|
|
Euclid Definition Study Report
R. Laureijs
,
J. Amiaux
,
S. Arduini
,
J.-L. Auguères
,
J. Brinchmann
,
et al.
[Research Report] ESA/SRE(2011)12, 2011, 116 p
Reports
in2p3-00712239v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation
R. Barnett
,
S. J. Warren
,
D. J. Mortlock
,
J.-G. Cuby
,
C. Conselice
,
et al.
Journal articles
cea-02334278v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3
S. Stanford
,
D. Masters
,
B. Darvish
,
D. Stern
,
J. Cohen
,
et al.
Journal articles
hal-03413175v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation - XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis
S. Ilić
,
N. Aghanim
,
C. Baccigalupi
,
J. R. Bermejo-Climent
,
G. Fabbian
,
et al.
Journal articles
hal-03533670v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid Preparation XXIX: Forecasts for 10 different higher-order weak lensing statistics
V. Ajani
,
M. Baldi
,
A. Barthelemy
,
A. Boyle
,
P. Burger
,
et al.
Journal articles
hal-03986111v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation. XXV. The Euclid Morphology Challenge -- Towards model-fitting photometry for billions of galaxies
E. Merlin
,
M. Castellano
,
H. Bretonnière
,
M. Huertas-Company
,
U. Kuchner
,
et al.
Journal articles
hal-03841758v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation. XXX. Evaluating the weak lensing cluster mass biases using the Three Hundred Project hydrodynamical simulations
C. Giocoli
,
M. Meneghetti
,
E. Rasia
,
S. Borgani
,
G. Despali
,
et al.
2023
Preprints, Working Papers, ...
hal-03991062v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation. XVI. Exploring the ultra-low surface brightness Universe with Euclid/VIS
A. Borlaff
,
P. Gómez-Alvarez
,
B. Altieri
,
P. Marcum
,
R. Vavrek
,
et al.
Journal articles
hal-03542092v2
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation. XXVII. Covariance model validation for the 2-point correlation function of galaxy clusters
A. Fumagalli
,
A. Saro
,
S. Borgani
,
T. Castro
,
M. Costanzi
,
et al.
2022
Preprints, Working Papers, ...
hal-03892184v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation
P. Paykari
,
T. Kitching
,
H. Hoekstra
,
R. Azzollini
,
V. F. Cardone
,
et al.
Journal articles
cea-02516435v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation
V. Guglielmo
,
R. Saglia
,
F. Castander
,
A. Galametz
,
S. Paltani
,
et al.
Journal articles
hal-03026941v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation - XII. Optimizing the photometric sample of the Euclid survey for galaxy clustering and galaxy-galaxy lensing analyses
A. Pocino
,
I. Tutusaus
,
F.J. Castander
,
P. Fosalba
,
M. Crocce
,
et al.
Journal articles
hal-03217522v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation - I. The Euclid Wide Survey
R. Scaramella
,
J. Amiaux
,
Y. Mellier
,
C. Burigana
,
C. Carvalho
,
et al.
Journal articles
hal-03866201v2
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid: Forecasts from redshift-space distortions and the Alcock-Paczynski test with cosmic voids
N. Hamaus
,
M. Aubert
,
A. Pisani
,
S. Contarini
,
G. Verza
,
et al.
Journal articles
hal-03426564v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation
P. Paykari
,
T. Kitching
,
H. Hoekstra
,
R. Azzollini
,
V. F. Cardone
,
et al.
Journal articles
cea-02813362v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|
|
|
Euclid preparation. XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography
O. Ilbert
,
S. de La Torre
,
N. Martinet
,
A. H. Wright
,
S. Paltani
,
et al.
Journal articles
hal-03174105v1
|
Share
Gmail
Facebook
Twitter
LinkedIn
More
|