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Abstract

We construct an original framework based on convex analysis to prove the existence and unique-
ness of a solution to a class of implicit numerical schemes. We propose an application of this general
framework in the case of a new non linear implicit scheme for the 1D Lagrangian gas dynamics
equations. We provide numerical illustrations that corroborate our proof of unconditional stability
for this non linear implicit scheme.
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1 Introduction

To approach equations traducing the movements of fluids, explicit schemes are traditionally used, see,16,29
because they are easy to implement. Explicit schemes need to satisfy a stability CFL condition: c∆t 6
∆x, where c is the speed of sound, ∆t is the time step, and ∆x is the size of the discretization in space
of the mesh. The time step is constrained by the size of the smallest cell. Nevertheless, in some cases, a
large speed of sound (c� 1) contributes to have such small time steps that it becomes unfavourable to
use explicit methods, because the simulation cost is high.

Implicit in time schemes have always aroused interest in the literature. In particular, they are much
less sensitive to the CFL number: for example a finite difference algorithm is proposed in Beam and
Warming,2 implicit and semi-implicit schemes are investigated in the Toth, Keppens and Bochev33 and
an experimentation on implicit upwind methods for Euler equations is done in Mulder and Van Leer.25
Some other implicit algorithms are explained in the following articles, see for example.9,24,28 A large
part of them use the method of predictor-corrector scheme like in the works.20,26,34–36 More recent works
can be found in the articles.6,27

Nonetheless, some major technical difficulties appear for the numerical resolution of implicit non
linear schemes. At a theoretical level, it is difficult to prove the existence and uniqueness of a solution to
implicit schemes. Currently, a powerful theory is the one developed in Gallouët et al.,15 for Navier-Stokes
equations with viscosity, using the topological degree. The existence of a solution is proved in details, but
the uniqueness requires restrictive hypothesis. Another strategy is explained in Brugano and Casulli3 for
piecewise linear systems in the case of a symmetrical structure. The existence of a solution is proved, and
the uniqueness is also studied in the case of special hypothesis. A non-linear implicit-explicit strategy is
found in Fryxell et al.,14 that is second order in both space and time. There are no proof of existence or
uniqueness, but the numerical results illustrate an unconditional stability of the method.

∗alexiane.plessier@cea.fr
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Our original contributions to this field are, firstly the elaboration of a general framework which
allows to prove existence and uniqueness of implicit solution of some numerical schemes, and secondly the
application of the general framework in the case of a non linear implicit scheme for the 1D model problem
(1) written in semi-Lagrangian coordinates (semi-Lagrangian coordinates means Lagrange+update)

ρDtτ − ∂xu = 0,

ρDtu+ ∂xp = 0,

ρDtE + ∂xpu = 0.

(1)

One has ρ = 1
τ > 0 the mass density, p is the pressure, u is the velocity and E is the total energy density.

The variables τ and p are taken positive to be physically admissible, see Serre31 or Ern and Guermond12
for more details. The material derivative is Dt = ∂t+u∂x. The following set of equations is the isentropic
Euler equations for the prediction step of the implicit scheme

ρDtτ − ∂xu = 0,

ρDtu+ ∂xp = 0,

ρDtS = 0.

(2)

The first two equations are identical to (1), only the last one is different, with S denoting the physical
entropy. These equations are equipped with a perfect gas equation of state

p = (γ − 1)
e

τ
,

e = CvT,

S = Cv log(eτγ−1),

(3)

where Cv is the thermal capacity at constant volume, γ > 1 is the adiabatic index, e = E − 1
2u

2 is the
internal energy density, T is the temperature and c is the speed of sound given by c2 = ∂p

∂ρ .
The justification of using a prediction step based on the discretization of (2) comes from ideas in the

work of Chalons, Coquel and Marmignon.4 It will be explained in details in this article.
Consider a meshM composed of N cells noted j ∈ {1, . . . , N}. The time t is discretized with a time

step ∆t that corresponds to one iteration. The mass of the cell j is Mj . The boundary conditions are
supposed periodic, and the fluxes are defined with the acoustic impedance αj+ 1

2
> 0. The scheme has a

predictor-corrector structure. The prediction step is written as

Prediction step


τj = τnj +

∆t

Mj
(uj+ 1

2
− uj− 1

2
),

uj = unj −
∆t

Mj
(pj+ 1

2
− pj− 1

2
),

Sj = Snj .

(4)

The correction step is given by

Correction step



τn+1
j = τnj +

∆t

Mj
(uj+ 1

2
− uj− 1

2
),

un+1
j = unj −

∆t

Mj
(pj+ 1

2
− pj− 1

2
),

En+1
j = Enj +

∆t

Mj
(pj+ 1

2
uj+ 1

2
− pj− 1

2
uj− 1

2
),

(5)

where only the total energy equation is modified. The correction step is explicit so the main difficulty is
in the prediction step.

In (4) and (5), the fluxes are defined by

pj − pj+ 1
2

= αnj+ 1
2
(uj+ 1

2
− uj), pj − pj− 1

2
= αnj− 1

2
(uj − uj− 1

2
),
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where the coefficient αn
j+ 1

2

> 0 is for simplicity equal to a mean value of the acoustic impedance:

αj+ 1
2

= 1
2 (ρjcj + ρj+1cj+1). Another equivalent formula is

pj+ 1
2

=
ρjcj + ρj+1cj+1

4
(uj − uj+1) +

1

2
(pj + pj+1),

uj+ 1
2

=
1

ρjcj + ρj+1cj+1
(pj − pj+1) +

1

2
(uj + uj+1).

In Lagrangian formalism, the mesh moves according to the velocity of the fluid: xn+1
j+ 1

2

= xn
j+ 1

2

+ ∆tun
j+ 1

2

.
The predictor-corrector scheme (4-5) is naturally conservative since it is expressed in terms of fluxes.
Such a scheme can be proved to be weakly consistent as in Després.10,11

The predictor-corrector scheme is an adaptation of ideas from the article4 which is dedicated to solve
the classical Euler equations (6) 

∂tρ+ ∂xρu = 0,

∂tρu+ ∂x(ρu2 + p) = 0,

∂tρE + ∂x(ρEu+ pu) = 0.

(6)

The authors explain that the difficulties of solving this system come from the flux terms in the second and
third equations. Indeed, there is a strong non linearity due in particular to the pressure. To overcome
this complexity, the authors propose a predictor-corrector strategy that we use also in this work. Firstly
is to solve the isentropic Euler equations (7) during the prediction step

∂tρ+ ∂xρu = 0,

∂tρu+ ∂x(ρu2 + p) = 0,

∂tρS + ∂xρSu = 0.

(7)

Secondly, the classical Euler equations (6) are solved in order to restore the conservation of the total
energy. At a discrete level, the fluxes are expressed thanks to an isentropic scheme, and then inserted
in the scheme associated to (6). For the prediction step, the authors use a relaxation scheme on the
pressure. They prove the existence of a solution to the relaxation implicit scheme. Nonetheless, the
robustness of the scheme depends on an extra equation as mentionned in a report, see.30

Let us now describe our results. For physically admissible data, the system (4) will be said uncon-
ditionally stable if there exists a unique solution to the implicit non-linear scheme. Our proof of the
unconditional stability of (4) comes from a rewriting of the prediction step (4) under the form{

Find U ∈ D such that
∇J(U) = AU,

(8)

where U is a vector of real unknowns, J is a functional defined on a domain D and A is a matrix of real
coefficients.

