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Abstract
Abstract. We construct an original framework based on convex analysis to prove the existence

and uniqueness of a solution to a class of implicit numerical schemes. We propose an application of
this general framework in the case of a new non linear implicit scheme for the 1D Lagrangian gas
dynamics equations. We provide numerical illustrations that corroborate our proof of unconditional
stability for this non linear implicit scheme.
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Introduction

To approach equations traducing the movements of compressible fluids, explicit schemes are traditionally
used, see.17,30 Explicit schemes need to satisfy a stability CFL condition such as c∆t ≤ ∆x, where c is
the speed of sound, ∆t is the time step, and ∆x is the size of the discretization in space of the mesh. In
some cases, this CFL constraint contributes to have such small time steps that it becomes unfavourable
to use explicit methods.

An alternative is to use implicit in time schemes which have always aroused interest in the literature.
In particular, they are much less sensitive to the CFL number: for example a finite difference algorithm is
proposed in,2 implicit and semi-implicit schemes are investigated in37 and an experimentation on implicit
upwind methods for Euler equations is done in.26 Some other implicit algorithms are explained in the
following articles, see for example.10,25,29 A large part of them use the method of predictor-corrector
scheme like in.21,27,39–41 More recent works can be found in.7,28 A major reference in the context of
our work is15 where an implicit Lagrangian scheme for non viscous compressible gas dynamics is studied
for astrophysical purposes, but only by means of numerical experiments and without further theoretical
foundation.

Nonetheless, major technical difficulties appear for the numerical resolution of fully implicit non
linear schemes. At a theoretical level, it is difficult to prove the existence and uniqueness of a solution
to implicit schemes. Currently, a powerful theory is the one developed in,16 for Navier-Stokes equations,
using the topological degree. The existence of a solution is proved in details, but the uniqueness requires
restrictive hypothesis. Another strategy is explained in4 for piecewise linear functions in the case of a
symmetrical structure of the linear part of the system. The existence of a solution is proved, and the
uniqueness is also studied in the case of special hypothesis. The non-linear implicit-explicit strategy in15
is second order in both space and time, but there are no proof of existence or uniqueness even if the
numerical results indicate good robustness. In some sense, our work answers positively to the theoretical
issue raised in15 about the construction of fully justified implicit solvers.

Our original contributions to this field in this work are, firstly the elaboration of a general frame-
work which allows to prove existence and uniqueness of implicit solution of some numerical schemes,

1



and secondly the application of the general framework in the case of a non linear implicit scheme for
the 1D model problem (1) written in semi-Lagrangian coordinates (semi-Lagrangian coordinates means
Lagrange+update) 

ρDtτ − ∂xu = 0,

ρDtu+ ∂xp = 0,

ρDtE + ∂xpu = 0.

(1)

One has ρ = 1
τ > 0 the mass density, p is the pressure, u is the velocity and E is the total energy density.

The variables τ and p are taken positive to be physically admissible, see34 or13 for more details. The
material derivative used in (1) and afterwards is Dt = ∂t + u∂x. The following set of equations is the
isentropic Euler equations that is approximated by the prediction step of our implicit scheme

ρDtτ − ∂xu = 0,

ρDtu+ ∂xp = 0,

ρDtS = 0.

(2)

The first two equations are identical to (1), only the last one is different, with S denoting the physical
entropy. To simplify, these equations are equipped with a perfect gas equation of state

p = (γ − 1)
e

τ
,

e = CvT,

S = Cv log(eτγ−1),

(3)

where Cv is the thermal capacity at constant volume, γ > 1 is the adiabatic index, e = E − 1
2u

2 is the
internal energy density, T is the temperature and c is the speed of sound given by c2 = ∂p

∂ρ .
The justification of using a prediction step based on the discretization of (2) comes from ideas in the

work of Chalons, Coquel and Marmignon.5 It will be explained in details in this article.
Consider a meshM composed of N cells noted j ∈ {1, . . . , N}. The time t is discretized with a time

step ∆t that corresponds to one iteration. The mass of the cell j is Mj . The boundary conditions are
supposed periodic, and the fluxes are defined with the acoustic impedance αj+ 1

2
> 0. The scheme has a

predictor-corrector structure. The prediction step is written as

Prediction step


τj = τnj +

∆t

Mj
(uj+ 1

2
− uj− 1

2
),

uj = unj −
∆t

Mj
(pj+ 1

2
− pj− 1

2
),

Sj = Snj .

(4)

The correction step is given by

Correction step



τn+1
j = τnj +

∆t

Mj
(uj+ 1

2
− uj− 1

2
),

un+1
j = unj −

∆t

Mj
(pj+ 1

2
− pj− 1

2
),

En+1
j = Enj +

∆t

Mj
(pj+ 1

2
uj+ 1

2
− pj− 1

2
uj− 1

2
),

(5)

where only the total energy is modified. The correction step is explicit so the main difficulty is in the
prediction step.

In (4) and (5), the fluxes are defined by

pj − pj+ 1
2

= αnj+ 1
2
(uj+ 1

2
− uj), pj − pj− 1

2
= αnj− 1

2
(uj − uj− 1

2
),
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where the coefficient αn
j+ 1

2

> 0 is for simplicity equal to a mean value of the acoustic impedance:

αj+ 1
2

= 1
2 (ρjcj + ρj+1cj+1). Another equivalent formula is

pj+ 1
2

=
ρjcj + ρj+1cj+1

4
(uj − uj+1) +

1

2
(pj + pj+1),

uj+ 1
2

=
1

ρjcj + ρj+1cj+1
(pj − pj+1) +

1

2
(uj + uj+1).

In Lagrangian formalism, the mesh moves according to the velocity of the fluid: xn+1
j+ 1

2

= xn
j+ 1

2

+ ∆tun
j+ 1

2

.
The predictor-corrector scheme (4-5) is naturally conservative since it is expressed in terms of fluxes.
Such a scheme can be proved to be weakly consistent as in Després.11,12

The predictor-corrector scheme is an adaptation of ideas from the article5 which is dedicated to solve
the Euler equations (6) in Eulerian coordinates

∂tρ+ ∂xρu = 0,

∂tρu+ ∂x(ρu2 + p) = 0,

∂tρE + ∂x(ρEu+ pu) = 0.

(6)

The authors explain that the difficulties of solving this system come from the flux terms in the second and
third equations. Indeed, there is a strong non linearity due in particular to the pressure. To overcome
this complexity, the authors propose a predictor-corrector strategy that we use also in this work. Firstly
is to solve the isentropic Euler equations (7) during the prediction step

∂tρ+ ∂xρu = 0,

∂tρu+ ∂x(ρu2 + p) = 0,

∂tρS + ∂xρSu = 0.

(7)

Secondly, the classical Euler equations (6) are solved in order to restore the conservation of the total
energy. At a discrete level, the fluxes are expressed thanks to an isentropic scheme, and then inserted
in the scheme associated to (6). For the prediction step, the authors use a relaxation scheme on the
pressure. They prove the existence of a solution to the relaxation implicit scheme. Nonetheless, the
robustness of the scheme depends on an extra equation as mentionned in a report, see.33

Let us now describe our results. For physically admissible data, the system (4) will be said uncon-
ditionally stable if there exists a unique solution to the implicit non-linear scheme. Our proof of the
unconditional stability of (4) comes from a rewriting of the prediction step (4) under the form{

Find U ∈ D such that
∇J(U) = AU,

(8)

where U is a vector of real unknowns, J is a functional defined on a domain D and A is a matrix
of real coefficients. In our case, J is strictly convex over its domain and A is skew-symmetric, so the
transformation U 7→ ∇J(U)−AU is a monotone operator, see Brézis.3

The proof that (8) has a unique solution relies on Theorem 4 that seems to be new considering
the classical literature of convex analysis, see.1,18,20 The ingredients to establish Theorem 4 are the
following.

