
u
st

b
e
gr
ea
te
r
th
an

1.
T
h
is
ra
ti
o
is
ca
ll
ed

th
e
q
u
al
it
y
fa
ct
or

Q
=

P
f
u
si
o
n
/P

a
d
d
.
T
h
e
p
re
se
n
t
re
co
rd

of
fu
si
on

p
ow

er
in

D
-T

p
la
sm

as
h
as

b
ee
n
ac
h
ie
v
ed

in
th
e
E
u
ro
p
ea
n
to
ka
m
ak

J
E
T
,
w
it
h
16

M
eg
a-
W
at
t
p
ro
d
u
ce
d

co
rr
es
p
on

d
in
g
to

Q
=

0.
64
.

In
p
ra
ct
ic
e,

re
ac
h
in
g
ig
n
it
io
n
(c
on

d
it
io
n
u
n
d
er

w
h
ic
h

th
e
p
la
sm

a
ca
n

b
e
m
ai
n
ta
in
ed

b
y

fu
si
on

re
ac
ti
on

s
w
it
h
ou

t
ex
te
rn
al

en
er
gy

in
p
u
t)

is
n
ot

m
an

d
at
or
y
fo
r
v
ia
b
le

p
ow

er
p
la
n
t.

F
in
it
e
va
lu
es

cl
os
e

to
Q

=
20

ar
e
of
te
n

th
ou

gh
t
to

b
e
en
ou

gh
fo
r
th
e
ec
on

om
ic

v
ia
b
il
it
y
of

a
re
ac
to
r.

In
IT

E
R
,
w
h
os
e
ob

je
ct
iv
e
is

to
d
em

on
st
ra
te

th
e
p
ra
ct
ic
al

fe
as
ib
il
it
y

of
a
fu
si
on

-b
as
ed

p
ro
d
u
ct
io
n

of
en
er
gy

on
an

in
d
u
st
ri
al

le
v
el
,
th
e
ta
rg
et

is
Q

=
5
in

st
ea
d
y
co
n
d
it
io
n
s,
an

d
Q

=
10

d
u
ri
n
g
tr
an

si
en
ts
.
In

th
is
la
tt
er

ca
se
,

a
si
gn

ifi
ca
n
t
fr
ac
ti
on

of
th
e
h
ea
ti
n
g
p
ow

er
of

th
e
p
la
sm

a,
n
am

el
y
2/
3,

co
m
es

fr
om

th
e
p
la
sm

a
it
se
lf
v
ia

fu
si
on

re
ac
ti
on

s.
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F
ig
u
r
e

1
.
L
ef
t:

S
ch
em

at
ic

v
ie
w

o
f
th
e
co
il

sy
st
em

an
d

m
ag
n
et
ic

fi
el
d
of

a
to
ka
m
a
k
.
R
ig
h
t:

C
or
re
sp
on

d
in
g
id
ea
li
ze
d
to
ro
id
a
l
m
ag
n
et
ic

ge
om

et
ry

an
d
it
s
ad

op
te
d
n
ot
at
io
n
s.

T
h
e
L
aw

so
n
cr
it
er
io
n
is

th
e
co
n
st
ra
in
t
fo
r
re
ac
h
in
g
se
lf
-p
la
sm

a
h
ea
ti
n
g
(t
h
e

ig
n
it
io
n

co
n
d
it
io
n
),

as
su
m
in
g

th
at

th
e

p
ow

er
of

H
el
iu
m

as
h
es

is
en
ti
re
ly

d
ep

os
it
ed

on
fu
el

io
n
s,

n
am

el
y
D
eu
te
ri
u
m

an
d

T
ri
ti
u
m

io
n
s.

It
is

re
ac
h
ed

w
h
en

th
is

fr
ac
ti
on

P
α
of

th
e
fu
si
on

p
ow

er
co
u
n
te
rb
al
an

ce
s
al
l
p
ow

er
lo
ss
es

W
/τ

E
,
w
it
h

W
th
e
p
la
sm

a
in
te
rn
al

en
er
gy

an
d

τ E
th
e
en
er
gy

co
n
fi
n
em

en
t

ti
m
e.

In
th
is

ca
se
,
th
e
en
er
gy

co
n
fi
n
em

en
t
ti
m
e
is

eq
u
al

to
th
e
L
aw

so
n
ti
m
e

τ L
a
w
so

n
=

W
/P

α
.
L
aw

so
n
cr
it
er
io
n
st
at
es

th
at

th
e
tr
ip
le

p
ro
d
u
ct

n
T
τ E

(n
is

th
e
d
en
si
ty
,
T

th
e
te
m
p
er
at
u
re
)
m
u
st

b
e
la
rg
er

th
an

a
cr
it
ic
al

va
lu
e
of

th
e

or
d
er

of
3
10

2
1
m
−
3
k
eV

s−
1
.
In

ot
h
er

w
or
d
s,
to

b
e
ab

le
to

p
ro
d
u
ce

en
er
gy

fr
om

fu
si
on

re
ac
ti
on

s,
a
su
ffi
ci
en
tl
y
h
ot

(T
)
an

d
d
en
se

(n
)
p
la
sm

a
m
u
st

b
e
co
n
fi
n
ed

effi
ci
en
tl
y

(τ
E
).

T
h
e

d
iffi

cu
lt
y

re
si
d
es

in
ob

ta
in
in
g

th
e

th
re
e

p
ar
am

et
er
s

si
m
u
lt
an

eo
u
sl
y.

In
d
ee
d
,
fo
r
ex
am

p
le
,
w
h
en

d
en
si
ty

is
in
cr
ea
se
d
b
y
m
ea
n
s
of

ga
s
in
je
ct
io
n
,
or

w
h
en

te
m
p
er
at
u
re

is
in
cr
ea
se
d
ad

d
it
io
n
al

h
ea
ti
n
g,

th
e
en
er
gy

co
n
fi
n
em

en
t
ti
m
e
d
eg
ra
d
es

in
to
ka
m
ak

p
la
sm

as
.
In

m
ag
n
et
ic

fu
si
on

d
ev
ic
es
,

th
e
m
ax

im
al

ac
h
ie
va
b
le

p
la
sm

a
d
en
si
ty

n
(n
u
m
b
er

of
p
ar
ti
cl
es

p
er

v
ol
u
m
e

u
n
it
)
is

th
eo
re
ti
ca
ll
y

u
p
p
er

b
ou

n
d
ed

b
y

th
e
st
ro
n
ge
st

ac
h
ie
va
b
le

m
ag
n
et
ic

fi
el
d
.

In
d
ee
d
,
co
n
fi
n
em

en
t
is

eff
ec
ti
v
e
p
ro
v
id
ed

th
e
th
er
m
al

en
er
gy

d
en
si
ty

n
T

re
m
ai
n
s
lo
w
er

th
an

th
e
m
ag
n
et
ic

en
er
gy

d
en
si
ty

B
2
/
2
µ
0
,
w
it
h

µ
0
th
e

p
er
m
ea
b
il
it
y
of

fr
ee

sp
ac
e.

T
h
e
ra
ti
o
of

th
e
fo
rm

er
on

th
e
la
tt
er

d
efi
n
es

th
e

d
im

en
si
on

le
ss

b
et
a
p
ar
am

et
er

β
.
A
s
a
m
at
te
r
of

fa
ct
,
to
ka
m
ak

p
la
sm

as
ar
e

su
b
je
ct

to
la
rg
e
sc
al
e
in
st
ab

il
it
ie
s
w
el
l
b
el
ow

th
e
cr
it
ic
al

va
lu
e
β

=
1
(β

is
ty
p
ic
al
ly

of
a
fe
w

p
er
ce
n
ts

in
to
ka
m
ak

s)
,
w
h
ic
h

ap
p
ea
r
re
d
h
ib
it
or
y
fo
r
th
e

co
n
fi
n
em

en
t.

In
su
ch

d
ev
ic
es
,
d
en
si
ti
es

ar
e
of

th
e
or
d
er

of
a
fe
w

10
2
0
m
−
3
.

S
u
ch

d
en
si
ti
es

ar
e
m
u
ch

lo
w
er
,
ty
p
ic
al
ly

b
y

5
or
d
er
s
of

m
ag
n
it
u
d
es
,
th
an

th
e
d
en
si
ty

of
ai
r
at

n
or
m
al

p
re
ss
u
re

an
d
te
m
p
er
at
u
re
.
G
iv
en

th
e
v
er
y
la
rg
e

8
V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

te
m
p
er
at
u
re
s
of

su
ch

p
la
sm

as
,
th
e
p
re
ss
u
re

is
h
ow

ev
er

of
a
fe
w

at
m
os
p
h
er
es
.

F
or

th
es
e
re
as
on

s,
m
u
ch

eff
or
t
is
d
ev
ot
ed

to
sc
en
ar
io
s
ai
m
in
g
at

im
p
ro
v
in
g
th
e

co
n
fi
n
em

en
t
ti
m
e
τ E

.
A
s
se
en

on
fi
gu

re
2
a
sm

al
l
in
cr
ea
se

of
τ E

ca
n
h
av
e
a
b
ig

im
p
ac
t
on

th
e
fu
si
on

p
er
fo
rm

an
ce
s.

T
h
is
co
n
fi
n
em

en
t
ti
m
e,

w
h
ic
h
is
b
as
ic
al
ly

F
ig
u
r
e
2
.
Q
u
al
it
y
fa
ct
or

Q
in
cr
ea
se
s
w
it
h
en
er
gy

co
n
fi
n
em

en
t
ti
m
e

τ E
.
Q

is
p
ro
p
or
ti
on

al
to

τ E
=

τ E
/(
τ L

a
w
so

n
−

τ E
).

a
th
er
m
al

re
la
x
at
io
n
ti
m
e,

is
m
ai
n
ly

go
v
er
n
ed

b
y
co
n
d
u
ct
iv
e
lo
ss
es
.
It

tu
rn
s

ou
t
th
at

th
es
e

lo
ss
es

ar
e

es
se
n
ti
al
ly

of
tu
rb
u
le
n
t
n
at
u
re
.

U
n
d
er
st
a
n
d
in
g

tu
rb
u
le
n
t
tr
a
n
sp
o
rt

in
m
a
gn

et
iz
ed

p
la
sm

a
is

o
n
e
o
f
th
e
ke
y
o
pe
n

is
su
es

in
m
a
gn

et
ic

co
n
fi
n
em

en
t
fu
si
o
n
re
se
a
rc
h
.

3
.
T
h
e
o
re

ti
c
a
l
H
ie
ra

rc
h
y
o
f
P
la
sm

a
P
h
y
si
c
s

T
h
e
se
lf
co
n
si
st
en
t
tr
ea
tm

en
t
of

p
la
sm

a
ev
ol
u
ti
on

re
q
u
ir
es

to
so
lv
in
g
b
ot
h

th
e
d
y
n
am

ic
s
of

th
e
el
ec
tr
om

ag
n
et
ic

fi
el
d
s,

go
v
er
n
ed

b
y
M
ax

w
el
l’
s
eq
u
at
io
n
s,

an
d
th
e
p
la
sm

a
re
sp
on

se
to

th
es
e
fi
el
d
s.

P
la
sm

a
re
sp
on

se
ca
n
b
e
d
es
cr
ib
ed

b
y
a
h
ie
ra
rc
h
y
of

m
o
d
el
s.

T
h
e
b
as
ic

an
d
m
os
t
p
re
ci
se

m
o
d
el

of
th
is

h
ie
ra
rc
h
y

is
th
e
m
ic
ro
sc
op

ic
d
es
cr
ip
ti
on

.
A
t
th
is

le
v
el
,
th
e
p
la
sm

a
is

an
en
se
m
b
le

of
se
v
er
al

sp
ec
ie
s
of

ch
ar
ge
d
p
ar
ti
cl
es

(f
or

n
eu
tr
al

p
la
sm

as
,
th
es
e
ar
e
el
ec
tr
on

s
w
it
h
ch
ar
ge

q e
=

−
e
an

d
m
as
s
m

e
an

d
at

le
as
t
on

e
sp
ec
ie
s
of

io
n
s
w
it
h
ch
ar
ge

q i
=

Z
ie

an
d
m
as
s
m

i)
ch
ar
ac
te
ri
ze
d
b
y
th
ei
r
p
os
it
io
n
s
x

an
d
v
el
o
ci
ti
es

v
.

T
h
ei
r
in
d
iv
id
u
al

m
ot
io
n
is

go
v
er
n
ed

b
y
N
ew

to
n
’s

eq
u
at
io
n
,
th
e
on

ly
re
le
va
n
t

fo
rc
e
b
ei
n
g
th
e
L
or
en
tz

on
e
(C

ou
lo
m
b
p
lu
s
L
ap

la
ce
).

F
or

v
er
y
fa
st

p
ar
ti
cl
es
,

th
e
re
la
ti
v
is
ti
c
fo
rm

u
la
ti
on

sh
ou

ld
b
e
re
ta
in
ed
.
A
s
sh
ow

n
e.
g.

b
y
P
oi
n
ca
ré
,

th
e
m
in
im

al
p
h
as
e
sp
ac
e
w
h
er
e
al
l
th
e
p
os
si
b
le

tr
a
je
ct
or
ie
s
of

an
y
d
y
n
am

ic
al

sy
st
em

ar
e
re
p
re
se
n
te
d
is
si
x
-d
im

en
si
on

al
:
3D

in
co
n
fi
gu

ra
ti
on

sp
ac
e
(r
ef
er
re
d

as
re
a
l
sp
a
ce
)
an

d
3D

in
ve
lo
ci
ty

sp
a
ce

(o
r
m
om

en
tu
m

sp
ac
e
in

th
e
ge
n
er
al

ca
se
).

In
th
e
fo
ll
ow

in
g,

th
e
v
ec
to
r
x

=
(x

1
,x

2
,x

3
)
re
fe
rs

to
p
os
it
io
n
in

re
al
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sp
ac
e
an

d
v

=
(v

1
,v

2
,v

3
)
in

v
el
o
ci
ty

sp
ac
e.

T
h
e
su
b
sc
ri
p
t
s
re
fe
rs

to
th
e

va
ri
ou

s
sp
ec
ie
s,

w
it
h
ch
ar
ge

q s
an

d
m
as
s
m

s
.
S
I
u
n
it
s
ar
e
ad

op
te
d
.
N
ew

to
n
’s

la
w

th
en

re
ad

s
as

fo
ll
ow

s:

(2
)

m
s
d
v

i s

d
t

=
q s
(E

+
v

i s
×
B
)

w
it
h
i
(1
≤

i
≤

N
s
)
an

y
p
ar
ti
cl
e
of

sp
ec
ie
s
s.

H
er
e,

E
is

th
e
el
ec
tr
ic

fi
el
d
an

d
B

th
e
m
ag
n
et
ic

fi
el
d
.
W
e
in
tr
o
d
u
ce

th
e
sc
al
ar

φ
an

d
v
ec
to
r
A

p
ot
en
ti
al

su
ch

th
at

E
=

−
∇
φ
−
∂
tA

.
T
h
e
d
y
n
am

ic
s
of

th
es
e
fi
el
d
s
ob

ey
M
ax

w
el
l’
s
eq
u
at
io
n
s:

∇
·E

=
ρ ε 0

G
au

ss
(3
)

−
1 c2
∂
E ∂
t
+
∇

×
B

=
µ
0
j

A
m
p
èr
e

(4
)

∇
·B

=
0

fl
u
x
co
n
se
rv
at
io
n

(5
)

∂
B ∂
t
+

∇
×

E
=

0
F
ar
ad

ay
(6
)

T
h
e
fi
el
d
s
d
ep

en
d
on

th
e
ch
ar
ge

d
en
si
ty

ρ
(x
,t
)
an

d
cu
rr
en
t
d
en
si
ty

j(
x
,t
)
of

th
e
p
la
sm

a.
L
et

th
e
p
la
sm

a
co
n
si
st
s
of

N
s
p
ar
ti
cl
es

of
s
sp
ec
ie
s
at

p
os
it
io
n
s

(x
i s
,v

i s
),

w
it
h

i
=

1
,·
··

,N
s
.

C
on

si
d
er
in
g
p
oi
n
t-
li
k
e
p
ar
ti
cl
es
,
th
e
n
u
m
b
er

d
en
si
ty

of
sp
ec
ie
s
s
is

n
s
(x
,t
)
=

N
s

∑ i=
1

δ(
x
−
x

i s
(t
))

T
h
e
to
ta
l
ch
ar
ge

d
en
si
ty

is
th
en

(7
)

ρ
(x
,t
)
=
∑ s

q s
n
s
(x
,t
)

T
h
e
cu
rr
en
t
d
en
si
ty

j
is

ob
ta
in
ed

fr
om

th
e
m
ea
n
v
el
o
ci
ti
es

n
s
v
s
(x
,t
)
=

N
s

∑ i=
1

v
i s
(t
)
δ(
x
−

x
i s
(t
))

as (8
)

j(
x
,t
)
=
∑ s

q s
v
s
(x
,t
)
n
s
(x
,t
)

T
h
e
co
m
p
le
te

d
es
cr
ip
ti
on

of
p
la
sm

a
d
y
n
am

ic
s
is

gi
v
en

b
y
N
ew

to
n
’s

la
w

(E
q
.

(2
))

an
d
M
ax

w
el
l’
s
eq
u
at
io
n
s
(E

q
s.

(3
)-
(6
))
.

S
u
ch

a
m
ic
ro
sc
op

ic
ap

p
ro
ac
h

re
q
u
ir
es

to
so
lv
e
N

co
u
p
le
d
eq
u
at
io
n
s
in

6D
p
h
as
e
sp
ac
e
fo
r
th
e
N

=
∑

s
N

s

p
ar
ti
cl
es

of
th
e
sy
st
em

.
C
on

si
d
er
in
g
fu
si
on

p
la
sm

as
of

ab
ou

t
10

2
0
m
−
3
io
n
s

an
d
el
ec
tr
on

s,
th
is

m
a
n
y-
bo
d
y
m
od
el

st
il
l
re
m
ai
n
s
ou

t
of

re
ac
h
fo
r
n
ow

ad
ay
s

su
p
er
co
m
p
u
te
rs
.

1
0

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

N
ex
t,

th
e
ki
n
et
ic

m
od
el
s
p
ro
ce
ed

fr
om

th
e
st
at
is
ti
ca
l
d
es
cr
ip
ti
on

of
th
e

p
la
sm

a:
th
e
p
ar
ti
cl
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f s
(x
,v

,t
)
is

in
tr
o
d
u
ce
d
,
co
u
n
ti
n
g

th
e
n
u
m
b
er

of
p
ar
ti
cl
es

of
sp
ec
ie
s
s
in

th
e
in
fi
n
it
es
im

al
v
ol
u
m
e
d
x
d
v
of

th
e
6D

p
h
a
se

sp
ac
e
ce
n
te
re
d
on

th
e
p
os
it
io
n
(x
,v

).
A
lt
h
ou

gh
th
e
p
re
ci
se

lo
ca
ti
on

s
of

in
d
iv
id
u
al

p
ar
ti
cl
es

ar
e
lo
st
,
th
e
d
et
ai
le
d
k
n
ow

le
d
ge

of
p
ar
ti
cl
e
m
ot
io
n
is

re
q
u
ir
ed

to
ev
al
u
at
e
th
e
d
y
n
am

ic
s
of

f s
.
In

th
is

se
n
se

k
in
et
ic

th
eo
ry

is
st
il
l

m
ic
ro
sc
op

ic
,
ev
en

th
ou

gh
st
at
is
ti
ca
l
av
er
ag
es

ar
e
em

p
lo
y
ed
.

T
h
e
la
st

st
ep

of
th
e
h
ie
ra
rc
h
y
co
n
si
st
s
in

fu
rt
h
er

re
d
u
ci
n
g
th
e
d
eg
re
es

of
fr
ee
d
om

of
th
e
k
in
et
ic

th
eo
ry

b
y
in
te
gr
at
in
g
ov
er

th
e
3D

v
el
o
ci
ty

sp
ac
e.

T
h
en
,

a
h
ie
ra
rc
h
y
of

so
-c
al
le
d
fl
u
id

m
om

en
ts

ca
n
b
e
co
n
st
ru
ct
ed

b
y
w
ei
gh

ti
n
g
th
e

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f s

b
y
te
n
so
rs

of
th
e
v
el
o
ci
ty

of
ra
n
k
k
b
ef
or
e
in
te
gr
at
io
n
.

T
h
e
fi
rs
t
m
om

en
ts

ar
e
th
e
d
en
si
ty
,
th
e
fl
ow

v
el
o
ci
ty

(v
ec
to
r)
,
an

d
th
e
p
re
ss
u
re

(t
en
so
r
of

ra
n
k
2)
.
T
h
es
e
ar
e
m
ac
ro
sc
op

ic
q
u
an

ti
ti
es

d
ep

en
d
in
g
on

sp
ac
e
an

d
ti
m
e
on

ly
.
In

su
ch

m
a
cr
o
sc
o
p
ic

o
r
fl
u
id

m
od
el
s,

th
e
k
n
ow

le
d
ge

of
th
e
in
d
iv
id
-

u
al

p
ar
ti
cl
e
m
ot
io
n
s
is

n
o
lo
n
ge
r
re
q
u
ir
ed
.
T
h
e
m
a
jo
r
d
iffi

cu
lt
y
of

th
e
fl
u
id

ap
p
ro
ac
h
re
si
d
es

in
th
e
fa
ct

th
at

ea
ch

m
om

en
t
of

or
d
er

k
d
ep

en
d
s
on

th
e
m
o-

m
en
t
(k

+
1)
,
su
ch

th
at

an
ad

d
it
io
n
al

h
y
p
ot
h
es
is
is
re
q
u
ir
ed

to
cl
os
e
th
e
sy
st
em

of
ot
h
er
w
is
e
in
fi
n
it
e
se
t
of

fl
u
id

eq
u
at
io
n
s.

F
or

w
ea
k
ly

co
ll
is
io
n
al

m
ed
ia

su
ch

as
fu
si
on

p
la
sm

as
,
n
o
sa
ti
sf
ac
to
ry

cl
o
su
re

ex
is
ts
,
co
n
v
er
se
ly

to
n
eu
tr
al

fl
u
id
s
fo
r

w
h
ic
h
th
e
fl
u
id

d
es
cr
ip
ti
on

re
m
ai
n
s
fu
ll
y
ap

p
ro
p
ri
at
e.

S
ti
ll
,
so
lv
in
g
3D

fl
u
id

eq
u
at
io
n
s
is

ce
rt
ai
n
ly

th
e
m
os
t
co
n
v
en
ie
n
t
an

d
fa
st
es
t
w
ay

to
so
lv
e
th
e
p
ro
b
-

le
m

gi
v
en

th
e
se
t
of

w
el
l
es
ta
b
li
sh
ed

n
u
m
er
ic
al

te
ch
n
iq
u
es

an
d
th
e
w
ea
lt
h
of

re
su
lt
s
ob

ta
in
ed

in
th
e
fi
el
d
of

fl
u
id

tu
rb
u
le
n
ce
.
H
ow

ev
er
,
it
is
k
n
ow

n
th
at

th
e

st
ab

il
it
y
th
re
sh
ol
d
gi
v
en

b
y
fl
u
id

eq
u
at
io
n
s
is

lo
w
er

th
an

th
e
ac
tu
al

(k
in
et
ic
)

va
lu
e
[4
9
].

It
is

al
so

w
el
l
es
ta
b
li
sh
ed

th
at

fl
u
id

d
es
cr
ip
ti
on

u
su
al
ly

ov
er
es
ti
-

m
at
es

tu
rb
u
le
n
t
fl
u
x
es

[4
9
].
T
h
is
d
is
cr
ep
an

cy
co
m
es

p
ar
tl
y
fr
om

th
e
re
so
n
an

t
in
te
ra
ct
io
n
s
b
et
w
ee
n
w
av
es

an
d
p
ar
ti
cl
es

(L
an

d
au

re
so
n
an

ce
s)
,
w
h
ic
h
ca
n
n
ot

b
e
p
ro
p
er
ly

ac
co
u
n
te
d
fo
r
b
y
fl
u
id

m
o
d
el
s.

A
ls
o,

la
rg
e
sc
al
e
ax

i-
sy
m
m
et
ri
c

fl
ow

s
of

fu
si
on

p
la
sm

as
,
k
n
ow

n
as

zo
n
al

fl
ow

s,
w
h
ic
h
p
la
y
an

im
p
or
ta
n
t
ro
le

in
re
gu

la
ti
n
g
tu
rb
u
le
n
ce
,
te
n
d
to

b
e
ov
er
-d
am

p
ed

in
fl
u
id

m
o
d
el
s.

S
ev
er
al

at
te
m
p
ts

h
av
e
b
ee
n
m
ad

e
to

p
ro
p
os
e
op

ti
m
iz
ed

cl
os
u
re
s,

in
v
ie
w

of
ac
co
u
n
ti
n
g
as

m
u
ch

as
p
os
si
b
le

fo
r
so
m
e
k
in
et
ic

eff
ec
ts
,
su
ch

as
L
an

d
au

re
so
n
an

ce
s
(s
ee

e.
g.

[6
8
]-
[1
4
5
]-
[1
1
9
])
.
C
om

p
ar
in
g
fl
u
id

an
d
k
in
et
ic

si
m
u
la
-

ti
on

s
p
ro
v
id
es

a
st
ri
n
ge
n
t
te
st

of
th
es
e
cl
os
u
re

sc
h
em

es
.

T
h
is

ex
er
ci
se

h
as

re
v
ea
le
d
m
u
ch

m
or
e
d
iffi

cu
lt

th
an

ex
p
ec
te
d
,
p
oi
n
ti
n
g
ou

t
ir
re
co
n
ci
la
b
le

d
is
-

cr
ep
an

ci
es

[4
9
]-
[Y

.
S
ar
az
in
,
V
.
G
ra
n
d
gi
ra
rd
,
G
.
D
if
-P

ra
d
al
ie
r
et

al
.,
P
la
sm

a
P
h
ys
.
C
o
n
tr
o
l.

F
u
si
o
n

4
8
(2
00
6)

B
17
9]
.
F
or
tu
n
at
el
y,

th
e
d
ra
m
at
ic

in
cr
ea
se

of
n
u
m
er
ic
al

re
so
u
rc
es

an
d
p
er
fo
rm

an
ce
s
n
ow

en
ab

le
s
th
e
d
ir
ec
t
tr
ea
tm

en
t
of

k
in
et
ic

m
o
d
el
s,

or
at

le
as
t
of

th
e
gy

ro
-k
in
et
ic

on
es

(s
ee

se
ct
io
n
5)
.
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F
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N
P
L
A
S
M
A
S

1
1

4
.
P
la
sm

a
k
in
e
ti
c
th

e
o
ry

4
.1
.
L
io
u
v
il
le

th
e
o
re

m
.
—

L
et

u
s
co
n
si
d
er

a
ca
n
on

ic
al

H
am

il
to
n
ia
n
sy
s-

te
m
:
q
=
{q

i}
1
≤
i≤

N
d
en
ot
e
th
e
ge
n
er
al
iz
ed

co
or
d
in
at
es
,
p
=
{p

i}
1
≤
i≤

N
th
ei
r

co
n
ju
ga
te

m
om

en
ta

an
d

H
({
q
i,
p
i}
)
th
e
H
am

il
to
n
ia
n
.

L
et

al
so

th
e
p
h
a
se
-

sp
ac
e
d
is
tr
ib
u
ti
on
D N

(q
,p

)
d
et
er
m
in
e
th
e
p
ro
b
ab

il
it
y
D N

(q
,p

)
d
N
q
d
N
p
th
at

th
e
sy
st
em

is
in

th
e
in
fi
n
it
es
im

al
v
ol
u
m
e
of

p
h
as
e-
sp
ac
e

d
N
q
d
N
p
ar
ou

n
d

th
e
p
os
it
io
n
(q
,p

).
T
h
e
eq
u
il
ib
ri
u
m

st
at
is
ti
ca
l
m
ec
h
an

ic
s
of

su
ch

a
ca
n
on

ic
al

H
am

il
to
n
ia
n
sy
st
em

is
go
v
er
n
ed

b
y
L
io
u
v
il
le
’s
th
eo
re
m
,
w
h
ic
h
st
at
es

th
at

th
e

p
h
a
se
-s
pa
ce

d
is
tr
ib
u
ti
o
n
fu
n
ct
io
n
is

co
n
st
a
n
t
a
lo
n
g
th
e
tr
a
je
ct
o
ri
es

o
f
th
e
sy
s-

te
m

–
th
at

is
,
th
e
d
en
si
ty
D N

of
N

sy
st
em

p
oi
n
ts

in
th
e
v
ic
in
it
y
of

a
gi
v
en

sy
st
em

p
oi
n
t
tr
av
el
li
n
g
th
ro
u
gh

p
h
as
e-
sp
ac
e
is

co
n
st
an

t
in

ti
m
e.

T
h
e
p
ro
of

d
ir
ec
tl
y
fo
ll
ow

s
fr
om

th
e
co
n
ti
n
u
it
y
eq
u
at
io
n
fu
lfi
ll
ed

b
y
D N

,
n
am

el
y
:

(9
)

∂
D N ∂
t

+
N ∑ i=
1

[
∂ ∂
q
i

( D N
d
q
i

d
t

)
+

∂ ∂
p
i

( D N
d
p
i

d
t

)]
=

0

an
d
th
e
fa
ct

th
at

th
e
ge
n
er
al
iz
ed

v
el
o
ci
ty

fi
el
d
(ṗ

,q̇
)
in

p
h
as
e
sp
ac
e
is

d
iv
er
-

ge
n
ce
le
ss
,
as

a
d
ir
ec
t
co
n
se
q
u
en
ce

of
th
e
H
am

il
to
n
eq
u
at
io
n
s
of

m
ot
io
n

d
q
i

d
t

=
∂
H

∂
p
i

d
p
i

d
t

=
−
∂
H

∂
q
i

D
ev
el
op

in
g
eq
.
(9
)
le
ad

s
to

∂
D N ∂
t

+
N ∑ i=
1

(
∂
D N ∂
q
i

d
q
i

d
t
+

∂
D N ∂
p
i

d
p
i

d
t

) +
D N

N ∑ i=
1

[
∂ ∂
q
i

(
d
q
i

d
t

)
+

∂ ∂
p
i

(
d
p
i

d
t

)]
=

0

T
h
e
la
st

su
m

va
n
is
h
es

in
v
ir
tu
e
of

H
am

il
to
n
’s

eq
u
at
io
n
s.

T
h
e
re
su
lt
in
g
eq
u
a-

ti
on

st
at
es

th
at

th
e
co
n
v
ec
ti
v
e
d
er
iv
at
iv
e
of

th
e
d
en
si
ty

d
D N

/
d
t
is

eq
u
al

to
0: (1
0)

d
D N d
t

=
∂
D N ∂
t

+
N ∑ i=
1

(
∂
D N ∂
q
i

d
q
i

d
t
+

∂
D N ∂
p
i

d
p
i

d
t

)
=

0

In
te
gr
at
in
g
b
y
p
ar
ts

L
io
u
v
il
le
’s
eq
u
at
io
n
(1
0)

ov
er

th
e
va
ri
ab

le
s
le
ad

s
to

a
ch
ai
n

of
(N

−
1)

eq
u
at
io
n
s
w
h
er
e
th
e
j-
th

eq
u
at
io
n
co
n
n
ec
ts

th
e
j-
th

an
d
(j

+
1)
-t
h

p
ar
ti
cl
e
d
en
si
ty

p
ro
b
ab

il
it
y
fu
n
ct
io
n
s,

w
it
h
D j

=
D j

(q
1
··
·q

j
,p

1
··
·q

j
).

T
h
e

tr
u
n
ca
ti
on

of
th
is
B
B
G
K
Y

h
ie
ra
rc
h
y
of

eq
u
at
io
n
s
is
a
co
m
m
on

st
ar
ti
n
g
p
oi
n
t

fo
r
m
an

y
ap

p
li
ca
ti
on

s
of

k
in
et
ic

th
eo
ry
.
In

p
ar
ti
cu
la
r,

tr
u
n
ca
ti
on

at
th
e
fi
rs
t

eq
u
at
io
n
or

th
e
fi
rs
t
tw

o
eq
u
at
io
n
s
ca
n
b
e
u
se
d
to

d
er
iv
e
cl
as
si
ca
l
B
ol
tz
m
a
n
n

eq
u
at
io
n
s
an

d
th
ei
r
fi
rs
t
or
d
er

co
rr
ec
ti
on

s.
T
h
is
d
er
iv
at
io
n
is
ou

t
of

th
e
sc
op

e
of

th
is

p
ap

er
,
an

d
ca
n
b
e
fo
u
n
d
in

e.
g.

[1
1
3
].

In
th
e
fo
ll
ow

in
g,

w
e
fo
cu
s
on

1
2

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

th
e
k
in
et
ic

d
es
cr
ip
ti
on

of
th
e
p
la
sm

a
tu
rb
u
le
n
ce

an
d
m
or
e
p
re
ci
se
ly

on
th
e

n
u
m
er
ic
al

so
lv
in
g
of

B
o
lt
zm

a
n
n
eq
u
a
ti
o
n
an

d
of

it
s
co
ll
is
io
n
le
ss

fo
rm

,
n
am

el
y

V
la
so
v
eq
u
a
ti
o
n
.

4
.2
.
V
la
so
v
-M

a
x
w
e
ll
a
n
d
V
la
so
v
-P

o
is
so

n
sy

st
e
m
.
—

In
a
h
ig
h
te
m
p
er
-

at
u
re

fu
si
on

p
la
sm

as
,
th
e
k
in
et
ic

en
er
gy

is
m
u
ch

la
rg
er

th
an

th
e
av
er
ag
e
p
o-

te
n
ti
al

(C
ou

lo
m
b
ia
n
)
en
er
gy

b
et
w
ee
n
p
ar
ti
cl
es
,
su
ch

th
at

p
ar
ti
cl
es

ar
e
w
ea
k
ly

co
u
p
le
d
.
In

w
ea
k
ly

co
u
p
le
d
p
la
sm

as
,
m
u
lt
ip
le

p
ar
ti
cl
e
co
rr
el
at
io
n
s
in
v
ol
v
in
g

m
or
e
th
an

tw
o
p
ar
ti
cl
es

ar
e
n
eg
le
ct
ed
.
L
et

u
s
d
en
ot
e
f s
≡

f s
(x
,v

,t
)
th
e
6D

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
,
w
h
ic
h
re
p
re
se
n
ts

th
e
d
en
si
ty

of
p
ar
ti
cl
es

sp
ec
ie
s
s
in

th
e

p
h
a
se

sp
ac
e
(x
,v

)
at

ti
m
e
t.

It
s
ev
ol
u
ti
on

is
go
v
er
n
ed

b
y
B
ol
tz
m
an

n
eq
u
at
io
n

(1
1)

∂
f s ∂
t
+
v
·∂

f s ∂
x

+
q s

(E
+
v
×

B
)
∂
f s ∂
v

=
C
(f

s′
,f

s
)

In
th
e
co
ll
is
io
n
le
ss

li
m
it
,
th
e
co
ll
is
io
n
op

er
at
or

C
(f

s′
,f

s
)
is
n
eg
le
ct
ed
,
an

d
eq
u
a-

ti
on

(1
1)

re
d
u
ce
s
to

th
e
V
la
so
v
eq
u
at
io
n
(o
r
co
ll
is
io
n
le
ss

B
ol
tz
m
an

n
eq
u
at
io
n
)

(1
2)

∂
f s ∂
t
+

v
·∂

f s ∂
x

+
q s

(E
+
v
×
B
)
∂
f s ∂
v

=
0

T
h
e
el
ec
tr
om

ag
n
et
ic

fi
el
d
s
E

an
d
B

ar
e
go
v
er
n
ed

b
y
M
ax

w
el
l’
s
eq
u
at
io
n
s

∇
·E

=
1 ǫ 0

∑ s

q s
n
s

(1
3)

−
1 c2
∂
E ∂
t
+
∇

×
B

=
µ
0

∑ s

j s
(1
4)

∇
·B

=
0

(1
5)

∂
B ∂
t
+
∇

×
E

=
0

(1
6)

w
h
er
e
th
e
so
u
rc
e
te
rm

s,
th
e
d
en
si
ty

n
s
(x
,t
)
an

d
th
e
cu
rr
en
t
d
en
si
ty

j s
(x
,t
),

co
rr
es
p
on

d
to

th
e
fi
rs
t
tw

o
v
el
o
ci
ty

m
om

en
ts

of
f s

n
s
(x
,t
)
=

q s

∫
f s
(x
,v

,t
)
d
v

j s
(x
,t
)
=

q s

∫
f s
(x
,v

,t
)
v
d
v

T
h
e
V
la
so
v
-M

ax
w
el
l
sy
st
em

,
eq
u
at
io
n
s
(1
2)
-(
16
),

p
ro
v
id
es

th
e
k
in
et
ic

fr
am

e-
w
or
k

fo
r
d
es
cr
ib
in
g

h
ig
h

te
m
p
er
at
u
re

co
ll
is
io
n
le
ss

p
la
sm

as
.

T
h
e

V
la
so
v
-

P
oi
ss
on

m
o
d
el

is
ob

ta
in
ed

b
y
n
eg
le
ct
in
g
th
e
ti
m
e
fl
u
ct
u
at
io
n
s
of

th
e
m
ag
n
et
ic

fi
el
d
B
.
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1
3

4
.3
.
A
d
v
e
c
ti
v
e
a
n
d
c
o
n
se
rv

a
ti
v
e
fo
rm

s
o
f
V
la
so
v
e
q
u
a
ti
o
n
.
—

In
th
e

fo
ll
ow

in
g,

th
e
su
b
sc
ri
p
t
s
of

th
e
co
n
si
d
er
ed

sp
ec
ie
s
is

d
ro
p
p
ed

fo
r
cl
ar
it
y.

L
et

u
s
d
en
ot
e
Z

th
e
si
x
-d
im

en
si
on

al
p
h
as
e
sp
ac
e
v
ec
to
r
Z
=
{x

,v
}
an

d
∇

(x
,v
)
th
e

si
x
-d
im

en
si
on

al
p
h
as
e-
sp
ac
e
d
er
iv
at
iv
e:

(1
7)

∇
(x

,v
)
=
{∇

x
,∇

v
}
=

{
∂ ∂
x
,
∂ ∂
v

}
=

∂ ∂
Z

V
la
so
v
eq
u
at
io
n
(1
2)

tr
an

sl
at
es

in
to

an
a
d
ve
ct
io
n
eq
u
a
ti
o
n
in

p
h
as
e-
sp
ac
e
of

th
e
fu
n
ct
io
n
f
:
R
d
×
R
+
→

R
(w

it
h
d
=

6)

(1
8)

∂ ∂
tf

(Z
,t
)
+

U
(Z

,t
)
·∇

(x
,v
)f
(Z

,t
)
=

0

H
er
e,

w
e
h
av
e
in
tr
o
d
u
ce
d
th
e
si
x
-d
im

en
si
on

al
p
h
as
e-
sp
ac
e
fl
ow

U
:
R
d
×
R
+
→

R
,
d
efi
n
ed

as
th
e
to
ta
l
ti
m
e
d
er
iv
at
iv
e
of

Z
:

(1
9)

U
(Z

,t
)
=
{U

x
,U

v
}
=

d
Z d
t
=

{
d
x d
t
,
d
v d
t

}
=
{v

,E
+

v
×
B
}

L
et

u
s
n
ow

co
n
si
d
er

th
e
d
iff
er
en
ti
al

sy
st
em

d
Z d
t
=

U
(Z

(t
),
t)

(2
0)

Z
(s
)
=

z
(2
1)

D
e
fi
n
it
io
n

1
.
—

T
h
e
so
lu
ti
o
n
s
o
f
eq
u
a
ti
o
n
(2
0)

a
re

ca
ll
ed

th
e
ch
a
ra
ct
er
is
ti
cs

o
f
th
e
a
d
ve
ct
io
n
eq
u
a
ti
o
n

(1
8)
.
L
et

u
s
d
en

o
te

Z
(t
;z
,s
)
th
e
so
lu
ti
o
n
o
f
(2
0)
-

(2
1) T
h
e
ex
is
te
n
ce
,
u
n
iq
u
en
es
s
an

d
re
gu

la
ri
ty

of
th
e
so
lu
ti
on

s
of

th
e
p
re
v
io
u
s

d
iff
er
en
ti
al

eq
u
at
io
n
s
(2
0)
-(
21
)
d
er
iv
e
fr
om

th
e
cl
as
si
ca
l
th
eo
re
m

of
d
iff
er
en
ti
al

eq
u
at
io
n
th
eo
ry
,
w
h
ic
h
re
ad

s
as

fo
ll
ow

s
(i
ts

p
ro
of

ca
n
b
e
fo
u
n
d
in

e.
g.

[3
])
:

T
h
eo

re
m

1
.
—

L
et

u
s
a
ss
u
m
e
U
∈

C
k
−
1
(R

d
×

[0
,T

])
,
∇
U
∈

C
k
−
1
(R

d
×

[0
,T

])
w
it
h
k
∈
N
,k

>
1
a
n
d
th
a
t,
fo
r
κ
≥

1:

|U
(z
,t
)|
≤

κ
(1

+
|z
|)

∀t
∈
[0
,T

]
∀z
∈
R
d

th
en
∀s
∈

[0
,T

]
a
n
d
z
∈

R
d
,
th
er
e
ex
is
ts

a
u
n
iq
u
e
so
lu
ti
o
n
Z
∈

C
k
([
0,
T
]
×

R
d
×

[0
,T

])
o
f
eq
u
a
ti
o
n
s
(2
0)
-(
21
).

A
ls
o,

a
fe
w
p
ro
p
er
ti
es

of
th
e
ch
ar
ac
te
ri
st
ic
s
ar
e
u
se
fu
l
to

so
m
e
of

th
e
va
ri
ou

s
n
u
m
er
ic
al

ap
p
ro
ac
h
es

d
es
cr
ib
ed

in
th
e
fo
ll
ow

in
g
se
ct
io
n
s.

T
h
es
e
p
ro
p
er
ti
es

ar
e

su
m
m
ar
iz
ed

in
th
e
fo
ll
ow

in
g
p
ro
p
os
it
io
n
1
(t
h
e
p
ro
of

ca
n
b
e
fo
u
n
d
in

ap
p
en
d
ix

C
):

P
ro

p
o
si
ti
o
n

1
.
—

U
n
d
er

th
e
sa
m
e
a
ss
u
m
p
ti
o
n
s
a
s
fo
r
th
eo
re
m

1
,
th
e
fo
ll
o
w
-

in
g
p
ro
pe
rt
ie
s
h
o
ld
:

1
4

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

a
)
∀t

1
,t

2
,t

3
∈
[0
,T

]
a
n
d
z
∈
R
d

Z
(t

3
;Z

(t
2
;z
,t

1
),
t 2
)
=

Z
(t

3
;z
,t

1
)

b)
∀(
t,
s)
∈

[0
,T

]2
,
th
e
a
p
p
li
ca
ti
o
n
z
7→

Z
(t
;z
,s
)
is

a
C

1
-d
iff
eo
m
o
rp
h
is
m

o
f

R
d
w
it
h
in
ve
rs
e
y
7→

Z
(s
;y

,t
).

c)
T
h
e
ja
co
bi
a
n
J
(t
;1
,s
)
=

d
et
(∇

z
Z
(t
;z
,s
))

sa
ti
sfi
es

J
>

0
a
n
d

∂
J ∂
t
=

(∇
·U

)(
Z
(t
;z
,s
))
J

In
pa
rt
ic
u
la
r,

if
∇
·U

=
0,

th
en

J
(t
;1
,s
)
=

J
(s
;1
,s
)
=

d
et
I d

=
1
w
h
er
e
I d

is
th
e
id
en

ti
ty

m
a
tr
ix

o
f
o
rd
er

d
.

A
ls
o
n
ot
ic
e
th
at

eq
u
at
io
n
(1
8)

ca
n
b
e
fo
rm

u
la
te
d
as

fo
ll
ow

s:

(2
2)

d
f d
t
=

∂
f ∂
t
+

d
Z d
t
·∇

z
f
=

0

T
h
e
to
ta
l
ti
m
e
d
er
iv
at
iv
e
of

f
is

eq
u
al

to
0.

S
ai
d
d
iff
er
en
tl
y,

th
e
fu
n
d
am

en
ta
l

p
ro
p
er
ty

of
th
e
V
la
so
v
eq
u
at
io
n
is
th
at

th
e
d
is
tr
ib
u
ti
o
n
fu
n
ct
io
n
f
is

co
n
st
a
n
t

a
lo
n
g
it
s
ch
a
ra
ct
er
is
ti
cs
.

T
h
is

p
ro
p
er
ty

is
on

e
of

th
e
fo
u
n
d
at
io
n
s
of

m
an

y
n
u
m
er
ic
al

sc
h
em

es
,
in
cl
u
d
in
g
b
ot
h
L
ag
ra
n
gi
an

an
d
se
m
i-
L
ag
ra
n
gi
an

n
u
m
er
ic
al

ap
p
ro
ac
h
es
,
as

w
il
l
b
e
d
et
ai
le
d
in

th
e
fo
ll
ow

in
g.

S
in
ce

th
e
p
h
as
e
sp
ac
e
el
em

en
t
is

in
co
m
p
re
ss
ib
le

in
th
e
V
la
so
v

eq
u
at
io
n

∇
(x

,v
)U

=
0
–
L
io
u
v
il
le
’s

th
eo
re
m

ap
p
li
es

–
th
en

th
e
ad

v
ec
ti
v
e
fo
rm

of
th
e

V
la
so
v
eq
u
at
io
n
(1
8)

al
so

w
ri
te
s

(2
3)

∂ ∂
tf

(Z
,t
)
+
∇

(x
,v
)
·(
U
(Z

,t
)
f
(Z

,t
))

=
0

E
q
u
at
io
n
(2
3)

co
rr
es
p
on

d
s
to

th
e
co
n
se
rv
a
ti
ve

fo
rm

of
th
e
V
la
so
v
eq
u
at
io
n
.

L
io
u
v
il
le
’s
th
eo
re
m

gu
ar
an

ti
es

th
at

th
e
ad

v
ec
ti
v
e
an

d
th
e
co
n
se
rv
at
iv
e
fo
rm

s
of

th
e
V
la
so
v
eq
u
at
io
n
ar
e
eq
u
iv
al
en
t.

B
ot
h
fo
rm

u
la
ti
on

s
ar
e
u
se
d
in

th
e
n
u
m
er
i-

ca
l
tr
ea
tm

en
ts
,
d
ep

en
d
in
g
on

th
e
ad

op
te
d
n
u
m
er
ic
al

sc
h
em

e.
F
or

in
st
an

ce
,
th
e

fo
ll
ow

in
g
p
ro
p
os
it
io
n
2
is

th
e
b
ac
k
b
on

e
of

th
e
E
u
le
ri
an

ap
p
ro
ac
h
(s
ee

se
ct
io
n

6.
3)

P
ro

p
o
si
ti
o
n

2
.
—

L
et

Z
(t
;z
,s
)

be
th
e

so
lu
ti
o
n

o
f
E
qs
.

(2
0)
-(
21
),

a
n
d

J
(t
;1
,s
)
=

d
et
∇

z
Z
(t
;z
,s
)
th
e
ja
co
bi
a
n
.
U
si
n
g
th
e
po
si
ti
vi
ty

o
f
th
e
ja
co
bi
a
n

(c
f
p
ro
po
si
ti
o
n
1
),

it
ca
n
be

p
ro
ve
d
(s
ee

[2
1
]
fo
r
in
st
a
n
ce
)
th
a
t
th
e
so
lu
ti
o
n
o
f

th
e
tr
a
n
sp
o
rt

eq
u
a
ti
o
n
(2
3)

ca
n
be

ex
p
re
ss
ed

a
s

(2
4)

f
(Z

,t
)
=

f
(Z

(t
;z
,s
),
s)
∇

z
Z
(t
;z
,s
)
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1
5

S
u
ch

a
re
su
lt
d
ir
ec
tl
y
fo
ll
o
w
s
fr
o
m

th
e
pa
rt
ic
le

co
n
se
rv
a
ti
o
n
a
lo
n
g
th
e
ch
a
ra
c-

te
ri
st
ic
s

(2
5)

∀K
⊂

R
d
,

∫ K
f
(Z

,t
)d
Z
=

∫ Z
(t
;K

,s
)
f
(Z

,s
)d
Z

w
it
h

Z
(t
;K

,s
)
=
{y
∈
R
d
:

y
=

Z
(t
;z
,s
);

z
∈
K
}

4
.4
.
C
o
n
se
rv

a
ti
o
n

p
ro

p
e
rt
ie
s
o
f
th

e
V
la
so
v
-M

a
x
w
e
ll

sy
st
e
m
.
—

L
et

u
s
ca
ll

th
e
V
la
so
v
eq
u
at
io
n

(1
2)

co
u
p
le
d

to
M
ax

w
el
l’
s
eq
u
at
io
n
s
(1
3)
-
(1
6)

th
e
n
o
n
-l
in
ea
r
V
la
so
v
eq
u
a
ti
o
n
.

T
h
is

n
on

-l
in
ea
r
eq
u
at
io
n
sa
ti
sfi
es

a
ce
rt
ai
n

n
u
m
b
er

of
co
n
se
rv
at
io
n
p
ro
p
er
ti
es
.
S
u
ch

ex
ac
t
p
ro
p
er
ti
es

re
v
ea
l
p
ar
ti
cu
la
rl
y

p
ow

er
fu
l
w
h
en

d
ev
el
op

in
g
n
u
m
er
ic
al

sc
h
em

es
:
in
h
er
en
tl
y
co
n
se
rv
in
g
n
u
m
er
ic
al

m
et
h
o
d
s
ca
n
b
e
en
v
is
ag
ed
,
or
,
al
te
rn
at
iv
el
y,
th
ey

b
ec
om

e
st
ri
n
ge
n
t
v
er
ifi
ca
ti
on

te
st
s
fo
r
n
u
m
er
ic
al

sc
h
em

es
an

d
si
m
u
la
ti
on

re
su
lt
s.

P
ro

p
o
si
ti
o
n

3
.
—

T
h
e
V
la
so
v
eq
u
a
ti
o
n
in
su
re
s
th
e
co
n
se
rv
a
ti
o
n
o
f
th
e
n
u
m
-

be
r
N

o
f
pa
rt
ic
le
s
in

a
cl
o
se
d
p
h
a
se

sp
a
ce

vo
lu
m
e
V
,
a
pa
rt

fr
o
m

ex
ch
a
n
ge
s
w
it
h

th
e
ex
te
ri
o
r.

In
th
is

ca
se
,
in

a
gr
ee
m
en

t
w
it
h
L
io
u
vi
ll
e’
s
th
eo
re
m
:

(2
6)

N
=

∫ V
f
(x
,v

,t
)
d
x
d
v
=

∫ V
f
(Z

,t
)
d
V

=
co
n
st

A
s
sh
ow

n
b
el
ow

,
th
is

si
m
p
ly

re
su
lt
s
fr
om

th
e
fa
ct

th
at

th
e
to
ta
l
d
er
iv
at
iv
e

of
f
is

eq
u
al

to
0:

d
N d
t

=
d d
t

∫ V
f
(Z

,t
)
d
V

=

∫ V

∂
f ∂
t
d
V

=
−
∫ V

U
·∇

(x
,v
)f

d
V

U
si
n
g
G
au

ss
’s

th
eo
re
m
,
it
ca
n
b
e
re
ca
st

as
fo
ll
ow

s

(2
7)

∫ V
U

·∇
(x

,v
)f

d
V

=

∮ S
(V

)
f
n
·U

d
S

w
h
er
e
S
(V

)
st
an

d
s
fo
r
th
e
su
rf
ac
e
of

v
ol
u
m
e
V

an
d
n
is
it
s
n
or
m
al

u
n
it
v
ec
to
r.

T
h
en

(2
8)

∂
N ∂
t

=
−
∮ S

(V
)
f
(n

·U
)
d
S

T
h
is
re
la
ti
on

st
at
es

th
at

th
e
ra
te

of
ch
an

ge
of

th
e
n
u
m
b
er

of
p
ar
ti
cl
e
in
si
d
e
th
e

v
ol
u
m
e
V

is
eq
u
al

to
th
e
in
te
gr
al

of
th
e
fl
u
x
of

f
ac
ro
ss

th
e
su
rf
ac
e
S
(V

)
of

th
is

v
ol
u
m
e.

H
en
ce
,
N

re
m
ai
n
s
co
n
st
an

t
fo
r
va
n
is
h
in
g
fl
u
x
es

at
th
e
b
ou

n
d
ar
ie
s.

P
ro

p
o
si
ti
o
n

4
.
—

L
et

th
e
d
is
tr
ib
u
ti
o
n
fu
n
ct
io
n
f
(x
,v

,t
)
in

th
e
p
h
a
se

sp
a
ce

(x
,v

)
∈
R
d
×

R
d
,d

=
1,
··
·3

be
go
ve
rn
ed

by
th
e

V
la
so
v-
M
a
xw

el
l
eq
u
a
ti
o
n
s.

T
h
en

,
d
en

o
ti
n
g
f 0
(x
,v

)
th
e
d
is
tr
ib
u
ti
o
n

fu
n
ct
io
n

a
t
in
it
ia
l
ti
m
e
t
=

0,
f

sa
ti
sfi
es

th
e
fo
ll
o
w
in
g
p
ro
pe
rt
ie
s:

1
6

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

–
M
a
xi
m
u
m

p
ri
n
ci
p
le

(2
9)

0
≤

f
(x
,v

,t
)
≤

m
a
x
(x

,v
)(
f 0
(x
,v

))
∀t

∈
R
+

–
C
o
n
se
rv
a
ti
o
n
o
f
th
e
vo
lu
m
e.

F
o
r
a
ll
vo
lu
m
e
V

o
f
p
h
a
se
-s
pa
ce

(3
0)

∫ V
f
(x
,v

,t
)
d
x
d
v
=

∫ U
−
1
(V

)
f 0
(y

,u
)
d
y
d
u

∀t
∈
R
+

–
C
o
n
se
rv
a
ti
o
n
o
f
th
e
L
p
n
o
rm

s,
p
∈
N
,
1
≤

p
≤

∞

(3
1)

d d
t

∫ Rd
×
Rd
(f
(x
,v

,t
))

p
d
x
d
v
=

0
∀t

∈
R
+

–
C
o
n
se
rv
a
ti
o
n
o
f
th
e
ki
n
et
ic

en
tr
o
p
y

(3
2)

d d
t

( −
∫ Rd

×
Rd

f
(x
,v

,t
)
ln
f
(x
,v

,t
)
d
x
d
v

)
=

0
∀t

∈
R
+

–
C
o
n
se
rv
a
ti
o
n
o
f
th
e
en

er
gy
,

•
In

th
e
ca
se

o
f
th
e
V
la
so
v-
M
a
xw

el
l
sy
st
em

:

d d
t

∫ Rd
×
Rd

m
|v
|2
f
(x
,v

,t
)
d
x
d
v

(3
3)

+
d d
t

∫ Rd

( ε 0
|E

(x
,t
)|2

+
1 µ
0
|B

(x
,t
)|2
)

d
x
=

0
∀t

∈
R
+

•
In

th
e
ca
se

o
f
th
e
V
la
so
v-
P
o
is
so
n
sy
st
em

:

(3
4)

d d
t

∫ Rd
×
Rd

m
|v
|2
f
(x
,v

,t
)
d
x
d
v
+

d d
t

∫ Rd
ε 0
|E

(x
,t
)|2

d
x
=

0
∀t

∈
R
+

T
h
e
m
ax

im
u
m

p
ri
n
ci
p
le

es
p
ec
ia
ll
y
in
su
re
s
th
at

f
(x
,v

,t
)
re
m
ai
n
s
p
os
it
iv
e

fo
r
al
l
ti
m
e
t
if
th
e
in
it
ia
l
d
at
a
f 0
(x
,v

)
is

p
os
it
iv
e
ev
er
y
w
h
er
e.

T
h
e
p
ro
of
s
of

al
l
th
es
e
as
se
rt
io
n
s
ar
e
gi
v
en

in
ap

p
en
d
ix

D
.

T
h
e
en
tr
op

y
co
n
se
rv
at
io
n
is

th
e
co
n
se
q
u
en
ce

of
th
e
fa
ct

th
at

th
e
V
la
so
v
-

M
ax

w
el
l
sy
st
em

is
ti
m
e
re
ve
rs
ib
le
.
In
d
ee
d
,
le
t
u
s
co
n
si
d
er

th
e
fo
ll
ow

in
g
ti
m
e

re
v
er
sa
l
tr
an

sf
or
m
at
io
n
:
t
→

−
t;

x
→

x
;
v

→
−
v
;
E

→
E

an
d
B

→
−
B
.