The proof that (8) has a unique solution relies on Theorem 4 that seems to be new considering
the classical literature of convex analysis, see.1,17,19 The ingredients to establish Theorem 4 are the
following.

Hypothesis 1. The open convex domain is D =]−∞, 0[n×Rm ⊂ Rn×Rm, where n > 0 and m > 0 are
two integers. Its boundary is ∂D = {V ∈ Rn+m : ∃ j∗ ∈ {1, . . . , n} Vj∗ = 0, ∀j 6= j∗ ∈ {1, . . . , n}, Vj 6
0}.

We made a slight abuse of notations by using the same letter n in the Hypothesis 1 as the iteration
index in the scheme (4 -5). We believe this does not interfere with the readability. The case m = 0
corresponds to the Traffic flow equations studied in the Appendix. Otherwise m = n.

Hypothesis 2. The function J : U ∈ D → J(U) ∈ R is C2, strictly convex and coercive in the sense
that

J(U)→ +∞ for ||U || −−−→
U∈D

+∞. (9)
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Moreover for all V ∈ ∂D there exists a unit direction d ∈ Rn+m which is outward from D such that

(∇J(V − εd),d)
ε→0+

−−−−−−→
V−εd∈D

+∞. (10)

Also for all V ∈ ∂D, one has
||∇J(W )|| W→V−−−−→

W∈D
+∞. (11)

The verification of (9), (10) and (11) will be obtained directly from the perfect gas law equations (3).
For an isentropic gas, it can be simplified.

Hypothesis 3. The matrix A ∈Mn+m(R) is skew-symmetric and its kernel satisfies ker(A) ∩ D 6= ∅.

Theorem 4. Under the Hypothesis 1, 2 and 3, the problem (8) has a unique solution.

Applying this Theorem, we show that (4) is well defined for all ∆t > 0.

Corollary 5. Considering physically admissible data (τnj > 0 for all j), the prediction scheme (4) can
be written under the form (8). Therefore, it is unconditionally stable.

Moreover, the predictor-corrector scheme (4-5) satisfies two entropy inequalities.

Theorem 6. For all ∆t > 0, the solution of the prediction step (4) satisfies

∀j,
Ej − Enj

∆t
+
puj+ 1

2
− puj− 1

2

Mj
6 0, with puj+ 1

2
= pj+ 1

2
uj+ 1

2
. (12)

The solution of the correction step (5) verifies the entropy inequality

∀j,
Sn+1
j − Snj

∆t
> 0. (13)

The organization of this article is as follows. In Section 2 we write the scheme (4) under the form (8).
In Section 3, we prove Theorem 4. The proof is split in several parts. On the one side we rapidly prove
the uniqueness of a solution, and on the other side we decompose the proof of the existence in different
steps. In Section 4, we apply Theorem 4 for the isentropic Euler equations, and prove Corollary 5.
In Section 5, the correction step is introduced and the complete scheme is fully justified. The proof
of Theorem 6 concerning entropy inequalities for both steps is detailed. In Section 6, we provide a
few numerical illustrations. The Appendix contains the application of Theorem 4 for the traffic flow
problem, in the specific case where m = 0 in the definition of D. It also contains a brief description of
the modification to treat an isothermal equation of state.

2 Formulation under the form (8)

The objective of this Section is to provide the details of the transformation from the implicit scheme (4)
to the form (8). The verification of Hypothesis 1, 2 and 3 will be performed in Section 4.

We consider Euler isentropic equations in one dimension (2) for compressible perfect gas with periodic
boundary conditions. As the physical entropy S is constant during this prediction step, its equation is
not necessary for the proof. Replacing the fluxes and rearranging the terms in (4), one obtains

2Mj

∆t
(τj − τnj ) +

1

αn
j+ 1

2

(pj+1 − pj) +
1

αn
j− 1

2

(pj−1 − pj) = uj+1 − uj−1,

2Mj

∆t
(uj − unj ) + αnj+ 1

2
(uj − uj+1) + αnj− 1

2
(uj − uj−1) = pj−1 − pj+1.

(14)

Let us define a vector of unknowns

U = ((−pj)j∈{1,...,N}, (uj)j∈{1,...,N}) ∈ D, (15)
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where the domain D is defined as

D = {U such that ∀j ∈ {1, . . . , N} − pj < 0, and uj ∈ R} . (16)

The matrix A is defined by

A =

[
0 B
B 0

]
with B =



0 1 0 · · · 0 −1
−1 0 1 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 −1 0 1
1 0 · · · 0 −1 0


∈MN (R). (17)

The functional J : D → R is defined as a sum of elementary functions

J(U) =

N∑
j=1

2Mj

∆t

[
L1
j (−pj) + L2

j (uj)
]

+

N∑
j=1

[
Q1
j (−pj ,−pj+1) +Q2

j (uj , uj+1)
]
, (18)

where the elementary functions are

L1
j (−p) = −Cjp1− 1

γ + τnj p, where Cj = γ(γ − 1)
−1+ 1

γ exp

(
Sj
Cv

) 1
γ

> 0,

Q1
j (−p,−q) =

1

αj+ 1
2

(q − p)2

2
, L2

j (u) =
u2

2
− unj u, Q2

j (u, v) = αj+ 1
2

(u− v)
2

2
.

Proposition 7. The calculation of a solution (τj > 0, uj)16j6N to the system (14) of scalar non-linear
equations is equivalent to the calculation of a solution U ∈ D to the global non-linear equation ∇J(U) =
AU .

Proof. For a perfect gas law, the correspondence between τ , p and S can be written as τ = (γ −
1) exp ( S

Cv
)

1
γ p−

1
γ . Therefore the equivalence between a solution of (14) and a solution (15) of ∇J(U) =

AU is explicited by

τj = (γ − 1) exp (
Sj
Cv

)

1
γ

p
− 1
γ

j and uj = uj . (19)

To finish the proof it is sufficient to calculate explicitly ∇J(U). The derivatives of L1
j , L2

j , Q1
j and Q2

j

are
∂L1

j

∂(−pj)
= Cj

(
γ − 1

γ

)
p
− 1
γ

j − τnj = τj − τnj ,
∂L2

j

∂uj
= uj − unj ,

∂Q1
j

∂(−pj)
=

1

αj+ 1
2

(pj+1 − pj) +
1

αj− 1
2

(pj−1 − pj),

∂Q2
j

∂uj
= αj+ 1

2
(uj − uj+1) + αj− 1

2
(uj − uj−1).