Hypothesis 1. The open convex domain is D =]−∞, 0[n×Rm ⊂ Rn ×Rm, where n > 0 and m ≥ 0 1.
Its boundary is ∂D = {V ∈ Rn+m : ∃ j∗ ∈ {1, . . . , n} Vj∗ = 0, ∀j 6= j∗ ∈ {1, . . . , n}, Vj ≤ 0}.

We made a slight abuse of notations by using the same letter n in the Hypothesis 1 as the iteration
index in the scheme (4 -5). We believe this does not interfere with the readability.

Hypothesis 2. The function J : U ∈ D → J(U) ∈ R is C3, strictly convex and coercive in the sense
that

J(U)→ +∞ for ||U || −−−→
U∈D

+∞. (9)

1The case m = 0 corresponds to one unknown systems. For example the Traffic flow equations where the only unknown
is the density. Otherwise, m > 0 and n > 0.
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Moreover for all V ∈ ∂D there exists a unit direction d ∈ Rn+m which is outward from D such that

(∇J(V − εd),d)
ε→0+

−−−−−−→
V−εd∈D

+∞. (10)

Also for all V ∈ ∂D, one has
||∇J(W )|| W→V−−−−→

W∈D
+∞. (11)

The verification of (9), (10) and (11) will be obtained directly from the perfect gas law equations (3).
For an isentropic gas, it can be simplified.

Hypothesis 3. The matrix A ∈Mn+m(R) is skew-symmetric and its kernel satisfies ker(A) ∩ D 6= ∅.

Theorem 4. Under the Hypothesis 1, 2 and 3, the problem (8) has a unique solution.

Applying this Theorem, we show that (4) is well defined for all ∆t > 0.

Corollary 5. Considering physically admissible data (τnj > 0 for all j), the prediction scheme (4) can
be written under the form (8). Therefore, it is unconditionally stable.

Moreover, the predictor-corrector scheme (4-5) satisfies two entropy inequalities.

Theorem 6. For all ∆t > 0, the solution of the prediction step (4) satisfies

∀j,
Ej − Enj

∆t
+
puj+ 1

2
− puj− 1

2

Mj
≤ 0, with puj+ 1

2
= pj+ 1

2
uj+ 1

2
. (12)

The solution of the correction step (5) verifies the entropy inequality

∀j,
Sn+1
j − Snj

∆t
≥ 0. (13)

The organization of this article is as follows. In Section 1 we write the scheme (4) under the form (8).
In Section 2, we prove Theorem 4. The proof is split in several parts. On the one side we rapidly prove
the uniqueness of a solution, and on the other side we decompose the proof of the existence in different
steps. In Section 3, we apply Theorem 4 for the isentropic Euler equations, and prove Corollary 5.
In Section 4, the correction step is introduced and the complete scheme is fully justified. The proof
of Theorem 6 concerning entropy inequalities for both steps is detailed. In Section 5, we provide a
few numerical illustrations. The Appendix contains a brief description of the modification to treat an
isothermal equation of state.

1 Formulation under the form (8)

The objective of this Section is to provide the details of the transformation from the implicit scheme (4)
to the form (8). The verification of Hypothesis 1, 2 and 3 will be performed in Section 3.

We consider Euler isentropic equations in one dimension (2) for compressible perfect gas with periodic
boundary conditions. As the physical entropy S is constant during this prediction step, its equation is
not necessary for the proof. Replacing the fluxes and rearranging the terms in (4), one obtains

2Mj

∆t
(τj − τnj ) +

1

αn
j+ 1

2

(pj+1 − pj) +
1

αn
j− 1

2

(pj−1 − pj) = uj+1 − uj−1,

2Mj

∆t
(uj − unj ) + αnj+ 1

2
(uj − uj+1) + αnj− 1

2
(uj − uj−1) = pj−1 − pj+1.

(14)

Let us define a vector of unknowns

U = ((−pj)j∈{1,...,N}, (uj)j∈{1,...,N}) ∈ D, (15)

where the domain D is defined as

D = {U such that ∀j ∈ {1, . . . , N} − pj < 0, and uj ∈ R} . (16)
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One then has m = n = N using notations of Hypothesis 1. The matrix A is defined by

A =

[
0 B
B 0

]
with B =



0 1 0 · · · 0 −1
−1 0 1 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 −1 0 1
1 0 · · · 0 −1 0


∈MN (R). (17)

The functional J : D → R is defined as a sum of elementary functions

J(U) =

N∑
j=1

2Mj

∆t

[
L1
j (−pj) + L2

j (uj)
]

+

N∑
j=1

[
Q1
j (−pj ,−pj+1) +Q2

j (uj , uj+1)
]
, (18)

where the elementary functions are

L1
j (−p) = −Cjp1− 1

γ + τnj p, where Cj = γ(γ − 1)
−1+ 1

γ exp

(
Sj
Cv

) 1
γ

> 0,

Q1
j (−p,−q) =

1

αj+ 1
2

(q − p)2

2
, L2

j (u) =
u2

2
− unj u, Q2

j (u, v) = αj+ 1
2

(u− v)
2

2
.

Replacing the equation of state (3) by another one leads to a new definition of the functions L1
j and L2

j .
The functions Q1

j and Q2
j depend only on the scheme and remain the same.

Proposition 7. The calculation of a solution (τj > 0, uj)1≤j≤N to the system (14) of scalar non-linear
equations is equivalent to the calculation of a solution U ∈ D to the global non-linear equation ∇J(U) =
AU .

Proof. For a perfect gas law, the correspondence between τ , p and S can be written as τ = (γ −
1) exp ( S

Cv
)

1
γ p−

1
γ . Therefore the equivalence between a solution of (14) and a solution (15) of ∇J(U) =

AU is explicited by

τj = (γ − 1) exp (
Sj
Cv

)

1
γ

p
− 1
γ

j and uj = uj . (19)

To finish the proof it is sufficient to calculate explicitly ∇J(U). The derivatives of L1
j , L2

j , Q1
j and Q2

j

are
∂L1

j

∂(−pj)
= Cj

(
γ − 1

γ

)
p
− 1
γ

j − τnj = τj − τnj ,
∂L2

j

∂uj
= uj − unj ,

∂Q1
j

∂(−pj)
=

1

αj+ 1
2

(pj+1 − pj) +
1

αj− 1
2

(pj−1 − pj),

∂Q2
j

∂uj
= αj+ 1

2
(uj − uj+1) + αj− 1

2
(uj − uj−1).

By (18), one calculates all the components of the vector ∇J(U) ∈ R2N . With the definition (17) of the
matrix A, one obtains immediately that the first N equations in the vectorial identity ∇J(U) = AU are

2Mj

∆t
(τj − τnj ) +

1

αn
j+ 1

2

(pj+1 − pj) +
1

αn
j− 1

2

(pj−1 − pj) = uj+1 − uj−1, 1 ≤ j ≤ N, (20)

while the last N equations are

2Mj

∆t
(uj − unj ) + αnj+ 1

2
(uj − uj+1) + αnj− 1

2
(uj − uj−1) = pj−1 − pj+1, 1 ≤ j ≤ N. (21)

With the correspondence (19), one finds that (20 -21) is equal to (14).
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2 Proof of Theorem 4

In this Section, we prove Theorem 4 stated in the introduction under the Hypothesis 1, 2 and 3. Each
Subsection corresponds to an intermediate result leading to the final outcome.
In convex analysis, see e.g.[Hirriart-Urruty and Lemarechal19 Def. 3.2.5 p19], the closure of the function
J is J , defined as

J : Rn+m →R

U 7→

{
lim
V→U

inf
V ∈D

J(V ) if U ∈ D,

+∞ if not.

