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Résumé (français)

La première partie de ce mémoire traite de l’intrication quantique (entropie de Von Neumann)
dans certains systèmes bidimensionnels. Il s’agit de fonctions d’onde de type Rokhsar-Kivelson
(RK), construites à partir des poids de Boltzmann d’un modèle classique (modèle de dimères,
de vertex ou de spins d’Ising par exemple). Nous montrons comment le spectre des matrices
densité réduites de ces états s’obtient à partir des probabilités du modèle classique sous-jacent.
Cette observation permet de calculer numériquement l’entropie d’intrication dans de grands
systèmes, et en particulier de tester la présence de constantes sous-dominantes universelles
dans le cas d’un liquide (de dimères) topologique de type Z2 (construction de Kitaev-Preskill
& Levin-Wen) et dans le cas d’une fonction d’onde critique (dimères sur réseaux bipartites).

Si le système est un cylindre infiniment long et que le sous-système considéré est un demi-
cylindre infini, le spectre de la matrice densité réduite peut se calculer plus simplement encore,
par matrice de transfert. L’entropie d’intrication entre les deux moitiés du système apparâıt
alors comme l’entropie de Shannon associée aux probabilités des différentes configurations
des degrés de liberté qui se trouvent à la frontière (un cercle). Ceci nous conduit à considérer
l’entropie de Shannon (et ses généralisations de type Rényi) d’une fonction d’onde à N corps
en tant que telle – indépendamment de son lien éventuel avec l’intrication quantique d’un état
RK en dimension supérieure. Nous étudions les contributions universelles de cette entropie
dans trois cas: 1) les liquides de Tomonaga-Luttinger, cadre dans lequel nous établissons un
lien entre l’entropie de Shannon-Rényi et des problèmes de théories conformes avec bords, et
calculons exactement les termes universels de l’entropie en fonction du paramètre de Luttinger
et de l’indice de Rényi; 2) la châıne d’Ising critique en champ transverse, pour laquelle nos
simulations numériques montrent la présence d’une transition de phase à n=1 (indice de
Rényi), qui reste mal comprise théoriquement, et pour laquelle une approche par méthode des
répliques semble inadaptée; et enfin 3) des systèmes bidimensionnels avec symétrie continue
spontanément brisée, où nous expliquons par un argument de champ libre (et de tour d’états)
la présence de termes en log(L) dans l’entropie, comme récemment observé par simulations
Monte-Carlo quantique.
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Introduction

Quantum entanglement has become a central subject of research in the field of quantum many-
body physics, and several concepts related to quantum information theory have found useful
applications in the study of condensed matter models, from spin systems to the quantum
Hall effect. Exact results are however relatively scarce in dimension greater than one and the
starting point of the series of works summarized in this manuscript [1, 2, 3, 4, 5, 6] is “can
we find some interacting quantum systems where the entanglement properties of large spatial
regions could be computed exactly ?”.

Boundary law

An important discovery of the last 15 years is that the low-energy states of short-ranged
Hamiltonians are much less entangled than a state picked at random in the Hilbert space,
or than a highly excited eigenstate of the same Hamiltonian. This is known as the boundary
law [7] and it states that, in dimensionD, the entropy of a subsystem of linear size L generically
scales like ∼ LD−1.1 This is much smaller than an extensive thermal entropy (∼ LD) or
much smaller than the extensive entanglement entropy (EE) of high energy eigenstates. The
boundary law is relatively intuitive for states with a finite correlation length. In that case we
may assume that entanglement mostly comes from those correlations taking place between
degrees of freedom sitting across the boundary of the subsystem, hence a scaling with the size
of the boundary. But making this more rigorous turns out to be quite difficult.2

This law has shed light on the huge success (and limitations) of the density matrix renor-
malization group (DMRG) method for one-dimensional systems [10, 11]. The modern view is
indeed that DMRG is a variational approach in the space of matrix-product states, and that
the amount of entanglement is the parameter which dictates how large the matrices should
be in order to faithfully represent the actual wave function. Realizing this has also helped
to apply the DMRG to 2D problems [12]. But understanding that a good Ansatz should (at
least) be able to reproduce a boundary law has also opened the way to promising methods to
treat interacting systems in higher dimensions: Projected entangled pair states (PEPS) [13],
Tree tensor networks [14] or the Multiscale Entanglement Ansatz [15] to name a few.

Corrections to the boundary law

There are few examples of systems which ground state entropy exceeds the boundary law, but
a very famous one is certainly the c

3 logL divergence of the EE of a segment of length L in a

1This was originally discussed for black holes as the “area” law, where the two-dimensional horizon plays
the role of a boundary [8]. Here, and in condensed matter in general, the space dimension D is between 1 and
3 and the term boundary law seems more appropriate than area for this LD−1 scaling.

2See for instance [9] for a proof in gapped 1D systems.
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INTRODUCTION

(much longer) critical chain with central charge c [16, 17, 18], which is a remarkable bridge
between conformal field theory (CFT), quantum information and lattice many-body systems.
Systems with a Fermi surface are another example [19].3 Most other systems in dimension
D = 2 do not violate the boundary law (the leading term is LD−1) but they can have
some universal subleading corrections, which may be O(logL) in some geometries [20]. This
manuscript presents some concrete examples and several exact results concerning logarithmic
terms in critical states (so-called Rokhsar-Kivelson states).

The entanglement is also a useful way to probe gapped systems with short-range correla-
tions. This is particularly true for topological phases of matter, where quantum information
ideas have lead to some important advances. These phases cannot be characterized by any
conventional local order parameter (they do not necessarily break any symmetry). They are
nevertheless distinct from “conventional” phases, in the sense that a system cannot evolve
continuously from a topological phase to a non-topological one without crossing a phase tran-
sition. The most famous examples of topological phases (or topological order) are those of
the fractional quantum Hall effect (FQHE) [21] and gapped spin liquids (for reviews on the
later, see for instance [22, 23, 24]). The study of quantum entanglement has allowed to de-
fine some precise ways to distinguish topological phases from non-topological ones, and also
to distinguish different types of topological states. Kitaev and Preskill [25] and Levin and
Wen [26] (see also [27, 28]) explained how to detect topological order from the ground state
wave function alone, using a subleading correction to the EE of a (large) subsystem. This
entropy constant is called the topological entanglement entropy (TEE), and will be illustrated
with a simple example in Sec. 1.1. Their approach allows to obtain the total quantum dimen-
sion of the phase, which is a universal number related to the fractional quasi-particle content
of the phase.4 Previously, deciding if a given system has some topological order would have
required to look at excited states wave functions, or to analyze how the ground state degen-
eracy changes when the topology is changed. But with EE as a diagnostic, topological order
appears to be a property of the ground state alone. Furthermore, it was recently realized
that studying entanglement can give access to more informations about the system, namely
the braiding and statistics of the topological/fractional excitations [29].

But measuring the EE also became a practical and powerful tool to detect topological
phases in numerical simulations. The EE can be measured using quantum Monte Carlo
(QMC), as in [30] where a Z2 liquid phase was identified thanks to the TEE. For two-
dimensional (2D) models with a sign problem, the DMRG has recently proved to be extremely
useful, in particular because it gives access to the entanglement properties in long cylinder
geometries. For instance, Refs. [31, 32, 33] used DMRG and entanglement analysis to pro-
pose some Z2 phases in several frustrated Heisenberg models, including the (nearest-neighbor)
Heisenberg antiferromagnet on the kagome lattice. Some topological phase was also proposed
for a particular magnetization plateau in the kagome Heisenberg antiferromagnet [34].

Entanglement spectrum

It was also realized that the spectrum of the reduced density matrix (RDM) of a large subsys-
tem can be used to extract some information about the long-distance physics. In a seminal
paper, Li and Haldane [35] showed that the entanglement spectrum (ES) of a quantum Hall

3A Fermi surface leads to an EE which scales as log(L)LD−1. This multiplicative logL correction can be
though as arising from multiple 1D-like gapless modes located at each point of the Fermi surface.

4A definition is given in Sec. 1.3.2.
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system without any boundary (on a sphere for instance) contains some information about the
energy spectrum of the chiral gapless edge modes which can propagate if the system has a
boundary (see also [25, 36]).

This remarkable “bulk-edge” correspondence has since then been tested (and sometimes
understood) in many other systems, and lattice spin or boson models in particular. It would
be impossible to cite here all the numerous works related to the study of ES. But we can list
here a few examples in order to illustrate the great variety of problems which can studied
using this new tool called “entanglement spectroscopy”: Topological order in Haldane phase
(spin-1 chains) and degeneracies in the ES [37]; relation between ES and edge modes in
topological insulators and superconductors [38]; Entanglement between coupled spin-1

2 chains
(ladder) [39, 40]; FQHE on spheres and entanglement gap [41]; FQHE on a torus and edge
modes [42]; Critical spin chains and CFT operators [43, 44]; Tower of states in the ES of
systems with gapless Nambu-Goldstone modes [45, 46]; Identification of a 2D chiral spin
liquid in kagome-lattice antiferromagnet using DMRG and ES analysis [47]; · · ·

Quantum field theory

We have given several examples showing that the EE is a powerful tool to probe condensed-
matter systems, in particular when doing numerical simulations. But these EE concepts are
also of growing importance in quantum field theory (QFT). For instance, the EE has been
found to play an important role in the anti-de Sitter(AdS)/CFT correspondence.5 As a second
example, closer to the present work, people have considered the EE S(R) of the area enclosed
in a disk of radius R in a 2+1D QFT. S(R) is related to the free energy of a sphere in 3D
and is of the form S(R) = αR − γ, where γ is a (finite and universal) constant term. This
γ has been shown to be somewhat analogous to the central charge in 1+1D CFT since it
decreases along RG trajectories [49]. This “f theorem”, which is based on Lorentz invariance
and strong sub-additivity of the EE,6 can therefore be used to exclude some particular RG
flows. In other words, if some perturbation triggers an instability in a system described by a
first fixed point, it can only flow to a second fixed point with lower γ. This “entanglement
monotonicity” was in turn recently exploited to bring new results about the stability of some
– much debated – gapless spin liquids7 in the field of frustrated quantum magnets [52]. This is
an example where QFT results have found some application in a strongly interacting fermion
problem, via a quantum information concept.

Outline

The models we discuss in this manuscript are certainly simpler than the strongly interacting
gauge theories involved in the spin liquids mentioned just above, but a large part of the
present work aims at understanding and computing similar universal entropy constants. The
first chapter explains how to calculate the EE and ES for a particular class of states in 2+1D,
the so-called Rokhsar-Kivelson (RK) states. These states are obtained by “promoting” a
classical lattice model (2+0D) to a wave function. They allow to import some knowledge

5The EE of a region in some (D+1)-dimensional CFT was conjectured to be proportional to the area of a
minimal surface in a higher-dimensional curved (AdS) space [48].

6S(A ∪B) + S(A ∩B) ≤ S(A) + S(B).
7These spin liquids are described by Dirac fermions (spinons) interacting via a U(1) gauge force [50, 51].
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INTRODUCTION

from 2D classical statistical mechanics (exactly solvable models and/or CFT) to construct
tractable quantum models.

Critical RK states correspond to fine-tuned multi-critical points [53] and are therefore
not completely representative of generic critical points encountered in microscopic 2+1D
systems,8 but as we will see, they offer a useful and controlled framework to discuss universal
corrections to the boundary law in 2D. Gapped RK states are more “generic” in the sense
that they have most of the qualitative properties of quantum massive states, and they can
be particularly interesting to describe phases with topological order. The simplest of these
topological phases, namely Z2 liquids, is discussed in Sec. 1.3.

This study of the EE in RK states reveals that the entanglement between two spatial
regions is “mediated” through some degrees of freedom forming a quantum chain located
along the boundary of the two subsystems. A useful finding is that, in some appropriate
geometries, the EE turns out to be the Shannon entropy of the ground state of that chain
(Sec. 1.4), which is an important simplification since the explicit trace over the degrees of
freedom of one subsystem, and the subsequent diagonalization of the RDM, can be bypassed.9

This leads us in Ch. 2 to consider the Shannon entropy (and Rényi generalizations)10 of
a given wave function as an interesting quantity on its own, independently from the fact that
it may be related to an EE in some higher-dimensional RK system. The main message we
convey here is that, although the Shannon entropy is a basis-dependent quantity,11 it contains
some universal subleading corrections (in the limit of large system size). In Sec. 2.1 we provide
a rather complete theory of these corrections in the case of Tomonaga-Luttinger liquids. For
these systems we relate the subleading entropy constants to known boundary entropies of
the compactified boson CFT, and show that they give access to the boson compactification
radius R (or, equivalently, the Luttinger parameter). For instance, the subleading term in
the Shannon entropy is shown to be log(R) − 1

2 . We also discuss a phase transition which
takes place at some critical value nc of the Rényi parameter. For the Ising chain in transverse
field (Sec. 2.2), our understanding is less complete than for the free boson, and still mostly
based on numerical observations. In this system the critical value of the Rényi parameter
is nc = 1 and, although we could determine the universal entropy constant precisely at this
point (Eq. 2.27), its understanding in term of field theory is still a challenge, in particular
because a replica approach is not applicable.

The chapter 3 deals with systems with a spontaneously broken continuous symmetry and
gapless Nambu-Goldstone modes. Using a free-field description we show that, in this case, the
Shannon-Rényi entropy (SRE) of the ground state contains some corrections to the volume
law which are logarithms of the system size, and the coefficient of these log(L) terms is
proportional to the number of gapless modes. We compare our findings with some recent
QMC results [54]. Contrary to the first two chapters, this last part mostly presents some
unpublished results.

8Their critical exponents are those of a 2D field theory, and not 3D as one expects for a quantum system
in two spatial dimensions.

9This construction does not only give the EE, but also the ES: the eigenvalues of the reduced density matrix
are classical probabilities for the boundary degrees of freedom.

10For a definition of these entropies, see Eq. 2.1.
11The EE of the RK state is of course basis independent, but the RK wave function has a simple expression

in terms of classical weights only in one particular basis, the one corresponding to the configurations of the
underlying classical model. It is in this basis that the Shannon entropy of the boundary chain is equal to the
EE of the RK state.
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Chapter 1

Entanglement in Rokhsar-Kivelson
wave functions

Calculating exactly the entanglement entropy of a large subsystem in a many-problem is
usually quite difficult since it involves several tasks which scale exponentially with the system
size. First, one has to get some description of the wave function, in some exponentially large
Hilbert space. Then, one needs to trace over some part of the system, which also corresponds
to an exponentially long calculation. One should finally diagonalize the RDM and sum over
its eigenvalues.

The situations where the system maps onto free particles – fermions or bosons – is a notable
exception since the RDM of a subsystem is Gaussian1 and thus completely determined by the
data of the one-body correlations inside the subsystem (Wick’s theorem). In that case the
entanglement entropy can be computed numerically in polynomial time, and analytically in
many interesting cases [55, 56]. In the following sections we show how these tasks also greatly
simplify for Rokhsar-Kivelson (RK) states.

1.1 Rokhsar Kivelson construction

In 1988 Rokhsar and Kivelson [57] introduced the first quantum dimer model (QDM). The
historical motivation was to provide a simple model describing the physics of short-range res-
onating valence-bond (RVB) states, in relation to the physics of the cuprate superconductors.

In a QDM the Hilbert space is spanned by an orthonormal basis {|c〉}, where each basis
state |c〉 is associated with an hard-core dimer covering of the lattice (see example in Fig. 1.1).
The original RK model has the following Hamiltonian:

H =
∑

Plaquette

[
−t
(∣∣ rr rr〉 〈 rr rr∣∣+ H.c.

)
+ v

(∣∣ rr rr〉 〈 rr rr∣∣+
∣∣ rr rr〉 〈 rr rr∣∣)] . (1.1)

The “kinetic” term (amplitude −t) flips two dimers around a square plaquette while the
“potential” term (proportional to v) is diagonal in the dimer configuration basis and fa-
vors or penalizes plaquettes with two dimers (“flippable” plaquettes). The zero-temperature
phase diagram of this model has been intensively studied [57, 58, 59, 60] and displays several
crystalline phases with spontaneously broken translation symmetry. Here we focus on one

1It is the exponential of a quadratic form in the creation and annihilation operators.
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CHAPTER 1. ENTANGLEMENT IN ROKHSAR-KIVELSON WAVE FUNCTIONS

Figure 1.1: Hard-core dimer covering of the square lattice.

particular point (so-called RK point), where t = v = 1. There the Hamiltonian can rewritten
as a sum of projectors

HRK = 2
∑
p

|Ψp〉 〈Ψp| (1.2)

|Ψp〉 =
1√
2

(∣∣ rr rr〉− ∣∣ rr rr〉) . (1.3)

The linear superposition of all dimer coverings belonging to a given sector2 Ω

|RKΩ〉 ∼
∑
c∈Ω

|c〉 (1.4)

is annihilated by Eq. 1.2 and is therefore a ground state.3 This point lies between two
crystalline phases for v < 1 and v > 1. The nature of the ground state for v slightly smaller
than 1 is a subtle issue, but a resonating plaquette phase seems plausible [60]. For v > 1 the
“staggered” dimer configurations (non-flippable) are the exact ground states.