T
h
is
tr
an

sf
or
m
at
io
n
le
av
es

V
la
so
v
eq
u
at
io
n
in
va
ri
an

t.
T
h
is
ca
n
b
e
u
n
d
er
st
o
o
d

as
fo
ll
ow

s:
st
ar
ti
n
g
fr
om

so
m
e
in
it
ia
l
st
at
e
an

d
ev
ol
v
in
g
f
in

ti
m
e
ac
co
rd
in
g

to
th
e
V
la
so
v
-M

ax
w
el
l
sy
st
em

,
an

d
d
ec
id
in
g
at

a
ce
rt
ai
n
ti
m
e
to

re
v
er
se

th
e

v
el
o
ci
ty

of
al
l
p
ar
ti
cl
es

(l
ea
d
in
g
to

th
e
re
v
er
sa
l
of

th
e
m
ag
n
et
ic

fi
el
d
B
),

th
en

th
e
sy
st
em

w
ou

ld
tr
ac
e
b
ac
k
to

it
s
in
it
ia
l
st
at
e
(s
ee

e.
g.

V
il
la
n
i’
s
le
ct
u
re

n
ot
es

[1
4
1
])
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1
7

F
in
al
ly
,
it

is
w
or
th

n
ot
ic
in
g
th
at

M
ax

w
el
l’
s
eq
u
at
io
n
s
im

p
ly

th
at

ch
ar
ge

d
en
si
ty

ρ
an

d
cu
rr
en
t
d
en
si
ty

j
sa
ti
sf
y
th
e
co
n
ti
n
u
it
y
eq
u
at
io
n

(3
5)

∂
ρ

∂
t
+
∇
·j

=
0

In
ot
h
er

w
or
d
s,

sh
ou

ld
th
is

re
la
ti
on

n
ot

h
ol
d
,
on

e
ca
n

ea
si
ly

v
er
if
y

th
at

th
er
e
is

n
o
so
lu
ti
on

to
M
ax

w
el
l’
s
eq
u
at
io
n
s.

W
h
en

th
e
so
u
rc
es

of
M
ax

w
el
l’
s

eq
u
at
io
n
s
ar
e
co
m
p
u
te
d

n
u
m
er
ic
al
ly

b
y

so
lv
in
g

th
e
V
la
so
v

eq
u
at
io
n
,
th
ey

d
o

n
ot

n
ec
es
sa
ri
ly

v
er
if
y

a
d
is
cr
et
e
eq
u
iv
al
en
t
of

th
e
co
n
ti
n
u
it
y

eq
u
at
io
n
,

w
h
ic
h

w
ou

ld
b
e
co
m
p
at
ib
le

w
it
h

th
e
d
is
cr
et
e
fo
rm

of
M
ax

w
el
l’
s
eq
u
at
io
n
s.

T
o
ad

d
re
ss

th
is

p
ro
b
le
m
,
n
u
m
er
ic
al

m
et
h
o
d
s
fo
r
d
er
iv
in
g
so
u
rc
es

th
at

sa
ti
sf
y

th
e
d
is
cr
et
e
co
n
ti
n
u
it
y

eq
u
at
io
n

h
av
e
b
ee
n

d
ev
el
op

ed
(c
f
e.
g.

[1
4
4
])
.

A
ri
go
ro
u
s
m
at
h
em

at
ic
al

th
eo
ry

fo
r
th
es
e
ge
n
er
al
iz
ed

fo
rm

u
la
ti
on

s
of

M
ax

w
el
l’
s

eq
u
at
io
n
s
is

d
er
iv
ed

in
[7
]. 5
.
G
y
ro

k
in
e
ti
c
th

e
o
ry

T
h
e
co
m
p
u
ta
ti
on

al
eff

or
t
to

n
u
m
er
ic
al
ly

so
lv
e
th
e
6-
d
im

en
si
on

al
V
la
so
v
-

M
ax

w
el
l
sy
st
em

st
il
l
re
m
ai
n
s
ou

t
of

re
ac
h

fo
r
p
re
se
n
t
d
ay

su
p
er
co
m
p
u
te
rs
.

A
s
sh
ow

n
in

fi
gu

re
3,

it
in
v
ol
v
es

a
w
id
e
ra
n
ge

of
sp
at
io
-t
em

p
or
al

sc
al
es

–
fr
om

li
gh

t
w
av
es

to
m
ac
ro
sc
op

ic
p
la
sm

a
in
st
ab

il
it
ie
s.

W
h
en

d
ea
li
n
g

w
it
h

m
ic
ro
-t
u
rb
u
le
n
ce

st
u
d
ie
s,

it
is

th
er
ef
or
e
cr
it
ic
al

to
re
st
ri
ct

th
e
p
ro
b
le
m

to
th
e
re
le
va
n
t
sp
ac
e
an

d
ti
m
e
sc
al
es
.
T
h
e
st
ro
n
g
m
ag
n
et
ic

fi
el
d
s
–
a
fe
w

T
es
la

–
u
se
d

in
m
ag
n
et
ic

co
n
fi
n
em

en
t
fu
si
on

d
ev
ic
es

le
ad

to
th
e
fa
st

gy
ra
ti
on

of
ch
ar
ge
d
p
ar
ti
cl
es

ar
ou

n
d
m
ag
n
et
ic

fi
el
d
li
n
es
.

E
sp
ec
ia
ll
y,

th
e
cy
cl
ot
ro
n
fr
e-

q
u
en
cy

Ω
s
=

(e
s
B

0
)/
m

s
is

la
rg
e
co
m
p
ar
ed

to
th
e
ch
ar
ac
te
ri
st
ic

fr
eq
u
en
cy

of
m
ic
ro
-t
u
rb
u
le
n
ce
,
w
h
ic
h

is
of

th
e
or
d
er

of
th
e
d
ia
m
ag
n
et
ic

fr
eq
u
en
cy

ω
∼

ω
∗ s
∼

(k
θ
ρ
s
)v

th
,s
/L

p
(w

it
h
k
θ
th
e
p
ol
oi
d
al

w
av
e
v
ec
to
r,

ρ
s
=

v ⊥
/
Ω
s
th
e
L
ar
-

m
or

ra
d
iu
s,

v t
h
,s

=
(T

s
/m

s
)1

/
2
th
e
th
er
m
al

sp
ee
d
an

d
L
p
=
|∇

ln
p
0
|−

1
th
e

ch
ar
ac
te
ri
st
ic

gr
ad

ie
n
t
le
n
gt
h
of

th
e
m
ea
n
p
re
ss
u
re

p
ro
fi
le
.
In

th
is
fr
am

ew
o
rk
,

th
e
si
n
gl
e
p
ar
ti
cl
e
m
ot
io
n

co
n
si
st
s
of

th
e
su
p
er
p
os
it
io
n

of
th
e
fa
st

p
er
io
d
ic

gy
ro
-m

ot
io
n

an
d

th
e
sl
ow

d
ri
ft

of
th
e
gu

id
in
g-
ce
n
tr
e,

as
sh
ow

n
in

F
ig
.

4.
B
es
id
es
,
ex
p
er
im

en
ta
l
ob

se
rv
at
io
n
s
in

co
re

p
la
sm

as
of

m
ag
n
et
ic

co
n
fi
n
em

en
t

fu
si
on

d
ev
ic
es

su
gg
es
t
th
at

sm
al
l
sc
al
e
tu
rb
u
le
n
ce
,
re
sp
on

si
b
le

fo
r
an

om
al
ou

s
tr
an

sp
or
t,
ob

ey
s
th
e
fo
ll
ow

in
g
or
d
er
in
g
in

a
sm

al
l
p
ar
am

et
er

ǫ g

(3
6)

ω Ω
s
∼

e s
φ

T
s
∼

δn
s

n
0
∼

B
1

B
0
∼

k
‖

k
⊥
∼

ρ
s

L
n
∼
O
(ǫ

g
)

w
h
er
e
th
e
su
b
sc
ri
p
t
s
re
fe
rs

to
th
e
p
ar
ti
cl
e
sp
ec
ie
s.

T
s
is

th
e
te
m
p
er
at
u
re
,

δn
s
th
e
p
er
tu
rb
ed

d
en
si
ty
,
n
0
th
e
eq
u
il
ib
ri
u
m

d
en
si
ty
,
B

0
an

d
B

1
ar
e
re
-

sp
ec
ti
v
el
y
th
e
eq
u
il
ib
ri
u
m

an
d
th
e
p
er
tu
rb
ed

m
ag
n
et
ic

fi
el
d
,
k
‖
=

k
·b

an
d

1
8

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

F
ig
u
r
e

3
.
T
y
p
ic
al

sp
ac
e
an

d
ti
m
e
ra
n
ge

sc
al
es

in
fu
si
on

p
la
sm

as
an

d
ap

p
li
ca
b
il
it
y
of

V
la
so
v
,
gy

ro
k
in
et
ic

an
d
M
H
D

m
o
d
el
s.

H
er
e,

ω
p
s

is
th
e
p
la
sm

a
os
ci
ll
at
io
n

fr
eq
u
en
cy
,
Ω

s
is

th
e
cy
cl
ot
ro
n

fr
eq
u
en
cy
,

ω
∗ s
is

th
e
d
ia
m
ag
n
et
ic

ro
ta
ti
on

fr
eq
u
en
cy
,
v A

is
th
e
A
lf
v
èn

v
el
o
ci
ty
,

ν i
i
is

th
e
io
n
-i
on

co
ll
is
io
n
fr
eq
u
en
cy
,
λ
D
s
is

th
e
D
eb
y
e
le
n
gt
h
,
ρ
s
is

th
e
L
ar
m
or

ra
d
iu
s,

L
n

is
th
e
ch
ar
ac
te
ri
st
ic

gr
ad

ie
n
t
le
n
gt
h

of
th
e

eq
u
il
ib
ri
u
m

d
en
si
ty

p
ro
fi
le
,
a
is

th
e
p
la
sm

a
si
ze

an
d
s
d
en
ot
es

th
e

p
ar
ti
cl
e
sp
ec
ie
s.

(fi
gu

re
fr
om

[7
9
])

k
⊥
=
|k
×
b
|a

re
p
ar
al
le
l
an

d
p
er
p
en
d
ic
u
la
r
co
m
p
on

en
ts

of
th
e
w
av
e
v
ec
to
r
k

w
it
h
b

=
B

0
/B

0
,
ρ
s
=

v ⊥
/Ω

s
is

th
e
L
ar
m
or

ra
d
iu
s,

L
n
=
|∇

ln
n
0
|−

1
is

th
e

ch
ar
ac
te
ri
st
ic
le
n
gt
h
of

n
0
.
W

it
h
in

th
is
gy
ro
-o
rd
er
in
g,

th
e
so
-c
al
le
d
gy
ro
ki
n
et
ic

m
od
el

ca
n
b
e
d
er
iv
ed

(s
ee

e.
g.

[9
4
])

b
y
el
im

in
at
in
g
h
ig
h
-f
re
q
u
en
cy

p
ro
ce
ss
es

ch
ar
ac
te
ri
ze
d
b
y
ω
>

Ω
s
.
T
h
e
p
h
as
e
sp
ac
e
is
re
d
u
ce
d
fr
om

6
to

5
d
im

en
si
on

s,
w
h
il
e
re
ta
in
in
g
cr
u
ci
al

k
in
et
ic

eff
ec
ts

su
ch

as
fi
n
it
e
L
ar
m
or

ra
d
iu
s
eff

ec
ts
.
N
u
-

m
er
ic
al
ly

sp
ea
k
in
g,

th
e
co
m
p
u
ta
ti
on

al
co
st

is
d
ra
m
at
ic
al
ly

re
d
u
ce
d
b
ec
au

se
th
e
li
m
it
at
io
n
s
on

th
e
ti
m
e
st
ep

an
d
th
e
gr
id

d
is
cr
et
iz
at
io
n
ar
e
re
la
x
ed

fr
om

ω
p
s
∆
t
<

1
an

d
∆
x
<

λ
D
s
to

ω
∗ s
∆
t
<

1
an

d
∆
x
<

ρ
s
(w

it
h

ω
p
s
th
e
p
la
sm

a
os
ci
ll
at
io
n
fr
eq
u
en
cy

an
d
λ
D
s
th
e
D
eb
y
e
le
n
gt
h
).

It
is

al
so

im
p
or
ta
n
t
to

n
ot
e

th
a
t
th
e
m
ag
n
et
ic
m
om

en
t,
µ
s
=

m
s
v
2 ⊥
/
(2
B

0
)
b
ec
om

es
an

ad
ia
b
at
ic
in
va
ri
an

t.
In

te
rm

s
of

si
m
u
la
ti
on

co
st
,
th
is

la
st

p
oi
n
t
is

co
n
v
en
ie
n
t
b
ec
au

se
µ
s
p
la
y
s
th
e

ro
le

of
a
p
ar
am

et
er
.
T
h
is

m
ea
n
s
th
at

th
e
p
ro
b
le
m

to
tr
ea
t
is

n
ot

a
tr
u
e
5D

p
ro
b
le
m

b
u
t
ra
th
er

a
4D

p
ro
b
le
m

p
ar
am

et
ri
ze
d
b
y
µ
s
.
N
ot
e
th
at

µ
s
lo
os
es

it
s

in
va
ri
an

ce
p
ro
p
er
ty

in
th
e
p
re
se
n
ce

of
co
ll
is
io
n
s.

S
u
ch

a
n
u
m
er
ic
al

d
ra
w
b
ac
k

ca
n
b
e
ov
er
co
m
e
b
y
co
n
si
d
er
in
g
re
d
u
ce
d
co
ll
is
io
n
s
op

er
at
or
s
ac
ti
n
g
in

th
e
v ‖

sp
a
ce

on
ly
,
w
h
il
e
st
il
l
re
co
v
er
in
g
th
e
re
su
lt
s
of

th
e
n
eo
cl
as
si
ca
l
th
eo
ry

[5
7
].
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1
9

T
h
e
re
su
lt
in
g
gy
ro
ki
n
et
ic

eq
u
a
ti
o
n
is

to
d
ay

th
e
m
os
t
ad

va
n
ce
d
fr
am

ew
or
k
to

F
ig
u
r
e
4
.
T
h
e
p
h
as
e-
sp
ac
e
re
d
u
ct
io
n
fr
om

6
to

5
d
im

en
si
on

s
re
su
lt
s

fr
om

th
e
gy

ro
-c
en
tr
e
tr
an

sf
o
rm

,
w
h
ic
h
ai
m
s
at

el
im

in
at
in
g
th
e
fa
st

gy
ro
-m

ot
io
n
.
(fi
gu

re
fr
om

[7
9
])

d
es
cr
ib
e
p
la
sm

a
m
ic
ro
-t
u
rb
u
le
n
ce
.
It

re
ad

s
as

fo
ll
ow

s
(s
ee

al
so

E
q
s
(1
7)
-(
20
)

in
[5
8
])
:

(3
7)

B
∗ ‖
d
f̄ s d
t
+
∇∇ ∇
·( B

∗ ‖
d
x
G

d
t

f̄ s

)
+

∂

∂
v G
‖

( B
∗ ‖
d
v G
‖

d
t

f̄ s

)
=

0

In
th
e
el
ec
tr
os
ta
ti
c
li
m
it
,
th
e
eq
u
at
io
n
s
of

m
ot
io
n
of

th
e
gu

id
in
g
ce
n
te
rs

ar
e

gi
v
en

b
el
ow

:

B
∗ ‖
d
x
G

d
t

=
v G
‖B

∗
+

b e s
×
∇∇ ∇
Ξ

(3
8)

B
∗ ‖
d
v G
‖

d
t

=
−
B
∗

m
s
·∇∇ ∇

Ξ
(3
9)

w
it
h

∇∇ ∇
Ξ

=
µ
s∇∇ ∇

B
+
e s
∇∇ ∇
φ̄

B
∗

=
B

+
(m

s
/e

s
)
v G
‖∇∇ ∇

×
b

H
er
e,

φ̄
d
en
ot
es

th
e
gy

ro
-a
v
er
ag
ed

el
ec
tr
ic

p
ot
en
ti
al

(s
ee

se
ct
io
n

5.
1)
.

T
h
e

sc
al
ar

B
∗ ‖
is
si
m
p
ly

B
∗ ‖
=

B
∗ ·
b
,
w
it
h
b
=

B
/B

th
e
u
n
it
v
ec
to
r
al
on

g
th
e
m
ag
-

n
et
ic

fi
el
d
li
n
e
at

th
e
gu

id
in
g-
ce
n
te
r
p
os
it
io
n
.
A
s
sh
ow

n
in

ap
p
en
d
ix

A
,
th
es
e

eq
u
at
io
n
s
of

m
ot
io
n
n
at
u
ra
ll
y
ar
is
e
(u
p
to

sm
al
l
j ‖

te
rm

s)
w
h
en

co
n
si
d
er
in
g

th
e
fa
st

ti
m
e
av
er
ag
e
of

N
ew

to
n
’s

eq
u
at
io
n
s
in

th
e
ad

ia
b
at
ic

li
m
it
,
i.
e.

w
h
en

th
e
ch
ar
ac
te
ri
st
ic

gr
ad

ie
n
t
le
n
gt
h
s
of

th
e
eq
u
il
ib
ri
u
m

m
ag
n
et
ic

fi
el
d
ar
e
sm

al
l

w
it
h
re
sp
ec
t
to

th
e
L
ar
m
or

ra
d
iu
s.

F
or

an
ov
er
v
ie
w

an
d
a
m
o
d
er
n
fo
rm

u
la
ti
on

of
th
e
gy

ro
k
in
et
ic

d
er
iv
at
io
n
,

on
e
en
co
u
ra
ge
s
th
e
re
ad

er
to

re
fe
r
to

th
e
re
v
ie
w

p
ap

er
b
y
A
.J
.
B
ri
za
rd

a
n
d

T
.S
.
H
ah

m
[2
3
].

T
h
e
ad

va
n
ta
ge

of
th
is

n
ew

ap
p
ro
ac
h
b
as
ed

on
L
ag
ra
n
gi
an

fo
rm

al
is
m

an
d
L
ie

p
er
tu
rb
at
io
n
th
eo
ry

[3
0
,
3
1
]
is
to

p
re
se
rv
e
th
e
fi
rs
t
p
ri
n
ci
-

p
le
s
b
y
co
n
st
ru
ct
io
n
,
su
ch

as
th
e
sy
m
m
et
ry

an
d
co
n
se
rv
at
io
n
p
ro
p
er
ti
es

of
th
e

V
la
so
v
eq
u
at
io
n
(s
ee

se
ct
io
n
4.
4)

–
p
ar
ti
cl
e
n
u
m
b
er
,
m
om

en
tu
m
,
en
er
gy

an
d

en
tr
op

y.

2
0

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

5
.1
.
A
v
e
ra

g
e
o
v
e
r
th

e
c
y
c
lo
tr
o
n
m
o
ti
o
n
.
—

T
h
e
gy

ro
-r
ad

iu
s
ρ
s
is
tr
an

s-
v
er
se

to
b
=

B
/B

an
d
d
ep

en
d
s
on

th
e
gy

ro
p
h
as
e
an

gl
e
ϕ
c
:

(4
0)

ρ
s
=

b
×
v

Ω
s

=
ρ
s
[c
os

ϕ
c
e
⊥
1
+
si
n
ϕ
c
e
⊥
2
]

H
er
e
e
⊥
1
an

d
e
⊥
2
ar
e
th
e
u
n
it

v
ec
to
rs

of
a
ca
rt
es
ia
n
b
as
is

in
th
e
p
la
n
e
p
er
-

p
en
d
ic
u
la
r
to

th
e
m
ag
n
et
ic

fi
el
d
d
ir
ec
ti
on

b
.

L
et

x
G

b
e
th
e
gu

id
in
g-
ce
n
te
r

ra
d
ia
l
co
or
d
in
at
e
an

d
x
th
e
p
os
it
io
n
of

th
e
p
ar
ti
cl
e
in

th
e
re
al

sp
ac
e.

T
h
es
e

tw
o
q
u
an

ti
ti
es

d
iff
er

b
y
a
L
ar
m
or

ra
d
iu
s
ρ
s
:

x
=

x
G
+

ρ
s

T
h
e
gy

ro
-a
v
er
ag
e
ḡ
of

an
y
fu
n
ct
io
n
g
d
ep

en
d
in
g
on

th
e
sp
at
ia
l
co
or
d
in
at
es

co
rr
es
p
on

d
s
to

th
e
fo
ll
ow

in
g
op

er
at
io
n
:

ḡ
(x

G
,v
⊥
)

=

∮
2
π

0

d
ϕ
c

2
π

g
(x
)

=

{ ∮
2
π

0

d
ϕ
c

2
π

ex
p
(ρρ ρ

s
·∇∇ ∇

)}
g
(x

G
)

(4
1)

T
h
e

op
er
at
or

e
ρρ ρ
s
·∇∇ ∇

co
rr
es
p
on

d
s

to
th
e

ch
an

ge
of

co
or
d
in
at
es

(x
,v

)
→

(x
G
,v

G
).

T
h
e
in
v
er
se

op
er
at
or

go
v
er
n
in
g

th
e
tr
an

sf
or
m
at
io
n

(x
G
,v

G
)
→

(x
,v

)
si
m
p
ly

re
ad

s
e−

ρρ ρ
s
·∇∇ ∇
.
T
h
is

gy
ro
-a
v
er
ag
e
p
ro
ce
ss

co
n
si
st
s
in

co
m
p
u
ti
n
g

an
av
er
ag
e
on

th
e
L
ar
m
or

ci
rc
le
.

It
te
n
d
s
to

d
am

p
an

y
fl
u
ct
u
at
io
n

w
h
ic
h

d
ev
el
op

s
at

su
b
-L
ar
m
or

sc
al
es
.
In
tr
o
d
u
ci
n
g
ĝ
(k
)
th
e
F
ou

ri
er

tr
an

sf
or
m

of
g
,

w
it
h
k
th
e
w
av
e
v
ec
to
r,

th
en

th
e
op

er
at
io
n
of

gy
ro
-a
v
er
ag
e
re
ad

s:

ḡ
(x

G
,v
⊥
)

=

∫
2
π

0

d
ϕ
c

2
π

∫
+
∞

−
∞

d
3
k

(2
π
)3

ĝ
(k
)
ex
p
{i
k
·(
x
G
+
ρ
s
)}

=

∫
+
∞

−
∞

d
3
k

(2
π
)3

[ ∫
2
π

0

d
ϕ
c

2π
ex
p
(i
k
⊥
ρ
s
co
s
ϕ
c
)] ĝ

(k
)
ex
p
(i
k
·x

G
)

=

∫
+
∞

−
∞

d
3
k

(2
π
)3

J
0
(k
⊥
ρ
s
)ĝ
(k
)e

ik
·x

G
(4
2)

In
th
e
fo
ll
ow

in
g,

w
e
sh
al
l
d
en
ot
e
in
d
is
ti
n
ct
ly

J
.φ

or
φ̄
or

ev
en

〈φ
〉t

h
e
gy

ro
v
er
-

ag
e
of

an
y
sc
al
ar

fi
el
d
φ
.
H
er
e,

k
⊥
is
th
e
n
or
m

of
th
e
tr
an

sv
er
se

co
m
p
on

en
t
of

th
e
w
av
e
v
ec
to
r
k
⊥
=

k
−
(b

.k
)b

,
an

d
J
0
is

th
e
B
es
se
l
fu
n
ct
io
n
of

fi
rs
t
or
d
er
.

In
F
ou

ri
er

sp
ac
e,

th
e
gy

ro
-a
v
er
ag
e
re
d
u
ce
s
to

th
e
m
u
lt
ip
li
ca
ti
on

b
y
th
e
B
es
se
l

fu
n
ct
io
n
of

ar
gu

m
en
t
k
⊥
ρ
s
.
T
h
is

op
er
at
io
n
is

st
ra
ig
h
tf
or
w
ar
d
in

si
m
p
le

ge
-

om
et
ry

w
it
h
p
er
io
d
ic

b
ou

n
d
ar
y
co
n
d
it
io
n
s,

su
ch

as
in

lo
ca
l
co
d
es

(s
ee

se
ct
io
n

7.
2)
.
C
on

v
er
se
ly
,
in

th
e
ca
se

of
gl
ob

al
co
d
es

(s
ee

se
ct
io
n
7.
2)
,
th
e
u
se

of
F
ou

ri
er

tr
an

sf
or
m

is
n
ot

ap
p
li
ca
b
le

fo
r
tw

o
m
ai
n
re
as
on

s:
(i
)
ra
d
ia
l
b
ou

n
d
ar
y
co
n
d
i-

ti
on

s
ar
e
n
on

p
er
io
d
ic
,
an

d
(i
i)

th
e
ra
d
ia
l
d
ep

en
d
en
ce

of
th
e
L
ar
m
or

ra
d
iu
s

h
as

to
b
e
ac
co
u
n
te
d
fo
r.

S
ev
er
al

ap
p
ro
ac
h
es

h
av
e
b
ee
n
d
ev
el
op

ed
to

ov
er
co
m
e
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L
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S
M
A
S

2
1

th
is

d
iffi

cu
lt
y.

O
n
e
of

th
os
e
co
n
si
st
s
in

ap
p
ro
x
im

at
in
g
th
e
B
es
se
l
fu
n
ct
io
n

w
it
h
P
ad

é
ex
p
an

si
on

J
P
a
d
é
(k
⊥
ρ
s
)
=

1/
[ 1

+
(k
⊥
ρ
s
)2
/4
] (

e.
g.

se
e
[1
2
1
])
.
S
u
ch

a
P
ad

é
re
p
re
se
n
ta
ti
on

th
en

re
q
u
ir
es

th
e
in
v
er
si
on

of
th
e
L
ap

la
ci
an

op
er
a
to
r

∇
2 ⊥

in
re
al

sp
ac
e.

A
s
se
en

on
fi
gu

re
5
th
is

ap
p
ro
x
im

at
io
n
gi
v
es

th
e
co
rr
ec
t

li
m
it

in
th
e
la
rg
e
w
av
el
en
gt
h
s
li
m
it

k
⊥
ρ
c
≪

1,
w
h
il
e
k
ee
p
in
g
J
P
a
d
é
fi
n
it
e
in

th
e
op

p
os
it
e
li
m
it

k
⊥
ρ
s
→
∞

.
T
h
e
d
ra
w
b
ac
k
is

an
ov
er
d
am

p
in
g
of

sm
al
l

sc
al
es
:
in

th
e
li
m
it

of
la
rg
e
ar
gu

m
en
ts

x
→
∞
,
J
P
a
d
é
(x
)
→

4/
x
2
,
w
h
er
ea
s

J
0
→

(2
/π

x
)1

/
2
co
s(
x
−
π
/4
)
(s
ee

fi
gu

re
6)
.

(a
)

F
ig
u
r
e
5
.
T
h
e
ze
ro
-t
h
or
d
er

B
es
se
l
fu
n
ct
io
n
J
0
(k

⊥
ρ
s
)
co
m
p
a
re

to
it
s
P
ad

é
a
p
p
ro
x
im

at
io
n
1/
[ 1

+
(k

⊥
ρ
s
)2
/4
] .

(a
)

(b
)

F
ig
u
r
e
6
.
E
x
ac
t
an

d
ap

p
ro
x
im

a
te
d
gy

ro
-a
v
er
ag
e
op

er
a
to
rs

ap
p
li
ed

on
an

ar
b
it
ra
ry

fu
n
ci
on

F
k
ex
h
ib
it
in
g
a
b
ro
ad

sp
ec
tr
u
m

ra
n
gi
n
g
fr
om

lo
w

to
la
rg
e
w
av
el
en
gt
h
s
as

co
m
p
ar
ed

w
it
h
th
e
L
a
rm

o
r
ra
d
iu
s
ρ
c
:
(a
)

R
ep
re
se
n
ta
ti
on

in
th
e
F
ou

ri
er

sp
ac
e,

(b
)
R
ep
re
se
n
ta
ti
on

in
th
e
re
al

sp
ac
e
(fi
gu

re
s
fr
om

[1
2
1
])
.

2
2

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

A
n
ot
h
er

p
os
si
b
il
it
y,

fo
r
th
is

gy
ro
-a
v
er
ag
in
g
p
ro
ce
ss
,
is

to
u
se

a
q
u
ad

ra
tu
re

fo
rm

u
la
.
In

th
is

co
n
te
x
t,

th
e
in
te
gr
al

ov
er

th
e
gy

ro
-r
in
g
is

u
su
al
ly

ap
p
ro
x
i-

m
at
ed

b
y
a
su
m

ov
er

fo
u
r
p
oi
n
ts

on
th
e
gy

ro
-r
in
g
[9
4
].
N
ot
ic
e
th
at
,
fo
r
sm

al
l

ar
gu

m
en
ts

on
ly
,
i.
e.

fo
r
la
rg
e
sc
al
e
fl
u
ct
u
at
io
n
s
k
⊥
ρ
s
≪

1,
th
is

is
ri
go
ro
u
sl
y

eq
u
iv
al
en
t
to

co
n
si
d
er
in
g
th
e
T
ay

lo
r
ex
p
an

si
on

of
th
e
B
es
se
l
fu
n
ct
io
n
at

or
d
er

tw
o
in

th
e
sm

al
l
ar
gu

m
en
t
li
m
it
,
n
am

el
y
J
0
(k
⊥
ρ
s
)
≃

1
−

(k
⊥
ρ
s
)2
/
4,

an
d
to

co
m
p
u
ti
n
g
th
e
tr
an

sv
er
se

L
ap

la
ci
an

at
se
co
n
d

or
d
er

u
si
n
g
fi
n
it
e
d
iff
er
en
ce
s

(3
) .

P
er
h
ap

s
co
u
n
te
r
in
tu
it
iv
el
y,

n
ot
e
h
ow

ev
er

th
at

th
is

4
p
oi
n
t
av
er
ag
e
is

n
o

lo
n
ge
r
eq
u
iv
al
en
t
to

[1
−

(k
⊥
ρ
s
)2
/
4]

in
th
e
op

p
os
it
e
li
m
it

k
⊥
ρ
s
≫

1.
In
d
ee
d
,

th
e
d
iff
er
en
ce

b
et
w
ee
n
d
is
ta
n
t
p
oi
n
ts

ca
n
n
o
lo
n
ge
r
b
e
in
te
rp
re
te
d
as

th
e
fi
n
it
e

d
iff
er
en
ce

ex
p
re
ss
io
n
of

a
d
iff
er
en
ti
al

op
er
at
or
:
th
e
la
tt
er

ca
n
b
e
ap

p
ro
x
im

at
ed

b
y
fi
n
it
e
d
iff
er
en
ce
s
in

th
e
li
m
it
of

sm
al
l
d
is
ta
n
ce
s
on

ly
.
In

p
ar
ti
cu
la
r,
it
is
im

-
p
or
ta
n
t
to

re
al
iz
e
th
at
,
w
h
il
e
[1
−

(k
⊥
ρ
s
)2
/
4]

d
iv
er
ge
s
at

sm
al
l
sc
al
es
,
th
e
4

p
oi
n
t
av
er
ag
e
st
il
l
le
ad

s
to

th
e
d
am

p
in
g
of

su
b
-L
ar
m
or

sc
al
es
.
T
h
is

m
et
h
o
d

h
as

b
ee
n
ex
te
n
d
ed

to
ac
h
ie
v
e
ac
cu
ra
cy

fo
r
la
rg
e
L
ar
m
or

ra
d
iu
s
[7
2
],
i.
e
th
e

n
u
m
b
er

of
p
oi
n
ts

(s
ta
rt
in
g
w
it
h
fo
u
r)

is
li
n
ea
rl
y
in
cr
ea
se
d
w
it
h
th
e
gy

ro
-r
ad

iu
s

to
g
u
ar
an

te
e
th
e
sa
m
e
n
u
m
b
er

of
p
oi
n
ts

p
er

ar
cl
en
gt
h
on

th
e
gy

ro
-r
in
g.

In
th
is

ap
p
ro
ac
h
–u

se
d
e.
g.

in
[7
6
]
an

d
[8
3
]–

th
e
p
oi
n
ts

th
at

ar
e
eq
u
id
is
ta
n
tl
y

d
is
tr
ib
u
te
d
ov
er

th
e
ri
n
g
ar
e
ro
ta
te
d
fo
r
ea
ch

p
ar
ti
cl
e
(o
r
m
ar
k
er
)
b
y
a
ra
n
-

d
om

an
gl
e
ca
lc
u
la
te
d
ev
er
y
ti
m
e
st
ep
.
T
h
is

is
p
er
fo
rm

ed
on

a
fi
n
it
e
el
em

en
t

fo
rm

al
is
m

an
d
en
ab

le
s
th
er
ef
or
e
h
ig
h
or
d
er

ac
cu
ra
cy

b
y
k
ee
p
in
g
th
e
m
at
ri
ci
al

fo
rm

u
la
ti
on

.
In

[3
8
]
th
e
in
fl
u
en
ce

of
th
e
in
te
rp
ol
at
io
n
op

er
at
or

(w
h
ic
h
is

of
gr
ea
t
im

p
or
ta
n
ce

w
h
en

th
e
q
u
ad

ra
tu
re

p
oi
n
ts

d
o
n
ot

co
in
ci
d
e
w
it
h
th
e
gr
id

p
oi
n
ts
)
is

st
u
d
ie
d
an

d
sh
ow

s
th
at

cu
b
ic

sp
li
n
es

ar
e
go

o
d
ca
n
d
id
at
es
.
B
es
id
es
,

n
ew

m
et
h
o
d
s
b
as
ed

on
th
e
d
ir
ec
t
in
te
gr
at
io
n
of

th
e
gy

ro
av
er
ag
e
op

er
at
or

ar
e

al
so

d
es
cr
ib
ed

an
d
co
m
p
ar
ed

to
th
e
tw

o
p
re
v
io
u
s
ap

p
ro
ac
h
es
.

5
.2
.
Q
u
a
si
-n

e
u
tr
a
li
ty

.
—

F
u
si
on

p
la
sm

a
tu
rb
u
le
n
ce

ty
p
ic
al
ly

d
ev
el
op

s
at

L
ar
m
or

sc
al
es
,
w
h
ic
h
ar
e
la
rg
er

th
an

th
e
D
eb
y
e
le
n
gt
h
λ
D
.
T
h
e
L
ar
m
or

ra
d
iu
s

of
th
er
m
al

D
eu
te
ri
u
m

n
u
cl
ei

is
ρ
D
≈

4
.6
10
−
3
T
1
/
2

[k
eV

]/
B

[T
]
m
≈

4.
1
10
−
3
m
,
fo
r

T
=

20
k
eV

an
d
B

=
5T

,
w
h
il
e

λ
D
≈

2
.3
5
10
−
5
(T

[k
eV

]/
n
1
0
2
0
m
−
3
)1

/
2
m
≈

10
−
4
m

fo
r
n

=
10

2
0
m
−
3
.

T
h
e
el
ec
tr
on

L
ar
m
or

ra
d
iu
s
ρ
e
m
ay

ev
en
tu
al
ly

co
m
p
et
e

w
it
h
λ
D
,
al
th
ou

gh
b
ot
h
ex
p
er
im

en
ta
l
ob

se
rv
at
io
n
s
an

d
n
u
m
er
ic
al

si
m
u
la
ti
on

s
su
g
ge
st

th
at

el
ec
tr
on

tu
rb
u
le
n
ce

sa
tu
ra
te
s
at

sc
al
es

la
rg
er

th
an

ρ
e
.
In

th
is
ca
se
,

P
oi
ss
on

’s
eq
u
at
io
n
ca
n
b
e
sa
fe
ly

re
p
la
ce
d
b
y
th
e
q
u
as
i-
n
eu
tr
al
it
y
co
n
st
ra
in
t,

n
am

el
y
∑

s
e s
n
s
=

0.
In

th
e
gy

ro
k
in
et
ic

fr
am

ew
or
k
,
th
e
ad

d
it
io
n
al

co
m
p
le
x
it
y

(3
)
In
d
ee
d
,
le
t
x
a
n
d
y
b
e
ca
rt
es
ia
n
tr
a
n
sv
er
se

co
o
rd
in
a
te
s,

w
it
h
g
ri
d
sp
a
ci
n
g
eq
u
a
l
to

ρ
s
.
A
t

se
co
n
d
o
rd
er

in
b
o
th

k
⊥
ρ
s
a
n
d
in

ρ
s
,
th
e
a
p
p
ro
x
im

a
ti
o
n
o
f
J
0
tr
a
n
sl
a
te
s
in

re
a
l
sp
a
ce

a
s

fo
ll
ow

s:
J
0
.φ̂

k
→

(1
+

ρ
2 s
∇

2 ⊥
/
4
)φ

≃
φ
i+

1
,j
+

φ
i,
j
+
1
+

φ
i,
j
−
1
+

φ
i−

1
,j
.
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2
3

co
m
es

fr
om

th
e
fa
ct

th
at

ea
ch

p
ar
ti
cl
e
d
en
si
ty

n
s
=
∫

d
3
v
f s

n
ee
d
s
b
ei
n
g

re
la
te
d
to

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
of

th
e
gy

ro
-c
en
te
rs

f̄ s
.
B
ot
h
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
s
re
la
te

to
ea
ch

ot
h
er

in
th
e
fo
ll
ow

in
g
w
ay
:

(4
3)

f s
(x
,v

,t
)
=

f̄ s
(x

G
,v

G
,t
)
+

e s B

{ φ
(x
,t
)
−
φ̄
(x

G
,v

G
,t
)}

∂
µ
f̄ e

q
,s
(x

G
,v

G
)

S
u
ch

a
re
la
ti
on

sh
ip

re
su
lt
s
fr
om

th
e
in
fi
n
it
es
im

al
co
n
ta
ct

(o
r
ca
n
on

ic
al
)
tr
an

s-
fo
rm

at
io
n
th
at

re
la
te
s
th
e
ca
n
on

ic
al

va
ri
ab

le
s
(x
,v

)
an

d
(x

G
,v

G
),
as

d
et
ai
le
d

in
ap

p
en
d
ix

B
.
E
q
u
at
io
n

(4
3)

al
lo
w
s
on

e
to

re
la
te

p
ar
ti
cl
e
d
en
si
ty

n
s
an

d
gu

id
in
g-
ce
n
te
r
d
en
si
ty

n
G
s
:

n
s
(x
,t
)

=

∫
d
3
v
f̄ s
(x

G
,v

G
,t
)

+

∫
d
3
v
e s B

{ φ
(x
,t
)
−
φ̄
(x

G
,v

G
,t
)}

∂
µ
f̄ e

q
,s
(x

G
,v

G
)

T
h
e
fi
rs
t
in
te
gr
al

on
th
e
ri
gh

t
h
an

d
si
d
e
co
rr
es
p
on

d
s
to

th
e
gy

ro
-c
en
te
r
d
en
si
ty

n
G
,s
(x
,t
).

T
h
e
la
st

in
te
gr
al

on
th
e
ri
gh

t
h
an

d
si
d
e
is

th
e
p
ol
ar
iz
at
io
n
d
en
si
ty

n
p
o
l,
s
.
F
u
rt
h
er

re
ca
ll
in
g
th
at

x
G
=

x
−

ρ
s
,
it

fo
ll
ow

s:

n
G
,s
(x
,t
)

=

∫
J v

d
µ
d
v G
‖
J
.f̄

s
(x
,v

,t
)

(4
4)

n
p
o
l,
s
(x
,t
)

=

∫
J v

d
µ
d
v G
‖e s B

∫
2
π

0

d
ϕ
c

2
π

{ e−
ρ

s
·∇∇ ∇
∂
µ
f e

q
,s
(x
,v

)
(4
5)

[ 1
−
e−

ρ
s
·∇∇ ∇
〈 eρ

s
·∇∇ ∇
〉]

φ
(x
,v

,t
)}

w
h
er
e
J v

=
(2
π
B
∗ ‖/
m

s
)
st
an

d
s
fo
r
th
e
J
ac
ob

ia
n
in

th
e
v
el
o
ci
ty

sp
ac
e,

an
d
th
e

b
ra
ck
et
s
〈..
.〉
fo
r
th
e
av
er
ag
e
ov
er

th
e
gy

ro
-p
h
as
e:

〈..
.〉
≡
∫ 2

π
0

..
.
d
ϕ
c

2
π
.

It
is
u
su
al

–
al
th
ou

gh
n
ot

al
w
ay
s
le
gi
ti
m
e
–
to

co
n
si
d
er

th
e
la
rg
e
w
av
el
en
gt
h

li
m
it
k
⊥
ρ
s
≪

1
of

eq
.
(4
5)
,
fo
r
w
h
ic
h
so
m
e
p
ar
ti
cu
la
rl
y
co
m
p
ac
t
ex
p
re
ss
io
n
of

n
p
o
l,
s
ca
n
b
e
d
er
iv
ed
.
In

su
ch

a
li
m
it
,
on

e
ca
n
re
st
ri
ct

th
e
T
ay
lo
r
ex
p
an

si
on

of
th
e
op

er
at
or

to
th
e
le
ad

in
g
te
rm

s
of

th
e
d
ev
el
op

m
en
t
on

ly
.
D
et
ai
ls

of
th
e

ca
lc
u
lu
s
ar
e
gi
v
en

in
ap

p
en
d
ix

B
.
A
t
se
co
n
d
or
d
er

in
k
⊥
ρ
s
,
it

co
m
es
:

(4
6)

n
p
o
l,
s
(x
,t
)
≃

∇∇ ∇
⊥
·(

m
s
n
eq

,s

e s
B

2
∇∇ ∇
⊥
φ
(x
,t
))

T
h
e
p
ol
ar
is
at
io
n
d
en
si
ty

of
el
ec
tr
on

s
ca
n
u
su
al
ly

b
e
n
eg
le
ct
ed

b
ec
au

se
of

th
ei
r
sm

al
l
in
er
ti
a.

If
th
e
el
ec
tr
on

re
sp
on

se
is

as
su
m
ed

ad
ia
b
at
ic
,
th
e
q
u
as
i-

n
eu
tr
al
it
y
th
en

fu
rt
h
er

re
d
u
ce
s
to
:

(4
7)

e T
e
(φ

−
〈φ
〉 F

S
)
−

1 n
eq
∇∇ ∇
⊥
·(

m
s
n
eq

e s
B

2
∇∇ ∇
⊥
φ

)
=

1 n
eq

∫
J v

d
µ
d
v G
‖J
.f̄

i
−

1

2
4

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

w
it
h
〈φ
〉 F

S
th
e
fl
u
x
su
rf
ac
e
av
er
ag
e
of

φ
,
an

d
w
e
re
ca
ll
th
at

J
.f̄

i
is

th
e
gy

ro
-

av
er
ag
e
of

th
e
io
n
gy

ro
-c
en
te
r
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
.

6
.
N
u
m
e
ri
c
a
l
m
o
d
e
ls

fo
r
V
la
so
v
e
q
u
a
ti
o
n
s

S
ol
v
in
g
th
e
se
t
of

gy
ro
k
in
et
ic

eq
u
at
io
n
s
is

v
er
y
ch
al
le
n
gi
n
g.

T
o
su
m
m
a-

ri
ze
,
it
co
n
si
st
s
of

th
e
ev
ol
u
ti
on

eq
u
at
io
n
of

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f
in

th
e

4D
p
h
as
e
sp
ac
e
p
ar
am

et
ri
ze
d

b
y
th
e
ad

ia
b
at
ic

in
va
ri
an

t
µ
,
th
e
se
t
of

fo
u
r

co
u
p
le
d
or
d
in
ar
y
d
iff
er
en
ti
al

eq
u
at
io
n
s
(O

D
E
)
fo
r
th
e
ch
ar
ac
te
ri
st
ic
s,

an
d
3D

in
te
gr
o-
d
iff
er
en
ti
al

eq
u
at
io
n
s
fo
r
th
e
fi
el
d
s,

n
am

el
y
P
oi
ss
on

’s
eq
u
at
io
n
(o
r
th
e

q
u
a
si
-n
eu
tr
al
it
y
eq
u
at
io
n
)
an

d
th
e
A
m
p
èr
e
la
w

(i
f
m
ag
n
et
ic

p
er
tu
rb
at
io
n
s
ar
e

ta
k
en

in
to

ac
co
u
n
t)
.
T
h
is
se
t
of

eq
u
at
io
n
s
is
n
on

li
n
ea
r,
th
e
d
om

in
an

t
q
u
ad

ra
ti
c

n
on

li
n
ea
ri
ty

b
ei
n
g
d
u
e
to

th
e
E

×
B

ad
v
ec
ti
on

te
rm

s.
T
h
e
q
u
as
i-
n
eu
tr
al
it
y

eq
u
at
io
n
is
ge
n
er
al
ly

so
lv
ed

b
y
u
si
n
g
F
ou

ri
er

p
ro
je
ct
io
n
in

al
l
th
e
p
er
io
d
ic

d
i-

re
ct
io
n
s
an

d
fi
n
it
e
d
iff
er
en
ce
s
or

fi
n
it
e
el
em

en
ts

in
th
e
ot
h
er
s.

C
on

ce
rn
in
g
th
e

gl
ob

al
al
go
ri
th
m
,
th
e
ch
al
le
n
ge

co
n
si
st
s
in

fi
n
d
in
g
n
u
m
er
ic
al

sc
h
em

es
w
h
ic
h

p
re
se
rv
e
th
e
fi
rs
t
p
ri
n
ci
p
le
s
su
ch

as
th
e
co
n
se
rv
at
io
n
of

th
e
C
as
im

ir
in
va
ri
an

ts
,

th
e
p
h
as
e
sp
ac
e
v
ol
u
m
e
an

d
th
e
to
ta
l
en
er
gy
.
V
ar
io
u
s
n
u
m
er
ic
al

sc
h
em

es
h
av
e

b
ee
n
ex
p
lo
re
d
u
n
ti
l
n
ow

.
T
h
ey

ca
n
b
e
cl
as
si
fi
ed

in
L
ag
ra
n
gi
an

,
E
u
le
ri
an

an
d

se
m
i-
L
ag
ra
n
gi
an

.
In

th
is

se
ct
io
n
,
th
e
m
ai
n
sc
h
em

es
u
se
d
in

gy
ro
k
in
et
ic

co
d
es

ar
e
d
es
cr
ib
ed
,
em

p
h
as
iz
in
g
th
ei
r
ow

n
ad

va
n
ta
ge
s
an

d
d
ra
w
b
ac
k
s.

T
h
e
co
m
-

p
ar
is
on

b
et
w
ee
n
P
IC

an
d
E
u
le
ri
an

ap
p
ro
ac
h
es

in
te
rm

s
of

op
er
at
io
n
n
u
m
b
er
s

is
d
et
ai
le
d
in

e.
g.

[2
7
,
5
2
].
T
h
e
in
te
re
st

of
d
ev
el
op

in
g
co
n
cu
rr
en
tl
y
th
es
e
th
re
e

ap
p
ro
ac
h
es

is
cr
u
ci
al

fo
r
th
e
gy

ro
k
in
et
ic

co
m
m
u
n
it
y.

In
d
ee
d
,
d
u
e
to

th
e
ex
-

tr
em

el
y
ch
al
le
n
gi
n
g
co
m
p
u
ti
n
g
re
q
u
ir
em

en
ts
,
ea
ch

gy
ro
k
in
et
ic
co
d
e
ru
n
s
at

th
e

li
m
it

of
it
s
ap

p
li
ca
b
il
it
y
ra
n
ge
.
B
en
ch
m
ar
k
s
b
et
w
ee
n
th
e
d
iff
er
en
t
ap

p
ro
ac
h
es

ar
e
th
er
ef
or
e
cr
u
ci
al

an
d
m
or
e
an

d
m
or
e
en
co
u
ra
ge
d
(e
.g
.
[1
3
4
,
5
1
])
.

6
.1
.
P
IC

a
p
p
ro

a
ch

.
—

T
h
e
L
ag
ra
n
gi
an

-P
IC

(p
ar
ti
cl
es

in
ce
ll
)
ap

p
ro
ac
h

lo
ok

s
fo
r
so
lu
ti
on

s
of

th
e
V
la
so
v
eq
u
at
io
n
in

te
rm

s
of

th
e
so
lu
ti
on

of
th
e
O
D
E

of
m
ot
io
n
fo
r
m
ac
ro
-p
ar
ti
cl
es
.
E
ac
h
m
ac
ro
-p
ar
ti
cl
e
re
p
re
se
n
ts

a
la
rg
e
n
u
m
b
er

of
th
e
p
la
sm

a
p
ar
ti
cl
es
.

T
h
e
p
ar
ti
cl
e
or
b
it
s
ar
e
th
e
ch
ar
ac
te
ri
st
ic
s
of

th
e

V
la
so
v
eq
u
at
io
n
.
In

th
is
ca
se
,
th
e
p
h
as
e
sp
ac
e
d
en
si
ty

al
on

g
th
e
tr
a
je
ct
or
ie
s
is

p
re
se
rv
ed

b
y
co
n
st
ru
ct
io
n
(L

ag
ra
n
ge
),
w
h
il
e
ch
ar
ge

an
d
cu
rr
en
t
d
en
si
ti
es

n
ee
d

b
ei
n
g
co
m
p
u
te
d
,
b
y
ex
tr
ap

ol
at
io
n
,
on

E
u
le
ri
an

(i
.e
.
fi
x
ed

in
sp
ac
e)

gr
id

p
oi
n
ts
.

P
IC

co
d
es

h
av
e
th
e
en
or
m
ou

s
ad

va
n
ta
ge
s
of

b
ei
n
g
si
m
p
le
,
ro
b
u
st

an
d
ea
si
ly

sc
al
ab

le
.
T
h
ei
r
d
is
ad

va
n
ta
ge

is
th
e
n
u
m
er
ic
al

n
oi
se
,
in
h
er
en
t
to

th
e
li
m
it
ed

n
u
m
b
er

of
m
ac
ro
-p
ar
ti
cl
es
,
w
h
ic
h
ca
n
ca
u
se

n
u
m
er
ic
al

co
ll
is
io
n
s
an

d
ar
ti
fi
ci
al

d
is
si
p
at
io
n
.

M
an

y
co
d
es

ar
e
b
as
ed

on
th
is

P
IC

ap
p
ro
ac
h
.

L
et

u
s
m
en
ti
on

P
ar
k
er
’s
co
d
e
[1
1
1
],
S
y
d
or
a’
s
co
d
e
[1
2
9
],
P
G
3E

Q
[4
6
],
G
T
C

[9
7
],
E
L
M
F
IR

E
[7
3
],
G
T
3D

[7
6
],
O
R
B
5
[1
9
,
8
3
],
an

d
G
T
S
[1
4
6
].



G
Y
R
O
K
IN

E
T
IC

S
IM

U
L
A
T
IO

N
S

O
F

M
A
G
N
E
T
IC

F
U
S
IO

N
P
L
A
S
M
A
S

2
5

6
.1
.1
.
S
ta
ti
st
ic
a
l
n
o
is
e
re
d
u
ct
io
n
.
—

W
h
en

ap
p
li
ed

to
p
la
sm

a
st
u
d
ie
s,

th
e

P
IC

-a
p
p
ro
ac
h
co
n
si
st
s
in

tw
o
d
is
ti
n
ct

st
ep
s.

In
th
e
fi
rs
t
on

e,
th
e
se
lf
-c
on

si
st
en
t

fi
el
d
s
ge
n
er
at
ed

b
y
th
e
d
is
tr
ib
u
ti
on

of
co
m
p
u
ta
ti
on

al
p
ar
ti
cl
es

in
a
m
u
lt
id
im

en
-

si
on

al
p
h
as
e
sp
ac
e
ar
e
ca
lc
u
la
te
d
.
In

th
e
se
co
n
d
st
ep
,
th
e
p
ar
ti
cl
e
or
b
it
s
ar
e

fo
ll
ow

ed
,
gi
v
en

th
e
el
ec
tr
om

ag
n
et
ic

fi
el
d
s.

P
IC

si
m
u
la
ti
on

s
ar
e
in
tr
in
si
ca
ll
y

n
o
is
y.

T
h
is

n
oi
se

is
p
re
d
om

in
an

tl
y
as
so
ci
at
ed

w
it
h
th
e
fi
rs
t
st
ep
,
w
h
er
e
th
e

tw
o
fi
rs
t
m
om

en
ts

of
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
ar
e
ca
lc
u
la
te
d
to

fi
n
d
th
e
so
u
rc
e

te
rm

s
in

P
oi
ss
on

’s
an

d
A
m
p
er
e’
s
eq
u
at
io
n
s.

T
h
e
re
la
ti
v
el
y
sm

al
l
n
u
m
b
er

of
tr
ac
er
s
in

p
h
as
e
sp
ac
e,

w
h
ic
h
ar
e
go
v
er
n
ed

b
y
th
e
co
m
p
u
ta
ti
on

al
p
ar
ti
cl
e
p
o-

si
ti
on

s,
in
tr
o
d
u
ce
s
er
ro
rs

at
th
is
st
ag
e.

F
ro
m

th
e
m
at
h
em

at
ic
al

p
oi
n
t
of

v
ie
w
,

A
y
d
em

ir
[6
]
p
oi
n
te
d
ou

t
th
e
fa
ct

th
at

th
e
L
ag
ra
n
ge
-P

IC
al
go
ri
th
m
s
ca
n
b
e

v
ie
w
ed

as
st
at
is
ti
ca
l
m
et
h
o
d
s
to

ob
ta
in
,
v
ia

M
o
n
te

C
a
rl
o
in
te
gr
a
ti
o
n
,
es
ti
-

m
at
es

of
th
e
m
om

en
ts

of
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
.
T
h
e
st
an

d
ar
d
d
ev
ia
ti
on

of
th
is
es
ti
m
at
or

is
k
n
ow

n
to

sc
al
e
li
k
e
1
/
√
N
,
w
it
h
N

th
e
n
u
m
b
er

of
m
ar
k
er
s
(s
ee

A
p
p
en
d
ix

E
-s
ec
ti
on

E
.1

fo
r
d
et
ai
ls
).

T
h
is
st
at
is
ti
ca
l
er
ro
r
is
ca
ll
ed

“n
u
m
er
ic
al

n
oi
se
”.

T
h
e
m
ai
n
p
ro
b
le
m

fo
r
n
on

-l
in
ea
r
gy

ro
k
in
et
ic

si
m
u
la
ti
on

s
is

th
at

th
e

n
oi
se

le
v
el

a
p
ri
o
ri

ac
cu
m
u
la
te
s
in

ti
m
e
[1
1
0
].

E
v
en

sm
al
l
er
ro
rs

in
th
e
ev
al
-

u
at
io
n
of

th
es
es

m
om

en
ts

ca
n
ca
u
se

sy
st
em

at
ic

co
rr
u
p
ti
on

s
of

th
e
si
m
u
la
ti
on

re
su
lt
s
on

re
la
ti
v
el
y
sh
or
t
p
er
io
d
of

ti
m
e.

T
h
e
re
d
u
ct
io
n
of

n
u
m
er
ic
al

n
oi
se

is
ri
gh

t
fr
om

th
e
st
ar
t
a
m
at
te
r
of

in
te
n
se

re
se
ar
ch
,
an

d
lo
ts

of
im

p
ro
v
em

en
ts

h
av
e
b
ee
n
ob

ta
in
ed

in
th
is
d
om

ai
n
si
n
ce

fi
v
e
y
ea
rs
.
L
et

u
s
sp
ec
ifi
ca
ll
y
m
en
ti
on

th
e
ac
h
ie
v
em

en
ts

m
ad

e
on

th
e
O
R
B
5
gy

ro
k
in
et
ic

P
IC

-c
o
d
e
[8
3
],

w
h
ic
h
ar
e

su
m
m
ar
iz
ed

in
[1
4
3
].

It
h
as

lo
n
g
b
ee
n
ap

p
re
ci
at
ed

th
at

th
e
st
at
is
ti
ca
l
n
oi
se

of
th
e
P
IC

m
et
h
o
d

in
th
e
fr
am

ew
or
k
of

gy
ro
k
in
et
ic

si
m
u
la
ti
on

s
[9
4
]
ca
n
b
e
co
n
si
d
er
ab

ly
re
d
u
ce
d

b
y
u
si
n
g
th
e
δf

sc
h
em

e
[1
1
1
].

It
co
n
si
st
s
in

d
ec
o
m
p
os
in
g
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
as

fo
ll
ow

s:
f
=

f 0
+
δf

,
w
it
h
f 0

a
ti
m
e-
in
d
ep

en
d
en
t
(o
r
sl
ow

ly
ev
o
lv
-

in
g)

fu
n
ct
io
n

of
p
h
as
e-
sp
ac
e
co
or
d
in
at
es

an
d

δf
sa
m
p
le
d

w
it
h

m
ar
k
er
s
(c
f.

se
ct
io
n
7.
1
fo
r
m
or
e
d
et
ai
ls

on
th
is

ap
p
ro
x
im

at
io
n
).