By (18), one calculates all the components of the vector ∇J(U) ∈ R2N . With the definition (17) of the
matrix A, one obtains immediately that the first N equations in the vectorial identity ∇J(U) = AU are

2Mj

∆t
(τj − τnj ) +

1

αn
j+ 1

2

(pj+1 − pj) +
1

αn
j− 1

2

(pj−1 − pj) = uj+1 − uj−1, 1 6 j 6 N, (20)

while the last N equations are

2Mj

∆t
(uj − unj ) + αnj+ 1

2
(uj − uj+1) + αnj− 1

2
(uj − uj−1) = pj−1 − pj+1, 1 6 j 6 N. (21)

With the correspondence (19), one finds that (20 -21) is equal to (14).
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3 Proof of Theorem 4

In this Section, we prove Theorem 4 stated in the introduction under the Hypothesis 1, 2 and 3. Each
Subsection corresponds to an intermediate result leading to the final outcome.
In convex analysis, see e.g.[Hirriart-Urruty and Lemarechal18 Def. 3.2.5 p19], the closure of the function
J is J , defined as

J : Rn+m →R

U 7→

{
lim
V→U

inf
V ∈D

J(V ) if U ∈ D,

+∞ if not.

(22)

By construction, J is lower semi-continuous because J is continuous over D. For a function J which is
coercive on its domain D like in (9), the closure J is also coercive in the sense of the book of Hirriart-
Urruty,17 [Chapter 2, p 41]

J(U)→ +∞ for ||U || −−−−−−→
U∈Rn+m

+∞.

3.1 Uniqueness
It relies on elementary considerations.

Lemma 8. Assuming that the problem (8) admits a solution in D, then it is unique.

Proof. Let U1 ∈ D and U2 ∈ D be two solutions of the problem (8){
∇J(U1) = AU1,

∇J(U2) = AU2.

One has
(∇J(U1)−∇J(U2), U1 − U2) = (A(U1 − U2), U1 − U2) .

Since A is a skew-symmetric matrix therefore (A(U1 − U2), U1 − U2) = 0, that is

(∇J(U1)−∇J(U2), U1 − U2) = 0.

Since J is strictly convex, this is only satisfied if U1 = U2.

3.2 Existence
The existence of a solution relies on a few intermediate results.

3.2.1 Existence of a minimum for J

The first result to prove is the existence of a minimum point for the function J , using a classical result
from convex analysis.

Lemma 9. The function J admits a unique minimum U ∈ D.

Proof. We apply [Theorem 1.1 p 48] of Dacorogna7 to the function f = J . So there exists U ∈ Rn+m

such that J(U) 6 J(V ) for all V ∈ Rn+m. Necessarily J(U) <∞ is finite so U ∈ D. It remains to show
that U /∈ ∂D.

Let us assume on the contrary that U ∈ ∂D. Thanks to the convexity of J and inequality (10) in
Hypothesis 2, one can write

J(U) > J(U − εd) + ε (∇J(U − εd),d) > J(U − εd).

It is a contradiction. Therefore U ∈ D is a minimum and U is unique thanks to the strict convexity of
J on D.

Since D is an open set, the unique minimum U ∈ D of J satisfies the Euler equation, see Hirriart-
Urruty,17 [Chapter 2, p 41]

∇J(U) = 0.
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3.2.2 A continuation method

We prove in this section that, the problem (23) admits a solution in the domain D for all 0 6 ε 6 1{
Find Uε ∈ D such that
∇J(Uε) = εAUε.

(23)

For ε = 0, the problem is treated in Section 3.2.1. This allows to write (23) with a continuation method
under the form of an initial value problem (24)

∇2J(Uε)
dUε
dε

= AUε + εA
dUε
dε

,

U0 = argmin
U∈D

J(U).
(24)

A rearrangement yields (∇2J(Uε) − εA)dUεdε = AUε. For U ∈ D, the matrix ∇2J(U) − εA is invertible
thanks to the following result.

Lemma 10. Let A and B be two matrices ofMN,N (R) such that A is skew symmetric and B is positive
definite. Then the matrix C = A+B ∈MN,N (R) is invertible.

The Lemma 10 is applied with −εA as the skew symmetric matrix, and ∇2J(Uε) as the positive
definite matrix. Thus (∇2J(Uε)− εA)

−1 exists. The initial value problem can be rewritten as
dUε
dε

= (∇2J(Uε)− εA)
−1
AUε,

U0 = argmin
U∈D

J(U).

Let us define I = [0,+∞[ and the function F : I ×D → Rn+m by F (ε, V ) = (∇2J(V )− εA)
−1
AV . The

problem is rewritten as 
dUε
dε

= F (ε, Uε),

U0 = argmin
U∈D

J(U).
(25)

To obtain the existence of a maximal solution to (25), one can apply standard results from the theory
of ODEs that we recall now.

Definition 11 (see Coddington and Levinson,5 Chapter 1). Let N ∈ N and F : I × RN → RN , let
ε0 ∈ I, and Uε ∈ RN where I is a non empty interval of R. A solution of the differential equation

U ′(ε) = F (ε, U(ε)), (26)

is given by a non empty interval I ⊂ I and a differentiable function U : I → RN satisfying (26) for all
ε ∈ I.

A solution of the initial value problem (or Cauchy problem) associated to (26) is a solution of (26)
such that ε0 ∈ I and U(ε0) = U0.

Theorem 12 (Cauchy Lipschitz Theorem for locally Lipschitz functions,5 Th. 3.1, p12). Let the function
F be a C1 function, then, for all initial data (ε0, U0) ∈ I ×RN , there exists an interval I ∈ I containing
ε0 such that there exists in I a unique solution to the associated initial value problem.

In particular for all such data, there exists a unique maximal solution and all other solution verifying
the condition of Cauchy is a restriction of the maximal solution.

Lemma 13. There exists 0 < εmax such that for all ε ∈ [0, εmax[, the problem (25) admits a solution in
D. This solution satisfies (23).

7



Proof. One applies the Cauchy Lipschitz Theorem. The function F is well defined, and differentiable in
terms of ε. The derivative is continuous because A is a matrix of scalar coefficients, and J is a function
of class C2 thanks to Hypothesis 2. F is then of class C1.

To prove the last part of the Lemma, one notes that

d

dε
(∇J(Uε)− εAUε) = (∇2J(Uε)− εA)

d

dε
Uε −AUε = 0.

Since ∇J(U0) = 0 it shows that ∇J(Uε)− εAUε = 0 on the maximal interval.

In the rest of this Section, we prove that εmax > 1.

3.2.3 Upper bound of J(Uε)

In this section, the objective is to prove that J(Uε) is bounded, which is necessary to conclude that the
solution of the problem (23) stays in the domain D.

Lemma 14. There exists U ∈ D such that the following inequality is satisfied on the maximal interval

J(Uε) 6 J(U) < +∞.

Proof. Let us take U ∈ ker(A) ∩ D that is non empty by Hypothesis 3. The convexity of J implies that

J(Uε) + (∇J(Uε), U − Uε) 6 J(U).

One finds
J(Uε) + (εAUε, U)− (εAUε, Uε) 6 J(U).

The matrix A is skew symmetric, hence (AUε, Uε) = 0. So

J(Uε) + ε(AUε, U) 6 J(U).

Using again the property of skew symmetry, one has ε(AUε, U) = −ε(AU,Uε). As U ∈ ker(A)∩D, hence
(εAUε, U) = 0. So J(Uε) 6 J(U) < +∞.