This construction of a 2D wave function from a 2D classical model can be generalized
to an arbitrary classical system, where each c can be an Ising or vertex configuration for
instance [61]. When the Boltzmann weights are not all equal, the resulting generalized RK
wave function has amplitudes which are the square roots of the classical Boltzmann weights:

|RKΩ〉 =
1√
Z
∑
c∈Ω

√
e−E(c) |c〉 , (1.5)

where the normalization factor ZΩ =
∑

c∈Ω e
−E(c) is the classical partition function. Some

Hamiltonians for which the state above is an exact ground state can easily be constructed [62,
61, 63]. These Hamiltonians can be chosen to be local as long as the classical energy E(c)
only contains short-ranged interactions.

2All the dimer configurations which can be obtained from each other by a succession of two-dimer flips
(kinetic term of the Hamiltonian) form an ergodicity sector. In the following we will sometimes omit to specify
Ω explicitly.

3The argument is the following. Consider a plaquette p and a configuration |c〉. If |c〉 has one or no dimer
at all on the edges of p we have 〈Ψp|c〉 = 0. If two dimers are present, then there exists in the same sector Ω a
second configuration |c′〉 which only differs from |c〉 by a two-dimer flip on p. In such a case the combination
|c〉+ |c′〉 is again orthogonal to |Ψp〉. This shows that HRK |0〉 = 0.

12



1.2. CLASSICALLY CONSTRAINED MODELS AND RK REDUCED DENSITY MA . . .

Figure 1.2: Example of 8-vertex configuration. The number of incoming arrow(s) is even (0,2
or 4) at each vertex.

1.2 Classically constrained models and RK reduced density
matrix

We now describe the RDM of a RK state. The RDM ρA associated with a spatial region A
is defined by tracing ρ = |RK〉 〈RK| over the degrees of freedom living outside A:

ρA = TrB [|RK〉 〈RK|] . (1.6)

The structure of ρA is particularly simple for constrained models such as dimer models or
vertex models.4 This was, to our knowledge, first discussed in 2007 in the context of a QDM
on the triangular lattice [1].

To illustrate this important idea we focus on a classical system where the allowed config-
urations are those of an 8-vertex model on the square lattice, that is with an even number of
incoming arrows at each vertex (Fig. 1.2). Switching off some weights, this also includes the
6-vertex models. One can also represent an hard-core dimer problem if we change the parity
constrain to “odd”.5

1.2.1 Schmidt decomposition of a RK state

To compute the von Neumann entropy we need to diagonalize the reduced density matrix ρA.
A practical way to do so is to find a Schmidt decomposition of the wave function. It amounts
to write the state |ψ〉 as a sum of tensor-product states

∣∣ψAi 〉 ⊗ ∣∣ψBi 〉, where each
∣∣ψAi 〉 is a

state of the region A, and each
∣∣ψBi 〉 is a state of the region B:

|ψ〉 =
∑
i

√
pi
∣∣ψAi 〉⊗ ∣∣ψBi 〉 , (1.7)

with the following orthogonality constrains:〈
ψAi

∣∣ψAj 〉 =
〈
ψBi

∣∣ψBj 〉 = δij . (1.8)

The
√
pi are called the Schmidt eigenvalues, and since ρA can be written as

ρA =
∑
i

pi
∣∣ψAi 〉 〈ψAi ∣∣ , (1.9)

4As discussed in Ref. [2], one can recover a simple density matrix structure for RK wave functions without
hard-core constrains provided one artificially duplicates the degrees of freedom sitting at the boundary between
the two subsystems, so that one copy is in A, and the other in B.

5Using the fact that the lattice is bipartite, an arrow going out of a vertex in sublattice A is a dimer, while
an arrow going in sublattice A is an empty bond.
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CHAPTER 1. ENTANGLEMENT IN ROKHSAR-KIVELSON WAVE FUNCTIONS

the pi ≥ 0 are the eigenvalues of ρA. The Eq. 1.7 makes apparent the fact the EE S1 =
−∑i pi log pi measures how “far” the state |ψ〉 is from a product state (which would corre-
spond to a single non-zero eigenvalue p0 = 1 and S1 = 0). The Schmidt decomposition also
shows that the EE measures how much information is gained on system A if one observes
(projection) the region B to be in one of the states

∣∣ψBi 〉.
In a vertex model it is natural to define the subsystem A as a set of bonds, and B its

complement. A bond b ∈ B is said to belong to the boundary ∂B of B if it touches at least
one bond in A (Fig. 1.3). The configurations of the boundary arrows, noted i or |i〉, will turn
out to play an important role since they will label the eigenvalues of ρA. To see this we first
note that a vertex configuration |c〉 can be decomposed as some part |a〉 sitting in region A,
and some part |b〉 in region B (including its boundary):

|c〉 = |a〉 ⊗ |b〉 (1.10)

Because the energy E(c) of a given configuration c is a sum of vertex terms, it can be
decomposed as follows:

E(c) = EA(a, i) + EB(b, i) (1.11)

where a, b, c and i refer to the spatial decomposition introduced above. EA is the total
energy of the vertices which touch bonds of A and ∂B only, while EB is the total energy of
the vertices which only touch bonds of B (and also possibly in ∂B ∈ B).

The RK state can then be written as

|RK〉 =
1√
Z
∑
c

|c〉 (1.12)

=
1√
Z
∑
i∈∂B

 ∑
a∈ΩA(i)

√
e−EA(a,i) |a〉

⊗
 ∑
b∈ΩB(i)

√
e−EB(b,i) |b〉

 (1.13)

where the first sum runs over all the configurations |i〉 of the boundary, and the two other
sums run over the configurations of A and B which are compatible (parity constraint at each
vertex) with the boundary configuration |i〉. The crucial point is that, for a given boundary
configuration |i〉, the two sums over a and b are independent from each other. In other words,
fixing i completely decouples the region A from the region B.6 We also note that for some
particular i, ΩA(i) or ΩB(i) may be empty.7 The Eq. 1.13 can be re-written as:

|RK〉 =
∑
i∈∂B

√
pi
∣∣RKA

i

〉 ∣∣RKB
i

〉
(1.14)

where
∣∣RKA

i

〉
and

∣∣RKB
i

〉
are some normalized RK states for subsystems A and B with a

6This is often referred to as a Markov property. PEPS states [13] — a larger class of Ansatz wave functions
to which RK states belong — enjoy a similar Markov property: if one fixes the values of the internal tensor
indices crossing the boundary between A and B, the two regions A and B get decoupled. This property implies
a boundary law for the EE. Classical models with short-range interactions obviously have this property too.
On the other hand, a generic quantum state does not have this property, even if it is the ground state of some
Hamiltonian with short-ranged interaction and if it obeys the boundary law for the EE.

7This is the case if i forces the total number of incoming arrows in A to have the wrong parity.
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1.2. CLASSICALLY CONSTRAINED MODELS AND RK REDUCED DENSITY MA . . .

fixed boundary i: ∣∣RKA
i

〉
=

1√
ZA(i)

∑
a∈ΩA(i)

√
e−EA(a,i) |a〉 (1.15)

∣∣RKB
i

〉
=

1√
ZB(i)

∑
b∈ΩB(i)

√
e−EB(b,i) |b〉 . (1.16)

The normalization factors are the classical partition functions of regions A and B with fixed
i:

ZA(i) =
∑

a∈ΩA(i)

e−E
A(a,i) and ZB(i) =

∑
b∈ΩB(i)

e−E
B(b,i). (1.17)

The pi are classical probabilities to observe a given configuration i at the boundary:

pi =
ZA(i)ZB(i)

Z . (1.18)

The Eq. 1.14 looks like a Schmidt decomposition associated with the A−B partition. To show
that it is actually a Schmidt decomposition, we have to check the orthogonality conditions:〈

RKA
i

∣∣ RKA
j

〉
= δij =

〈
RKB

i

∣∣ RKB
j

〉
. (1.19)

To show the above relations, it is enough to show that no configuration |a〉 in A can be
simultaneously compatible with two distinct boundary configurations i and j.8 Let us consider
two configurations |c〉 = |ab〉 and |c′〉 = |ab′〉 which are identical inside region A. We will
show that these two configurations must also have the same boundary configuration (with
some caveat at the corners, see below).

We may compare graphically the two vertex configurations by coloring a bond if the
arrows have different orientations in c and c′, and leave it blank otherwise (Fig. 1.3, in green).
Due to the parity constraint, this “transition graph” forms a set of (possibly intersecting)
closed loops. None of these loops can touch a bond in A since, by definition, |c〉 and |c′〉
are identical in region A. It is easy to see that such loops cannot touch the boundary bonds
without flipping some bonds inside A if the boundary is straight. So, in this case, two different
boundary configurations necessarily lead to two distinct configurations in A (and also in B)
and the orthogonality condition of the Schmidt vectors is verified. Some additional care is
needed to define the boundary configurations when the region A has some corners.9

8Since the boundary region ∂B is included in B, it is obvious that if i 6= j we have 〈RKB
i |RKB

j 〉 = 0 since
both states have no common configuration (they at least differ along ∂B).

9The transition graph may flip pairs of boundary arrows at the “corners” of region A, without touching
any arrow inside A. An example is shown in the lower right of Fig. 1.3 and it would contradict the Eq. 1.19.
To deal with these situations, the two corner arrows should be merged into a single boundary parity σ = ±1.
We choose σ = −1 if the two corner arrows point in different directions (one in and one out of A), and σ = 1 if
the two corner arrows point in the same direction. With this convention, flipping the two corner arrows do not
change σ, but flipping a single corner arrow does flip σ. With this construction, the boundary configuration
i is made of the boundary arrows of the straight segments plus one parity σ for each corner. In the case
where the boundary of A is a straight line, the boundary configurations are simply the arrow configurations
of the blue bonds in Fig. 1.3a. This construction of the boundary degrees of freedom can be repeated for any
A/B partition and it insures that Eq. 1.19 holds. The idea is that a boundary configuration i should contain,
for each vertex in A which touches some bonds belonging to B, the parity of the number of arrows coming
from region B. The analog construction for hard-core dimer models (on an arbitrary lattice) was discussed in
Ref. [1].
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A

B

A

B

Figure 1.3: Spatial decomposition between regions A (bonds in red) and B (bonds in black
or blue). The blue bonds correspond to the boundary ∂B. Green bonds: transition graph
between two configurations which are identical in region A. Left: the boundary is straight
and the transition graph cannot touch the boundary without also touching region A. Right:
Case where region A has some corners. In the latter case the transition graph may flip a
pair of adjacent boundary arrows (in magenta) in the corner, without flipping any bond in
A. These two arrows should be combined into a single parity to represent a proper boundary
degree of freedom (see text in footnote).

In the basis of the microscopic configurations, ρA is given by:

〈a| ρA
∣∣a′〉 =

{
pi
ZA(i)

exp
[
−1

2

(
EA(a, i) + EA(a′, i)

)]
if a and a′ match bound. conf. i

0 otherwise
.

(1.20)
We thus see that, in this basis, ρA is made of blocks which are indexed by the boundary
configurations.10 Note that the RDM is properly normalized (Tr [ρA] = 1) since ZA(i) =∑

a e
−EA(a,i) and

∑
i pi = 1. It is instructing to compare ρA with the thermal density matrix

of the same subsystem in the classical model: the later is simply the diagonal of ρA. As
we will see in Sec. 1.2.3, these two matrices have very different ranks, and different entropy
scaling.

1.2.2 Spectrum of the RDM, von Neumann and Rényi entropies

We can read the spectrum of the RDM ρA from its Schmidt decomposition (Eq. 1.14): the
(non-zero) eigenvalues of ρA are the pi, that is the classical probabilities to observe the different
boundary configurations (constructed as discussed above). In turn, the von Neumann entropy
of the subsystem A is the Shannon entropy associated with these probabilities:

SAVN = −
∑
i

pi log pi. (1.21)

It is also useful to consider the Rényi entropy

SAn =
1

1− n log

[∑
i

pni

]
, (1.22)

10In the special case where all the classical energies vanish, the matrix elements inside a given block are
identical and equal to pi

ZA(i)
; and ZA(i) is the size of the block.
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which reduces to the von Neumann entropy when n→ 1. The eigenvalues pi can be interpreted
as classical probabilities, proportional to some Boltzmann weights pi ∼ exp(−Ei) associated
to some effective classical interaction energy Ei among the boundary degrees of freedom. In
this classical point of view, the Rényi parameter n plays the role of an inverse temperature,
pni ∼ exp(−nEi). This additional parameter allows to extract more information from the
system as it can be used to probe the ES at different “energies”. As will be discussed in
Sec. 2, there are cases where a phase transition takes place at some critical value of n. The
Rényi entropies for integer n ≥ 2 are also easier to compute analytically since they involve
traces Tr [ρnA], which can be accessed through a replica method. For the same reason, the
Rényi entropies for integer n ≥ 2 are also easier to access through QMC simulations [64].11

In some exactly solvable models these probabilities can be computed for relatively large
systems (and large boundary length). This is the case of the hard-core dimer models on planar
graphs, thanks to Kasteleyn’s mapping onto Pfaffians [65] (see also [66]). This possibility was
in particular exploited in Refs. [1] and [2] to compute the von Neumann entropy of various
dimer RK states and for various subsystem geometries (for the results, see Sec. 1.3). In
Sec. 1.4 will show how these probabilities can be computed using a transfer matrix approach
if the system is an infinitely long cylinder (with finite circumference) and if A is a half-infinite
cylinder.

1.2.3 Rank of ρA and boundary law

The rank of ρA for a generic wave function can be as high as the dimension of the Hilbert
space of A. But here, for a RK state, all the non-zero eigenvalues of ρA are indexed by the
boundary configurations. The number of such boundary configurations is bounded by some
exponential of the length of the boundary (assuming that the classical model has a finite
number of states per site). This implies, in turn, that the EE of A is bounded by some
constant times the length of its boundary. So, RK states obey the boundary law.12 This is
not a surprising property if the system is gapped, but it is more interesting for gapless/critical
states. If the classical model is critical,13 we then have an explicit example of quantum critical
wave function14 which nevertheless obeys the boundary law.

Before concluding this section on the general properties of entanglement in RK states, we
mention two other families of wave functions where RDMs which are “rank deficient” can also
be found: PEPS states in lattice models [13] and model states (Laughlin, Moore-Read, etc.)
in the field of the FQHE [35].

11In a simulation of n non-interacting copies of the system, Tr [ρnA] is equal to the expectation value a unitary
operator (called swapn) which cyclically shifts the spins of region A among the n replicas and is the identity
for the spins in B [64].

12They in fact obey a more strict law: the rank of the RDM is exponential in the length of the boundary.
13It could, for instance, be the equal amplitude combinations of all square-lattice dimer coverings, or some

6-vertex model in the critical region of its phase diagram.
14The observables which are diagonal in the classical basis have, by construction, the same expectation values

in the RK wave function and in the classical model. So, if some correlation function decays algebraically in
the classical system, it is also algebraic in the quantum |RK〉 state.
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1.3 Dimer models in the Levin-Wen and Kitaev-Preskill ge-
ometries

This section presents results obtained with S. Furukawa [1] and J.-M. Stéphan [6] concerning
the entanglement properties of some RK states built from dimer coverings on the triangular
lattice. These states are simple realizations of topological liquids and we begin by a brief
introduction to short-range RVB states and Z2 liquids.

1.3.1 Z2 liquid phase

From the first ideas of about resonating valence-bonds (RVB) [67, 68], a huge number of works
have dealt with the possibility that a 2D quantum antiferromagnet at zero temperature could
have a ground state without any magnetic long range order.15 However, until 2000, there was
probably no widely accepted example of a quantum spin liquid (QSL) phase in a short-range
spin Hamiltonian with SU(2) symmetry.16 In fact, at that time it was even not absolutely
clear that such liquid states could exist in principle. In particular, the square lattice QDM
of RK, which was somehow designed to describe a short-range RVB phase, failed to present
any liquid phase.17

The QDM studied by Moessner and Sondhi in 2001 [74] is the triangular-lattice version
of the model by Rokhsar and Kivelson:

H = −t
∑
r

(∣∣ s ss s
��

〉 〈 s ss s∣∣+ H.c.
)

+v
∑
r

(∣∣ s ss s
��

〉 〈 s ss s
��

∣∣+
∣∣ s ss s〉 〈 s ss s∣∣) , (1.23)

where the sum runs over all the rhombi r of the lattice. It is of course not a spin model,
however, in the spirit of the overlap expansion [57], QDMs can be considered as effective
(or phenomenological) descriptions of short-ranged RVB phases. So, the discovery that the
triangular lattice QDM has a gapped liquid phase without any spontaneously broken sym-
metry was an important result.18 It showed that such long sought short-range RVB phase
could existed in simple models and revived the search for spin liquids in Heisenberg-like spin
models.19 But why are spin liquids interesting ? A possible answer is that they do not have

15There are some trivial examples of Heisenberg models without any broken symmetry: consider for in-
stance an assembly of decoupled dimers. Such a system has a gap and all connected correlation functions are
short-ranged. To exclude such states, which are not genuine Mott insulating phases but which are instead
adiabatically connected to a band insulator, we may restrict ourselves to spin models with a half-odd integer
spin per unit cell. This insures that there is no simple decoupled limit. For more precise definitions of quantum
spin liquids, see for instance [24].