(22)

By construction, J is lower semi-continuous because J is continuous over D. For a function J which
is coercive on its domain D like in (9), the closure J is also coercive in the sense of Hirriart-Urruty,18
[Chapter 2, p 41]

J(U)→ +∞ for ||U || −−−−−−→
U∈Rn+m

+∞.

2.1 Uniqueness

It relies on elementary considerations which are classical for monotone operators.3

Lemma 8. Assuming that the problem (8) admits a solution in D, then it is unique.

Proof. Let U1 ∈ D and U2 ∈ D be two solutions of the problem (8){
∇J(U1) = AU1,

∇J(U2) = AU2.

One has
(∇J(U1)−∇J(U2), U1 − U2) = (A(U1 − U2), U1 − U2) .

Since A is a skew-symmetric matrix therefore (A(U1 − U2), U1 − U2) = 0, that is

(∇J(U1)−∇J(U2), U1 − U2) = 0.

Since J is strictly convex, this is only satisfied if U1 = U2.

2.2 Existence
The existence of a solution relies on a few intermediate results which are convenient for our model
problem.

2.2.1 Existence of a minimum for J

The first result to prove is the existence of a minimum point for the function J , using a classical result
from convex analysis.

Lemma 9. The function J admits a unique minimum U ∈ D.

Proof. We apply [Theorem 1.1 p 48] of Dacorogna8 to the function f = J . So there exists U ∈ Rn+m

such that J(U) ≤ J(V ) for all V ∈ Rn+m. Necessarily J(U) <∞ is finite so U ∈ D. It remains to show
that U /∈ ∂D.

Let us assume on the contrary that U ∈ ∂D. Thanks to the convexity of J and inequality (10) in
Hypothesis 2, one can write

J(U) ≥ J(U − εd) + ε (∇J(U − εd),d) > J(U − εd).

It is a contradiction. Therefore U ∈ D is a minimum and U is unique thanks to the strict convexity of
J on D.

Since D is an open set, the unique minimum U ∈ D of J satisfies the Euler equation, see Hirriart-
Urruty,18 [Chapter 2, p 41]

∇J(U) = 0.
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2.2.2 A continuation method

We prove in this Section that the problem (23) admits a solution in the domain D for all 0 ≤ ε ≤ 1{
Find Uε ∈ D such that
∇J(Uε) = εAUε.

(23)

For ε = 0, the problem is treated in Section 2.2.1. This allows to write (23) with a continuation method
under the form of an initial value problem (24)

∇2J(Uε)
dUε
dε

= AUε + εA
dUε
dε

,

U0 = argmin
U∈D

J(U).
(24)

A rearrangement yields (∇2J(Uε) − εA)dUεdε = AUε. For U ∈ D, the matrix ∇2J(U) − εA is invertible
thanks to the following result.

Lemma 10. Let A and B be two matrices of MN,N (R), N > 0 ∈ N, such that A is skew symmetric
and B is positive definite. Then the matrix C = A+B ∈MN,N (R) is invertible.

The Lemma 10 is applied with −εA ∈Mn+m,n+m(R) as the skew symmetric matrix, and ∇2J(Uε) ∈
Mn+m,n+m(R) as the positive definite matrix. Thus (∇2J(Uε)− εA)

−1 exists. The initial value problem
can be rewritten as 

dUε
dε

= (∇2J(Uε)− εA)
−1
AUε,

U0 = argmin
U∈D

J(U).

Let us define I = [0,+∞[ and the function F : I ×D → Rn+m by F (ε, V ) = (∇2J(V )− εA)
−1
AV . The

problem is rewritten as 
dUε
dε

= F (ε, Uε),

U0 = argmin
U∈D

J(U).
(25)

To obtain the existence of a maximal solution to (25), one can apply standard results from the theory
of ODEs that we recall now.

Definition 11 (see Coddington and Levinson,6 Chapter 1). Let N ∈ N and F : I × RN → RN , let
ε0 ∈ I, and Uε ∈ RN where I is a non empty interval of R. A solution of the differential equation

U ′(ε) = F (ε, U(ε)), (26)

is given by a non empty interval I ⊂ I and a differentiable function U : I → RN satisfying (26) for all
ε ∈ I.

A solution of the initial value problem (or Cauchy problem) associated to (26) is a solution of (26)
such that ε0 ∈ I and U(ε0) = U0.

Theorem 12 (Cauchy Lipschitz Theorem for locally Lipschitz functions,6 Th. 3.1, p12). Let the function
F be a C1 function, then, for all initial data (ε0, U0) ∈ I ×RN , there exists an interval I ∈ I containing
ε0 such that there exists in I a unique solution to the associated initial value problem.

In particular for all such data, there exists a unique maximal solution and all other solution verifying
the condition of Cauchy is a restriction of the maximal solution.

Lemma 13. There exists 0 < εmax such that for all ε ∈ [0, εmax[, the problem (25) admits a solution in
D. This solution satisfies (23).
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Proof. One applies the Cauchy Lipschitz Theorem. The function F is well defined, and differentiable in
terms of ε. The derivative is continuous because A is a matrix of scalar coefficients, and J is a function
of class C2 thanks to Hypothesis 2. In terms of the second variable, as ∇2J is locally Lipschitz, and the
other terms are locally bounded, F is then of class C1. Thanks to Theorem 12, the problem (25) admits
a unique maximal solution. To prove the last part of the Lemma, one notes that

d

dε
(∇J(Uε)− εAUε) = (∇2J(Uε)− εA)

d

dε
Uε −AUε = 0.

Since ∇J(U0) = 0 it shows that ∇J(Uε)− εAUε = 0 on the maximal interval, (23) is satisfied.

In the rest of this Section, we prove that εmax > 1.

2.2.3 Upper bound of J(Uε)

In this Section, the objective is to prove that J(Uε) is bounded, which is necessary to conclude that the
solution of the problem (23) stays in the domain D.
Lemma 14. There exists U ∈ D such that the following inequality is satisfied on the maximal interval

J(Uε) ≤ J(U) < +∞.

Proof. Let us take U ∈ ker(A) ∩ D that is non empty by Hypothesis 3. The convexity of J implies that

J(Uε) + (∇J(Uε), U − Uε) ≤ J(U).

One finds
J(Uε) + (εAUε, U)− (εAUε, Uε) ≤ J(U).

The matrix A is skew symmetric, hence (AUε, Uε) = 0. So

J(Uε) + ε(AUε, U) ≤ J(U).

Using again the property of skew symmetry, one has ε(AUε, U) = −ε(AU,Uε). As U ∈ ker(A)∩D, hence
(εAUε, U) = 0. So J(Uε) ≤ J(U) < +∞.

In addition, since J is a coercive function by Hypothesis 2, there exists K < +∞ such that

||Uε|| < K (27)

for all ε in the maximal interval.

2.2.4 End of the proof of Theorem 4

The end of the proof of Theorem 4 is based on the following standard result.

Theorem 15 (see Demailly,9 Chapter 5, p 138). Let Ω be an open domain of R×Rm and U : I = [t0, b[→
Rm a solution of the equation (E) U ′ = F (t, U) where F is continuous on Ω. So U(t) can be continuated
further than b if and only if there exists a compact C ⊂ Ω such that the curve t 7→ (t, U(t)), t ∈ [t0, b[,
stays in C.

For our problem, one has the Property.

Proposition 16. There exists a compact C ⊂ D such that Uε ∈ C for all ε ∈ [0,min(εmax, 2)[.

Proof. Thanks to (27), Uε is in D∩B(0,K). Moreover, ∇J(Uε) = εAUε, so one has ||∇J(Uε)|| ≤ 2||A||K.
Let us consider

C = D ∩B(0,K) ∩ {V ∈ D such that ||∇J(V )|| ≤ 2||A||K} .
It remains to prove that C is a compact of D. Let us take a sequence Vn ∈ C for n ∈ N. Since (Vn) is
bounded, there exists V ∈ B(0,K) and a subsequence still denoted Vn such that Vn → V . Necessarily
V ∈ D, so either V ∈ ∂D or V ∈ D.