In addition, since J is a coercive function by Hypothesis 2, there exists K < +∞ such that

||Uε|| < K (27)

for all ε in the maximal interval.

3.2.4 End of the proof of Theorem 4

The end of the proof of Theorem 4 is based on the following standard result.

Theorem 15 (see Demailly,8 Chapter 5, p 138). Let Ω be an open domain of R×Rm and U : I = [t0, b[→
Rm a solution of the equation (E) U ′ = F (t, U) where F is continuous on Ω. So U(t) can be continuated
further than b if and only if there exists a compact C ⊂ Ω such that the curve t 7→ (t, U(t)), t ∈ [t0, b[,
stays in C.

For our problem, one has the Property.

Proposition 16. There exists a compact C ⊂ D such that Uε ∈ C for all ε ∈ [0,min(εmax, 2)[.

Proof. Thanks to (27), Uε is D ∩B(0,K). Moreover, ∇J(Uε) = εAUε, so one has ||∇J(Uε)|| 6 2||A||K.
Let us consider

C = D ∩B(0,K) ∩ {V ∈ D such that ||∇J(V )|| 6 2||A||K} .
It remains to prove that C is a compact of D. Let us take a sequence Vn ∈ C for n ∈ N. Since (Vn) is
bounded, there exists V ∈ B(0,K) and a subsequence still denoted Vn such that Vn → V . Necessarily
V ∈ D, so either V ∈ ∂D or V ∈ D.

Let us assume that V ∈ ∂D. Thanks to Hypothesis 2, inequality (11), one has ||∇J(Vn)|| → +∞. It
is a contradiction with the definition of C. Therefore V ∈ D. Since J is C2, ∇J is a continuous function
and ||∇J(V )|| 6 2||A||K. So V ∈ C, which shows that C is a compact of D.

Proof of Theorem 4. Thanks to Proposition 16 and Theorem 15, one has that εmax > 1. Therefore, one
takes ε = 1 which concludes the proof of existence of the solution of (8).
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4 Proof of the unconditional stability of Corollary 5

We prove the unconditional stability for the prediction step corresponding to the implicit discretization
of the isentropic Euler equations. In this purpose we apply Theorem 4 after a precise check of all the
different hypothesis. The definitions of J , A and U are given in Section 2.

4.1 Properties of J
We verify all the required properties of Hypothesis 2, that is the strict convexity of J , its coercivity and
its limits at the boundary of the domain D.

Property 1. The function J (18) is continuous on D.

Property 2. The function J (18) is strictly convex on D.

The proof is easily verified, but we detail the calculations.

Proof. The second derivatives, for all j and k ∈ {1, . . . , N} are

∂2L1
j

∂(−pj)2 = Cj

(
γ − 1

γ2

)
p
−1− 1

γ

j ,
∂2L1

j

∂(−pj)∂(−pk)
= 0,

∂2L2
j

∂u2
j

= 1,
∂2L2

j

∂uj∂uk
= 0.

∂2Q1
j

∂(−pj)∂(−pk)
=



1

αj+ 1
2

+
1

αj− 1
2

, if k = j,

− 1

αj− 1
2

, if k = j − 1,

− 1

αj+ 1
2

, if k = j + 1,

0, otherwise.

,

∂2Q2
j

∂(uj)∂(uk)
=


αj+ 1

2
+ αj− 1

2
, if k = j,

−αj− 1
2
, if k = j − 1,

−αj+ 1
2
, if k = j + 1,

0, otherwise.

Hence, for all U ∈ D, and for all Z ∈ R2N , one has

(∇2J(U)Z,Z) =

(
∂2L1

j

∂(−pj)2 +
1

2

∂2Q1
j

∂(−pj)2

)
(−pZj )

2
+

(
∂2L2

j

∂u2
j

+
1

2

∂2Q2
j

∂u2
j

)
(uZj )

2

+

N∑
j=1

1

2

(
1

αj+ 1
2

+
1

αj− 1
2

)
(pZj+1 − pZj )

2
+

N∑
j=1

1

2
(αj+ 1

2
+ αj− 1

2
)(uZj − uZj+1)

2
.

For Z 6= 0, one has (∇2J(U)Z,Z) > 0. Therefore the function J is strictly convex on D.

Property 3. The function J is coercive on D.

Proof. The function J (18) is the sum of elementary functions L1
j , L2

j , Q1
j and Q2

j . The quadratic
functions Q1

j and Q2
j are clearly bounded from below, as well as L2

j . The function L1
j is also bounded

from below because Cj > 0, τnj > 0, γ > 1 and p1− 1
γ is dominated by p for p→ +∞. So L1

j is coercive.
It is evident that L2

j is coercive. Since J is defined by a sum over all indices 1 6 j 6 N , then J is
coercive.

Property 4. For all V ∈ ∂D, J defined by (18) satisfies the limits (10) and (11).
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Proof. The first derivative of J with respect to −p is

∂J

∂(−pj)
= Cj

(
γ − 1

γ

)
p
− 1
γ

j − τnj +
1

αj+ 1
2

(pj+1 − pj) +
1

αj− 1
2

(pj−1 − pj).

Let V ∈ ∂D. It means that there exists a non empty subset K ⊂ {1, . . . , N} such that for all k ∈ K,
Vk = 0. One takes as the unit outward direction d ∈ RN+N , such that dk = 1 and for all j 6∈ K, dj = 0.
The limit of the first derivative of J when ε→ 0+ is

lim
ε→0+

∂J

∂(−pk)
|V−εd = lim

ε→0+
− τnk + Ck

(
γ − 1

γ

)
1

ε
1
γ

+
1

αk+ 1
2

(pk+1 − ε) +
1

αk− 1
2

(pk−1 − ε),

= +∞.

Indeed, lim
ε→0+

1

ε
1
γ

= +∞, and all other limits are finite. By summation over k ∈ K, and then over all

indices for which the value of d is 0, one obtains (10). An evaluation of lim
W→V

∂J
∂(−pk) |W easily gives

(11).

4.1.1 Properties of matrix A

Let us prove Hypothesis 3 holds.

Property 5. The matrix A defined by (17) is skew-symmetric (by construction).

Property 6. The kernel of A and the domain D intersect.

Proof. We first evaluate the kernel of the matrix A. Let X ∈ R2N satisfying AX = 0, so

xN+2 − x2N = 0,

−xN+1 + xN+3 = 0,

...
−x2N−2 + x2N = 0,

xN+1 − x2N−1 = 0,

x2 − xN = 0,

−x1 + x3 = 0,

...
−xN−2 + xN = 0,

x1 − xN−1 = 0.

⇐⇒



xN+2 = x2N ,

xN+1 = xN+3,

...
x2N−2 = x2N ,

xN+1 = x2N−1,

x2 = xN ,

x1 = x3,

...
xN−2 = xN ,

x1 = xN−1.