16There were however already several numerical studies which pointed to some “good candidates”. Let us
mention for instance the kagome Heisenberg antiferromagnet [69] or the ring-exchange model on the triangular
lattice [70, 71]. Gapped spin liquids of Z2 type were also well understood using Schwinger boson mean-field
theory [72, 73].

17The only point where the model does not order is a critical point.
18The initial estimate [74] of the extension of the liquid phase (0.6 . v/t ≤ 1) has been refined (0.825(25) .

v/t ≤ 1) using extensive QMC simulations [75, 76, 77].
19A few years later, the discovery that the Herbertsmithite mineral was a spin- 1

2
system with antiferromag-

netic interactions, a kagome geometry, and no magnetic order at the lowest temperatures [78, 79] gave a huge
boost the the field of QSLs. But all experiments so far point to a gapless liquid in this compound, so it is

18



1.3. DIMER MODELS IN THE LEVIN-WEN AND KITAEV-PRESKILL GEOMETRIES

any direct classical analogs and harbor exotic elementary excitations as well as some non-
local entanglement. The later will be discussed in some details in the next section. To see
that something interesting must be going on in QSL, we can invoke the Lieb-Schultz-Mattis
theorem [82] and its higher dimensional generalization by Hastings [83] (see also [84, 85]).
It guaranties that a Mott insulator is either gapless, or has some ground state degeneracy.20

Usually, ground state degeneracies are the signature of some spontaneous symmetry break-
ing. As for gapless excitations, their most common origin in magnets is the Nambu-Goldtsone
mechanism (typically spin waves). However, by definition, a QSL respect all lattice symme-
tries as well as the spin rotation symmetry. So, the degeneracy (or gaplessness) imposed by
the Lieb-Schultz-Mattis-Hastings theorem cannot be understood from the conventional point
of view. This is already a hint that QSL wave functions possess some interesting topolog-
ical (or critical) properties. In the gapped cases (such as Z2 liquids), this is the notion of
“topological order” introduced by Wen [86, 87] for spin systems and Wen and Niu [21] in the
FQHE. This topological degeneracy is deeply related to the exotic nature of the elementary
excitations in a QSL [88].21

1.3.2 Topological entanglement entropy

Subleading entropy constant

Levin and Wen (LW) [26] and Kitaev and Preskill (KP) [25] found a way to extract some
information about the presence of topological order from the scaling of the EE. The idea is
to look for corrections to the boundary law in the EE:

S ' αL− γ + o(1) (1.24)

where the first term represents the boundary law for a subsystem of linear size L and γ is the
subleading constant of interest. Let us assume that correlation functions are short-ranged,
with a correlation length ξ.22 The simplest source of entanglement between the region A
and its complement are the correlations between degrees of freedom inside A and outside
A, and those are significant only if they are located at a distance smaller than ξ. So, these
correlations are expected to contribute to the EE by an amount proportional to the number
of degrees of freedom sitting in a shell of width ξ around the boundary. This corresponds to
the boundary law. With this picture, it appears possible that local correlations would not
contribute to the constant γ. In other words, perturbing the wave function by modifying its
short distance correlations should change the boundary-law coefficient α but it should not
affect γ. We thus expect γ to be only sensitive to some long-distance properties of the system
and this quantity is a good candidate to represent some universal data about the phase.

presumably not of the simpler Z2 type we describe here. Among other experimental realizations of QSL in 2D,
also gapless, we can mention some organic salts [80] and atomic monolayers of He3 adsorbed on graphite [81].

20It applies to spin Hamiltonians which i) are translation invariant in one direction (say x), ii) have an
odd number of half-odd-integer spins in the transverse direction (2D case), iii) a conserved magnetization
Sztot =

∑
i S

z
i , and iv) short-ranged interactions.

21QSL have “spinons” excitations which carry a spin 1
2

(like an electron) but no electric charge. Z2 QSL also
have Ising vortices excitations (dubbed visons) which are non magnetic and have a nontrivial mutual statistics
with the spinons. The bound states of a vison and a spinon have a fermionic mutual statistics.

22One way to define ξ independently of any particular choice of correlator would be to analyze the correlation
density matrix [89] or the mutual information [90].
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A

Figure 1.4: Loop configuration on the hexagonal lattice. The closed loops are in red, and
the subsystem is the region A (set of bonds) enclosed by the dashed blue line. A boundary
configuration lives on the green bonds. The number of loop strands crossing the boundary of
A must be even and this non-local constrain is at the origin of the − log 2 term in the EE.

Quantum dimension

LW explicitly computed γ for a series of gapped exactly solvable models with topological
order (string-net models [91]) and showed that

γ = logD, (1.25)

where D is the total quantum dimension of the phase.23

To gain some intuition about the origin of this term, it is instructing to start with the
simplest string-net state, with Z2 topological order (as in [26]). It is a quantum superposi-
tion of closed and non-intersecting loop configurations on the honeycomb lattice. In a loop
configuration each bond of the lattice can be occupied by a loop strand, or empty. The con-
strain is that each site touches zero or 2 strands (Fig. 1.4). The wave function is then the
equal-amplitude superposition of all possible loop configurations. This state has a vanishing
correlation length because two bonds which do not touch a common site can be shown to
be uncorrelated.24 Now consider a region A which has the topology of a disk. Since this
state has the form of a constrained RK state, the EE of region A can be computed from the
classical probabilities pi of the boundary configurations, as in Sec. 1.2.1. In this loop model, a
boundary configuration is defined by the positions where loop strands cross the boundary of
A (green bonds in Fig. 1.4). For a boundary of length L, there is a maximum of 2L boundary
configurations. But only half of them can actually occur since the number of loop strands

23When k identical quasiparticles of type α are kept fixed an far apart, the Hilbert space dimension scales
as dim(α, k) ∼ (dα)k (k � 1) where dα is called the quantum dimension of the α-particle. For topologically
trivial excitations, we simply have a unique state whatever k and dα = 1. However, for non-Abelian fractional
quasiparticles fixing their position may leave some degeneracy. While dim(α, k) is necessarily an integer,
the quantum dimension dα need not be so. The total quantum dimension D of the phase is related to the

individual quantum dimensions by D =
√∑N

α=1 d
2
α, where N is the total number of topologically distinct

types of quasiparticles. In a phase without any topological order there is a single type of (topologically trivial)
quasiparticles with d0 = 1, and therefore D = 1. In the case of topological orders described by a discrete
Abelian gauge theory (e.g., Zn), there are N = n2 types of quasi-particles. They all have dα = 1 (Abelian)
and D is equal to the number of elements in the gauge group.

24This state is exactly equivalent to a dimer liquid state of the kagome lattice [92] and closely related to
Kitaev’s toric code [25].
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entering A must be even. One can further show that all the 2L−1 boundary configurations
satisfying this parity constrain are equally probable, hence pi = 21−L. We thus get an en-
tropy SAn = L log 2− log 2, where the − log 2 reflects the topological order (and is independent
from the Rényi index n). We thus see in this example that the TEE comes from a non-local
constrain, which here simply originates from the fact that the bond degrees of freedom are
constrained to form closed loops. This loop picture remains qualitatively correct for more
complex Z2 states with a finite correlation length.

Deriving Eq. 1.25 for a general theory is not simple, but KP [25] also proposed a simple
heuristic argument which can be summarized as follow. One first assumes that one can replace
the reduced density matrix ρA by ∼ exp (−βH), where H is the Hamiltonian of some 1+1D
CFT describing a quantum system living on the boundary of A. This is certainly incorrect
for the boundary law part, but it may capture the finite part. With this “nontrivial but
natural” [25] assumption, the ground state EE of region A is the thermal entropy of the
periodic 1D quantum system. The later is related to some standard torus partition function
in CFT and can be shown to have a constant term − logD. Here D comes from the data of
the modular S matrix of the CFT and is mathematically closely related to the Affleck-Ludwig
entropies [93] (which will also appear in Sec. 2.1.2). We also note that, for a topological phase
with gapless edge modes (FQHE for instance), this argument already contains/assumes the
idea that the ES is related to the physics of the edge (H).

Subtraction schemes

The Eq. 1.24 is really useful only if the two terms can be distinguished in practice, but
separating the topological term −γ from the boundary term in Eq. 1.24 is not completely
obvious, in particular on a lattice. This is due to the fact that, on a lattice, the discrete nature
of the boundary makes it difficult to define accurately the length L. This was illustrated in
Ref. [1] at the RK point of the triangular lattice QDM. We considered subsystems composed
of bonds lying inside a disk of increasing radius on a triangular lattice, and showed that the
unavoidable ambiguity in the radius definition, although small, makes it impossible to extract
γ directly.

KP and LW found indeed two ways to define γ by forming a linear combination of the EE
on several subsystems. These subsystems share some common boundaries in such a way that
the boundary terms cancel out from the combination, leaving the topological term γ. The
proposed geometries differ in LW and KP schemes, but the idea is very similar.25 In KP’s
work the topological constant is obtained from

SABC − (SAB + SBC + SCA) + (SA + SB + SC) ' −γ, (1.26)

where the different subsystems A, B, etc. are shown in Fig. 1.5. It can easily be checked that
all the local/boundary contributions cancel out since each segment of a boundary appears
once with a plus sign and once with a minus sign in Eq. 1.26. Consider for instance the
segment which separates A and B: it appears in the boundary of A and B (with + sign)
as well as AC, BC (with − sign). The contributions from the corners also cancel out in a
similar way. So, if the correlation length is sufficiently small compared to the dimensions of

25We note that, in KP’s scheme, a conventional gapped phase with spontaneous discrete symmetry breaking
would give a (negative) constant γ = − log(deg) where deg is the ground state degeneracy. On the other hand,
LW’s scheme gives zero in such a case.
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ABC AB

BC

AC A

B

C+−+

Figure 1.5: Kitaev-Preskill [25] scheme to extract the TEE. These seven different subsystems
(built from three regions A, B and C) are those appearing in Eq. 1.26. A lattice version of
the regions A, B and C is shown in Fig. 1.7

the various regions (disk radius), the entanglement which remains from the combination of
Eq. 1.26 is not due to local correlations.

1.3.3 Numerical results in the liquid phase (t 6= 0)

We consider a family of generalized RK wave functions built from dimer coverings of an
anisotropic triangular lattice. In the classical model the Boltzmann weight of a given dimer
configuration c is tn(c), where n(c) is the number of dimers sitting on the diagonal bonds
(Fig. 1.6) and t the fugacity of these diagonal bonds (the other bonds have fugacity 1). The
associated RK wave function is then

|RK〉 =
1√
Z
∑
c

(√
t
)n(c)

|c〉 , (1.27)

where

Z =
∑
c

tn(c) (1.28)

is the classical partition function. For t = 1, |RK〉 is simply the equal amplitude superposition
of all coverings of the isotropic triangular lattice. This state is known to be a Z2 liquid state
with topological order. This result was obtained by analyzing its (short-ranged) correlations
and topological degeneracy [74, 94, 95, 96]. To our knowledge Ref. [1] was the first numerical
measurement of the topological entanglement entropy using the method proposed by LW and
KP,26 and it confirmed the theoretical expectation – namely γ = log(2) – in a lattice model
with a finite correlation length.27 Since then a few other studies have used the LW and/or
KP scheme to measure numerically γ in lattice models [98, 30].

The idea is to compute the probability pi of each boundary configuration i (see Eq. 1.18)
as the expectation value of some correlator in the classical dimer model.28 If the whole system
is finite, such a probability can be obtained by direct enumeration, as was done in [1]. If the
boundary has a finite length but the subsystem A lives in a infinite system, one can still
compute each pi using a method based on Pfaffians. This was achieved in [6].

The different panels of Fig. 1.8 correspond to RK wave functions with different values
of the parameter t, from the isotropic triangular lattice (t = 1) to the square lattice limit

26Just before, Haque et al. [97] did the first numerical estimation of TEE for a system in the continuum
(Laughlin wave functions), but they did not implement the spatial partitioning proposed by LW and KP to
extract the subleading constant.

27We specify here finite correlation length to contrast with some simpler wave functions like that of Kitaev’s
toric code [25] or the RK state for dimers on the kagome lattice [92] where all connected correlation functions
are exactly zero beyond a few lattice spacings. In the later cases the constant γ can be obtained exactly.

28This correlator is 1 if the dimer at the boundary matches the boundary configuration i, and vanishes
otherwise.
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Figure 1.6: Triangular lattice with two different fugacities: the dashed diagonal bonds have
fugacity t while the others, forming a square lattice, have fugacity 1.

Figure 1.7: Geometries required for the computation of S
(ABC)
n , S

(AB)
n and S

(A)
n at Radius

ρ = 4.5. They have Nb = 30, 29 and 19 boundary sites (in red) respectively. Taken from [6].

(t = 0). The state is expected to remain in the gapped Z2 phase for all t 6= 0 and is critical
only at t = 0, as can be checked using dimer-dimer correlations for instance [94]. We indeed
observed that for t = 0.3, 0.7 and 1 the combination of Eq. 1.26 converges to γ ' log(2) when
the radius of ρ of the subsystem ABC is increased (see Fig. 1.7 for an illustration at ρ = 4.5
lattice spacings). In fact, not only the von Neumann TEE converges to ' log(2), but also the
other Rényi entropies we considered (from n = 0.5 to n = 2). The numerical data therefore
confirms (in this Z2 case) the earlier prediction of Ref. [99] that the TEE is independent of
the Rényi index. This confirmation is important for the practical use of the TEE to detect
topological phases since the entropies which are most easily accessible in QMC simulations
are those with integer n ≥ 2. We finally note that the convergence is slower when t is small.
This can be explained from the fact that the correlation length ξ(t) diverges when t→ 0.

1.3.4 Critical point – square lattice (t = 0)

Finally we note in Fig. 1.8 that no clear limit can be extracted from the available radii
at the critical point, and the question of the ρ → ∞ limit remains an open problem (see
also [20]). To simplify the discussion, let us focus on the n → ∞ limit of the Rényi entropy
Sn = 1

1−n log (TrρnA), which selects the largest eigenvalue pmax of ρA (assumed to be non-
degenerate):

S∞ = − log (pmax) . (1.29)

Here pmax is the probability of the boundary configuration with the highest probability. To
address the universal contributions to pmax, we can go to the continuum limit of the problem.
In the long distance limit the classical dimer model on the square lattice is described by a
compactified Gaussian field. In the later theory the boundary configuration with the highest
probability is that of a constant (“flat”) value of the field along the boundary, that is a
Dirichlet condition. So, the pmax of a given subsystem Ω is the ratio of the free field partition
function ZD,∂Ω with Dirichlet boundary condition along the boundary ∂Ω, by the partition
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function Z without any constraint:

pmax =
ZD,∂Ω

Z (1.30)

− log(pmax) = FΩ + FΩ̄ − FΩ∪Ω̄ (1.31)

where the second line involves the free energies of Ω, its complement Ω̄, and the whole system
(with Dirichlet boundary conditions).29 Depending on the presence of sharp corners or non-
zero Euler characteristics in Ω, Ω̄ and Ω ∪ Ω̄, these free energies may have some logarithmic
part [100, 101]:

FΩ = aL2 + bL+ c log(L)

[
χ

6
+

1

24π

∑
i

γi

(
1− π2

γ2
i

)]
+O(1) (1.32)

where the sum runs over the sharp angles γi of the boundary and c is the central charge of the
CFT (here c = 1 for a massless free field). For the geometries displayed in Fig. 1.7 (embedded
in large disk for instance), all the area (∼ L2) and linear (∼ L) parts cancel from Eq. 1.26.
The topology of all the subsystems Ω = A,B,C,AB, · · · is that of a disk and therefore χΩ = 1.
The complement Ω̄ is an annulus (χΩ̄ = 0), and χΩ∪Ω̄ = 1. We therefore have, for each Ω, a
cancellation of the logarithms coming from the Euler characteristics: χΩ + χΩ̄ − χΩ∪Ω̄ = 0.
Finally one should consider the corner contributions. It is easy to check that in Eq. 1.26,
each angle appearing in some +SΩ cancels out with another one (with the same angle or
its complement) in −SΩ′ . However, as already mentioned in Ref. [30], this is only true for
the leading (logarithmically divergent) part. Indeed, each log(L) is in fact log(L/a), with
a some microscopic length scale. There is no simple reason why these microscopic scales
should all be exactly the same in all the terms. We thus expect that Eq. 1.26 should give
a non-universal (and therefore n dependent) constant term when t = 0, which is compatible
with our numerical results at t = 0.