Let us assume that V ∈ ∂D. Thanks to Hypothesis 2, inequality (11), one has ||∇J(Vn)|| → +∞. It
is a contradiction with the definition of C. Therefore V ∈ D. Since J is C2, ∇J is a continuous function
and ||∇J(V )|| ≤ 2||A||K. So V ∈ C, which shows that C is a compact of D.

Proof of Theorem 4. Thanks to Proposition 16 and Theorem 15, one has that εmax > 1. Therefore, one
takes ε = 1 which concludes the proof of existence of the solution of (8).

8



3 Proof of the unconditional stability of Corollary 5

We prove the unconditional stability for the prediction step corresponding to the implicit discretization
of the isentropic Euler equations. In this purpose we apply Theorem 4 after a precise check of the
hypothesis. The definitions of J , A and U are given in Section 1.

3.1 Properties of J
We verify the properties of Hypothesis 2, that is the strict convexity of J , its coercivity and its limits at
the boundary of the domain D.

Property 1. The function J (18) is continuous on D (evident).

Property 2. The function J (18) is strictly convex on D.

The proof is easily verified, but we detail the calculations.

Proof. The second derivatives, for all j and k ∈ {1, . . . , N} are

∂2L1
j

∂(−pj)2 = Cj

(
γ − 1

γ2

)
p
−1− 1

γ

j ,
∂2L1

j

∂(−pj)∂(−pk)
= 0,

∂2L2
j

∂u2
j

= 1,
∂2L2

j

∂uj∂uk
= 0.

∂2Q1
j

∂(−pj)∂(−pk)
=



1

αj+ 1
2

+
1

αj− 1
2

, if k = j,

− 1

αj− 1
2

, if k = j − 1,

− 1

αj+ 1
2

, if k = j + 1,

0, otherwise.

,

∂2Q2
j

∂(uj)∂(uk)
=


αj+ 1

2
+ αj− 1

2
, if k = j,

−αj− 1
2
, if k = j − 1,

−αj+ 1
2
, if k = j + 1,

0, otherwise.

Hence, for all U ∈ D, and for all Z ∈ R2N , one has

(∇2J(U)Z,Z) =

(
2Mj

∆t

∂2L1
j

∂(−pj)2 +
1

2

∂2Q1
j

∂(−pj)2

)
(−pZj )

2
+

(
2Mj

∆t

∂2L2
j

∂u2
j

+
1

2

∂2Q2
j

∂u2
j

)
(uZj )

2

+

N∑
j=1

1

2

(
1

αj+ 1
2

+
1

αj− 1
2

)
(pZj+1 − pZj )

2
+

N∑
j=1

1

2
(αj+ 1

2
+ αj− 1

2
)(uZj − uZj+1)

2
.

For Z 6= 0, one has (∇2J(U)Z,Z) > 0. Therefore the function J is strictly convex on D.

Property 3. The function J is coercive on D.

Proof. The function J (18) is the sum of elementary functions L1
j , L2

j , Q1
j and Q2

j . The quadratic
functions Q1

j and Q2
j are clearly bounded from below, as well as L2

j . The function L1
j is also bounded

from below because Cj > 0, τnj > 0, γ > 1 and p1− 1
γ is dominated by p for p→ +∞. So L1

j is coercive.
It is evident that L2

j is coercive. Since J is defined by a sum over all indices 1 ≤ j ≤ N , then J is
coercive.

Property 4. For all V ∈ ∂D, J defined by (18) satisfies the limits (10) and (11).
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Proof. The first derivative of J with respect to −p is

∂J

∂(−pj)
=

2Mj

∆t

(
Cj

(
γ − 1

γ

)
p
− 1
γ

j − τnj
)

+
1

αj+ 1
2

(pj+1 − pj) +
1

αj− 1
2

(pj−1 − pj).

Let V ∈ ∂D. It means that there exists a non empty subset K ⊂ {1, . . . , N} such that for all k ∈ K,
Vk = 0. One takes as the unit outward direction d ∈ RN+N , such that dk = 1 and for all j 6∈ K, dj = 0.
The limit of the first derivative of J when ε→ 0+ is

lim
ε→0+

∂J

∂(−pk)

∣∣∣∣
V−εd

= lim
ε→0+

2Mj

∆t

(
−τnk + Ck

(
γ − 1

γ

)
1

ε
1
γ

)
+

1

αk+ 1
2

(pk+1 − ε) +
1

αk− 1
2

(pk−1 − ε),

= +∞.

Indeed, lim
ε→0+

1

ε
1
γ

= +∞, and all other limits are finite. By summation over k ∈ K, and then over all

indices for which the value of d is 0, one obtains (10). An evaluation of lim
W→V

∂J
∂(−pk)

∣∣∣
W

easily gives

(11).

3.1.1 Properties of matrix A

Let us prove Hypothesis 3 holds.

Property 5. The matrix A defined by (17) is skew-symmetric (by construction).

Property 6. The kernel of A and the domain D intersect.

Proof. We first evaluate the kernel of the matrix A. Let X ∈ R2N satisfying AX = 0, so

xN+2 − x2N = 0,

−xN+1 + xN+3 = 0,

...
−x2N−2 + x2N = 0,

xN+1 − x2N−1 = 0,

x2 − xN = 0,

−x1 + x3 = 0,

...
−xN−2 + xN = 0,

x1 − xN−1 = 0.

⇐⇒



xN+2 = x2N ,

xN+1 = xN+3,

...
x2N−2 = x2N ,

xN+1 = x2N−1,

x2 = xN ,

x1 = x3,

...
xN−2 = xN ,

x1 = xN−1.

One obtains

ker(A) =


Vect

{(
10

0

)
,

(
1

0

0

)
,

(
0

10

)
,

(
0

1
0

)}
, if N ∈ N even,

Vect
{(

1

0

)
,

(
0

1

)}
, if N ∈ N odd,

where 10 =
(
1, 0, 1, . . . , 0, 1, 0

)
, 10 =

(
0, 1, 0, . . . , 1, 0, 1

)
, 1 =

(
1, 1, . . . , 1, 1

)
, and 0 =

(
0, 0, . . . , 0, 0

)
.

One takes U =
(
−1, . . . ,−1, 0, . . . , 0

)
, then U is in ker(A) ∩ D.

3.2 Proof of Corollary 5
Corollary 17 (see Corollary 5). Considering physically admissible data (τj > 0 and pj > 0), the
prediction scheme (4) can be written under the form (8). Therefore, it is unconditionally stable.

Proof. Let m = n = N , U = ((−pj)j∈{1,...,N}, (uj)j∈{1,...,N}), A and J as defined by (17) and (18). All
the hypothesis of Theorem 4 are satisfied. The existence and uniqueness of a solution to the implicit
isentropic Euler scheme for all time step is proved.

10



4 Proof of the entropy inequalities (Theorem 6)

In this Section, we study the two steps of the predictor-corrector scheme, and prove the stability inequality
in each step.

We recall the complete scheme

Prediction step


τj = τnj +

∆t

Mj
(uj+ 1

2
− uj− 1

2
),

uj = unj −
∆t

Mj
(pj+ 1

2
− pj− 1

2
),

Sj = Snj ,

Correction step



τn+1
j = τnj +

∆t

Mj
(uj+ 1

2
− uj− 1

2
),

un+1
j = unj −

∆t

Mj
(pj+ 1

2
− pj− 1

2
),

En+1
j = Enj +

∆t

Mj
(pj+ 1

2
uj+ 1

2
− pj− 1

2
uj− 1

2
).

Each inequality is studied separately.