One obtains

ker(A) =


Vect

{(
10

0

)
,

(
1

0

0

)
,

(
0

10

)
,

(
0

1
0

)}
, if N ∈ R even,

Vect
{(

1

0

)
,

(
0

1

)}
, if N ∈ R odd,

where 10 =
(
1, 0, 1, . . . , 0, 1, 0

)
, 10 =

(
0, 1, 0, . . . , 1, 0, 1

)
, 1 =

(
1, 1, . . . , 1, 1

)
, and 0 =

(
0, 0, . . . , 0, 0

)
.

One takes U =
(
−1, . . . ,−1, 0, . . . , 0

)
, then U is in ker(A) ∩ D.

4.2 Proof of Corollary 5
Corollary 5 . Considering physically admissible data (τj > 0 and pj > 0), the prediction scheme (4)
can be written under the form (8). Therefore, it is unconditionally stable.

Proof. Let m = n = N , U = ((−pj)j∈{1,...,N}, (uj)j∈{1,...,N}), A and J as defined by (17) and (18). All
the hypothesis of Theorem 4 are satisfied. The existence and uniqueness of a solution to the implicit
isentropic Euler scheme for all time step is proved.
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5 Proof of the entropy inequalities (Theorem 6)

In this Section, we study the two steps of the predictor-corrector scheme, and prove the stability inequality
in each step.

We recall the complete scheme

Prediction step


τj = τnj +

∆t

Mj
(uj+ 1

2
− uj− 1

2
),

uj = unj −
∆t

Mj
(pj+ 1

2
− pj− 1

2
),

Sj = Snj ,

Correction step



τn+1
j = τnj +

∆t

Mj
(uj+ 1

2
− uj− 1

2
),

un+1
j = unj −

∆t

Mj
(pj+ 1

2
− pj− 1

2
),

En+1
j = Enj +

∆t

Mj
(pj+ 1

2
uj+ 1

2
− pj− 1

2
uj− 1

2
).

Each inequality is studied separately.

5.1 Proof of stability inequality (12)
Actually, inequality (12) is a mathematical entropy inequality. Usually, entropy stability is defined for
continuous in time problems, or for explicit in time schemes. A continuous definition is found in the
book,29 [Th. 3.3, p 27], and a discrete version of entropy stability is written in the book,11 [Prop 2.25,
p 66].

Definition 17. The implicit conservative scheme (4) is said entropic if there exists a mathematical
entropy pair (η, ψ) and a numerical entropy flux Φ(U, V ) (such that Φ(U,U) = ψ(U)) such that the
following inequality holds for all j

η(U j)− η(Unj )

∆t
+

Φ(U j , U j+1)− Φ(U j−1, U j)

Mj
6 0. (28)

We use this definition onto the scheme of the prediction step (4) where the vector of unknowns is
U = (τ, u, S)

t. The entropy corresponding to the isentropic system is η(U) = E. As η is convex, one
gets η(Uj)− η(Unj ) 6 ∇η(Uj) · (Uj − Unj ), that is η(Uj)− η(Unj ) 6 ∆t

Mj
∇η(Uj) · (fj+ 1

2
− fj− 1

2
).

In Lagrangian formalism, the calculus can be performed easily. Thanks to Gibbs formula, see,29
[Chapter 4, p 318], one has

dη = udu− pdτ + TdS.

So
∇η(Uj) =

(
−pj , uj , Tj

)t
.

For the flux, the one state solver is

fj+ 1
2

=

 uj+ 1
2

−pj+ 1
2

0

 =


1

2α
j+1

2

(pj − pj+1) + 1
2 (uj + uj+1)

α
j+1

2

2 (uj+1 − uj)− 1
2 (pj + pj+1)

0

 ,

fj− 1
2

=

 uj− 1
2

−pj− 1
2

0

 =


1

2α
j− 1

2

(pj−1 − pj) + 1
2 (uj−1 + uj)

α
j− 1

2

2 (uj − uj−1)− 1
2 (pj−1 + pj)

0

 .

11



End of the proof of inequality (12). First is the evaluation of ∇η(Uj) · fj+ 1
2
, and second ∇η(Uj) · fj− 1

2
.

Then the difference between the two expressions is performed. In the rest of the calculations, the time
dependence will be omitted to simplify the writing. One has

∇η(Uj) · fj+ 1
2

= −pj

(
1

2αj+ 1
2

(pj − pj+1) +
1

2
(uj + uj+1)

)

+ uj

(
αj+ 1

2

2
(uj+1 − uj)−

1

2
(pj + pj+1)

)
,

= pj
1

2αj+ 1
2

(pj + αj+ 1
2
uj)− uj

1

2
(pj + αj+ 1

2
uj)

− pj
1

2αj+ 1
2

(−pj+1 + αj+ 1
2
uj+1) + uj

1

2
(−pj+1 + αj+ 1

2
uj+1),

= (pj + αj+ 1
2
uj)(pj + αj+ 1

2
uj)

−1

2αj+ 1
2

+ (−pj+1 + αj+ 1
2
uj+1)(−pj + αj+ 1

2
uj)

1

2αj+ 1
2

,

= − 1

2αj+ 1
2

(pj + αj+ 1
2
uj)

2
+

1

2αj+ 1
2

(−pj+1 + αj+ 1
2
uj+1)(−pj + αj+ 1

2
uj).

and with the same method of calculus

∇η(Uj) · fj− 1
2

=
1

2αj− 1
2

(−pj + αj− 1
2
uj)

2 − 1

2αj− 1
2

(pj−1 + αj− 1
2
uj−1)(pj + αj− 1

2
uj).

The difference is

∇η(Uj) · (fj+ 1
2
− fj− 1

2
) = ∇η(Uj) · fj+ 1

2
−∇η(Uj) · fj− 1

2
,

= − 1

2αj+ 1
2

(pj + αj+ 1
2
uj)

2
+

1

2αj+ 1
2

(−pj+1 + αj+ 1
2
uj+1)(−pj + αj+ 1

2
uj)

− 1

2αj− 1
2

(−pj + αj− 1
2
uj)

2
+

1

2αj− 1
2

(pj−1 + αj− 1
2
uj−1)(pj + αj− 1

2
uj).

One has ab 6 a2

2 + b2

2 , for a and b reals. So

∇η(Uj) · (fj+ 1
2
− fj− 1

2
) 6 − 1

2αj+ 1
2

(pj + αj+ 1
2
uj)

2 − 1

2αj− 1
2

(−pj + αj− 1
2
uj)

2

+
1

2αj+ 1
2

[
1

2
(−pj+1 + αj+ 1

2
uj+1)

2
+

1

2
(−pj + αj+ 1

2
uj)

2

]
+

1

2αj− 1
2

[
1

2
(pj−1 + αj− 1

2
uj−1)

2
+

1

2
(pj + αj− 1

2
uj)

2

]
,

6 − 1

2αj+ 1
2

(pj + αj+ 1
2
uj)

2
+

1

4αj+ 1
2

(−pj + αj+ 1
2
uj)

2

+
1

4αj+ 1
2

(−pj+1 + αj+ 1
2
uj+1)

2

− 1

2αj− 1
2

(−pj + αj− 1
2
uj)

2
+

1

4αj− 1
2

(pj + αj− 1
2
uj)

2

+
1

4αj− 1
2

(pj−1 + αj− 1
2
uj−1)

2
.