1.4 Long cylinder geometry

The previous section explained that the spectrum of a RDM for a RK state is given by
the classical probabilities pi of some boundary configurations of the system. There is one
particular geometry where the calculation of these probabilities simplifies considerably: an
infinitely long cylinder of finite circumference L, where the subsystem A is an semi-infinite
cylinder (Fig. 1.9). As first discussed in [2], the probabilities are simply obtained in terms of
the dominant eigenvector of the classical transfer matrix. This geometry is not only simpler
for calculations in RK states, it is also particularly well suited to compute the TEE because,
as we will see, it allows to extract γ without the need to implement the subtraction schemes
of LW or KP.

1.4.1 Classical transfer matrix and pi

We consider a classical model of the type discussed in Sec. 1.1, and we take the example
of a vertex model on the square lattice for simplicity. We denote by T the transfer matrix

29In [20] this formula was used for the von Neumann entropy (n = 1), which is not always justified (more
details in Sec. 2.1.2).
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Figure 1.8: Topological entropy constant Stopo
n (same as −γ, Eq. 1.26) for various values of

the Rényi index n, as a function of the disk radius ρ. Top left: critical case t = 0. Top right:
t = 0.3. Bottom left t = 0.7. Bottom right t = 1. From [6].

which connects the arrow configurations of one line to the next line, as shown in Fig. 1.9. We
assume that T is real symmetric to simplify slightly the notations (left and right eigenvectors
are the same and the eigenvalues are real). If |a〉 and |b〉 represent the boundary conditions
at both ends of the cylinder (y = ±ly) the probability pi of a configuration |i〉 is:

pi =
〈a| T ly |i〉 〈i| T ly |b〉
〈a| T 2ly |b〉 . (1.33)

Now we take the ly →∞ limit with L fixed, and assume that the eigenvector |g〉 corresponding
the largest eigenvalue λ of T is non-degenerate and has a finite overlap with |a〉 and |b〉. In
this limit we can approximate T ly by

T ly ly�L' λly |g〉 〈g| . (1.34)

which gives:

pi
ly�L' λly+ly 〈a| g〉 〈g |i〉 〈i| g〉 〈g| b〉

λ2ly 〈a| g〉 〈g |b〉 = |〈g| i〉|2 . (1.35)

So, the eigenvector |g〉 contains the information about all the probabilities pi, and therefore
contains the ES of the half-infinite cylinder A. In particular, the explicit integration over the
degrees of freedom in region B have been avoided. The task has been reduced to diagonalizing
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| j >

| i >
T

A

B

| i >

| a >

| b >

L

yl

Figure 1.9: Left: Two boundary configurations of a vertex model |i〉 and |j〉 which are
connected by a transfer matrix T . Right: cylinder geometry, with subsystems A and B.

T , which dimension is exponential in L, but independent of ly. For a general model this can
be done numerically.

1.4.2 Classical mutual information

Before going on with the entanglement in RK states we wish make a few remarks about its
connection to classical mutual information. The mutual information is defined as:

In(A,B) =
1

2

(
SAn + SBn − SABn

)
, (1.36)

where SΩ
n = 1

1−nTr [ρnΩ] is the Rényi entropy of part Ω. It has recently received some attention
in quantum [90, 102, 103, 104] and classical systems [105, 106, 107]. In(A,B) reduces to the
EE for pure states at T = 0 since in that case SAn = SBn and SABn = 0. At finite temperature
each entropy obeys a volume law (as thermodynamic entropies) but In(A,B) will in general
scale as the size of the boundary between A and B, and is the analog of EE for thermal
states. This quantity is sensitive to “global” – i.e. independent of any choice of correlator–
correlations between the two different regions, and is equally sensitive to quantum and classical
correlations. It measures how much information is gained on part B when one observes the
state of region A.

As we will see, the mutual information Iclass
n (A,B) of a classical system is closely related

to the EE of the associated RK state. We start from the same classical (constrained) model,
but now in a classical thermal/Gibbs state. The entropy of region A is

SA class
n =

1

1− n log

[∑
ia

(pia)
n

]
, (1.37)

where i labels the boundary configuration between region A and B, and a labels the “spins”
inside region A (note the difference with Eq. 1.22). The probability pia can be written as

pia = pi
exp

(
−EA(a, i)

)
ZAi

(1.38)

pi =
ZA(i)ZB(i)

Z (1.39)

where ZA(i) is the partition function of the region A with the fixed boundary configuration i
(as in Eq. 1.17), and pi is the probability of that configuration (as in Eq. 1.18). As for the RK
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construction, the temperature is set to 1 (absorbed into the definition of the energy). Using
these notations, the entropy of (say) A reads:

SA class
n =

1

1− n log

[∑
i

(pi)
n
∑
a

(
exp

(
−EA(a, i)

)
ZA(i)

)n]
(1.40)

=
1

1− n log

[∑
i

(
pi
ZA(i)

)n∑
a

exp
(
−nEA(a, i)

)]
(1.41)

=
1

1− n log

[∑
i

(ZB(i)

Z

)n
Z̃A(i)

]
(1.42)

where Z̃Ai denotes that the partition function of the region A is evaluated at temperature 1/n
(Boltzmann weight raised to the power n). As for the mutual information, Eq. 1.36 becomes:

Iclass
n (A,B) =

1

2(1− n)
log

∑i

{(
ZB(i)

)n Z̃A(i)
}∑

j

{(
ZA(j)

)n Z̃B(j)
}

Zn∑i Z̃A(i)Z̃B(i)

 . (1.43)

At this point we may again adopt the infinitely long cylinder geometry, so that each of the
partition functions above can be expressed using the dominant eigenvector |g〉 of the transfer
matrix T (at temperature 1), and using the dominant eigenvector |g̃〉 of the transfer matrix
T̃ at temperature 1/n. After a few simple manipulations, similar to those of Sec. 1.4.1, one
gets

Iclass
n (A,B) =

1

1− n log

[∑
i

〈g̃| i〉 〈i| g〉n
]
, (1.44)

which only requires a summation over the boundary configurations.30 If the classical energies
are all zero, the two temperature 1 and 1/n are in fact equivalent and |g〉 = |g̃〉. Due
to the hard-core constrains the problem can nevertheless be non-trivial, as we know from
the examples of dimer or vertex models. The classical mutual information above is then

Iclass
n (A,B) = 1

1−n log
[∑

i (pi)
n+1
2

]
, which, up to a redefinition of n is identical to the quantum

EE SAn′ = SBn′ defined in Eq. 1.22, provided n′ = n+1
2 . This connection between classical

mutual information and quantum EE of a RK state was obtained in Ref. [108], except that
the (important) condition that the classical energies should vanish was apparently overlooked.
When the classical energies do not vanish, the correct expression is Eq. 1.44.

1.4.3 A free fermion case

Let us go back to the EE of RK states. There are systems where T can be diagonalized by
simple means. This is the case, for instance, of dimer models on the square or hexagonal
lattices, where log T is a simple free fermion Hamiltonian. It is also the case for one point
of the 6-vertex model phase diagram (corresponding to ∆ = 0 in the XXZ language) and
for the Ising model (see Sec. 2.2). Dimers on the hexagonal lattice probably offer one of the
simplest example. In the brick wall picture (Fig. 1.10) a dimer configuration appears as a

30We see here that the mutual information in a classical system is bounded by the length of the boundary,
it obeys a boundary law [90].
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Figure 1.10: Hexagonal lattice viewed as a brick wall lattice (taken from Ref. [2]). Left :
reference configuration. Middle : real configuration. Right : Transition graph with Fermion
world lines. The dimers of the reference configuration are in blue. The fermions are living
on the vertical edges of the lattice and are symbolized by red zigzag lines. The integers
attached to each plaquette of the lattice form a height configuration associated with the
dimer covering. When coarse-grained, these microscopic heights become the free field which
describe the long-distance properties of the system [109]. The heights can be constructed by
fixing h = 0 at some origin and then moving from plaquette to plaquette by turning clockwise
around the sites of the even sublattice (marked with black dots). The height increases by +2
when crossing a dimer, and -1 otherwise. Since there is exactly one dimer touching each site,
the height difference between two points does not depends on the chosen path (on a simply
connected domain).

set of non-intersecting “world lines”. These lines can be interpreted as a fermions moving
up (imaginary time direction) by hopping to the left or to the right, and the total particle
number is conserved. The later corresponds to the winding number in the height language.
The non-intersecting condition is naturally taken into account by a fermionic statistics, and
the hopping gives [2]:

T c†jT −1 = c†j + c†j+1. (1.45)

where c†j creates a fermion (line in the transition graph) on the vertical bond j.31 The reference
dimer configuration is the fermion vacuum (Fig. 1.10) and is invariant under the action of the

transfer matrix: T |0〉 = |0〉. Going to Fourier space with c†k = 1√
L

∑L−1
j=0 e

−ikjc†j , the Eq. 1.45

becomes
T c†kT −1 = λ(k)c†k with λ(k) = 1 + eik. (1.46)

Since T acts independently on each Fourier mode, it can then be written explicitly as [2]:32

T =
∏
k

(
1 + eikc†kck

)
. (1.47)

The eigenstate of T with the largest eigenvalue is a Fermi sea where all the single particle
states with |λ(k)| > 1 are occupied:

|g〉 =

(∏
k∈Ω

c†k

)
|0〉. (1.48)

31The numbering on the horizontal axis is such that going from site j to site j on the upper line is a jump
to the left and going from j to j + 1 is a jump to the right.

32A similar derivation can be done for dimers on the square lattice, with the slight difference that a two-site
unit cell is required [110, 2].
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The set Ω of occupied momenta is Ω ' [−2π/3, 2π/3] in the thermodynamic limit, and we
note Ω = {k1, · · · , kN} on a finite lattice (for detailed finite-size formula, see [2]). |g〉 is a
Fermi sea at density ρ = N/L = 2/3 and the associated wave function is a Slater determinant
made out of N plane waves. But since the total number of particles is conserved, one can also
consider other RK states corresponding to other density/winding sectors (see Sec. 1.4.4).

We wish to compute the probability of a real space configuration |i〉 of the fermions,
located at positions r1, · · · , rN . This nothing but the square of the Slater determinant [2]:

pi={r1,··· ,rN} =
∣∣∣〈0|crN . . . cr1c†k1 . . . c†kN |0〉∣∣∣2 =

(
1

L

)N ∣∣∣det (e−irjkj′ )jj′
∣∣∣2 . (1.49)

Since the occupied momenta kj are equally spaced, the equation above above is a Vander-
monde determinant, and it simplifies to:

pi={r1,··· ,rN} =
1

LN

∏
1≤j<j′≤N

4 sin2
(π
L

(rj − rj′)
)
. (1.50)

Going back to the initial RK wave function, the Eq. 1.50 gives each eigenvalue pi of the RDM
of a half-infinite cylinder. However, to get the von Neumann or Rényi entropy, we still have to
sum over all the configurations i, and performing this exponential sum is in general a difficult
task.33 So, even though each probability pi can be obtained in a polynomial time for these
free fermion problems, computing exactly the associated entropy remains exponentially long
in L.

1.4.4 Numerical results and subleading entropy constant

Critical dimers

We computed numerically the EE S1 = −∑i pi log(pi) for various equal-amplitude RK states
based on hard core dimer coverings. Fig. 1.11 shows the results on the hexagonal lattice for
several fermion densities, as well as on the square lattice (at half filling / zero winding sector).
The EE appears to grow linearly with the cylinder circumference L, which is a manifestation of
the boundary law. But what is more interesting is the fact that the four states we considered
obey a scaling of the form

S1 ' αL+ s1 + o(1) with s1 ' −0.500(1) (1.51)

with a “slope” α which depends on the lattice and on the particle density, but the same
subleading constant s1 ' −1

2 (up to the finite-size uncertainty, see inset of Fig. 1.11). This
constant is formally analog to the TEE discussed in Sec. 1.3 but the present state is critical
and has algebraic dimer-dimer correlations. In addition, the subleading constant comes from
a direct fit of the finite-size data, without any subtraction procedure (LW or KP) to eliminate
the boundary part.

This later point deserves some further discussion. In general, the length of the boundary
of a given subsystem is not completely well defined on a lattice, since different prescriptions
to treat the angles would lead to (slightly) different values. This was illustrated in the case of
simple circular areas on the triangular lattice in Sec. 1.3 (and Ref. [1]). An equivalent point

33For specific combinations of the fermion density and Rényi index, a mapping to the Dyson-Gaudin’s gas
allows to obtain the entropy exactly [111, 112].
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Figure 1.11: Entanglement entropy of RK states corresponding to dimer models on the hexag-
onal lattice (with fermion density ρ = 1/4, 1/3, 1/2) and the square lattice (with ρ = 1/2).
In all cases the entropy scales as S ' αL + S0 + b/L with S0 = −0.500(2). The inset shows
the subleading constant (s1 in Eq. 1.51) computed from system sizes in the interval [12, L] as
a function of 1/L to show the convergence towards −0.500(1). Taken from [2].

of view is that each corner of the boundary contributes locally to the boundary EE. Generally
speaking, the boundary EE depends on local geometric properties of the boundary, like the
curvature or sharp angles. The contribution of local correlations to the EE is therefore not
strictly proportional to the length of the boundary, but contains some additional contributions
coming from each corner. These O(1) contributions get mixed with a possible universal
subleading constant originating from long distance correlations. The boundary is however
straight and translation invariant in a cylinder geometry. For this reason we expect the
boundary EE to scale with L, without O(1) corrections. So, subleading entropy constants
are expected not to be affected by boundary contributions in a cylinder (or torus) geometry,
they are instead only sensitive the long distance properties of the system. This robustness
can already be seen from the fact that different states give the same s1 (Fig. 1.11). This will
be checked on many other examples in the following sections.

Anticipating on the results of the next chapter (Sec. 2.1.2), the subleading term in the
Rényi entropy turns out to be directly related to the boson compactification radius R. The
present dimer wave function corresponds to R = 1 (free fermions) but for other values of R
the subleading terms are given by :

Sn =

{
αnL+ log (R)− logn

2(n−1) n ≤ nc
αnL+ n

n−1 log (R)− log d
n−1 n > nc

(1.52)

nc =
d2

R2
, (1.53)

where αn is non-universal, d is the degeneracy of the configuration with highest probability
and nc a critical value of the Rényi index which separates a “phase” where the effective
boundary is critical and a phase where it is massive and long-range ordered. The data of
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Figure 1.12: EE for dimer RK states on the anisotropic triangular lattice (data from [6]). Left:
EE of a half-infinite cylincer of circumference L, for two different fugacities t = 1 (isotropic
triangular lattice) and t = 0.5 (see Sec. 1.3.3). The straight lines are least-square fits to the
data point with L ≥ 25. Right: Logarithm of the difference between the estimated TEE and
the exact value for dimer RK states on an anisotropic triangular lattice as a function of L.
The estimate for s1 is obtained by a fit to aL+ s1 for two even consecutive values of L. The
convergence to − log(2) is exponentially fast, with an effective correlation length close to the
dimer-dimer correlation length. For comparison we also show the data in the KP geometry,
which are significantly less precise.

Fig. 1.11 correspond to R = 1, d = 1 and n = nc = 1 for the square lattice, and n = 1, R = 1,
d = 1/ρ and nc = ρ−2 in the honeycomb case. In all the cases displayed in Fig. 1.11 we have
n = 1 ≤ nc and therefore, using Eq. 1.52, we find s1 = −1

2 , in agreement with the numerics.
It is possible to vary the compactification radius R of these RK dimer wave functions by

adding some dimer-dimer interaction in the classical Boltzmann weights, as was done on the
square lattice [113]. In such interacting case the transfer matrix is no longer a free fermion
problem but can still be diagonalized numerically (Lanczös) to get the pi for some finite L.
This would allow to check the Eq. 1.52 for R 6= 1. This has not been carried out but we
present some other checks for various R and n in the next chapter.

Gapped Z2 dimer liquid and exponential convergence to γ = log(2)

The previous paragraph explained (heuristically) why the cylinder geometry allows for a direct
measurement of the “universal”34 subleading entropy constant. But this idea is not restricted
to critical states and can also be used to measure the TEE introduced in Sec. 1.3. For instance,
it is possible possible to compute the pi for dimers on the triangular lattice and therefore to
obtain the EE of a half-infinite system in the gapped Z2 phase. We observe an almost perfect
S1 ' αL + s1 scaling and the subleading s1 is very close to − log(2).35 The accuracy on
s1 is shown in Fig. 1.12 as a function of the number of boundary sites (proportional to the
circumference L of the cylinder). We observe that the convergence is exponentially fast, in

34Here the meaning of universal is simply “insensitive to the effects of local correlations”.
35The observation that a translation invariant boundary allows for a direct determination of universal sub-

leading constants was made in Ref. [1], where the TEE could be obtained with a much higher precision on
a torus than using the KP/LW schemes. The cylinder geometry is now widely used by the community for
computing numerically the TEE, also because it is adapted to the DMRG simulations (see for instance [32]).
See also [42] for an application in the continuum (FQHE).
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t = 1 t = 0.7 t = 0.3 t = 0

Figure 1.13: Entanglement spectrum for dimer RK states on the (anisotropic) triangular
lattice with circumference L = 12, for various fugacities. Left: isotropic triangular lattice.
Right: square lattice (critical point). From [6].