B
y
m
ak

in
g
co
n
n
ec
ti
on

w
it
h
M
on

te
C
ar
lo

sc
h
em

es
,
A
y
d
em

ir
[6
]
h
as

sh
ow

n
th
at

th
e
δf

m
et
h
o
d
ca
n

b
e
se
en

as
an

ex
am

p
le

of
th
e
co
n
tr
ol

va
ri
at
e
m
et
h
o
d
of

va
ri
an

ce
re
d
u
ct
io
n
.

T
h
e
sa
m
p
li
n
g
n
oi
se

er
ro
r
is
th
u
s
re
d
u
ce
d
b
y
th
e
fa
ct
or
|δf
|/
f 0
,
w
h
ic
h
is
m
u
ch

sm
al
le
r
th
an

u
n
it
y
fo
r
co
re

p
la
sm

a
tu
rb
u
le
n
ce
.
A
n
im

p
ro
v
ed

δf
sc
h
em

e,
ca
ll
ed

“a
d
ju
st
ab

le
co
n
tr
ol

va
ri
at
e”
,
h
as

b
ee
n
d
ev
el
op

ed
a
n
d
ap

p
li
ed

to
el
ec
tr
om

a
g-

n
et
ic

gy
ro
k
in
et
ic

si
m
u
la
ti
on

s.
T
h
is

n
ew

ap
p
ro
ac
h
su
cc
ee
d
ed

in
re
d
u
ci
n
g
th
e

re
q
u
ir
ed

n
u
m
b
er

of
m
ar
k
er
s
fo
r
a
gi
v
en

p
re
ci
si
on

b
y
or
d
er
s
of

m
ag
n
it
u
d
e
[7
1
].

C
on

tr
ol

va
ri
at
e
is

n
ot

th
e
on

ly
va
ri
an

ce
re
d
u
ct
io
n
te
ch
n
iq
u
e
av
ai
la
b
le

u
n
d
er

a
M
on

te
C
ar
lo

sc
h
em

e.
Im

p
or
ta
n
ce

sa
m
p
li
n
g
al
so

effi
ci
en
tl
y
re
d
u
ce
s
th
e
er
-

ro
r
in

m
om

en
t
es
ti
m
at
es
.
T
h
is

“o
p
ti
m
iz
ed

lo
ad

in
g”

sc
h
em

e
[7
2
]
co
n
si
st
s
in

fi
n
d
in
g
an

ap
p
ro
p
ri
at
e
d
is
tr
ib
u
ti
on

of
th
e
m
ar
k
er

p
os
it
io
n
s
co
m
p
ar
ed

to
th
e

si
m
p
le

“p
ro
p
or
ti
on

al
lo
ad

in
g”
.
H
at
zk
y
et

al
.
[7
2
]
h
as

al
so

sh
ow

n
an

ex
am

p
le

of
th
e
tw

o
m
et
h
o
d
s
u
se
d
in

co
n
ju
n
ct
io
n
,
re
su
lt
in
g
in

d
ra
m
at
ic

im
p
ro
v
em

en
ts

2
6

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

in
th
e
q
u
al
it
y
of

gy
ro
k
in
et
ic

si
m
u
la
ti
on

s.
T
h
e
cl
as
si
ca
l
te
ch
n
iq
u
es
,
w
h
ic
h
ar
e

d
ev
el
op

ed
fo
r
n
oi
se

re
d
u
ct
io
n
in

th
e
M
on

te
C
ar
lo

ev
al
u
at
io
n
of

in
te
gr
al
s
an

d
ar
e
at

th
e
b
as
is
of

al
l
th
es
e
im

p
ro
v
em

en
ts
,
ar
e
d
et
ai
le
d
in

A
p
p
en
d
ic
es

E
.2

an
d

E
.3
.

A
p
ar
t
fr
om

th
es
e
cl
as
si
ca
l
M
on

te
C
ar
lo

ap
p
ro
ac
h
es
,
k
n
ow

le
d
ge

of
th
e

u
n
d
er
ly
in
g
p
h
y
si
cs

ca
n
in
sp
ir
e
ot
h
er

m
a
jo
r
im

p
ro
v
em

en
ts
.

(i
)
T
h
e
ch
oi
ce

of
f 0

is
cr
it
ic
al

in
or
d
er

to
k
ee
p
|δf
|/
f 0

as
sm

al
l
as

p
os
si
b
le
.
In

th
is
re
ga
rd
,
ch
o
os
in
g
f 0

=
f e

q
,
w
it
h
f e

q
th
e
in
it
ia
l
eq
u
il
ib
ri
u
m

st
at
e,

lo
ok

s
h
ig
h
ly

d
es
ir
ab

le
.
H
ow

ev
er
,
si
n
ce

f
ca
n
ev
ol
v
e
aw

ay
fr
om

f e
q
,
an

in
tu
it
iv
e

id
ea

w
ou

ld
b
e
to

ev
ol
v
e
f 0

as
w
el
l,
in

su
ch

a
w
ay

to
”f
ol
lo
w
”
f
.
O
n
e
su
ch

te
ch
n
iq
u
e
h
as

b
ee
n
im

p
le
m
en
te
d
in

co
ll
is
io
n
al

M
on

te
C
ar
lo

si
m
u
la
ti
on

s
[2
6
].
In

th
is
ca
se

an
ap

p
ro
p
ri
at
e
ch
oi
ce

fo
r
f 0
(t
)
w
as

a
sh
if
te
d
M
ax

w
el
li
an

d
is
tr
ib
u
ti
on

,
ev
ol
v
ed

u
si
n
g
fl
u
id

eq
u
at
io
n
s.

A
m
or
e
ge
n
er
al

te
ch
n
iq
u
e

is
p
ro
p
os
ed

in
[2
].

In
th
is

ap
p
ro
ac
h
,
δf

is
d
ir
ec
tl
y
ob

ta
in
ed

fr
om

th
e

co
n
st
an

cy
of

f
al
on

g
or
b
it
s
Z
(t
),
si
n
ce

δf
(Z

j
(t
))

=
f
(Z

j
(t

0
))

−
f 0
(Z

j
(t
))
.

(i
i)

In
an

y
ca
se
,
p
er
fo
rm

in
g
lo
n
g
si
m
u
la
ti
on

ru
n
s
–
an

d
re
ac
h
in
g
tu
rb
u
le
n
t

st
ea
d
y
-s
ta
te

–
w
h
il
e
k
ee
p
in
g
th
e
n
u
m
er
ic
al

n
oi
se

at
w
ea
k
le
v
el
s
is
v
er
y
ch
al
-

le
n
gi
n
g.

A
n
oi
se

co
n
tr
ol

al
go
ri
th
m

u
si
n
g
m
o
d
ifi
ed

K
ro
ok

op
er
at
or

lo
ok

s
p
ro
m
is
in
g
[1
0
1
].

In
te
re
st
in
gl
y,

su
ch

a
K
ro
ok

op
er
at
or

al
so

ad
d
s
fi
n
it
e

d
is
si
p
at
io
n
,
w
h
ic
h
h
as

b
e
p
ro
v
en

to
b
e
m
an

d
at
or
y
to

re
ac
h
a
st
at
is
ti
ca
ll
y

co
n
v
er
ge
d
st
at
e
[9
1
].

In
gr
id
-b
as
ed

co
d
es

(E
u
le
ri
an

or
se
m
i-
L
ag
ra
n
gi
an

),
n
u
m
er
ic
al

d
is
si
p
at
io
n
is

in
tr
o
d
u
ce
d
ei
th
er

b
y
u
si
n
g
d
is
si
p
at
iv
e
d
is
cr
et
iz
a-

ti
on

or
in
te
rp
ol
at
io
n
sc
h
em

es
,
or

b
y
ad

d
in
g
h
y
p
er
-d
iff
u
si
on

te
rm

s
[1
1
4
].

(i
ii
)
A
n
ot
h
er

p
h
y
si
ca
l
p
ro
p
er
ty

of
tu
rb
u
le
n
ce

in
to
ka
m
ak

s
ca
n

b
e
fr
u
it
fu
ll
y

ex
p
lo
it
ed
,
n
am

el
y
it
s
st
ro
n
g
an

is
ot
ro
p
y.

In
d
ee
d
,
m
ic
ro
-t
u
rb
u
le
n
ce

m
o
d
es

ar
e
ch
ar
ac
te
ri
ze
d
b
y
sm

al
l
p
ar
al
le
l
w
av
e
v
ec
to
rs

as
co
m
p
ar
ed

to
tr
an

sv
er
se

on
es
:
|k
‖|ρ

s
≤

ρ
∗
≪

1
(m

or
e
p
re
ci
se
ly
,
k
‖
∼

1
/q
R
,
w
it
h
q
th
e
sa
fe
ty

fa
ct
or

an
d
R

th
e
m
a
jo
r
ra
d
iu
s)
,
co
n
si
st
en
tl
y
w
it
h
th
e
gy

ro
-o
rd
er
in
g
gi
v
en

in
E
q
.

(3
6)
.

J
ol
li
et

et
al
.

[8
3
]
h
av
e
d
ev
el
op

ed
a
fi
lt
er

w
h
ic
h
ta
k
es

ad
va
n
ta
ge

of
th
is

st
ro
n
g
an

is
ot
ro
p
y
of

th
e
p
er
tu
rb
at
io
n
s.

T
h
ey

h
av
e
sh
ow

n
th
at

fi
lt
er
in
g
th
e
m
o
d
es
,
w
h
ic
h
m
ay

b
e
p
re
se
n
t
in

th
e
si
m
u
la
ti
on

b
u
t
d
o
n
ot

sa
ti
sf
y
th
is
or
d
er
in
g,

is
a
v
er
y
effi

ci
en
t
w
ay

to
si
gn

ifi
ca
n
tl
y
re
d
u
ce

n
u
m
er
i-

ca
l
n
oi
se
.
T
h
e
te
ch
n
iq
u
e
co
n
si
st
s
in

ap
p
ly
in
g
a
fi
el
d
-a
li
gn

ed
F
o
u
ri
er

fi
lt
er
.

T
h
e
te
ch
n
iq
u
e
es
se
n
ti
al
ly

co
n
si
st
s
in

se
tt
in
g
to

ze
ro

al
l
(m

,n
)
m
o
d
es

(m
an

d
n
b
ei
n
g
th
e
p
ol
oi
d
al

an
d
to
ro
id
al

w
av
e
n
u
m
b
er
s,

re
sp
ec
ti
v
el
y
)
of

th
e

p
er
tu
rb
ed

d
en
si
ty

ap
p
ea
ri
n
g
in

th
e
q
u
as
i-
n
eu
tr
al
it
y
eq
u
at
io
n
w
h
ic
h
fu
l-

fi
ll
th
e
fo
ll
ow

in
g
re
la
ti
on

:
|m

|≥
q(
r)
|n
|+

∆
m
,
w
h
er
e
∆
m

∈
N

is
th
e

p
re
sc
ri
b
ed

w
id
th

of
th
e
re
ta
in
ed

m
o
d
es
.
∆
m

ty
p
ic
al
ly

ra
n
ge
s
fr
om

5
to

10
(s
ee

J
ol
li
et
’s

th
es
is

[8
2
]
fo
r
m
or
e
d
et
ai
ls
).

It
co
rr
es
p
on

d
s
to

a
d
ia
go
-

n
al

fi
lt
er

in
F
ou

ri
er

sp
ac
e,

in
st
ea
d
of

a
sq
u
ar
e
fi
lt
er

ge
n
er
al
ly

u
se
d
.
T
h
e

m
ai
n
in
te
re
st

is
th
at
,
in

th
is

ca
se
,
th
e
si
gn

al
to

n
oi
se

ra
ti
o
sc
al
es

li
k
e
th
e

n
u
m
b
er

of
m
ar
k
er
s
p
er

F
ou

ri
er

m
o
d
e
re
ta
in
ed

b
y
th
e
fi
lt
er
,
an

d
n
o
lo
n
ge
r



G
Y
R
O
K
IN

E
T
IC

S
IM

U
L
A
T
IO

N
S

O
F

M
A
G
N
E
T
IC

F
U
S
IO

N
P
L
A
S
M
A
S

2
7

li
k
e
th
e
n
u
m
b
er

of
m
ar
k
er
s
p
er

n
u
m
er
ic
al

d
eg
re
e
of

fr
ee
d
om

of
th
e
fi
el
d

re
p
re
se
n
ta
ti
on

.
(i
v
)
F
in
al
ly
,
so
lu
ti
on

s
h
av
e
b
ee
n
fo
u
n
d
to

fa
ce

th
e
p
ro
b
le
m

k
n
ow

n
as

th
e
en

-
tr
o
p
y
pa
ra
d
o
x
[1
4
8
]
in
h
er
en
t
to

th
e
M
on

te
C
ar
lo

ap
p
ro
ac
h
u
se
d
in

th
e

P
IC

co
d
es
.
In
d
ee
d
,
th
e
fl
u
ct
u
at
io
n
en
tr
op

y,
p
ro
p
or
ti
on

al
to

th
e
su
m

of
th
e
sq
u
ar
ed

w
ei
gh

ts
〈w

2
〉,
in
cr
ea
se
s
w
it
h
th
e
tu
rb
u
le
n
ce

an
d
on

e
ob

se
rv
es

th
at

lo
w

or
d
er

m
om

en
ts

sa
tu
ra
te

w
h
il
e
th
e
fl
u
ct
u
at
io
n
en
tr
op

y
co
n
ti
n
u
-

al
ly

in
cr
ea
se
s
in

ti
m
e
(s
ee

e.
g.

[8
4
]
fo
r
m
or
e
ex
p
la
n
at
io
n
s)
.
T
h
er
ef
or
e,

as
a
p
ar
ad

ox
,
on

to
p
of

th
e
p
h
y
si
ca
l
n
on

ze
ro

va
lu
e
of

th
e
fl
u
ct
u
at
io
n
en
-

tr
op

y
th
er
e
is

a
n
u
m
er
ic
al

gr
ow

th
of

th
is

q
u
an

ti
ty
.
O
n
e
w
ay

to
re
so
lv
e

th
is
en
tr
op

y
p
ar
ad

ox
is
to

in
tr
o
d
u
ce

a
p
h
y
si
ca
l
d
is
si
p
at
io
n
b
y
in
tr
o
d
u
ci
n
g

a
co
ll
is
io
n
op

er
at
or
.
U
n
fo
rt
u
n
at
el
y,

th
is

is
a
v
er
y
d
iffi

cu
lt

ta
sk

in
a
5D

P
IC

co
d
e.

A
n
al
te
rn
at
iv
e,

or
ig
in
al
ly

p
ro
p
os
ed

b
y
K
ro
m
m
es

[9
0
],
co
n
si
st
s

of
in
tr
o
d
u
ci
n
g
a
K
ro
ok

-l
ik
e
d
is
si
p
at
io
n
te
rm

.
T
h
e
ai
m

of
th
is

te
rm

is
to

co
n
tr
ol

th
e
va
ri
an

ce
of

w
ei
gh

ts
an

d
th
er
ef
or
e
to

co
n
tr
ol

th
e
n
oi
se
.
T
h
is
al
-

go
ri
th
m

(w
it
h
th
e
d
iff
er
en
ce

th
at

th
e
va
ri
an

ce
of

th
e
w
ei
gh

ts
is
n
ot

fr
oz
en

to
a
gi
v
en

va
lu
e)

h
as

b
ee
n
su
cc
es
sf
u
ll
y
im

p
le
m
en
te
d
in

th
e
O
R
B
5
co
d
e

[1
0
0
,
8
4
].

6
.1
.2
.
G
lo
ba
l
P
IC

-a
lg
o
ri
th
m
.
—

T
h
e
al
go
ri
th
m
s
of

P
IC

co
d
es

(s
ee

F
ig
.

7)
ca
n
b
e
d
ec
om

p
os
ed

in
th
re
e
m
ai
n
st
ep
s:

(i
)
sa
m
p
li
n
g
in
it
ia
l
p
os
it
io
n
s
in

p
h
as
e

sp
ac
e
(l
oa
d
in
g
of

m
ar
k
er
s)
;
(i
i)

fo
ll
ow

in
g
m
ar
k
er

o
rb
it
s
in

5D
(p
u
sh
in
g)

a
n
d

(i
ii
)
ob

ta
in
in
g
th
e
so
u
rc
e
te
rm

s
fo
r
th
e
fi
el
d
eq
u
at
io
n
s
at

ea
ch

ti
m
e
st
ep

(c
h
ar
ge

an
d
cu
rr
en
t
as
si
gn

m
en
t)
.
T
h
es
e
th
re
e
st
ep
s
ar
e
d
et
ai
le
d
in

ap
p
en
d
ix

F
.

6
.2
.
T
im

e
-s
p
li
tt
in
g
sc
h
e
m
e
.
—

L
et

u
s
co
n
si
d
er

th
e
V
la
so
v
eq
u
at
io
n
,
w
ri
t-

te
n
in

th
e
fo
rm

(1
8)
,
w
h
er
e
U

is
th
e
d
iv
er
ge
n
ce
-f
re
e
v
ec
to
r
fi
el
d
h
av
in
g
u
p

to
si
x

co
m
p
on

en
ts

in
th
e
fu
ll

6D
ca
se
.

F
or

ex
am

p
le
,
in

th
e
ca
se

of
th
e

3D
el
ec
tr
os
ta
ti
c
V
la
so
v
eq
u
at
io
n
,
th
es
e
fi
el
d
s
ar
e
Z
=

(x
,y
,z
,v

x
,v

y
,v

z
)
an

d
U

=
(v

x
,v

y
,v

z
,E

x
,E

y
,E

z
),
al
l
th
e
co
m
p
on

en
ts

of
th
e
el
ec
tr
ic

fi
el
d
d
ep

en
d
in
g

on
x
,y
,z

an
d
t.

T
h
e
V
la
so
v
eq
u
at
io
n
ca
n
al
so

b
e
w
ri
tt
en

in
it
s
co
n
se
rv
at
iv
e

fo
rm

(w
e
re
ca
ll
th
at

U
is

d
iv
er
ge
n
ce

fr
ee
):

∂ ∂
tf

(Z
,t
)
+
d
iv

(x
,v
)
(U

(Z
,t
)
f
(Z

,t
))

=
0

S
p
li
tt
in
g
th
e
co
m
p
on

en
ts

of
Z

in
to

tw
o
se
ts

x
an

d
v
,
th
e
p
re
v
io
u
s
eq
u
at
io
n

ca
n
th
en

b
e
w
ri
tt
en

as

∂ ∂
tf

(x
,v

,t
)
+
d
iv

x
(U

x
(x
,v

,t
)
f
(x
,v

,t
))
+
d
iv

v
(U

v
(x
,v

,t
)
f
(x
,v

,t
))

=
0

w
h
er
e
th
e
co
m
p
on

en
ts

of
th
e
ad

v
ec
ti
on

fi
el
d
U

x
a
n
d
U

v
ar
e
d
efi
n
ed

b
y
E
q
.

(1
9)
.

A
t
th
is

st
ag
e,

it
is

co
n
v
en
ie
n
t
to

sp
li
t
b
ot
h

p
ar
ts

an
d

to
tr
ea
t
th
em

se
p
ar
at
el
y
(t
h
is

op
er
at
io
n
is

k
n
ow

n
as

th
e
sp
li
tt
in
g
m
et
h
od

or
th
e
op

er
at
or

2
8

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

F
ig
u
r
e
7
.
In

L
ag
ra
n
gi
an

-P
IC

m
et
h
o
d
s,
m
ar
k
er

in
it
ia
l
p
os
it
io
n
s
ar
e

lo
ad

ed
p
se
u
d
o-

(o
r
q
u
as
i-
)
ra
n
d
om

ly
in

p
h
as
e
sp
ac
e
(A

).
M
ar
k
er
s
ar
e

ev
ol
v
ed

al
on

g
th
ei
r
or
b
it
s
(B

).
C
h
ar
ge

an
d
cu
rr
en
t
p
er
tu
rb
at
io
n
s
ar
e

as
si
gn

ed
(p
ro
je
ct
ed
)
to

re
al

sp
ac
e
(C

).
F
ie
ld

eq
u
at
io
n
s
ar
e
so
lv
ed

(D
),

e.
g.

on
a
fi
x
ed

gr
id

in
re
al

sp
ac
e.

(fi
gu

re
fr
om

[7
9
])

d
ec
om

p
os
it
io
n
):

(4
8)

∂ ∂
tf

(x
,v

,t
)
+
d
iv

x
(U

x
(x
,v

,t
)
f
(x
,v

,t
))

=
0

at
fi
x
ed

v

an
d

(4
9)

∂ ∂
tf

(x
,v

,t
)
+
d
iv

v
(U

v
(x
,v

,t
)
f
(x
,v

,t
))

=
0

at
fi
x
ed

x

N
ot
ic
e
th
at

th
e
se
m
i-
L
ag
ra
n
gi
an

sc
h
em

e
(s
ee

se
ct
io
n
6.
4)

d
o
es

n
ot

so
lv
e
V
la
so
v

eq
u
at
io
n
in

th
e
co
n
se
rv
at
iv
e
fo
rm

,
b
u
t
ra
th
er

in
th
e
ad

v
ec
ti
v
e
fo
rm

in
or
d
er

to
m
ak
e
fu
ll
u
se

of
th
e
b
ac
k
w
ar
d
ch
ar
ac
te
ri
st
ic

m
et
h
o
d
.
In

th
is
ca
se
,
eq
s.

(4
8)

an
d
(4
9)

ca
n
b
e
p
u
t
in

th
e
ad

v
ec
ti
v
e
fo
rm

∂
f ∂
t
+
U

x
·∇

x
f
=

0
(5
0)

∂
f ∂
t
+

U
v
·∇

v
f
=

0
(5
1)

if
an

d
on

ly
if
b
ot
h
v
el
o
ci
ty

fi
el
d
ar
e
d
iv
er
ge
n
ce

fr
ee

in
d
ep

en
d
en
tl
y,

n
am

el
y

d
iv

x
(U

x
(x
,v

,t
))

=
0

(5
2)

d
iv

v
(U

v
(x
,v

,t
))

=
0

(5
3)



G
Y
R
O
K
IN

E
T
IC

S
IM

U
L
A
T
IO

N
S

O
F

M
A
G
N
E
T
IC

F
U
S
IO

N
P
L
A
S
M
A
S

2
9

C
on

v
er
se
ly
,
sh
ou

ld
eq
u
at
io
n
s
(5
2)

an
d
(5
3)

n
ot

b
e
sa
ti
sfi
ed
,
th
en

sp
li
tt
in
g
E
q
.

(1
8)

w
ou

ld
b
e
eq
u
iv
al
en
t
to

so
lv
in
g
ad

v
ec
ti
v
e
eq
u
at
io
n
s
w
it
h
so
u
rc
e
te
rm

s

∂
f ∂
t
+
U

x
·∇

x
f
=

−
f
d
iv

x
(U

x
)

(5
4)

∂
f ∂
t
+
U

v
·∇

v
f
=

−
f
d
iv

v
(U

v
)

(5
5)

T
h
e
d
iv
er
ge
n
ce
-f
re
e
p
ro
p
er
ty

of
th
e
fu
ll

ad
v
ec
ti
on

fi
el
d

U
sh
ou

ld
a

p
ri
o
ri

gu
ar
an

ty
th
at

d
iv

x
(U

x
)
=

−
d
iv

v
(U

v
)

H
ow

ev
er
,
th
e
so
u
rc
e
te
rm

s
in

E
q
s.

(5
4)

an
d
(5
5)

d
o
n
ot

ca
n
ce
l
ea
ch

ot
h
er

si
n
ce

th
ey

ar
e
n
ot

co
m
p
u
te
d
at

th
e
sa
m
e
ti
m
e.

A
s
a
co
n
se
q
u
en
ce
,
th
is

in
tr
o
d
u
ce
s

sy
st
em

at
ic

cu
m
u
la
ti
v
e
er
ro
rs

at
ea
ch

ti
m
e
st
ep
,
re
su
lt
in
g
in

p
o
or

d
en
si
ty

co
n
-

se
rv
at
io
n
(s
ee

e.
g.

[7
4
,
1
0
8
])
.
T
h
is
co
n
st
ra
in
t
of

d
iv
er
ge
n
ce

fr
ee

in
d
ep

en
d
en
ce

is
on

e
d
ra
w
b
ac
k
fo
r
se
m
i-
L
ag
ra
n
gi
an

ap
p
ro
ac
h
in

h
ig
h
d
im

en
si
on

al
it
y.

F
or

th
e
fo
ll
ow

in
g,

le
t
su
p
p
os
e
(5
2)

an
d
(5
3)

sa
ti
sfi
ed
,
th
en

th
e
er
ro
r
as
so
ci
-

at
ed

to
th
e
sp
li
tt
in
g
ca
n
b
e
es
ti
m
at
ed

b
y
w
ri
ti
n
g
th
e
V
la
so
v
eq
u
at
io
n
fo
rm

al
ly

as
fo
ll
ow

s

(5
6)

∂
f ∂
t
=

(A
+
B
)f

w
h
er
e
A

an
d
B

st
an

d
fo
r
d
iff
er
en
ti
al

op
er
at
or
s
in

p
h
as
e
sp
ac
e
(f
or

in
st
an

ce
,

A
=

−
v
·∇

x
an

d
B

=
−
(q

s
/m

s
)E

·∇
v
,
su
ch

th
at

U
x

=
v

an
d

U
v
=

E
),

as
su
m
ed

co
n
st
an

t
in

th
e
ti
m
e
in
te
rv
al

[t
n
,t

n
+
1
].

T
h
e
fo
rm

al
so
lu
ti
on

of
th
is

eq
u
at
io
n
(5
6)

on
∆
t
ti
m
e
st
ep

re
ad

s

f
(t
+
∆
t)

=
ex
p
[∆

t(
A
+
B
)]
f
(t
)

L
et

u
s
sp
li
t
eq
u
at
io
n
(5
6)

as
fo
ll
ow

s

∂
f ∂
t
=

A
f
(t
)

(5
7)

∂
f ∂
t
=

B
f
(t
)

(5
8)

T
h
e
so
lu
ti
on

s
ar
e,

re
sp
ec
ti
v
el
y

f
(t
+
∆
t)

=
ex
p
(∆

tA
)f
(t
)

an
d

f
(t
+
∆
t)

=
ex
p
(∆

tB
)f
(t
)

T
h
e
st
a
n
d
a
rd

sp
li
tt
in
g
m
et
h
od

co
n
si
st
s
in

su
cc
es
si
v
el
y
so
lv
in
g
E
q
.
(5
7)

on
ti
m
e

st
ep

∆
t
fo
ll
ow

ed
b
y
E
q
.
(5
8)
,
al
so

on
ti
m
e
st
ep

∆
t.

O
n
on

e
ti
m
e
st
ep
,
on

e
th
en

ob
ta
in
s

f̃
(t
+
∆
t)

=
ex
p
(∆

tB
)
ex
p
(∆

tA
)f
(t
)

If
th
e
op

er
at
or
s
A
an

d
B

co
m
m
u
te
,
th
en

ex
p
(∆

tB
)
ex
p
(∆

tA
)
=

ex
p
[∆

t(
A
+
B
)]
,

w
h
ic
h
co
rr
es
p
on

d
s
to

th
e
so
lu
ti
on

of
th
e
w
h
ol
e
eq
u
at
io
n
,
eq
.

(5
6)
.

In
th
is

ca
se
,
th
e
sp
li
tt
in
g
is
ex
ac
t.

T
h
is
is
es
p
ec
ia
ll
y
tr
u
e
w
h
en

th
e
ad

v
ec
ti
on

s
co
n
si
st

of
co
n
st
an

t
co
effi

ci
en
ts
.
H
ow

ev
er
,
in

m
os
t
ca
se
s,

A
an

d
B

d
o
n
ot

co
m
m
u
te
.

3
0

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

In
th
is
ca
se
,
S
tr
an

g
h
as

sh
ow

n
[1
2
8
]
th
at

th
e
sp
li
tt
in
g
er
ro
r
ca
n
b
e
d
ra
st
ic
al
ly

re
d
u
ce
d
b
y
so
lv
in
g
sy
m
m
et
ri
ca
ll
y
E
q
.
(5
7)

on
h
al
f
a
ti
m
e
st
ep

∆
t/
2,

th
en

E
q
.

(5
8)

on
a
ti
m
e
st
ep

∆
t
an

d
fi
n
al
ly

ag
ai
n
E
q
.
(5
7)

on
h
al
f
a
ti
m
e
st
ep

∆
t/
2.

T
h
is

m
et
h
o
d
is

ca
ll
ed

S
tr
a
n
g
sp
li
tt
in
g.

It
le
ad

s
to

th
e
fo
rm

al
so
lu
ti
on

f̃
(t
+
∆
t)

=
ex
p
(∆

t 2
A
)
ex
p
(∆

tB
)
ex
p
(∆

t 2
A
)f
(t
)

P
ro

p
o
si
ti
o
n

5
.
—

T
h
e
sp
li
tt
in
g
er
ro
r
o
n
o
n
e
ti
m
e
st
ep
,
w
h
en

th
e
o
pe
ra
to
rs

d
o
n
o
t
co
m
m
u
te
,
is

o
f
o
rd
er

1
in

ti
m
e
fo
r
th
e
st
a
n
d
a
rd

sp
li
tt
in
g
a
n
d
o
f
o
rd
er

2
in

ti
m
e
fo
r
th
e
S
tr
a
n
g
sp
li
tt
in
g.

R
e
m
a
r
k
1
.
—

T
h
e
S
tr
a
n
g
sp
li
tt
in
g
ca
n
be

ge
n
er
a
li
ze
d
to

m
o
re

th
a
n
tw
o
o
pe
r-

a
to
rs
.
If

A
=

A
1
+
··
·+

A
n
,
th
e
fo
ll
o
w
in
g
d
ec
o
m
po
si
ti
o
n
p
re
se
rv
es

th
e
se
co
n
d

o
rd
er

a
cc
u
ra
cy

in
ti
m
e

ex
p
(∆

t 2
A

1
)
··
·e
x
p
(∆

t 2
A

n
−
1
)
ex
p
(∆

tA
n
)
ex
p
(∆

t 2
A

n
−
1
)
··
·e
x
p
(∆

t 2
A

1
)

T
h
e
p
ro
of

fo
r
th
re
e
op

er
at
or
s
ca
n
b
e
fo
u
n
d
in

ap
p
en
d
ix

G
.
T
h
e
ad

va
n
ta
ge

of
su
ch

a
m
et
h
o
d
is

to
tr
an

sf
or
m

si
x
-d
im

en
si
on

al
sy
st
em

s
in
to

su
cc
es
si
v
e
ad

-
v
ec
ti
on

or
co
n
se
rv
at
iv
e
eq
u
at
io
n
s
im

m
er
se
d
in

lo
w
er

d
im

en
si
on

al
sp
ac
es
.
T
h
is

te
ch
n
iq
u
e
h
as

b
ee
n

u
se
d

m
or
e
th
an

th
ir
ty

y
ea
rs

ag
o
to

so
lv
e
V
la
so
v
eq
u
a-

ti
on

in
2D

[1
2
4
].

It
is

n
ow

cu
rr
en
tl
y
u
se
d
in

E
u
le
ri
an

an
d
se
m
i-
L
ag
ra
n
gi
an

ap
p
ro
ac
h
es

as
d
et
ai
le
d
in

th
e
fo
ll
ow

in
g.

6
.3
.
E
u
le
ri
a
n
a
p
p
ro

a
ch

.
—

T
h
e
E
u
le
ri
an

ap
p
ro
ac
h
co
n
si
st
s
in

d
is
cr
et
iz
in
g

th
e
p
h
as
e
sp
ac
e
on

a
fi
x
ed

gr
id
,
an

d
in

ap
p
ly
in
g
fi
n
it
e
d
iff
er
en
ce
s,
fi
n
it
e
v
ol
u
m
es

an
d
/o
r
F
ou

ri
er

tr
an

sf
or
m
s
to

m
o
d
el
th
e
d
iff
er
en
ti
al

an
d
in
te
gr
al

op
er
at
or
s
(s
ee

e.
g.

[2
7
]
fo
r
a
re
v
ie
w

an
d
fi
gu

re
8
fo
r
a
sc
h
em

at
ic

re
p
re
se
n
ta
ti
on

).
E
u
le
ri
an

sc
h
em

es
ar
e
n
ot

su
b
je
ct

to
th
e
is
su
e
of

m
ar
k
er

sa
m
p
li
n
g
n
oi
se

w
h
ic
h
is
cr
it
ic
al

in
L
ag
ra
n
gi
an

-P
IC

m
et
h
o
d
s.

C
on

v
er
se
ly
,
w
h
en

ex
p
li
ci
t
ti
m
e
in
te
gr
at
io
n

is
p
er
fo
rm

ed
,
th
ey

ar
e
li
m
it
ed

b
y
th
e
C
ou

ra
n
t-
F
ri
ed
ri
ch
s-
L
ew

y
(C

F
L
)
st
ab

il
it
y

co
n
d
it
io
n
,
w
h
ic
h

co
n
st
ra
in
ts

th
e
m
ax

im
u
m

ti
m
e
st
ep

as
a
fu
n
ct
io
n

of
gr
id

sp
ac
e
re
so
lu
ti
on

.
S
ev
er
al

gy
ro
k
in
et
ic

co
d
es

ar
e
b
as
ed

on
E
u
le
ri
an

sc
h
em

es
.

T
h
ey

ar
e
ca
ll
ed

E
u
le
ri
a
n

(o
r
so
m
et
im

es
V
la
so
v)

co
d
es
.

T
h
e
fo
ll
ow

in
g
li
st

(n
ot

ex
h
au

st
iv
e)

n
am

es
th
e
m
os
tl
y
ci
te
d

E
u
le
ri
an

co
d
es
,
as

th
ey

ap
p
ea
re
d

ch
ro
n
ol
og
ic
al
ly

in
th
e
li
te
ra
tu
re
:
G
S
2
[8
9
,
4
7
],
G
Y
R
O

[2
9
],
G
E
N
E
[8
1
,
1
0
2
],

G
K
V

[1
4
7
],
G
K
W

[1
1
2
]
an

d
G
T
5D

[7
8
,
7
7
].

M
os
t
of

th
e
E
u
le
ri
an

sc
h
em

es
ar
e
b
as
ed

on
st
an

d
ar
d
ti
m
e-
sp
li
tt
in
g
sc
h
em

es
(s
ee

se
ct
io
n
6.
2)
,
su
ch

th
at

th
e
V
la
so
v
so
lv
er

tr
an

sf
or
m
s
in
to

su
cc
es
si
v
e
sp
at
ia
l

an
d
v
el
o
ci
ty

sp
ac
e
u
p
d
at
es

[3
4
].
S
u
b
se
q
u
en
tl
y,

w
it
h
ou

t
an

y
lo
ss

of
ge
n
er
al
it
y,

w
e
ca
n
re
st
ri
ct

th
e
an

al
y
si
s
to

th
e
on

e-
d
im

en
si
on

al
p
ro
b
le
m

(5
9)

∂
tf

+
u
(x
,t
)∂

x
f
=

0,
∀(
x
,t
)
∈
[x

m
in
,x

m
a
x
]
×

R
+
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S
M
A
S

3
1

F
ig
u
r
e
8
.
In

E
u
le
ri
an

m
et
h
o
d
s,
a
fi
x
ed

gr
id

is
d
efi
n
ed

in
p
h
a
se

sp
a
ce

(A
).
F
in
it
e
d
iff
er
en
ce

ex
p
re
ss
io
n
s
ar
e
u
se
d
(B

)
in

o
rd
er

to
o
b
ta
in

th
e

va
lu
e
o
f
f
at

gr
id

p
o
in
ts

at
th
e
n
ex
t
ti
m
e
st
ep

(C
).

F
ie
ld

eq
u
a
ti
on

s
ar
e
th
en

so
lv
ed

(D
)
af
te
r
in
te
gr
at
io
n
ov
er

v
el
o
ci
ty

sp
ac
e.

(fi
gu

re

fr
om

[5
8
])

T
h
e
tr
an

sp
or
ti
n
g
v
el
o
ci
ty

fi
el
d
u
(x
,t
)
is

as
su
m
ed

to
b
e
sm

o
ot
h
en
ou

gh
;
fo
r

in
st
an

ce
u
is
L
ip
sc
h
it
z
co
n
ti
n
u
ou

s.
B
es
id
es
,
ta
k
in
g
in
to

ac
co
u
n
t
th
e
d
iv
er
ge
n
ce
-

fr
ee

p
ro
p
er
ty

of
th
e
fl
ow

∂
x
u
(x
,t
)
=

0,
w
e
w
il
l
co
n
si
d
er

th
e
1D

co
n
se
rv
at
iv
e

fo
rm

(6
0)

∂
tf

+
∂
x
(u
(x
,t
)f
)
=

0
,

∀(
x
,t
)
∈
[x

m
in
,x

m
a
x
]×

R
+

T
h
en
,
b
y
an

al
og
y
w
it
h
E
q
s.

(2
0)

an
d
(2
1)
,
le
t
u
s
in
tr
o
d
u
ce

th
e
ch
ar
ac
te
ri
st
ic

tr
a
je
ct
or
ie
s
w
h
ic
h

ar
e
so
lu
ti
on

s
of

th
e
d
iff
er
en
ti
al

sy
st
em

as
so
ci
at
ed

to
th
e

tr
an

sp
or
t
eq
u
at
io
n

(6
1)

{
d
X d
t
(t
)
=

u
(X

(t
),
t)

X
(s
)
=

x

N
o
ta
ti
o
n

1
.
—

L
et

u
s
d
en

o
te

X
(t
;x

,s
)
th
e
so
lu
ti
o
n

o
f
E
q.

(6
1)
,
i.
e.

th
e

po
si
ti
o
n
X

a
t
ti
m
e
t
o
f
th
e
po
in
t
th
a
t
w
a
s
a
t
x
a
t
ti
m
e
s.

N
o
ta
ti
o
n

2
.
—

L
et

u
s
a
ls
o

in
tr
od
u
ce

th
e
co
m
p
u
ta
ti
o
n
a
l
1
D

d
o
m
a
in

Ω
=

[x
m
in
,x

m
a
x
]
d
iv
id
ed

by
a
fi
n
it
e
se
t
o
f
m
es
h
po
in
ts
{x

i+
1
/
2
} i∈

I

x
m
in
=

x
1 2
<

x
3 2
<
··
·<

x
N
−

1 2
<

x
N
+

1 2
=

x
m
a
x

in
to

N
E
u
le
ri
a
n
C
o
n
tr
o
l
V
o
lu
m
es

(E
C
V
)
su
ch

th
a
t

E
C
V
i
≡
[ x

i−
1 2
,x

i+
1 2

]
w
it
h
ce
n
tr
e

x
i
≡

1 2

( x
i−

1 2
+
x
i+

1 2

)

3
2

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

a
n
d
u
n
eq
u
a
l
sp
a
ci
n
g ∆
x
i
≡

x
i+

1 2
−

x
i−

1 2
fo
r

i
=

1,
2,
··
·,

N

L
et

u
s
in
te
gr
at
e
(6
0)

w
it
h
re
sp
ec
t
to

x
b
et
w
ee
n
tw

o
ar
b
it
ra
ry

m
ov
in
g
b
ou

n
d
-

ar
ie
s
x
1
=

x
1
(x
,t
)
an

d
x
2
=

x
2
(x
,t
)
an

d
u
si
n
g
L
ei
b
n
iz
’s

ru
le
,

d d
t

∫
x
2
(x

,t
)

x
1
(x

,t
)
f
(x
,t
)d
x
−
( f

(x
2
,t
)d

x
2

d
t

−
f
(x

1
,t
)d

x
1

d
t

)
(6
2)

+
(f
(x

2
,t
)u
(x

2
,t
)
−
f
(x

1
,t
)u
(x

1
,t
))

=
0

If
th
e
b
ou

n
d
ar
ie
s
x
1
an

d
x
2
ar
e
m
ov

in
g
w
it
h
th
e
fl
u
id
,
i.
e
if

d
x
1

d
t

=
u
(x

1
,t
),

d
x
2

d
t

=
u
(x

2
,t
)

th
en

(6
2)

si
m
p
li
fi
es

to
th
e
cl
as
si
ca
l
in
te
gr
al

co
n
se
rv
at
io
n
fo
rm

(6
3)

d d
tM

(x
1
,x

2
,t
)
=

d d
t

(
∫

x
2
(t
)

x
1
(t
)
f
(x
,t
)d
x

)
=

0

w
h
ic
h
si
m
p
ly

st
at
es

th
at

th
e
q
u
an

ti
ty

M
(x

1
,x

2
,t
)
co
n
ta
in
ed

b
et
w
ee
n
an

y
tw

o
b
ou

n
d
ar
ie
s
x
1
(t
)
an

d
x
2
(t
),
m
ov

in
g
w
it
h
th
e
fl
u
id
,
is

in
va
ri
an

t
in

ti
m
e.

A
t
fi
rs
t
ti
m
e,

le
t
u
s
as
su
m
e
th
at

u
is

in
d
ep

en
d
en
t
of

b
ot
h
f
an

d
x
.
T
h
en
,

th
e
so
lu
ti
on

of
th
e
ad

v
ec
ti
on

eq
u
at
io
n
(5
9)

at
ti
m
e
∆
t
is

si
m
p
ly

th
e
u
n
if
or
m

tr
an

sl
at
io
n
of

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
b
y
u
∆
t.

P
ro

p
o
si
ti
o
n

6
.
—

T
h
er
e
a
re

tw
o
pa
rt
ic
u
la
r
p
ro
pe
rt
ie
s
o
f
gr
ea
t
im

po
rt
a
n
ce

in
a
n
a
d
ve
ct
io
n
so
lv
er
:

(a
)
T
h
e
m
et
h
od

sh
o
u
ld

n
o
t
in
tr
od
u
ce

fa
ls
e
ex
tr
em

a
.

T
h
is

is
eq
u
iv
a
le
n
t
to

sa
yi
n
g

th
a
t
th
e

m
o
n
o
to
n
o
u
s
ch
a
ra
ct
er

o
f
a
n
y

fu
n
ct
io
n

sh
o
u
ld

be
p
re
-

se
rv
ed
:
fo
r
λ
=

u
∆
t/
∆
x
i
(λ

be
in
g
th
e
C
F
L

n
u
m
be
r)
,
if

0
<

λ
<

1
a
n
d

f
n i−

1
<

f
n i
<

f
n i+

1
th
en

f
n
+
1

i−
1

<
f
n
+
1

i
<

f
n
+
1

i+
1

(t
h
e
sa
m
e
sh
o
u
ld

h
o
ld

fo
r
th
e

m
o
n
o
to
n
o
u
s
d
ec
re
a
si
n
g
ca
se
),

(b
)
T
h
e
m
et
h
od

sh
o
u
ld

n
o
t
a
cc
en

tu
a
te

a
lr
ea
d
y
ex
is
ti
n
g
ex
tr
em

a
:
fo
r
0
<

λ
<

1
,

if
f
n i−

1
<

f
n i
>

f
n i+

1
th
en

f
n i
≥

m
ax

{f
n
+
1

i
,f

n
+
1

i+
1
}.

P
ro
pe
rt
ie
s
(a
)
a
n
d
(b
)
to
ge
th
er

im
p
ly

th
a
t
th
e
m
et
h
od

is
po
si
ti
vi
ty
-p
re
se
rv
in
g

a
n
d
to
ta
l
va
ri
a
ti
o
n
d
im

in
is
h
in
g
(T

V
D
).

L
et

u
s
ta
k
e
th
e
ex
am

p
le

of
an

u
n
if
or
m

m
es
h
of

d
is
cr
et
iz
at
io
n
st
ep

∆
x
fo
r

si
m
p
li
ci
ty
.
T
h
e
d
iffi

cu
lt
y
is

th
at

f
is

on
ly

k
n
ow

n
on

th
e
d
is
cr
et
e
gr
id

p
oi
n
ts

x
j
=

j∆
x
.
O
n
e
so
lu
ti
on

w
ou

ld
b
e
to

in
te
rp
ol
at
e
b
et
w
ee
n
th
e
gr
id

p
oi
n
ts

b
y

so
m
e
fu
n
ct
io
n
f̃
(y
)
an

d
w
ri
te

f
(y

i,
t
+
∆
t)

=
f̃
(y

i
−

λ
,t
),
w
h
er
e
y
=

x
/∆

x
(i
.e
.

y i
=

i)
an

d
λ
is

th
e
d
is
ta
n
ce

in
y
b
y
w
h
ic
h
f
m
u
st

b
e
sh
if
te
d
.
H
ow

ev
er
,
b
y
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3
3

a
co
ro
ll
ar
y
of

G
o
d
u
n
ov
’s

th
eo
re
m

(4
) ,
an

y
in
te
rp
ol
at
io
n
sc
h
em

e
th
at

is
h
ig
h
er

th
an

fi
rs
t
or
d
er

v
io
la
te
s
p
ro
p
er
ti
es

(a
)
an

d
(b
).

A
s
d
is
cu
ss
ed

in
th
e
fo
ll
ow

in
g,

sa
ti
sf
y
in
g
th
es
e
p
ro
p
er
ti
es

h
as

b
ee
n
on

e
of

th
e
le
it
m
ot
iv
e
fo
r
th
e
d
ev
el
op

m
en
t

of
n
ew

sc
h
em

es
si
n
ce

m
or
e
th
an

10
y
ea
rs
.

L
et

u
s
co
m
e
b
ac
k
to

th
e
ge
n
er
al

ca
se

of
n
on

co
n
st
an

t
ad

v
ec
ti
on

fi
el
d
u
(x
,t
).

T
h
e
go
al

is
to

so
lv
e
eq
u
at
io
n
(6
0)

on
a
gr
id
,
as
su
m
in
g
th
e
fu
n
ct
io
n
f
is
sm

o
ot
h

in
ea
ch

el
em

en
ta
ry

ce
ll
I i
.
T
h
e
m
ai
n
id
ea

is
to

re
p
la
ce

f
(x
,t
)
b
y
it
s
sm

o
ot
h
ed

ap
p
ro
x
im

at
io
n
(a
v
er
ag
e
q
u
an

ti
ty
)

(6
4)

f̄ i
(t
)
=

1

∆
x
i

∫
x
i+

1
/
2

x
i−

1
/
2

f
(x
,t
)d
x
,

i
=

1,
2
,·
··

,N

T
h
e
va
lu
es

of
th
e
ap

p
ro
x
im

at
ed

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f̄ i

ar
e
as
su
m
ed

to
b
e

k
n
ow

n
at

ti
m
e
tn

=
n
∆
t
fo
r
al
l
i
=

1,
··
·,

N
T
h
e
n
ew

va
lu
es

of
f̄ i

at
ti
m
e
tn

+
1

ca
n

b
e
re
tr
ie
v
ed

b
y
u
si
n
g
th
e
co
n
se
rv
at
io
n

p
ro
p
er
ty

(6
3)

of
∫ x

2
(t
)

x
1
(t
)
f
(x
,t
)d
x

w
h
er
e
x
1
(t
)
m
ov
e
fr
om

x
i−

1
/
2
(r
es
p
.
x
i+

1
/
2
)
at

ti
m
e
tn

to
X
(t

n
+
1
;x

i−
1
/
2
,t

n
)

(r
es
p
.
X
(t

n
+
1
;x

i+
1
/
2
,t

n
))

at
ti
m
e
tn

+
1
.

(6
5)

f̄
n
+
1

i
=

f̄ i
(t

n
+
1
)
=

1

∆
x
i

∫
X
(t

n
+
1
;x

i+
1
/
2
,t
n
)

X
(t

n
+
1
;x

i−
1
/
2
,t
n
)
f
(x
,t

n
)d
x

In
th
e
ca
se

u
is

a
co
n
st
an

t,
on

e
ge
ts
:

f̄
n
+
1

i
=

1

∆
x
i

∫
x
i+

1
/
2
−
u
∆
t

x
i−

1
/
2
−
u
∆
t
f
(x
,t

n
)d
x

A
ge
om

et
ri
c
re
p
re
se
n
ta
ti
on

of
th
is
p
ro
ce
ss

is
sh
ow

n
in

F
ig
u
re

9
fo
r
u
p
os
it
iv
e.

A
s
fa
r
as

th
e
ge
n
er
al

ca
se

is
co
n
ce
rn
ed
,
le
t
u
s
fu
rt
h
er

d
efi
n
e,

(6
6)

Φ
i+

1
/
2
(t

n
)
=

∫
x
i+

1
/
2

X
(t

n
+
1
;x

i+
1
/
2
,t
n
)
f
(x
,t

n
)d
x
=

∫
x
i+

1
/
2

x
i+

1
/
2
−
α
i

f
(x
,t

n
)d
x

w
h
er
e

α
i
=

x
i+

1
/
2
−
X
(t

n
+
1
;x

i+
1
/
2
,t

n
)

O
n
e
th
en

fi
n
al
ly

ob
ta
in
s
th
e
co
n
se
rv
at
iv
e
sc
h
em

e

(6
7)

f̄
n
+
1

i
=

f̄
n i
−

1

∆
x
i

[ Φ
i+

1
/
2
(t

n
)
−
Φ
i−

1
/
2
(t

n
)]

H
er
e,

Φ
i±

1
/
2
re
p
re
se
n
t
th
e
ex
ch
an

ge
of

ce
ll
i
w
it
h
ce
ll
s
(i
±

1)
.
T
h
es
e
fl
u
x
es

ca
n
b
e
ei
th
er

p
os
it
iv
e
or

n
eg
at
iv
e.

H
ow

ev
er
,
m
as
s
co
n
se
rv
at
io
n
st
at
es

th
at

th
e

so
u
rc
e
te
rm

s
(r
es
p
.

lo
ss
es
)
fo
r
ce
ll
i
ar
e
ex
ac
tl
y
co
m
p
en
sa
te
d
b
y
th
e
lo
ss
es

(r
es
p
.
so
u
rc
es
)
fo
r
th
e
n
ei
gh

b
or
in
g
ce
ll
s.

(4
)
G
o
d
u
n
ov

’s
th
eo
re
m

(1
9
5
4
)
st
a
te
s
th
a
t
li
n
ea
r
n
u
m
er
ic
a
l
sc
h
em

es
fo
r
so
lv
in
g
p
a
rt
ia
l
d
iff
er
-

en
ti
a
l
eq
u
a
ti
o
n
s
(P

D
E
’s
),

h
av

in
g
th
e
p
ro
p
er
ty

o
f
n
o
t
g
en

er
a
ti
n
g
n
ew

ex
tr
em

a
(m

o
n
o
to
n
o
u
s

sc
h
em

e)
,
ca
n
b
e
a
t
m
o
st

fi
rs
t-
o
rd
er

a
cc
u
ra
te
.

3
4

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

F
ig
u
r
e
9
.
G
eo
m
et
ri
c
re
p
re
se
n
ta
ti
on

of
fl
u
x
es

m
ov
in
g
th
ro
u
gh

ce
ll
j

(F
ig
u
re

ta
k
en

in
[3
5
]
-
F
or

th
e
li
n
k
w
it
h
th
e
p
re
se
n
t
te
x
t
j
→

i
an

d
a
→

u
).

A
lt
h
ou

gh
th
e
ti
m
e-
sp
li
tt
in
g
sc
h
em

e
of
te
n
al
lo
w
s
on

e
to

re
p
la
ce

ch
ar
ac
te
r-

is
ti
cs

cu
rv
es

b
y
st
ra
ig
h
t
li
n
es
,
th
er
e
ar
e
ca
se
s
w
h
er
e
th
e
ch
ar
ac
te
ri
st
ic

cu
rv
es

ca
n
n
ot

b
e
co
m
p
u
te
d

ex
p
li
ci
tl
y.

T
h
e
co
m
p
u
ta
ti
on

of
α
i
th
en

re
q
u
ir
es

ti
m
e

d
is
cr
et
iz
at
io
n
of

E
q
s.

(6
1)
.
T
h
e
so
lu
ti
on

p
ro
p
os
ed

in
[5
5
]
fo
r
in
st
an

ce
,
is

to
u
se

a
se
co
n
d
-o
rd
er

le
ap

-f
ro
g
sc
h
em

e
to

ob
ta
in

a
fi
x
ed

p
oi
n
t
p
ro
b
le
m

w
h
er
e

x
n
=

X
(t

n
+
1
;x

i+
1
/
2
,t

n
)
is

so
lu
ti
on

of

{
x
i+

1
/
2
−
x
n
=

∆
tu
(x

n
+
1
/
2
,t

n
+
1
/
2
),

tn
+
1
/
2
=

tn
+

∆
t

2
,x

n
+
1
/
2
=

1 2
(x

i+
1
/
2
+

x
n
)

S
u
ch

a
sy
st
em

ca
n
b
e
so
lv
ed

it
er
at
iv
el
y.

T
h
e
cr
it
ic
al

st
ep

is
n
ow

to
ch
o
os
e
an

effi
ci
en
t
m
et
h
o
d
to

re
co
n
st
ru
ct

th
e

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
fr
om

th
e
va
lu
es

on
ea
ch

E
C
V
i.

6
.3
.1
.
F
lu
x
B
a
la
n
ce

M
et
h
od

(F
B
M
).

—
In

th
e
F
lu
x
B
al
an

ce
M
et
h
o
d
(F

B
M
),

th
is

re
co
n
st
ru
ct
io
n
m
ak
es

u
se

of
li
n
ea
r
in
te
rp
ol
at
io
n
[5
3
]:

D
i
=

f i
+
1
−

f i
−
1

2∆
x
i

f h
(x
)
=

f i
+
D

i(
x
−
x
i)
,

∀x
∈
[x

i−
1
/
2
,x

i+
1
/
2
]
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O
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3
5

th
en

Φ
i+

1
/
2
(t

n
)
=

∫
x
i+

1
/
2

x
i+

1
/
2
−
α
i

f h
(x
,t
)d
x
=

∫
x
i+

1
/
2

x
i+

1
/
2
−
α
i

(f
(x

i)
+
D

i(
x
−

x
i)
)
d
x

=
α
if
(x

i)
+

D
i

[ (
x
−
x
i)
2
] x

i+
1
/
2

x
i+

1
/
2
−
α
i

=
α
if
(x

i)
+

D
i

2

[ (
∆
x
i

2

) 2
−
(
∆
x
i

2
−
α
i) 2
]

A
n
d
fi
n
al
ly
,

Φ
i+

1
/
2
(t

n
)
=

α
if
(x

i)
+

D
i

2
α
i(
∆
x
i
−
α
i)

T
h
is

F
B
M

sc
h
em

e
is

on
ly

se
co
n
d
-o
rd
er

ac
cu
ra
te

in
sp
ac
e.

B
es
id
es
,
th
er
e
is

n
o
gu

ar
an

te
e
th
at

it
p
re
se
rv
es

m
on

ot
on

ic
it
y,

an
d
th
at

it
d
o
es

n
ot

in
tr
o
d
u
ce

fa
ls
e
ex
tr
em

a.
H
ow

ev
er

th
is

m
et
h
o
d
st
il
l
re
v
ea
ls

su
cc
es
sf
u
l
fo
r
a
va
ri
et
y
of

V
la
so
v
p
ro
b
le
m
s
[5
3
]
w
h
en

co
u
p
le
d
to

sm
o
ot
h
in
g
an

d
av
er
ag
in
g
te
ch
n
iq
u
es

to
d
is
si
p
at
e
fi
n
e-
sc
al
e
st
ru
ct
u
re
s.

It
is

al
so

th
e
st
ar
ti
n
g

p
oi
n
t
of

m
os
t
of

E
u
le
ri
an

m
et
h
o
d
s.

S
ev
er
al

im
p
ro
v
em

en
ts

of
th
e
F
B
M

m
et
h
o
d

h
av
e
b
ee
n

p
ro
p
os
ed
,
e.
g.

b
y

A
rb
er

an
d

V
an

n
[5
]
in

tw
o

d
ir
ec
ti
on

s:
(i
)
in
cr
ea
si
n
g

th
e
or
d
er

of
th
e
gr
ad

ie
n
t
D

i
;
(i
i)

ap
p
ly
in
g
V
an

-L
ee
r
gr
ad

ie
n
t
li
m
it
er

(f
or

in
st
an

ce
)
to

th
e
gr
ad

ie
n
t
D

i
b
ef
or
e
ca
lc
u
la
ti
n
g
th
e
ce
ll
b
ou

n
d
ar
y
fl
u
x
es
.
In

th
is

p
ap

er
[5
],

th
e
P
ie
ce
w
is
e
P
ar
ab

ol
ic

M
et
h
o
d

(P
P
M
)
(a

n
ew

th
ir
d
-o
rd
er

sc
h
em

e)
is

co
m
p
ar
ed

to
se
co
n
d
-o
rd
er

sp
at
ia
ll
y
ac
cu
ra
te

sc
h
em

es
(F

B
M

an
d

V
an

L
ee
r-
L
im

it
ed

sc
h
em

e)
,
an

d
al
so

to
fo
u
rt
h
or
d
er

sc
h
em

es
(F

lu
x
-C

or
re
ct
ed

T
ra
n
sp
or
t
(F

C
T
))

an
d
th
e
si
x
th
-o
rd
er

C
om

p
ac
t
F
in
it
e
D
iff
er
en
ce

(C
om

p
ac
t)
.

