

As-fabricated Nitride and Silicide Coated U-Mo Atomized Particles Complementary Microstructural Analyses

H. Palancher, X. Iltis, H. J. Ryu, K. H. Lee, Y. J. Jeong, J. M. Park, M. Delpech

► To cite this version:

H. Palancher, X. Iltis, H. J. Ryu, K. H. Lee, Y. J. Jeong, et al.. As-fabricated Nitride and Silicide Coated U-Mo Atomized Particles Complementary Microstructural Analyses. RERTR 2015- The 36th International Meeting on Reduced Enrichment for Research and Test Reactors, Oct 2015, Seoul, South Korea. hal-02445717

HAL Id: hal-02445717 https://cea.hal.science/hal-02445717

Submitted on 20 Jan2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

AS-FABRICATED NITRIDE AND SILICIDE COATED U-MO ATOMIZED PARTICLES: COMPLEMENTARY MICROSTRUCTURAL ANALYSES

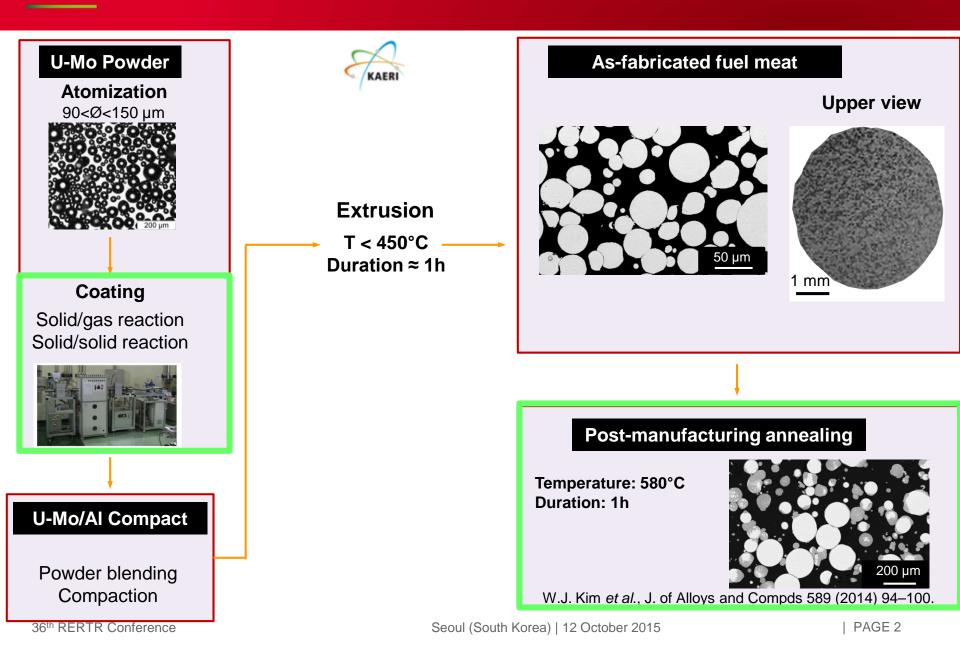
H. Palancher, X. Iltis

CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex - France

H.J. Ryu

Korea Advanced Institute of Science and Technology, 291 Daehakro, Yuseong, Daejeon 305-701 - Republic of Korea

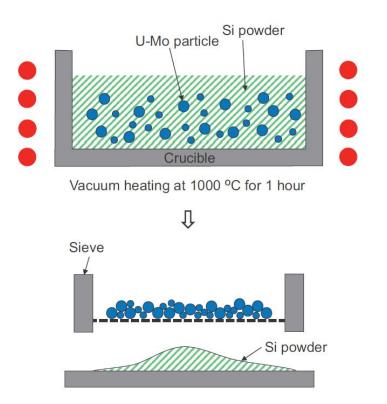
K.H. Lee, Y.J. Jeong, J.M Park

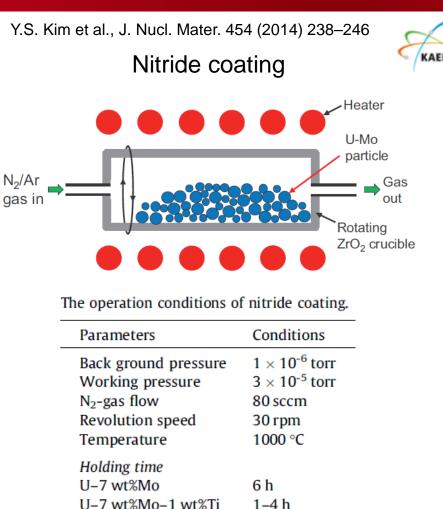

Research Reactor Fuel Development Division

Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, 305-353 Daejeon – Republic of Korea