∼ exp(−L/ξ), which is what we expect from the argument of the previous paragraph in the
case of a translation-invariant boundary and finite correlation length.

1.4.5 Entanglement spectrum

The spectrum of a RDM contains more information than the just the EE, as was pointed out
for fractional quantum Hall states [35]. It is thus natural to look in more detail at the classical
probabilities {pi}. However, the (constrained) RK states have the particular property that
each eigenstate of the (half cylinder) RDM is a single classical configuration (and not a linear
combination of several configurations). Due to the translation invariance along the boundary,
these configurations can be translated to give a set of exactly degenerate eigenvalues. So, the
ES contains some flat bands. This is somehow an annoying feature of these states because we
cannot use lattice momentum to visualize the spectrum or to identify dispersing modes. It is
nevertheless instructing to look at the associated density of states, and Fig. 1.13 provides three
examples of ES, where an “energy” Ei = − log(pi/pmax) was associated to each probability.
An interesting observation is that the entanglement gap grows when going from the liquid
state on the isotropic triangular lattice to the critical point (square lattice), contrary to the
energy gap which, of course, vanishes at t = 0 in the thermodynamic limit. It is in fact easy
to show that the entanglement gap is finite at the critical point (t = 0) in the thermodynamic
limit, since it can be computed exactly: − log(p1/pmax) = 2 log(π) [6]. A finite entanglement
gap is expected to be the generic situation for RK states, precisely because it is the ratio
of the classical probabilities of two boundary configurations which have to differ (at least)
locally (see also the argument of Ref. [114]).

According to the bulk-edge correspondence ideas [35], the ES of a system system which
is gapped in the bulk reflects the energy of physical edge modes (if any) which would appear
if the system had a physical boundary. The present dimer RK states are indeed gapped in
the bulk for t 6= 0, but they are not chiral and presumably do not show any gapless edge
modes (unlike topological insulators or quantum Hall states). This is how one can reconcile
the bulk-edge correspondence and the presence of a gap in the ES.
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Chapter 2

Shannon-Rényi entropy of spin
chains

The motivation of the previous chapter was to understand the RDMs and EE in 2D RK states.
One outcome was that, in a long (half) cylinder geometry, the spectrum {pi} of the RDM is
contained in one state |g〉, which is the dominant eigenvector of the classical transfer matrix T
(Sec. 1.4). Furthermore, it was found that for some dimer RK states on the hexagonal lattice,
|g〉 is a Fermi sea. This suggests to consider the boundary of the half cylinder as a quantum
chain, and to interpret the EE of the RK state as the Shannon entropy of its wave function.1

In other words, a many-body state |ψ〉 is expanded in some local basis {|i〉}: |ψ〉 =
∑

i ψi |i〉 .
And we then define its Shannon-Rényi entropy (SRE), in that basis, to be

Sn =
1

1− n log

(∑
i

pni

)
with pi = |ψi|2 = |〈ψ| i〉|2 , (2.1)

without any reference to some 2D system. At this point, at least three natural questions
arise: is it useful and/or interesting to study the Shannon entropy of a quantum system in
1+1 dimension ? What about the basis dependence ? Is there some relation to the (basis
independent) EE of some subsystem in the chain ?

For one-particle problems described by a wave function ψ(r) in real space, the entropy
above is equivalent to so-called inverse participation ratios : Pn =

∫
dDr |ψ(r)|2n. The later

measure how spatially localized is the particle. In presence of disorder it can be used detect
Anderson metal-insulator transitions [115]. In the delocalized phase one has Pn ' L−D(n−1),
where D is the spatial dimension. In the localized phase one has instead Pn ' L0. At the
transition point it scales like Pn ' L−αn(n−1) where αn defines a continuous family of critical
exponents (multifractality). In the notation of Eq. 2.1 it means Sn ' αn log(L).

On the other hand, a generic – not necessarily critical – many-body wave function has
some non-zero weights on a large fraction of the basis states, and we thus expect the leading
behavior of the SRE (Eq. 2.1) to be a volume law, which means Sn ' αnL for a chain of length
L.2 Although this could also be interpreted as “multifractality” [116]3 the informations about
the long-distance properties of the system are available in the subleading terms, as for the EE

1Shannon entropy simply means here that we associate −
∑
i pi log pi to some set of probabilities {pi}.

2In the 2D RK point of view, this O(L) scaling was a boundary law for the EE.
3Contrary to one-body wave function in real-space, multifractality is generic for wave functions liv-

ing in a many-body Hilbert space, even for featureless product states. Consider for instance N inde-

33
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discussed in the previous chapter. We found that these subleading corrections are typically
O(1) for periodic chains [2], and O(logL) for open chains [117, 5]. In Ch. 3 we will also
discuss the occurrence of O(logL) for periodic systems in 2D.

Since here we no longer require any connection to the EE of some higher dimensional RK
state, one can also consider the SRE SΩ

n of a subsystem Ω. It is formally very similar to the

SRE of the full system: SΩ
n = 1

1−n log
(∑

j p
n
j

)
but the subsystem probabilities pj are the

diagonal elements of the RDM: pj = 〈j| ρΩ |j〉. These partial SRE have a dominant behavior
which is proportional to the volume of the subsystem and, contrary to the EE, the partial
SRE is not the same for one subsystem Ω and its complement Ω̄. It is convenient to study the
combination In(Ω, Ω̄) = SΩ

n + SΩ̄
n − SΩ∪Ω̄

n , called Shannon-Rényi mutual information, since
the extensive contributions cancel out, and one is left with universal subleading terms. In
particular, for a segment in a longer critical chain, the mutual information In is O(logL) [111,
118, 112].

We conclude this brief overview on SRE by mentioning a related point of view, which is to
introduce a deformation |ψ, n〉 of the wave function |ψ〉, that may be called “Rényification”.
It is defined by:4

|ψ, n〉 =
1√
Z(n)

∑
i

(pi)
n/2 |i〉 (2.2)

with Z(n) =
∑
i

(pi)
n . (2.3)

This Rényified state can then be used to compute correlation functions. This definition
immediately brings numerous questions: are the long-distance properties of |ψ, n〉 different
from those of |ψ〉 = |ψ, 1〉 ? If |ψ, n〉 has some algebraic correlations, do the associated
exponent(s) change with n ? Is there a phase transition as a function of n ? What parent
Hamiltonian would have |ψ, n〉 as a ground state ? Do we learn something about |ψ〉 by
studying |ψ, n 6= 1〉. What are the interesting basis choices ? Although we have no general
answer to these questions, this chapter will shed some light on these issues through a few
specific examples and results.

2.1 XXZ spin chain and compactified free boson

We now discuss the (full system) SRE of a specific model, the XXZ spin chain. It is defined
by the following Hamiltonian:

H = −1

2

∑
i

(
S+
i S
−
i+1 + H.c

)
+ ∆

∑
i

Szi S
z
i+1. (2.4)

Its ground state is critical for |∆| ≤ 1 and is the prototype of Tomonaga-Luttinger (TL)
liquid. Correlation functions decay algebraically at zero temperature [119]:

〈Sz0Szx〉 ' ax−2 + b(−1)xx−2K + · · ·〈
S+

0 S
−
x

〉
' cx−

1
2K + d(−1)xx−2K− 1

2K + · · · (2.5)

pendent spin- 1
2

in the same state cos(θ)| ↑〉 + sin(θ)| ↓〉. The SRE of that tensor product state is
Sn = N

1−n log
(
cos(θ)2n + sin(θ)2n

)
, which is a non-linear function of n.

4|ψ〉 is assumed to be real and positive in the |i〉 basis. If not, the following definition of the Rényified state

would allow to preserve the sign or complex phases of the original state: |ψ, n〉 =
∑
i (pi)

(n−1)/2 〈i|ψ 〉 |i〉.
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Figure 2.1: Constant term in the SRE of periodic XXZ and J1−J2 chains for different values
of ∆ and at the critical point J2/J1 = 0.2411. Each point comes from fitting the data for
L = 20, 22, 24, 26 and 28 to aL+ b+ c/L+ d/L2. Fat lines: theoretical prediction (Eq. 1.52).
The prediction for n < nc is also plotted above nc (dashed lines) for comparison. The J1−J2

chain (SU(2) symmetric, but with second neighbor interaction) lies at the transition point
between a TL liquid phase and a dimerized one. It has R =

√
2, as the XXZ chain at ∆ = 1,

but no logarithmic corrections (hence smaller finite-size effects). Taken from [5].

where a, b, c, d are (non-universal) constants and K is the Luttinger parameter. The fact that
the Hamiltonian is integrable makes it possible to relate K to the microscopic anisotropy
parameter:

1

K
= R2 = 2

(
1− arccos (∆)

π

)
(2.6)

where R is the effective compactification radius.

2.1.1 Numerics on periodic chains

First of all we need to choose some local basis to expand the wave function. Since Sztot =∑L−1
i=0 S

z
i is a conserved quantity, a natural choice is the “Ising basis”, where basis states are

eigenstates of the Szi . In the particle language, these basis states are configurations where each
particle has a fixed position, which also sounds natural from a classical statistical mechanics
point of view.

We computed numerically the ground state of the XXZ Hamiltonian using Lanczös diago-
nalization in the Szi basis on small periodic chains (L ≤ 28). The probabilities pi are obtained
directly as the square of the ground state components, and an explicit summation over the
non-zero weights gives Sn(L), possibly for non-integer n.

As discussed in the previous chapter, a fit is enough to extract universal subleading terms
when the system is translation invariant, and the subleading corrections are here O(1). Some
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Figure 2.2: Left: φ(x) is the value of the height field h(x, τ) at τ = 0. Center: The probability
pφ of a given φ is the ratio of partition function with and without constrain on h(x, τ = 0).
Right: If 2n is an integer, (pφ)n involves the partition function on a “book” geometry, where
the 2n sheets are independent except at τ = 0 where h must match φ(x) (binding).

results are displayed in Fig. 2.1 for various values of ∆ and n. We observe a very good
agreement with the theoretical prediction announced in Eq. 1.52, including a “cusp” at some
critical value nc of the Rényi index (given by Eq. 1.53). We now turn to the theoretical
derivation of Eq. 1.52 using a (free) field theory argument.

2.1.2 Gaussian trick and CFT book

We present here a derivation of Eq. 1.52, using a slightly expanded version of the argument
given in [5]. The idea is to exploit the Gaussian nature of the action in the continuum limit
to perform the summation over probabilities which appears in the definition of the SRE. This
approach does not require 2n to be an integer and also allows to understand the presence of a
critical value of the Rényi index, which a more standard replica approach would not capture.

This method transforms the calculation of the subleading term of the SRE into a ratio
of simple cylinder partition functions with Dirichlet boundary condition, which is a standard
boundary CFT quantity [93, 120]. Boundary field theory has found many applications in the
study of quantum impurity problems in 1D [93], and there the boundary corresponds to a
spatially localized impurity. In space-time, the boundary is thus parallel to the imaginary-
time axis. It is interesting to note that here, instead, the boundary will be parallel to the
real-space axis (see [121] for another example).

n ≤ nc
The long distance and low energy properties of a TL liquid are described by a compactified
“height” field h(x, τ) which Euclidean action is Gaussian and reads :

S[h] =
κ

4π

∫
dxdτ(∇h)2 (2.7)

Z =

∫
D[h] exp (−S[h]) . (2.8)

where κ is the stiffness and r is the compactification radius (h ≡ h + 2πr). By rescaling
the height field one can change r and κ, but the the physical observables only depend on
the combination 2κr2, which stays constant upon rescaling. The parameter which fixes the
decay exponents of the correlations functions is R2 = 2κr2 = 1/K. Since r will not be used
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explicitly in what follows, we will call R the compactification radius. For a periodic chain at
zero temperature, h lives on an infinitely long cylinder of perimeter L.

The entropy we are interested in is based on probabilities pi computed in a particular
basis, here the Sz basis. But the continuum limit of an Sz operator is local and diagonal in
the height basis [119]. So, the height basis is the continuum limit of the Ising basis,5 and the
microscopic probabilities pi may be replaced by the probabilities pφ of field configurations
φ(x) = h(x, τ = 0).

One can obtain the probability (density) pφ by integrating the fluctuations of h with a fixed
boundary condition at τ = 0 (see Fig. 2.2).6 But, even without doing the calculation explicitly,
we know that the result should be a Gaussian functional for φ, with a one-dimensional inverse
propagator proportional to κ.7 We can therefore write:

pκ [φ] = pκ,max exp

−κ
2

∑
0≤x,x′<L

φxG
−1
x,x′φx′

 (2.9)

where we explicitly kept track of the stiffness κ and the normalization factor was expressed
in term of the probability pκ,max = pκ [φ = 0] of the “Dirichlet configuration” φ(x) = 0 ∀x.
We can now raise pκ [φ] to some arbitrary power n:

(pκ [φ])n = (pκ,max)n exp

−nκ
2

∑
0≤x,x′<L

φxG
−1
x,x′φx′

 . (2.10)

Using again Eq. 2.9, but for a different value κ′ = nκ of the stiffness, we can express the
Gaussian factor of Eq. 2.10:

exp

−nκ
2

∑
0≤x,x′<L

φxG
−1
x,x′φx′

 =
pnκ [φ]

pnκ,max
. (2.11)

Combining Eq. 2.10 and 2.11 we get:

(pκ [φ])n = (pκ,max)n
pnκ [φ]

pnκ,max
. (2.12)

But the probabilities are normalized,
∑

φ pnκ [φ] = 1. Summing over all the field configura-
tions is therefore straightforward:

Z(n) =
∑
φ

(pκ [φ])n =
(pκ,max)n

pnκ,max
. (2.13)

At this point we have reduced the calculation of the entropy Sn = 1
1−n logZ(n) to the eval-

uation of pκ,max for two different values of the stiffness, κ and κ′ = nκ. Or equivalently, two

5This correspondence is the same to that between the microscopic dimer configurations on the hexagonal
(or any bipartite) lattice (and therefore XX spin chain at the boundary) and the coarse-grained height field
(for a definition of the microscopic heights, see Fig. 1.10 and caption).

6To make each probability finite some regularization is necessary but the present argument does not require
to consider it explicitly.

7In the present case G−1 is ∼ k in momentum space, G(x) ∼ log |x| and G−1(x) ∼ x−2 in real space.
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CHAPTER 2. SHANNON-RÉNYI ENTROPY OF SPIN CHAINS

values of the radius: the original radius R, and an effective radius R′ =
√
nR. As illustrated

in Fig. 2.2, this probability is given by pmax = lim
ly→∞

[ZDD(ly/2)]2 ZDD(ly)
−1, where ZDD(l)

denotes the partition function of a cylinder of height l with Dirichlet boundary conditions
at both ends.8 If these partition functions were regularized using some lattice model for in-
stance, log pmax would contain some non-universal extensive part O(L). But we are instead
interested in universal subleading terms, and these terms are precisely those described by
CFT. In fact the ratio of partition functions appearing above is a well studied object in CFT
and the ly →∞ limit it is equivalent to an Affleck-Ludwig g-factor (or “ground state degen-
eracy”) [93]. In the present compactified free-field case the relevant g-factor is gD, associated
with a Dirichlet boundary:

pmax = lim
ly→∞

[ZDD(ly/2)]2

ZDD(ly)
= (gD)2 . (2.14)

gD has been computed [120] and is a simple function of R:

gD = R−1/2 =
(
2κr2

)−1/4
(2.15)

Combining Eqs. 2.13-2.14 with Eq. 2.15 gives Z(n) = R′

Rn with R′ =
√
nR, and finally:

Z(n) =
√
nR1−n (2.16)

Sn =
1

1− n log [Z(n)] = log(R)− log(n)

2(n− 1)
. (2.17)

which is equivalent to Eq. 1.52 when n ≤ nc. We have checked this results numerically using
the XXZ chain, at zero and non-zero magnetizations, as well as in J1 − J2 chain [2]. Luitz et
al. [54] have also checked this result for an Heisenberg two-leg ladder at finite magnetization,
another example of TL liquid.

The above arguments do not require 2n to be integer – it is a “replica-free” argument.
However, if 2n is an integer, Z(n) can be interpreted as the partition function of a “book”
(right of Fig. 2.2) with 2n sheets that are glued together at τ = 0. This provides a simple
representation for the Rényified state defined in Eq. 2.2: correlation functions measured in
the state |ψ, n〉 are nothing but the classical correlations measured along the binding of the
book.

This approach can also be compared to that of Fradkin and Moore [20]. They treated the
book partition function by forming some linear combinations of the n scalar fields living on
the n (double) sheets. They introduced n − 1 “difference” fields: δhi = 1√

2
(hi − hi+1) and

one “center of mass” field: H =
∑n

i=1 hi. They treated these new fields as independent from
each other, which implicitly means that some compactification conditions are neglected (see
Oshikawa [122] for a proper construction of the boundary state in the compactified case). In
this approximation, the book partition function becomes that of n− 1 independent difference
fields obeying a Dirichlet boundary condition at τ = 0, and one unconstrained field (H). In
our notations their results is Z(n) = pn−1

max,κ. Comparing to Eq. 2.13, the treatment of Ref. [20]
appears to be incorrect concerning the contributions which depend on the compactification
radius (or κ). However, in geometries with corners (see Sec. 2.1.3), the leading universal
term in the SRE is a logarithm which coefficient is independent of R, and is therefore given
correctly by the approach of [20].