4.1 Proof of stability inequality (12)
Actually, inequality (12) is a mathematical entropy inequality. Usually, entropy stability is defined for
continuous in time problems, or for explicit in time schemes. A continuous definition is found in,30 [Th.
3.3, p 27], and a discrete version of entropy stability is written in,12 [Prop 2.25, p 66].

Definition 18. The implicit conservative scheme (4) is said entropic if there exists a mathematical
entropy pair (η, ψ) and a numerical entropy flux Φ(U, V ) (such that Φ(U,U) = ψ(U)) such that the
following inequality holds for all j

η(U j)− η(Unj )

∆t
+

Φ(U j , U j+1)− Φ(U j−1, U j)

Mj
≤ 0. (28)

We use this definition onto the scheme of the prediction step (4) where the vector of unknowns is
U = (τ, u, S)

t. The entropy corresponding to the isentropic system is η(U) = E. As η is convex, one
gets η(Uj)− η(Unj ) ≤ ∇η(Uj) · (Uj − Unj ), that is η(Uj)− η(Unj ) ≤ ∆t

Mj
∇η(Uj) · (fj+ 1

2
− fj− 1

2
).

In Lagrangian formalism, the calculus can be performed easily. Thanks to Gibbs formula, see,30
[Chapter 4, p 318], one has

dη = udu− pdτ + TdS.

So
∇η(Uj) =

(
−pj , uj , Tj

)t
.

For the flux, the one state solver is

fj+ 1
2

=

 uj+ 1
2

−pj+ 1
2

0

 =


1

2α
j+1

2

(pj − pj+1) + 1
2 (uj + uj+1)

α
j+1

2

2 (uj+1 − uj)− 1
2 (pj + pj+1)

0

 ,

fj− 1
2

=

 uj− 1
2

−pj− 1
2

0

 =


1

2α
j− 1

2

(pj−1 − pj) + 1
2 (uj−1 + uj)

α
j− 1

2

2 (uj − uj−1)− 1
2 (pj−1 + pj)

0

 .

End of the proof of inequality (12). First is the evaluation of ∇η(Uj) · fj+ 1
2
, and second ∇η(Uj) · fj− 1

2
.

Then the difference between the two expressions is performed. In the rest of the calculations, the time

11



dependence will be omitted to simplify the writing. One has

∇η(Uj) · fj+ 1
2

= −pj

(
1

2αj+ 1
2

(pj − pj+1) +
1

2
(uj + uj+1)

)

+ uj

(
αj+ 1

2

2
(uj+1 − uj)−

1

2
(pj + pj+1)

)
,

= pj
1

2αj+ 1
2

(pj + αj+ 1
2
uj)− uj

1

2
(pj + αj+ 1

2
uj)

− pj
1

2αj+ 1
2

(−pj+1 + αj+ 1
2
uj+1) + uj

1

2
(−pj+1 + αj+ 1

2
uj+1),

= (pj + αj+ 1
2
uj)(pj + αj+ 1

2
uj)

−1

2αj+ 1
2

+ (−pj+1 + αj+ 1
2
uj+1)(−pj + αj+ 1

2
uj)

1

2αj+ 1
2

,

= − 1

2αj+ 1
2

(pj + αj+ 1
2
uj)

2
+

1

2αj+ 1
2

(−pj+1 + αj+ 1
2
uj+1)(−pj + αj+ 1

2
uj).

and with the same method of calculus

∇η(Uj) · fj− 1
2

=
1

2αj− 1
2

(−pj + αj− 1
2
uj)

2 − 1

2αj− 1
2

(pj−1 + αj− 1
2
uj−1)(pj + αj− 1

2
uj).

The difference is

∇η(Uj) · (fj+ 1
2
− fj− 1

2
) = ∇η(Uj) · fj+ 1

2
−∇η(Uj) · fj− 1

2
,

= − 1

2αj+ 1
2

(pj + αj+ 1
2
uj)

2
+

1

2αj+ 1
2

(−pj+1 + αj+ 1
2
uj+1)(−pj + αj+ 1

2
uj)

− 1

2αj− 1
2

(−pj + αj− 1
2
uj)

2
+

1

2αj− 1
2

(pj−1 + αj− 1
2
uj−1)(pj + αj− 1

2
uj).

One has ab ≤ a2

2 + b2

2 . So

∇η(Uj) · (fj+ 1
2
− fj− 1

2
) ≤ − 1

2αj+ 1
2

(pj + αj+ 1
2
uj)

2 − 1

2αj− 1
2

(−pj + αj− 1
2
uj)

2

+
1

2αj+ 1
2

[
1

2
(−pj+1 + αj+ 1

2
uj+1)

2
+

1

2
(−pj + αj+ 1

2
uj)

2

]
+

1

2αj− 1
2

[
1

2
(pj−1 + αj− 1

2
uj−1)

2
+

1

2
(pj + αj− 1

2
uj)

2

]
,

≤ − 1

2αj+ 1
2

(pj + αj+ 1
2
uj)

2
+

1

4αj+ 1
2

(−pj + αj+ 1
2
uj)

2

+
1

4αj+ 1
2

(−pj+1 + αj+ 1
2
uj+1)

2

− 1

2αj− 1
2

(−pj + αj− 1
2
uj)

2
+

1

4αj− 1
2

(pj + αj− 1
2
uj)

2

+
1

4αj− 1
2

(pj−1 + αj− 1
2
uj−1)

2
.

One has the equalities 1
2α (p+ αu)

2− 1
4α (p− αu)

2
= 1

4α (p+ αu)
2
+pu and 1

2α (p− αu)
2− 1

4α (p+ αu)
2

=

12



1
4α (p− αu)

2 − pu. These results are injected in the previous inequality

∇η(Uj) · (fj+ 1
2
− fj− 1

2
) ≤ − 1

4αj+ 1
2

(pj + αj+ 1
2
uj)

2
+

1

4αj+ 1
2

(pj+1 − αj+ 1
2
uj+1)

2
+ pjuj

− 1

4αj− 1
2

(pj − αj− 1
2
uj)

2
+

1

4αj− 1
2

(pj−1 + αj− 1
2
uj−1)

2 − pjuj ,

≤ − 1

4αj+ 1
2

(pj + αj+ 1
2
uj)

2
+

1

4αj+ 1
2

(pj+1 − αj+ 1
2
uj+1)

2

− 1

4αj− 1
2

(pj − αj− 1
2
uj)

2
+

1

4αj− 1
2

(pj−1 + αj− 1
2
uj−1)

2
.

One then denotes

Φ(Uj , Uj+1) = Φj+ 1
2

=
1

4αj+ 1
2

(pj + αj+ 1
2
uj)

2 − 1

4αj+ 1
2

(pj+1 − αj+ 1
2
uj+1)

2
,

and
Φ(Uj−1, Uj) = Φj− 1

2
=

1

4αj− 1
2

(pj−1 + αj− 1
2
uj−1)

2 − 1

4αj− 1
2

(pj − αj− 1
2
uj)

2
.

Hence
η(Un+1

j )− η(Unj ) ≤ −∆t

Mj
(Φn+1

j+ 1
2

− Φn+1
j− 1

2

),

also written differently as
η(Un+1

j )− η(Unj )

∆t
+

Φn+1
j+ 1

2

− Φn+1
j− 1

2

Mj
≤ 0. (29)

This corresponds exactly to the entropy inequality because Φ is the entropic flux. As a matter of fact,
one remarks

Φ(U,U) = ψ(U) = =
1

4α
(p+ αu)

2 − 1

4α
(p− αu)

2
,

=
1

4α
(p2 + 2αpu+ α2u2 − p2 + 2αpu− α2u2),

= pu.

Therefore as η = E and Φ = pu, one rewrites (29) as Ej−Enj
∆t +

(pu)
j+1

2
−(pu)

j− 1
2

Mj
≤ 0.