M. Delpech CEA, DEN, DISN, 91191 Gif sur Yvette– France

DE LA RECHERCHE À L'INDUSTR

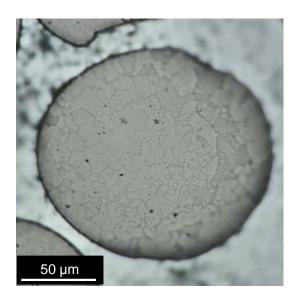

U-MO/AL SAMPLE MANUFACTURING (NO-CLADDING)



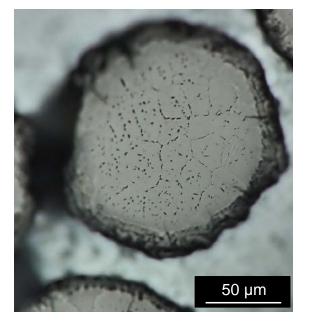
COATING CONDITIONS FOR THE U-MO POWDER (KOMO-5 TEST)

H.J. Ryu et al., Nucl. Eng. Technol. 43 (2011) 159-166.

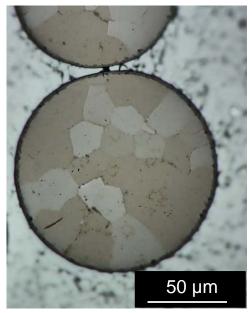
Si coating



Goals of the characterisation: coating composition but also U-Mo grain size modification

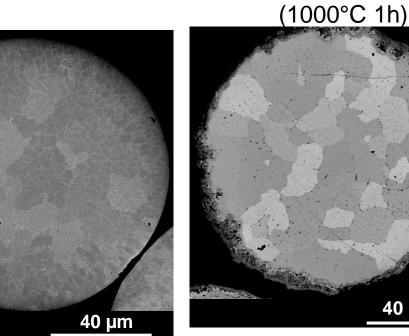


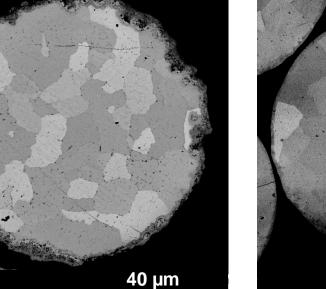
GRAIN SIZE EVALUATION USING OPTICAL MICROSCOPY


As-atomised

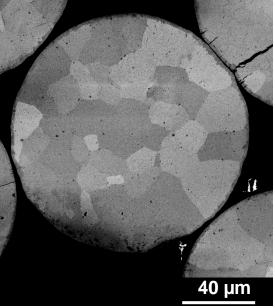
U-Mo(Si) (1000°C 1h)

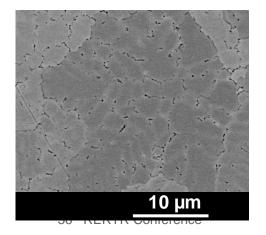
U-Mo(N) (1000°C 6h)