One has the equalities 1
2α (p+ αu)

2− 1
4α (p− αu)

2
= 1

4α (p+ αu)
2
+pu and 1

2α (p− αu)
2− 1

4α (p+ αu)
2

=

12



1
4α (p− αu)

2 − pu. These results are injected in the previous inequality

∇η(Uj) · (fj+ 1
2
− fj− 1

2
) 6 − 1

4αj+ 1
2

(pj + αj+ 1
2
uj)

2
+

1

4αj+ 1
2

(pj+1 − αj+ 1
2
uj+1)

2
+ pjuj

− 1

4αj− 1
2

(pj − αj− 1
2
uj)

2
+

1

4αj− 1
2

(pj−1 + αj− 1
2
uj−1)

2 − pjuj ,

6 − 1

4αj+ 1
2

(pj + αj+ 1
2
uj)

2
+

1

4αj+ 1
2

(pj+1 − αj+ 1
2
uj+1)

2

− 1

4αj− 1
2

(pj − αj− 1
2
uj)

2
+

1

4αj− 1
2

(pj−1 + αj− 1
2
uj−1)

2
.

One then denotes

Φ(Uj , Uj+1) = Φj+ 1
2

=
1

4αj+ 1
2

(pj + αj+ 1
2
uj)

2 − 1

4αj+ 1
2

(pj+1 − αj+ 1
2
uj+1)

2
,

and
Φ(Uj−1, Uj) = Φj− 1

2
=

1

4αj− 1
2

(pj−1 + αj− 1
2
uj−1)

2 − 1

4αj− 1
2

(pj − αj− 1
2
uj)

2
.

Hence
η(Un+1

j )− η(Unj ) 6 −∆t

Mj
(Φn+1

j+ 1
2

− Φn+1
j− 1

2

),

also written differently as
η(Un+1

j )− η(Unj )

∆t
+

Φn+1
j+ 1

2

− Φn+1
j− 1

2

Mj
6 0. (29)

This corresponds exactly to the entropy inequality because Φ is the entropic flux. As a matter of fact,
one remarks

Φ(U,U) = ψ(U) = =
1

4α
(p+ αu)

2 − 1

4α
(p− αu)

2
,

=
1

4α
(p2 + 2αpu+ α2u2 − p2 + 2αpu− α2u2),

= pu.

Therefore as η = E and Φ = pu, one rewrites (29) as Ej−Enj
∆t +

(pu)
j+1

2
−(pu)

j− 1
2

Mj
6 0.

5.2 Proof of entropy inequality (13)
To show (13), one starts with (12).

Proof of inequality (13). Let us now denote rn =
Ej−Enj

∆t +
(pu)

j+1
2
−(pu)

j− 1
2

Mj
6 0. During the correction

step, the discretization of the total energy E is

En+1
j − Enj

∆t
= −

((pu)j+ 1
2
− (pu)j− 1

2
)

Mj
.

The variation of total energy is evaluated between the correction and the prediction step as

En+1
j − Ej

∆t
=
En+1
j − Enj + Enj − Ej

∆t

= −
((pu)j+ 1

2
− (pu)j− 1

2
)

Mj
− rn +

((pu)j+ 1
2
− (pu)j− 1

2
)

Mj

= −rn > 0.
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Since un+1 = u, one has
En+1
j − Ej

∆t
=
en+1
j − ej

∆t
= −rn > 0. (30)

To conclude, it is important to have in mind the Gibbs formula TdS = de+ pdτ , where the variable τ
is fixed because τn+1 = τ = 1

ρ . Therefore S(e, ρ) is a growing function of e. Moreover, one has

Sn+1
j − Snj

∆t
=
Sn+1
j − Sj

∆t
+
Sj − Snj

∆t
.

During the prediction step Sj = Snj , so

Sn+1
j − Snj

∆t
=
Sn+1
j − Sj

∆t
,

=
S(en+1

j , ρj)− S(ej , ρj)

∆t
.

Thus, thanks to (30), one concludes that
Sn+1
j −Snj

∆t > 0.

6 Numerical illustrations

In this Section, we provide some numerical illustrations which show that the theoretical properties of
robustness and existence of a solution are transferred to discrete methods.

6.1 Euler equations
For each example, the implicit scheme is compared to the explicit acoustic scheme (31) which provides
a reference solution. Some explanations on finite volume methods are found in,22 or13 for instance. The
implicit scheme is solved using a Newton algorithm. For all our test problems, we have observed that this
algorithm converges without any difficulties in only few iterations (less than 10) and we do not comment
this issue further.

Explicit scheme



τn+1
j = τnj +

∆t

Mj
(unj+ 1

2
− unj− 1

2
),

un+1
j = unj −

∆t

Mj
(pnj+ 1

2
− pnj− 1

2
),

En+1
j = Enj +

∆t

Mj
(pnj+ 1

2
unj+ 1

2
− pnj− 1

2
unj− 1

2
).

(31)

6.1.1 Sod shock tube

For this problem, the initial conditions are

p0(x) =

{
1 x < 0.5

0.1 x > 0.5
, ρ0(x) =

{
1 x < 0.5

0.125 x > 0.5
, u0(x) = 0.

The boundary conditions are uleft = uright = 0. The adiabatic index is γ = 1.4. The final time of the
simulation is t = 0.2. Several CFL (0.4, 40, 80, 537) are taken to evaluate the robustness of the scheme.
The number of cells is 100.

For a CFL equal to 0.4 the curves are quasi identical in Figure 1.
For an implicit CFL 100 times larger, the numerical smearing is visible in Figure 2 for the rarefaction

waves as well as the shock. On the contrary, the contact discontinuity is still at the correct location.
As it can be seen in Figure 3, one observes that when the CFL tends to be very large, there is more

numerical dissipation on shocks and rarefaction waves but the contact discontinuity still seems to be at
the right position.

The solution of Figure 4 shows the unconditional stability of the implicit scheme.
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Figure 1: Sod shock tube for Euler equations. The CFL are CFLexplicit = 0.4 and CFLimplicit = 0.4.
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Figure 2: Sod shock tube for Euler equations. The CFL are CFLexplicit = 0.4 and CFLimplicit = 40.

A remark can be done on the position of the contact discontinuity that is slightly shifted. To explain
the origin of this misplacement, we can evoke the fact that the interaction with the boundaries of the
domain is very important. To validate this hypothesis, we performed another calculation (same initial
conditions and final time) on a domain 9 times larger. The results are visible in Figure 5, and the contact
discontinuity is once again well positioned.

6.2 Position of the contact discontinuity
We develop hereafter a possible explanation for the precision of the position for the contact discontinuity
in Figure 5. It deals with the integration of the Riemann problem.
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Figure 3: Sod shock tube for Euler equations. The CFL are CFLexplicit = 0.4 and CFLimplicit = 80.
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Figure 4: Sod shock tube for Euler equations. The CFL are CFLexplicit = 0.4 and CFLimplicit = 537
(only one time step).

Indeed, consider the following initial conditions

τ0(x) =

{
τL, x < 0,

τR, x > 0,
u0(x) =

{
uL, x < 0,

uR, x > 0,
S0(x) =

{
SL, x < 0,

SR, x > 0.