4.2 Proof of entropy inequality (13)
To show (13), one starts with (12).

Proof of inequality (13). Let us denote rn =
Ej−Enj

∆t +
(pu)

j+1
2
−(pu)

j− 1
2

Mj
≤ 0. During the correction step,

the discretization of the total energy E is

En+1
j − Enj

∆t
= −

((pu)j+ 1
2
− (pu)j− 1

2
)

Mj
.

The variation of total energy is evaluated between the correction and the prediction step as

En+1
j − Ej

∆t
=
En+1
j − Enj + Enj − Ej

∆t

= −
((pu)j+ 1

2
− (pu)j− 1

2
)

Mj
− rn +

((pu)j+ 1
2
− (pu)j− 1

2
)

Mj

= −rn ≥ 0.
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Since un+1 = u, one has
En+1
j − Ej

∆t
=
en+1
j − ej

∆t
= −rn ≥ 0. (30)

To conclude, it is important to have in mind the Gibbs formula TdS = de+ pdτ , where the variable τ is
fixed because τn+1 = τ = 1

ρ . One has

Sn+1
j − Snj

∆t
=
Sn+1
j − Sj

∆t
+
Sj − Snj

∆t
.

During the prediction step Sj = Snj , so

Sn+1
j − Snj

∆t
=
Sn+1
j − Sj

∆t
,

=
S(en+1

j , ρj)− S(ej , ρj)

∆t
.

Thus, thanks to (30), S(e, ρ) is a growing function of e for ρ fixed. One concludes that
Sn+1
j −Snj

∆t ≥ 0.

5 Numerical illustrations

In this Section, we provide numerical illustrations which show that the theoretical properties of the
numerical methods are transferred to real calculations. The implicit scheme is solved using a Newton
algorithm and the final update of the solution is performed in a conservative way, so the scheme is
implemented in a perfectly conservative fashion, as for finite volume methods.14,23,36 For all our test
problems, we have observed that the Newton algorithm converges without any difficulties in only few
iterations (approximately 5) and we do not comment this issue further.

The numerical illustrations can be divided between those related to robustness issues and those
related to accuracy issues. Robustness issues are illustrated in all numerical simulations, from reasonable
CFL numbers (CFL=0.4) to huge ones (CFL=537). Accuracy issues are illustrated in Section 5.1.1
(gas dynamics with CFL=0.4 to CFL=537). The position of the contact discontinuity is discussed in
Section 5.1.2. The authors also provide a simulations performed on non uniform meshes, with stiffened
gas in Section 5.2.1, and a perturbed Sod shock tube in Section 5.2.2.

5.1 Fully implicit treatment
For each example, the implicit scheme is compared to the explicit acoustic scheme (31) which provides
a reference solution

Explicit scheme



τn+1
j = τnj +

∆t

Mj
(unj+ 1

2
− unj− 1

2
),

un+1
j = unj −

∆t

Mj
(pnj+ 1

2
− pnj− 1

2
),

En+1
j = Enj +

∆t

Mj
(pnj+ 1

2
unj+ 1

2
− pnj− 1

2
unj− 1

2
).

(31)

where the fluxes are defined by

pnj − pnj+ 1
2

= αnj (unj+ 1
2
− unj ), pnj − pnj− 1

2
= αnj (unj − unj− 1

2
).

5.1.1 Sod shock tube

For this problem, the initial conditions are

p0(x) =

{
1 x < 0.5

0.1 x > 0.5
, ρ0(x) =

{
1 x < 0.5

0.125 x > 0.5
, u0(x) = 0.
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The boundary conditions are uleft = uright = 0. The adiabatic index is γ = 1.4. The equation of state
for the gas is given by (3). The final time of the simulation is t = 0.2. Several CFL (0.4, 40, 80, 537)
are taken to evaluate the robustness of the scheme. The number of cells is 100. To give an idea of the
computational time, the explicit solver is six times faster than the implicit solver for this test case.
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Figure 1: Sod shock tube for Euler equations. The CFL are CFLexplicit = 0.4 and CFLimplicit = 0.4.

For a CFL equal to 0.4 the curves are quasi identical in Figure 1. There are oscillations on the
density and the entropy curves near contact discontinuities. This is a classical phenomenon for explicit
Lagrangian schemes named wall heating. The implicit scheme does not correct these oscillations. Nu-
merous papers have been dedicated to the correction of these oscillations, the interested reader can see31
or.38 This phenomenon is not discussed further in the rest of this paper.
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Figure 2: Sod shock tube for Euler equations. The CFL are CFLexplicit = 0.4 and CFLimplicit = 40.

For an implicit CFL 100 times larger, the numerical smearing is visible in Figure 2 for the rarefaction
waves as well as the shock. On the contrary, the contact discontinuity is still at the correct location.
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Figure 3: Sod shock tube for Euler equations. The CFL are CFLexplicit = 0.4 and CFLimplicit = 80.

As it can be seen in Figure 3, one observes that when the CFL tends to be very large, there is more
numerical dissipation on shocks and rarefaction waves but the contact discontinuity still seems to be at
the right position.
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Figure 4: Sod shock tube for Euler equations. The CFL are CFLexplicit = 0.4 and CFLimplicit = 537
(only one time step).

The solution of Figure 4 shows the unconditional stability of the implicit scheme.
A remark can be done on the position of the contact discontinuity that is slightly shifted. To explain

the origin of this misplacement, we can evoke the fact that the interaction with the boundaries of the
domain is very important. To validate this hypothesis, we performed another calculation (same initial
conditions and final time) on a domain 9 times larger. The results are visible in Figure 5, and the contact
discontinuity is once again well positioned.
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Figure 5: Sod shock tube for Euler equations. Mesh of 9000 cells, domain between [−4, 5]. The CFL are
CFLexplicit = 0.4 and CFLimplicit = 537.

5.1.2 Position of the contact discontinuity

We develop hereafter a possible explanation for the precision of the position for the contact discontinuity
in Figure 5. It deals with the integration of the Riemann problem.

Indeed, consider the following initial conditions

τ0(x) =

{
τL, x < 0,

τR, x > 0,
u0(x) =

{
uL, x < 0,

uR, x > 0,
S0(x) =

{
SL, x < 0,

SR, x > 0.

Lagrangian isentropic equations are
∂tτ(x)− ∂mu(x) = 0,

∂tu(x) + ∂mp(τ(x), S(x)) = 0,

∂tS(x) = 0.

(32)

where dm = ρdx.
We are looking for a solution of class C0(R) ∩ (C1(R+) ∩ C1(R−)), for the variables τ and u. The

variable S is discontinuous. The natural boundary conditions are

lim
x→−∞

p(x) =
(γ − 1)eSL

τγL
,

lim
x→+∞

p(x) =
(γ − 1)eSR

τγR
,

lim
x→−∞

∂xp(x) = 0,

lim
x→+∞

∂xp(x) = 0.

(33)

The equations (32) are discretized in time but the space part is left continuous, ∆t > 0, x ∈ R. This
mimics the implicit scheme, indeed ∆t can be taken extremely big, but the space step ∆x is very small.
This corresponds of having a discrete ∆t compared to a small continuous ∆x.

τ(x)− τ0(x)

∆t
− ∂mu(x) = 0,

u(x)− u0(x)

∆t
+ ∂mp(x) = 0,

S(x)− S0(x)

∆t
= 0.

(34)

Lemma 19. The system (34) is self similar in x
∆t .
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Proof. Writing y = x
∆t , then dx = ∆tdy. One has

τ(x) = τ̂(
x

∆t
), so τ̂(y)− τ0(y)− 1

ρ
∂yû(y) = 0,

u(x) = û(
x

∆t
), so û(y)− u0(y) +

1

ρ
∂yp̂(τ̂(y), Ŝ(y)) = 0,

S(x) = Ŝ(
x

∆t
), so Ŝ(y)− S0(y) = 0.