8We assumed here for simplicity that the boundary conditions at τ = ±∞ are also of Dirichlet type.
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Figure 2.3: Below nc the book partition function Z(n) is equivalent to that of a of a double-
sheet book with modified stiffness κ′ = nκ, or to that of a single-sheet with modified stiffness
κ′′ = 2nκ. A perturbation (cosine potential) along the book binding is therefore equivalent
to a conventional boundary perturbation provided we use an effective stiffness κ′′ = 2nκ.

n = nc

The argument above works as long as the effective action describing the subleading terms in
the SRE is Gaussian. However, at the microscopic scale the system lives on a lattice and
the action is not strictly Gaussian but contains all the possible terms allowed by symmetry.
Among these terms, the cosine potentials cos (d · h(x, τ)/R) play an important role (vertex
operators). They are compatible with the compactification condition h ≡ h + 2πr and have

d minima. The (bulk) scaling dimension of such an operator is xbulk = d2

R2 (recall that

R =
√

2κr) and it is irrelevant (RG sense) when xbulk > 2.9 We only need to consider
the most relevant of these operators and d is therefore the smallest degeneracy allowed by
symmetry. For the XXZ chain at zero magnetization d = 2.10

Let us analyze the effect of the cosine potential in the partition function Z(n). We assume
that 2n ∈ N so that Z(n) can be viewed as book partition function (Fig. 2.3), although the
final result is in fact valid without this restriction. Since the spin chain is critical, the cosine
potential is irrelevant (or marginal) when it perturbs the bulk of the 2D action. So the cosine
potential renormalizes to zero at long distances in the bulk of the sheets of the book. For n = 1
the book is nothing but the usual plane, so the cosine term can be certainly be ignored in the 2-
sheet book. But this may not be the case along the binding of the book for n 6= 1. The scaling
dimension of an operator is different when it acts along a one-dimensional boundary [123].

For a vertex operator, the boundary scaling dimension is xboundary = 2 xbulk = 2d2

R2 , and when

xboundary = 1 (2.18)

the operator is marginal at the boundary of a half-plane plane.11 What about the effect of
such a perturbation at the binding of a book with 2n sheets ? Using the Gaussian trick, the

9This result can be recovered by a simple perturbative RG calculation.
10In the XXZ spin chain at zero magnetization, the most relevant (smallest d) cosine term has d = 2 and this

operator becomes relevant for x = 4/R2 < 2, that is R >
√

2. The transition point corresponds to the SU(2)
symmetric point (Heisenberg) at ∆ = 1. For R >

√
2 the height field is effectively “locked” in one of the two

degenerate minima, which are the continuum counterparts of the two antiferromagnetic Ising configurations
↑↓↑ · · · and ↓↑↓ · · · .

11The factor two between xboundary and xbulk can be obtained as an immediate consequence of the equivalence
between the center and right panels of Fig. 2.3. The correlations of the cosine term at the boundary (right
panel) of a system with stiffness κ′′ are the same as those of the cosine operator in the bulk of a system with
stiffness κ′ = κ′′/2 (center panel). Hence: xboundary(κ′′) = xbulk(κ′′/2) = 2xbulk(κ′′).
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statistics of φ(x) at the binding of the book is mapped to that at the boundary of a single sheet
(right of Fig. 2.3), with a modified n-dependent stiffness κ′′ = 2nκ. We can therefore apply
the criterion of Eq. 2.18 to the geometry displayed in right of Fig. 2.3, which corresponds to
an effective compactification radius R′ =

√
2nR. The condition for the perturbation to be

marginal at the binding of the book with 2n sheets is thus xboundary(κ′′ = 2nκ) = 2d2

2nR2 = 1.
We finally get the critical value of the Rényi index:

nc =
d2

R2
. (2.19)

So, when increasing n from 1 to nc the critical height fluctuations along the book binding
are gradually suppressed. When reaching n = nc these fluctuations are weak enough that
the cosine potential is marginal at the book binding, this signals the presence of a boundary
phase transition. So, for n < nc, raising the probabilities pi to the power n is equivalent to
consider the boundary of a single sheet with an effective stiffness κ′′ = 2nκ (Fig. 2.3), or one
line in the bulk of a 2-sheet book at κ′ = nκ. If we admit that the Gaussian argument is still
valid at nc, we are left with a boundary problem where a cosine potential is exactly marginal,
which is an exactly solvable model [124].

We stress that the correct value of nc is not given by a bulk criterion xbulk(κ′ = nκ) = 2
because it is only along the book binding that the height fluctuations are described by a
modified effective stiffness κ′ or κ′′. Indeed the stiffness is independent of n in the bulk
of the sheets, and no transition can occur there when varying n. In particular we checked
numerically in the XXZ chain that in the interval nc/2 < n < nc the Rényified state |ψ, n〉
has some algebraic 〈Sz0Szx〉 correlations (Eq. 2.5) which are described by a compactification
radius R′ =

√
nR which is larger than the maximal value

√
2 one can get in |ψ〉 by varying

the anisotropy ∆ [125]. These is a bit counter intuitive since, in this regime, |ψ, n〉 has some
algebraic correlations 〈Sz0Szx〉 ∼ x−η which decay very slowly, with an exponent η < 1. This
exponent can go as low as η = 1/2 when approaching nc.

12 There is however no contradiction
between having such a slow decay and still being critical since |ψ, n > 1〉 is not the ground
state of an Hamiltonian with short-range interactions.

n > nc

Above nc the cosine potential is relevant at the book binding, and one can no longer compute
Z(n) using a Gaussian action; and the Eq. 2.17 cannot be used for n > nc. However, the effect
of a relevant cosine potential is intuitively simple: apart from short-distance fluctuations, φ
is locked into one of the d (spatially flat) minima of the potential.13 As a result, the sheets
are decoupled from each other. In each sheet the field h(x, τ) obeys a Dirichlet boundary
condition at τ = 0. As far as the universal O(1) term is concerned, Z(n) is thus given by the
d flat configurations which minimize the cosine potential:

Z(n > nc) = d (pκ,max)n (2.20)

= d R−n. (2.21)

12Presumably for this reason, the transition was incorrectly located at nc/2 in Ref. [126].
13We focus here on periodic chains (each sheet is a half-infinite cylinder) where the precise locations of these

minima on the compactification circle are immaterial. They however play an important role in open chains,
as discussed in [6].
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And finally:

Sn>nc = O(L) +
log d

1− n +
n logR

n− 1
, (2.22)

which is the result announced in Eq. 1.52. Although the subleading term is continuous across
the transition (Eq. 2.22 matches Eq. 2.17 if n = nc = d2/R2), a change in the slope is clearly
visible on the numerical data of Fig. 2.1.

We see that studying |ψ, n〉 for n > 1 can reveal the effect of some perturbation which
was irrelevant at n = 1. What was just some short-distance fluctuations at n = 1 became a
true long-range order above nc. In a different context where the phase diagram of the model
would not be completely known, we can imagine that looking at the Rényified states |ψ, n〉
could help identifying some competing order(s), without actually changing the Hamiltonian.

2.1.3 Logarithms in open chains and partial SRE

We have explained the origin of a universal O(1) term in the SRE of periodic chains. In open
chains, as well as in the partial SRE of a subsystem (segment), the universal part of the SRE
is a logarithm of the system/subsystem size.

Open XXZ chain

Open chains can be analyzed in a similar way to periodic ones and we only give here the main
ideas. In the open cases, each sheet of the book is a semi-infinite strip. So, each sheet has
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two corners with angles π/2. From the classic work of Cardy and Peschel [101] it is known
that sharp corners produce logarithmic terms in the associated free energy. It is therefore not
surprising that log(L) terms arise in the SRE [117, 5]. Indeed, exactly as in the periodic case,
the Gaussian trick can be applied when n < nc and it reduces the book problem to a single
sheet partition function with Dirichlet condition (pmax) and n-dependent stiffness. Also, the
same vertex operator becomes marginal at nc, and for n > nc the sheets decouple from each
other. This gives a discontinuity at n = nc in the coefficient ln of the log(L) term:

Sopen
n ' αnL+ ln log(L) +O(1) (2.23)

ln =


−1

4 n < nc
? n = nc
n
n−1

(
R2

4 − 1
4

)
n > nc

(2.24)

Although the O(1) is continuous at nc, the coefficient ln is not. Furthermore, our numerical
results suggest that, in the thermodynamic limit, ln=nc is distinct from the values just above
and just below the transition. For instance, we found numerically ln=nc=4 = −1/6 in the XX
chain (∆ = 0, R = 1) (inset of Fig. 2.4), a result which has been recently confirmed by an
exact calculation [112]. We are not aware of a theoretical prediction for the value of ln=nc

away from the free fermion point.

Entropy of a segment

Another interesting quantity is the partial SRE of a segment of length l embedded in a longer
periodic chain of length L. In a recent work J.-M. Stéphan [112] showed that it obeys a
conformal scaling very similar to that of the EE:

In(l, L) =
1

4
bn log

(
L

π
sin

πl

L

)
+O(1). (2.25)

But, contrary to the EE (and contrary to the conclusions of [118]) bn is in general different
from the central charge. Using arguments (Gaussian action) similar to those developed in
this chapter he showed in particular that, for the XXZ chain (and probably any TL liquid
state), bn<nc = 1 and bn>nc = n

n−1 , with the same critical nc = d2/R2. The case of the
Ising universality class, which is discussed in the next section, is even more intriguing, with
bnc=1 = 0.4801629(2) [112], a number which has not yet been calculated nor identified using
CFT tools.

2.2 Ising chain in transverse field

The previous section described our analytical understanding of the universal contributions to
the SRE of a TL liquid, which is based on the free compactified boson description. We now
turn to the next simple universality class, the 2D Ising universality class. Its simplest 1+1D
realization is the Ising chain in transverse field (ICTF):

H = −µ
∑
i

σxi σ
x
i+1 −

∑
i

σzi , (2.26)

where µ = µc = 1 corresponds to the gapless critical point separating two gapped phases:
the ordered phase for |µ| > 1 (〈σx〉 6= 0) and the disordered/paramagnetic phase for |µ| < 1
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(〈σx〉 = 0). Standard observables such as correlation functions or excited states energies are
easy to obtain since a Jordan-Wigner transformation maps this model onto a free-fermion
Hamiltonian. The EE is also easily accessible using the free particle/Gaussian description
of reduced density matrices [56]. However, contrary to TL liquids, we have few analytical
results concerning the SRE of this system and our understanding of the SRE is mostly based
on numerical observations. The SRE gives a striking example of a simply-defined universal
quantity which has, so far, escaped any field theory treatment. The critical value of the Rényi
parameter appears to be nc = 1 for the critical Ising model and moving away from n = 1 –
above or below – seems to play the role of a relevant perturbation. This contrasts with TL
liquids, which belong to a line a fixed points, and where the parameter n could be used to
move along this line.

There are two natural basis choices to compute the SRE: the σz basis, and the σx one.
However, the Kramers-Wannier duality can be used to exchange the role of σz and σx and
to show that the SRE Sxn computed in the x basis is simply related to that in the z basis:
Sxn(µ) = Szn(1/µ) + log(2) [2]. The extensive part is thus the same in the two basis, while the
subleading terms differ by log(2). To avoid any confusion we restrict here to the x basis, which
also corresponds to spin configurations in the classical 2D point of view. We will comment at
the end on the possibility to interpolate between the x and z directions.

The data were obtained by summation over 2L configurations up to L = 44 [4]. Thanks
to the free fermion formulation, each probability pi can be written as the determinant of an
L× L matrix which entries depend on the spin configuration |i〉.14

As in all the cases discussed so far the SRE of the ICTF has a leading term proportional
to L (visible in Fig. 2.5), and a subleading correction of O(1) (for periodic chains) which is
noted rn(µ), where µ is the coupling strength (Eq. 2.26) and n is the Rényi parameter.

2.2.1 Numerics at n = 1

Ordered and disordered phases

The Shannon entropy is very simple when µ → ∞, since the finite-size ground state simply
becomes 1√

2
(|↑ · · · ↑〉+ |↓ · · · ↓〉). The entropy is not extensive in this limit and we are left

with a subleading term r1(µ → ∞) = log(2). Doing a first-order expansion in 1/µ will
dress each of the two components of the ground state by spin flips (application of σz). Such
corrections will produce an extensive term in the entropy, but it can easily be checked that
they will not affect the subleading term. We can also invoke the universality of the subleading
entropy constant to argue that r1(µ) should be constant in the whole phase. The data of the
left panel of Fig. 2.6 are indeed consistent with r1 = log(2) in the ordered phase, even if
finite-size effects (oscillations) are important. For a general gapped phase with spontaneously
broken symmetry we expect the subleading term in the SRE to be log(deg), where deg is
the degeneracy. This has been checked, for instance, for the XXZ chain in the gapped phase
(∆ > 1) [2], and in some 2D systems as well [54].

14The largest chain requires to sum 244 ' 17.1012 determinants of size 44 × 44. It was possible to do so in
a reasonable amount of time thanks to some (trivial) parallelization, as well as thanks to an algorithm which
generates “bracelets” [127]. The later produces one representative configuration for each orbit of spin configu-
rations related by lattice symmetries (translations and inversion), together with its multiplicity. Importantly,
the method works without the need to store the configurations. The free fermion formalism gives an easy
access to probabilities in the σz basis. The entropy in the other basis is then obtained by duality.
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The same arguments work in the disordered phase, where the µ = 0 limit gives an entropy
equal to L log(2), with a vanishing subleading constant. Again, we expect r1(µ) to vanish in
the whole |µ| < 1 phase.

Critical point

The most interesting results are those at (or in the vicinity) of the critical point at µ = 1.
The SRE of the critical ICTF is plotted in Fig. 2.5 (crosses) and the relatively long chains
allowed to determine the subleading constant (noted r1 in Fig. 2.6) with high accuracy:15

r1 = 0.2543925(5). (2.27)

Of course, this number is interesting only if it is universal... We expect on general grounds
these subleading entropy constants to be universal, but it is nevertheless useful to check
it explicitly. To this end we considered two other different microscopic realizations of the
Ising universality class: the ferromagnetic Ising model on the triangular lattice, and the Ising
model on the square lattice (both at T = Tc). In those two other cases the probabilities
were obtained by diagonalizing numerically the classical transfer matrix. In these two cases
the entropy is exactly the Shannon entropy of a line of spins in the bulk of a classical 2D
Ising model. The data are shown in Fig. 2.5 (triangles and squares). Although the systems
sizes are smaller than for the ICTF, these two systems indicate the presence of a subleading
r1 ' 0.254, consistent with the value found for the ICTF (see [106] for data on larger square
lattices).

2.2.2 Numerics for n 6= 1

As for the compactified boson case, some insight can be gained on the subleading entropy
constant if one varies the Rényi parameter. Here µ is thus fixed to 1 and n is varied. The data
for rn(µ = 1) are presented in the right panel of Fig. 2.6. We observe that the subleading
entropy constant goes from 0 to log(2) when n increases, with some “crossing” at n = 1.
Thanks to exact results at n = 1

2 and n = ∞, the two limiting values are relatively easy to
understand.

Large n phase

The limit n =∞ is relatively simple since it amounts to compute the highest probability pmax,
which is that of a fully polarized spin configuration in the x direction. If we consider the ICTF
ground state as the dominant eigenvector of the transfer matrix of some 2D classical Ising
model, pmax is the ratio (Zfixed)2/Z, where the partition function Zfixed is that of a semi-
infinite cylinder with a ferromagnetic condition at its boundary, and Z has no boundary
(infinite cylinder). The ferromagnetic condition on the spins corresponds (or “flows”) to a
conformally invariant boundary state in the continuous limit, usually noted “+” (or “fixed”).
The universal piece of the above partition ratio is the square of associated g-factor (as in
Eq. 2.14). The later was shown by Cardy [128, 129] to be g+ = 1√

2
, which gives a subleading

15Our data have been re-analyzed by Lau and Grassberger [106], leading to a slightly higher accuracy:
r1 = 0.254392505(10). There are probably few examples in statistical physics of universal numbers associated
to phase transitions which are known numerically with such an accuracy and we are yet to be understood
theoretically.
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term log(2) to − log pmax = Sn=∞ (see [2] for more details).16 Our numerical data indicate
that the subleading term in the SRE is log(2) for n & 1.5, and probably also for any n > 1.
Still, based on the available system sizes, one cannot exclude some smooth function of n
which would reach log(2) at some new critical n ∈]1,' 1.5]. Nevertheless, the inset of the
right panel of Fig. 2.6 suggests that the slope ∂rn

∂n

∣∣
n=1,µ=1

could slowly diverges with the

system size, typically as ∼ L0.25. A plausible scenario is therefore rn>1(µ = 1) = log 2 in the
thermodynamic limit.