A
rb
er

an
d
V
an

n
co
n
cl
u
d
e
th
at

m
ai
n
ta
in
in
g
p
os
it
iv
it
y
is

le
ss

im
p
or
ta
n
t
th
an

co
rr
ec
tl
y
d
is
si
p
at
in
g
fi
n
e-
sc
al
e
st
ru
ct
u
re
s
w
h
ic
h
n
at
u
ra
ll
y
ar
is
e
w
h
en

so
lv
in
g

m
an

y
V
la
so
v
p
ro
b
le
m
s.

6
.3
.2
.
T
h
e

E
ss
en

ti
a
ll
y

N
o
n
-O

sc
il
la
to
ry

m
et
h
od

(E
N
O
).

—
T
h
e
es
se
n
ti
al
ly

n
on

-o
sc
il
la
to
ry

(E
N
O
)
sc
h
em

es
,
fi
rs
t
in
tr
o
d
u
ce
d

b
y
H
ar
te
n

an
d

O
sh
er

[7
0
]

an
d
H
ar
te
n
et

al
.
[6
9
],
ca
n
ac
h
ie
v
e
u
n
if
or
m
ly

h
ig
h
-o
rd
er

ac
cu
ra
cy

w
it
h
sh
ar
p
,

es
se
n
ti
al
ly

n
on

-o
sc
il
la
to
ry

sh
o
ck

tr
an

si
ti
on

s.
In

V
la
so
v
eq
u
at
io
n
so
lu
ti
on

,
th
er
e

is
n
o
sh
o
ck

d
ev
el
op

m
en
t
b
u
t
E
N
O

sc
h
em

e
ca
n
b
e
u
se
fu
l
to

tr
ea
t
th
e
p
ro
b
le
m

of
st
iff

gr
ad

ie
n
ts

w
h
ic
h
ap

p
ea
r
in

p
h
as
e
sp
ac
e.

T
h
is
sc
h
em

e
is
b
as
ed

on
N
ew

to
n

D
iv
id
ed

D
iff
er
en

ce
in
te
rp
ol
at
io
n
.
T
h
e
m
et
h
o
d
is
d
et
ai
le
d
in

A
p
p
en
d
ix

I.
T
h
is

ap
p
ro
ac
h
h
as

b
ee
n
im

p
le
m
en
te
d
b
y
F
il
b
et

et
al
.
[5
5
]
u
p
to

th
e
fo
u
rt
h
or
d
er
.

It
s
ad

va
n
ta
ge

is
to

co
n
tr
ol

sp
u
ri
ou

s
os
ci
ll
at
io
n
s.

H
ow

ev
er

it
d
o
es

n
ot

en
su
re

p
os
it
iv
it
y
an

d
F
il
b
et

co
n
cl
u
d
es

th
at

it
is
to
o
d
is
si
p
at
iv
e
to

ac
cu
ra
te
ly

d
es
cr
ib
e

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
b
ec
au

se
th
e
en
tr
op

y
an

d
th
e
L
2
n
or
m

ar
e
st
ro
n
gl
y

d
ec
re
as
in
g.

U
m
ed
a
al
so

co
n
cl
u
d
es

th
at

W
E
N
O

(W
ei
gh

te
d
E
N
O
)
sc
h
em

es
ar
e

w
el
l-
d
es
ig
n
ed

fo
r
sh
o
ck
s
an

d
d
is
co
n
ti
n
u
it
ie
s
b
u
t
n
ot

n
ec
es
sa
ri
ly

ap
p
ro
p
ri
a
te

3
6

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

fo
r
th
e
ad

v
ec
ti
on

of
si
n
u
so
id
al

w
av
es
.

S
ti
ll
,
th
is

m
et
h
o
d

h
as

b
ee
n

su
cc
es
s-

fu
ll
y
ap

p
li
ed

b
y
Q
iu

an
d
C
h
ri
st
li
eb

[1
1
6
]
co
u
p
le
d
w
it
h
th
e
se
m
i-
L
ag
ra
n
gi
an

m
et
h
o
d
(d
es
cr
ib
ed

in
se
ct
io
n
6.
4)
.
T
h
e
th
ir
d
or
d
er

sc
h
em

e
w
as

sh
ow

n
n
ot

to
b
e
su
ffi
ci
en
t,

w
h
il
e
fi
ft
h
or

se
v
en
th
-o
rd
er

on
es

ca
n
gi
v
e
sa
ti
sf
ac
to
ry

re
su
lt
s.

6
.3
.3
.
P
o
si
ti
ve

F
lu
x
C
o
n
se
rv
a
ti
ve

sc
h
em

e
(P

F
C
).

—
T
h
is
m
et
h
o
d
w
as

in
tr
o-

d
u
ce
d

in
20
01

b
y
F
il
b
et

[5
5
].

It
al
so

u
se
s
an

ti
d
er
iv
at
iv
e
fu
n
ct
io
n
s
fo
r
th
e

re
co
n
st
ru
ct
io
n
(c
f.

se
ct
io
n
6.
3.
2)
.
T
h
e
an

ti
d
er
iv
at
iv
e
is

ap
p
ro
x
im

at
ed

b
y
L
a-

gr
an

ge
p
ol
y
n
om

ia
ls
.
In

[5
5
]
th
e
te
st

is
p
er
fo
rm

ed
fo
r
th
e
p
ol
y
n
om

ia
l
of

d
eg
re
e

tw
o
or

th
re
e
on

th
e
in
te
rv
al

[x
i−

1
/
2
,x

i+
1
/
2
].

F
or

th
e
sa
k
e
of

si
m
p
li
ci
ty
,
le
t

u
s
co
n
si
d
er

th
at

th
e
p
ro
p
ag
at
io
n
v
el
o
ci
ty

u
(x
,t
)
is

p
os
it
iv
e
an

d
se
co
n
d
or
d
er
.

T
h
en

th
e
ap

p
ro
x
im

at
io
n
is

gi
v
en

b
y
:

(6
8)

f h
(x
)
=

f i
+

ǫ i
(x

−
x
i)
f i

+
1
−
f i

∆
x
i

,
∀x

∈
[x

i−
1
/
2
,x

i+
1
/
2
]

w
h
er
e
th
e
sl
op

e
co
rr
ec
to
r
ǫ i

is
d
efi
n
ed

as

(6
9)

ǫ i
=

{
m
in

(2
(f

i
−

f m
in
);
(f

i+
1
−

f i
))

if
f i

+
1
−
f i

≥
0

m
in

(−
2(
f m

a
x
−
f i
);
(f

i+
1
−
f i
))

if
f i

+
1
−
f i

<
0

w
it
h
f m

in
=

0
an

d
f m

a
x
=

f ∞
.
T
h
is

ap
p
ro
x
im

at
io
n
sa
ti
sfi
es

th
e
co
n
se
rv
at
io
n

of
th
e
av
er
ag
e

fo
r
al
l
i
∈
I
,

∫
x
i+

1
/
2

x
i−

1
/
2

f h
(ξ
)
d
ξ
=

∆
x
if

i

A
ls
o
,
it

p
re
se
rv
es

th
e
m
ax

im
u
m

p
ri
n
ci
p
le

fo
r
al
l
x
∈
[x

m
in
,x

m
a
x
],

0
≤

f h
(x
)
≤

f ∞

T
h
e
p
ro
of

ca
n
b
e
fo
u
n
d
in

re
fe
re
n
ce

[5
5
].

T
h
is

re
co
n
st
ru
ct
io
n
(6
8)

an
d
(6
9)

is
th
en

u
se
d
to

co
m
p
u
te

th
e
fl
u
x
es

gi
v
en

b
y
E
q
.
(6
6)
.
T
h
e
d
ra
w
b
ac
k
of

su
ch

a
m
et
h
o
d
,
as

ex
em

p
li
fi
ed

in
4D

d
ri
ft
-k
in
et
ic

si
m
u
la
ti
on

s
of

io
n
te
m
p
er
at
u
re

gr
ad

ie
n
t
d
ri
v
en

tu
rb
u
le
n
ce

[6
3
],
is

th
at

it
is

d
is
si
p
at
iv
e,

su
ch

th
at

th
e
to
ta
l

en
er
gy

is
n
ot

co
n
se
rv
ed
.

S
ev
er
al

m
o
d
ifi
ed

v
er
si
on

s
of

th
e
P
F
C

m
et
h
o
d
h
av
e
b
ee
n
p
ro
p
os
ed
.
S
ch
m
it
z

an
d
G
ra
u
er

[1
2
2
]
h
av
e
m
o
d
ifi
ed

th
e
li
m
it
er
,
u
si
n
g
f m

a
x
=

∞
,
to

av
oi
d
th
e

d
ec
re
as
e
of

th
e
m
ax

im
u
m

va
lu
e
of

th
e
p
ro
fi
le

an
d
to

al
lo
w

th
e
p
ro
fi
le

to
ri
se

u
n
co
n
tr
ol
la
b
ly
.
U
n
fo
rt
u
n
at
el
y,

in
th
is

m
et
h
o
d
,
th
e
p
ro
fi
le
,
w
h
ic
h
ca
n
ex
h
ib
it

lo
ca
l
m
ax

im
a
an

d
/o
r
m
in
im

a,
is
n
ot

n
ec
es
sa
ri
ly

n
on

-o
sc
il
la
to
ry
.
U
m
ed
a
[1
3
8
],

h
as

d
efi
n
ed

a
n
on

-o
sc
il
la
to
ry

sc
h
em

e
(P

os
it
iv
e
In
te
rp
ol
at
io
n
fo
r
C
on

se
rv
at
io
n
),

in
th
e
se
n
se

th
at

th
e
al
re
ad

y
-e
x
is
ti
n
g
ex
tr
em

a
ar
e
k
ep
t,

b
y
ch
an

gi
n
g
th
e
ex
-

tr
em

a
of

F
il
b
et
’s

sl
op

e
co
rr
ec
to
r
b
y

f m
a
x
=

m
ax

[f
m
a
x
1
;f

m
a
x
2
]

f m
in
=

m
ax

[f
m
in
1
;f

m
in
2
]



G
Y
R
O
K
IN

E
T
IC

S
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U
L
A
T
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N
S

O
F

M
A
G
N
E
T
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F
U
S
IO

N
P
L
A
S
M
A
S

3
7

w
h
er
e

f m
a
x
1
=

m
ax

[m
ax

[f
i−

1
,f

i]
;m

in
[2
f i
−
1
−
f i
−
2
;2
f i

−
f i

+
1
]]
,

f m
a
x
2
=

m
ax

[m
ax

[f
i+

1
,f

i]
;m

in
[2
f i

+
1
−
f i

+
2
;2
f i

−
f i
−
1
]]
,

f m
in
1
=

m
in
[m

in
[f

i−
1
,f

i]
;m

ax
[2
f i
−
1
−
f i
−
2
;2
f i

−
f i

+
1
]]
,

f m
in
2
=

m
in
[m

in
[f

i+
1
,f

i]
;m

ax
[2
f i

+
1
−
f i

+
2
;2
f i

−
f i
−
1
]]

T
h
is
n
ew

P
F
C
sc
h
em

e
h
as

b
ee
n
ap

p
li
ed

su
cc
es
sf
u
ll
y
to

n
on

li
n
ea
r
b
ea
m
-p
la
sm

a
in
te
ra
ct
io
n
s
[1
1
8
].

A
n
y
w
ay

th
e
ch
oi
ce

b
et
w
ee
n
on

e
or

an
ot
h
er

m
et
h
o
d
is

n
ot

si
m
p
le

an
d
d
e-

p
en
d
s
on

th
e
p
ro
b
le
m

b
ei
n
g
so
lv
ed
.
T
h
e
F
lu
x
B
al
an

ce
m
et
h
o
d
(F

B
M
)
[5
3
],

th
e
P
os
it
iv
e
an

d
F
lu
x
C
on

se
rv
at
iv
e
m
et
h
o
d
(P

F
C
)
[5
5
],
th
e
F
in
it
e
D
iff
er
en
ce

M
et
h
o
d
(F

D
M
)
[4
],
a
sp
ec
tr
al

m
et
h
o
d
[8
7
,
8
8
],
th
e
C
on

st
ra
in
ed

In
te
rp
ol
at
io
n

P
ro
fi
le

sc
h
em

e
(C

IP
)
(s
ee

se
ct
io
n
6.
3.
4)

[1
0
7
]
h
av
e
b
ee
n
co
m
p
ar
ed

in
[5
4
]
in

th
e
co
n
te
x
t
of

th
e
n
on

-l
in
ea
r
1D

1D
p
ro
b
le
m

of
L
an

d
au

d
am

p
in
g
or

fo
r
th
e
tw

o
st
re
am

in
st
ab

il
it
y
p
ro
b
le
m
.
F
il
b
et

et
al
.
co
n
cl
u
d
e
th
at

th
er
e
is
n
o
cl
ea
r
w
in
n
er
,

ea
ch

m
et
h
o
d
h
av
in
g
p
ro
s
an

d
co
n
s.

H
ow

ev
er
,
th
er
e
ar
e
so
m
e
in
d
ic
at
io
n
s
in

th
e
se
n
se

th
at
:
(i
)
fo
r
p
ro
b
le
m
s
w
h
ic
h
n
ee
d
s
a
go

o
d
p
re
ci
si
on

of
th
e
d
is
tr
ib
u
-

ti
on

fu
n
ct
io
n
in

re
gi
on

s
w
h
er
e
it
s
va
lu
es

ar
e
sm

al
l
(e
.g
.
b
ea
m

h
al
o
p
ro
b
le
m
s)

th
e
P
F
C

al
go
ri
th
m

ap
p
ea
rs

to
b
e
m
or
e
effi

ci
en
t
si
n
ce

it
p
re
se
rv
es

p
os
it
iv
it
y

w
it
h
ou

t
in
tr
o
d
u
ci
n
g
an

y
n
u
m
er
ic
al

os
ci
ll
at
io
n

;
(i
i)

fo
r
p
ro
b
le
m

w
h
er
e
th
e

d
is
tr
ib
u
ti
on

fu
n
ct
io
n

re
m
ai
n
s
sm

o
ot
h

(e
.g
.

L
an

d
a
u

d
am

p
in
g)

a
h
ig
h
-o
rd
er

m
et
h
o
d
li
k
e
C
IP

sc
h
em

e
ca
n
b
e
p
re
fe
rr
ed
.

6
.3
.4
.
T
h
e

C
IP

m
et
h
od
.
—

T
h
e

C
on

st
ra
in
ed

In
te
rp
ol
at
io
n

P
ro
fi
le
/C

u
b
ic
-

In
te
rp
ol
at
ed

P
se
u
d
o-
p
ar
ti
cl
e
al
go
ri
th
m

(C
IP

)
h
as

b
ee
n

u
n
d
er

d
ev
el
op

m
en
t

si
n
ce

th
e
m
id
d
le

of
th
e
19
80
s.

T
h
e
C
IP

sc
h
em

e
is

a
lo
w

d
iff
u
si
on

an
d
st
ab

le
al
go
ri
th
m

w
h
ic
h
ca
n
so
lv
e
h
y
p
er
b
ol
ic

eq
u
at
io
n
s
u
p
to

th
e
3r
d
or
d
er

ac
cu
ra
cy

in
sp
ac
e
an

d
ti
m
e
[1
3
9
].
T
h
is
sc
h
em

e
h
as

b
ee
n
su
cc
es
sf
u
ll
y
ap

p
li
ed

to
va
ri
o
u
s

co
m
p
le
x
fl
u
id

fl
ow

p
ro
b
le
m
s,

co
v
er
in
g
b
ot
h
co
m
p
re
ss
ib
le

an
d
in
co
m
p
re
ss
ib
le

fl
ow

s
(e
.g
.
[1
3
0
,
1
5
3
])
,
an

d
to

va
ri
ou

s
V
la
so
v
-P
oi
ss
on

p
ro
b
le
m
s
[1
0
7
,
1
5
7
]

d
ed
ic
at
ed

fo
r
in
st
an

ce
to

si
m
u
la
ti
on

s
of

h
ar
m
on

ic
L
an

gm
u
ir
w
av
es

[1
3
7
].
T
h
e

m
ai
n
co
n
ce
p
t
of

th
e
C
IP
,
w
h
ic
h
m
ak

es
th
e
sc
h
em

e
q
u
it
e
d
iff
er
en
t
fr
om

th
e

ot
h
er

ad
v
ec
ti
on

so
lv
er
s,

is
to

tr
ea
t
th
e
sp
at
ia
l
d
er
iv
at
iv
es

of
th
e
in
te
rp
ol
at
io
n

fu
n
ct
io
n
as

d
ep

en
d
en
t
va
ri
ab

le
s.

T
h
es
e
d
er
iv
at
iv
es

se
rv
e
as

fr
ee

p
ar
am

et
er
s
in

th
e
in
te
rp
ol
at
in
g
p
ro
ce
d
u
re

an
d
ar
e
ca
lc
u
la
te
d
co
n
si
st
en
tl
y
w
it
h
th
e
m
as
te
r

eq
u
at
io
n
.
In

ot
h
er
s
w
or
d
s,

in
C
IP

m
et
h
o
d
,
th
e
f
va
lu
e
is

in
te
rp
ol
at
ed

b
y
a

cu
b
ic

p
ol
y
n
om

ia
l
as

fo
ll
ow

s,

f h
(x
)
=

a
i(
x
−

x
i)
3
+
b i
(x

−
x
i)
2
+
f
′ i(
x
−

x
i)
+

f i

T
h
e
va
lu
es

of
f

ar
e
k
n
ow

n
f i
(i

=
1
,·
··

,N
)
at

al
l
gr
id

p
oi
n
ts
.

T
h
er
e
ar
e

th
re
e
p
ar
am

et
er
s
a
i,
b i

an
d
f
′ i
≡

∂
f

∂
x
| x i

w
h
ic
h
n
ee
d
b
ei
n
g
d
et
er
m
in
ed
.
It

h
as

3
8

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

b
ee
n
sh
ow

n
(e
.g
.
[1
3
0
])

th
at

th
e
sp
at
ia
l
d
er
iv
at
iv
e
∂
x
f
m
u
st

b
e
d
et
er
m
in
ed

b
y
u
si
n
g
an

ex
p
re
ss
io
n
ob

ta
in
ed

as
a
d
iff
er
en
ti
al

op
er
at
io
n
to

th
e
ad

v
ec
ti
on

eq
u
at
io
n
w
it
h
re
sp
ec
t
to

sp
at
ia
l
va
ri
ab

le
,
i.
e.

(7
0)

∂ ∂
t

(
∂
f

∂
x

)
+
u
∂ ∂
x

(
∂
f

∂
x

)
=

−
∂
u

∂
x

∂
f

∂
x

T
h
er
ef
or
e,

if
f

an
d
∂
x
f

at
al
l
gr
id

p
oi
n
ts

ar
e
gi
v
en

b
y
(5
9)

an
d
(7
0)
,
on

ly
tw

o
co
n
d
it
io
n
s
ar
e
re
q
u
ir
ed

to
d
et
er
m
in
e
th
e
co
effi

ci
en
ts

a
an

d
b.

Im
p
os
in
g

th
e
co
n
ti
n
u
it
y
of

b
ot
h
f
an

d
∂
x
f
at

al
l
gr
id

p
oi
n
ts

i
+

1
p
ro
v
id
es

th
es
e
tw

o
ad

d
it
io
n
al

co
n
d
it
io
n
s.

O
n
e
fi
n
al
ly

ob
ta
in
s:

a
i
=

(f
′ i
+
f
′ i+

1
)

∆
x
2 i

+
2(
f i

−
f i

+
1
)

∆
x
3 i

b i
=

3(
f i

+
1
−

f i
)

∆
x
2 i

−
(2
f
′ i
+

f
′ i+

1
)

∆
x
i

A
s
a
re
m
ar
k
,
eq
u
at
io
n
(7
0)

is
u
su
al
ly

so
lv
ed

b
y
ti
m
e
sp
li
tt
in
g
th
e
ad

v
ec
ti
on

∂
t(
∂
x
f
)
+

u
∂
x
(∂

x
f
)
=

0
an

d
n
on

-a
d
v
ec
ti
on

p
ar
ts

∂
t(
∂
x
f
)
=

−
∂
x
u
∂
x
f
,
th
e
se
c-

on
d

on
e
b
ei
n
g
so
lv
ed

w
it
h

fi
n
it
e
d
iff
er
en
ce
s.

T
h
is

C
IP

al
go
ri
th
m

h
as

b
ee
n

ex
te
n
d
ed

to
n
on

li
n
ea
r
[1
5
4
]
an

d
m
u
lt
id
im

en
si
on

al
ca
se
s
[1
5
5
].
A

fi
rs
t
va
ri
an

t,
b
as
ed

on
ra
ti
on

al
fu
n
ct
io
n
in
te
rp
ol
at
io
n
(R

-C
IP

),
h
as

b
ee
n
p
ro
p
os
ed

b
y
X
ia
o

et
al
.
[1
5
1
,
1
5
2
].
T
h
e
ad

va
n
ta
ge

of
th
e
R
-C

IP
al
go
ri
th
m

is
th
at

it
is
co
n
v
ex
-

co
n
ca
v
e
p
re
se
rv
in
g
as

w
el
l
as

m
on

ot
on

e
p
re
se
rv
in
g.

It
is
w
el
l
es
ta
b
li
sh
ed

th
at

th
es
e
C
IP

-t
y
p
e
m
et
h
o
d
s
sh
ow

go
o
d
co
n
se
rv
at
io
n
of

m
as
s,
ev
en

th
ou

gh
th
ey

ar
e

w
ri
tt
en

in
a
n
on

-c
on

se
rv
at
iv
e
fo
rm

.
H
ow

ev
er
,
in

so
m
e
sp
ec
ia
l
ca
se
s,

p
ro
b
le
m
s

ca
n
b
e
en
co
u
n
te
re
d
w
h
en

ex
ac
t
co
n
se
rv
at
io
n
of

m
as
s
is
re
q
u
ir
ed
.
F
or

in
st
an

ce
,

L
es
u
r
et

al
.
[9
5
]
h
av
e
sh
ow

n
th
at

it
ca
n
b
e
p
ro
b
le
m
at
ic

fo
r
en
er
ge
ti
c
b
ea
m
-

d
ri
v
en

in
st
ab

il
it
y
st
u
d
y,

b
ot
h
fo
r
th
e
C
IP

an
d
fo
r
th
e
R
-C

IP
va
ri
an

t.
In
d
ee
d
,

in
th
e
B
er
k
-B

re
iz
m
an

m
o
d
el

(c
f.

e.
g.

[8
,
9
,
1
4
0
])
,
th
e
C
IP

m
et
h
o
d
le
ad

s
to

n
u
m
er
ic
al

os
ci
ll
at
io
n
s
in

th
e
v
el
o
ci
ty

d
ir
ec
ti
on

in
th
e
re
gi
on

of
la
rg
e
gr
ad

ie
n
t
of

th
e
d
is
tr
ib
u
ti
on

–w
h
ic
h
ap

p
ea
rs

b
et
w
ee
n
a
co
ld

b
u
lk

an
d
a
b
ea
m
.
In

th
e
ca
se

of
th
e
V
la
so
v
eq
u
at
io
n
,
N
ak
am

u
ra

an
d
Y
ab

e
[1
0
7
,
1
5
6
]
h
av
e
p
ro
v
ed

th
at

it
is

p
os
si
b
le
,
to

im
p
ro
v
e
th
e
C
IP

m
et
h
o
d
so

as
to

ex
ac
tl
y
co
n
se
rv
e
th
e
m
as
s.

T
h
e

C
IP

-C
S
L

sc
h
em

e
is

d
er
iv
ed

fr
om

th
e
st
an

d
ar
d
C
IP

sc
h
em

e
b
y
co
n
st
ra
in
in
g

th
e
re
co
n
st
ru
ct
io
n
of

th
e
in
te
rp
ol
at
io
n
.
A

fo
u
rt
h
-o
rd
er

p
ol
y
n
om

ia
l
is

ch
os
en

as
th
e
in
te
rp
ol
at
io
n
fu
n
ct
io
n
in
st
ea
d
of

a
th
ir
d
or
d
er
.
T
h
is

p
er
m
it
s
to

ad
d
a

su
p
p
le
m
en
ta
ry

co
n
st
ra
in
t
on

th
e
in
te
gr
at
ed

va
lu
e
of

f
as

∫
x
i+

1

x
i

f
n
d
x
=

ρ
n i+

1
/
2

It
is

sh
ow

n
in

[1
5
6
]
th
at

th
is

ad
d
it
io
n
al

co
n
st
ra
in
t
im

p
ro
v
es

th
e
co
n
se
rv
at
io
n

p
ro
p
er
ty

ev
en

th
ou

gh
f
is
ad

va
n
ce
d
in

a
n
on

-c
on

se
rv
at
iv
e
fo
rm

.
T
h
is
p
er
m
it
s
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A
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3
9

th
e
C
IP

-C
S
L

sc
h
em

e
to

en
su
re

a
q
u
ic
k
co
n
v
er
ge
n
ce

w
it
h
ou

t
u
n
fa
v
or
ab

le
n
u
-

m
er
ic
al

os
ci
ll
at
io
n
s
[9
5
].
S
ev
er
al

va
ri
an

ts
h
av
e
b
ee
n
p
ro
p
os
ed

in
th
is
se
n
se

fo
r

m
u
lt
id
im

en
si
on

al
p
ro
b
le
m
s
u
si
n
g
d
ir
ec
ti
on

al
ti
m
e-
sp
li
tt
in
g
[1
0
8
]
or

n
ot

(c
f.

e.
g.

[1
3
1
,
1
3
5
])
.

T
h
er
e
ar
e
m
an

y
p
ro
b
le
m
s
fo
r
w
h
ic
h

ti
m
e-
sp
li
tt
in
g
te
ch
-

n
iq
u
e
p
ro
d
u
ce
s
u
n
ac
ce
p
ta
b
le

n
u
m
er
ic
al

re
su
lt
s.

A
n
ex
am

p
le

gi
v
en

b
y
L
ev
y

et
al
.
[9
6
]
is

a
p
u
re

sh
ea
r
w
av
e
ob

li
q
u
e
to

th
e
gr
id
,
w
h
er
e
th
e
ti
m
e-
sp
li
tt
in
g

p
ro
ce
d
u
re
,
w
il
l
sm

ea
r
ou

t
th
e
ob

li
q
u
e
w
av
e.

In
th
at

re
sp
ec
t,
d
ev
el
op

in
g
C
IP

al
-

go
ri
th
m

w
it
h
ou

t
ti
m
e-
sp
li
tt
in
g
co
rr
es
p
on

d
s
to

a
h
ig
h
ly

d
es
ir
ab

le
im

p
ro
v
em

en
t.

T
o
co
n
cl
u
d
e
C
IP

ty
p
e
sc
h
em

es
ar
e
ro
b
u
st

al
go
ri
th
m
s.

It
is
h
ow

ev
er

im
p
or
ta
n
t

to
k
ee
p
in

m
in
d
th
at

th
e
ad

d
it
io
n
al

st
or
ag
e
of

p
ar
ti
al

d
er
iv
at
iv
es

or
in
te
gr
al
s

ca
n
b
e
a
si
gn

ifi
ca
n
t
d
ra
w
b
ac
k
w
h
en

ap
p
li
ed

to
fi
v
e–

or
ev
en

si
x
–d

im
en
si
on

al
p
h
as
e-
sp
ac
e
V
la
so
v
co
d
es
.

6
.3
.5
.
M
o
ri
n
is
h
i’
s
sc
h
em

e.
—

T
o
fi
n
is
h
w
it
h
th
e
d
es
cr
ip
ti
on

of
th
e
E
u
le
ri
an

m
et
h
o
d
s,

w
e
w
il
l
b
ri
efl
y
d
es
cr
ib
e
th
e
n
ew

fi
n
it
e
d
iff
er
en
ce

op
er
at
or

p
ro
p
os
ed

b
y

M
or
in
is
h
i
et

al
[1
0
4
,
1
0
6
].

T
h
e
m
ai
n

p
ar
ti
cu
la
ri
ty

of
th
is

op
er
at
or

is
th
at

it
h
as

b
ee
n
co
n
st
ru
ct
ed

to
co
n
se
rv
e
b
ot
h
m
om

en
tu
m

an
d
k
in
et
ic

en
er
gy
.

A
n
ot
h
er

p
oi
n
t
is

th
at

it
ca
n

b
e
ea
si
ly

ex
te
n
d
ed

to
h
ig
h
er

or
d
er

ac
cu
ra
cy
.

A
s
in

th
e
C
IP

ap
p
ro
ac
h
,
th
e
M
or
in
is
h
i’
s
sc
h
em

e
id
ea

co
m
es

fr
om

th
e
fa
ct

th
at

n
u
m
er
ic
al

sc
h
em

es
ca
n
b
e
im

p
ro
v
ed

b
y
ad

va
n
ci
n
g
m
or
e
fi
el
d
s
th
an

th
e

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
al
on

e.
C
on

v
er
se
ly

to
th
e
C
IP

sc
h
em

e
it

is
f
2
w
h
ic
h
is

in
v
ol
v
ed

an
d
n
ot

th
e
d
er
iv
at
iv
es

of
f
.
In
d
ee
d
,
A
ra
ka
w
a
et

al
.
[4
]
h
av
e
p
oi
n
te
d

ou
t
th
at

n
u
m
er
ic
al

in
st
ab

il
it
ie
s
w
h
ic
h
ap

p
ea
r
w
h
en

n
u
m
er
ic
al

os
ci
ll
at
io
n
s
d
u
e

to
al
ia
si
n
g
er
ro
rs

ar
e
p
ro
d
u
ce
d
–l
in
k
ed

fo
r
in
st
an

ce
to

in
ev
it
ab

le
fi
la
m
en
ta
ti
on

in
v
el
o
ci
ty

sp
ac
e–
,
m
ay

b
e
av
oi
d
ed

b
y
co
n
se
rv
in
g
th
e
sq
u
ar
e
q
u
an

ti
ty
,
w
h
ic
h

b
ou

n
d
s
th
e
am

p
li
tu
d
e
of

th
e
n
u
m
er
ic
al

os
ci
ll
at
io
n
s.

S
im

il
ar

re
m
ar
k
s
h
av
e

al
so

b
ee
n
d
on

e
in

m
or
e
re
ce
n
t
gy

ro
k
in
et
ic

V
la
so
v
si
m
u
la
ti
on

s
[1
3
6
,
2
9
].

T
h
e

M
or
in
is
h
i’
s
sc
h
em

e
h
as

b
ee
n

su
cc
es
sf
u
ll
y

ap
p
li
ed

to
in
co
m
p
re
ss
ib
le

n
eu
tr
al

fl
u
id

si
m
u
la
ti
on

s
[1
0
4
]
an

d
h
as

al
so

b
ee
n

re
ce
n
tl
y
ad

ap
te
d

to
co
m
p
re
ss
ib
le

fl
ow

eq
u
at
io
n
s
[1
0
5
].
A
s
fa
r
as

V
la
so
v
si
m
u
la
ti
on

s
ar
e
co
n
ce
rn
ed
,
th
is
sc
h
em

e
co
n
st
it
u
te
s
th
e
b
ac
k
b
on

e
of

th
e
gl
ob

al
fu
ll
-f

gy
ro
k
in
et
ic

5D
co
d
e
G
T
5D

[7
5
]

an
d
h
as

al
re
ad

y
p
ro
v
ed

v
er
y
ac
cu
ra
te

w
h
en

ru
n
n
in
g
lo
n
g
ti
m
e
si
m
u
la
ti
on

s.
L
et

u
s
ag
ai
n
co
n
si
d
er

th
e
si
m
p
le

1D
co
n
se
rv
at
iv
e
fo
rm

of
th
e
V
la
so
v
eq
u
at
io
n

∂
tf

+
∂
x
(u
(x
)f
)
=

0.
If
w
e
in
tr
o
d
u
ce

th
e
sa
m
e
sy
m
b
ol
ic

n
ot
at
io
n
s
as

in
[1
0
4
],

th
is

eq
u
at
io
n
ca
n
b
e
w
ri
tt
en

in
th
e
ge
n
er
ic

fo
rm

∂
f ∂
t
+
(C

on
v
.)
=

0

w
h
er
e
th
e
q
u
an

ti
ty

(C
on

v
.)

m
ay

b
e
w
ri
tt
en

in
th
e
fo
ll
ow

in
g
th
re
e
ty
p
es

of
co
n
se
rv
at
iv
e
fo
rm

s,
th
e
d
iv
er
ge
n
ce

fo
rm

(D
iv
.)
,
th
e
ad

v
ec
ti
on

fo
rm

(A
d
v
.)

4
0

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

an
d
th
e
sk
ew

-s
y
m
m
et
ri
c
fo
rm

(S
k
ew

.)
:

(D
iv
.)
≡

∂
(u
f
)

∂
x

(7
1)

(A
d
v
.)
≡

u
∂
f

∂
x
=

(D
iv
.)
−

f
(C

on
t.
)

(7
2)

(S
k
ew

.)
≡

1 2

∂
(u
f
)

∂
x

+
1 2
u
∂
f

∂
x
=

(D
iv
.)
−

1 2
f
(C

on
t.
)

(7
3)

w
h
er
e

(C
on

t.
)
≡

∂
u

∂
x

(D
iv
.)

tr
iv
ia
ll
y
co
n
se
rv
es

th
e
L
1
n
or
m
,
w
h
il
e
it

is
th
e
ca
se

fo
r
(A

d
v
.)

an
d

(S
k
ew

.)
if
(C

on
t.
)
is

eq
u
al

to
0.

T
h
en
,
m
u
lt
ip
ly
in
g
th
e
V
la
so
v
eq
u
at
io
n
b
y
f

y
ie
ld
s
th
e
co
n
ti
n
u
it
y
eq
u
at
io
n
fo
r
f
2
/2
,

∂
(f

2
/2
)

∂
t

+
f
(C

on
v
.)
=

0

w
h
er
e
f
(C

on
v
.)

ca
n
al
so

b
e
w
ri
tt
en

u
si
n
g
th
e
ab

ov
e
th
re
e
op

er
at
or
s,

f
(D

iv
.)
=

∂
(u
f
2
/2
)

∂
x

+
1 2
f
2
(C

on
t.
)

(7
4)

f
(A

d
v
.)
=

∂
(u
f
2
/
2)

∂
x

−
1 2
f
2
(C

on
t.
)

(7
5)

f
(S
k
ew

.)
=

∂
(u
f
2
/
2)

∂
x

(7
6)

T
h
er
ef
or
e,

th
e
L
2
n
or
m

is
tr
iv
ia
ll
y
co
n
se
rv
ed

w
it
h
(S
k
ew

.)
,
w
h
il
e
(D

iv
.)

an
d

(A
d
v
.)

ar
e
co
n
se
rv
at
iv
e
fo
r
th
e
L
2
n
or
m

p
ro
v
id
ed

th
at

(C
on

t.
)
=

0.
T
h
es
e

p
ro
p
er
ti
es

of
L
1
an

d
L
2
n
or
m

co
n
se
rv
at
io
n
ar
e
p
re
se
rv
ed

in
th
e
d
is
cr
et
e
fo
rm

if
fi
n
it
e
d
iff
er
en
ce
s
ar
e
ca
re
fu
ll
y
ap

p
li
ed
.
L
et

u
s
d
es
cr
ib
e
th
e
ca
se

of
a
u
n
if
or
m

re
gu

la
r
gr
id

w
h
er
e
b
ot
h
f
an

d
u
ar
e
k
n
ow

n
at

th
e
sa
m
e
gr
id

p
oi
n
ts

(f
or

ex
am

p
le

w
it
h
st
ag
ge
re
d
gr
id

sy
st
em

,
i.
e
th
e
v
el
o
ci
ty

u
is

d
is
tr
ib
u
te
d
ar
ou

n
d
th
e
gr
id

p
oi
n
t
w
h
er
e
f
is
d
efi
n
ed
,
se
e
[1
0
4
])
.
W
e
u
se
,
as

in
[1
0
4
],
th
e
fo
ll
ow

in
g
n
ot
at
io
n
s

fo
r
al
l
q
u
an

ti
ti
es

A
an

d
B
,

δ n
A

δ n
x

≡
A
(x

+
n
h
/
2)

−
A
(x

−
n
h
/
2)

n
h

Ā
n
≡

1 2
A
(x

+
n
h
/
2)

+
1 2
A
(x

−
n
h
/
2)

(̃A
B
)n

≡
1 2
A
(x

+
n
h
/
2)
B
(x

−
n
h
/
2)

+
1 2
A
(x

−
n
h
/
2)
B
(x

+
n
h
/
2)

w
h
er
e
h

is
th
e
gr
id

sp
ac
in
g
an

d
n

an
in
te
ge
r.

B
y
ap

p
ly
in
g
a
se
co
n
d
-o
rd
er

ce
n
te
re
d

fi
n
it
e
d
iff
er
en
ce

to
E
q
s.

(7
1)
-(
73
),

th
e
L
1
n
or
m

is
au

to
m
at
ic
al
ly

co
n
se
rv
ed

b
y
[D

iv
.]
w
h
il
e
it

is
tr
u
e
fo
r
[A

d
v
.]
an

d
[S
k
ew

.]
on

ly
if
[C
on

t.
]
=

0
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4
1

(t
h
e
b
ra
ck
et

n
ot
at
io
n
[]
co
rr
es
p
on

d
in
g
to

th
e
d
is
cr
et
e
op

er
at
or
s)

w
h
er
e
th
e

d
is
cr
et
e
op

er
at
or
s
ar
e
d
efi
n
ed

as

[D
iv
.]
=

δ 2
(u
f
)

δ 2
x

[A
d
v
.]
=

u
δ 2
f

δ 2
x
=

δ 1
(̃u
f
)1

δ 1
x

−
f
[C
on

t.
]

[S
k
ew

.]
=

1 2
[D

iv
.]
+

1 2
[A

d
v
.]
=

δ 1
ū
1
f̄
1

δ 1
x

−
1 2
f
[C
on

t.
]

w
h
er
e

[C
on

t.
]
=

δ 2
u

δ 2
x

S
im

il
ar
ly

th
e
L
2
n
or
m

co
n
se
rv
at
io
n
h
as

to
b
e
an

al
y
se
d
fr
om

th
e
d
is
cr
et
e
fo
rm

s
of

E
q
s.

(7
4)
-(
76
),

f
[D

iv
.]
=

δ 1
f
(̃u
f
)1

δ 1
x

−
u
f
δ 2
f

δ 2
x

f
[A

d
v
.]
=

2f
[S
k
ew

.]
−
f
[D

iv
.]

f
[S
k
ew

.]
=

δ 1
ū
1
(̃f

2
/
2)

1

δ 1
x

T
h
er
ef
or
e,

if
[C
on

t.
]
=

0,
th
e
sk
ew

-s
y
m
m
et
ri
c
op

er
at
or

co
n
se
rv
es

b
ot
h
th
e
L
1

an
d
L
2
n
or
m
s.

H
ow

ev
er
,
in

th
e
ca
se

of
a
n
on

u
n
if
or
m

u
,
th
e
co
n
se
rv
at
io
n

of
th
e
L
2
n
or
m

th
en

d
ep

en
d
s
on

th
e
ti
m
e
in
te
gr
at
io
n

sc
h
em

e.
If

on
e
u
se
s

n
on

-d
is
si
p
at
iv
e
m
et
h
o
d
s
su
ch

as
th
e
im

p
li
ci
t
m
id
p
oi
n
t
ru
le
,
th
e
L
2
n
or
m

m
ay

b
e
ex
ac
tl
y
co
n
se
rv
ed
.
H
ow

ev
er
,
su
ch

an
im

p
li
ci
t
sc
h
em

e
ca
n
b
e
re
al
ly

co
st
ly

in
h
ig
h
d
im

en
si
on

al
it
y
p
ro
b
le
m
s
su
ch

as
5D

gy
ro
k
in
et
ic

si
m
u
la
ti
on

s.
In

th
is

ca
se
,
fo
u
rt
h
-o
rd
er

R
u
n
ge
-K

u
tt
a
m
et
h
o
d
is

p
re
fe
rr
ed

ev
en

if
it

le
ad

s
to

sm
al
l

er
ro
r
in

th
e
L
2
n
or
m

d
u
e
to

w
ea
k
n
u
m
er
ic
al

d
is
si
p
at
io
n
(s
ee

[7
5
])
.

L
et

u
s

n
ot
ic
e
th
at

th
is

1D
ap

p
ro
ac
h
ca
n
b
e
st
ra
ig
h
tf
or
w
ar
d
ly

ge
n
er
al
iz
ed

to
h
ig
h
er

d
im

en
si
on

al
it
y
p
ro
b
le
m
s
an

d
to

h
ig
h
er

or
d
er

co
n
v
ec
ti
v
e
op

er
at
or

(o
b
ta
in
ed

as
a
co
m
b
in
at
io
n
of

th
e
se
co
n
d
or
d
er

on
e)

[1
0
4
].

6
.4
.
S
e
m
i-
L
a
g
ra

n
g
ia
n
a
p
p
ro

a
ch

.
—

S
em

i-
L
ag
ra
n
gi
an

sc
h
em

es
h
av
e
b
ee
n

fi
rs
t
u
se
d

fo
r
th
e
ad

v
ec
ti
on

of
v
or
ti
ci
ty

in
si
m
p
li
fi
ed

m
o
d
el
s
of

la
rg
e
sc
al
e

fl
ow

s.
It

h
as

ga
in
ed

m
at
u
ri
ty

w
h
en

th
e
d
is
cr
et
iz
at
io
n

ap
p
ro
ac
h

w
as

in
tr
o-

d
u
ce
d
in

th
e
re
le
va
n
t
co
n
te
x
t
of

at
m
os
p
h
er
ic

fl
ow

s.
A

co
m
p
re
h
en
si
v
e
re
v
ie
w

of
se
m
i-
L
ag
ra
n
gi
an

m
et
h
o
d
s
in

th
is
m
et
eo
ro
lo
gi
ca
l
co
n
te
x
t
u
n
ti
l
19
90

is
d
u
e
to

S
ta
n
if
or
th

[1
2
7
].
It

is
al
so

ap
p
li
ed

to
ge
op

h
y
si
ca
l
fl
u
id

d
y
n
am

ic
s
(c
f.

[4
8
])
.
In

th
e
fo
ll
ow

in
g,

w
e
fo
cu
s
on

th
e
se
m
i-
L
ag
ra
n
gi
an

m
et
h
o
d
(S
L
)
ap

p
li
ed

to
p
la
sm

a
tu
rb
u
le
n
ce

st
u
d
ie
s.

F
or

in
st
an

ce
,
th
e
S
L
m
et
h
o
d
h
as

al
re
ad

y
b
ee
n
ap

p
li
ed

to

4
2

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

ca
lc
u
la
te

a
tu
rb
u
le
n
ce

d
ri
v
en

b
y
p
as
si
n
g
io
n
s
in

2D
(1
D

in
sp
ac
e,

1D
in

v
e-

lo
ci
ty
)
[1
2
6
]
an

d
tr
ap

p
ed

io
n
s
in

3D
(2
D

in
sp
ac
e,

1D
in

v
el
o
ci
ty
)
[4
5
,
1
2
1
].

M
or
e
re
ce
n
tl
y,

th
is
m
et
h
o
d
w
as

ex
te
n
d
ed

to
th
e
4D

m
o
d
el

(3
D

in
sp
ac
e
an

d
v ‖

(w
it
h
µ
=

0)
)
of

Io
n
T
em

p
er
at
u
re

G
ra
d
ie
n
t
(I
T
G
)
d
ri
v
en

tu
rb
u
le
n
ce

in
cy
li
n
-

d
ri
ca
l
ge
om

et
ry

w
it
h
th
e
d
ev
el
op

m
en
t
of

th
e
G
y
se

l
a

co
d
e
(f
or

G
Y
ro
k
in
et
ic

S
E
m
i-
L
A
gr
an

gi
an

co
d
e)

[6
3
].

T
h
is

4D
d
ri
ft
-k
in
et
ic

sl
ab

-I
T
G

v
er
si
on

of
th
e

co
d
e
h
as

sh
ow

n
go

o
d
p
ro
p
er
ti
es

of
en
er
gy

co
n
se
rv
at
io
n
in

n
on

-l
in
ea
r
re
gi
m
e

as
w
el
l
as

ac
cu
ra
te

d
es
cr
ip
ti
on

of
fi
n
e
sp
at
ia
l
sc
al
es

[5
0
].

T
h
e
gy

ro
k
in
et
ic

5D
v
er
si
on

of
th
e
G
y
se

l
a

co
d
e
is

al
so

b
as
ed

on
th
is

se
m
i-
L
ag
ra
n
gi
an

ap
p
ro
ac
h

[6
4
].

T
h
e
se
m
i-
L
ag
ra
n
gi
an

m
et
h
o
d
is

al
so

at
th
e
b
as
is

of
th
e
4D

d
ri
ft
-k
in
et
ic

co
d
e
C
Y
G
N
E

[2
4
]
w
h
er
e
th
e
T
ay
lo
r
ex
p
an

si
on

(s
ee

b
el
ow

)
is

re
p
la
ce
d
b
y
th
e

B
ü
rl
is
ch
-S
to
er

sc
h
em

e
(f
or

th
e
2D

ad
v
ec
ti
on

)
to

in
cr
ea
se

th
e
sp
at
ia
l
ac
cu
ra
cy

an
d
th
e
lo
ga
ri
th
m
ic

in
te
rp
ol
at
io
n
te
ch
n
iq
u
e
is
u
se
d
to

en
su
re

th
e
p
os
it
iv
it
y
of

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
.
B
ru
n
et
ti
et

al
.
h
av
e
al
so

sh
ow

n
th
at

n
on

-e
q
u
id
is
ta
n
t

m
es
h
es

in
ra
d
ia
l
an

d
p
ar
al
le
l
v
el
o
ci
ty

d
ir
ec
ti
on

s
ar
e
a
k
ey

to
ol

fo
r
ob

ta
in
in
g

ac
cu
ra
te

re
su
lt
s.

T
h
e
p
u
rp
os
e
of

th
e
se
m
i-
L
ag
ra
n
gi
an

m
et
h
o
d
is
to

ta
k
e
ad

va
n
ta
ge

of
b
ot
h
th
e

L
ag
ra
n
gi
an

an
d
E
u
le
ri
an

ap
p
ro
ac
h
es
,
to

ac
cu
ra
te
ly

d
es
cr
ib
e
th
e
p
h
as
e
sp
ac
e,

in
p
ar
ti
cu
la
r
re
gi
on

s
w
h
er
e
th
e
d
en

si
ty

is
lo
w
,
as

w
el
l
as

en
h
an

ce
d
n
u
m
er
ic
al

st
ab

il
it
y.

It
is
b
as
ed

on
th
e
fa
ct

th
at

th
e
m
os
t
ac
cu
ra
te

w
ay

to
so
lv
e
co
n
v
ec
ti
on

(o
r
ad

v
ec
ti
on

)
h
y
p
er
b
ol
ic

P
D
E

is
to

u
se

th
ei
r
ch
ar
ac
te
ri
st
ic
s
al
on

g
w
h
ic
h
th
e

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
re
m
ai
n
s
co
n
st
an

t.
T
h
is
m
et
h
o
d
w
as

p
ri
m
ar
il
y
d
ev
el
op

ed
b
y
C
h
en
g
an

d
K
n
or
r
[3
4
].

It
h
as

b
ee
n

ca
st

in
m
or
e
ge
n
er
al

fr
am

ew
or
k
of

S
L
b
y
S
on

n
en
d
rü
ck
er

in
19
98

[1
2
6
]
an

d
N
ak
am

u
ra

in
19
99

[1
0
7
].

In
th
is

ap
-

p
ro
ac
h
,
th
e
p
h
as
e-
sp
ac
e
m
es
h
gr
id

is
k
ep
t
fi
x
ed

in
ti
m
e
(E

u
le
ri
an

m
et
h
o
d
)
an

d
th
e
V
la
so
v
eq
u
at
io
n
is

in
te
gr
at
ed

al
on

g
th
e
tr
a
je
ct
or
ie
s
(L

ag
ra
n
gi
an

m
et
h
o
d
)

u
si
n
g
th
e
in
va
ri
an

ce
of

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
al
on

g
th
e
tr
a
je
ct
or
ie
s.

T
o
ob

-
ta
in

th
e
so
lu
ti
on

on
a
p
h
as
e-
sp
ac
e
E
u
le
r-
gr
id
,
ex
tr
ap

ol
at
io
n
of

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
on

th
e
n
ei
gh

b
or
in
g
E
u
le
r-
gr
id

p
oi
n
ts

is
th
en

re
q
u
ir
ed
.
C
u
b
ic
sp
li
n
e
in
-

te
rp
ol
at
io
n
is
ge
n
er
al
ly

ad
op

te
d
,
off

er
in
g
a
go

o
d
co
m
p
ro
m
is
e
b
et
w
ee
n
ac
cu
ra
cy

(s
m
al
l
d
iff
u
si
v
it
y
)
an

d
si
m
p
li
ci
ty

(n
u
m
er
ic
al

co
st
)
[5
5
,
1
3
].
In

lo
w
-d
im

en
si
on

al
sy
st
em

s,
th
e
se
m
i-
L
ag
ra
n
gi
an

m
et
h
o
d
is
v
er
y
effi

ci
en
t.

W
h
en

ap
p
li
ed

to
h
ig
h
er

d
im

en
si
on

al
p
ro
b
le
m
s,

it
fa
ce

th
e
p
ro
b
le
m

of
m
u
lt
id
im

en
si
on

al
in
te
rp
ol
at
io
n
,

w
h
ic
h
is

ex
tr
em

el
y
ex
p
en
si
v
e
fo
r
h
ig
h
d
im

en
si
on

al
p
ro
b
le
m
s.

H
ow

ev
er
,
th
is

p
ro
b
le
m

h
as

b
ee
n
p
ar
ti
al
ly

cu
re
d
b
y
u
si
n
g
th
e
ti
m
e-
sp
li
tt
in
g
id
ea

of
C
h
en
g
an

d
K
n
or
r
[3
4
]
(s
ee

se
ct
io
n
6.
2)
.
T
h
e
co
n
v
er
ge
n
ce

an
d
st
ab

il
it
y
of

su
ch

sc
h
em

es
w
il
l
n
ot

b
e
ta
ck
le
d
in

th
is

p
ap

er
,
fo
r
m
or
e
d
et
ai
ls

se
e
fo
r
in
st
an

ce
[1
1
,
1
3
].

6
.4
.1
.
B
a
ck
w
a
rd

se
m
i-
L
a
gr
a
n
gi
a
n
sc
h
em

es
.
—

T
h
e
st
an

d
ar
d
se
m
i-
L
ag
ra
n
gi
an

ap
p
ro
ac
h
,
d
es
cr
ib
ed

in
th
is
se
ct
io
n
,
[1
2
6
]
h
as

b
ee
n
re
ce
n
tl
y
re
n
am

ed
B
a
ck
w
a
rd

se
m
i-
L
a
gr
a
n
gi
a
n
a
p
p
ro
a
ch

(B
S
L
)
b
y
it
s
au

th
or

to
m
ak
e
th
e
d
is
ti
n
ct
io
n
w
it
h
a

n
ew

sc
h
em

e
p
ro
p
os
ed

in
20
09

ca
ll
ed

F
o
rw

a
rd

se
m
i-
L
a
gr
a
n
gi
a
n
a
p
p
ro
a
ch

(F
S
L
)



G
Y
R
O
K
IN

E
T
IC

S
IM

U
L
A
T
IO

N
S

O
F

M
A
G
N
E
T
IC

F
U
S
IO

N
P
L
A
S
M
A
S

4
3

[4
1
].
T
h
e
m
ai
n
d
iff
er
en
ce

is
th
at

th
e
ad

v
ec
ti
on

eq
u
at
io
n
s
ar
e
so
lv
ed

b
ac
k
w
ar
d

in
th
e
fi
rs
t
ca
se

an
d

fo
rw

ar
d

in
th
e
se
co
n
d

on
e.

F
or

m
or
e
d
et
ai
ls

on
F
S
L

ap
p
ro
ac
h
se
e
se
ct
io
n
6.
4.
2.

T
h
ey

ar
e
b
ot
h
b
as
ed

on
th
e
so
lv
in
g
of

th
e
ad

v
ec
ti
v
e

fo
rm

of
V
la
so
v
eq
u
at
io
n
(5
9)

an
d
u
se
d
th
e
fu
n
d
am

en
ta
l
V
la
so
v
p
ro
p
er
ty

(2
2)

th
at

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
is

co
n
st
an

t
al
on

g
it
s
ch
ar
ac
te
ri
st
ic
s.

N
o
ta
ti
o
n

3
.
—

L
et

u
s
co
n
si
d
er

th
e
co
m
p
u
ta
ti
o
n
a
l
1
D

d
o
m
a
in

[x
m
in
,x

m
a
x
]

a
n
d
th
e
a
ss
oc
ia
te
d
gr
id

(fi
xe
d
in

ti
m
e)

d
efi

n
ed

by
th
e
fo
ll
o
w
in
g
fi
n
it
e
se
t
o
f

m
es
h
po
in
ts

x
i
=

i∆
x
fo
r
a
ll
i
=

0,
··
·,

N
w
it
h
∆
x
=
|x

m
a
x
−
x
m
in
|/N

.

L
et

u
s
al
so

as
su
m
e
f n

,
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
at

ti
m
e
t n
,
k
n
ow

n
at

ea
ch

p
oi
n
t
x
i
of

th
is

gr
id
.
T
h
e
p
u
rp
os
e
is

to
co
m
p
u
te

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
at

ti
m
e
t n

+
∆
t
on

th
e
sa
m
e
gr
id
.

B
S
L
m
et
h
o
d
co
n
si
st
s
fi
rs
t
in

fi
n
d
in
g
fo
r
ea
ch

p
oi
n
t
x
i
th
e
p
os
it
io
n
it
h
ad

at
p
re
v
io
u
s
ti
m
e
t n
,
i.
e
X
(t

n
;x

i,
t n

+
1
).

T
h
is

is
p
er
fo
rm

ed
b
y
so
lv
in
g
b
ac
k
w
ar
d

in
ti
m
e
th
e
ad

v
ec
ti
on

eq
u
at
io
n
(6
1)
.
T
h
en

u
si
n
g
(2
2)
,
th
e
va
lu
es

of
f
at

ti
m
e

t n
+
1
=

t n
+
∆
t
ca
n
b
e
ex
p
re
ss
ed

as
:

(7
7)

f
(x

i,
t n

+
1
)
=

f
(X

(t
n
;x

i,
t n

+
1
),
t n
)

w
h
er
e
f
(X

(t
n
;x

i,
t n

+
1
),
t n
)
is

ap
p
ro
x
im

at
ed

b
y
in
te
rp
ol
at
io
n
b
ec
au

se
f
(x
,t

n
)

is
k
n
ow

n
on

al
l
th
e
m
es
h
p
oi
n
ts

b
u
t
X
(t

n
;x

i,
t n

+
1
)
d
o
es

n
ot

n
ec
es
sa
ri
ly

co
in
-

ci
d
e
w
it
h
on

e
of

th
em

.
T
h
is

sc
h
em

e
is

su
m
m
ar
iz
ed

on
F
ig
.
10

A
s
sa
id

b
ef
or
e

F
ig
u
r
e
1
0
.
S
em

i-
L
ag
ra
n
g
ia
n
b
as
ic

co
n
ce
p
t:

a
fi
x
ed

gr
id

is
d
efi
n
ed

in
p
h
as
e
sp
ac
e.

T
h
e
o
rb
it
s
ar
e
in
te
gr
a
te
d
b
ac
k
in

ti
m
e
fr
om

ea
ch

gr
id

p
oi
n
t
(2
).

T
h
e
va
lu
e
of

f
at

g
ri
d
p
oi
n
ts

is
ob

ta
in
ed

b
y
in
te
rp
ol
at
io
n

a
t
th
e
fo
ot

o
f
th
e
or
b
it

(3
)
an

d
u
si
n
g
th
e
p
ro
p
er
ty

f
=

co
n
st

a
lo
n
g

or
b
it
s.