DE LA RECHERCHE À L'INDUSTRI

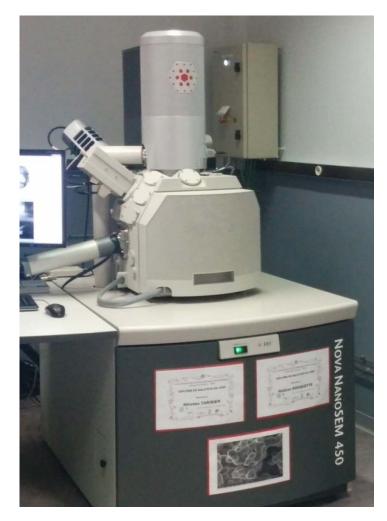


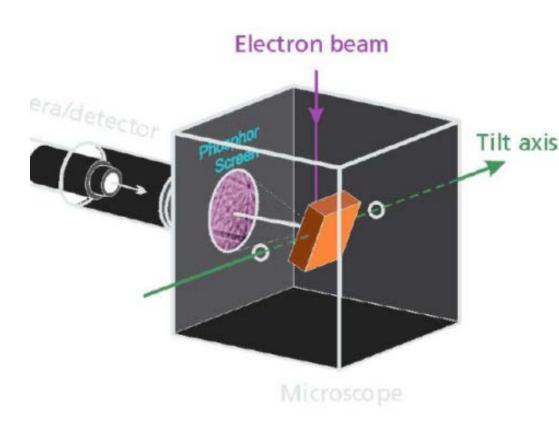
GRAIN SIZE EVALUATION USING SEM


U-Mo(Si)


As-atomised

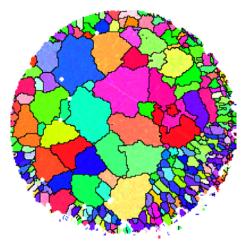
U-Mo(N) (1000°C 6h)



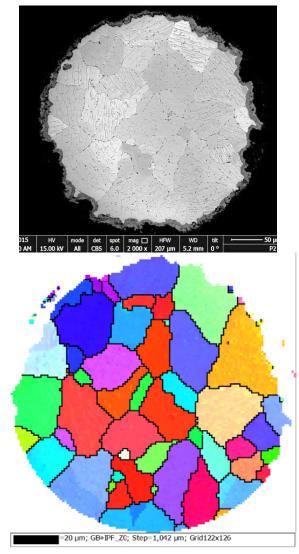

Even with high quality SEM characterisation combined with image analysis, grain size is difficult to determine accurately.

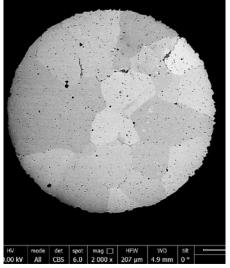
```
DE LA RECHERCHE À L'INDUSTR
```

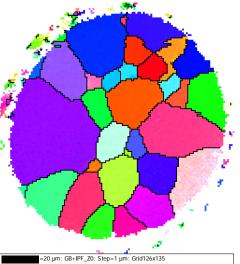

ELECTRON BACK-SCATTER DIFFRACTION (EBSD)


For further technical details on the application of this technique on as-atomised UMo nuclear fuel: See: *G. Champion, Ph.D. Thesis (Rennes University) 2013 (France).*