The method of calculation of a solution to (34) is detailed after.
For x < 0 the solution satisfies the equations

τ(x)− τL −
1

ρL
∂xu(x) = 0,

u(x)− uL +
1

ρL
∂xp(x) = 0.

The variable u is derived from the second equation and injected in the first equation to obtain

τ(x)− τL +
1

ρ2
L

p′′(x) = 0.

Introducing the enthalpy H(p, S) = e+ pτ , one has dH = de+ pdτ + τdp = TdS + τdp, hence

∂H

∂p
(p, SL)− τL +

1

ρL2
p′′(x) = 0.

Factorizing, one gets
1

ρL2
p′′(x) +

∂

∂p
(H(p, SL)− pτL) = 0.

One obtains
∂

∂x

(
1

ρL2

(p′(x))
2

2
+H(p, SL)− pτL

)
= 0.

Therefore
1

ρL2

(p′(x))
2

2
+H(p, SL)− pτL = KL.

Using the boundary conditions (33), the integration constant is KL = eL.

1

ρL2

(p′(x))
2

2
+H(p, SL)− pτL − eL = 0.

So
p′(x)

2

2ρL2
= −H(p, SL) + pτL + eL.

One finally obtains
p′(x) = ±ρL

√
−2H(p, SL) + 2pτL + 2eL. (35)

For x > 0, the solution verifies the equations
τ(x)− τR −

1

ρR
∂xu(x) = 0,

u(x)− uR +
1

ρR
∂xp(x) = 0.

We apply the same method than in the case x < 0, and check that the solution is of the same kind. One
finally finds an expression for p′

p′(x) = ±ρR
√
−2H(p, SR) + pτR + eR. (36)
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At the interface, when x = 0, the continuity conditions are

p(0−) = p(0+) = p?, u(0−) = u(0+) = u?,

with p? ∈ R. One gets

u? = uL −
1

ρL
p′(0−) = uR −

1

ρR
p′(0+).

That is
−uL +

1

ρL
p′(0−) = −uR +

1

ρR
p′(0+).

Using (35) and (36), one finds the scalar equation

−uL ±
√
−2H(p?, SL) + 2p?τL + 2eL = −uR ±

√
−2H(p?, SR) + 2p?τR + 2eR

where p? is the unknown.
In the numerical examples, we took initial conditions of a Sod shock tube, that are recalled hereafter.

uL = uR = 0, ρL =
1

τL
= 1, ρR =

1

τR
=

1

8
, pL = 1, pR = 0.1, γ = 1, 4,

eSL =
10

4
, eSR =

81.4

4
.

As uL = uR = 0, one has

−H(p?, SL) + p?τL + eL = −H(p?, SR) + p?τR + eR. (37)

Using the perfect gas law, one can rewrite the equation in terms of p and S.

τ =
((γ − 1)eS)

1
γ

p
1
γ

, e =
pτ

γ − 1
= (γ − 1)

1
γ−1e

S
γ p1− 1

γ .

One obtains

e
SL
γ

− γ

γ − 1
p?1− 1

γ + p
− 1
γ

L p? +
p

1− 1
γ

L

γ − 1

 = e
SR
γ

− γ

γ − 1
p?1− 1

γ + p
− 1
γ

R p? +
p

1− 1
γ

R

γ − 1

 .
Lemma 20. The equation (37) admits a unique positive solution p? ∈ [pR, pL].

Proof. Let us denote fL(p) = −H(p, SL) + pτL + eL, and fR(p) = −H(p, SR) + pτR + eR, so that (37) is
rewritten as fL(p?)− fR(p?) = 0.

The properties of the function fL are the following. One has fL(pL) = 0, f ′L(pL) = −∂H(pL,SL)
∂p +τL =

−τL + τL = 0, and f ′′L(p) = −∂
2H(p,S)
∂p2 = −∂τ∂p = 1

ρ2c2 > 0. With the same calculations, one finds
fR(pR) = 0, f ′R(pR) = 0 and f ′′R(p) > 0. The two functions fL and fR are strictly convex, with a
minimum value equal to 0, obtained respectively for pL and pR.

Let us denote f(p) = fL(p) − fR(p). One analyzes the function f in the case of the Sod shock
tube, that is for pR ≤ p ≤ pL. One obtains f(pR) = fL(pR) > 0, and f(pL) = −fR(pL) < 0. The
function f changes sign, so it takes at least once the value 0 in between pR and pL, which validates the
existence of a solution. To have the uniqueness, one needs to prove the monotonicity of f . One has
f ′(p) = f ′L(p) − f ′R(p). For all pR < p < pL, one finds f ′L(p) < 0 and f ′R(p) > 0, so f ′(p) < 0 which
concludes to the monotonicity of f , and the uniqueness of the solution to (37).

Numerically, we calculated with a Newton method that the solution to (37) is approximately equal to
p? = 0.2559. It corresponds to a velocity of u? = 0.8789. The exact value of the velocity for the Riemann
problem at the contact discontinuity is uexact = 0.9275. This value is found in Toro,36 [Table 4.3, p 131].
The difference between u? and uexact is equal to 5.2%, which is a satisfying accuracy considering that
the implicit simulation performs with only one time step. This small relative error of 5.2% is the reason
why the contact discontinuity of the implicit solver is approximately superimposed with the reference
one in Figure 5.We observed a similar behavior for all the other test problems and we believe it is a
strong asset of this family of implicit Lagrangian schemes.

19



5.1.3 Blast wave problem

To give the reader an idea of how the implicit scheme behaves in other configurations, we present here
a more severe test case called the blast wave problem. It is also known as the Woodward and Colella
problem, see.42 This test case involves multiple interactions. Indeed, two strong blast waves develop
right after the beginning of the simulation, then collide at t = 0.028s, inducing a decrease of the time
step for explicit schemes, and at the final time t = 0.038s, a new contact discontinuity can be observed.

For this example, the initial conditions consist in three constant states of perfect gas at very different
pressures.

p0(x) =


1000 x < 0.1

0.01 0.1 < x < 0.9

100 x > 0.9

, ρ0(x) = 1, γ0(x) = 1.4, u0(x) = 0.

The simulation is performed on a mesh of 400 cells between [0, 1], following the article,43 and there are
reflexive boundary conditions on both sides of the domain. As the shocks are very strong, it would not
be relevant to take large time steps. In Figure 6, the precision of the implicit scheme is visible for a same
CFL than the explicit scheme. In Figure 7, we increase the CFL of the implicit scheme and we observe
some oscillations in the density curve for CFL = 5. The wall heating is visible in the density curve for
both the explicit and the implicit scheme at the location of the contact discontinuity. For strong shocks,
it seems that the numerical dispersion is sensible to the CFL number. We do not comment this result
further as we do not know if it comes from a numerical artifact.
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Figure 6: Blast waves for Euler equations. The CFL is CFL = 0.4.
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Figure 7: Blast waves for Euler equations. Comparison between the explicit acoustic solver scheme and
the implicit scheme with multiple CFL.