(fi
gu

re
fr
om

[6
3
])

th
e
in
te
rp
ol
at
io
n

cu
rr
en
tl
y
u
se
d

is
th
e
cu
b
ic

sp
li
n
e
in
te
rp
ol
at
io
n

([
1
,
4
3
])
.

S
ev
er
al

p
re
v
io
u
s
w
or
k
s
h
av
e
sh
ow

n
th
at

cu
b
ic

in
te
rp
ol
at
io
n
is
a
go

o
d
co
m
p
ro
-

m
is
e
b
et
w
ee
n
ac
cu
ra
cy

an
d
co
m
p
u
ta
ti
on

al
co
st

([
1
1
5
,
1
3
])
.

T
h
e
d
ra
w
b
ac
k

4
4

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

of
cu
b
ic

sp
li
n
e
in
te
rp
ol
at
io
n

is
th
at

it
d
o
es

n
ot

p
ro
v
id
e
th
e
lo
ca
li
ty

of
th
e

re
co
n
st
ru
ct
io
n
.
A
ll
th
e
va
lu
es

of
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
ar
e
re
q
u
ir
ed

to
in
-

te
rp
ol
at
e
th
e
fu
n
ct
io
n
at

on
e
p
oi
n
t.

T
h
is

co
n
st
ra
in
st

of
gl
ob

al
d
ep

en
d
en
cy

is
n
ot

ad
ap

te
d
to

a
co
m
p
et
it
iv
e
p
ar
al
le
li
sa
ti
on

.
T
o
ov
er
co
m
e
th
is

p
ro
b
le
m
,
a

n
ew

ap
p
ro
ac
h
b
as
ed

on
lo
ca
l
sp
li
n
es
,
ap

p
li
ed

to
p
h
as
e
sp
ac
e
su
b
d
om

ai
n
s,

h
as

b
ee
n
d
ev
el
op

ed
[4
0
]
(s
ee

A
p
p
en
d
ix

H
fo
r
m
or
e
d
et
ai
ls
).

T
h
e
st
ra
te
gy

is
b
as
ed

on
ad

ap
te
d
b
ou

n
d
ar
y
co
n
d
it
io
n
s
w
h
ic
h
al
lo
w

a
C1

re
co
n
st
ru
ct
ed

so
lu
ti
on

on
th
e
gl
ob

al
p
h
as
e
sp
ac
e
d
om

ai
n
.
T
h
e
ch
oi
ce

of
ap

p
ro
p
ri
at
e
H
er
m
it
e
b
ou

n
d
ar
y

co
n
d
it
io
n
s
is

cr
u
ci
al

to
ob

ta
in

a
go

o
d

ag
re
em

en
t
b
et
w
ee
n

a
gl
ob

al
so
lu
ti
on

u
si
n
g
cl
as
si
ca
l
gl
ob

al
cu
b
ic

sp
li
n
es

an
d
th
e
n
ew

lo
ca
l
ap

p
ro
ac
h
[4
0
].
T
h
is
n
ew

ap
p
ro
ac
h
h
as

b
ee
n
su
cc
es
sf
u
ll
y
im

p
le
m
en
te
d
in

th
e
G
y
se

l
a
co
d
e
(s
ee

[9
3
]
fo
r

th
e
p
ar
al
le
li
sm

d
et
ai
ls
).

A
n
ot
h
er

d
iffi

cu
lt
y
of

th
e
B
S
L

ap
p
ro
ac
h
is

to
so
lv
e
b
ac
k
w
ar
d
in

ti
m
e
th
e

ch
ar
ac
te
ri
st
ic
s
d
efi
n
ed

b
y
d
X
/
d
t
=

u
(X

(t
),
t)

b
ec
au

se
th
e
fi
el
d
u
is
on

ly
k
n
ow

n
at

ti
m
e
t n
.
T
h
e
fi
el
d
h
as

to
b
e
co
m
p
u
te
d
it
er
at
iv
el
y,

w
it
h
N
ew

to
n
fi
x
ed

p
oi
n
t

m
et
h
o
d
s
or

p
re
d
ic
ti
on

co
rr
ec
ti
on

al
go
ri
th
m
s.

In
d
ee
d
,
fo
r
k
ee
p
in
g
a
sc
h
em

e
of

se
co
n
d
or
d
er
,
a
ce
n
te
re
d
q
u
ad

ra
tu
re

on
tw

o
ti
m
e
st
ep
s
is
u
se
d
(e
.g
.
se
e
[1
2
7
])

X
n
+
1
−
X

n
−
1
=

2∆
t
u
n
(X

n
)

,
X

n
+
1
+

X
n
−
1
=

2X
n
+
O
(∆

t2
)

an
d
X

n
−
1
is

im
p
li
ci
tl
y
co
m
p
u
te
d
b
y
u
si
n
g
a
fi
x
ed

p
oi
n
t
p
ro
ce
d
u
re

su
ch

th
at

(7
8)

X
n
+
1
−
X

n
−
1
=

2∆
t
u
n
(X

n
+
1
+
X

n
−
1

2
)

T
h
eo
re
ti
ca
ll
y,

M
cD

on
al
d
([
9
8
,
9
9
])

h
as

sh
ow

n
th
at

on
e
sh
ou

ld
u
se

an
in
te
r-

p
ol
a
ti
on

of
or
d
er

on
e
le
ss

th
an

fo
r
th
e
in
te
rp
ol
at
io
n

u
se
d

to
ca
lc
u
la
te

(7
7)

;
e.
g.

q
u
ad

ra
ti
c
in
te
rp
ol
at
io
n
of

u
w
h
en

u
si
n
g
in
te
rp
ol
at
io
n
of

f
.
H
ow

ev
er

in
p
ra
ct
ic
e,

in
th
e
co
n
te
x
t
of

b
ot
h
p
as
si
v
e
ad

v
ec
ti
on

an
d
co
u
p
le
d
sy
st
em

s
of

eq
u
at
io
n
s
in

se
v
er
al

sp
at
ia
l
d
im

en
si
on

s,
it
h
as

b
ee
n
fo
u
n
d
th
at

it
is
su
ffi
ci
en
t
to

u
se

li
n
ea
r
in
te
rp
ol
at
io
n
fo
r
th
e
co
m
p
u
ta
ti
on

of
th
e
d
is
p
la
ce
m
en
ts
,
w
h
en

u
si
n
g

cu
b
ic

in
te
rp
ol
at
io
n
fo
r
f
(s
ee

e.
g.

[1
3
3
])
.
T
h
is

te
ch
n
iq
u
e
h
as

al
so

gi
v
en

go
o
d

re
su
lt
s
fo
r
4D

d
ri
ft
-k
in
et
ic

tu
rb
u
le
n
ce

st
u
d
y
[6
3
].

F
in
al
ly
,
th
e
gl
ob

al
al
go
ri
th
m

in
ti
m
e
is
a
le
ap

-f
ro
g
al
go
ri
th
m
,
i.
e
f
n
+
1
is
co
m
-

p
u
te
d
fr
om

f
n
−
1
(s
ee

[6
3
]
fo
r
a
gl
ob

al
sc
h
em

e
d
es
cr
ip
ti
on

fo
r
a
4D

p
ro
b
le
m
).

T
h
e
d
ra
w
b
ac
k
of

su
ch

an
al
go
ri
th
m

is
th
at

tw
o
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
s
n
ee
d
to

b
e
st
or
ed

at
su
cc
es
si
v
e
ti
m
es
.
B
es
id
es
,
an

ar
ti
fi
ci
al

co
u
p
li
n
g
n
ee
d
s
to

b
e
in
tr
o-

d
u
ce
d
to

av
oi
d
ev
en

an
d
o
d
d
or
d
er

ti
m
e
ap

p
ro
x
im

at
io
n
s
to

b
ec
om

e
d
ec
ou

p
le
d

af
te
r
so
m
e
ti
m
e.

A
n
ot
h
er

so
lu
ti
on

is
to

u
se

a
p
re
d
ic
to
r-
co
rr
ec
to
r
al
go
ri
th
m
.

A
n
y
w
ay

th
is
st
ra
te
gy

m
ak
es

h
ig
h
-o
rd
er

m
et
h
o
d
s
q
u
it
e
d
iffi

cu
lt
an

d
ex
p
en
si
v
e.

M
ak

in
g
th
e
p
ro
b
le
m

ex
p
li
ci
t
en
ab

le
s
to

ge
t
ri
d
of

th
is
in
co
n
v
en
ie
n
t
an

d
to

u
se

h
ig
h
-o
rd
er

R
u
n
ge
-K

u
tt
a
m
et
h
o
d
s
m
or
e
ea
si
ly
.
T
h
is

on
e
of

th
e
m
ai
n
ad

va
n
-

ta
ge
s
of

th
e
F
or
w
ar
d
se
m
i-
L
ag
ra
n
gi
an

sc
h
em

e
re
ce
n
tl
y
p
ro
p
os
ed

b
y
C
ro
u
se
il
le
s

et
a
l.

[4
1
]
an

d
d
es
cr
ib
ed

in
th
e
fo
ll
ow

in
g
se
ct
io
n
.



G
Y
R
O
K
IN

E
T
IC

S
IM

U
L
A
T
IO

N
S

O
F

M
A
G
N
E
T
IC

F
U
S
IO

N
P
L
A
S
M
A
S

4
5

6
.4
.2
.
F
o
rw

a
rd

se
m
i-
L
a
gr
a
n
gi
a
n

sc
h
em

e.
—

A
s
fo
r
th
e
B
S
L

ap
p
ro
ac
h
,
th
e

cu
b
ic

sp
li
n
e
ar
e
u
se
d
to

ap
p
ro
x
im

at
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
s.

(7
9)

f
(x
,t

+
∆
t)

=
∑ k

c k
(t
)Λ

k
(X

(t
+
∆
t;
x
,t
))

w
h
er
e
Λ
k
co
rr
es
p
on

d
to

th
e
p
ie
ce
w
is
e
cu
b
ic

p
ol
y
n
om

ia
ls

d
efi
n
ed

b
y
(1
43
).

In
th
is

ex
p
re
ss
io
n
th
e
cu
b
ic

sp
li
n
e
co
effi

ci
en
t
c k
(t
)
is

as
so
ci
at
ed

to
th
e
p
ar
ti
cl
e

lo
ca
te
d
at

gr
id

p
oi
n
t
x
k
at

ti
m
e
t.

It
p
la
y
s
th
e
ro
le

of
th
e
p
ar
ti
cl
e
w
ei
g
h
t

b
y
an

al
og
y
to

th
e
P
IC

ap
p
ro
ac
h

(s
ee

se
ct
io
n

6.
1)
.

A
ll

th
es
es

cu
b
ic

sp
li
n
e

co
effi

ci
en
ts

ar
e
d
et
er
m
in
ed

b
y
th
e
fo
ll
ow

in
g
in
te
rp
ol
at
io
n
co
n
d
it
io
n
s

f
(x

i,
t)

=
∑ k

c k
(t
)Λ

k
(x

i)

T
h
en
,
ta
k
in
g
in
to

ac
co
u
n
t
b
ou

n
d
ar
y
co
n
d
it
io
n
s,

th
ey

ca
n

b
e
co
m
p
u
te
d

b
y

so
lv
in
g
a
li
n
ea
r
sy
st
em

(s
ee

A
p
p
en
d
ix

H
).

T
h
e
fu
ll
F
S
L
al
go
ri
th
m

ca
n
b
e
ex
p
re
ss
ed

as
:

–
st
ep

0
:
In
it
ia
li
ze

f
(x

i,
t0
)

–
st
ep

1
:
C
om

p
u
te

th
e
cu
b
ic

sp
li
n
e
co
effi

ci
en
ts

c k
(t

0
)
su
ch

th
at

f
(x

i,
t0
)
=
∑ k

c k
(t

0
)Λ

k
(x

i)

–
st
ep

2
:
In
te
gr
at
e
th
e
ch
ar
ac
te
ri
st
ic
eq
u
at
io
n
(6
1)

fr
om

tn
to

tn
+
1
as
su
m
in
g

u
(t

n
)
k
n
ow

n
.
T
h
is

to
ob

ta
in

fo
r
ea
ch

m
es
h
p
oi
n
t
X
(t

n
)
=

x
i,
th
e
en
d
of

th
e
ch
ar
ac
te
ri
st
ic

at
ti
m
e
tn

+
1
,
i.
e
X
(t

n
+
1
;x

i,
tn
)

–
st
ep

3
:
P
ro
je
ct

on
th
e
p
h
as
e
sp
ac
e
gr
id

u
si
n
g
E
q
.
(7
9)

to
ge
t
f
(x

i,
tn

+
1
)

–
st
ep

4
:
C
om

p
u
te

th
e
cu
b
ic

sp
li
n
e
co
effi

ci
en
ts

c k
(t

n
+
1
)
su
ch

th
at

f
(x

i,
tn

+
1
)
=
∑ k

c k
(t

n
+
1
)Λ

k
(x

i)

–
G
o
to

st
ep

2
fo
r
th
e
n
ex
t
ti
m
e
st
ep

In
th
e
ca
se

of
li
n
ea
r
tr
an

sp
or
t
eq
u
at
io
n
F
S
L

an
d
B
S
L

m
et
h
o
d
s
ar
e
id
en
ti
ca
l

(s
ee

R
em

ar
k
3.
1
in

[4
1
])
.
B
ot
h
m
et
h
o
d
s
h
av
e
b
ee
n
co
m
p
ar
ed

fo
r
n
on

-l
in
ea
r

ca
se
s
as

V
la
so
v
-P
oi
ss
on

m
o
d
el

an
d
gu

id
in
g-
ce
n
te
r
m
o
d
el

in
th
e
sa
m
e
re
fe
r-

en
ce

[4
1
].

In
te
rm

s
of

n
u
m
er
ic
al

co
st

th
e
d
ep

os
it
io
n
st
ep

(i
n
F
S
L
)
an

d
th
e

in
te
rp
ol
at
io
n
st
ep

(i
n
B
S
L
)
ar
e
of

sa
m
e
or
d
er
.
T
h
e
d
iff
er
en
ce

co
m
e
fr
om

th
e

co
m
p
u
ta
ti
on

of
th
e
ch
ar
ac
te
ri
st
ic

cu
rv
es
.
T
h
is

st
ep

is
m
or
e
ex
p
en
si
v
e
in

th
e

ca
se

of
F
S
L
ap

p
ro
ac
h
d
u
e
to

th
e
fa
ct

th
at

a
R
u
n
ge
-K

u
tt
a
of

at
le
as
t
4t
h
or
d
er

is
re
q
u
ir
ed

to
ca
p
tu
re

n
on

-l
in
ea
r
p
h
en
om

en
a.

T
h
is
p
ar
t
co
u
ld

b
e
im

p
ro
v
ed

b
y

u
si
n
g
O
D
E
so
lv
er
s
b
as
ed

on
m
u
lt
ip
le
ti
m
e
st
ep
s
or

T
ay
lo
r
ex
p
an

si
on

.
A
n
y
w
ay
,

th
e
re
su
lt
s
ar
e
in

so
m
e
ca
se
s
a
b
it

le
ss

ac
cu
ra
te

w
it
h
re
sp
ec
t
to

th
e
co
n
se
rv
a-

ti
on

in
va
ri
an

ts
th
an

th
e
on

e
ob

ta
in
ed

w
it
h
cl
as
si
ca
l
B
S
L
ap

p
ro
ac
h
,
b
u
t
en
a
b
le

th
e
u
se

of
v
er
y
la
rg
e
ti
m
e
st
ep
s
w
it
h
ou

t
b
ei
n
g
u
n
st
ab

le
.

4
6

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

6
.4
.3
.
C
o
n
se
rv
a
ti
ve

se
m
i-
L
a
gr
a
n
gi
a
n

sc
h
em

e.
—

T
h
e

P
ar
ab

ol
ic

S
p
li
n
e

M
et
h
o
d
(P

S
M
)
h
as

b
ee
n
fi
rs
t
in
tr
o
d
u
ce
d
b
y
Z
er
ro
u
ka
t
et

a
l.

[1
6
0
,
1
6
1
,
1
6
2
]

in
v
ie
w

of
so
lv
in
g

co
n
se
rv
at
iv
e
tr
an

sp
or
t
p
ro
b
le
m
s
fo
r
at
m
os
p
h
er
ic

fl
ow

s.
T
h
is

co
n
se
rv
at
iv
e
m
et
h
o
d

h
as

b
ee
n

re
ce
n
tl
y

st
u
d
ie
d

in
th
e
co
n
te
x
t
of

th
e

V
la
so
v

eq
u
at
io
n

b
y

C
ro
u
se
il
le
s
et

a
l.

[3
9
].

T
h
e
P
S
M

sc
h
em

e
is

d
er
iv
ed

fr
om

th
e
P
ie
ce
w
is
e
P
ar
ab

ol
ic

M
et
h
o
d
[3
6
]
w
h
ic
h
h
as

b
ee
n
sh
ow

n
to

b
e
m
or
e

ac
cu
ra
te

fo
r
p
ro
b
le
m
s
w
it
h

sl
ow

sp
ec
tr
al

d
ec
ay

su
ch

as
th
os
e
o
cc
u
rr
in
g
in

at
m
os
p
h
er
ic

fl
ow

[1
6
1
].

C
on

v
er
se
ly

to
th
e
B
S
L

m
et
h
o
d
,
th
e
P
S
M

m
et
h
o
d

d
ea
ls

w
it
h
th
e
co
n
se
rv
at
iv
e
fo
rm

of
th
e
V
la
so
v
eq
u
at
io
n
(i
.e

(6
0)

in
1D

ca
se
).

T
h
e
P
S
M

is
d
es
cr
ib
ed

in
1D

in
th
e
fo
ll
ow

in
g,

an
d
it

ca
n
b
e
ge
n
er
al
iz
ed

to
h
ig
h
er

d
im

en
si
on

s.
T
h
e
P
S
M

sc
h
em

e
u
se
s
th
e
co
n
se
rv
at
io
n
p
ro
p
er
ty

(6
3)

of
∫ x

2
(t
)

x
1
(t
)
f
(x
,t
)d
x
as

fo
ll
ow

s:

(8
0)

∫
x
i+

1
/
2
(t

n
+
1
)

x
i−

1
/
2
(t

n
+
1
)
f
(x
,t

n
+
1
)d
x
=

∫
x
i+

1
/
2
(t

n
)

x
i−

1
/
2
(t

n
)
f
(x
,t

n
)d
x

H
er
e,

x
i±

1
/
2
(t

n
)
an

d
x
i±

1
/
2
(t

n
+
1
)
d
er
iv
e
fr
om

ea
ch

ot
h
er

b
y
m
ov
in
g
al
on

g
th
e

fl
ow

tr
a
je
ct
or
y,

n
am

el
y
x
i±

1
/
2
(t

n
+
1
)
=

x
i±

1
/
2
(t

n
)
+

u
i±

1
/
2
(t

n
)(
tn

+
1
−

tn
)
at

le
ad

in
g
or
d
er
.
T
w
o
sc
h
em

es
ca
n
b
e
a
p
ri
or
y
d
er
iv
ed
,
d
ep

en
d
in
g
on

w
h
et
h
er

th
e
p
oi
n
ts

x
i±

1
/
2
co
rr
es
p
on

d
to

gr
id

p
oi
n
ts

at
tn

or
at

tn
+
1
.

T
h
e
fo
rm

er
u
se
s
th
e
fo
rw

ar
d
la
gr
an

gi
an

sc
h
em

e,
w
h
il
e
th
e
la
tt
er

ec
h
o
es

th
e
b
ac
k
w
ar
d
(i
n

ti
m
e)

se
m
i-
la
gr
an

gi
an

sc
h
em

e.
L
et

u
s
fo
cu
s
on

th
e
la
tt
er

on
e.

In
th
is

ca
se
,

x
i±

1
/
2
(t

n
)
=

X
(t

n
;x

i±
1
/
2
,t

n
+
1
).

L
et

u
s
ag
ai
n
u
se

th
e
d
efi
n
it
io
n
(6
4)

of
th
e

av
er
ag
ed

va
lu
e
f̄ i

on
th
e
E
C
V
i.
T
h
en
,
ac
co
rd
in
g
to

(8
0)
,

(8
1)

f̄
n
+
1
(x

i)
≡

f̄
n
+
1

i
=

1 ∆
x

∫
X
(t

n
;x

i+
1
/
2
,t
n
+
1
)

X
(t

n
;x

i−
1
/
2
,t
n
+
1
)
f
(x
,t

n
)d
x

L
et

u
s
in
tr
o
d
u
ce

th
e
an

ti
d
er
iv
at
iv
e
fu
n
ct
io
n

(8
2)

F
n
(z
)
=

∫
z

x
1
/
2

f
(x
,t

n
)d
x

w
it
h
x
1
/
2
an

ar
b
it
ra
ry

re
fe
re
n
ce

p
oi
n
t
of

th
e
d
om

ai
n
.
F
or

in
st
an

ce
,
on

e
ca
n

ch
o
os
e
th
e
fi
rs
t
n
o
d
e
of

th
e
gr
id

{x
i−

1
/
2
} i=

1
,N

+
1
.
T
h
en
,

(8
3)

f̄
n
+
1

i
=

1 ∆
x

[ F
n
(X

(t
n
;x

i+
1
/
2
,t

n
+
1
))
−
F

n
(X

(t
n
;x

i−
1
/
2
,t

n
+
1
))
]

is
co
m
p
u
te
d
in

th
re
e
st
ep
s:

a)
C
om

p
u
te

F
n
(x

i+
1
/
2
)
fo
r
al
l
i
=

1
,·
··

,N
b
y
u
si
n
g
th
e
ex
ac
t
cu
m
u
la
ti
v
e

fo
rm

u
la

F
n
(x

i+
1
/
2
)
=

F
n
(x

1
/
2
)
+

i ∑ k
=
1

f̄
n k
∆
x
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Y
R
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K
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T
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N
P
L
A
S
M
A
S

4
7

b
)
F
or

ea
ch

E
C
V
i,

so
lv
e
th
e
n
on

li
n
ea
r
sy
st
em

al
re
ad

y
in
tr
o
d
u
ce
d
fo
r
B
S
L

sc
h
em

e
(c
f.

(7
8)
)
to

co
m
p
u
te

(b
ac
k
w
ar
d

in
ti
m
e)

th
e
as
so
ci
at
ed

L
a-

gr
an

gi
an

co
n
tr
ol

v
ol
u
m
e
[ X

( tn
;x

i−
1
/
2
,t

n
+
1
) ,X

( tn
;x

i+
1
/
2
,t

n
+
1
)]
:

X
(t

n
;x

i±
1
/
2
,t

n
+
1
)
−
x
i±

1
/
2
=

u

(
X
(t

n
;x

i±
1
/
2
,t

n
+
1
)
+

x
i±

1
/
2

2

)
∆
t

c)
U
se

a
(c
u
b
ic
sp
li
n
e)

in
te
rp
ol
at
io
n
to

co
m
p
u
te

F
n
(X

(t
n
;x

i±
1
/
2
,t

n
+
1
))
.
N
o-

ti
ce

th
at

th
e
n
o
d
al

va
lu
es

of
F

n
ar
e
al
l
k
n
ow

n
.
T
h
e
av
er
ag
ed

va
lu
e
of

f
at

ti
m
e
tn

+
1
is
th
en

co
m
p
u
te
d
on

ea
ch

n
o
d
e
of

th
e
eu
le
ri
an

gr
id

u
si
n
g
eq
.

(8
3)
.

N
ot
ic
e
th
at

th
e
m
ea
n
va
lu
es

f̄
ar
e
co
m
p
u
te
d
at

th
e
ce
ll
ce
n
te
r
x
i
w
h
il
e
an

-
ti
d
er
iv
at
iv
e
fu
n
ct
io
n
va
lu
es

ar
e
co
m
p
u
te
d
at

ce
ll
b
ou

n
d
ar
ie
s.

T
h
is

sc
h
em

e
is

fo
rm

al
ly

fo
u
rt
h
or
d
er

in
sp
ac
e
an

d
st
ri
ct
ly

eq
u
iv
al
en
t
to

th
e
B
S
L

sc
h
em

e
in

th
e
ca
se

of
d
ir
ec
ti
on

al
sp
li
tt
in
g
w
it
h
co
n
st
an

t
ad

v
ec
ti
on

,
se
e
[3
9
].
It

is
se
co
n
d

or
d
er

in
ti
m
e
as
su
m
in
g
w
h
en

L
ea
p
-f
ro
g,

P
re
d
ic
to
r-
co
rr
ec
to
r
or

R
u
n
ge
-K

u
tt
a

ti
m
e
in
te
gr
at
io
n
is
u
se
d
.
O
n
e
ad

va
n
ta
ge

co
m
p
ar
ed

to
th
e
B
S
L
sc
h
em

e
is
th
at

th
e
m
as
s
is

co
n
se
rv
ed

b
ec
au

se
∫

x
N

+
1
/
2

x
1
/
2

f
(x
,t

n
+
1
)d
x
=

N ∑ k
=
1

f̄
n
+
1

k
∆
x

A
n
ot
h
er

ad
va
n
ta
ge

of
su
ch

a
sc
h
em

e
is
th
at

it
s
co
n
se
rv
at
iv
e
p
ro
p
er
ty

al
lo
w
s
fo
r

d
ir
ec
ti
on

al
sp
li
tt
in
g
(a

d
d
im

en
si
on

sp
ac
e
ca
n
b
e
sp
li
t
in

d
1D

eq
u
at
io
n
s)
.
T
h
is

p
ro
p
er
ty

h
as

b
ee
n
u
se
d
fo
r
4D

d
ri
ft
-k
in
et
ic

si
m
u
la
ti
on

s
of

p
la
sm

a
tu
rb
u
le
n
ce

[2
2
]
w
h
er
e
th
e
sp
li
tt
in
g
in

fo
u
r
1D

ad
v
ec
ti
v
e
eq
u
at
io
n
s
is
n
ot

li
ci
te

fo
r
th
e
B
L

sc
h
em

e.
P
ro
m
is
in
g
re
su
lt
s
h
av
e
b
ee
n
ob

ta
in
ed

b
u
t
B
ra
u
en
ig

et
al

[2
2
]
in
si
st

on
th
e
fa
ct

th
at

a
sp
ec
ia
l
at
te
n
ti
on

m
u
st

b
e
p
ai
d
to

th
e
m
ax

im
u
m

p
ri
n
ci
p
le

re
sp
ec
t.

B
es
id
es
,
li
k
e
al
l
h
ig
h
-o
rd
er

n
u
m
er
ic
al

sc
h
em

es
,
it
ca
n
d
ev
el
op

sp
u
ri
ou

s
os
ci
ll
at
io
n
s
w
h
en

st
iff

gr
ad

ie
n
ts

o
cc
u
r
in

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
.
In

th
is
ca
se
,

th
e
u
su
al

te
ch
n
iq
u
e
fo
r
fi
n
it
e
v
ol
u
m
e
n
u
m
er
ic
al

sc
h
em

es
co
n
si
st
s
in

fu
rt
h
er

ap
p
ly
in
g
a
fl
u
x
li
m
it
er

so
as

to
d
am

p
th
es
e
os
ci
ll
at
io
n
s.

F
lu
x
li
m
it
er
s
ad

d
a

d
iff
u
si
on

op
er
at
or

to
th
e
h
ig
h
or
d
er

sc
h
em

e
at

th
e
lo
ca
ti
on

s
of

st
ee
p
gr
ad

ie
n
ts
.

A
n
ew

li
m
it
er

ca
ll
ed

S
lo
p
e
L
im

it
ed

S
p
li
n
es

(S
L
S
)
h
as

b
ee
n
te
st
ed

in
[6
6
]
an

d
co
m
p
ar
ed

to
ot
h
er

li
m
it
er
s
fo
u
n
d
in

th
e
li
te
ra
tu
re

su
ch

as
,
th
e
en
tr
op

ic
fl
u
x

li
m
it
er

[2
2
],
th
e
U
m
ed
a’
s
li
m
it
er

[1
3
8
]
or

th
e
O
sc
il
la
ti
on

L
im

it
er

[3
9
].
A
s
se
en

in
[6
6
],
th
e
ch
oi
ce

of
th
e
b
es
t
li
m
it
er

is
n
ot

tr
iv
ia
l.

T
h
is

is
su
e
ca
n
re
n
d
er

th
e

im
p
le
m
en
ta
ti
on

of
a
st
ab

le
P
S
M

sc
h
em

e
ra
th
er

co
m
p
li
ca
te
.

6
.5
.
W

a
te
r-
B
a
g
a
p
p
ro

a
ch

.
—

In
tr
o
d
u
ce
d
in
it
ia
ll
y
at

th
e
en
d
of

th
e
19
60
’s

(e
.g
.
[1
0
])
,
th
e
W
at
er
-B

ag
m
o
d
el
w
as

sh
ow

n
to

cr
ea
te

a
b
ri
d
ge

b
et
w
ee
n
k
in
et
ic

an
d
fl
u
id

d
es
cr
ip
ti
on

s.
It

off
er
s
an

in
te
re
st
in
g
al
te
rn
at
iv
e
to

th
e
u
su
al

k
in
et
ic

d
es
cr
ip
ti
on

,
u
si
n
g
th
e
co
n
se
rv
at
io
n
p
ro
p
er
ty

of
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
in

th
e

4
8

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

p
h
as
e
sp
ac
e.

A
cc
or
d
in
gl
y,
a
d
is
cr
et
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
is
as
su
m
ed

al
on

g
th
e

v
el
o
ci
ty

d
ir
ec
ti
on

,
ta
k
in
g
th
e
fo
rm

of
a
m
u
lt
i-
st
ep
-l
ik
e
fu
n
ct
io
n
.
T
h
e
d
is
tr
i-

b
u
ti
on

fu
n
ct
io
n
is

n
ot

an
ap

p
ro
x
im

at
io
n
b
u
t
ra
th
er

a
sp
ec
ia
l
cl
as
s
of

in
it
ia
l

co
n
d
it
io
n
s.

T
h
is

ap
p
ro
ac
h
al
lo
w
s
on

e
to

re
d
u
ce

th
e
fu
ll
gy

ro
k
in
et
ic

5D
eq
u
a-

ti
on

to
a
se
t
of

h
y
d
ro
d
y
n
am

ic
eq
u
at
io
n
s
w
h
il
e
k
ee
p
in
g
it
s
k
in
et
ic

ch
ar
ac
te
r.

In
a
re
ce
n
t
re
v
ie
w

[5
2
],

F
ei
x
an

d
B
er
tr
an

d
d
et
ai
l
h
ow

th
e
V
la
so
v
eq
u
at
io
n

ca
n
b
e
v
ie
w
ed

as
m
u
lt
i-
fl
u
id

h
y
d
ro
d
y
n
am

ic
s
v
ia

w
at
er

b
ag

an
d
m
u
lt
i
w
at
er

b
ag

m
o
d
el
s,

at
le
as
t
fo
r
on

e-
d
im

en
si
on

al
p
ro
b
le
m
s.

T
h
es
e
au

th
or
s
sh
ow

h
ow

m
at
h
em

at
ic
al

si
m
il
ar
it
ie
s
b
et
w
ee
n
2D

in
co
m
p
re
ss
ib
le

an
d
th
e
2D

p
h
as
e
sp
ac
e

fl
u
id

ca
n
b
e
u
se
d
in

v
or
te
x
st
ab

il
it
y
p
ro
b
le
m
s.

T
h
is

ap
p
ro
ac
h
h
as

ga
in
ed

re
-

n
ew

ed
in
te
re
st

w
h
en

ap
p
li
ed

to
li
n
ea
r
d
ri
ft
-k
in
et
ic

4D
m
o
d
el
in
g
[1
0
3
,
6
0
]
an

d
gy

ro
k
in
et
ic
m
o
d
el
in
g
[8
6
].
F
ir
st

n
on

-l
in
ea
r
re
su
lt
s
h
av
e
b
ee
n
re
ce
n
tl
y
ob

ta
in
ed

b
y
B
es
se

an
d
B
er
tr
an

d
[1
4
].

T
h
is

m
et
h
o
d
w
il
l
n
ot

b
e
fu
rt
h
er

d
et
ai
le
d
in

th
is

p
ap

er
.

M
or
e
d
et
ai
ls

ca
n

b
e
fo
u
n
d

in
th
e
p
re
v
io
u
s
ci
ta
ti
on

s
or

al
so

in
th
e

re
fe
re
n
ce
s
[1
2
,
6
5
].

6
.6
.
P
ro

b
le
m

o
f

fi
la
m
e
n
ta

ti
o
n

a
n
d

it
s

n
u
m
e
ri
c
a
l
tr
e
a
tm

e
n
t.

—
V
la
so
v

eq
u
at
io
n

is
n
on

-d
is
si
p
at
iv
e

su
ch

th
at

en
tr
op

y
is

co
n
se
rv
ed
.

T
h
e

fr
ee
-s
tr
ea
m
in
g

ev
ol
u
ti
on

of
th
e

d
is
tr
ib
u
ti
on

fu
n
ct
io
n

ge
n
er
at
es

fi
n
er

an
d

fi
n
er

fi
la
m
en
ta
ti
on

of
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
in

th
e
p
h
as
e
sp
ac
e,

d
ow

n
to

su
b
-g
ri
d
si
ze
s,

le
ad

in
g
to

st
ro
n
g
gr
ad

ie
n
ts
.
T
h
e
ev
ol
u
ti
on

of
fi
n
e
sc
al
es

ca
n

b
e
es
ti
m
at
ed

fr
om

th
e
so
lu
ti
on

of
th
e
fr
ee
-s
tr
ea
m
in
g
V
la
so
v
eq
u
at
io
n
.
W

h
en

F
ou

ri
er

tr
an

sf
or
m
ed

in
re
al

sp
ac
e
(f
(x
,v
,t
)
→

f
(k
,v
,t
))

f
(x
,v
,t
)
=

∫
d
k

2π
f̂
(k
,v
,t
)
ex
p
(i
(k
t)
v
)

ea
ch

F
ou

ri
er

co
m
p
on

en
t
d
ev
el
op

s
fi
n
e
sc
al
es

in
v
el
o
ci
ty

sp
ac
e
as

ti
m
e
in
cr
ea
se
s.

W
h
en

η
=

k
t
re
ac
h
es

th
e
in
v
er
se

of
∆
v
(∆

v
b
ei
n
g
th
e
d
is
cr
et
iz
at
io
n
st
ep

in
v
el
o
ci
ty

sp
ac
e)

on
e
ca
n
n
o
lo
n
ge
r
fo
ll
ow

th
e
fu
rt
h
er

fi
la
m
en
ta
ti
on

of
f
an

d
th
e

in
fo
rm

at
io
n
is

lo
st

(s
ee

e.
g.

B
ü
ch
n
er

[2
7
])
.
T
h
e
co
n
ti
n
u
ou

s
d
ev
el
op

m
en
t
of

fi
n
e
sc
al
e
st
ru
ct
u
re
s
re
p
re
se
n
ts

th
e
tr
an

sf
er

of
en
tr
op

y
fr
om

m
ac
ro

to
m
ic
ro

v
el
o
ci
ty

sc
al
es

(s
ee

e.
g.

[1
4
7
])
.
T
h
e
p
h
y
si
ca
ll
y
re
le
va
n
t
fi
la
m
en
ta
ti
on

ca
n
le
ad

to
n
on

p
h
y
si
ca
l
os
ci
ll
at
io
n
s
an

d
n
u
m
er
ic
al

in
st
ab

il
it
ie
s
in

d
is
cr
et
e
m
at
h
em

at
-

ic
s.

T
h
e
co
rr
ec
t
tr
ea
tm

en
t
of

th
es
e
gr
ad

ie
n
ts

is
a
m
a
jo
r
is
su
e
in

n
u
m
er
ic
al

sc
h
em

es
.
In

P
IC

co
d
es
,
th
e
fi
la
m
en
ta
ti
on

is
sm

ea
re
d
ou

t
b
y
th
e
n
oi
se

re
su
lt
-

in
g
fr
om

th
e
fi
n
it
e
n
u
m
b
er

of
m
ac
ro
-p
ar
ti
cl
es
.

In
E
u
le
ri
an

ap
p
ro
ac
h
es
,
th
e

u
se

of
h
ig
h
-o
rd
er

sc
h
em

es
m
ay

b
e
co
u
n
te
rp
ro
d
u
ct
iv
e
in

or
d
er

to
p
re
v
en
t
th
is

fi
la
m
en
ta
ti
on

.
In
d
ee
d
,
h
ig
h
-o
rd
er

sc
h
em

es
te
n
d
to

p
ro
d
u
ce

G
ib
b
s
ov
er
sh
o
ot

u
n
le
ss

so
m
e
ad

d
it
io
n
al

av
er
ag
in
g
is

ap
p
li
ed
.
A
rt
ifi
ci
al

d
is
si
p
at
io
n
–s
m
o
ot
h
in
g

or
fi
lt
er
in
g–

is
th
er
ef
or
e
of
te
n
in
tr
o
d
u
ce
d
(e
.g
.
se
e
[8
7
,
8
8
]
fo
r
fi
lt
ra
ti
on

te
ch
-

n
iq
u
es
).

A
re
la
te
d
p
ro
b
le
m

is
th
at

th
er
e
is
n
o
gu

ar
an

te
e,

ex
ce
p
t
fo
r
fi
rs
t
or
d
er

sc
h
em

es
,
th
at

th
e
n
u
m
er
ic
al

so
lu
ti
on

re
m
ai
n
s
p
os
it
iv
e
ev
er
y
w
h
er
e.

B
ot
h
of
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4
9

th
es
e
p
ro
b
le
m
s
ar
e
id
en
ti
ca
l
to

th
e
p
ro
b
le
m
s
en
co
u
n
te
re
d
in

th
e
tr
ea
tm

en
t
of

sh
o
ck
s
in

co
m
p
u
ta
ti
on

al
fl
u
id

m
ec
h
an

ic
s.

W
ay
s
of

av
oi
d
in
g
th
e
re
st
ri
ct
io
n
s
im

-
p
os
ed

on
th
e
or
d
er

of
th
e
sc
h
em

e
b
y
G
o
d
u
n
ov
’s
th
eo
re
m

in
fl
u
id

d
y
n
am

ic
s
h
av
e

a
d
ir
ec
t
an

al
og
y
in

th
e
so
lu
ti
on

of
V
la
so
v
p
ro
b
le
m
s.

T
h
is

ex
p
la
in
s
w
h
y
lo
ts

of
eff

or
t
h
av
e
b
ee
n
m
ad

e
to

d
ev
el
op

p
os
it
iv
it
y
-p
re
se
rv
in
g
(s
ee

e.
g.

[5
4
])

a
n
d

m
on

ot
on

ic
it
y
-p
re
se
rv
in
g
sc
h
em

es
.
A
ra
ka
w
a
[4
]
h
as

al
so

sh
ow

n
th
at

n
u
m
er
ic
al

in
st
ab

il
it
ie
s
d
u
e
to

th
is
in
ev
it
ab

le
fi
la
m
en
ta
ti
on

m
ay

b
e
av
oi
d
ed

b
y
co
n
se
rv
in
g

th
e
sq
u
ar
e
q
u
an

ti
ty
,
w
h
ic
h

b
ou

n
d
s
th
e
am

p
li
tu
d
e
of

n
u
m
er
ic
al

os
ci
ll
at
io
n
s.

B
ru
n
et
ti
h
as

sh
ow

n
th
e
in
te
re
st

of
P
F
C

m
et
h
o
d
in

th
e
ca
se

of
4D

d
ri
ft
-k
in
et
ic

si
m
u
la
ti
on

s
[2
5
].
N
ot
ic
e
th
at

th
is
p
ro
b
le
m

of
fi
la
m
en
ta
ti
on

b
ec
om

es
le
ss

se
v
er
e

w
h
en

co
ll
is
io
n
s
ar
e
ta
k
en

in
to

ac
co
u
n
t,

al
th
ou

gh
th
e
n
u
m
er
ic
al

tr
ea
tm

en
t
of

co
ll
is
io
n
s
is

ou
t
of

th
e
sc
op

e
of

th
is

le
ct
u
re
.

7
.
M

a
in

p
h
y
si
c
d
iff
e
re

n
c
e
s
in

g
y
ro

k
in
e
ti
c
c
o
d
e
s

7
.1
.
δf

c
o
d
e
s
/

fu
ll
-f

c
o
d
e
s.

—
G
y
ro
k
in
et
ic

m
o
d
el
s
ca
n
b
e
sp
li
t
in

tw
o

d
is
ti
n
ct

fa
m
il
ie
s
w
it
h
re
sp
ec
t
to

th
e
ad

op
te
d
re
p
re
se
n
ta
ti
on

of
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
:
ei
th
er

fu
ll
-f

or
δf

m
o
d
el
s.

In
th
e
δf

m
o
d
el
,
on

ly
p
er
tu
rb
at
io
n
s

w
it
h
re
sp
ec
t
to

so
m
e
p
re
sc
ri
b
ed

b
ac
k
gr
ou

n
d
eq
u
il
ib
ri
u
m

(u
su
al
ly

M
ax

w
el
li
an

in
v
el
o
ci
ty
)
ar
e
co
m
p
u
te
d
.
T
h
is

m
et
h
o
d
[4
4
]
h
as

b
ee
n
w
id
el
y
u
se
d
fr
om

th
e

b
eg
in
n
in
g
of

gy
ro
k
in
et
ic

co
d
e
d
ev
el
op

m
en
t.

It
s
m
ai
n
ad

va
n
ta
ge

is
to

re
d
u
ce

st
at
is
ti
ca
l
n
oi
se
,
w
h
ic
h
ca
n
b
ec
om

e
re
d
h
ib
it
or
y
in

P
IC

co
d
es
,
as

ex
p
la
in
ed

in
se
ct
io
n
E
.3
.
T
ec
h
n
ic
al
ly
,
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f
is

d
ec
om

p
os
ed

in
to

th
e

ti
m
e-
in
d
ep

en
d
en
t
b
ac
k
gr
ou

n
d
f 0

an
d
th
e
ti
m
e-
d
ep

en
d
en
t
p
er
tu
rb
at
io
n
δf

:

f
=

f 0
+

δf

T
h
e
b
ac
k
gr
ou

n
d
f 0

is
th
e
p
re
sc
ri
b
ed

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
at

ti
m
e
t
=

t 0
.
It

is
on

e
of

th
e
st
at
io
n
ar
y
so
lu
ti
on

s
of

th
e
gy

ro
k
in
et
ic

eq
u
at
io
n
at

va
n
is
h
in
g
gy

ro
-

av
er
ag
ed

p
ot
en
ti
al

J
0
·φ

=
0.

P
er
tu
rb
at
io
n
s
δf

ar
e
th
en

go
v
er
n
ed

b
y
th
e

fo
ll
ow

in
g
eq
u
at
io
n
:

(8
4)

d d
tδ
f
=

−
d d
tf

0
=

−
∂ ∂
tf

0
−

d
Z d
t
·
∂ ∂
Z
f 0

=
−
d
Z d
t
·
∂ ∂
Z
f 0

It
is
cl
ea
r
th
at
,
co
n
tr
ar
y
to

th
e
fu
ll
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f
,
δf

is
n
ot

co
n
se
rv
ed

al
on

g
th
e
tr
a
je
ct
or
ie
s.

In
d
ee
d
,
th
e
ri
gh

t-
h
an

d
si
d
e
of

eq
.
(8
4)

is
n
ot

eq
u
al

to
ze
ro
.
A
s
fa
r
as

f 0
is

co
n
ce
rn
ed
,
it

is
u
su
al
ly

as
su
m
ed

M
ax

w
el
li
an

f 0
=

f e
q

(f
eq

b
ei
n
g
an

eq
u
il
ib
ri
u
m

M
ax

w
el
li
an

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
).

T
ra
je
ct
or
ie
s
a
re

d
ec
om

p
os
ed

in
to

eq
u
il
ib
ri
u
m

an
d
p
er
tu
rb
ed

co
m
p
on

en
ts
,
i.
e.

d
Z d
t
=

d
Z d
t
| eq

+
d
Z d
t
| pe

rt
u
rb

5
0

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

T
h
e
u
su
al

fo
rm

of
th
e

˙ δf
eq
u
at
io
n
th
en

re
ad

s
as

fo
ll
ow

s:

∂ ∂
tf

eq
=

d
Z d
t
| eq

·
∂ ∂
Z
f e

q
=

0
(8
5)

an
d

d d
tδ
f
=

−
d
Z d
t
| pe

rt
u
rb

·
∂ ∂
Z
f e

q
(8
6)

S
h
ou

ld
al
l
te
rm

s
b
e
re
ta
in
ed

in
th
es
e
eq
u
at
io
n
s,

th
ey

w
ou

ld
b
e
ri
go
ro
u
sl
y

eq
u
iv
al
en
t
to

th
e
or
ig
in
at
e
gy

ro
k
in
et
ic

eq
u
at
io
n
.
H
ow

ev
er
,
le
t
u
s
m
en
ti
on

a
fe
w

si
m
p
li
fi
ca
ti
on

s
li
k
el
y
le
ad

in
g
to

d
is
cr
ep
an

ci
es

w
it
h

re
sp
ec
t
to

th
e
ex
ac
t

gy
ro
k
in
et
ic

eq
u
at
io
n
:
(i
)
f 0

m
ay

n
ot

b
e
a
tr
u
e
eq
u
il
ib
ri
u
m

of
th
e
sy
st
em

at
va
n
is
h
in
g
el
ec
tr
ic

fi
el
d
,
su
ch

th
at

∂
f 0

is
n
ot

ex
ac
tl
y
ze
ro

(e
q
.
(8
5)
);

(i
i)

a
fe
w

n
on

-l
in
ea
r
te
rm

s
in

th
e
le
ft
-h
an

d
-s
id
e
of

eq
.

(8
6)

ar
e
so
m
et
im

es
n
eg
le
ct
ed
,

as
su
m
in
g
th
at

th
ey

ar
e
h
ig
h
or
d
er

w
it
h
re
sp
ec
t
to

th
e
ri
gh

t-
h
an

d
-s
id
e
te
rm

s.
In

p
ar
ti
cu
la
r,

if
th
e
fl
u
x
-s
u
rf
ac
e
av
er
ag
ed

p
ar
t
of

δf
is

fr
oz
en

in
ti
m
e,

on
e
is

le
ft

w
it
h
th
e
so
-c
al
le
d
gr
ad

ie
n
t-
d
ri
v
en

re
gi
m
e
(s
ee

se
ct
io
n
7.
3)
.

C
on

v
er
se
ly
,
in

fu
ll
-f

m
o
d
el
s,

th
e
w
h
ol
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n

is
ev
ol
v
ed
.

E
sp
ec
ia
ll
y,

th
e
b
ac
k
re
ac
ti
on

of
tu
rb
u
le
n
t
tr
an

sp
or
t
is

ac
co
u
n
te
d
fo
r
in

th
e

ti
m
e
ev
ol
u
ti
on

of
th
e
eq
u
il
ib
ri
u
m
.

F
u
ll
-f

m
o
d
el
s
ar
e
sp
ec
ifi
ca
ll
y
ca
p
ab

le
of

ad
d
re
ss
in
g
th
e
re
la
x
at
io
n
d
y
n
am

ic
s
of

eq
u
il
ib
ri
u
m

p
ro
fi
le
s,

ei
th
er

d
u
e
to

fa
st

n
on

-l
in
ea
r
tr
an

si
en
ts

or
go
v
er
n
ed

b
y
th
e
sl
ow

d
ri
ft

of
th
e
in
it
ia
l
p
ro
fi
le
s
to
-

w
ar
d
s
th
ei
r
re
la
x
ed

st
at
e
in

th
e
p
re
se
n
ce

of
sa
tu
ra
te
d
tu
rb
u
le
n
ce
.
N
ot
ic
e
th
at

tr
an

si
en
ts

ar
e
of

gr
ea
t
im

p
or
ta
n
ce

in
co
n
fi
n
em

en
t
d
ev
ic
es
.
T
h
e
fo
rm

at
io
n
of

In
te
rn
al

T
ra
n
sp
or
t
B
ar
ri
er

in
th
e
p
la
sm

a
co
re

is
on

e
of

su
ch

ex
am

p
le
s.

In
fu
ll
-f

si
m
u
la
ti
on

s,
th
e
tu
rb
u
le
n
t
re
gi
m
e
is
ev
an

es
ce
n
t
if
n
o
fr
ee

en
er
gy

is
in
je
ct
ed

in
th
e
sy
st
em

to
p
re
v
en
t
th
e
in
ev
it
ab

le
re
la
x
at
io
n
of

eq
u
il
ib
ri
u
m

p
ro
fi
le
s
b
el
ow

th
e
–
li
n
ea
r
or

n
on

-l
in
ea
r
–
th
re
sh
ol
d
of

th
e
u
n
d
er
ly
in
g
in
st
ab

il
it
y.

A
h
ea
t

so
u
rc
e
is

m
an

d
at
or
y
in

v
ie
w

of
ex
p
lo
ri
n
g
th
e
lo
n
g
ti
m
e
–
on

en
er
gy

co
n
fi
n
e-

m
en
t
ti
m
es

–
b
eh
av
io
r
of

tu
rb
u
le
n
ce

an
d
tr
an

sp
or
t.

E
x
am

p
le
s
of

su
ch

h
ea
t

so
u
rc
es

ar
e
b
ri
efl
y
gi
v
en

in
se
ct
io
n
7.
3.

7
.2
.
L
o
c
a
l
g
e
o
m
e
tr
y
/
g
lo
b
a
l
g
e
o
m
e
tr
y
.
—

A
cc
ou

n
ti
n
g
fo
r
th
e
to
ro
id
al

m
ag
n
et
ic

ge
om

et
ry

is
n
ot

tr
iv
ia
l
an

d
in
tr
o
d
u
ce
s
st
ro
n
g
an

is
ot
ro
p
y
in

th
e
lo
w

fr
eq
u
en
cy

p
er
tu
rb
at
io
n
s.

W
h
il
e
k
‖ρ

s
is
or
d
er
ed

as
a
sm

al
l
q
u
an

ti
ty

in
th
e
gy

-
ro
k
in
et
ic

or
d
er
in
g
(3
6)
,
th
e
p
er
p
en
d
ic
u
la
r
w
av
en
u
m
b
er

is
n
ot

as
su
m
ed

sm
al
l,

k
⊥
ρ
s
∼

O
(1
).

F
lu
ct
u
at
io
n
s
ty
p
ic
al
ly

h
av
e
p
ar
al
le
l
w
av
el
en
gt
h
s
of

th
e
or
d
er

of
th
e
sy
st
em

si
ze
,
w
h
er
ea
s
p
er
p
en
d
ic
u
la
r
w
av
el
en
gt
h
s
ar
e
of

th
e
or
d
er

of
a

fe
w
L
ar
m
or

ra
d
ii
.
M
or
eo
v
er
,
co
re

p
la
sm

as
ar
e
w
ea
k
ly

co
ll
is
io
n
al
,
ch
ar
ac
te
ri
ze
d

b
y
m
ea
n
fr
ee

p
at
h
s
la
rg
er

th
an

th
e
sy
st
em

si
ze
.
T
h
e
ge
om

et
ry

of
th
e
m
ag
-

n
et
ic

co
n
fi
gu

ra
ti
on

st
ro
n
gl
y
aff

ec
ts

m
ic
ro
-i
n
st
ab

il
it
ie
s
an

d
tu
rb
u
le
n
ce
.

T
h
is

st
ro
n
g
an

is
ot
ro
p
y
ca
n
b
ec
om

e
an

ad
va
n
ta
ge

in
n
u
m
er
ic
al

si
m
u
la
ti
on

s
u
si
n
g

fi
el
d
-a
li
gn

ed
co
or
d
in
at
es

in
st
ea
d
of

to
ri
c
on

es
.
T
h
es
e
co
or
d
in
at
es

ca
n
le
ad

to



G
Y
R
O
K
IN

E
T
IC

S
IM

U
L
A
T
IO

N
S

O
F

M
A
G
N
E
T
IC

F
U
S
IO

N
P
L
A
S
M
A
S

5
1

an
or
d
er

of
m
ag
n
it
u
d
e
im

p
ro
v
em

en
t
of

n
u
m
er
ic
al

sc
h
em

es
.
A

fu
rt
h
er

si
m
p
li
-

fi
ca
ti
on

is
m
ad

e
in

fl
u
x-
tu
be

co
d
es
,
in

w
h
ic
h
th
e
co
n
si
d
er
ed

d
om

ai
n
re
m
a
in
s

in
th
e
v
ic
in
it
y
of

a
m
ag
n
et
ic

fi
el
d
li
n
e.

S
ca
le

se
p
ar
at
io
n
is

as
su
m
ed
,
fl
u
ct
u
-

at
io
n
s
b
ei
n
g
at

sm
al
le
r
sc
al
e
th
an

th
e
eq
u
il
ib
ri
u
m
.

In
th
is

fr
am

ew
or
k
,
th
e

eq
u
il
ib
ri
u
m

p
ro
fi
le
s,

an
d
m
or
e
p
re
ci
se
ly

th
ei
r
gr
ad

ie
n
ts
,a
re

ta
k
en

co
n
st
an

t
in

ti
m
e.

In
su
ch

co
d
es

(e
.g
.
G
S
2
[4
7
],
G
Y
R
O

[2
9
])
,
p
er
io
d
ic
it
y
is

as
su
m
ed

fo
r

th
e
fl
u
ct
u
at
io
n
s
al
on

g
th
e
ra
d
ia
l
d
ir
ec
ti
on

.
C
on

v
er
se
ly
,
gl
o
ba
l
co
d
es

ta
k
e
th
e

ge
om

et
ry

of
th
e
w
h
ol
e
p
la
sm

a
d
om

ai
n
in
to

ac
co
u
n
t.

In
th
is

ca
se
,
th
e
ra
d
ia
l

p
er
io
d
ic
it
y
as
su
m
p
ti
on

is
ir
re
le
va
n
t.

A
s
a
re
su
lt
,
th
e
d
el
ic
at
e
p
ro
b
le
m

of
ra
d
ia
l

b
ou

n
d
ar
y
co
n
d
it
io
n
s
h
as

to
b
e
so
lv
ed
.

T
h
e
fl
u
x
-t
u
b
e
ap

p
ro
ac
h
al
lo
w
s
fo
r
an

effi
ci
en
t
re
d
u
ct
io
n
of

C
P
U

ti
m
e
a
n
d

m
em

or
y
si
ze

co
n
su
m
p
ti
on

.
C
on

v
er
se
ly
,
m
o
d
el
in
g
th
e
w
h
ol
e
p
la
sm

a
d
om

ai
n

re
q
u
ir
es

h
u
ge

m
es
h
es
.

T
h
is

d
ra
w
b
ac
k

is
co
u
n
te
rb
al
an

ce
d

b
y

th
e
fa
ct

th
at

gl
ob

al
co
d
es

ca
n
d
es
cr
ib
e
p
h
en
om

en
a
su
ch

as
p
ro
fi
le
sh
ea
ri
n
g,

p
ro
fi
le
re
la
x
at
io
n

an
d
la
rg
e
sc
al
e
tr
an

sp
or
t
ev
en
ts

su
ch

as
av
al
an

ch
es

(s
ee

se
ct
io
n
7.
3)
,
al
th
ou

gh
th
e
la
tt
er

h
av
e
re
ce
n
tl
y
b
ee
n
al
so

ob
se
rv
ed

in
lo
ca
l
si
m
u
la
ti
on

s.
T
h
e
w
ea
lt
h

of
su
ch

p
h
y
si
cs

h
as

en
co
u
ra
ge
d
th
e
d
ev
el
op

m
en
t
of

a
n
ew

ge
n
er
at
io
n
of

gl
ob

al
co
d
es

si
n
ce

15
y
ea
rs
.
L
et

u
s
m
en
ti
on

,
fo
r
in
st
an

ce
,
O
R
B
5
[8
3
],
G
T
5D

[7
8
]
or

G
Y
S
E
L
A

[6
4
]
fo
r
co
re

p
la
sm

as
,
an

d
X
G
C
1
[3
2
,
3
3
]
fo
r
ed
ge

p
la
sm

as
.
E
v
en

th
e
fl
u
x
-t
u
b
e
co
d
e
G
E
N
E
[8
1
]
h
as

re
ce
n
tl
y
gi
v
en

b
ir
th

to
a
gl
ob

al
v
er
si
on

[9
2
].

7
.3
.
F
ix
e
d

g
ra

d
ie
n
t
/
fl
u
x
d
ri
v
e
n

sy
st
e
m
s.