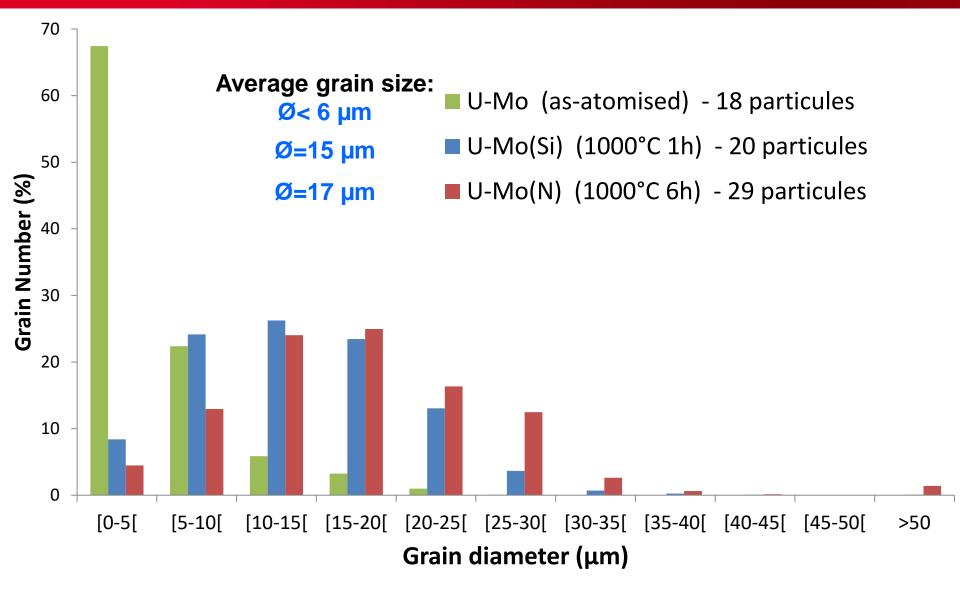
36TH RERTR CONFERENCE


DE LA RECHERCHE À L'INDUSTRI

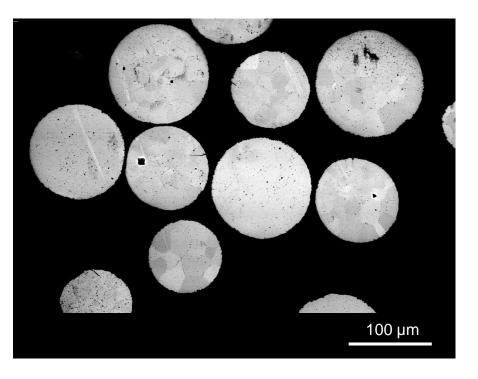

As-atomised



U-Mo(Si) (1000°C 1h)

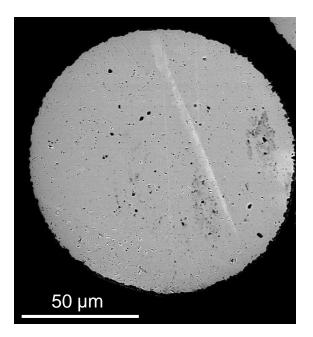


U-Mo(N) (1000°C 6h)

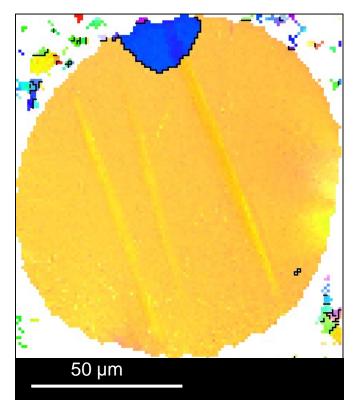


U-MO MICROSTRUCTURE AFTER TT AT 1000°C DURING 6H: LARGE EBSD MAPS

SEM

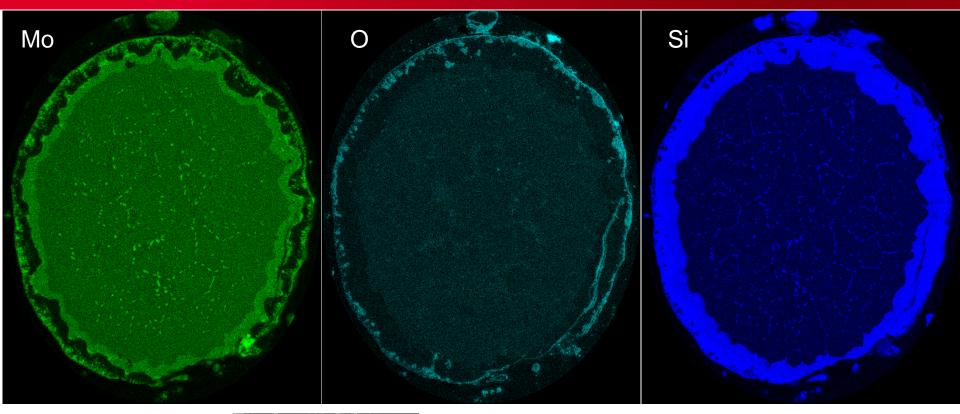

EBSD

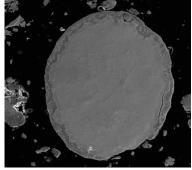
Evidence for the presence of « single crystal » U-Mo particles