5.2 Implicit-Explicit coupling
When more than one fluid is represented, it is interesting to have a cell size appropriated to each fluid.
It can lead to great disparities in the dimension of the cells and hence an implicit-explicit coupling is a
solution. The mesh is separated into subdomains. Each one is treated using either the acoustic explicit
solver, or the implicit prediction-correction scheme developed in this work. The mesh is considered as
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Figure 8: Example of a mesh divided into several subdomains.

described in Figure 8, namely the implicit part of the mesh contains the smaller cells. At each interface
between an explicit and an implicit cell, the values of the fluxes must be the same. Consider there is an
interface between cell j and cell j + 1 of a meshM, the problem at the interface is the following{

pnj − p∗j+ 1
2

= αj(u
∗
j+ 1

2
− unj ),

pj+1 − p∗j+ 1
2

= αj+1(uj+1 − u∗j+ 1
2
),

where pnj and unj are respectively the values of the pressure and the velocity in cell j at time tn. The
values obtained by the prediction step of the implicit scheme in cell j + 1 are pj+1 for the pressure uj+1

for the velocity. The fluxes at the interface are p∗
j+ 1

2

and u∗
j+ 1

2

.
Theorem 4 states that there exists a unique solution for the prediction step into the implicit zone of

the mesh. The values at the interface are treated as boundary conditions.
For the computation, the implicit part of the meshMimp is treated first using a Newton algorithm

to obtain (pj)j∈Mimp
and (uj)j∈Mimp

. At the end of this step, the values of the fluxes are evaluated on
the implicit and explicit part of the mesh then used to update u, E and ρ at time tn+1 in each cell of
M.

Let us emphasize that the implicit-explicit coupling described in this Section is not an IMEX method.
Indeed, the IMEX strategy consists in a numerical methods which contain an implicit part, but as far
as we know, the non linear global part is always treated in an explicit manner as in35 and references
therein. In our case, the strategy differs in the sense that the scheme used is totally implicit or totally
explicit depending on the subdomains treated.

5.2.1 Water-gas simulation

To validate this coupling, we present a water-gas simulation and compare the results to the solution
obtained with a total explicit solving. For this example, one considers the case of a stiffened gas provided
with the following equation of state 

p =
γ − 1

τ
e− γπ,

e = CvT + πτ,

S = Cv log((e− πτ)τγ−1).

The coefficient π describes the attractive effects that lead to a cohesion in the matter, it is also called the
reference pressure and must satisfies π > 0. A modified expression of τ is thus evaluated and implemented

τ =

(
(γ − 1) exp(

S

Cv
)

) 1
γ

(p+ π)−
1
γ .

Theorem 4 still applies on the variable U = (−(πj + pj)j∈Mimp
, (uj)j∈Mimp

). The two-phase shock
test case presented originates from.32 It considers having two materials with all the variables strongly
discontinuous. On the left part of the tube there is water (high pressure) and on the right part air (low
pressure). The initial conditions are

p0(x) =

{
109 x < 0.7

105 x > 0.7
, ρ0(x) =

{
1000 x < 0.7

50 x > 0.7
, γ0(x) =

{
4.4 x < 0.7

1.4 x > 0.7
, u0(x) = 0.
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The variable π is set to π0(x) = 6 · 108 for x < 0.7. The simulation is performed on a mesh of 1000
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Figure 9: Two-phase shock tube for Euler equations.

cells. There are 950 cells between [0,0.7] and 50 cells between [0.7, 1]. The smaller cells lie in the left
region that is thus solved using the implicit scheme, and the right part is solved with the explicit acoustic
solver. The explicit solver reaches the final time t = 240 · 10−6 in 2160 iterations and a time step of
dt = 1.11·10−7s. The implicit-explicit solver runs during 585 iterations and a time step of dt = 3.9·10−7s.
The computational time is approximately the same. In Figure 9 one notices that the rarefaction wave is
more dissipated with the implicit-explicit treatment. The contact discontinuity and the shock are well
placed. This validates the implicit-explicit coupling.

5.2.2 Sod shock tube perturbed with a water drop

We present here an original test case where the implicit-explicit coupling algorithm is more efficient than
the explicit acoustic solver of reference. It consists of a Sod shock tube perturbed by a water drop. The
final time of the simulation is t = 1.6 ·10−4. The water drop is located between [0.65, 0.6501]. The initial
conditions are

p0(x) =

{
107 x < 0.5

106 x > 0.5
, ρ0(x) =


5 x < 0.5

1 0.5 < x < 0.65

1000 0.65 < x < 6.6501

1 x > 0.6501

, γ0(x) =


1.4 x < 0.65

4.4 0.65 < x < 0.6501

1.4 x > 0.6501

.

The initial velocity is set to u0(x) = 0. The reference pressure into the water, for x ∈ [0.65, 0.6501], is
π0(x) = 6 · 108. One uses a two states solver flux for this simulation. A reference solution is computed
first on a uniform mesh of 10000 cells. The solutions for the explicit and the implicit-explicit schemes
are obtained using a mesh composed of 110 cells distributed as follows: 65 cells between [0,0.65], 10 cells
between [0.65,0.6501] and 35 cells between [0.6501,1]. Only the 10 cells representing the water drop are
treated implicitly for the implicit-explicit coupling. The water drop is represented by a characteristic
function multiplied by an appropriate scaling factor. In Figure 10, the explicit curve and the implicit-
explicit one are similar in shape with the reference solution. The gas hits the water drop from the left
side, creating an important reflexive pressure wave as can be seen in Figure 10. It is well modeled by
both of the methods. The explicit solution is evaluated in 65161 iterations in time, corresponding to a
dt = 2.45 · 10−9. The time of computation is around 76.5s. The implicit-explicit solution is obtained in
158 iterations in time, with a time step dictated by the size of the bigger explicit cells, corresponding to
dt = 2.58 · 10−7, and a computational time of about 4.5s. For this type of test case, the implicit-explicit
coupling performs well.
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Figure 10: Sod shock tube perturbed by a water drop.

6 Conclusions

We have used a strategy of predictor-corrector scheme, based on the previous work5 in Eulerian coordi-
nates, to solve numerically the Euler equations. We have defined an abstract frame in order to analyze
a family of implicit schemes written under the peculiar form (8). We have proved the existence and
uniqueness of a solution to the prediction step of our implicit scheme. We provided examples using
this result and led numerical tests that have indeed corroborated the theoretical statements of stability.
The numerical illustrations compare the implicit scheme to an explicit scheme of reference, and show the
precision of this new algorithm in these cases. It also provides examples in the case of an implicit-explicit
coupling for stiffened gas.

In a future work, it would be interesting to generalize this method to the case of thin elasto-plastic
structures using Kluth and Després22 or Maire et al.24 We could also try to improve this work by using a
more elaborate flux or increase the scheme order at the order 2. It will probably ameliorate the precision,
but it stays to evaluate the cost of simulation that it would generate. The multi-dimensional version
would need a more advanced management for the displacement of the mesh, but the principal ingredients
of Theorem 4 remain similar.

Other numerical examples that are more realistic have to be performed to evaluate the pertinence of
this algorithm. Theoretically as well, it would be great to have an explanation on the rapid convergence of
the Newton algorithm for the prediction step, and to have a more elegant proof of the entropy inequalities
using the frame (8).

Finally our approach can be the basis of a fully implicit Lagrange+remap strategy for the development
of implicit solvers for the non viscous Euler system, where it is sufficient to treat the linear remap stage
in an implicit fashion to obtain a fully implicit Eulerian numerical scheme. The evaluation of such
approaches in particular in the context of low-Mach flows will be the topic of further examination.

A Isothermal equation of state

We briefly describe the modification of the method to treat an isothermal equation of state. An isothermal
equation of state p = CT

τ can be analyzed by letting γ → 1 in the perfect gaz equation of state (3).
Nevertheless since this method is singular, it is simpler to directly perform the required modification.
Actually, we only need to modify the function L1

j in the definition of J (18).

The function L1
j is designed to verify the equation ∂L1

j

∂(−pj) = τj − τnj , see the proof of Proposition
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7. With the isothermal equation of state, one takes L1
j (−pj) = −CT log(pj) + pjτ

n
j . Because of the

logarithmic term in L1
j , the hypothesis 2 of the Theorem 4 is satisfied in a stronger form. For V ∈ ∂D,

one has J(W )
W→V−−−−→
W∈D

+∞.
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