Lagrangian isentropic equations are
∂tτ(x)− ∂mu(x) = 0,

∂tu(x) + ∂mp(τ(x), S(x)) = 0,

∂tS(x) = 0.

(32)

where dm = ρdx.
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Figure 5: Sod shock tube for Euler equations. Mesh of 9000 cells, domain between [−4, 5]. The CFL are
CFLexplicit = 0.4 and CFLimplicit = 537.

We are looking for a solution of class C0(R) ∩ (C1(R+) ∩ C1(R−)), for the variables τ and u. The
variable S is discontinuous. The natural boundary conditions are

lim
x→−∞

p(x) =
(γ − 1)eSL

τγL
,

lim
x→+∞

p(x) =
(γ − 1)eSR

τγR
,

lim
x→−∞

∂xp(x) = 0,

lim
x→+∞

∂xp(x) = 0.

(33)

The equations (32) are discretized in time but the space part is left continuous, ∆t > 0, x ∈ R. This
mimics the implicit scheme, indeed ∆t can be taken extremely big, but the space step ∆x is very small.
This corresponds of having a discrete ∆t compared to a small continuous ∆x.

τ(x)− τ0(x)

∆t
− ∂mu(x) = 0,

u(x)− u0(x)

∆t
+ ∂mp(x) = 0,

S(x)− S0(x)

∆t
= 0.

(34)

Lemma 18. The system (34) is self similar in x
∆t .

Proof. Writing y = x
∆t , then dx = ∆tdy. One has

τ(x) = τ̂(
x

∆t
), so τ̂(y)− τ0(y)− 1

ρ
∂yû(y) = 0,

u(x) = û(
x

∆t
), so û(y)− u0(y) +

1

ρ
∂yp̂(τ̂(y), Ŝ(y)) = 0,

S(x) = Ŝ(
x

∆t
), so Ŝ(y)− S0(y) = 0.

The method of calculation of a solution to (34) is detailed after.
For x < 0 the solution satisfies the equations

τ(x)− τL −
1

ρL
∂xu(x) = 0,

u(x)− uL +
1

ρL
∂xp(x) = 0.

The variable u is derived from the second equation and injected in the first equation to obtain

τ(x)− τL +
1

ρ2
L

p′′(x) = 0.

17



Introducing the enthalpy H(p, S) = e+ pτ , one has dH = de+ pdτ + τdp = TdS + τdp, hence

∂H

∂p
(p, SL)− τL +

1

ρL2
p′′(x) = 0.

Factorizing, one gets
1

ρL2
p′′(x) +

∂

∂p
(H(p, SL)− pτL) = 0.

One obtains
∂

∂x

(
1

ρL2

(p′(x))
2

2
+H(p, SL)− pτL

)
= 0.

Therefore
1

ρL2

(p′(x))
2

2
+H(p, SL)− pτL = KL.

Using the boundary conditions (33), the integration constant is KL = eL.

1

ρL2

(p′(x))
2

2
+H(p, SL)− pτL − eL = 0.

So
p′(x)

2

2ρL2
= −H(p, SL) + pτL + eL.

One finally obtains
p′(x) = ±ρL

√
−2H(p, SL) + 2pτL + 2eL. (35)

For x > 0, the solution verifies the equations
τ(x)− τR −

1

ρR
∂xu(x) = 0,

u(x)− uR +
1

ρR
∂xp(x) = 0.

We apply the same method than in the case x < 0, and check that the solution is of the same kind. One
finally finds an expression for p′

p′(x) = ±ρR
√
−2H(p, SR) + pτR + eR. (36)

At the interface, when x = 0, the continuity conditions are

p(0−) = p(0+) = p?, u(0−) = u(0+) = u?,

with p? ∈ R. One gets

u? = uL −
1

ρL
p′(0−) = uR −

1

ρR
p′(0+).

That is
−uL +

1

ρL
p′(0−) = −uR +

1

ρR
p′(0+).

Using (35) and (36), one finds the scalar equation

−uL ±
√
−2H(p?, SL) + 2p?τL + 2eL = −uR ±

√
−2H(p?, SR) + 2p?τR + 2eR

where p? is the unknown.
In the numerical examples, we took initial conditions of a Sod shock tube, that are recalled hereafter.

uL = uR = 0, ρL =
1

τL
= 1, ρR =

1

τR
=

1

8
, pL = 1, pR = 0.1, γ = 1, 4,

eSL =
10

4
, eSR =

81.4

4
.
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As uL = uR = 0, one has

−H(p?, SL) + p?τL + eL = −H(p?, SR) + p?τR + eR. (37)

Using the perfect gas law, one can rewrite the equation in terms of p and S.

τ =
((γ − 1)eS)

1
γ

p
1
γ

, e =
pτ

γ − 1
= (γ − 1)

1
γ−1e

S
γ p1− 1

γ .

One obtains

e
SL
γ

− γ

γ − 1
p?1− 1

γ + p
− 1
γ

L p? +
p

1− 1
γ

L

γ − 1

 = e
SR
γ

− γ

γ − 1
p?1− 1

γ + p
− 1
γ

R p? +
p

1− 1
γ

R

γ − 1

 .
Lemma 19. The equation (37) admits a unique positive solution p? ∈ [pR, pL].

Proof. Let us denote fL(p) = −H(p, SL) + pτL + eL, and fR(p) = −H(p, SR) + pτR + eR, so that (37) is
rewritten as fL(p?)− fR(p?) = 0.

The properties of the function fL are the following. One has fL(pL) = 0, f ′L(pL) = −∂H(pL,SL)
∂p +τL =

−τL + τL = 0, and f ′′L(p) = −∂
2H(p,S)
∂p2 = −∂τ∂p = 1

ρ2c2 > 0. With the same calculations, one finds
fR(pR) = 0, f ′R(pR) = 0 and f ′′R(p) > 0. The two functions fL and fR are strictly convex, with a
minimum value equal to 0, obtained respectively for pL and pR.

Let us denote f(p) = fL(p) − fR(p). One analyzes the function f in the case of the Sod shock
tube, that is for pR 6 p 6 pL. One obtains f(pR) = fL(pR) > 0, and f(pL) = −fR(pL) < 0. The
function f changes sign, so it takes at least once the value 0 in between pR and pL, which validates the
existence of a solution. To have the uniqueness, one needs to prove the monotonicity of f . One has
f ′(p) = f ′L(p) − f ′R(p). For all pR < p < pL, one finds f ′L(p) < 0 and f ′R(p) > 0, so f ′(p) < 0 which
concludes to the monotonicity of f , and the uniqueness of the solution to (37).

Numerically, we calculated with a Newton method that the solution to (37) is approximately equal to
p? = 0.2559. It corresponds to a velocity of u? = 0.8789. The exact value of the velocity for the Riemann
problem at the contact discontinuity is uexact = 0.9275. This value is found in Toro,32 [Table 4.3, p 131].
The difference between u? and uexact is equal to 5.2%, which is a satisfying accuracy considering that
the implicit simulation performs with only one time step. In our mind, this small relative error of 5.2%
is the reason why the contact discontinuity of the implicit solver is approximately superimposed with the
reference one in Figure 5.We observed a similar behavior for all the other test problems and we believe
it is a strong asset of this family of implicit Lagrangian schemes.