—
L
et

u
s
cl
os
e
th
is

se
ct
io
n

w
it
h
d
iff
er
en
ce
s
in

th
e
tr
ea
tm

en
t
of

th
e
b
ou

n
d
ar
y
co
n
d
it
io
n
s.

A
s
al
re
ad

y
m
en
-

ti
on

ed
,
fl
u
x
-t
u
b
e
co
d
es

u
se

p
er
io
d
ic

b
ou

n
d
ar
y
co
n
d
it
io
n
s
in

al
l
d
ir
ec
ti
on

s.
A
s

fa
r
as

gl
ob

al
co
d
es

ar
e
co
n
ce
rn
ed
,
p
er
io
d
ic
it
y
is

lo
st

in
th
e
ra
d
ia
l
d
ir
ec
ti
o
n
.

U
n
ti
l
re
ce
n
tl
y,

gy
ro
k
in
et
ic

si
m
u
la
ti
on

s
se
t
th
e
sy
st
em

ou
t
of

eq
u
il
ib
ri
u
m

b
y

im
p
os
in
g
tw

o
th
er
m
al

b
at
h
s
as

ra
d
ia
l
b
ou

n
d
ar
y
co
n
d
it
io
n
s.

A
s
sh
ow

n
in

[6
4
],

th
e
re
la
x
at
io
n
of

th
e
m
ea
n
p
ro
fi
le
s
in

th
e
ce
n
te
r
of

th
e
ra
d
ia
l
d
om

ai
n
ca
n
le
ad

to
st
ro
n
g
gr
ad

ie
n
ts

at
th
e
ra
d
ia
l
ed
ge
s,

u
n
le
ss

b
u
ff
er

re
gi
on

s
ar
e
ad

d
ed
.
T
h
is

ev
ol
u
ti
on

st
op

s
w
h
en

th
e
co
re

gr
ad

ie
n
ts

re
ac
h

th
e
in
st
ab

il
it
y
th
re
sh
ol
d
.

It
ty
p
ic
al
ly

ta
k
es

p
la
ce

on
en
er
gy

co
n
fi
n
em

en
t
ti
m
e
sc
al
es
.
L
im

it
ed

st
at
is
ti
cs

ar
e

av
ai
la
b
le

to
in
v
es
ti
ga
te

th
e
p
h
y
si
cs

of
sc
al
in
g
la
w
s
in

th
is
ca
se
,
u
n
le
ss

ru
n
n
in
g

v
er
y
sm

al
l
ρ
∗
si
m
u
la
ti
on

s.
A
lt
er
n
at
iv
el
y,

an
ad

-h
o
c
h
ea
t
so
u
rc
e
ca
n
b
e
ad

d
ed

to
fo
rc
e
th
e
gr
ad

ie
n
ts

ou
t
of

th
er
m
o
d
y
n
am

ic
al

eq
u
il
ib
ri
u
m
.
T
h
e
im

p
ac
t
of

th
e

ch
ar
ac
te
ri
st
ic
s
of

th
e
so
u
rc
e
on

th
e
tu
rb
u
le
n
t
tr
an

sp
or
t
p
ro
p
er
ti
es

is
ce
rt
ai
n
ly

an
is
su
e.

S
ev
er
al

ty
p
es

of
so
u
rc
es

h
av
e
b
ee
n
d
ev
el
op

ed
.
A

K
ro
ok

op
er
at
or

is
u
se
d
in

[1
0
0
,
1
0
1
].

In
th
is

ca
se
,
h
ow

ev
er
,
th
e
d
ri
v
in
g
fl
u
x
is

n
ot

p
re
sc
ri
b
ed

a
p
ri
o
ri
:
si
n
ce

th
e
K
ro
ok

te
rm

d
ep

en
d
s
on

th
e
ac
tu
al

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
,

it
ev
ol
v
es

in
ti
m
e.

C
on

v
er
se
ly
,
im

p
le
m
en
ti
n
g
a
h
ea
t
so
u
rc
e
w
h
ic
h
is

in
d
ep

en
-

d
en
t
of

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
p
ro
v
id
es

a
w
ay

to
st
u
d
y
fo
rc
ed

tu
rb
u
le
n
ce

at
co
n
st
an

t-
in
-t
im

e
in
co
m
in
g
fl
u
x
.
G
ra
d
ie
n
ts

th
en

se
lf
-a
d
ju
st

in
re
sp
on

se
to

th
is

fl
u
x
as

a
re
su
lt
of

tu
rb
u
le
n
t
(a
n
d
p
os
si
b
ly

co
ll
is
io
n
al
)
tr
an

sp
or
t.

S
u
ch

a
fo
rc
in
g

5
2

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

w
as

su
cc
es
sf
u
ll
y
ex
p
lo
it
ed

in
fl
u
id

si
m
u
la
ti
on

s
of

tu
rb
u
le
n
t
tr
an

sp
or
t.

L
et

u
s

re
m
ar
k
th
at
,
in

gy
ro
k
in
et
ic
s,

th
e
so
u
rc
e
is

a
p
ri
o
ri

5-
d
im

en
si
on

s.
In

p
ar
ti
cu
-

la
r,
it
s
ex
p
re
ss
io
n
in

th
e
v
el
o
ci
ty

sp
ac
e
h
as

to
b
e
co
n
si
d
er
ed
.
It
s
p
re
ci
se

ch
oi
ce

d
ep

en
d
s
on

th
e
n
u
m
b
er

of
fl
u
id

m
om

en
ts

on
e
w
is
h
es

to
ex
ci
te
.
A

n
ic
e
w
ay

to
d
ec
ou

p
le

th
e
va
ri
ou

s
fl
u
id

m
om

en
ts

of
th
e
so
u
rc
e
(e
.g
.
so
u
rc
e
of

p
ar
ti
cl
es
,
of

m
om

en
tu
m

an
d
of

h
ea
t)

co
n
si
st
s
in

p
ro
je
ct
in
g
th
e
v
el
o
ci
ty
-d
ep

en
d
en
t
p
ar
t
of

th
e
so
u
rc
e
on

th
e
or
th
og
on

al
b
as
is

of
H
er
m
it
e
an

d
L
ag
u
er
re

p
ol
y
n
om

ia
ls
,
of

th
e
fo
rm

S
∼

+
∞ ∑ ℓ=
0

+
∞ ∑ h
=
0

c h
ℓH

h
(v̄
‖)
L
ℓ(
µ̄
)e
−
v̄
2 ‖−

µ̄

w
h
er
e
th
e
c h

ℓ
co
effi

ci
en
ts

d
ep

en
d
on

sp
ac
e
co
or
d
in
at
es

on
ly
.
H
er
e,
v̄ ‖

an
d
µ̄
ac
-

co
u
n
t
fo
r
th
e
n
or
m
al
iz
ed

p
ar
al
le
l
an

d
tr
an

sv
er
se

v
el
o
ci
ti
es
:
v̄ ‖

=
v ‖
/
√
2
T
s
/m

an
d

µ̄
=

µ
B
/T

s
,
w
it
h

T
s
th
e

so
u
rc
e

te
m
p
er
at
u
re
.
A

ge
n
er
al

fe
at
u
re

of
fl
u
x
-d
ri
v
en

tu
rb
u
le
n
ce

si
m
u
la
ti
on

s
is

th
at

th
e
tu
rb
u
le
n
t
tr
an

sp
or
t
ex
h
ib
it
s

av
al
an

ch
e-
li
k
e

ev
en
ts

ch
ar
ac
te
ri
ze
d

b
y

la
rg
e

sc
al
e

in
te
rm

it
te
n
t

ou
tb
u
rs
ts
.

T
h
is

av
al
an

ch
e-
li
k
e
tr
an

sp
or
t
h
ad

al
re
ad

y
b
ee
n
d
o
cu
m
en
te
d
in

fl
u
id

si
m
u
la
-

ti
on

s
[5
9
,
1
5
]
an

d
h
as

al
so

b
ee
n
re
p
or
te
d
ex
p
er
im

en
ta
ll
y
in

co
re

p
la
sm

as
of

to
ka
m
ak

s
[1
5
0
]
an

d
of

h
el
ic
al

d
ev
ic
es

[8
0
].

F
ir
st

ca
lc
u
la
ti
on

s
of

gy
ro
k
in
et
ic

fl
u
x

d
ri
v
en

sy
st
em

s
[4
2
]
h
av
e
b
ee
n

p
er
fo
rm

ed
w
it
h

a
re
d
u
ce
d

gy
ro
k
in
et
ic

m
o
d
el

fo
r
d
ee
p
ly

tr
ap

p
ed

io
n

tu
rb
u
le
n
ce

[4
5
,
1
2
1
].

T
h
is

sy
st
em

is
2D

in
co
n
fi
gu

ra
ti
on

sp
ac
e,

n
am

el
y
th
e
ra
d
ia
l
co
or
d
in
at
e
an

d
th
e
an

gl
e,

an
d
1D

in
v
el
o
ci
ty

sp
ac
e,

th
e
ch
os
en

co
or
d
in
at
e
b
ei
n
g
th
e
en
er
gy
.

T
h
e
sa
m
e
k
in
d

of
so
u
rc
e
h
as

re
ce
n
tl
y
b
ee
n
im

p
le
m
en
te
d
in

G
Y
S
E
L
A

co
d
e
[1
2
0
].

A
ga
in
,
it

is
sh
ow

n
th
at

th
es
e
b
u
rs
ts

p
ro
p
ag
at
e
al
m
os
t
b
al
li
st
ic
al
ly

on
la
rg
e
ra
d
ia
l
d
is
-

ta
n
ce
s,
m
u
ch

la
rg
er

th
an

th
e
E
u
le
ri
an

co
rr
el
at
io
n
le
n
gt
h
of

tu
rb
u
le
n
ce
.
T
h
es
e

fl
u
x
-d
ri
v
en

co
n
d
it
io
n
s
ar
e
n
ow

ad
d
re
ss
ed

in
m
os
t
of

gl
ob

al
co
d
es
,
le
ad

in
g
to

st
at
is
ti
ca
l
st
ea
d
y
-s
ta
te

tu
rb
u
le
n
t
re
gi
m
es

[1
0
1
,
7
7
].

F
ir
st

co
m
p
ar
is
on

s
h
av
e

b
ee
n
p
er
fo
rm

ed
th
is

y
ea
r
[1
4
3
].

In
th
is

p
ap

er
,
on

ly
el
ec
tr
os
ta
ti
c
gy

ro
k
in
et
ic

io
n
tu
rb
u
le
n
ce

w
it
h
ad

ia
b
at
ic

el
ec
tr
on

re
sp
on

se
h
as

b
ee
n
d
is
cu
ss
ed
.
S
u
ch

si
m
u
la
ti
on

s
al
re
ad

y
re
q
u
ir
e
la
rg
e

H
P
C

re
so
u
rc
es
.
A
s
an

ex
am

p
le
,
th
e
fu
ll
-f

gl
ob

al
si
m
u
la
ti
on

p
er
fo
rm

ed
w
it
h

th
e
G
Y
S
E
L
A

co
d
e,

at
th
e
IT

E
R

re
le
va
n
t
ρ
∗
d
im

en
si
on

le
ss

p
ar
am

et
er

ρ
∗
=

1
/
51
2,

h
as

re
q
u
ir
ed

27
2.
10

9
gr
id

p
oi
n
ts

to
d
is
cr
et
iz
e
th
e
5D

p
h
as
e
sp
ac
e

(N
r
×

N
θ
×

N
ϕ
×

N
v
‖
×

N
µ
=

10
24
×

10
24
×

12
8
×

12
8
×

16
)
to

m
o
d
el

io
n

p
la
sm

a
tu
rb
u
le
n
ce

on
q
u
ar
te
r
of

to
ru
s.

1
m
il
li
se
co
n
d
of

p
la
sm

a
w
as

ca
p
tu
re
d

b
y
th
is
si
m
u
la
ti
on

w
h
ic
h
ra
n
d
u
ri
n
g
ab

ou
t
31

d
ay
s
on

81
92

p
ro
ce
ss
or
s.

T
h
is
is

eq
u
iv
al
en
t
to

ab
ou

t
6.
1
m
il
li
on

h
ou

rs
on

a
si
n
gl
e
p
ro
ce
ss
or
.
E
v
en

th
ou

gh
th
e

gl
ob

al
an

d
fu
ll
-f
gy

ro
k
in
et
ic

si
m
u
la
ti
on

of
an

IT
E
R
-s
iz
e
p
la
sm

a
in
cl
u
d
in
g
b
ot
h

k
in
et
ic
el
ec
tr
on

s
an

d
el
ec
tr
om

ag
n
et
ic
fl
u
ct
u
at
io
n
s
is
st
il
l
a
lo
n
g
w
ay

ah
ea
d
,
th
e



G
Y
R
O
K
IN

E
T
IC

S
IM

U
L
A
T
IO

N
S

O
F

M
A
G
N
E
T
IC

F
U
S
IO

N
P
L
A
S
M
A
S

5
3

ro
u
te

is
al
re
ad

y
u
n
d
er
ta
k
en
.
N
on

-a
d
ia
b
at
ic

el
ec
tr
on

re
sp
on

se
an

d
el
ec
tr
om

a
g-

n
et
ic

eff
ec
ts

h
av
e
gi
v
en

ri
se

to
fi
rs
t
re
su
lt
s
[1
0
9
,
2
8
,
6
2
].

T
h
e
si
m
u
lt
an

eo
u
s

tr
ea
tm

en
t
of

b
ot
h
k
in
et
ic

io
n
s
an

d
k
in
et
ic

el
ec
tr
on

s
p
os
es

n
ew

ch
al
le
n
ge
s
to

th
e
n
u
m
er
ic
al

si
m
u
la
ti
on

s.
T
h
e
ch
ar
ac
te
ri
st
ic

ti
m
e
st
ep

sh
ou

ld
b
e
re
d
u
ce
d
b
y

a
fa
ct
or

of
th
e
or
d
er

of
th
e
sq
u
ar
e
ro
ot

of
th
e
m
as
s
ra
ti
o,

w
h
il
e
th
e
ra
d
ia
l

an
d
p
ol
oi
d
al

gr
id

re
so
lu
ti
on

h
as

to
b
e
ty
p
ic
al
ly

in
cr
ea
se
d
b
y
u
p
to

on
e
or
d
er

of
m
ag
n
it
u
d
e
as

co
m
p
ar
ed

to
th
e
ad

ia
b
at
ic

el
ec
tr
on

ca
se
.
U
p
to

n
ow

,
d
u
e
to

co
m
p
u
ta
ti
on

al
re
so
u
rc
e
co
n
st
ra
in
ts
,
th
es
e
si
m
u
la
ti
on

s
ar
e
of
te
n
ru
n
w
it
h
an

ar
ti
fi
ci
al
ly

sm
al
l
m
as
s
ra
ti
o.

W
h
en

d
ea
li
n
g
w
it
h
el
ec
tr
om

ag
n
et
ic

eff
ec
ts
,
th
e
V
la
so
v
-P
oi
ss
on

so
lv
er

h
as

to
b
e
re
p
la
ce
d
b
y
th
e
V
la
so
v
-M

ax
w
el
l
so
lv
er
.

T
h
e
m
o
d
ifi
ca
ti
on

is
fa
r
fr
om

tr
iv
ia
l.

F
ir
st

n
on

li
n
ea
r
el
ec
tr
om

ag
n
et
ic

gl
ob

al
si
m
u
la
ti
on

s
h
av
e
b
ee
n
re
ce
n
tl
y

p
er
fo
rm

ed
u
si
n
g
th
e
O
R
B
5
co
d
e
[2
0
]
w
it
h
gy

ro
k
in
et
ic

io
n
s
an

d
d
ri
ft
-k
in
et
ic

el
ec
tr
on

s
w
it
h
m

i/
m

e
=

10
00

(f
or

ρ
∗
=

1
/
16
0)
.
F
or

su
ch

a
si
m
u
la
ti
on

,
th
e

ti
m
e
st
ep

w
as

re
d
u
ce
d
b
y
a
fa
ct
or

20
,
an

d
th
e
ra
d
ia
l
re
so
lu
ti
on

w
as

in
cr
ea
se
d

b
y
a
fa
ct
or

4
as

co
m
p
ar
ed

to
th
e
ad

ia
b
at
ic

el
ec
tr
on

ca
se
.

8
.
C
o
n
c
lu
si
o
n

H
ot

m
ag
n
et
iz
ed

p
la
sm

as
su
ch

as
th
os
e
en
co
u
n
te
re
d
in

co
n
tr
ol
le
d
m
ag
n
et
ic

fu
si
on

d
ev
ic
es

re
q
u
ir
e
a
k
in
et
ic

d
es
cr
ip
ti
on

b
ec
au

se
of

th
ei
r
lo
w

co
ll
is
io
n
al
-

it
y.

F
or
tu
n
at
el
y,

tu
rb
u
le
n
ce

st
u
d
ie
s
ca
n
b
e
p
er
fo
rm

ed
w
it
h
in

a
re
d
u
ce
d
p
h
a
se

sp
ac
e
of

fi
v
e
d
im

en
si
on

s,
b
y
av
er
ag
in
g
ou

t
th
e
fa
st

gy
ro
-m

ot
io
n

of
ch
ar
ge
d

p
ar
ti
cl
es

ar
ou

n
d
th
e
eq
u
il
ib
ri
u
m

m
ag
n
et
ic

fi
el
d
li
n
es
.
S
ol
v
in
g
5D

gy
ro
k
in
et
ic

eq
u
at
io
n
s
fo
r
ea
ch

sp
ec
ie
s
st
il
l
re
q
u
ir
es

st
at
e-
of
-t
h
e-
ar
t
h
ig
h
p
er
fo
rm

an
ce

co
m
-

p
u
ti
n
g
te
ch
n
iq
u
es
,
in
v
ol
v
in
g
m
as
si
v
el
y
p
ar
al
le
l
co
m
p
u
te
rs

an
d
p
ar
al
le
l
sc
al
ab

le
al
go
ri
th
m
s.

In
th
is

p
ap

er
,
d
et
ai
ls

of
th
e
m
ai
n
n
u
m
er
ic
al

sc
h
em

es
w
h
ic
h
h
av
e

b
ee
n
ex
p
lo
re
d
u
n
ti
l
n
ow

h
av
e
b
ee
n
re
v
ie
w
ed
.
L
ag
ra
n
gi
an

,
E
u
le
ri
an

or
se
m
i-

L
ag
ra
n
gi
an

sc
h
em

es
ex
h
ib
it
b
ot
h
ad

va
n
ta
ge
s
an

d
d
ra
w
b
ac
k
s
w
h
ic
h
h
av
e
b
ee
n

h
ig
h
li
gh

te
d
.
A
s
a
co
n
cl
u
d
in
g
re
m
ar
k
,
it
sh
ou

ld
b
e
k
ep
t
in

m
in
d
th
at

th
e
h
ig
h
-

en
d
H
P
C

p
ow

er
re
q
u
ir
es

a
co
n
ti
n
u
in
g
ad

ap
ta
ti
on

of
th
e
n
u
m
er
ic
al

al
go
ri
th
m
s

in
st
ro
n
g
li
n
k
w
it
h
th
e
ca
re

of
p
ar
al
le
li
za
ti
on

op
ti
m
iz
at
io
n
.
T
h
is
cl
ea
rl
y
p
o
se
s

n
on

tr
iv
ia
l
ch
al
le
n
ge
s.

A
p
p
e
n
d
ix

A

G
u
id
in
g
-c
e
n
te
r
m
o
ti
o
n

T
h
e
d
y
n
am

ic
s
of

a
n
on

re
la
ti
v
is
ti
c
p
ar
ti
cl
e
s,

of
ch
ar
ge

e s
an

d
m
as
s
m

s
,

ob
ey
s
N
ew

to
n
’s

eq
u
at
io
n
.
If

an
el
ec
tr
om

ag
n
et
ic

fi
el
d
is

p
re
se
n
t,

th
e
L
or
en
tz

5
4

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

fo
rc
e
u
su
al
ly

la
rg
el
y
d
om

in
at
es

ov
er

gr
av
it
y
:

(8
7)

m
s
d
v
s

d
t

=
e s
{E

(x
,t
)
+
v
s
×
B
(x
,t
)}

S
u
ch

an
eq
u
at
io
n
is

b
y
es
se
n
ce

n
on

li
n
ea
r,

si
n
ce

th
e
fi
el
d
s
h
av
e
to

b
e
ta
k
en

at
th
e
in
st
an

ta
n
eo
u
s
p
os
it
io
n
of

th
e
p
ar
ti
cl
e:

v
s
=

d
x
/
d
t.

In
tu
rn
,
it

d
o
es

n
ot

ad
m
it

in
te
gr
ab

le
so
lu
ti
on

s
in

th
e
ge
n
er
al

ca
se
,
fo
r
ar
b
it
ra
ry

el
ec
tr
ic

E
an

d
m
ag
n
et
ic

B
fi
el
d
s.

C
on

v
er
se
ly
,
st
ro
n
gl
y
m
ag
n
et
iz
ed

sy
st
em

s
al
lo
w

fo
r
a

p
er
tu
rb
at
iv
e
tr
ea
tm

en
t,
w
h
ic
h
is
k
n
ow

n
as

th
e
a
d
ia
ba
ti
c
th
eo
ry
.
S
u
ch

sy
st
em

s
ar
e
ch
ar
ac
te
ri
ze
d
b
y
sl
ow

ly
va
ry
in
g
el
ec
tr
om

ag
n
et
ic

fi
el
d
s,
as

co
m
p
ar
ed

to
th
e

cy
cl
ot
ro
n
fr
eq
u
en
cy

Ω
s
=

e s
B
/m

s
.
T
h
e
sm

al
l
p
ar
am

et
er

ε
of

th
e
d
ev
el
op

m
en
t

is
:

(8
8)

ε
=

∣ ∣ ∣ ∣∂
lo
g
B

Ω
s
∂
t

∣ ∣ ∣ ∣∼
|v
⊥
·∇

⊥
lo
g
B
|

Ω
s

∼
∣ ∣ v
‖∇

‖
lo
g
B
∣ ∣

Ω
s

≪
1

w
it
h
v ‖
≡

v
.b
,
an

d
b
≡

B
/B

.
W

it
h
in

th
e
fr
am

ew
or
k
of

th
e
ad

ia
b
at
ic

th
eo
ry
,

le
t
u
s
d
ec
om

p
os
e
th
e
p
ar
ti
cl
e
m
ot
io
n
in

a
fa
st

d
y
n
am

ic
s
of

ty
p
ic
al

fr
eq
u
en
cy

Ω
s
,
an

d
a
sl
ow

m
ot
io
n
on

la
rg
er

ti
m
e
sc
al
es
.
T
h
e
la
te
r
q
u
an

ti
ty

ca
n
b
e
ob

ta
in
ed

b
y
av
er
ag
in
g
ov
er

a
cy
cl
ot
ro
n
m
ot
io
n
:
〈v
〉≡

∮
v

d
ϕ
c

2
π
,
w
h
er
e
ϕ
c
st
an

d
s
fo
r
th
e

cy
cl
ot
ro
n
p
h
as
e.

C
on

si
st
en
tl
y,

fa
st

va
ri
ab

le
s
−

d
en
ot
ed

w
it
h
a
ti
ld
e
in

th
is

ap
p
en
d
ix

−
h
av
e
a
ze
ro

m
ea
n
:
B

=
〈B

〉+
B̃
,
E

=
〈E

〉+
Ẽ

an
d
v
=

〈v
〉+

ṽ
,

w
it
h

〈B̃
〉
=

〈Ẽ
〉
=

〈ṽ
〉
=

0.
F
ro
m

n
ow

on
,
v
G

re
fe
rs

to
〈v

〉:
v
G

≡
〈v

〉.
A
s
w
il
l
b
ec
om

e
cl
ea
r
in

th
e
fo
ll
ow

in
g,

th
e
av
er
ag
ed

m
ot
io
n
re
fe
rs

to
th
at

of
th
e
gu

id
in
g-
ce
n
te
r,

h
en
ce

th
e
su
b
sc
ri
p
t
“G

”.
E
q
u
at
io
n
(8
8)

im
p
li
es

th
at

B̃
is

m
u
ch

w
ea
k
er

th
an

it
s
co
rr
es
p
on

d
in
g
av
er
ag
ed

co
m
p
on

en
t
〈B

〉:
B̃
/〈
B
〉
∼

ε.
F
u
rt
h
er
m
or
e,

at
le
ad

in
g
or
d
er
,
〈B

〉
ca
n
b
e
ap

p
ro
x
im

at
ed

b
y
it
s
va
lu
e
at

th
e

p
os
it
io
n
of

th
e
gu

id
in
g-
ce
n
te
r
〈B

〉
≃

B
(x

G
)
≡

B
G

(5
) .

C
on

v
er
se
ly
,
th
er
e
is

n
o
su
ch

a
h
ie
ra
rc
h
y
fo
r
th
e
v
el
o
ci
ti
es
,
ṽ
an

d
v G

b
ei
n
g
of

th
e
sa
m
e
or
d
er

of
m
ag
n
it
u
d
e
a
p
ri
o
ri
.
A
cc
ou

n
ti
n
g
fo
r
al
l
th
es
e
d
efi
n
it
io
n
s,
eq
u
at
io
n
(8
7)

is
th
en

eq
u
iv
al
en
t
to

th
e
fo
ll
ow

in
g
sy
st
em

:

m
s
d
v
G

d
t

=
e s

{ 〈E
〉+

v
G
×

B
G
+
〈ṽ

×
B̃
〉}

(8
9)

m
s
d
ṽ d
t
=

e s

{ Ẽ
+

ṽ
×

B
G
+
v
G
×
B̃

+
ṽ
×
B̃

−
〈ṽ

×
B̃
〉}

(9
0)

L
et

u
s
fi
rs
t
fo
cu
s
on

th
e
fa
st

d
y
n
am

ic
s.

G
iv
en

th
e
la
rg
e
m
ag
n
it
u
d
e
of

th
e
m
ag
-

n
et
ic

fi
el
d
in

fu
si
on

p
la
sm

as
,
th
e
C
ou

lo
m
b
fo
rc
e
h
as

a
m
u
ch

w
ea
k
er

m
ag
n
it
u
d
e

(5
)
L
et

x
G

b
e
th
e
g
u
id
in
g
ce
n
te
r
p
o
si
ti
o
n
,
a
n
d
x
th
a
t
o
f
th
e
p
a
rt
ic
le
,
su
ch

th
a
t
x
=

x
G
+
ρρ ρ
s
.

A
n
y
v
ec
to
r
fi
el
d
P
(x

)
ca
n
th
en

b
e
T
ay

lo
r
ex
p
a
n
d
ed

a
s
fo
ll
ow

s:
P
(x

)
=

ex
p
(ρρ ρ

s
·∇∇ ∇

)
P
(x

G
).

N
o
ti
ci
n
g
th
a
t
ρρ ρ
s
o
n
ly

d
ep

en
d
s
o
n
th
e
g
y
ro
-p
h
a
se

ϕ
c
,
th
e
g
y
ro
-a
v
er
a
g
e
o
f
P
(x

)
th
en

si
m
p
ly

re
a
d
s:

〈P
(x

)〉
=

〈e
x
p
(ρρ ρ

s
·∇∇ ∇

)〉
P
(x

G
)
=

P

∞ n
=
0

1
2
n
!

˙

(ρρ ρ
s
·∇∇ ∇

)2
n

¸

P
(x

G
).

A
p
p
ro
x
im

a
ti
n
g
〈B

〉
w
it
h
B

G
is
th
en

eq
u
iv
a
le
n
t
to

n
eg
le
ct
in
g
h
ig
h
o
rd
er

co
n
tr
ib
u
ti
o
n
s
in

th
e
su
m
m
a
ti
o
n
,
n
a
m
el
y

te
rm

s
w
it
h
n
≥

1
.
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N
P
L
A
S
M
A
S

5
5

th
an

th
e
L
ap

la
ce

fo
rc
e
(6
) .

C
on

se
q
u
en
tl
y,

th
e
d
om

in
an

t
te
rm

in
th
e
ri
gh

t
h
a
n
d

si
d
e
of

eq
.
(9
0)

is
th
e
se
co
n
d
on

e.
A
t
le
ad

in
g
or
d
er
,
eq
.
(9
0)

th
en

re
d
u
ce
s
to
:

(9
1)

m
s
d
ṽ d
t
=

e s
ṽ
×

B
G

H
er
e,

B
G
d
o
es

n
o
lo
n
ge
r
d
ep

en
d
on

th
e
in
st
an

ta
n
eo
u
s
p
os
it
io
n
of

th
e
p
ar
ti
cl
e

x
(t
).

T
h
is

m
ak
es

eq
.

(9
1)

in
te
gr
ab

le
.

T
h
is

is
n
ot
h
in
g
b
u
t
th
e
cy
cl
ot
ro
n

m
ot
io
n
.

In
te
gr
at
in
g
on

ce
in

ti
m
e,

on
e
ob

ta
in
s:

ṽ
=

ρρ ρ
s
×

Ω
s
,
w
it
h
ρρ ρ
s
th
e

L
ar
m
or

ra
d
iu
s
(ρ

s
=

m
s
v ⊥

/e
s
B

G
an

d
d
ρρ ρ
s
/
d
t
≡

ṽ
)
an

d
Ω

s
=

e s
B

G
/m

s
th
e

v
ec
to
r
of

th
e
cy
cl
ot
ro
n
p
u
ls
at
io
n
.

L
et

u
s
n
ow

co
n
si
d
er

th
e
av
er
ag
ed

m
ot
io
n
.
T
h
e
la
st

te
rm

on
th
e
ri
gh

t
h
a
n
d

si
d
e
of

eq
.

(8
9)

re
m
ai
n
s
to

b
e
ev
al
u
at
ed
.

A
t
lo
w
es
t
or
d
er

in
ε,

B̃
ca
n

b
e

ap
p
ro
x
im

at
ed

b
y
th
e
fi
rs
t
te
rm

of
it
s
T
ay
lo
r
ex
p
an

si
on

:

B̃
=

(ρρ ρ
s
·∇∇ ∇

)B
G

U
si
n
g
th
e
te
n
so
ri
al

ex
p
re
ss
io
n
of

th
e
cr
os
s-
p
ro
d
u
ct
,
st
ra
ig
h
tf
or
w
ar
d
al
ge
b
ra

le
ad

s
to
:

〈ṽ
×

B̃
〉=

〈(ρρ
ρ
s
×

Ω
s
)
×
(ρρ ρ

s
·∇∇ ∇

)B
G
〉

=
〈ρ

k
Ω
i
ρ
p
∇

p
B

k
e
i
−
ρ
iΩ

k
ρ
p
∇

p
B

k
e
i〉

w
h
er
e
in
d
ic
es

”G
”
an

d
”s
”
h
av
e
b
ee
n

om
it
te
d

fo
r
cl
ar
it
y.

H
er
e,

th
e
su
b
-

sc
ri
p
ts

re
fe
r
to

on
e
of

th
e
th
re
e
co
or
d
in
at
es

of
a
ca
rt
es
ia
n
v
ec
to
r
b
as
is
,
w
it
h

th
e
co
n
v
en
ti
on

th
at

d
ou

b
le
d
sy
m
b
ol
s
ar
e
su
m
m
ed

(e
.g
.
ρρ ρ
.∇

=
ρ
p
∇

p
).

T
h
e

v
ec
to
r
ρρ ρ
s
is

ch
ar
ac
te
ri
ze
d

b
y

th
e
fo
ll
ow

in
g

co
or
d
in
at
es

tr
an

sv
er
se

to
B

G
:

ρρ ρ
s
=

ρ
s
(c
os

ϕ
c
e
i
+

si
n
ϕ
c
e
j
).

It
fo
ll
ow

s
th
at

〈ρ
iρ

j
〉
=

1 2
ρ
2 s
δ⊥ ij

,
w
h
er
e
δ⊥ ij

st
an

d
s
fo
r
th
e
m
o
d
ifi
ed

K
ro
n
ec
k
er

sy
m
b
ol
,
eq
u
al

to
1
if
b
ot
h
i
an

d
j
ar
e
in

th
e
tr
an

sv
er
se

p
la
n
e
an

d
if
i
6=

j,
an

d
0
ot
h
er
w
is
e.

H
en
ce
,
on

ly
th
os
e
in
d
ic
es

k
=

p
an

d
i
=

p
in

th
e
fi
rs
t
an

d
se
co
n
d
te
rm

s,
re
sp
ec
ti
v
el
y,

le
ad

to
n
on

ze
ro

av
er
ag
es
:

〈ṽ
×
B̃
〉=

Ω
s
ρ
2 s

2
[b

(∇∇ ∇
⊥
·B

G
⊥
)
−
∇∇ ∇
⊥
B

G
]

T
h
en
,
si
n
ce

∇∇ ∇
.B

G
=

0,
it

tu
rn
s
ou

t
th
at

∇∇ ∇
⊥
·B

G
⊥

=
−
∇
‖B

G
‖
=

−
∇
‖B

G
.

O
n
e
fi
n
al
ly

ge
ts
:

〈ṽ
×
B̃
〉=

−
µ
s

e s
∇∇ ∇
B

G

E
q
u
at
io
n
(8
9)

ca
n
th
en

b
e
ex
p
re
ss
ed

in
te
rm

s
of

th
e
av
er
ag
ed
,
sl
ow

ly
va
ry
in
g

q
u
an

ti
ti
es
,
on

ly
:

(9
2)

m
s
d
v
G

d
t

=
e s

(〈
E
〉+

v
G
×

B
G
)
−
µ
s∇∇ ∇

B
G

(6
)
T
h
is

ch
a
ra
ct
er
iz
es

m
a
g
n
et
iz
ed

k
in
et
ic

p
la
sm

a
s,

w
h
er
e
th
e
C
o
u
lo
m
b
p
o
te
n
ti
a
l
en

er
g
y
is

m
u
ch

sm
a
ll
er

th
a
n
th
e
p
la
sm

a
k
in
et
ic

en
er
g
y.

5
6

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

T
h
e
la
st

te
rm

on
th
e
ri
gh

t
h
an

d
si
d
e
re
p
re
se
n
ts

th
e
d
ra
g
fo
rc
e
ex
er
te
d
on

th
e

gu
id
in
g
ce
n
te
r
b
y
th
e
sm

al
l
in
h
om

og
en
ei
ty

of
th
e
m
ag
n
et
ic

fi
el
d
at

th
e
L
ar
m
or

ra
d
iu
s
sc
al
e.

v
G
re
p
re
se
n
ts

th
e
gu

id
in
g-
ce
n
te
r
v
el
o
ci
ty
.
It

ca
n
b
e
d
ec
om

p
os
ed

in
to

p
ar
al
le
l
an

d
tr
an

sv
er
se

co
m
p
on

en
ts
:

v
G
≡

v G
‖b

+
v
G
⊥

E
q
u
at
io
n
(9
2)

ca
n
b
e
u
se
d
to

ob
ta
in

th
e
ex
p
re
ss
io
n
s
of

b
ot
h
v G
‖
an

d
v
G
⊥
.
In

th
e
re
m
ai
n
d
er
,
th
e
su
b
sc
ri
p
t
G

w
il
l
b
e
d
ro
p
p
ed

fo
r
th
e
m
ag
n
et
ic

fi
el
d
.

A
.1
.
T
ra

n
sv

e
rs
e
d
ri
ft
s.

—
P
ro
je
ct
in
g
eq
.
(9
2)

on
to

th
e
tr
an

sv
er
se

p
la
n
e

y
ie
ld
s(
7
) :

(9
3)

m
s

d
v
G
⊥

d
t

∣ ∣ ∣ ∣ ⊥
+

m
s

d
v
G
‖

d
t

∣ ∣ ∣ ∣ ⊥
=

e s
(〈
E
〉 ⊥

+
v
G
×
B
)
−

µ
s∇∇ ∇

⊥
B

A
t
le
ad

in
g
or
d
er
,
th
e
fi
rs
t
te
rm

on
th
e
le
ft

h
an

d
si
d
e
ca
n
b
e
n
eg
le
ct
ed
,
as

ca
n

b
e
ch
ec
k
ed

a
po
st
er
io
ri

(i
t
tu
rn
s
ou

t
to

b
e
sm

al
le
r
b
y
a
fa
ct
or

ε
w
it
h
re
sp
ec
t

to
th
e
se
co
n
d
te
rm

on
th
e
ri
gh

t
h
an

d
si
d
e)
.
T
h
e
se
co
n
d
te
rm

ac
co
u
n
ts

fo
r
th
e

cu
rv
at
u
re

of
th
e
m
ag
n
et
ic

fi
el
d
li
n
es
,
w
h
ic
h
ge
n
er
at
es

a
ce
n
tr
if
u
ga
l
fo
rc
e.

It
re
ad

s:
d
v
G
‖

d
t

∣ ∣ ∣ ∣ ⊥
=

v G
‖

d
b d
t
=

v G
‖2

∇
‖b

=
v G
‖2

N R

w
h
er
e
N

is
th
e
u
n
it
v
ec
to
r
n
or
m
al

to
m
ag
n
et
ic
fi
el
d
li
n
es

an
d
R

th
ei
r
cu
rv
at
u
re

ra
d
iu
s.

T
ak

in
g
th
e
cr
os
s
p
ro
d
u
ct

of
eq
.
(9
3)

w
it
h
B

le
ad

s
to

th
e
tr
an

sv
er
se

d
ri
ft

v
el
o
ci
ty

in
th
e
ad

ia
b
at
ic

li
m
it
,
at

lo
w
es
t
or
d
er
:

(9
4)

v
G
⊥
=

〈E
〉×

B

B
2

+
B

e s
B

2
×
[ µ

s
B

∇∇ ∇
B B

+
m

s
v G
‖2

N R

]

F
u
rt
h
er

n
ot
ic
in
g
th
at

N
/R

=
(b

.∇∇ ∇
)b

=
∇∇ ∇
⊥
lo
g
B
+
(µ

0
/B

)
j×

b
,
eq
.
(9
4)

al
so

re
ad

s:

(9
5)

v
G
⊥
=

〈E
〉×

B

B
2

+
m

s
v G
‖2

+
µ
s
B

e s
B

B
×
∇∇ ∇
B

B
2

+
m

s
v G
‖2

e s
B

2
µ
0
j ⊥

T
h
e
fi
rs
t
te
rm

is
th
e
el
ec
tr
ic

d
ri
ft

v
el
o
ci
ty

v
E
.

In
th
e
el
ec
tr
os
ta
ti
c
li
m
it
,

〈E
〉=

−∇∇
∇
〈φ
〉,

an
d
v
E

is
eq
u
al

to
v
E

=
B

×
∇∇ ∇
〈φ
〉/
B

2
.
T
h
e
tw

o
la
st

te
rm

s,
d
en
ot
ed

v
d
,s

h
er
ea
ft
er
,
ar
e
th
e
m
ag
n
et
ic

d
ri
ft
s.

T
h
ey

ar
e
m
ad

e
of

th
e
so
-

ca
ll
ed

g
ra

d
-B

an
d
cu
rv
at
u
re

d
ri
ft
s.

T
h
ey

ar
e
of

th
e
or
d
er

of
(T

s
/e

s
B
R
)
fo
r

th
er
m
al

p
ar
ti
cl
es
.
In

to
ka
m
ak

s,
th
es
e
d
ri
ft
s
ar
e
es
se
n
ti
al
ly

al
on

g
th
e
v
er
ti
ca
l

d
ir
ec
ti
on

.
T
h
ey

le
ad

to
v
er
ti
ca
l
ch
ar
ge

se
p
ar
at
io
n
,
io
n
s
an

d
el
ec
tr
on

s
d
ri
ft
in
g

in
op

p
os
it
e
d
ir
ec
ti
on

s.
B
y
u
si
n
g
th
e
co
n
d
it
io
n

fo
r
m
ag
n
et
ic

eq
u
il
ib
ri
u
m

in
to
ka
m
ak

s,
st
at
in
g
th
at

j
×

B
=

∇∇ ∇
p
(w

it
h

j
th
e
p
la
sm

a
cu
rr
en
t
an

d
p
it
s

p
re
ss
u
re
),

it
ca
n
b
e
sh
ow

n
th
at

th
e
la
st

te
rm

on
th
e
ri
gh

t
h
an

d
si
d
e
of

eq
.

(7
)
S
u
ch

a
p
ro
je
ct
io
n

co
rr
es
p
o
n
d
s
to

ta
k
in
g
th
e
sc
a
la
r
p
ro
d
u
ct

w
it
h

th
e
tr
a
n
sv
er
se

te
n
so
r

I ⊥
=

I−
b
⊗

b
,
w
it
h
I
th
e
u
n
it

te
n
so
r
o
f
ra
n
k
2
a
n
d
⊗

th
e
ex
te
ri
o
r
p
ro
d
u
ct
.
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5
7

(9
5)

is
sm

al
le
r
th
an

th
e
se
co
n
d
on

e
b
y
th
e
fa
ct
or

β
≡

p
/
(B

2
/2
µ
0
),

th
e
ra
ti
o

of
k
in
et
ic

to
m
ag
n
et
ic

en
er
gy

(µ
0
th
e
p
er
m
ea
b
il
it
y
of

fr
ee

sp
ac
e)
.
T
h
is

b
et
a

p
ar
am

et
er

b
ar
el
y
ex
ce
ed
s
a
fe
w

p
er
ce
n
ts

in
to
ka
m
ak

s.

A
.2
.
P
a
ra

ll
e
l
d
y
n
a
m
ic
s.

—
T
h
e
p
ar
al
le
l
p
ro
je
ct
io
n
of

eq
.
(9
2)

y
ie
ld
s:

(9
6)

m
s

d
v
G
‖

d
t
·b

+
m

s
d
v
G
⊥

d
t

·b
=

−
e s
∇
‖〈
φ
〉−

µ
s
∇
‖B

T
h
e
fi
rs
t
te
rm

on
th
e
le
ft

h
an

d
si
d
e
re
d
u
ce
s
to

m
s
d
v G
‖/

d
t.

T
h
e
se
co
n
d
te
rm

ca
n
b
e
ev
al
u
at
ed

as
fo
ll
ow

s:

d
v
G
⊥

d
t

·b
=

{(
v
G
⊥
·∇∇ ∇

⊥
+
v G
‖∇

‖)
v
G
⊥
} .b

S
in
ce

it
is
p
ro
p
or
ti
on

al
to

v
2 G
⊥
(w

it
h
v G
⊥
≡

‖v
G
⊥
‖)
,
th
e
fi
rs
t
te
rm

on
th
e
ri
g
h
t

h
an

d
si
d
e
of

th
is
d
ev
el
op

m
en
t,
n
am

el
y
(v

G
⊥
·∇∇ ∇

⊥
)v

G
⊥
,
ca
n
b
e
n
eg
le
ct
ed
.
T
h
is

si
m
p
li
fi
ca
ti
on

is
co
n
si
st
en
t
w
it
h
th
e
on

e
m
ad

e
ea
rl
ie
r,
w
h
en

(
d
v
G
⊥
/
d
t)
⊥
w
as

n
eg
le
ct
ed

in
th
e
d
er
iv
at
io
n
of

v
G
⊥

at
le
ad

in
g
or
d
er
.
U
si
n
g
p
ro
p
er
ti
es

of
th
e

cr
os
s-
p
ro
d
u
ct

an
d
th
e
ex
p
re
ss
io
n
of

v
G
⊥
eq
.
(9
5)
,
th
e
la
te
r
ex
p
re
ss
io
n
ca
n
b
e

tr
an

sf
or
m
ed

as
fo
ll
ow

s
in

th
e
el
ec
tr
os
ta
ti
c
li
m
it
:

d
v
G
⊥

d
t

·b
≃

v G
‖
{(
b
·∇∇ ∇

)
v
G
⊥
}·

b

=
−
v G
‖

{ v
G
⊥
×

(
B

×
∇∇ ∇
B

B
2

+
µ
0
j

B

)}
·b

=
v G
‖

{
B

×
∇∇ ∇
B

B
3

·∇∇ ∇
〈φ
〉+

µ
0
j ⊥

B
2

·( ∇∇ ∇
〈φ
〉+

µ
s

e s
∇∇ ∇
B

)}

In
tr
o
d
u
ci
n
g
th
e
q
u
an

ti
ty

∇∇ ∇
Ξ
=

µ
s∇∇ ∇

B
+

e s
∇∇ ∇
〈φ
〉,

th
e
p
ar
al
le
l
d
y
n
am

ic
s
of

th
e

gu
id
in
g-
ce
n
te
r
fi
n
al
ly

re
ad

s:

(9
7)

d
v G
‖

d
t

=
−

1 m
s

( b
+

m
s
v G
‖

e s
B

2
µ
0
j ⊥

)
·∇∇ ∇

Ξ
−

v G
‖
B

×
∇∇ ∇
B

B
3

·∇∇ ∇
〈φ
〉

T
h
e
te
rm

d
ep

en
d
in
g
on

th
e
tr
an

sv
er
se

cu
rr
en
t
j ⊥

is
sm

al
le
r
th
an

th
e
ot
h
er

on
es

b
y
th
e
ra
ti
o
β
.
A
ll
ot
h
er
s
ar
e
a
p
ri
o
ri

of
th
e
sa
m
e
or
d
er

of
m
ag
n
it
u
d
e.

A
.3
.
C
o
n
si
st
e
n
c
y

w
it
h

re
sp

e
c
t
to

st
a
n
d
a
rd

fo
rm

u
la
ti
o
n
.
—

In
th
is

se
ct
io
n
,
w
e
sh
ow

th
at

th
e
p
re
v
io
u
s
d
er
iv
at
io
n
ag
re
es

w
it
h
th
e
st
an

d
ar
d
fo
r-

m
u
la
ti
on

of
gy

ro
k
in
et
ic

th
eo
ry
,
u
p
to

sm
al
l
te
rm

s
p
ro
p
or
ti
on

al
to

th
e
p
ar
al
le
l

p
la
sm

a
cu
rr
en
t.

T
h
e
st
an

d
ar
d
fo
rm

u
la
ti
on

of
th
e
gu

id
in
g
ce
n
te
r
m
ot
io
n
,
as

5
8

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

p
re
se
n
te
d
in

eq
s.

(3
8)
-(
39
),

ca
n
b
e
re
ca
st

as
fo
ll
ow

s:

d
x
G

d
t

=
v G
‖b

+
B

×
∇∇ ∇
〈φ
〉

B
B
∗ ‖

(9
8)

+
m

s
v G
‖2

+
µ
s
B

e s
B

B
×
∇∇ ∇
B

B
B
∗ ‖

+
m

s
v G
‖2

e s
B
B
∗ ‖
µ
0
j ⊥

d
v G
‖

d
t

=
−

B

m
s
B
∗ ‖

( b
+

m
s
v G
‖

e s
B

2
µ
0
j)

·∇∇ ∇
Ξ
−
v G
‖B

×
∇∇ ∇
B

B
2
B
∗ ‖

·∇∇ ∇
〈φ
〉

(9
9)

W
e
re
ca
ll
th
at

B
∗ ‖
≡

B
+
(m

s
v G
‖/
e s
)
(∇∇ ∇

×
b
).
b
=

B
{1

+
(m

s
v G
‖/
e s
B

2
)µ

0
j ‖
}.

In
th
e
li
m
it
(m

s
v G
‖/
e s
B

2
)µ

0
j ‖

≪
1,

th
e
fi
rs
t
te
rm

on
th
e
ri
gh

t
h
an

d
si
d
e
of

eq
.

(9
9)

le
ad

s
to

−
1

m
s
[b

+
(m

s
v G
‖/
e s
B

2
)µ

0
j ⊥

]·
∇∇ ∇
Ξ
.
It

th
en

ap
p
ea
rs

th
at

th
e
eq
u
a-

ti
on

s
of

m
ot
io
n
d
er
iv
ed

fr
om

N
ew

to
n
’s

la
w
,
eq
s.

(9
5)
-(
97
),

an
d
th
os
e
d
er
iv
ed

fr
om

th
e
p
h
as
e-
sp
ac
e
re
d
u
ct
io
n
in

th
e
H
am

il
to
n
ia
n
fo
rm

al
is
m
,
eq
s.

(9
8)
-(
99
),

ar
e
id
en
ti
ca
l
in

th
e
li
m
it

(m
s
v G
‖/
e s
B

2
)µ

0
j ‖

→
0.

T
h
is

w
ou

ld
co
rr
es
p
on

d
to

ap
p
ro
x
im

at
in
g
B
∗ ‖
b
y
B
.
S
u
ch

a
si
m
p
li
fi
ca
ti
on

lo
ok

s
re
as
on

ab
le
si
n
ce

th
is
ra
ti
o

is
in
d
ee
d
v
er
y
sm

al
l
in

to
ka
m
ak

s:
(m

s
v G
‖/
e s
B

2
)µ

0
j ‖

∼
ρ
∗(
a
/q
R
)
fo
r
th
er
m
al

p
ar
ti
cl
es
,
w
it
h
ρ
∗
=

(ρ
s
/a

)
≈

2.
10
−
3
an

d
(a
/q
R
)
≈

1/
6
in

IT
E
R

p
la
sm

as
.

H
ow

ev
er
,
k
ee
p
in
g
su
ch

sm
al
l
te
rm

s
is

es
se
n
ti
al

to
p
re
se
rv
e
th
e
H
am

il
to
n
ia
n

fo
rm

u
la
ti
on

of
th
e
p
ro
b
le
m
,
th
u
s
in
su
ri
n
g
it
s
co
n
se
rv
at
io
n
p
ro
p
er
ti
es
.

A
p
p
e
n
d
ix

B

D
e
ta

il
s
o
f
th

e
d
e
ri
v
a
ti
o
n

o
f
p
a
rt
ic
le

d
e
n
si
ty

fr
o
m

th
e
g
y
ro

-c
e
n
te
r

d
is
tr
ib
u
ti
o
n

fu
n
c
ti
o
n

B
.1
.
R
e
la
ti
o
n
sh

ip
b
e
tw

e
e
n

f s
(x
,v

,t
)

a
n
d

f̄ s
(x

G
,v

G
,t
).

—
T
h
e

ol
d

ca
n
on

ic
al

co
or
d
in
at
es

(x
,p

)
–
th
at

of
th
e
p
ar
ti
cl
e
–
an

d
th
e
n
ew

on
es

(x
′ ,
p
′ )

–
th
os
e
of

th
e
gu

id
in
g-
ce
n
te
r,

on
ly

d
iff
er

b
y
in
fi
n
it
es
im

al
q
u
an

ti
ti
es

of
or
d
er

ǫ
∼

ρ
∗ .

In
su
ch

a
ca
se
,
th
ey

ca
n
b
e
sh
ow

n
to

b
e
re
la
te
d
,
at

fi
rs
t
or
d
er

in
th
e

sm
a
ll
p
ar
am

et
er

ǫ,
b
y
th
e
ge
n
er
at
in
g
fu
n
ct
io
n
S
(x
,p

)(
8
)
(w

h
ic
h
re
m
ai
n
s
to

b
e

d
et
er
m
in
ed
)
as

fo
ll
ow

s
[6
1
]
:

x
−
x
′ =

∂
p
′ S

p
−
p
′ =

−
∂
x
′ S

A
n
y
fi
el
d
f
ev
al
u
at
ed

at
th
e
p
os
it
io
n
(x
,p

)
ca
n
th
en

b
e
ex
p
re
ss
ed

in
te
rm

s
of

it
s
va
lu
e
at

(x
′ ,
p
′ )
,
n
am

el
y
:

(1
00
)

f
(x
,p

)
=

f
(x
′ ,
p
′ )
+
[f
,S

] x
′ ,
p
′
+

o(
ǫ)

(8
)
R
ig
o
ro
u
sl
y
sp

ea
k
in
g
,
th
e
g
en

er
a
ti
n
g
fu
n
ct
io
n

G
is

G
=

x
.p
′
+

ǫS
,
w
h
er
e
x
.p
′
ca
n

b
e

sh
ow

n
to

b
e
th
e
id
en
ti
ty

tr
a
n
sf
o
rm

.
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5
9

T
h
is

is
es
p
ec
ia
ll
y
th
e
ca
se

fo
r
th
e
H
am

il
to
n
ia
n
H
:

(1
01
)

H
(x
,p

)
=

H
(x
′ ,
p
′ )
+
[H

,S
] x
′ ,
p
′
+
o(
ǫ)

S
in
ce

th
e
ge
n
er
at
in
g
fu
n
ct
io
n
d
o
es

n
ot

ex
p
li
ci
tl
y
d
ep

en
d
on

ti
m
e,

H
(x
′ ,
p
′ )

al
so

st
an

d
s
fo
r
th
e
n
ew

H
am

il
on

ia
n
w
it
h
re
sp
ec
t
to

w
h
ic
h
th
e
n
ew

co
or
d
in
a
te
s

ar
e
ca
n
on

ic
al
ly

co
n
ju
ga
te
d
.
T
o
av
oi
d
an

y
co
n
fu
si
on

w
it
h
H
,
w
e
w
il
l
d
en
ot
e
it

H̄
(x
′ ,
p
′ )

h
er
ea
ft
er
.
A
s
fa
r
as

th
e
gy

ro
k
in
et
ic

th
eo
ry

is
co
n
ce
rn
ed
,
th
e
tr
an

s-
fo
rm

at
io
n
ac
ts

on
th
e
fi
rs
t
p
ai
r
of

co
n
ju
ga
te

co
or
d
in
at
es
,
n
am

el
y
(ϕ

c
,J

1
),
w
it
h

J
1
=

−
m

s
µ
s
/e

s
.
F
ro
m

eq
.
(1
01
),
it
co
m
es
:

H
(x
,p

)
=

H̄
(x

G
,p

G
)
+
[H̄

,S
] ϕ

c
,J

1

=
H̄
(x

G
,p

G
)
+
Ω
s
∂
ϕ
c
S
+
∂
ϕ
c
H̄

∂
µ
S

(1
02
)

w
it
h

Ω
s
=

(e
s
/m

s
)∂

µ
H̄

th
e
cy
cl
ot
ro
n

fr
eq
u
en
cy
.

T
h
e
ad

d
it
io
n
al

im
p
os
ed

co
n
st
ra
in
t
is

th
at

H̄
sh
ou

ld
n
ot

d
ep

en
d
on

th
e
gy

ro
-a
n
gl
e
ϕ
c
.
In

th
is

ca
se
,

th
e
la
st

te
rm

on
th
e
ri
gh

t
h
an

d
si
d
e
of

eq
.
(1
02
)
va
n
is
h
es
.
T
h
is

al
lo
w
s
on

e
to

ex
p
re
ss

th
e
ge
n
er
at
in
g
fu
n
ct
io
n
S
as

fu
n
ct
io
n
of

th
e
ol
d
an

d
n
ew

H
am

il
to
n
ia
n
s:

S
(x
,p

)
=

∫
d
ϕ
c

Ω
s

{ H
(x
,p

)
−
H̄
(x

G
,p

G
)}

=

∫
m

s
d
ϕ
c

B

{ φ
(x
)
−

φ̄
(x

G
,p

G
)}

(1
03
)

In
je
ct
in
g
th
e
ex
p
re
ss
io
n
of

S
,
eq
.
(1
03
),

in
eq
u
at
io
n
(1
00
),

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
of

p
ar
ti
cl
es

f s
ca
n
th
en

b
e
re
la
te
d
to

th
e
on

e
of

th
e
gy

ro
-c
en
te
rs

f̄ s
:

f s
(x
,v

,t
)
=

f̄ s
(x

G
,v

G
,t
)
+

e s B

{ φ
(x
,t
)
−
φ̄
(x

G
,v

G
,t
)}

∂
µ
f̄ e

q
,s
(x

G
,v

G
)

S
in
ce

th
e
co
m
p
u
ta
ti
on

is
p
er
fo
rm

ed
at

or
d
er

on
e
in

ǫ,
th
e
eq
u
il
ib
ri
u
m

d
is
tr
i-

b
u
ti
on

fu
n
ct
io
n
on

ly
is

re
ta
in
ed

in
th
e
la
st

te
rm

.