As in Sec. 2.1.2, if 2n is an integer, the sum Z(n) =
∑

i p
n
i can be interpreted as the

partition function of a book. If rn is indeed discontinuous at n = 1 in the thermodynamic
limit it would indicate that the binding of that book flows to a “fixed” boundary condition
(and decoupled sheets) for n > 1. We may thus say that taking n away from 1 is a relevant
perturbation for the book binding. At n = 1 the binding is just a line in the bulk of the
cylinder. However, as soon as n 6= 1 the binding becomes a special line, with correlations that
are different from the bulk ones.17 The SRE problem in the vicinity of n = 1 might be related
to line defects in the 2D Ising model, but it is unclear to us how the results of Oshikawa and
Affleck [130] can be applied to understand, for instance, Eq. 2.27.

We finally mention that the SRE of the quantum Ising model in two spatial dimensions
was recently investigated using QMC [54], with several interesting findings concerning new
universal subleading entropy constants for n = 2, 3 and ∞.

Small n phase

To understand what happens for n < 1 it is useful to consider the case n = 1
2 . This value

of the Rényi parameter plays a special role since
√
pi = 〈ψ| i〉 is linear in the coefficients

of the ground state wave function |ψ〉.18 The partition function of the single-sheet book
Z(1

2) =
∑

i 〈ψ| i〉 = 〈ψ|∑i |i〉 is the scalar product between |ψ〉 and the equal amplitude
superposition of all the Ising configurations (x basis). The later is nothing but a polarized
state in the z direction,

|free〉 = |→z · · · →z〉 =
1

2L/2

∑
σxi =±

|σx1 · · ·σx1 〉 , (2.28)

so that we can write

Z
(

1

2

)
= 2L/2 〈ψ |free〉 . (2.29)

Since |free〉 is the vacuum of the Jordan-Wigner fermions, the scalar product above can be
computed exactly [2]:

〈ψ|free〉 =

L/2−1∏
j=0

cos
(2j + 1)π

4L
. (2.30)

16pmax can also be obtained exactly on the lattice by first computing the probability of the ferromagnetic
configuration in the z basis (fermion vacuum), and then using the Kramers-Wannier duality.

17Spin-spin correlations were recently investigated as a function of n [112] and were found to be long-range
ordered for n & 1.5. Finite-size effects are however still too large to conclude whether correlations are long-
ranged or algebraic in the interval n ∈]1, 1.5[.

18ψi can be chosen real and positive (Perron-Frobenius theorem).
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And an Euler-Maclaurin expansion (for large L) can finally be used to show the O(1) term
in the SRE vanishes [2, 4]:

S 1
2
(µ = 1) = 2 logZ

(
1

2

)
=

2K

π
L+ o(1) (2.31)

K ' 0.91596559 (Catalan’s constant). (2.32)

As for the n =∞ limit, the vanishing of r 1
2

can also be obtained by remarking that Z(1
2) is an

Ising model partition function on a half-infinite cylinder with a free boundary condition. The
universal piece of this partition function is again some g-factor associated to a well-known
conformal boundary state, for which gfree = 1.

From our numerical calculations it is clear that rn vanishes for n . 1/2 but it also seems
likely that rn = 0 in the whole interval [0, 1[, although the convergence to the thermodynamic
limit is quite slow. The boundary is known to be critical at n = 1

2 and it is probably the case
for all n < 1, although finding numerically the exponent is difficult [112].

2.2.3 Geometrical entanglement and basis rotations

We wish to conclude this chapter by mentioning a related application of these boundary
states ideas. The geometric entanglement (GE) (see [131] and references therein) is defined
by taking a state |ψ〉 and looking for the closest separable state |S〉 in the Hilbert space. The

GE entanglement is then E = − log
(
|〈S |ψ〉|2

)
and vanishes if and only if |ψ〉 is separable.

One interesting property of this quantity in the context of condensed matter problems is
that it can be used in simulations to detect phase transitions. For a spin chain, the natural
definition of “separable” is a product of single-spin states.

For the critical ICTF the product state which maximizes the overlap with the ground
state is a tilted configuration [132]:

|S〉 =
L⊗
i=1

(cos(ξ/2)| ↑i〉+ sin(ξ/2)| ↓i〉) (2.33)

where | ↑i〉 and | ↓i〉 are the eigenstates of σzi and the optimal angle ξ is ' 0.897101 (non-
universal).

The scalar product 〈S |ψ〉 can be interpreted as a boundary contribution to the free energy
of a classical 2D Ising model. If we had to project |ψ〉 onto a state where all the spins would
point in the x direction (corresponding to an angle ξ = ±π), it would be a fixed ferromagnetic
boundary condition for the Ising model. On the other hand, projecting onto a state with all
the spins pointing in the z direction (ξ = 0) would correspond to the |free〉 condition. The
tilted state of Eq. 2.33 then appears to be intermediate between free and fixed boundary
conditions. The important point is however that ξ 6= 0, which means that |S〉 breaks the
Z2 symmetry of the model (σx ↔ −σx). In such situation where the boundary condition
imposes a non-zero magnetization at the edge, the long-distance and universal properties
of the boundary will be equivalent to that of a system with fixed ferromagnetic boundary
condition “+” (all spins pointing in the x direction) [93]. This is due to the attractiveness of
the “fixed” boundary state under the RG flow. We thus find [3] that E contains a subleading
term equal to − log(g2

+) = log(2), as conjectured in Ref. [133].
The scalar product between the ICTF ground state and |S〉 can alternatively be viewed as

the pmax computed in a rotated basis, it is thus related to Sn=∞ in that new basis. But, more
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interestingly, the subleading entropy constant at n = 1 (' 0.254, Eq. 2.27) was also observed
to be independent of global basis rotations19 [J.-M. Stéphan, unpublished]. From these two
examples (at n = 1 and n = ∞) we can conjecture that universal entropy constants should
be robust, at least to some extent, to basis rotations.

We finally mention that similar ideas have been applied to compute the subleading term
in the GE of the critical XXZ chain [3].

19As long as the rotated basis has some component along the x axis.
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Chapter 3

Shannon-Rényi entropy for
Nambu-Goldstone modes in
dimension two

We are here interested in 2D quantum spin systems where the spin rotation symmetry –
U(1) or SU(2) for instance – is broken at zero temperature. In such systems with magnetic
long-range order and gapless Nambu-Goldstone modes, it was observed, using (modified) spin-
wave calculations [134] and QMC on Heisenberg models [135] that the entanglement entropy
possesses some additive logL corrections to the boundary law. Soon after, these results
were explained by some analytical calculations (quantum rotor model and a non-linear sigma
model) [45], leading to the prediction that the coefficient of logL is NNG/2, where NNG is the
number of Nambu-Goldstone modes.

Very recently, the SRE of several 2D magnets were computed using QMC [54, 136, 114].
By simulating spin-1

2 XXZ and Heisenberg models, U(1) and SU(2) broken symmetries were
investigated. The SRE for the complete system (torus), as well as the entropy of a line
subsystem were measured. In all theses cases, as summarized in Tab. 3.1, some additive logL
corrections have been observed.

These results motivated us to look for a field-theory description of these logarithmic con-
tributions, somewhat in the spirit of [45] for the EE. The calculations presented below is based
on some unpublished work done in collaboration with Masaki Oshikawa and Vincent Pasquier,
and which also benefited a lot from discussions with Fabien Alet and Nicolas Laflorencie.

3.1 Oscillator/spin-wave contributions

3.1.1 Massless free scalar field

We first assume that the system is in a broken symmetry state, with a well defined direction of
the order parameter (say x). At low energy the interactions between spin-waves are irrelevant
and each mode can be described by a free gapless scalar boson with a linear dispersion relation.
As consequence we can consider the case of a single mode (broken U(1)), and multiply the
final result by the number of Nambu-Goldstone modes.

At each point r in space an angle φr describes the local orientation of the order parameter
with respect to its average direction. At low energies and when coarse grained over sufficiently
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Model n
log(N) coef.

Ref. [54]
NNG

4
n+1
n−1

Heisenberg
J2 = 0 ∞ 0.460(5) 0.5
J2 = −5 ∞ 0.58(2) 0.5

J2 = 0 2 1.0(2) 1.5
J2 = −5 2 1.25(4) 1.5

J2 = −5 3 1.06(3) 1

J2 = −5 4 1.0(1) 0.8333

Model n
log(N) coef.

Ref. [54]
NNG

4
n+1
n−1

XY
J2 = 0 ∞ 0.281(8) 0.25
J2 = −1 ∞ 0.282(3) 0.25

J2 = 0 2 0.585(6) 0.75
J2 = −1 2 0.598(4) 0.75

J2 = 0 3 0.44(2) 0.5
J2 = −1 3 0.432(7) 0.5

J2 = 0 4 0.35(8) 0.4166
J2 = −1 4 0.38(2) 0.4166

Table 3.1: Subleading logarithmic terms in the SRE of the 2D Heisenberg and XY models,
possibly with ferromagnetic second neighbor interaction J2 (which strengthens the magnetic
order). n is the Rényi (noted q in [54]). The numerical values obtained by Toulouse’s group
(supplementary material of [54]) are given in the third column. We selected the best fit only
for simplicity – which does not do justice to their extensive and detailed data analysis. The
last column is the present theoretical prediction (Eq. 3.24), which combines the oscillators
(Eq. 3.10) and TOS contributions (Eq. 3.23). The number NNG of Nambu-Goldstone mode
is 2 for Heisenberg and 1 for XY.

long distances, these deviations are small and one can treat them as real numbers, therefore
neglecting the compactness of φr. This leads to the Hamiltonian of a massless free scalar
field:

H =
1

2

∫
d2r

[
χ⊥Π2

r + ρs (∇φr)2
]

(3.1)

where ρs is the stiffness, χ⊥ = c2

ρs
is the transverse susceptibility, c the spin-wave velocity, and

Πr = ρs
c2
φ̇r is canonically conjugate to φr. This is a collection of harmonic oscillators, one for

each momentum k:

H =
1

2

∑
k

[
c2

ρs
Π2

k + ρsk
2 |φk|

]
. (3.2)

3.1.2 Configuration with the highest probability

We start by considering the n = ∞ SRE, which amounts to evaluate the probability of the
most likely configuration.

Let us first recall that the (normalized) ground state wave function ψ of an harmonic
oscillator with the Hamiltonian H = 1

2mp
2 + 1

2mω
2x2 is

ψ(x) =
(mω
π

)1/4
exp

(
−mω

2
x2
)
. (3.3)

So, if one asks what is the probability density pmax to find the particle at its “most likely”
location, the result is the square of the wave function at x = 0, which is just the square of
the normalization factor :

pmax = |ψ(0)|2 =
(mω
π

)1/2
. (3.4)
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Comparing this to Eq. 3.2, the mode k of the free field has a mass mk = ρs
c2

and frequency
ωk = c|k|. So, the probability pmax(k) for the mode k to be “at the origin” is:

pmax(k) =
(mkωk

π

)1/2
=

(
ρs|k|
πc

)1/2

. (3.5)

We are interested in the probability density to observe φr = 0 everywhere in space, so we
impose φk = 0 for all k and get:

posc
max =

∏
k 6=0

pmax(k) =
∏
k 6=0

(
ρs|k|
πc

)1/2

. (3.6)

Taking the logarithm we obtain:

− log (posc
max) = −1

2

∑
k 6=0

log
( ρs
πc

)
− 1

4

∑
k 6=0

log
(
k2
)
. (3.7)

The zero mode k = 0 is omitted since we assume that the system is in a broken-symmetry
state. Including the zero mode would, in a finite volume, “delocalize” the order parameter
and restore the rotation symmetry. We will take later into account the rotational symmetry
of the finite-size ground state by a correcting factor associated with the “degeneracy” of the
Anderson tower of states (TOS), see Sec. 3.2. The first sum is simply a volume term (∼ L2)
but the universal contribution comes from the second sum, which we analyze now.

3.1.3 Determinant of Laplacian

Since the −k2 are the eigenvalues of the Laplacian ∆, the Eq. 3.7 is a lattice regularization
of log det′∆, where det′ means that the zero eigenvalue is removed. One can regularize the
sum by using a periodic L×L lattice (torus), in which case the universal terms in the L→∞
asymptotics can be extracted by means of an Euler-Maclaurin expansion.1 But det′∆ is in
fact a quantity which has been studied a lot (see for instance [100, 137]). In particular:

log
′

det ∆ ' O(L2) +
(

1− χ

6

)
log
(
L2
)
, (3.8)

where χ is the Euler characteristics of the manifold. This result is remarkable since the
coefficient of the log(L2) term is purely topological. It can be derived using the heat-kernel
method and zeta regularization for instance [138]. We therefore have:

− log(posc
max) = O(L2) +

1

4

(χ
6
− 1
)

log
(
L2
)

+O(1). (3.9)

And, specializing to the torus (χ = 0):

− log(posc
max) = O(L2)− 1

4
log
(
L2
)

+O(1). (3.10)

1A possible regularization is to use the Brillouin zone of an L×L square lattice : Σ(L) =
∑

k6=0 log
(
k2
)

=∑′
n,m=−L

2
···L

2
−1

log
(
k2n + k2m

)
where the discrete momenta are given by kn = 2πn

L
and the zero-mode

(n = m = 0) is omitted. Using twice the Euler-Maclaurin expansion at the trapezoid order gives:
Σ(L) =

(
1
2
π − 3− log (2) + 2 log (2π)

)
L2 + log

(
L2
)

+ O(1). While the term proportional to L2 depends
on the regularization scheme, the log

(
L2
)

is universal.
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If compared with the numerical QMC results for the n =∞ SRE (Tab. 3.1), the log coefficient
−NNG

4 obtained above is clearly off, with a wrong sign in particular. As we argue below, this
is due to the fact that the oscillator contribution provides only one part of the logarithmic
terms. The other part, discussed in Sec. 3.2, is due to the fact that the ground state of
a system of finite volume is rotationally invariant, contrary to the initial assumption of a
broken-symmetry state. But before dealing with this important point, we comment on the n
dependence of the oscillator contribution to the SRE.

3.1.4 Rényi index and Gaussian probabilities

So far we only considered one probability, pmax, of observing the configuration with φr = 0
everywhere. Here we show that, for Gaussian variables, the universal part of SRE

Sosc
n =

1

1− n log
∑
{φr}

(pφ)n (3.11)

can be obtained from pmax alone. The argument is almost identical to that of Sec. 2.1.2,
and we do not repeat it in details. Here pφ refers to the probability of a configuration {φr},
defined on the whole system (or in a subsystem). If the field configurations are distributed in
a Gaussian way we can write these probabilities as:

p(φ)ρs = p(φ = 0)ρs exp

(
−1

2
ρsφ ·G−1 · φ

)
(3.12)

= pmax,ρs exp

(
−1

2
ρsφ ·G−1 · φ

)
, (3.13)

where G is the propagator and we explicitly keep the stiffness ρs. Repeating the manipulations
of Sec. 2.1.2 leads to

Sosc
n =

1

n− 1
[log (pmax,nρs)− n log (pmax,ρs)] . (3.14)

For the massless oscillators discussed previously, the universal logarithm turned out to be
independent of the stiffness ρs (see Eq. 3.10). So, log (pmax,nρs) and log (pmax,ρs) have the
same subleading logarithms and we may thus write:

Sosc
n =

log(L) terms
− log (posc

max) (3.15)

which is independent of the Rényi index n. Naturally this only holds as long as the non-
Gaussian effects can be neglected, which is presumably correct for small enough n, including
n = 1 (and also, obviously, at n =∞).

As in 1+1D, we note that there may be a critical value of n beyond which the probabilities
(pφ)n would no longer describe a gapless system, but a gapped state. Indeed, the choice of
a basis to compute the entropies was made by selecting one particular spin direction in the
ordering plane. For n > 1 such a choice explicitly breaks the U(1) symmetry down to Z2.
Increasing n favors the spin configurations which are polarized along (or exactly opposite to)
the quantization axis of the basis. So, we may expect that, beyond some critical nc, the state
|ψ, n〉 would have some Ising-like long-range order and a finite correlation length. Investi-
gating this question further (numerically and/or analytically) would clearly be an interesting
direction of research.
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3.2 Degeneracy factor

3.2.1 Tower of states

Let us briefly review the (standard) concept of tower of states (TOS) [139, 140, 141], which
reconcile the fact that the finite-size (antiferromagnetic) eigenstates are rotationally invariant
while, in D ≥ 2, the system can break the rotational symmetry in the infinite volume limit
at T = 0.

If a spin Hamiltonian H has a continuous rotation symmetry, say U(1) for simplicity, the
total angular momentum Sztot =

∑
r S

z
r (generator of the rotations) is a conserved quantity,

and one can chose the eigenstates of H such that they are also eigenstates of Sztot. For an
antiferromagnetic system, the finite-size ground state has Sztot = 0 and is thus rotationally
invariant.2 But the energy spectrum also has a set of low-energy eigenstates, with all values
of Sztot up to ∼

√
N . They form the so-called Anderson TOS and their energies scale as

E ' E0 + 1
Nχ (Sztot)

2, where N is the number of sites and χ the uniform susceptibility along
the z axis. Their energy is at most ∼ O(1) above the absolute ground state and their uniform

magnetization per site, measured along the z axis, is small but non-zero : at most ∼ N− 1
2 .