7 Conclusion

We have used a strategy of predictor-corrector scheme, based on the previous work4 in Eulerian coordi-
nates, to solve numerically the Euler equations. We have defined an abstract frame in order to analyze
a family of implicit schemes written under the peculiar form (8). We have proved the existence and
uniqueness of a solution to the prediction step of our implicit scheme. We provided two examples using
this result and led numerical tests that have indeed corroborated the theoretical statements of stability.
The second example is in the Appendix. The numerical illustrations compared the implicit scheme to
an explicit scheme of reference, and showed the precision of this new algorithm in these cases.

In a future work, it would be interesting to generalize this method to the case of thin elasto-plastic
structures using Kluth and Després21 or Maire et al.23 We could also try to improve this work by using
a more elaborate flux such as a two state solver flux, or increase the scheme order at the order 2. It will
probably ameliorate the precision, but it stays to evaluate the cost of simulation that it would generate.
The multi-dimensional version would need a more advanced management for the displacement of the
mesh, but the principal ingredients of Theorem 4 should remain similar.

Other numerical examples that are more realistic have to be performed to evaluate the pertinance of
this algorithm. Theoretically as well, it would be great to have an explanation on the rapid convergence of
the Newton algorithm for the prediction step, and to have a more elegant proof of the entropy inequalities
using the frame (8).
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A Traffic flow problem

A.1 Formulation under the form (8)
As another application of Theorem 4, consider the traffic flow problem in Lagrangian formalism

∂tτ + ∂mf(τ) = 0, f(τ) = −u(τ) = τ−1 − 1, (38)

where ρ = 1
τ > 0 is the density, f is the flux and u is the velocity. The mass variable is dm = ρ0(x)dx.

After discretizing this problem in time and space on a meshM composed of N > 0 cells denoted by j,
the following implicit scheme is obtained

τn+1
j − τnj

∆t
+

1
τn+1
j+1

− 1
τn+1
j

∆m
= 0,

which can be rewritten as

τn+1
j − τnj +

∆t

∆m

(
1

τn+1
j+1

− 1

τn+1
j

)
= 0. (39)

This scheme is provided with periodic boundary conditions. This problem only needs one step to be
solved implicitly, the unconditional stability of (39) will be proved further on.

Let us suppose that τj is positive for all j ∈ {1, . . . , N} and let us denote ν = ∆t
∆m . In the rest of

this Section one uses the fact that ρn+1
j = 1

τn+1
j

and the dependence in time is omitted for the sake of

simplicity. The scheme becomes
1

ρj
− 1

ρnj
+ ν(ρj+1 − ρj) = 0.

After reorganization, one gets

− 1

ρj
+

1

ρnj
+
ν

2
(−ρj−1 + 2ρj − ρj+1) =

ν

2
(ρj+1 − ρj−1). (40)

One can now express the implicit scheme under the form (8). The vector of unknowns is defined by

U = (ρj)16j6N . (41)

The matrix of coefficients for the right handside of the equations (40) reads

A =
ν

2



0 1 0 · · · 0 −1
−1 0 1 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 −1 0 1
1 0 · · · 0 −1 0


. (42)

The terms −1 on the first row and 1 on the last row are due to the periodic boundary conditions. The
functional J : D → R, is defined on the domain

D = {U such that ∀j ∈ {1, . . . , N}, ρj > 0}. (43)

J is evaluated as follows

J(U) =

N∑
j=1

(
− log(ρj) +

ρj
ρnj

)
+

N∑
j=1

ν

4
(ρj − ρj+1)

2
. (44)

By construction the jth partial derivative of J , is

∂J

∂ρj
= − 1

ρj
+

1

ρnj
+
ν

2
(−ρj−1 + ρj + ρj − ρj+1),

which is exactly the left handside of (40).
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A.2 Application of Theorem 4 for the traffic flow
The function J defined by (44) satisfies Hypothesis 2, and the matrix A given by (42) verifies Hypothesis 3.

Proposition 20. The implicit scheme (39) for the traffic flow has a unique solution.

Proof. Let m = 0, n = N , U = (ρj)j∈{1,...,N}, A and J defined as in (42) and (44). All the hypothesis of
Theorem 4 are satisfied, so the existence and uniqueness of a solution to the implicit traffic flow scheme
(39) is deduced.

A.3 Numerical illustrations

The precision of the implicit scheme is illustrated, compared to the explicit one, see,11 [Chapter 2],
both with Upwind fluxes. The aim of this example is to show the well posedness of the scheme and
its robustness. In this case, this is now contact discontinuity, rarefaction fan and shocks for which the
accuracy is depicted for large time step.

Explicit scheme:
τn+1
j − τnj

∆t
+

1
τnj+1
− 1

τnj

∆m
= 0,

Implicit scheme:
τn+1
j − τnj

∆t
+

1
τn+1
j+1

− 1
τn+1
j

∆m
= 0.

The example is performed on a mesh of 100 cells, for a final time t = 1.2 and velocity boundary conditions.
The first experiment has the following initial conditions

τ0(x) =


2, x < 0.3,

1.4, 0.3 6 x < 0.7,

1.1, 0.7 6 x.

The boundary condition is uright = 0.5.
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Figure 6: Traffic flow problem at different time steps, on a mesh of 100 cells: t = 0, t = 0.25, t = 0.5
and t = 1.2. CFLexplicit = 0.4 and CFLimplicit = 40.

One clearly sees in Figure 6 that the implicit scheme is numerically more dissipated than the explicit
scheme, both on the rarefaction waves and the shocks. It is explained by the larger CFL, but the results
are nonetheless similar.
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Another example is a sinusoïdal initial condition, with velocity boundary condition.

τ0(x) =
1

0.5− 0.3 sin(10x)
, uright =

sin(1)− 0.5

sin(1) + 0.5
.
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Figure 7: Traffic flow problem at different time steps, on a mesh of 100 cells: t = 0, t = 0.25, t = 0.75
and t = 1.2. CFLexplicit = 0.4 and CFLimplicit = 20.

The curves are following the same movement, and it can only be mentionned a dissipation at the end
of the rarefaction waves. Figure 7 shows the precision of the implicit scheme considering a larger CFL.

B Isothermal equation of state

We briefly describe the modification of the method to treat an isothermal equation of state. An isothermal
equation of state p = CT

τ can be analyzed by letting γ → 1 in the perfect gaz equation of state (3).
Nevertheless since this method is singular, it is simpler to directly perform the required modification.
Actually, we only need to modify the function L1

j in the definition of J (18).

The function L1
j is designed to verify the equation ∂L1

j

∂(−pj) = τj − τnj , see the proof of Proposition
7. With the isothermal equation of state, one takes L1

j (−pj) = −CT log(pj) + pjτ
n
j . Because of the

logarithmic term in L1
j , the hypothesis 2 of the Theorem 4 is satisfied in a stronger form. For V ∈ ∂D,

one has J(W )
W→V−−−−→
W∈D

+∞.
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