B
.2
.
C
a
lc
u
lu
s
o
f
n
p
o
l,
s
.
—

N
ot
ic
e
th
at

th
e
L
ar
m
or

ra
d
iu
s
it
se
lf
d
ep

en
d
s
on

sp
at
ia
l
lo
ca
ti
on

v
ia

it
s
B

d
ep

en
d
en
ce
.
M
or
e
p
re
ci
se
ly
,
w
h
en

m
ov
in
g
fr
om

o
n
e

p
os
it
io
n
to

an
ot
h
er

x
↔

x
G
,
th
e
fo
ll
ow

in
g
re
la
ti
on

s
h
ol
d
:

x
→

x
G
:

x
=

x
G
+

ρ
s
(x
)

(1
04
)

x
G
→

x
:

x
G
=

x
−

ρ
s
(x

G
)
≃

x
−
ρ
s
(x
)
+
(ρ

s
·∇∇ ∇

)ρ
s

(1
05
)

T
h
en

it
co
m
es
,
w
it
h
th
e
co
n
v
en
ti
on

th
at

ρ
s
st
an

d
s
fo
r
ρ
s
(x
)
h
er
ea
ft
er
:

eρ
s
·∇∇ ∇

≃
1
+

ρ
s
·∇∇ ∇

+
1 2
(ρ

s
·∇∇ ∇

)2
(1
06
)

e−
ρ

s
·∇∇ ∇

≃
1
−
ρ
s
·∇∇ ∇

+
[(
ρ
s
·∇∇ ∇

)ρ
s
]
·∇∇ ∇

+
1 2
(ρ

s
·∇∇ ∇

)2
(1
07
)

6
0

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

W
it
h
th
es
e
ex
p
re
ss
io
n
s,
an

d
at

se
co
n
d
or
d
er

in
k
⊥
ρ
s
,
eq
.
(4
5)

re
ad

s
as

fo
ll
ow

s:

n
p
o
l,
s
(x
,t
)
≃

∫
J v

d
µ
d
v G
‖e s B

∫
2
π

0

d
ϕ
c

2π
(1
−

ρ
s
·∇∇ ∇

)
∂
µ
f e

q
,s
(x
,v

)

{ 1
−
[ 1
−

ρ
s
·∇∇ ∇

+
((
ρ
s
·∇∇ ∇

)ρ
s
)
·∇∇ ∇

+
1 2
(ρ

s
·∇∇ ∇

)2
]

〈 1
+

ρ
s
·∇∇ ∇

+
1 2
(ρ

s
·∇∇ ∇

)2
〉}

φ
(x
,t
)

T
h
e
gy

ro
-r
ad

iu
s
v
ec
to
r
ρ
s
ca
n
b
e
w
ri
tt
en

ρ
s
=

ρ
s
(c
os

ϕ
c
e
⊥
1
+
si
n
ϕ
c
e
⊥
2
)
w
h
er
e

(e
⊥
1
,e
⊥
2
)
ar
e
th
e
tw

o
v
ec
to
rs

of
th
e
ca
rt
es
ia
n
b
as
is
.
It

fo
ll
ow

s:

〈ρ
s
·∇∇ ∇
〉=

0
〈 (
ρ
s
·∇∇ ∇

)2
〉 =

1 2
ρ
s∇∇ ∇

⊥
·(
ρ
s∇∇ ∇

⊥
)

(1
08
)

w
it
h
ρ
s
=
|ρ

s
|t

h
e
n
or
m

of
th
e
gy

ro
-r
ad

iu
s.

K
ee
p
in
g
te
rm

s
u
p
to

th
e
se
co
n
d

or
d
er

in
k
⊥
ρ
s
on

ly
,
on

e
ge
ts
:

n
p
o
l,
s
(x
,t
)
≃

∫
J v

d
µ
d
v G
‖e s B

∫
2
π

0

d
ϕ
c

2
π

(1
−
ρ
s
·∇∇ ∇

)
∂
µ
f e

q
,s
(x
,v

)

{ 1
−
[ 1
−

ρ
s
·∇∇ ∇

+
((
ρ
s
·∇∇ ∇

)ρ
s
)
·∇∇ ∇

+
1 2
ρ
s
·∇∇ ∇

(ρ
s
·∇∇ ∇

)

+
1 4
ρ
s∇∇ ∇

⊥
.(
ρ
s∇∇ ∇

⊥
)]}

φ
(x
,t
)

=
−
∫
J v

d
µ
d
v G
‖e s B

〈[
1 2
(ρ

s
·∇∇ ∇

(ρ
s
·∇∇ ∇

))

+
((
ρ
s
·∇∇ ∇

)ρ
s
)
·∇∇ ∇

+
1 4
ρ
s∇∇ ∇

⊥
.(
ρ
s∇∇ ∇

⊥
)] φ

∂
f e

q
,s

∂
µ

+
(ρ

s
·∇∇ ∇

φ
)

( ρ
s
·∇∇ ∇

∂
f e

q
,s

∂
µ

)〉

(1
09
)

T
h
re
e
b
ra
ck
et
s
re
m
ai
n
b
ei
n
g
ca
lc
u
la
te
d
.
T
h
e
fi
rs
t
on

e
h
as

al
re
ad

y
b
ee
n
co
m
-

p
u
te
d
(c
f.

eq
.
(1
08
))
.
T
h
e
tw

o
ot
h
er
s
re
ad

as
fo
ll
ow

s:

〈(
(ρ

s
·∇∇ ∇

)ρ
s
)
·∇∇ ∇
〉=

1 4

( ∇∇ ∇
⊥
ρ
2 s

) ·
∇∇ ∇
⊥

〈(
ρ
s
·∇∇ ∇

φ
)
(ρ

s
·∇∇ ∇

∂
µ
f e

q
,s
)〉

=
1 2
ρ
2 s
∇∇ ∇
⊥
φ
·∇∇ ∇

⊥
∂
µ
f e

q
,s
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6
1

It
th
en

co
m
es
,
fu
rt
h
er

n
ot
ic
in
g
th
at

ρ
s∇∇ ∇

⊥
·(ρ

s∇∇ ∇
⊥
φ
)
=

1 2

( ∇∇ ∇
⊥
ρ
2 s

) ·∇∇ ∇
⊥
φ
+
ρ
2 s
∇∇ ∇

2 ⊥
φ
:

n
p
o
l,
s
(x
,t
)

≃
−

∫
J v

d
µ
d
v G
‖e s B

[ 1 2

( ∇∇ ∇
⊥
ρ
2 s

) ·∇∇ ∇
⊥
φ
+

1 2
ρ
2 s
∇∇ ∇

2 ⊥
φ

+
1 2
ρ
2 s
∇∇ ∇
⊥
φ
·∇∇ ∇

⊥

] ∂
µ
f e

q
,s

=

∫
J v

d
µ
d
v G
‖
e s 2B

∂
µ

[(
∇∇ ∇
⊥
ρ
2 s

) ·∇∇ ∇
⊥
φ
+
ρ
2 s
∇∇ ∇

2 ⊥
φ

+
ρ
2 s
∇∇ ∇
⊥
φ
·∇∇ ∇

⊥
] f e

q
,s

A
t
th
is

p
oi
n
t,

n
ot
ic
e
th
at

B
−
1
∂
µ
=

(m
s
v ⊥

)−
1
∂
v
⊥

co
m
m
u
te
s
w
it
h
th
e
op

er
a-

to
r
in

co
n
fi
gu

ra
ti
on

sp
ac
e
∇∇ ∇
⊥
.
F
or

th
e
sa
m
e
re
as
o
n
,
∫
J v

d
µ
al
so

co
m
m
u
te
s

w
it
h
th
e
op

er
at
or

∇∇ ∇
⊥
.
S
in
ce

B
−
1
∂
µ
ρ
2 s
=

2
m

s
/(
e s
B
)2
,
on

e
fi
n
al
ly

ob
ta
in
s
th
e

fo
ll
ow

in
g
ex
p
re
ss
io
n
fo
r
th
e
p
ol
ar
iz
at
io
n
d
en
si
ty
:

n
p
o
l,
s
(x
,t
)

≃
∫

J v
d
µ
d
v G
‖
∇∇ ∇
⊥
·(

m
s

e s
B

2
f e

q
,s
∇∇ ∇
⊥
φ

)

=
∇∇ ∇
⊥
·( ∫

J v
d
µ
d
v G
‖
m

s

e s
B

2
f e

q
,s
∇∇ ∇
⊥
φ

)

=
∇∇ ∇
⊥
·(

m
s
n
eq

,s

e s
B

2
∇∇ ∇
⊥
φ
(x
,t
))

(1
10
)

A
p
p
e
n
d
ix

C

P
ro

o
f
o
f
ch

a
ra

c
te
ri
st
ic

p
ro

p
e
rt
ie
s

a)
T
h
e
p
oi
n
ts

Z
(t

1
;z
,t

1
),
Z
(t

2
;z
,t

1
)
an

d
Z
(t

3
;z
,t

1
)
ar
e
on

th
e
sa
m
e
ch
ar
ac
-

te
ri
st
ic
s
w
h
ic
h
is
lo
ca
te
d
at

z
at

ti
m
e
t 1
:
Z
(t

1
)
=

z
.
S
ol
v
in
g
th
e
d
iff
er
en
ti
al

sy
st
em

(2
0)
-
(2
1)

w
it
h
ea
ch

on
e
of

th
es
e
p
oi
n
ts

as
in
it
ia
l
co
n
d
it
io
n
y
ie
ld
s

th
e
sa
m
e
so
lu
ti
on

.
In

p
ar
ti
cu
la
r,

it
fo
ll
ow

s
th
at
:

(1
11
)

Z
(t

3
;Z

(t
2
;z
,t

1
),
t 2
)
=

Z
(t

3
;z
,t

1
)

b
)
B
y
ta
k
in
g
t 1

=
t 3

in
E
q
.
(1
11
),
it
co
m
es
:

Z
(t

3
;Z

(t
2
;z
,t

3
),
t 2
)
=

Z
(t

3
;z
,t

3
)
=

z

It
ap

p
ea
rs

th
at

Z
(t

3
;·,

t 2
)
is

th
e
in
v
er
se

of
Z
(t

2
;·,

t 3
)
in

th
e
se
n
se

th
at

th
es
e
ap

p
li
ca
ti
on

s
al
lo
w

on
e
to

ex
p
lo
re

a
gi
v
en

ch
ar
ac
te
ri
st
ic
s
fo
rw

ar
d

an
d
b
ac
k
w
ar
d
in

ti
m
e.

B
ot
h
ap

p
li
ca
ti
on

s
ar
e
C

1
in

v
ir
tu
e
of

th
eo
re
m

1.

c)
L
et

th
e
ja
co
b
ia
n
J
b
e
d
efi
n
ed

as

J
(t
;1
,s
)
=

d
et
(∇

Z
(t
;z
,s
))

=
d
et

((
∂
Z
i(
t;
z
,s
)

∂
z j

))

1
≤
i,
j≤

d

6
2

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

L
et

Z
sa
ti
sf
y

d
Z d
t
=

U
(Z

(t
),
t)

th
en

d
Z
i

d
t
=

U
i(
Z
(t
),
t)

fo
r
al
l
1
≤

i
≤

d
.

C
on

se
q
u
en
tl
y,

∇
Z

fu
lfi
ll
s
th
e
fo
ll
ow

in
g
eq
u
at
io
n
:

d d
t∇

Z
i
=

d ∑ k
=
1

∇
Z
k
·∂

U
i

∂
z k

D
e
fi
n
it
io
n

2
.
—

L
et

f
be

a
n
a
p
p
li
ca
ti
o
n
f
:
E

d
7→

R
.
f
is

a
d
-
li
n
ea
r

a
lt
er
n
a
ti
n
g
m
a
p
if
:

–
f
is

li
n
ea
r
w
it
h
re
sp
ec
t
to

ea
ch

va
ri
a
bl
e,

i.
e
fo
r
x
1
,·
··

,x
d
,x
′ i
ve
ct
o
rs

a
n
d
tw
o
sc
a
la
rs

a
a
n
d
b

f
(x

1
,·
··

,x
i−

i,
a
x
i
+

bx
′ i,
x
i+

1
,·
··

,x
n
)
=

a
f
(x

1
,·
··

,x
n
)
+
bf

(x
1
,·
··

,x
′ i,
··
·,

x
n
)

–
f
is

a
n
a
lt
er
n
a
ti
n
g
m
a
p
,
i.
e:

[∃
i
6=

j,
x
i
=

x
j
]
⇒

f
(x

1
,·
··

,x
n
)
=

0

R
e
m
a
r
k
2
.
—

L
et

M
be

a
(d

×
d
)
m
a
tr
ix
.
T
h
en

th
e
d
et
er
m
in
a
n
t
o
f
M

is
a
d
-l
in
ea
r
a
lt
er
n
a
ti
n
g
m
a
p
w
it
h
re
sp
ec
t
to

th
e
co
lu
m
n
s
o
f
M

.
L
et

u
s

d
en

o
te

(·,
··
·,

·)
th
is

d
-l
in
ea
r
a
lt
er
n
a
ti
n
g
m
a
p
.
T
h
e
d
et
er
m
in
a
n
t
o
f
M

ca
n

be
w
ri
tt
en

a
s
d
et
M

=
(M

1
,·
··

,M
d
)
w
h
er
e
M

j
re
p
re
se
n
ts

th
e
j-
th

co
lu
m
n

o
f
M

.

U
si
n
g
th
e
n
ot
at
io
n
of

th
e
p
re
v
io
u
s
d
efi
n
it
io
n
an

d
re
m
ar
k
,
th
en

∂
J ∂
t
(t
;1
,s
)
=

∂ ∂
t
d
et
(∇

Z
(t
;z
,s
))

=
(∂

∇
Z
1

∂
t

,∇
Z
2
,·
··

,∇
Z
d
)
+

··
·+

(∇
Z
1
,∇

Z
2
,·
··

,
∂
∇
Z
d

∂
t

)

=
(

d ∑ k
=
1

∇
Z
k
·∂

U
1

∂
z k

,∇
Z
2
,·
··

,∇
Z
d
)

+
··
·+

(∇
Z
1
,∇

Z
2
,·
··

,
d ∑ k
=
1

∇
Z
k
·∂

U
d

∂
z k

)

=
∂
U
1

∂
z 1

J
+
··
·+

∂
U
d

∂
z d

J

In
co
m
p
ac
t
fo
rm

,
it
re
ad

s
∂
J ∂
t
(t
;1
,s
)
=

(∇
·U

)J
.
B
es
id
es
,
∇
Z
(s
;z
,s
)
=

∇
z
=

I d
su
ch

th
at

J
(s
;z
,s
)
=

d
et
I d

=
1.

T
h
e
ja
co
b
ia
n
J
tu
rn
s
ou

t
to

sa
ti
sf
y
th
e

d
iff
er
en
ti
al

eq
u
at
io
n d
J d
t
=

(∇
·U

)J
an

d
J
(s
)
=

1
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6
3

w
h
ic
h
h
as

fo
r
u
n
iq
u
e
so
lu
ti
on

J
(t
)
=

ex
p
(∫

t s
∇
·U

d
t)

>
0.

In
p
ar
ti
cu
la
r,

if
∇
·U

=
0,

th
en

J
(t
;1
,s
)
=

1
fo
r
al
l
t.

A
p
p
e
n
d
ix

D

P
ro

o
f
o
f
th

e
c
o
n
se
rv

a
ti
o
n

p
ro

p
e
rt
ie
s
o
f
V
la
so
v
-M

a
x
w
e
ll

e
q
u
a
ti
o
n
s

T
h
e
sy
st
em

d
efi
n
in
g
th
e
ch
ar
ac
te
ri
st
ic
s
as
so
ci
at
ed

to
th
e
V
la
so
v
-M

ax
w
el
l

eq
u
at
io
n
s
re
ad

s:

d
x d
t
=

v
(t
),

(1
12
)

d
v d
t
=

q m
(E

(x
(t
),
t)
+
v
(t
)
×

B
(x
(t
),
t)
)

(1
13
)

L
et

u
s
n
ot
e
Z
(t
;z

0
,s
)
=
{x

(t
;x

0
,v

0
,s
),
v
(t
;x

0
,v

0
,s
)}

th
e
u
n
iq
u
e
so
lu
ti
on

at
ti
m
e
t
of

th
e
sy
st
em

(1
12
)-
(1
13
)
w
h
ic
h
ta
k
es

th
e
va
lu
e
{x

0
,v

0
}
at

ti
m
e
s,

or
si
m
p
ly

z
(t
)
=
{x

(t
),
v
(t
)}
.

D
.1
.
P
ro

o
f
o
f
th

e
m
a
x
im

u
m

p
ri
n
c
ip
le
.
—

U
si
n
g
(1
12
)-
(1
13
),
th
e
V
la
so
v

eq
u
at
io
n
ca
n
b
e
ex
p
re
ss
ed

as

d d
t
(f
(x
(t
),
v
(t
))

=
0

th
en

f
(x
,v

,t
)
=

f 0
(x
(0
;x

,v
,t
),
v
(0
;x

,v
,t
))

S
in
ce

f 0
is

p
os
it
iv
e,

f
sa
ti
sfi
es

th
e
m
ax

im
u
m

p
ri
n
ci
p
le

0
≤

f
(x
,v

,t
)
≤

m
a
x
(x

,v
)(
f 0
(x
,v

))

D
.2
.
P
ro

o
f
o
f
th

e
v
o
lu
m
e
c
o
n
se
rv

a
ti
o
n
.
—

B
y
in
te
gr
at
in
g
on

an
ar
b
i-

tr
ar
y
v
ol
u
m
e
V

of
th
e
p
h
as
e
sp
ac
e
an

d
b
y
u
si
n
g
th
e
fa
ct

th
at

f
is

co
n
se
rv
ed

al
on

g
it
s
ch
ar
ac
te
ri
st
ic
s,

th
en

∫ V
f
(x
,v

,t
)
d
x
d
v
=

∫ V
f
(x
(t
;x

,v
,t
),
v
(t
;x

,v
,t
))
d
x
d
v

=

∫ V
f
(x
(0
;x

,v
,t
),
v
(0
;x

,v
,t
))
d
x
d
v

=

∫ V
f 0
(x
(0
;x

,v
,t
),
v
(0
;x

,v
,t
))
d
x
d
v

T
h
en

b
y
p
er
fo
rm

in
g
th
e
ch
an

ge
of

va
ri
ab

le

y
=

x
(0
;x

,v
,t
)

,
u
=

v
(0
;x

,v
,t
)

6
4

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

an
d
u
si
n
g
th
e
fa
ct

th
at

th
e
ja
co
b
ia
n
of

th
is

tr
an

sf
or
m
at
io
n
is

eq
u
al

to
1
(d
u
e

to
p
ro
p
os
it
io
n
1
an

d
b
ec
au

se
∇

(x
,v
)
·U

=
0)

th
en

∫ V
f
(x
,v

,t
)
d
x
d
v
=

∫ U
−
1
(V

)
f 0
(y

,u
)
d
y
d
u

D
.3
.
P
ro

o
f
o
f
th

e
L
p

n
o
rm

c
o
n
se
rv

a
ti
o
n
.
—

L
et

th
e
fu
n
ct
io
n

Υ
b
e

d
efi
n
ed

as
C1

su
ch

th
at

Υ
∈
C1

(R
+
,R

+
).

W
e
ar
e
go
in
g
to

p
ro
v
e
th
at
:

I
=

d d
t

( ∫

Rd
×
Rd

Υ
(f
(x
,v

,t
))
d
x
d
v

)
=

0

In
p
ar
ti
cu
la
r,

b
y
ta
k
in
g
Υ
(y
)
=

y
p
,
th
is

is
eq
u
iv
al
en
t
to

sa
y
in
g
th
at

al
l
L
p

n
or
m
s,

fo
r
1
≤

p
≤

+
∞

ar
e
p
re
se
rv
ed

(p
ro
of

of
E
q
.

(3
1)
).

T
h
e
in
fi
n
it
e

n
or
m

L
∞

is
al
so

co
n
se
rv
ed

d
u
e
to

th
e
m
ax

im
u
m

p
ri
n
ci
p
le
.
M
or
eo
v
er
,
ta
k
in
g

Υ
(y
)
=

−
y
ln
(y
),

w
e
ob

ta
in

th
e
co
n
se
rv
at
io
n
of

th
e
k
in
et
ic

en
tr
op

y
(p
ro
of

of
E
q
.
(3
2)
).

U
si
n
g
th
e
d
efi
n
it
io
n
of

th
e
to
ta
l
ti
m
e
d
er
iv
at
iv
e
(
d
·

d
t
=

∂
t
+

d
x d
t
∇

x
·+

d
v d
t
∇

v
·),

I
is

eq
u
iv
al
en
t
to I
=

∫
d d
t[
Υ
(f
(x
,v

,t
))
]
d
x
d
v
=

∫
d
Υ d
f

d
f d
t
d
x
d
v
=

0

D
.4
.
P
ro

o
f
o
f
th

e
e
n
e
rg

y
c
o
n
se
rv

a
ti
o
n
.
—

T
o
ob

ta
in

th
e
en
er
gy

co
n
se
r-

va
ti
on

p
ro
p
er
ty

of
th
e
V
la
so
v
-M

ax
w
el
l
sy
st
em

,
th
e
fi
rs
t
st
ep

is
to

m
u
lt
ip
ly

th
e

V
la
so
v
eq
u
at
io
n
(1
2)

b
y

1 2
m
v
·v

=
1 2
m
v
2
an

d
to

in
te
gr
at
e
on

th
e
p
h
as
e
sp
ac
e,

1 2

d d
t

∫ Rd
×
Rd

m
v
2
f
d
x
d
v
+

1 2

∫ Rd
×
Rd

m
∇

x
·(
v
2
v
f
)
d
x
d
v

+
1 2

∫ Rd
×
Rd

m
v
2
∇

v
·(
(E

+
v
×

B
)f
)
d
x
d
v
=

0

S
in
ce

f
va
n
is
h
es

at
in
fi
n
it
y
fa
st
er

th
an

an
y
p
ow

er
of

v
:

(1
14
)

∫ Rd
×
Rd

∇
x
·(
v
2
v
f
)
d
x
d
v
=

0

In
te
gr
at
in
g
b
y
p
ar
ts
,
th
e
th
ir
d
te
rm

le
ad

s
to
:

m 2

∫ Rd
×
Rd

v
2
∇

v
·(
(E

+
v
×
B
)f
)
d
x
d
v

=
−
∫ Rd

×
Rd

v
·(
(E

+
v
×

B
)f
)
d
x
d
v
+
su
rf
ac
e
te
rm

=
−
∫ Rd

E
·j

d
x

w
h
er
e
th
e
su
rf
ac
e
te
rm

va
n
is
h
es

fo
r
th
e
sa
m
e
re
as
on

th
an

b
ef
or
e
(i
.e
f
va
n
is
h
es

at
in
fi
n
it
y
fa
st
er

th
an

an
y
p
ow

er
of

v
)
an

d
w
h
er
e
j
st
an

d
s
fo
r
th
e
cu
rr
en
t
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6
5

j
=
∫
v
f
d
v
.

T
h
er
ef
or
e,

th
e
ti
m
e
d
er
iv
at
iv
e
of

th
e
k
in
et
ic

en
er
gy

re
ad

s
as

fo
ll
ow

s:

(1
15
)

m 2

d d
t

∫ Rd
×
Rd

v
2
f
d
x
d
v
=

∫ Rd
E
·j

d
x

T
h
e
se
co
n
d
st
ep

co
n
si
st
s
in

ev
al
u
at
in
g
th
e
ti
m
e
d
er
iv
at
iv
e
of

th
e
el
ec
tr
om

ag
-

n
et
ic

en
er
gy
E E

M
=

1 2

∫
( ǫ 0

E
2
+

B
2

µ
0

)
d
x
.
It

re
ad

s

d d
tE

E
M

=

∫
( ǫ 0

E
·∂

tE
+

B µ
0
·∂

tB

)
d
x

U
si
n
g
M
ax

w
el
l-
F
ar
ad

ay
(1
6)

an
d
M
ax

w
el
l-
A
m
p
èr
e
eq
u
at
io
n
(1
4)

to
co
m
p
u
te

∂
tE

an
d
∂
tB

,
re
sp
ec
ti
v
el
y,

on
e
ob

ta
in
s:

d d
tE

E
M

=

∫
(
E
·∇

×
B

µ
0

−
E
·j

−
B

·∇
×

E

µ
0

)
d
x

=
−
∫

E
·j

d
x
−
∫

∇
·(

E
×
B

µ
0

)
d
x

T
h
e
la
tt
er

te
rm

is
a
su
rf
ac
e
te
rm

:
it

ac
co
u
n
ts

fo
r
th
e
ex
ch
an

ge
of

th
e
el
ec
-

tr
om

ag
n
et
ic

en
er
gy

w
it
h
th
e
ou

ts
id
e
w
or
ld

v
ia

th
e
P
oy
in
ti
n
g
v
ec
to
r

E
×
B

µ
0
.
It

va
n
is
h
es

fo
r
an

is
ol
at
e
sy
st
em

.
In

th
is

ca
se
,
it

re
ad

il
y
ap

p
ea
rs

th
at

th
e
to
ta
l

en
er
gy
,
n
am

el
y
th
e
k
in
et
ic

p
lu
s
th
e
el
ec
tr
om

ag
n
et
ic

en
er
gy
,
is

co
n
se
rv
ed

d d
t

{ ∫
1 2
m
v
2
f
d
x
d
v
+

∫
1 2

( ǫ 0
E

2
+

B
2

µ
0

)}
=

0

R
e
m
a
rk

3
.
—

In
a
fi
n
it
e
d
o
m
a
in
,
a
s
u
se
d
in

a
n
u
m
er
ic
a
l
so
lv
in
g,

th
e
co
n
-

d
it
io
n

(1
14
)
co
u
ld

n
o
t
be

ex
a
ct
ly

0
a
n
d
w
o
u
ld

d
ep
en

d
o
n

th
e
ch
o
ic
e
o
f
th
e

bo
u
n
d
a
ry

co
n
d
it
io
n
s.

A
p
p
e
n
d
ix

E

M
o
n
te
-C

a
rl
o
in
te
rp

re
ta

ti
o
n

fo
r
P
IC

si
m
u
la
ti
o
n
s

E
.1
.
M

o
n
te
-C

a
rl
o
e
v
a
lu
a
ti
o
n
o
f
in
te
g
ra

ls
.
—

In
th
e
fo
ll
ow

in
g,

th
e
te
rm

“M
on

te
-C

ar
lo
”
re
fe
rs

to
th
e
es
ti
m
at
io
n

of
m
u
lt
id
im

en
si
on

al
in
te
gr
al
s
u
si
n
g

st
at
is
ti
ca
l
sa
m
p
li
n
g
te
ch
n
iq
u
es
.
In

ge
n
er
al
,
p
ar
ti
cu
la
r
fo
rm

of
th
e
in
te
gr
an

d
an

d
h
ow

it
is

sa
m
p
le
d

in
th
e
v
ol
u
m
e
of

in
te
re
st

d
et
er
m
in
e
th
e
ac
cu
ra
cy

of
th
e
es
ti
m
at
es
.
S
in
ce

th
e
19
50
s,

th
e
M
on

te
C
ar
lo

co
m
m
u
n
it
y
h
as

d
ev
el
op

ed
a
n
u
m
b
er

of
te
ch
n
iq
u
es

ai
m
in
g
at

m
in
im

iz
in
g
th
e
er
ro
r
in

th
e
es
ti
m
at
es

an
d

w
h
ic
h
in
cr
ea
se

th
e
effi

ci
en
cy

of
th
e
ca
lc
u
la
ti
on

s.
R
ea
d
er
s
u
n
fa
m
il
ia
r
w
it
h
th
e

te
ch
n
iq
u
es

an
d
th
e
te
rm

in
ol
og
y
of

th
e
M
on

te
-C

ar
lo

m
et
h
o
d
ca
n
re
fe
r
to

e.
g.

6
6

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

H
am

m
er
sl
ey

an
d
H
an

d
sc
om

b
[6
7
],
F
is
h
m
an

[5
6
]
or

m
or
e
re
ce
n
tl
y
[8
5
].

F
or

th
e
d
is
cu
ss
io
n
le
t
u
s
co
n
si
d
er

th
e
ge
n
er
al

in
te
gr
al

of
th
e
fo
rm

:

(1
16
)

I
(Υ

)
=

∫ V
Υ
(Z

)f
(Z

)
d
τ

w
h
er
e
d
τ
=

J
d
x
d
v
is
th
e
v
ol
u
m
e
el
em

en
t,
Υ
(Z

)
is
an

y
fu
n
ct
io
n
of

th
e
p
h
as
e-

sp
a
ce

co
or
d
in
at
es

Z
=

(x
,v

)
an

d
f
(Z

,t
)
is

th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
of

so
m
e

p
op

u
la
ti
on

of
N

s
p
ar
ti
cl
es
,
i.
e
∫ V

f
(Z

)
d
τ
=

N
s

F
or

in
st
an

ce
,
I
(Υ

)
w
ou

ld
b
e
th
e
n
u
m
b
er

d
en
si
ty

in
co
n
fi
gu

ra
ti
on

sp
ac
e
if
Υ

=
1,

an
d
th
e
in
te
gr
al

is
ov
er

th
e
v
el
o
ci
ty

sp
ac
e.

L
et

u
s
tr
ea
t
Z

as
a
co
n
ti
n
u
ou

s
ra
n
d
om

va
ri
ab

le
w
it
h
p
ro
b
ab

il
it
y
d
en
si
ty

fu
n
ct
io
n
(P

D
F
)
p
(Z

)
in

th
e
p
h
as
e-

sp
ac
e
v
ol
u
m
e
V
,
th
e
sa
m
p
li
n
g
d
is
tr
ib
u
ti
on

sa
ti
sf
y
in
g,

(1
17
)

∫ V
p
(Z

)
d
τ
=

1

T
h
e
b
as
ic
p
ri
n
ci
p
le
of

M
on

te
-C

ar
lo

m
et
h
o
d
s
co
n
si
st
s
in

re
fo
rm

u
la
ti
n
g
eq
u
at
io
n

(1
16
)
as

fo
ll
ow

s:

(1
18
)

I
(Υ

)
=

E p
(g
(Z

))
=

∫ V
g
(Z

)p
(Z

)
d
τ

w
h
er
e
E p

(g
)
is

th
e
ex
pe
ct
ed

va
lu
e
of

th
e
ra
n
d
om

va
ri
ab

le

(1
19
)

g
≡

(Υ
(Z

)f
(Z

))
/p

(Z
)

u
n
d
er

th
e
p
ro
b
ab

il
it
y
d
en
si
ty

p
(Z

).
L
et

u
s
al
so

d
efi
n
e
th
e
va
ri
a
n
ce

of
g
b
y

(1
20
)

V(
g
)
=

σ
2 g
=

∫ V
(g

−
E p

(g
))

2
p
(Z

)
d
τ

T
h
e
id
ea

is
to

ge
n
er
at
e
an

in
d
ep

en
d
en
t
ra
n
d
om

sa
m
p
le

(Z
1
,Z

2
,·
··

,Z
N
)

fo
r
th
e
ra
n
d
om

va
ri
ab

le
Z

of
p
ro
b
ab

il
it
y
p
(Z

)
an

d
to

ca
lc
u
la
te

a
n
ew

es
ti
m
at
e

(c
al
le
d
M
o
n
te
-C

a
rl
o
es
ti
m
a
te
)
as

a
fu
n
ct
io
n
of

th
is
sa
m
p
li
n
g.

T
h
e
la
w

of
la
rg
e

n
u
m
b
er
s
(fi
rs
t
fu
n
d
am

en
ta
l
th
eo
re
m

of
p
ro
b
ab

il
it
y
)
su
gg
es
ts

to
ge
n
er
at
e
th
is

es
ti
m
at
e
w
it
h
th
e
em

p
ir
ic

m
ea
n

(1
21
)

g̃ N
=

1 N

N ∑ j=
1

g
(Z

j
)

N
ot
ic
e
th
at

th
e
N

n
u
m
b
er

of
m
ar
k
er
s
u
p
p
er

b
ou

n
d
ed

d
u
e
to

th
e
co
m
p
u
ta
ti
on

al
li
m
it
s,
su
ch

th
at

N
≪

N
s
,
w
h
er
e
N

s
is
th
e
n
u
m
b
er

of
p
h
y
si
ca
l
p
ar
ti
cl
es

of
th
e
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6
7

s
sp
ec
ie
.
T
h
en
,
le
t
S
N

b
e
th
e
ra
n
d
om

va
ri
ab

le
ch
ar
ac
te
ri
ze
d
b
y
E p

(S
N
)
=

0
an

d
σ
(S

N
)
=

1:

S
N
≡

g̃ N
−
E p

(g̃
N
)

σ
g
/
√
N

w
h
er
e
th
e
u
n
b
ia
se
d
es
ti
m
at
e
g̃ N

is
d
efi
n
ed

b
y
E
q
.
(1
21
),

th
e
ex
p
ec
te
d
va
lu
e

E p
b
y
E
q
.
(1
18
)
an

d
th
e
sq
u
ar
e
ro
ot

of
th
e
va
ri
an

ce
σ
g
b
y
E
q
.
(1
20
)

T
h
eo

re
m

2
.
—

T
h
e
c
e
n
tr
a
l
li
m
it

th
e
o
re

m
(s
ec
o
n
d
fu
n
d
a
m
en

ta
l
th
eo
re
m

o
f
p
ro
ba
bi
li
ty
)
st
a
te
s
th
a
t
S
N

co
n
ve
rg
es

in
d
is
tr
ib
u
ti
o
n

to
th
e
st
a
n
d
a
rd

n
o
r-

m
a
l
d
is
tr
ib
u
ti
o
n
N
(0
;1
)
a
s
N

a
p
p
ro
a
ch
es

in
fi
n
it
y.

C
o
n
ve
rg
en

ce
in

d
is
tr
ib
u
ti
o
n

m
ea
n
s
th
a
t
if
Φ
(z
)
is

th
e
cu
m
u
la
ti
ve

d
is
tr
ib
u
ti
o
n
fu
n
ct
io
n
o
f
N
(0
;1
),

i.
e

Φ
(z
)
=

∫
z −
∞

1 √
2
π
ex
p

( −
t2 2

)
d
t
=

er
ro
r
fu
n
ct
io
n

th
en

fo
r
ev
er
y
re
a
l
n
u
m
be
r
z
,
w
e
h
a
ve

li
m

n
→
∞
P
(S

N
≤

z
)
=

Φ
(z
)

T
h
er
ef
or
e
it

is
p
os
si
b
le

to
d
efi
n
e
a
co
n
fi
d
en

ce
in
te
rv
a
l
th
at

q
u
an

ti
fi
es

th
e

d
eg
re
e
of

ag
re
em

en
t
of

th
e
es
ti
m
at
e
g̃ N

w
it
h
re
sp
ec
t
to

th
e
m
om

en
t
in
te
gr
al

I
(Υ

).
L
et

e n
b
e
th
is

er
ro
r,

th
en

fo
r
a
co
n
fi
d
en

ce
le
ve
l
(1

−
α
)
(α

∈
R
),

(1
22
)

|e n
|≤

z 1
−
α
/
2
σ
g

√
N

w
h
er
e
th
e
re
al

z 1
−
α
/
2
is

th
e
(1

−
α
)-
th

p
er
ce
n
ti
le

of
th
e
d
is
tr
ib
u
ti
on

.
F
or

in
st
an

ce
le
t
u
s
ta
k
e
1
−

α
=

0.
95
,
th
en

P
(−

z 1
−
α
/
2
≤

S
N

≤
z 1
−
α
/
2
)
=

1
−
α
=

0.
95

w
h
er
e
z 1
−
α
/
2
d
er
iv
es

fr
om

th
e
cu
m
u
la
ti
v
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
:

Φ
(z

1
−
α
/
2
)
=

P
(S

N
≤

z 1
−
α
/
2
)
=

1
−

α 2
=

0.
97
5

z 1
−
α
/
2
=

Φ
−
1
(Φ

(z
1
−
α
/
2
))

=
Φ
−
1
(0
.9
75
)
=

1.
96

T
h
is
ca
n
b
e
in
te
rp
re
te
d
as

fo
ll
ow

s:
gi
v
en

th
e
n
u
m
b
er

N
of

d
is
cr
et
e
m
ar
k
er
s
to

sa
m
p
le

th
e
co
n
ti
n
u
ou

s
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
in

th
e
p
h
as
e
sp
ac
e,

th
e
in
te
gr
al

(1
16
)
ca
n

b
e
ap

p
ro
ac
h
ed

d
ow

n
to

an
er
ro
r
of

|e n
|≤

Φ
−
1
(1

−
α
/2
)

σ
g

√
N

(i
.e

|e n
|≤

1.
96

σ
g

√
N

in
th
e

ex
am

p
le
)
w
it
h
in

th
e

co
n
fi
d
en
ce

le
v
el

of
10
0(
1
−

α
)

p
er
ce
n
t,
w
h
er
e
α
is

an
y
re
al

co
m
p
ri
se
d
b
et
w
ee
n
0
an

d
1
(i
.e

95
%

h
er
e)
.

T
o
su
m
m
ar
iz
e,

g̃ N
is

th
e
u
n
bi
a
se
d
(i
.e

E p
(g̃

N
)
=

E p
(g
(Z

))
)
an

d
co
n
si
st
en
t

(i
.e

V(
g̃ N

)
=

σ
2 g
/N

→
0
as

N
→

∞
)
es
ti
m
at
e
of

th
e
ex
p
ec
te
d
va
lu
e
of

g
,
w
it
h

th
e
st
an

d
ar
d
er
ro
r
ǫ
≃

σ
g
/
√
N
,
w
h
er
e
σ
g
is
th
e
st
an

d
ar
d
d
ev
ia
ti
on

d
efi
n
ed

b
y

6
8

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

E
q
.
(1
20
).

F
in
al
ly
,
a
va
li
d
M
on

te
-C

ar
lo

es
ti
m
at
e
of

th
e
m
om

en
t
in
te
gr
al

I
(Υ

)
(E

q
.
11
6)

is
gi
v
en

b
y

(1
23
)

I
(Υ

)
=

1 N

N ∑ j=
1

Υ
(Z

j
)f
(Z

j
)

p
(Z

j
)

+
ǫ

w
it
h

ǫ
≃

σ
g

√
N

B
es
id
es
,
le
t
f K

(Z
)
b
e
th
e
K
li
m
o
n
to
vi
tc
h
d
en

si
ty

(1
24
)

f K
(Z

)
=

1 J
N ∑ j=
1

w
j
δ(
Z
−
Z
j
)

w
it
h
th
e
w
ei
gh

t
w
j
=

1 N

f
(Z

j
)

p
(Z

j
)

It
re
ad

il
y
ap

p
ea
rs

th
at
,
fo
r
an

y
v
ol
u
m
e
el
em

en
t
Ω

in
V

th
e
m
om

en
ts

I
(Υ

)
(E

q
.
(1
23
))

of
f
ca
n
b
e
ex
p
re
ss
ed

as

(1
25
)

∫ Ω
Υ
(Z

)f
(Z

)
d
τ
=

∫ Ω
Υ
(Z

)f
K
(Z

)
d
τ
+
ǫ,

ǫ
≃

σ
g

√
N

R
em

ar
k

th
at
,
in

p
ra
ct
ic
e,

σ
g
is

u
n
k
n
ow

n
an

d
m
u
st

b
e
es
ti
m
at
ed
.

O
n
e

p
os
si
b
il
it
y
is

to
u
se

th
e
d
is
cr
et
e
va
ri
an

ce

σ
2 g
≃

1 N

N ∑ j=
1

(g
(Z

j
)
−
g̃ N

)2

S
ev
er
al

m
et
h
o
d
s,

ca
ll
ed

va
ri
a
n
ce

re
d
u
ct
io
n
te
ch
n
iq
u
es
,
effi

ci
en
tl
y
im

p
ro
v
e
th
e

ac
cu
ra
cy
–o
r
re
d
u
ce

th
e
co
m
p
u
ta
ti
on

ti
m
e–

b
y
re
p
la
ci
n
g
g
(Z

)
b
y
an

ot
h
er

ra
n
-

d
om

va
ri
ab

le
.

T
w
o
of

th
em

ar
e
p
ar
ti
cu
la
rl
y
w
id
es
p
re
ad

in
p
la
sm

a
p
ar
ti
cl
e

si
m
u
la
ti
on

s.
T
h
es
e
ar
e
th
e
im

p
or
ta
n
ce

sa
m
p
li
n
g
an

d
th
e
co
n
tr
ol

va
ri
at
es
.
T
h
e

b
ac
k
b
on

e
of

th
es
e
m
et
h
o
d
s
ar
e
d
et
ai
le
d
in

th
e
fo
ll
ow

in
g
se
ct
io
n
s.

E
.2
.
Im

p
o
rt
a
n
c
e
sa

m
p
li
n
g
.
—

T
h
e
m
ai
n
id
ea

of
im

p
or
ta
n
ce

sa
m
p
li
n
g
is

to
u
se

n
on

-u
n
if
or
m

m
ar
k
er

p
ro
b
ab

il
it
y,

p
ro
p
or
ti
on

al
to

th
e
d
is
tr
ib
u
ti
on

fu
n
c-

ti
on

,
co
n
v
er
se
ly

to
th
e
si
m
p
le
st

M
on

te
C
ar
lo

m
et
h
o
d
w
h
er
e
it
is
u
n
if
or
m

(w
it
h

p
(Z

)
=

1 V
,
w
j
=

V N
f
(Z

j
)
an

d
g
=

Υ
(Z

)f
(Z

)V
).

T
h
is
le
ad

s
to

a
m
or
e
fr
eq
u
en
t

sa
m
p
li
n
g
of

th
e
m
os
t
“i
m
p
or
ta
n
t”

re
gi
on

of
th
e
p
h
as
e-
sp
ac
e.

(1
26
)

p
(Z

)
=

1 N
s
f
(Z

),
w
j
=

N
s

N
an

d
g
=

N
s
Υ
(Z

)

T
h
e
fi
rs
t
ad

va
n
ta
ge

is
th
at

th
er
e
is

n
o
in
fo
rm

at
io
n
st
or
ag
e
re
q
u
ir
ed

fo
r
th
e

w
ei
g
h
ts
,
b
ec
au

se
th
ey

ar
e
th
e
sa
m
e
fo
r
ea
ch

m
ar
k
er

w
j
=

N
s
/N

.

R
e
m
a
r
k
4
.
—

In
th
is

ca
se
,
L
a
gr
a
n
gi
a
n
m
a
rk
er
s
a
re

ca
ll
ed

“
m
a
cr
o
-p
a
rt
ic
le
s”
,

ea
ch

re
p
re
se
n
ti
n
g
N

s
/N

p
h
ys
ic
a
l
pa
rt
ic
le
s.

T
h
e
se
co
n
d
an

d
m
os
t
im

p
or
ta
n
t
p
oi
n
t
is

th
at

th
is

ch
oi
ce

re
d
u
ce
s
th
e
va
ri
-

at
io
n
in

g
b
ec
au

se
it

on
ly

co
m
es

fr
om

th
e
fu
n
ct
io
n
Υ
(Z

)
si
n
ce

f
/p

=
co
n
st
.

T
h
is

im
p
or
ta
n
ce

sa
m
p
li
n
g
m
et
h
o
d
is

ad
op

te
d
in

al
l
p
re
se
n
t
P
IC

si
m
u
la
ti
on

s.
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6
9

E
.3
.
C
o
n
tr
o
l
v
a
ri
a
te
s
-
T
h
e
δf

m
e
th

o
d
.
—

T
h
e
co
n
tr
ol

va
ri
at
es

m
et
h
o
d

is
an

ot
h
er

in
tu
it
iv
el
y
ob

v
io
u
s
ap

p
ro
ac
h
th
at

ai
m
s
at

re
d
u
ci
n
g
th
e
va
ri
an

ce
in

I
(Υ

)
b
y
re
p
la
ci
n
g,

as
of
te
n
as

p
os
si
b
le
,
th
e
M
on

te
C
ar
lo

es
ti
m
at
e
b
y
an

al
y
ti
c

or
n
u
m
er
ic
al

ca
lc
u
la
ti
on

s
w
h
ic
h
ar
e
m
or
e
ac
cu
ra
te
.
A
ss
u
m
e
th
at

th
er
e
ex
is
ts

a
fu
n
ct
io
n
f 0
,
fo
rm

al
ly

ca
ll
ed

th
e
co
n
tr
o
l
va
ri
a
te
,
su
ch

th
at

(i
)
m
om

en
ts

of
f 0

ca
n
b
e
fo
u
n
d
ea
si
ly

(p
re
fe
re
n
ti
al
ly

an
al
y
ti
ca
ll
y
),

(i
i)

at
al
l
ti
m
es
,
th
e
p
h
y
si
ca
l
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f
(Z

)
re
m
ai
n
s
cl
os
e
to

f 0
(Z

)
in

th
e
se
n
se
‖f

−
f 0
‖/
‖f

‖
≪

1
w
h
er
e
‖·

‖
is

so
m
e
ar
b
it
ra
ry

n
or
m
.

T
h
en

th
e
er
ro
r
in

th
e
es
ti
m
at
e
I
(Υ

),
ca
n
b
e
re
d
u
ce
d
b
y
re
w
ri
ti
n
g
th
e
in
te
gr
al

in
th
e
fo
rm

I
(Υ

)
=

∫ V
Υ
(Z

)f
0
(Z

)
d
τ
+

∫ V
Υ
(Z

)δ
f
d
τ

w
h
er
e

δf
=

f
(Z

)
−
f 0
(Z

)

an
d
b
y
ap

p
ly
in
g
a
M
on

te
C
ar
lo

te
ch
n
iq
u
e
to

th
e
se
co
n
d
in
te
gr
al

on
ly
.
U
si
n
g

th
e
sa
m
e
te
ch
n
iq
u
e
as

b
ef
or
e
th
e
M
on

te
C
ar
lo

es
ti
m
at
e
fo
r
I
(Υ

)
is
th
en

gi
v
en

b
y

(1
27
)

I
(Υ

)
=

I 0
(Υ

)
+

1 N

N ∑ j=
1

Υ
(Z

j
)f
(Z

j
)

p
(Z

j
)

+
ǫ δ

g
w
it
h

ǫ δ
g
≃

σ
δ
g

√
N

w
h
er
e

I 0
(Υ

)
=

∫ V
Υ
(Z

)f
0
(Z

)
d
τ

ca
n

b
e

co
m
p
u
te
d

an
al
y
ti
ca
ll
y.

T
h
e

fu
n
ct
io
n

δg
is

d
efi
n
ed

as
δg

=
Υ
(Z

)δ
f
(Z

)/
p
(Z

)
w
h
il
e
σ
δ
g
th
e
d
ev
ia
ti
on

of
δg

is
gi
v
en

b
y

(1
28
)

V(
δg
)
=

σ
2 δ
g
=

∫ V
(δ
g
−

E p
(δ
g
))

2
p
(Z

)
d
τ

C
om

p
ar
in
g
th
e
er
ro
r
in

th
e
M
on

te
C
ar
lo

es
ti
m
at
es

(1
23
)
an

d
(1
27
)
(r
es
p
ec
-

ti
v
el
y
p
ro
p
or
ti
on

al
to

σ
g
gi
v
en

b
y
E
q
.
(1
20
)
an

d
σ
δ
g
gi
v
en

b
y
E
q
.
(1
28
))
,
th
e

ad
va
n
ta
ge

of
th
is
co
n
tr
ol

va
ri
at
e
te
ch
n
iq
u
e
b
ec
om

es
ev
id
en
t.

In
d
ee
d
,
th
e
n
oi
se

is
re
d
u
ce
d
b
y
a
fa
ct
or

δf
/f

fo
r
th
e
sa
m
e
n
u
m
b
er

of
sa
m
p
le

p
oi
n
ts
.
N
ot
ic
e

h
ow

ev
er

th
at
,
if
on

e
ch
o
os
es

th
e
K
li
m
on

to
v
it
ch

d
en
si
ty

fo
r
δf

K
(Z

),
th
en

(1
29
)

δf
K
(Z

)
=

1 J
N ∑ j=
1

w
j
δ(
Z
−
Z
j
)

w
it
h
th
e
w
ei
gh

t
w
j
=

1 N

δf
(Z

j
)

p
(Z

j
)

It
ap

p
ea
rs

th
at

th
e
w
ei
gh

ts
w
j
ar
e
n
o
lo
n
ge
r
co
n
st
an

t
in

ti
m
e,

in
th
is

ca
se
:

d
w
j

d
t
(t
)
=

1 N

d d
t

(
δf

(Z
j
)

p
(Z

j
)

)
=

−
1 N

[
1

p
(Z

)

d
f 0 d
t

] Z
=
Z
j

7
0

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

F
or

th
e
sa
m
e
re
as
on

s
as

d
is
cu
ss
ed

in
th
e
p
re
v
io
u
s
se
ct
io
n
,
th
e
ch
oi
ce

p
(Z

)
=

f
(Z

)/
N

s
is

b
et
te
r
th
an

th
e
ch
oi
ce

of
an

u
n
if
or
m

d
en
si
ty
.

(1
30
)

d
w
j

d
t
(t
)
=

−
N

s

N

( 1
−

N N
s
w
j

)
[
1 f 0

d
f 0 d
t

] Z
=
Z
j

N
ot
e
h
ow

ev
er
,
th
at

E
q
.
(1
30
)
d
o
es

n
ot

n
ee
d
b
ei
n
g
so
lv
ed

fo
r
th
e
w
ei
gh

ts
w
j

to
b
e
ca
lc
u
la
te
d
,
si
n
ce

δf
(Z

j
)/
f
(Z

j
)
ca
n
b
e
ca
lc
u
la
te
d
d
ir
ec
tl
y.

T
o
co
n
cl
u
d
e,

th
e
co
n
tr
ol

va
ri
at
e-
δf

m
et
h
o
d
re
d
u
ce
s
n
oi
se

b
y
re
d
u
ci
n
g
th
e

si
ze

of
th
e
M
on

te
C
ar
lo

co
n
tr
ib
u
ti
on

to
I
(Υ

).
It

is
im

p
or
ta
n
t
to

p
oi
n
t
ou

t
th
at

th
is
m
et
h
o
d
al
so

co
n
ce
n
tr
at
es

al
l
th
e
re
le
va
n
t
p
h
y
si
cs

on
th
e
sm

al
l
in
te
gr
al

of
δf

a
n
d
it
s
ti
m
e
ev
ol
u
ti
on

;
th
u
s,
th
e
ac
cu
ra
cy

of
th
e
m
et
h
o
d
cr
u
ci
al
ly

d
ep

en
d
s

on
ac
cu
ra
te

ev
al
u
at
io
n
s
of

th
e
m
om

en
ts

of
δf

.
F
or

th
is

re
as
on

,
th
er
e
ar
e
tw

o
co
m
p
le
m
en
ta
ry

re
q
u
ir
em

en
ts
:

(i
)
L
ow

n
oi
se

is
on

ly
ac
co
m
p
li
sh
ed

b
y
en
su
ri
n
g
th
at

‖f
−
f 0
‖/
‖f

‖
≪

1,
(i
i)

A
cc
u
ra
cy

is
on

ly
p
os
si
b
le

if
th
e

re
la
ti
v
e

er
ro
r
in

δI
(Υ

)
is

sm
al
l,

i.
e

‖ǫ
δ
g
/δ
I
(Υ

)‖
≪

1,
w
h
er
e
δI

(Υ
)
=

I
(Υ

)
−

I 0
(Υ

)
an

d
ǫ δ

g
is

d
efi
n
ed

in
E
q
.

(1
27
)
an

d
(1
28
).

T
h
e
fi
rs
t
re
q
u
ir
em

en
t
ca
n
b
e
ac
h
ie
v
ed

w
it
h
a
w
el
l-
ch
os
en

co
n
tr
ol

va
ri
at
e
f 0

an
d
al
re
ad

y
fo
r
a
m
o
d
es
t
n
u
m
b
er

N
of

m
ac
ro
-p
ar
ti
cl
es
.
C
on

v
er
se
ly
,
th
e
se
co
n
d

re
q
u
ir
es

a
la
rg
e
n
u
m
b
er

of
m
ar
k
er
s,

si
n
ce

ǫ δ
g
/δ
I
(Υ

)
∼

1
/√

N
.

A
p
p
e
n
d
ix

F

P
a
rt
ic
le

In
C
e
ll

g
lo
b
a
l
sc
h
e
m
e

A
s
d
is
cu
ss
ed

in
ap

p
en
d
ix

E
,
P
IC

m
et
h
o
d
s
su
b
st
it
u
te

to
th
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f
th
e
su
m

of
D
ir
ac

d
is
tr
ib
u
ti
on

s
lo
ca
li
ze
d
at

th
e
p
h
as
e
sp
ac
e
p
os
it
io
n
s

Z
j
(t
)
=

(x
j
(t
),
v
j
(t
))

1
≤
j≤

N
,
w
h
er
e
N

st
an

d
s
fo
r
th
e
n
u
m
b
er

of
m
ac
ro
-p
ar
ti
cl
es

of
w
ei
gh

t
w
j
.
T
h
e
ap

p
ro
x
im

at
ed

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
,
d
en
ot
ed

f N
,
ex
h
ib
it
s

so
m
e
an

al
og
y
w
it
h
th
e
on

e
p
ro
p
os
ed

b
y
K
li
m
on

to
v
it
ch
,
ex
ce
p
t
th
at

w
ei
gh

ts
w
j
ar
e
in
tr
o
d
u
ce
d
: f N
(x
,v

,t
)
=

N ∑ j=
1

w
j
δ(
x
−
x
j
(t
))
δ(
v
−
v
j
(t
))

P
os
it
io
n
s
x
0 j
,
v
el
o
ci
ti
es

v
0 j
an

d
w
ei
gh

ts
w
j
ar
e
in
it
ia
li
ze
d

su
ch

th
at

f N
0
≡

f N
(x
,v

,0
)
ap

p
ro
ac
h
es

th
e
in
it
ia
l
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f 0
(x
,v

).
f N

is
ev
ol
v
ed

in
ti
m
e
b
y
fo
ll
ow

in
g
th
e
m
ac
ro
-p
ar
ti
cl
e
tr
a
je
ct
or
ie
s.

T
h
e
fo
ll
ow

in
g
sy
st
em

of
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7
1

d
iff
er
en
ti
al

eq
u
at
io
n
s
is

so
lv
ed
:

d
x
j

d
t

=
v
j

d
v
j

d
t

=
q s

(E
(x

j
,t
)
+

v
j
×
B
(x

j
,t
))

x
j
(0
)
=

x
0 j
,

v
j
(0
)
=

v
0 j

T
h
e
el
ec
tr
om

ag
n
et
ic

fi
el
d
is

th
en

se
lf
-c
on

si
st
en
tl
y
co
m
p
u
te
d
fr
om

M
ax

w
el
l’
s

eq
u
at
io
n
s
b
y
u
si
n
g
cl
as
si
ca
l
n
u
m
er
ic
al

sc
h
em

es
su
ch

as
fi
n
it
e
el
em

en
ts
,
fi
n
it
e

d
iff
er
en
ce
s
or

sp
ec
tr
al

m
et
h
o
d
s.

P
IC

al
go
ri
th
m
s
st
il
l
ex
h
ib
it

tw
o
ad

d
it
io
n
al

d
eg
re
es

of
fr
ee
d
om

,
d
ep

en
d
in
g
(i
)
on

th
e
k
in
d
of

st
ra
te
gy

w
h
ic
h
is

re
ta
in
ed

to
co
n
st
ru
ct

th
e
in
it
ia
l
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f N

0
,
an

d
(i
i)

on
th
e
n
u
m
er
ic
al

m
et
h
o
d
w
h
ic
h
is

u
se
d
to

so
lv
e
th
e
d
iff
er
en
ti
al

eq
u
at
io
n
sy
st
em

go
v
er
n
in
g
th
e

ch
ar
ac
te
ri
st
ic
s.

F
.1
.
C
h
o
ic
e

o
f
in
it
ia
l
c
o
n
d
it
io
n
.
—

T
w
o
st
ra
te
gi
es

ca
n
b
e
fo
ll
ow

ed
to

co
n
st
ru
ct

th
e
in
it
ia
l
co
n
d
it
io
n
f N

0
.
T
h
e
fi
rs
t
on

e
is
a
d
et
er
m
in
is
ti
c.

F
ir
st

co
n
-

st
ru
ct

th
e
p
h
as
e
sp
ac
e
m
es
h
,
w
h
ic
h
ca
n

b
e
u
n
if
or
m

or
n
on

-u
n
if
or
m
.

T
h
en

co
n
si
d
er

th
at

th
e
b
ar
y
ce
n
te
rs

of
th
e
ce
ll
s
co
rr
es
p
on

d
to

th
e
in
it
ia
l
p
h
as
e

sp
ac
e
p
os
it
io
n
s
of

th
e
m
ac
ro
-p
ar
ti
cl
es

(x
0 j
,v

0 j
).

In
th
is

ca
se
,
th
e
w
ei
gh

t
w
j

is
si
m
p
ly

th
e
in
te
gr
al

of
f 0

on
th
e
co
rr
es
p
on

d
in
g
el
em

en
ta
ry

v
ol
u
m
e
el
em

en
t

w
j
=
∫ V

j
f 0
(x
,v

)
d
x
d
v
.
It

re
ad

il
y
ap

p
ea
rs

th
at
∑

N j=
1
w
j
=
∫
f 0
(x
,v

)
d
x
d
v
.