A symmetry-breaking state can be constructed by a linear combination of the eigenstates
of the tower. Due to the slight energy differences between the eigenstates of the TOS, a
symmetry-breaking combination is no longer an exact eigenstate, but it is a low-energy state.
The dimension of the TOS is not defined exactly, but should be understood in the scaling
sense. In the U(1) case the highest angular momenta scale as ∼

√
N and the dimension of

the TOS is ∼
√
N .3

As a basic consequence of uncertainty relations, the more localized is the direction of the
order parameter on the unit circle (in the xy plane), the higher are the Sztot fluctuations.
Because a low-energy symmetry-breaking state is built from states in the TOS, which has
some “cut off” ∼

√
N on Sztot, the order parameter direction can be at best defined with

an angular precision δθ ∼ 2πN−
1
2 . In other words, a low-energy symmetry-breaking state

“occupies” a finite patch on the circle representing all the possible order parameter directions.
The same argument, when applied to an SU(2) symmetry broken down to U(1) (collinear
antiferromagnet) leads to the conclusion that a low-energy symmetry-breaking state occupies
a solid angle δΩ ∼ 4πN−1 on the Bloch sphere representing the order parameter manifold.

In a more general situation we expect (phase space volume argument) the TOS dimension
Q to scale as ∼ Nα, with an exponent α which only depends on the number of Nambu-
Goldstone modes:

α = NNG/2. (3.16)

3.2.2 Symmetric ground state and pmax

For the entropy problem at hand, we propose to adopt the dual point of view, where the
symmetric finite-size ground state |Ψ〉, with Sztot = 0, is built as a linear superposition of

2This was shown rigorously for an Heisenberg-like (or XXZ) model on a bipartite lattice (with the same
number of sites on both sublattices): the Lieb-Mattis theorem [142].

3If, instead, the Hamiltonian symmetry is SU(2) and it is broken down to a residual U(1), the relevant

quantum number is the total spin
(
~Stot

)2
= S(S + 1). In that case the maximal total spin in the TOS scales

as S ∼
√
N . Due to the additional Zeeman degeneracy compared to U(1), the TOS has a larger dimension,

which scales as ∼ N .
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Q ∼ Nα symmetry-breaking states noted {|1〉, |2〉, · · · , |Q〉}. The U(1) case would correspond
to α = 1

2 and SU(2)→ U(1) would be α = 1. We thus write:

|Ψ〉 =
1√
Q

(|1〉+ |2〉+ · · ·+ |Q〉) . (3.17)

Now we wish to compute the probability of a perfectly ordered spin configuration, noted |+〉:

pmax = |〈Ψ|+〉|2 =
1

Q

∣∣∣∣∣
Q∑
i=1

〈i |+〉
∣∣∣∣∣
2

. (3.18)

We can choose the states appearing in Eq. 3.17 so that only one, say |1〉, has an order
parameter direction which matches that of the classical configuration |+〉. We argue that∑Q

i=1〈i|+〉 is dominated by the i = 1 term and that the others may be ignored when N →∞.
This approximation should only alter the extensive part of − log pmax. The idea is that
the scalar product of a symmetry breaking state |i 6= 1〉 with |+〉 (which points in a different
direction) is purely exponential, and insensitive to the presence of long wavelength fluctuations
in |i〉. On the other hand, since the state |1〉 is “aligned” with the classical state |+〉, 〈1|+〉
will precisely have the oscillator contribution discussed in Sec. 3.1. So, as far as the universal
part is concerned, we may write

pmax '
1

Q
|〈1|+〉|2 (3.19)

with Q ∼ NNNG /2. We finally get:

− log (pmax) ' − log (posc
max) +

1

2
NNG log(N) (3.20)

' +
1

4
NNG log(N), (3.21)

which, from Tab. 3.1, appears to be in reasonable agreement with the QMC data of Luitz et
al. [54] at n = ∞. We also note that their results for models without continuous symmetry
breaking (gapped phase of the XXZ model) indicate the absence of log correction, which
is of course consistent with the present analysis. We will now attempt to describe the log
corrections in the finite-n SRE.

3.2.3 Dependence with n

We have introduced a degeneracy factor Q ∼ Nα to describe how pmax is modified by the rota-
tional symmetry of the finite-size ground state (compared to that of a broken-symmetry state).
We now assume further that the same factor applies to all the probabilities: p(φ) = 1

Qp(φ)osc.
Although difficult to justify rigorously, it is a plausible assumption for the configurations φ
which are close to φ = 0, and thus plausible for the “large” probabilities, which are the rel-
evant ones when n is not too small. The factor 1/Q in front of each probability contributes
to the SRE by

STOS
n =

n

n− 1
log(Q) = α

n

n− 1
log(N). (3.22)

As an important check of the equation above we note that it is in agreement with the exact
result for the logarithmic term in SRE of the Lieb-Mattis model [54], which has an SU(2)→
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U(1) TOS [hence α = 1] but no gapless spin-waves (→ no oscillator contribution to the
entropy).

Next we add the oscillator part, and since Sosc
n is independent of n (Eq. 3.15) we get:

Sn =
log(L) terms

n

n− 1
log(Q)− log (posc

max) . (3.23)

Replacing Q by NNNG/2 and − log (posc
max) by Eq. 3.10 we finally obtain:

Sn =
log(N) terms

NNG

4

n+ 1

n− 1
log(N). (3.24)

In Tab. 3.1 the result above is compared to the QMC results obtained by Toulouse’s group,
for n = 2, 3 and 4. The agreement is not excellent, and somewhat worse for finite n than
for n = ∞. We believe that the present approach may still be correct, even though we are
clearly still far from a controlled calculation. In particular, while our treatment of the TOS
seems justified for pmax, it is perhaps too crude at finite n. Finally, we note that when n
increases, the Rényified state may experience a phase transition, and Eq. 3.24 would no longer
be valid beyond nc. Since strong finite-size effects have been observed in the vicinity of such
transitions in 1D (see in particular Fig. 2.4), a similar difficulty could be present here too
(note also that the error bars given in Tab. 3.1 do not include the variations when larger
system sizes are included). We do not have any concrete indication of a transition, but it
could take place in the range of values of n that have been studied in QMC. In any case, it
would be interesting to look for possible signatures of such a transition in the simulations.
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The works summarized in this manuscript were initially motivated by some questions about
EE and ES. We started with rather specific (toy) wave functions, the constrained RK states,
and realized that the RDMs in these states have a very simple structure, and that the eigen-
values of these RDM can be obtained easily. Exploiting this observation, we could check
numerically with precision several earlier theoretical predictions: the possibility to extract
the TEE in a lattice model, its value log(2) in a dimer liquid with finite correlation length,
its independence from the Rényi index [1, 6], or the presence of logarithmic corrections to the
EE when the subsystem has some sharp corners [111, 5, 117].

On the way we were lead to consider some different information-related quantities to probe
a many-body wave function, the Shannon-Rényi entropies. It is probably in that direction
that our work will have the greatest number of interesting extensions. These SRE have already
been recognized as interesting and useful and they are now being studied by several other
groups [117, 106, 108, 118, 54]. So, we would like to conclude this manuscript by listing some
problems and directions, related to SRE, which seem worth exploring further.

One can argue against the general interest of SRE because these entropies are basis de-
pendent – which is true.4 We nevertheless showed that, in some appropriate basis, the SRE
contains some universal information about the phases: degeneracy in gapped phases with
discrete broken symmetry, compactification radius in a TL liquid, or number of Nambu-
Goldstone in 2D. In some specific cases we saw that the universal terms are robust to some
rotation of the basis states, but it still remains to understand to which extend the universal
terms in the SRE depends on the basis.

It would be desirable to develop some field theory method which could deal with partition
functions on “books”, and, more difficult, partition functions of their continuous-n versions.
We need to understand better in which situations the SRE entropy can be tackled using
existing (boundary) CFT tools, and when it cannot. The problem could essentially be solved
for the Gaussian free field, but it remains unsolved in general. The cases n = 1

2 and n = ∞
are relatively simple to treat, because they are related to single-sheet partition functions,
but understanding the behavior at n = nc is clearly more demanding. In the Ising model
for instance, determining the mysterious constant of Eq. 2.27 seems to require to understand
how to treat a perturbation corresponding to n = 1 + ε.

We have mostly discussed here the SRE of a complete system, in 1 or 2D. But the partial
SRE of a subsystem5 is another interesting quantity, with some striking analogies to the
entanglement entropy. A segment in a critical chain [111, 118, 112] and a line in a 2D [114]
are the only cases which have been looked at so far. It is however likely that some other

4One would however not argue against the interest of spin-spin correlations simply because they depend on
the spin direction (〈Sx0Sxr 〉 is generally not the same as 〈Sx0Sxr 〉).

5Or, more precisely, the mutual information.
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universal contributions will be observed in other phases and other geometries. As an example,
can we detect some discrete symmetry breaking, topological order or many-body localization
using partial SRE ? Along the same line, understanding the structure of the probabilities in a
subsystem (that is the diagonal part of the reduced density matrix), as was initiated in [114],
seems to be a promising way to look at many-body states.

The Rényified states, that we note |ψ, n〉 (Eq. 2.2), are deformations of a given wave
function. In a suitable basis, increasing n is a way to enhance the weights of ordered con-
figuration(s) until the point where the state becomes long-range ordered. Apart from a few
results on the XXZ chain, and the results for the ICTF [112], there has been relatively few
calculations concerning correlations in such deformed states. We however note that the QMC
algorithm or Ref. [54] is, in principle, able to compute some correlation functions in a Rényified
state (for integer n, not too large). Since it is often very useful to introduce some additional
“axis” in the phase diagram to identify possible instabilities and competing phases, the Rényi
index should also be considered as potentially useful knob to control quantum systems at zero
temperature. The TL liquid example showed how the leading irrelevant operator of the model
is related to a phase transition for Rényified state. We would like to understand if similar
phenomena can also take place in 2D (Heisenberg models, quantum dimer models, string-net
states, ...)

Finally, it may be possible to make more rigorous the arguments of the last chapter con-
cerning continuous symmetry breaking, and to extend them to the case where the subsystem
is a line, or when the system has some sharp corners. It would also be interesting to have
numerical checks of the prediction that the coefficient of the logarithm depends on the Euler
characteristics.
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List of abbreviations

2D Two spatial dimensions
CFT Conformal field theory
DMRG Density matrix renormalization group
EE Entanglement entropy
ES Entanglement spectrum
FQHE Fractional quantum Hall effect
GE Geometrical entanglement
ICTF Ising chain in transverse field
LW Levin-Wen
KP Kitaev-Preskill
PEPS Projected entangled pair state
QDM Quantum dimer model
QFT Quantum field theory
QMC Quantum Monte-Carlo
QSL Quantum spin liquid
RDM Reduced density matrix
RK Rokhsar-Kivelson
RVB Resonating valence-bond
SRE Shannon-Rényi entropy
TEE Topological entanglement entropy
TL Tomonaga-Luttinger
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camite Family: Towards an Ideal Kagomé Lattice, Phys. Rev. Lett. 98, 077204 (2007),
doi:10.1103/PhysRevLett.98.077204.

[80] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Spin Liquid
State in an Organic Mott Insulator with a Triangular Lattice, Phys. Rev. Lett. 91,
107001 (2003), doi:10.1103/PhysRevLett.91.107001.

[81] R. Masutomi, Y. Karaki, and H. Ishimoto, Gapless Spin Liquid Be-
havior in Two-Dimensional Solid He3, Phys. Rev. Lett. 92, 025301 (2004),
doi:10.1103/PhysRevLett.92.025301.

[82] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic
chain, Ann. Phys. 16, 407 (1961), doi:10.1016/0003-4916(61)90115-4.

[83] M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions, Phys. Rev. B 69, 104431
(2004), doi:10.1103/PhysRevB.69.104431.

66

http://dx.doi.org/10.1103/PhysRevB.60.1064
http://dx.doi.org/10.1103/PhysRevLett.66.1773
http://dx.doi.org/10.1103/PhysRevB.45.12377
http://dx.doi.org/10.1103/PhysRevLett.86.1881
http://dx.doi.org/10.1103/PhysRevB.71.224109
http://dx.doi.org/10.1103/PhysRevB.74.134301
http://dx.doi.org/10.1103/PhysRevB.76.140404
http://dx.doi.org/10.1103/PhysRevLett.98.107204
http://dx.doi.org/10.1103/PhysRevLett.98.077204
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.92.025301
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1103/PhysRevB.69.104431


BIBLIOGRAPHY

[84] M. Oshikawa, Commensurability, Excitation Gap, and Topology in Quantum
Many-Particle Systems on a Periodic Lattice, Phys. Rev. Lett. 84, 1535 (2000),
doi:10.1103/PhysRevLett.84.1535.

[85] B. Nachtergaele and R. Sims, A Multi-Dimensional Lieb-Schultz-Mattis Theorem,
Commun. Math. Phys. 276, 437 (2007), doi:10.1007/s00220-007-0342-z.

[86] X. G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Phys. Rev.
B 40, 7387 (1989), doi:10.1103/PhysRevB.40.7387.

[87] X. G. Wen, Mean-field theory of spin-liquid states with finite energy gap and topological
orders, Phys. Rev. B 44, 2664 (1991), doi:10.1103/PhysRevB.44.2664.

[88] M. Oshikawa and T. Senthil, Fractionalization, Topological Order, and Quasiparticle
Statistics, Phys. Rev. Lett. 96, 060601 (2006), doi:10.1103/PhysRevLett.96.060601.

[89] S.-A. Cheong and C. L. Henley, Correlation density matrix: An unbi-
ased analysis of exact diagonalizations, Phys. Rev. B 79, 212402 (2009),
doi:10.1103/PhysRevB.79.212402.

[90] M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Area Laws in
Quantum Systems: Mutual Information and Correlations, Phys. Rev. Lett. 100, 070502
(2008), doi:10.1103/PhysRevLett.100.070502.

[91] M. A. Levin and X.-G. Wen, String-net condensatsion: A physical mechanism for
topological phasesZ, Phys. Rev. B 71, 045110 (2005), doi:10.1103/PhysRevB.71.045110.

[92] G. Misguich, D. Serban, and V. Pasquier, Quantum Dimer Model on the Kagome
Lattice: Solvable Dimer-Liquid and Ising Gauge Theory, Phys. Rev. Lett. 89, 137202
(2002), doi:10.1103/PhysRevLett.89.137202.

[93] I. Affleck and A. W. W. Ludwig, Universal noninteger “ground-state de-
generacy” in critical quantum systems, Phys. Rev. Lett. 67, 161 (1991),
doi:10.1103/PhysRevLett.67.161.

[94] P. Fendley, R. Moessner, and S. L. Sondhi, Classical dimers on the triangular
lattice, Phys. Rev. B 66, 214513 (2002), doi:10.1103/PhysRevB.66.214513.

[95] A. Ioselevich, D. A. Ivanov, and M. V. Feigelman, Ground-state properties of the
Rokhsar-Kivelson dimer model on the triangular lattice, Phys. Rev. B 66, 174405 (2002),
doi:10.1103/PhysRevB.66.174405.

[96] S. Furukawa, G. Misguich, and M. Oshikawa, Reduced density matrices and topo-
logical order in a quantum dimer model, J. Phys.: Condens. Matter 19, 145212 (2007),
doi:10.1088/0953-8984/19/14/145212.

[97] M. Haque, O. Zozulya, and K. Schoutens, Entanglement Entropy
in Fermionic Laughlin States, Phys. Rev. Lett. 98, 060401 (2007),
doi:10.1103/PhysRevLett.98.060401.

[98] Y. Zhang, T. Grover, and A. Vishwanath, Topological entanglement entropy
of Z2 spin liquids and lattice Laughlin states, Phys. Rev. B 84, 075128 (2011),
doi:10.1103/PhysRevB.84.075128.

67

http://dx.doi.org/10.1103/PhysRevLett.84.1535
http://dx.doi.org/10.1007/s00220-007-0342-z
http://dx.doi.org/10.1103/PhysRevB.40.7387
http://dx.doi.org/10.1103/PhysRevB.44.2664
http://dx.doi.org/10.1103/PhysRevLett.96.060601
http://dx.doi.org/10.1103/PhysRevB.79.212402
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1103/PhysRevLett.89.137202
http://dx.doi.org/10.1103/PhysRevLett.67.161
http://dx.doi.org/10.1103/PhysRevB.66.214513
http://dx.doi.org/10.1103/PhysRevB.66.174405
http://dx.doi.org/10.1088/0953-8984/19/14/145212
http://dx.doi.org/10.1103/PhysRevLett.98.060401
http://dx.doi.org/10.1103/PhysRevB.84.075128


BIBLIOGRAPHY

[99] S. T. Flammia, A. Hamma, T. L. Hughes, and X.-G. Wen, Topological Entanglement
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