T
h
e
se
co
n
d
st
ra
te
gy

co
n
si
st
s
in

ch
o
os
in
g
th
e
in
it
ia
l
p
os
it
io
n
s
of

th
e
m
ac
ro
-

p
ar
ti
cl
e
at

ra
n
d
om

(o
r
p
se
u
d
o-
ra
n
d
om

ly
,
cf
.

ap
p
en
d
ix

E
).

T
h
e
as
so
ci
at
ed

w
ei
gh

ts
ar
e
th
en

th
e
P
D
F
of

th
e
f 0

d
is
tr
ib
u
ti
on

.

F
.2
.
C
o
u
p
li
n
g
b
e
tw

e
e
n

p
a
rt
ic
le
s
a
n
d

m
e
sh

.
—

F
ro
m

th
e
d
is
cr
et
e
re
p
-

re
se
n
ta
ti
on

f N
of

th
e
co
n
ti
n
u
ou

s
d
is
tr
ib
u
ti
on

fu
n
ct
io
n

f
,
th
e
va
lu
e
of

th
e

d
is
tr
ib
u
ti
on

fu
n
ct
io
n
ca
n
n
ot

b
e
ea
si
ly

ex
tr
ap

ol
at
ed

to
an

y
p
os
it
io
n
th
at

li
es

ou
ts
id
e
th
e
fi
n
it
e
se
t
of

m
ac
ro
-p
ar
ti
cl
e
p
os
it
io
n
s
(x

i,
v
i)
.
C
on

v
er
se
ly
,
th
e
fi
el
d

so
lv
er

ac
ts

on
so
m
e
p
re
sc
ri
b
ed

m
es
h
.
T
h
er
ef
or
e,

re
gu

la
ri
zi
n
g
f N

re
p
re
se
n
ts

th
e
m
an

d
at
or
y
p
re
li
m
in
ar
y
st
ep

b
ef
or
e
th
e
fi
el
d
s
ca
n
b
e
ca
lc
u
la
te
d
.
T
h
is
re
g-

u
la
ri
za
ti
on

is
p
er
fo
rm

ed
b
y
u
si
n
g
co
n
v
ol
u
ti
on

k
er
n
el
s.

N
u
m
er
ic
al
ly
,
B
-s
p
li
n
es

of
fi
x
ed

or
d
er

re
v
ea
l
ad

va
n
ta
ge
ou

s
as

co
n
v
ol
u
ti
on

k
er
n
el
s
(f
or

m
or
e
d
et
ai
ls

on
B
-s
p
li
n
es
,
p
le
as
e
re
fe
r
to

[4
3
])
.

T
h
e
ch
ar
ge

an
d
cu
rr
en
t
d
en
si
ti
es

ρ
an

d
j
en
te
ri
n
g
M
ax

w
el
l’
s
eq
u
at
io
n
s
ar
e

co
m
p
u
te
d
fr
om

th
e
d
is
cr
et
e
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
f N

:

ρ
N

=
q s
∑ j

w
j
δ(
x
−
x
j
),

j N
=

q s
∑ j

w
j
δ(
x
−
x
j
)v

j

7
2

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

w
it
h
q s

th
e
p
ar
ti
cl
e
ch
ar
ge

of
th
e
s
sp
ec
ie
s.

T
h
e
co
n
v
ol
u
ti
on

k
er
n
el

S
is

th
en

em
p
lo
y
ed

to
ca
lc
u
la
te

ρ
an

d
j
at

al
l
m
es
h
p
oi
n
ts
:

ρ
h
(x
,t
)
=

∫
S
(x

−
x
′ )
ρ
N
(x
′ )
d
x
′ =

q s
∑ j

w
j
S
(x

−
x
j
)

(1
31
)

j h
(x
,t
)
=

∫
S
(x

−
x
′ )
j N

(x
′ )
d
x
′ =

q s
∑ j

w
j
S
(x

−
x
j
)v

j
(1
32
)

T
h
e
sa
m
e
k
er
n
el

S
is
u
se
d
to

re
gu

la
ri
ze

th
e
fi
el
d
s
an

d
to

ex
tr
ap

ol
at
e
th
e
va
lu
e

of
th
e
fi
el
d
s
at

th
e
p
ar
ti
cl
e
p
os
it
io
n
s.

T
h
en
,

(1
33
)

E
h
(x
,t
)
=
∑ j

E
j
(t
)S

(x
−
x
j
),

B
h
(x
,t
)
=
∑ j

B
j
(t
)S

(x
−

x
j
)

T
h
e
si
m
p
le
st

ch
oi
ce

fo
r
th
e
k
er
n
el

–
an

d
p
ro
b
ab

ly
th
e
on

e
u
se
d
p
re
d
om

in
an

tl
y

in
th
e
li
te
ra
tu
re

–
is
to

ta
k
e
S
=

S
1
,
w
h
ic
h
co
rr
es
p
on

d
s
to

li
n
ea
r
in
te
rp
ol
at
io
n
.

C
u
b
ic

sp
li
n
es

S
3
ar
e
al
so

fr
eq
u
en
tl
y
u
se
d
.
In

th
is
ca
se
,
th
e
re
gu

la
ri
ze
d
fi
el
d
is

n
o
m
or
e
eq
u
al

to
E

j
at

m
es
h
p
oi
n
ts

b
u
t
to

1 6
E

j−
1
+

2 3
E

j
+

1 6
E

j+
1
.

F
.3
.
T
im

e
sc
h
e
m
e

fo
r
th

e
p
a
rt
ic
le
s.

—
F
or

th
e
sa
k
e
of

si
m
p
li
ci
ty
,
le
t

u
s
fo
cu
s
on

th
e
V
la
so
v
-P
oi
ss
on

ca
se

in
th
e
fo
ll
ow

in
g,

b
y
n
eg
le
ct
in
g
th
e
ti
m
e

ev
o
lu
ti
on

of
th
e
m
ag
n
et
ic

fi
el
d
.
In

th
is

ca
se
,
th
e
tr
a
je
ct
or
ie
s
of

th
e
m
ac
ro
-

p
ar
ti
cl
es

ar
e
go
v
er
n
ed

b
y
:

(1
34
)

d
x
j

d
t

=
v
j
,

d
v
j

d
t

=
q s
E
(x

j
,t
)

T
h
is
sy
st
em

is
H
am

il
to
n
ia
n
.
It

is
u
su
al
ly

so
lv
ed

b
y
u
si
n
g
a
sy
m
p
le
ct
ic

n
u
m
er
-

ic
al

sc
h
em

es
.
T
h
e
m
os
t
fr
eq
u
en
tl
y
u
se
d
is

th
e
V
er
le
t
sc
h
em

e,
w
h
ic
h
w
e
d
et
ai
l

h
er
ea
ft
er
.
A
ss
u
m
in
g
th
at

x
n j
,
v
n j
an

d
E

n j
ar
e
k
n
ow

n
q
u
an

ti
ti
es
,
th
en

v
n
+

1 2
j

=
v
n j
+

q s
∆
t 2
E

n j
(x

n j
)

(1
35
)

x
n
+
1

j
=

x
n j
+
∆
tv

n
+

1 2
j

(1
36
)

v
n
+
1

j
=

v
n
+

1 2
j

+
q s
∆
t 2
E

n
+
1

j
(x

n
+
1

j
)

(1
37
)

S
te
p
(1
37
)
re
q
u
ir
es

th
e
k
n
ow

le
d
ge

of
th
e
el
ec
tr
ic

fi
el
d
at

ti
m
e
t n

+
1
.
It

ca
n
b
e

ca
lc
u
la
te
d
af
te
r
st
ep

(1
36
)
b
y
so
lv
in
g
th
e
P
oi
ss
on

eq
u
at
io
n
.
In
d
ee
d
,
th
is
la
tt
er

eq
u
at
io
n
y
ie
ld
s
E

n
+
1

j
fr
om

ρ
n
+
1

h
,
w
h
er
e
ρ
n
+
1

h
is
en
ti
re
ly

go
v
er
n
ed

b
y
th
e
sp
ac
e

p
os
it
io
n
s
x
n
+
1

j
on

ly
,
E
q
.
(1
31
).

F
.4
.
G
lo
b
a
l
P
IC

-a
lg
o
ri
th

m
.
—

T
o
su
m
m
ar
iz
e,

h
er
e
ar
e
th
e
fo
u
r
m
ai
n

it
er
at
iv
e
st
ep
s
p
er
fo
rm

ed
in

P
IC

co
d
es

in
or
d
er

to
ad

va
n
ce

in
ti
m
e
fr
om

t n
to

t n
+
1
:
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7
3

a)
C
om

p
u
te

th
e
ch
ar
ge

d
en
si
ty

ρ
h
an

d
th
e
cu
rr
en
t
d
en
si
ty

j h
on

m
es
h
p
oi
n
ts
,

u
si
n
g
E
q
.
(1
31
)
an

d
E
q
.
(1
32
),

b
)
C
om

p
u
te

th
e
el
ec
tr
ic
fi
el
d
b
y
so
lv
in
g
P
oi
ss
on

eq
u
at
io
n
(w

it
h
cl
as
si
ca
l
m
es
h

so
lv
er

as
fi
n
it
e
d
iff
er
en
ce
,
sp
ec
tr
al

m
et
h
o
d
s
or

fi
n
it
e
el
em

en
ts
,
··
·)
,

c)
C
om

p
u
te

th
e
el
ec
tr
ic

fi
el
d
at

th
e
p
ar
ti
cl
e
p
os
it
io
n
s,

fo
ll
ow

in
g
E
q
.
(1
33
),

d
)
A
d
va
n
ce

th
e
p
ar
ti
cl
es

b
y
so
lv
in
g
eq
u
at
io
n
(1
34
)
w
it
h
,
fo
r
in
st
an

ce
,
th
e

sy
m
p
le
ct
ic

V
er
le
t
sc
h
em

e
(1
35
)-
(1
36
).

A
p
p
e
n
d
ix

G

S
tr
a
n
g
ti
m
e
-s
p
li
tt
in
g
:
a
sc
h
e
m
e
o
f
se
c
o
n
d

o
rd

e
r
in

ti
m
e

F
o
rm

a
l
p
ro

o
f.

—
N
ot
ic
e
th
at

th
e
V
la
so
v
eq
u
at
io
n
ca
n
fo
rm

al
ly

b
e
w
ri
tt
en

as
fo
ll
ow

s:

(1
38
)

∂
f ∂
t
+
(A

+
B

+
C
)f

=
0

w
h
er
e
A
,
B

an
d
C

ar
e
d
iff
er
en
ti
al

op
er
at
or
s
in

p
h
as
e
sp
ac
e
(f
or

in
st
an

ce
,
in

th
e

ca
se

of
th
e
4D

d
ri
ft
-k
in
et
ic

IT
G

m
o
d
el

[6
3
],
th
es
e
ar
e
A

=
v E

x
B
~ ∇
·,
B

=
v ‖

∂
·

∂
z

an
d
C

=
v̇ ‖

∂
·

∂
v
‖
).

O
n
th
e
on

e
h
an

d
,
th
e
fo
rm

al
so
lu
ti
on

of
E
q
.
(1
38
)
on

on
e

ti
m
e
st
ep

∆
t
is

gi
v
en

b
y
:

f
(t
+
∆
t)

=
f
(t
)
ex
p

[ −
∫

t+
∆
t

t
(A

+
B

+
C
)d
t′
]

F
or

th
e
sa
k
e
of

si
m
p
li
ci
ty
,
le
t
u
s
n
eg
le
ct

th
e
ti
m
e
ev
ol
u
ti
on

of
th
e
op

er
at
or
s

b
et
w
ee
n
t n

an
d
t n

+
1
.
In

th
is

ca
se
,
th
e
p
re
v
io
u
s
eq
u
at
io
n
si
m
p
ly

re
ad

s:

(1
39
)

f
(t
+
∆
t)

=
f
(t
)
ex
p
[−

(A
+
B

+
C
)∆

t]

O
n
th
e
ot
h
er

h
an

d
,
th
e
fo
rm

al
so
lu
ti
on

re
su
lt
in
g
fr
om

th
e
ti
m
e-
sp
li
tt
in
g
sc
h
em

e
is

gi
v
en

b
y
:

f̃
(t
+
∆
t)

=
f
(t
)
ex
p

( −
A
∆
t

2

)
ex
p

( −
B
∆
t

2

)
ex
p
(−

C
∆
t)

(1
40
)

×
ex
p

( −
B
∆
t

2

)
ex
p

( −
A
∆
t

2

)

L
et

u
s
p
ro
v
e
th
at

b
ot
h
ex
p
re
ss
io
n
s
E
q
.
(1
39
)
an

d
E
q
.
(1
40
)
ar
e
eq
u
iv
al
en
t
at

se
co
n
d
or
d
er

in
∆
t.

7
4

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

C
o
m
p
u
ta
ti
o
n
o
f
I
=

ex
p
[−

(A
+

B
+
C
)∆

t]
.
—

T
h
e
T
ay

lo
r
ex
p
an

si
on

at
se
c-

on
d
or
d
er

of
ex
p
[−

(A
+
B

+
C
)∆

t]
y
ie
ld
s:

I
=

ex
p
[(
−
A
+
B

+
C
)∆

t]

I
=

1
−

(A
+

B
+
C
)∆

t
+

∆
t2 2
(A

2
+
B

2
+
C

2
(1
41
)

+
A
B

+
B
A
+
A
C

+
C
A
+
B
C

+
C
B
)
+
O
(∆

t3
)

C
o
m
p
u
ta
ti
o
n
o
f
J
=

ex
p
(−

A
∆
t

2
)
ex
p
(−

B
∆
t

2
)
ex
p
(−

C
∆
t)
ex
p
(−

B
∆
t

2
)
ex
p
(−

A
∆
t

2
).

—
S
im

il
ar
ly
,

J
0
≡

ex
p

( −
B
∆
t

2

)
ex
p

( −
A
∆
t

2

)

=

( 1
−

B
∆
t

2
+

B
2
∆
t2

8
+

O
(∆

t3
))
( 1

−
A
∆
t

2
+

A
2
∆
t2

8
+
O
(∆

t3
))

=

[ 1
−
(
B 2

+
A 2

)
∆
t
+
∆
t2
(
B

2 8
+

A
2 8
+

B
A 4

)]
+
O
(∆

t3
)

an
d

J
1
≡

ex
p
(−

C
∆
t)
ex
p

( −
B
∆
t

2

)
ex
p

( −
A
∆
t

2

)
=

ex
p
(−

C
∆
t)
×

J
0

=

( 1
−
C
∆
t
+

C
2
∆
t2

2

)
×
J
0
+
O
(∆

t3
)

=

[ 1
−
(
A 2

+
B

+
C

)
∆
t+

∆
t2
(
C

2 2
+

B
2 8
+

A
2 8
+

B
A 4

+
C
A 2

+
C
B 2

)]
+

O
(∆

t3
).

H
en
ce J
2
=

ex
p

( −
B
∆
t

2

)
×

J
1

=

( 1
−

B
∆
t

2
+

B
2
∆
t2

8

)
×
J
1

=

[ 1
−
(
A 2

+
B

+
C

)
t
+

∆
t2
(
C

2 2
+

B
2 2
+

A
2 8
+

B
A 2

+
C
A 2

+
C
B 2

+
B
C 2

)]
+
O
(∆

t3
)

In
th
e
en
d
,
on

e
ob

ta
in
s

J
=

ex
p

( −
A
∆
t

2

)
×

J
2
=

( 1
−

A
∆
t

2
+

A
2
∆
t2

8

)
×
J
2
+
O
(∆

t3
)
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7
5

w
h
ic
h
le
ad

s
to

th
e
fi
n
al

ex
p
re
ss
io
n

J
=

1
−
(A

+
B

+
C
)∆

t
+
∆
t2
(
C

2 2
+

B
2 2
+

A
2 2
+

(1
42
)

A
B

+
B
A

2
+

A
C

+
C
A

2
+

B
C

+
C
B

2

)
+
O
(∆

t3
)

It
ap

p
ea
rs

th
at

E
q
.
(1
42
)
is

eq
u
iv
al
en
t
to

E
q
.
(1
41
)
u
p
th
e
th
e
se
co
n
d
or
d
er

te
rm

in
∆
t,
su
ch

th
at

f
(t
+
∆
t)

=
f̃
(t
+
∆
t)
+

O
(∆

t3
)

It
p
ro
v
es

th
at

E
q
.
(1
39
)
an

d
E
q
.
(1
40
)
ar
e
eq
u
iv
al
en
t
at

se
co
n
d
or
d
er
.

�

A
p
p
e
n
d
ix

H

A
n
e
w

in
te
rp

o
la
ti
o
n

a
p
p
ro

a
ch

fo
r
S
e
m
i-
L
a
g
ra

n
g
ia
n

sc
h
e
m
e

In
te
rp
ol
at
io
n

re
p
re
se
n
ts

on
e

of
th
e

st
ep
s
of

se
m
i-
L
ag
ra
n
gi
an

n
u
m
er
ic
al

sc
h
em

es
w
h
ic
h

re
q
u
ir
e
m
u
ch

C
P
U

ti
m
e.

It
is

m
os
t
of
te
n

p
er
fo
rm

ed
u
si
n
g

cu
b
ic

sp
li
n
es
.
T
h
e
d
ra
w
b
ac
k
of

sp
li
n
es

is
th
at

th
e
k
n
ow

le
d
ge

of
th
e
fu
n
ct
io
n

on
al
l
th
e
m
es
h
n
o
d
es

is
re
q
u
ir
ed

to
in
te
rp
ol
at
e
th
is

fu
n
ct
io
n
on

an
y
si
n
gl
e

p
oi
n
t.

T
h
is

gl
ob

al
d
ep

en
d
en
cy

co
n
fl
ic
ts

w
it
h

an
y

te
n
ta
ti
v
e
of

co
m
p
et
it
iv
e

p
ar
al
le
li
za
ti
on

.
T
h
e
or
ig
in
al

ap
p
ro
ac
h
p
re
se
n
te
d
in

th
is

ap
p
en
d
ix

h
as

b
ee
n

ex
p
li
ci
tl
y
d
ev
el
op

ed
to

ov
er
co
m
e
th
is

p
ro
b
le
m

(c
f
[4
0
])
.

T
h
e
b
as
ic

id
ea

of
th
is

so
-c
al
le
d
lo
ca
l
sp
li
n
e
ap

p
ro
ac
h
is

to
sp
li
t
th
e
gl
ob

al
d
om

ai
n
in

se
p
ar
at
ed

su
b
-d
om

ai
n
s,

w
h
er
e
st
an

d
ar
d
cu
b
ic

sp
li
n
es

ar
e
ap

p
li
ed

([
1
,
4
3
])
.
T
h
e
d
iffi

-
cu
lt
y
th
en

re
li
es

on
th
e
ch
oi
ce

of
ap

p
ro
p
ri
at
ed

b
ou

n
d
ar
y
co
n
d
it
io
n
s
fo
r
th
es
e

su
b
-d
om

ai
n
s.

H
.1
.
D
o
m
a
in

d
e
c
o
m
p
o
si
ti
o
n
in

1
D
.
—

L
et

g
(x
)
b
e
an

y
fu
n
ct
io
n
d
efi
n
ed

on
th
e
gl
ob

al
d
om

ai
n
[x

0
,x

N
x
]
⊂

R
.
L
et

u
s
sp
li
t
th
is
d
om

ai
n
in
to

se
v
er
al

su
b
-

d
om

ai
n
s,

ea
ch

b
ei
n
g
as
so
ci
at
ed

to
on

e
p
ro
ce
ss
or
.
T
h
e
su
b
-d
om

ai
n
as
so
ci
at
ed

to
p
ro
ce
ss
or

p
is
ge
n
er
ic
al
ly

ca
ll
ed

[x
p
0
,x

p
K
]
w
it
h
th
e
n
ot
at
io
n
x
p
i
=

x
p
0
+
ih
,

w
h
er
e
h
is

th
e
ce
ll
si
ze

h
=

(x
p
K
−
x
p
0
)
/K

an
d
K

∈
N

th
e
n
u
m
b
er

of
ce
ll
s

in
th
e
su
b
-d
om

ai
n
.
L
et

u
s
n
ow

re
st
ri
ct

th
e
st
u
d
y
of

g
to

g
:
x
7→

g
(x
)
on

th
e

in
te
rv
al

[x
p
0
,x

p
K
].

B
ou

n
d
ar
y
co
n
d
it
io
n
s
ar
e
n
on

-p
er
io
d
ic

in
th
is

su
b
-d
om

ai
n
.

T
h
e
p
ro
je
ct
io
n
s l
o
c
of

g
on

th
e
b
as
is

of
cu
b
ic

sp
li
n
es

re
ad

s:

g
(x
)
≃

s l
o
c
(x
)
=

K
+
1

∑ α
=
−
1

c α
Λ
α
(x
)

7
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G
IN

IE
G
R
A
N
D
G
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A
R
D
,
Y
A
N
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K
S
A
R
A
Z
IN

w
it
h
Λ
α
th
e
p
ie
ce
w
is
e
cu
b
ic

p
ol
y
n
om

ia
ls

d
efi
n
ed

as
fo
ll
ow

s,
fo
r
an

y
in
te
ge
r
α

in
th
e
in
te
rv
al

−
1
≤

α
≤

K
+
1:

(1
43
)

Λ
α
(x
)
=

1

6
h
3

                      

(x
−

x
α
−
2
)3

if
x
α
−
2
≤

x
≤

x
α
−
1

h
3
+
3h

2
(x

−
x
α
−
1
)
+
3h

(x
−
x
α
−
1
)2

−
3(
x
−
x
α
−
1
)3

if
x
α
−
1
≤

x
≤

x
α

h
3
+
3h

2
(x

α
+
1
−
x
)
+
3
h
(x

α
+
1
−
x
)2

−
3(
x
α
+
1
−
x
)3

if
x
α
≤

x
≤

x
α
+
1

(x
α
+
2
−
x
)3

if
x
α
+
1
≤

x
≤

x
α
+
2

0
ot
h
er
w
is
e

U
si
n
g
H
er
m
it
e
b
ou

n
d
ar
y
co
n
d
it
io
n
s,
th
e
in
te
rp
ol
at
ed

q
u
an

ti
ty

s l
o
c
is
u
n
iq
u
el
y

d
et
er
m
in
ed

b
y
th
e
(K

+
3)

fo
ll
ow

in
g
eq
u
at
io
n
s:

g
(x

p
i)
=

s l
o
c
(x

p
i)
=

1 6
c i
−
1
+

2 3
c i
+

1 6
c i
+
1

∀i
=

0,
··
·,

K
(1
44
)

g
′ (
x
p
i)
=

s′ lo
c
(x

p
i)
=

−
1 2h
c i
−
1
+

1 2h
c i
+
1

fo
r
i
=

0
an

d
i
=

K
(1
45
)

F
in
al
ly
,

th
e

sp
li
n
e

co
effi

ci
en
t

v
ec
to
r

c
=

[c
−
1
,·
··

,c
K
+
1
]T

fu
lfi
ll
s

th
e

(K
+

3)
×

(K
+

3)
li
n
ea
r
sy
st
em

A
c

=
g
,
w
h
er
e

g
is

th
e

v
ec
to
r
g

=
[g
′ (
x
p
0
),
g
(x

p
0
),
··
·,

g
(x

p
K
),
g
′ (
x
p
K
)]
an

d
A

th
e
m
at
ri
x
:

A
=

1 6

      

−
3/
h

0
3/
h

0
··
·

0
1

4
1

. .
.

. .
.

. .
. 1

4
1

0
··
·

0
−
3
/h

0
3/
h

      

N
ot
ic
e
th
at

th
e
A

m
at
ri
x
ca
n

ea
si
ly

b
e
fa
ct
or
iz
ed

in
L
U

fo
rm

,
w
h
er
e
L

is
a
lo
w
er

tr
ia
n
gu

la
r
m
at
ri
x
w
it
h

al
l
d
ia
go
n
al

te
rm

s
eq
u
al

to
1,

an
d

U
is

an
u
p
p
er

tr
ia
n
gu

la
r
m
at
ri
x
.
T
h
e
st
an

d
ar
d
al
go
ri
th
m

le
ad

in
g
to

L
U

fa
ct
or
iz
at
io
n
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7
7

is
b
as
ed

on
G
au

ss
el
im

in
at
io
n

(9
) :

L
=

        

1
0

0
···

···
0

−
h
/
3

1
0

. .
.

. . .

0
l 1

1
. .
.

0
0

. .
.

. .
.

0
. . .

. . .
. .
.
. .
.

l K
1

0
0

···
0
−
(3
l K

)/
h
(3
l K

+
1
)/
h
1

        
an

d
U

=
1 6

        

−
3
/
h

0
3
/
h

0
···

0

0
d
1

2
0

. . .

0
0

d
2

1
. .
.

. . .

0
0

. .
.
. .
.

. .
.

0
. . .

. .
.
. .
.
. .
.
d
K

+
1

1
0

···
0

0
0

(3
d
K

+
2
)/
h

        

w
h
er
e
l i
an

d
d
i
ar
e
ob

ta
in
ed

as
fo
ll
ow

s:
d
1
=

4,
l 1

=
1/
4
,
d
2
=

4
−
2
l 1

=
7/
2
,

fo
r
i
=

2,
K

.
l i
=

1/
d
i,

.
d
i+

1
=

4
−

l i
,

en
d
fo
r

l K
+
1
=

1/
d
K
+
1
,
d
K
+
2
=

1
−
l K

+
1

T
h
e
L
U

d
ec
om

p
os
it
io
n
of

A
n
ee
d
s
on

ly
to

b
e
co
m
p
u
te
d
on

es
,
at

th
e
b
eg
in
n
in
g

of
th
e
n
u
m
er
ic
al

co
d
e.

A
t
ea
ch

ti
m
e
st
ep
,
th
e
m
at
ri
x
sy
st
em

A
c
=

g
is

th
en

so
lv
ed

in
tw

o
st
ep
s.

T
h
e
lo
w
er

tr
ia
n
gu

la
r
m
at
ri
x
sy
st
em

L
x
=

g
is
fi
rs
t
so
lv
ed
.

T
h
e
se
co
n
d
st
ep

th
en

co
n
si
st
s
in

so
lv
in
g
th
e
u
p
p
er

tr
ia
n
gu

la
r
m
at
ri
x
sy
st
em

U
c
=

x
.

(9
)
L
et

L
a
n
d
U

b
e
d
efi

n
ed

b
y

L
=

0 B B B B B @

1
0

··
·

··
·

0
l 2

,1
1

0
··
·

0
l 3

,1
l 3

,2
1

··
·

0
. . .

. . .
. .
.

. .
.

l n
,1

l n
,2

··
·

l n
,n

1

1 C C C C C A

a
n
d

U
=

0 B B B @

u
1
,1

u
1
,2

··
·

u
1
,n

0
u
2
,2

··
·

u
2
,n

0
0

. .
.

. . .
0

··
·

0
u
n
,n

1 C C C A

T
h
e
a
lg
o
ri
th
m

o
f
L
U

fa
ct
o
ri
za
ti
o
n
re
a
d
s
a
s
fo
ll
ow

s:
u
1
,1

=
a
1
,1

fo
r
j
=

2
,·
··

,n
.

u
1
,j
=

a
1
,j

.
l j
,1

=
a
j
,1
/
a
1
,1

en
d
fo
r

fo
r
i
=

2
,·
··

,n
−

1

.
u
i,
i
=

a
i,
i
−

P

i−
1

k
=
1
l i
,k
u
k
,i

.
fo
r
j
=

i
+

1
,·
··

,n

.
u
i,
j
=

a
i,
j
−

P

i−
1

k
=
1
l i
,k
u
k
,j

.
l i
,j
=

1
u
i
,i

h

a
j
,i
−

P

i−
1

k
=
1
l j
,k
u
k
,i

i

.
en

d
fo
r

en
d
fo
r

u
n
,n

=
a
n
,n

−
P

n
−
1

k
=
1
l n

,k
u
k
,n

7
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V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

H
.2
.
A
p
p
ro

x
im

a
ti
o
n

o
f
th

e
in
te
rf
a
c
e
d
e
ri
v
a
ti
v
e
s.

—
O
n
e
of

th
e
m
os
t

d
el
ic
at
e
p
oi
n
ts

in
th
e
lo
ca
l
cu
b
ic

sp
li
n
es

ap
p
ro
ac
h
is

to
p
ro
v
id
e
”g
o
o
d
”
ap

-
p
ro
x
im

at
io
n
s
of

th
e
in
te
rf
ac
e
d
er
iv
at
iv
es

g
′ (
x
p
0
)
an

d
g
′ (
x
p
K
).

G
o
o
d
ap

p
ro
x
i-

m
at
io
n
s
co
rr
es
p
on

d
to

m
in
im

al
er
ro
r
b
et
w
ee
n
th
e
lo
ca
l
an

d
th
e
gl
ob

al
sp
li
n
es
.

S
ev
er
al

cl
as
si
ca
l
so
lu
ti
on

s,
li
k
e
fi
n
it
e
d
iff
er
en
ce
s
of

va
ri
ou

s
or
d
er
s,

or
ad

-h
o
c

cu
b
ic

sp
li
n
e
ap

p
ro
x
im

at
io
n
s,

h
av
e
b
ee
n
ex
p
lo
re
d
in

re
fe
re
n
ce

[4
0
].

T
h
es
e
au

-
th
or
s
sh
ow

th
at

th
e
m
os
t
ro
b
u
st

ap
p
ro
x
im

at
io
n
w
h
ic
h
re
m
ai
n
s
va
li
d
w
it
h
a

re
la
ti
v
el
y
sm

al
l
n
u
m
b
er

of
gr
id

p
oi
n
ts

em
p
lo
y
s
sp
ec
ia
l
co
m
b
in
at
io
n
s
of

cu
-

b
ic

sp
li
n
e
co
effi

ci
en
ts
.

L
et

u
s
d
et
ai
l
th
is

m
et
h
o
d
.

A
cc
or
d
in
g
to

E
q
.
(1
45
),

c i
−
1
=

3 2
g i
−
1
−

1 4
c i
−
2
−

1 4
c i

an
d
c i
+
1
=

3 2
g i

+
1
−

1 4
c i
−

1 4
c i
+
2
w
h
er
e
g i

+
1
(r
es
p
.

g i
−
1
)
re
p
re
se
n
ts

th
e
va
lu
e
of

g
at

p
oi
n
t
x
p
(i
+
1
)
(r
es
p
.
x
p
(i
−
1
))
.
R
ep
la
ci
n
g
c i
−
1

an
d
c i
+
1
b
y
th
es
e
ex
p
re
ss
io
n
s
in

E
q
.
(1
44
)
le
ad

s
to

th
e
it
er
at
iv
e
eq
u
al
it
y
:

(1
46
)

s′ i
=

3 4
h
(g

i+
1
−
g i
−
1
)
−

1 4
(s
′ i+

1
+
s′ i−

1
)

w
it
h
th
e
n
ot
at
io
n
s′ i

=
s′ lo

c
(x

p
i)
.
s′ i+

1
an

d
s′ i−

1
ca
n
b
e
co
m
p
u
te
d
u
si
n
g
th
e
sa
m
e

p
ro
ce
d
u
re
.
T
h
es
e
d
er
iv
at
iv
es

in
v
ol
v
e
s′ i+

2
an

d
s′ i−

2
.
In
je
ct
in
g
th
es
e
ex
p
re
ss
io
n
s

in
E
q
.
(1
46
)
th
en

y
ie
ld
s:

(1
47
)

s′ i
=

6 7
h
(g

i+
1
−
g i
−
1
)
−

3

14
h
(g

i+
2
−
g i
−
2
)
+

1 14
(s
′ i+

2
+

s′ i−
2
)

A
ga
in
,
s′ i+

2
an

d
s′ i−

2
ca
n
b
e
ev
al
u
at
ed

fr
om

E
q
.
(1
47
),
p
ro
v
id
ed

s′ i+
4
an

d
s′ i−

4

ar
e
in
tr
o
d
u
ce
d
.
In
co
rp
or
at
in
g
th
es
e
ex
p
re
ss
io
n
s
in

E
q
.
(1
47
)
th
en

le
ad

s
to

th
e

fo
ll
ow

in
g
ap

p
ro
x
im

at
io
n
of

s′ i:

s′ i
=

39

49
α
h
(g

i+
1
−
g i
−
1
)
−

3

14
α
h
(g

i+
2
−
g i
−
2
)
+

3

49
α
h
(g

i+
3
−
g i
−
3
)

−
3
γ h
(g

i+
4
−
g i
−
4
)
+

γ
(s
′ i+

4
+

s′ i−
4
)

w
h
er
e
α
=

1
−
2/
14

2
an

d
γ
=

1/
(1
42
α
).

T
h
e
p
ro
ce
d
u
re

is
it
er
at
ed

on
ce

m
or
e,

le
ad

in
g
to

th
e
fi
n
al

re
ta
in
ed

ap
p
ro
x
im

at
io
n
fo
r
s′ i,

n
am

el
y
:

β
h
s′ i

=
1

49
α
(3
9
−
3γ

)(
g i

+
1
−

g i
−
1
)
−

3

14
α
(1
−
γ
)(
g i

+
2
−
g i
−
2
)

+
1

49
α
(3
−
39
γ
)(
g i

+
3
−
g i
−
3
)
−
3
γ
(g

i+
4
−
g i
−
4
)

+
39
γ

49
α
(g

i+
5
−
g i
−
5
)
−

3
γ

14
α
(g

i+
6
−
g i
−
6
)
+

3
γ

49
α
(g

i+
7
−
g i
−
7
)

+
3γ

2
(g

i+
8
−
g i
−
8
)
−
γ
2
h
(s
′ i+

8
+
s′ i−

8
)

w
it
h
β
=

1
−
2γ

2
.
S
o
as

to
cl
os
e
th
e
sy
st
em

,
s′ i+

8
an

d
s′ i−

8
ar
e
ev
al
u
at
ed

u
si
n
g

4t
h
or
d
er

fi
n
it
e
d
iff
er
en
ce
s:

{
s′ i+

8
=

(g
i+

6
−
8g

i+
7
+
8g

i+
9
−
g i

+
1
0
)/
12

h

s′ i−
8
=

(g
i−

1
0
−

8
g i
−
9
+
8g

i−
7
−
g i
−
6
)/
12

h
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9

F
or

in
st
an

ce
,
w
h
en

u
si
n
g
20

va
lu
es

of
g
,
th
e
ap

p
ro
x
im

at
io
n
of

s′ lo
c
(x

p
i)
is
gi
v
en

b
y
(n
ot
ic
e
th
at

w
0
=

0)
: s′ lo

c
(x

p
i)
=

1
0 ∑ j=
1

w
j
(g

i+
j
−

g i
−
j
)

h

w
h
er
e
th
e
w
j
co
effi

ci
en
ts

ar
e
gi
v
en

in
ta
b
le

(1
)

w
1

w
2

w
3

w
4

15
12
6
/
18
81
7

−
40
53
/
18
81
7

10
86
/1
88
17

−
29
1
/1
88
17

0
.8
03
84
75
84
6

−
0.
21
53
90
33
85

0
.0
57
71
37
69
46

−
0
.0
15
46
47
39
33

w
5

w
6

w
7

w
8

78
/
18
81
7

−
50
3
/4
51
60
8

17
/
56
45
1

−
3
/3
76
34

4
.1
45
18
78
62
E

−
3

−
1.
11
37
97
80
7
E

−
3

3.
01
14
61
26
7
E

−
4

−
7.
97
15
15
11
9
E

−
5

w
9

w
1
0

1
/
56
45
1

−
1
/
45
16
08

1
.7
71
44
78
04
E

−
5

−
2.
21
43
09
75
5
E

−
6

T
a
b
l
e
1
.
C
o
effi

ci
en
ts

fo
r
th
e
ap

p
ro
x
im

at
io
n
of

th
e
in
te
rf
ac
e
d
er
iv
at
iv
es

T
h
is

ap
p
ro
ac
h
ca
n
b
e
v
ie
w
ed

as
th
e
ge
n
er
al
iz
at
io
n
of

th
e
st
an

d
ar
d
cu
b
ic

sp
li
n
es
.

In
d
ee
d
,
sh
ou

ld
th
e
n
u
m
b
er

of
su
b
-d
om

ai
n
s
b
e
eq
u
al

to
on

e,
co
rr
e-

sp
on

d
in
g
ac
tu
al
ly

to
th
e
fu
ll
d
om

ai
n
,
th
is
te
ch
n
iq
u
e
tu
rn
s
ou

t
to

b
e
eq
u
iv
al
en
t

to
cu
b
ic

sp
li
n
es
.

A
p
p
e
n
d
ix

I

T
h
e
E
N
O

re
c
o
n
st
ru

c
ti
o
n

I.
1
.
N
e
w
to

n
D
iv
id
e
d

D
iff
e
re

n
c
e
s.

—
L
et

u
s
co
n
si
d
er

th
e
m

+
1
p
ai
rs

(x
i,
f
(x

i)
),
an

d
n
ot
ic
e
Π

m
f
(x

i)
th
e
in
te
rp
o
la
ti
n
g
po
ly
n
o
m
ia
l
su
ch

th
at

(1
48
)

Π
m
f
(x

i)
=

a
m
x
m i
+
··
·+

a
1
x
i
+
a
0
=

f
(x

i)
,

i
=

0,
··
·,

m

S
u
ch

a
p
ol
y
n
om

ia
l
is

in
d
ee
d
u
n
iq
u
e
(a
s
p
ro
v
en

e.
g.

in
re
fe
re
n
ce

[1
1
7
])
.

It
ta
k
es

th
e
L
a
gr
a
n
ge

fo
rm

(1
49
)

Π
m
f
(x
)
=

m ∑ i=
0

f
(x

i)
l i
(x
)

w
it
h

l i
(x
)
=

m ∏ j=
0

j6=
i

x
−
x
j

x
i
−
x
j
,

i
=

0,
··
·,

m

8
0

V
IR

G
IN

IE
G
R
A
N
D
G
IR

A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

H
ow

ev
er

th
is
L
ag
ra
n
ge

fo
rm

u
la
ti
on

d
o
es

n
ot

re
v
ea
l
op

ti
m
al

fr
om

th
e
n
u
m
er
ic
al

p
oi
n
t
of

v
ie
w
.
A
n
al
te
rn
at
iv
e
fo
rm

w
it
h
lo
w
er

co
m
p
u
ta
ti
on

al
co
st

m
ak
es

u
se

of
th
e
N
ew

to
n
D
iv
id
ed

D
iff
er
en

ce
s
fo
rm

u
la
.
T
h
e
go
al

is
to

re
p
la
ce

Π
m

b
y
th
e

su
m

of
Π

m
−
1
(w

it
h
Π

m
−
1
f
(x

i)
=

f
(x

i)
fo
r
i
=

0,
··
·,

m
−

1
on

ly
)
an

d
th
e

p
ol
y
n
om

ia
l
q m

of
d
eg
re
e
m
,
w
h
ic
h
d
ep

en
d
s
on

th
e
x
i
an

d
on

a
si
n
gl
e
u
n
k
n
ow

n
co
effi

ci
en
t,
i.
e.

(1
50
)

Π
m
f
(x
)
=

Π
m
−
1
f
(x
)
+

q m
(x
)

w
h
er
e
q m

∈
P m

.
F
ro
m

E
q
.
(1
50
),
it
ap

p
ea
rs

th
at

q m
m
u
st

sa
ti
sf
y

q m
(x
)
=

a
m
(x

−
x
0
)
··
·(
x
−

x
m
−
1
)
=

a
m
w
m
(x
)

w
h
er
e
th
e
n
od
a
l
po
ly
n
o
m
ia
l
w
m

of
d
eg
re
e
m

h
as

b
ee
n
in
tr
o
d
u
ce
d

w
m
(x
)
=

m
−
1

∏ i=
0

(x
−

x
i)

T
h
e
ex
p
re
ss
io
n
of

th
e
u
n
k
n
ow

n
co
effi

ci
en
t
a
m

d
ir
ec
tl
y
d
er
iv
es

fr
om

th
e
d
efi
n
i-

ti
on

E
q
.
(1
50
),
an

d
fr
om

th
e
eq
u
al
it
y
Π

m
f
(x

m
)
=

f
(x

m
):

a
m

=
f
(x

m
)
−

Π
m
−
1
f
(x

m
)

w
m
(x

m
)

a
m

is
ca
ll
ed

th
e
m
-t
h
N
ew

to
n
D
iv
id
ed

D
iff
er
en

ce
,
al
so

ge
n
er
al
ly

d
en
ot
ed

b
y

a
m

=
f
[x

0
,x

1
,·
··

,x
m
],

fo
r
m

≥
1

E
q
.
(1
50
)
ca
n
th
en

b
e
re
fo
rm

u
la
te
d
as

fo
ll
ow

s:

Π
m
f
(x
)
=

Π
m
−
1
f
(x
)
+

w
m
(x
)f
[x

0
,x

1
,·
··

,x
m
]

E
q
.

(1
50
)
ca
n
b
e
re
cu
rs
iv
el
y
ap

p
li
ed

to
Π

m
−
1
f
(x
),

Π
m
−
2
f
(x
),

..
.,

d
ow

n
to

Π
0
f
(x
).

T
ak

in
g
f
(x

0
)
=

f
[x

0
]
an

d
w
0
=

1
th
en

p
ro
v
id
es

w
h
at

is
co
m
m
on

ly
ca
ll
ed

th
e
N
ew

to
n
D
iv
id
ed

D
iff
er
en

ce
fo
rm

u
la

fo
r
th
e
in
te
rp
ol
at
in
g
p
ol
y
n
om

ia
l

(1
51
)

Π
m
f
(x
)
=

m ∑ i=
0

w
i(
x
)f
[x

0
,x

1
,·
··

,x
i]

In
v
ie
w

of
ob

ta
in
in
g
an

ex
p
li
ci
t
ex
p
re
ss
io
n
fo
r
a
m

=
f
[x

0
,x

1
,·
··

,x
m
],
fi
rs
t

re
m
ar
k
th
at

Π
m
f
ca
n
al
so

b
e
ex
p
re
ss
ed

as

(1
52
)

Π
m
f
(x
)
=

m ∑ i=
0

w
m
+
1
(x
)

(x
−

x
i)
w
′ m
+
1
(x

i)
f
(x

i)

E
q
u
at
in
g
b
ot
h
ex
p
re
ss
io
n
s
of

Π
m
f
,
n
am

el
y
E
q
.
(1
51
)
an

d
E
q
.
(1
52
),
le
ad

s
to

th
e
fo
ll
ow

in
g
ex
p
li
ci
t
ex
p
re
ss
io
n
of

a
m
:

(1
53
)

f
[x

0
,x

1
,·
··

,x
m
]
=

m ∑ i=
0

f
(x

i)

w
′ m
+
1
(x

i)
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8
1

F
in
al
ly
,
an

al
ge
b
ra
ic

m
an

ip
u
la
ti
on

of
(1
53
)
y
ie
ld
s
th
e
re
cu
rs
iv
e
fo
rm

u
la

w
h
ic
h

re
v
ea
ls

p
ar
ti
cu
la
rl
y
effi

ci
en
t
fo
r
co
m
p
u
ti
n
g
d
iv
id
ed

d
iff
er
en
ce
s

f
[x

0
]
=

f
(x

0
)

(1
54
)

f
[x

0
,x

1
,·
··

,x
m
]
=

f
[x

1
,x

2
,·
··

,x
m
]
−
f
[x

0
,x

1
,·
··

,x
m
−
1
]

x
m
−
x
0

,
m

≥
1

I.
2
.
O
n
e
D
im

e
n
si
o
n
a
l
re

c
o
n
st
ru

c
ti
o
n
.
—

L
et

u
s
u
se

th
e
gr
id

d
efi
n
it
io
n

in
tr
o
d
u
ce
d
in

se
ct
io
n
6.
3.

T
h
e
ce
ll
av
er
ag
e
of

an
y
fu
n
ct
io
n
g
(x
)
is

d
efi
n
ed

b
y

(1
55
)

ḡ i
=

1

∆
x
i

∫
x
i+

1 2

x
i−

1 2

g
(ξ
)
d
ξ

T
h
e
ob

je
ct
iv
e
is
to

fi
n
d
th
e
p
ol
y
n
om

ia
l
p
i(
x
),
of

k
−
1
d
eg
re
e
at

m
os
t,
d
efi
n
ed

on
ea
ch

in
te
rv
al

I i
,
w
h
ic
h

is
th
e
k
-t
h

or
d
er

ac
cu
ra
te

ap
p
ro
x
im

at
io
n

of
th
e

fu
n
ct
io
n
g
(x
),
w
h
at
ev
er

x
∈
I i
:

p
i(
x
)
=

g
(x
)
+
O
(∆

x
k i
),

x
∈
I i
,
i
=

1,
··
·,

N

G
iv
en

th
e
lo
ca
li
ze
d
in
te
rv
al

I i
,
an

d
th
e
or
d
er

of
ac
cu
ra
cy

k
,
le
t
u
s
d
efi
n
e
th
e

S
(i
)
st
en

ci
l
b
as
ed

on
r
ce
ll
s
to

th
e
le
ft
,
s
ce
ll
s
to

th
e
ri
gh

t
an

d
I i

it
se
lf
(s
ee

fi
gu

re
11
),

w
it
h
r
+

s
+
1
≡

k
:

S
(i
)
≡

{I
i−

r
,·
··

,I
i+

s
}

T
h
er
e
ex
is
ts

an
u
n
iq
u
e
p
ol
y
n
om

ia
l
p
i(
x
)
of

d
eg
re
e
at

m
os
t
k
−
1
=

r
+
s,

fo
r

F
ig
u
r
e
1
1
.
k
-t
h
or
d
er

st
en
ci
l
fo
r
ce
ll
I i

w
h
ic
h
th
e
av
er
ag
e
on

ea
ch

ce
ll
of

S
(i
)
is

eq
u
al

to
th
at

of
g
(x
)

(1
56
)

ḡ j
=

1

∆
x
j

∫
x
j
+

1 2

x
j
−

1 2

p
i(
ξ)

d
ξ,

j
=

i
−
r,
··
·,

i
+
s

T
h
e
q
u
an

ti
ty

ḡ j
∆
x
j
re
p
re
se
n
ts

a
co
n
st
ra
in
t
on

th
e
ch
oi
ce

of
p
i(
x
).

L
et

u
s

d
en
ot
e
G
(x
)
th
e
an

ti
d
er
iv
at
iv
e
fu
n
ct
io
n
of

g
(x
)

(1
57
)

G
(x
)
≡
∫

x −
∞
g
(ξ
)
d
ξ

8
2

V
IR

G
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IE
G
R
A
N
D
G
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A
R
D
,
Y
A
N
IC

K
S
A
R
A
Z
IN

H
er
e,

th
e
lo
w
er

li
m
it

−
∞

ca
n
b
e
re
p
la
ce
d
b
y
an

y
fi
x
ed

n
u
m
b
er
.
E
q
.
(1
55
)

al
lo
w
s
on

e
to

ex
p
re
ss

G
(x

i+
1 2
)
as

fu
n
ct
io
n
of

th
e
av
er
ag
es

ḡ j
:

(1
58
)

G
(x

i+
1 2
)
=

i ∑

j=
−
∞

∫
x
j
+

1 2

x
j
−

1 2

g
(ξ
)
d
ξ
=

i ∑

j=
−
∞
ḡ j
∆
x
j

It
fo
ll
ow

s
th
at

th
e
an

ti
d
er
iv
at
iv
e
fu
n
ct
io
n
G
(x
)
ca
n
b
e
ex
ac
tl
y
co
m
p
u
te
d
at

th
e

ce
ll
b
ou

n
d
ar
ie
s
as

lo
n
g
as

th
e
av
er
ag
es

{ḡ
j
}a

re
k
n
ow

n
.
L
et

u
s
d
en
ot
e
P
i(
x
)
th
e

u
n
iq
u
e
p
ol
y
n
om

ia
l
of

d
eg
re
e
sm

al
le
r
or

eq
u
al

to
k
,
w
h
ic
h
in
te
rp
ol
at
es

G
(x

j+
1 2
)

at
th
e
fo
ll
ow

in
g
k
+
1
p
oi
n
ts

(1
59
)

x
i−

r
−

1 2
,·
··

,x
i+

s+
1 2

L
et

th
en

p
i(
x
)
b
e
it
s
d
er
iv
at
iv
e:

p
i(
x
)
≡

P
′ i
(x
).

E
q
u
al
it
y
(1
56
)
is

th
en

ea
si
ly

p
ro
v
en
,
an

d
P
′ i
(x
)
=

G
′ (
x
)
+

O
(∆

x
k i
),

x
∈
I i

I.
3
.
E
N
O

a
lg
o
ri
th

m
.
—

T
h
e
fo
ll
ow

in
g
su
b
se
ct
io
n
p
ro
p
os
es

a
q
u
ic
k
in
tr
o-

d
u
ct
io
n
on

th
e
E
N
O

m
et
h
o
d
.
F
or

a
d
ee
p
er

p
ed
ag
og
ic
al

in
si
gh

t,
th
e
in
te
re
st
ed

re
ad

er
ca
n
fo
r
in
st
an

ce
re
fe
r
to

th
e
le
ct
u
re

n
ot
es

of
S
h
u
[1
2
5
].
T
h
e
b
as
ic

id
ea

of
th
e
E
N
O

m
et
h
o
d
co
n
si
st
s
in

u
si
n
g
an

ad
ap

ti
v
e
st
en
ci
l
w
h
ic
h
ex
cl
u
d
es

th
e

d
is
co
n
ti
n
u
ou

s
ce
ll
in

th
e
st
en
ci
l,
if
p
os
si
b
le
.
T
h
e
ex
cl
u
si
on

cr
it
er
ia

is
gi
v
en

b
y

u
si
n
g
a
N
ew

to
n
D
iv
id
ed

D
iff
er
en
ce
s
w
h
ic
h
p
la
y
s
th
e
ro
le

of
an

in
d
ic
at
or

of
sm

o
ot
h
n
es
s
of

th
e
fu
n
ct
io
n
g
.
In
d
ee
d
,
le
t
u
s
co
n
si
d
er

th
e
N
ew

to
n
fo
rm

u
la
ti
on

of
th
e
in
te
rp
ol
at
io
n
p
ol
y
n
om

ia
l
(s
ee

se
ct
io
n
I.
1)
.
S
im

il
ar
ly

to
E
q
.
(1
54
),

le
t

u
s
d
efi
n
e
th
e
0-
th

d
eg
re
e
d
iv
id
ed

d
iff
er
en
ce
s
of

fu
n
ct
io
n
G
(x
)
as

(1
60
)

G
[x

i−
1 2
]
≡

G
(x

i−
1 2
)

an
d
th
e
j-
th

d
eg
re
e
d
iv
id
ed

d
iff
er
en
ce
s,

fo
r
j
≥

1
as

(1
61
)

G
[x

i−
1 2
,·
··

,x
i+

j−
1 2
]
≡

G
[x

i+
1 2
,·
··

,x
i+

j−
1 2
]−

G
[x

i−
1 2
,·
··

,x
i+

j−
3 2
]

x
i+

j−
1 2
−
x
i−

1 2

W
e
n
ot
e
th
at
,
in

v
ir
tu
e
of

E
q
.
(1
58
),

th
e
0-
th

d
eg
re
e
d
iv
id
ed

d
iff
er
en
ce
s
of

ḡ
ar
e
th
e
fi
rs
t
d
eg
re
e
d
iv
id
ed

d
iff
er
en
ce
s
of

G
(x
):

G
[x

i−
1 2
,x

i+
1 2
]
=

G
(x

i+
1 2
)
−

G
(x

i−
1 2
)

x
i+

1 2
−

x
i−

1 2

=
ḡ i

It
fo
ll
ow

s
th
at

th
e
N
ew

to
n
fo
rm

of
th
e
k
-t
h
d
eg
re
e
in
te
rp
ol
at
io
n
p
ol
y
n
om

ia
l

P
(x
),
w
h
ic
h
in
te
rp
ol
at
es

G
(x
)
at

th
e
k
+
1
p
oi
n
ts

(1
59
),
ca
n
b
e
ex
p
re
ss
ed

u
si
n
g

th
e
d
iv
id
ed

d
iff
er
en
ce
s
(1
60
)
an

d
(1
61
):

(1
62
)

P
(x
)
=

k ∑ j=
0

G
[x

i−
r
−

1 2
,·
··

,x
i−

r
+
j−

1 2
]

j−
1

∏ m
=
0

(x
−
x
i−

r
+
m
−

1 2
)
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8
3

an
d
th
en

d
ed
u
ce

fo
r
p
(x
)

(1
63
)

p
(x
)
=

k ∑ j=
1

G
[x

i−
r
−

1 2
,·
··

,x
i−

r
+
j−

1 2
]

j−
1

∑ m
=
0

j−
1

∏ l=
0

l6=
m

(x
−
x
i−

r
+
l−

1 2
)

T
h
e
fo
ll
ow

in
g
p
ro
p
er
ti
es

(p
ro
p
os
it
io
n
7)

of
th
e
N
ew

to
n
D
iv
id
ed

D
iff
er
en
ce

ar
e

at
th
e
b
as
is

of
th
e
E
N
O

m
et
h
o
d
.

P
ro

p
o
si
ti
o
n

7
.
—

T
h
e
d
iv
id
ed

d
iff
er
en

ce
is
a
m
ea
su
re
m
en

t
o
f
th
e
sm

oo
th
n
es
s

o
f
th
e
fu
n
ct
io
n
in
si
d
e
th
e
st
en

ci
l
in

th
e
se
n
se

th
a
t:

–
If

G
(x
)
∈
Cj
([
x
i−

1 2
,x

i+
j−

1 2
],
th
en

th
er
e
ex
is
ts

(1
64
)

ξ
∈
[x

i−
1 2
,x

i+
j−

1 2
],

G
[x

i−
1 2
,·
··

,x
i+

j−
1 2
]
=

1 j!

d
j
G

d
x
j
(ξ
)

–
If

th
e
k
-t
h
d
er
iv
a
ti
ve

o
f
G
(x
)
is

d
is
co
n
ti
n
u
o
u
s
w
it
h
0
≤

k
≤

j
o
n

th
e

in
te
rv
a
l
[x

i−
1 2
,x

i+
j−

1 2
],
th
en

(1
65
)

G
[x

i−
1 2
,·
··

,x
i+

j−
1 2
]
=

O
(

1

∆
x
k
−
j

)
[ω

(k
) ]

w
h
er
e
ω
(k
)
re
p
re
se
n
ts

th
e
ju
m
p
o
f
th
e
k
-t
h
d
er
iv
a
ti
ve
.

In
d
ee
d
,
th
e
E
N
O

re
co
n
st
ru
ct
io
n
co
n
si
st
s
in

ch
o
os
in
g
th
e
st
en
ci
l
fo
r
w
h
ic
h

th
e
ap

p
ro
x
im

at
io
n
is

th
e
sm

o
ot
h
es
t,

i.
e.

fo
r
w
h
ic
h
th
e
d
iv
id
ed

d
iff
er
en
ce
s
is

th
e
sm

al
le
st

in
m
o
d
u
le
.
T
h
e
E
N
O

p
ro
ce
d
u
re

ca
n
b
e
su
m
m
ar
iz
ed

as
fo
ll
ow

s:

a)
F
ir
st

d
efi
n
e
th
e
p
ol
y
n
om

ia
l
of

d
eg
re
e
on

e
in
te
rp
ol
at
in
g
th
e
fu
n
ct
io
n
G
(x
)

on
th
e
tw

o-
p
oi
n
t
st
en
ci
l
S̃
(i
)
=

{x
i−

1 2
,x

i+
1 2
}
an

d
se
t
d
1
(i
)
=

i,

b
)
A
ss
u
m
in
g
th
at

w
e
ga
v
e
th
e
p
ol
y
n
om

ia
l
of

d
eg
re
e
k
in
te
rp
ol
at
in
g
th
e
fu
n
c-

ti
on

G
(x
)
at

th
e
p
oi
n
ts x

d
k
(i
)−

1 2
,·
··
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ü
c
k
e
r
–
C
on

se
rv
at
iv
e

se
m
i-
la
gr
an

gi
an

sc
h
em

es
fo
r
v
la
so
v
eq
u
at
io
n
s,

J
.
C
o
m
p
u
t.

P
h
ys
.
2
2
9
(2
01
0)
,
n
o.

6,
p
.
19
27

–
19
53
.

[4
0]

N
.
C
r
o
u
se

il
l
e
s,

G
.
L
a
t
u

&
E
.
S
o
n
n
e
n
d
r
ü
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