36th RERTR Conference

MICROSTRUCTURE AFTER TT AT 1000°C DURING 6H: SINGLE CRYSTAL PARTICLES

SEM

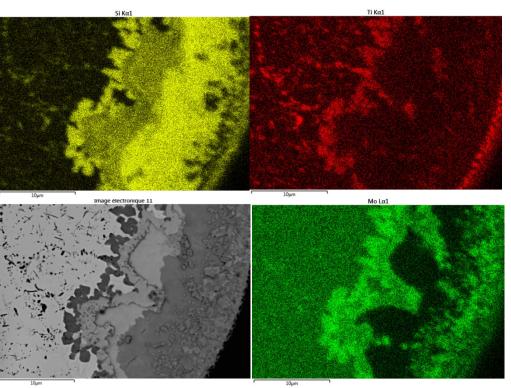

EBSD



Evidence for the presence of « single crystal » U-Mo particles

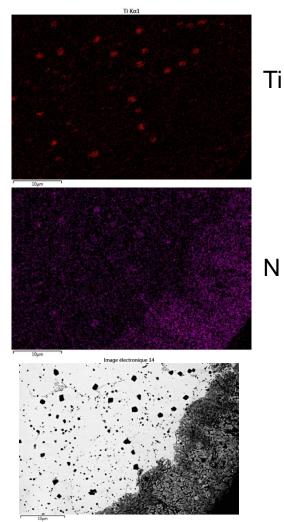
36th RERTR Conference

PRECIPITATION AS A RESULT OF THE POWDER ANNEALING



In U-Mo (Si) particles, intergranular Mo-Si rich precipitates can be observed

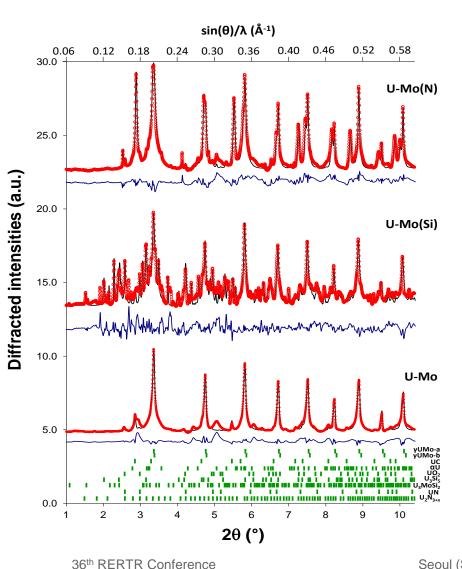
ADDITION ELEMENTS PRECIPITATION: THE CASE OF U-MO-TI PARTICLES


U-Mo-Ti(Si) (1000°C 1h)

Precipitation of Ti after thermal treatments :

- into Ti,Si and probably Mo rich precipitates in U-Mo-Ti(Si)
- into TiN in U-Mo-Ti(N)

U-Mo-Ti (N) (1000°C 6h)



DE LA RECHERCHE À L'INDUSTRI

X-RAY DIFFRACTION AT HIGH ENERGY (87 KEV)

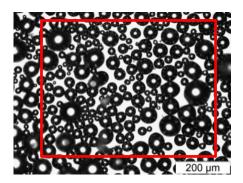
• Ln (Yobs) — Ln(Ycalc) — Ln(Yobs)-Ln(Ycalc)

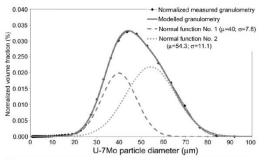
- Two γU-Mo lattice constants in the as-atomised case only
- Additional tetragonal superlattice
- Quantification of impurities: U(C,O) UO₂

X-RAY DIFFRACTION AT HIGH ENERGY (87 KEV)

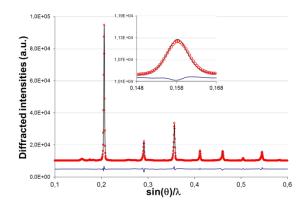
									Weight	fraction (%
	U-	Mo cor	е	Pollution	N Co	ating	Si coa	ating		
	γ- UMo	α-U	UC	UO ₂	UN	U_4N_7	USi _{1.88}	U_3Si_2	U₃Si₅	U ₃ MoSi ₂
Powder UMo	98.11	0	1.6	0.29	0	0	0	0	0	0
powder UMo(Si)	51.62	0	0	7.11	1.3	0	5.05	2.95	15.48	16.49
powder UMo(N)	59.94	1.72	0	0.91	37.4	0.02	0	0	0	0

Conclusion :


- No destabilization of the γ U-Mo phase (cooling rate high enough)
- Very high concentration of UN phase in U-Mo(N) (not consistent with 2-3 µm thick coating)
- Very complex crystallographic composition of the UMo(Si) coating


	U-Mo As-atomised	U-Mo(Si) (1000°C 1h)	U-Mo(N)/AI
Destabilisation ratio	0	<5%	<5%

Cesa


MEASUREMENTS OF THE AVERAGE COATING THICKNESS AT A MACROSCOPIC SCALE

HE-XRD measurements on **powder sample**

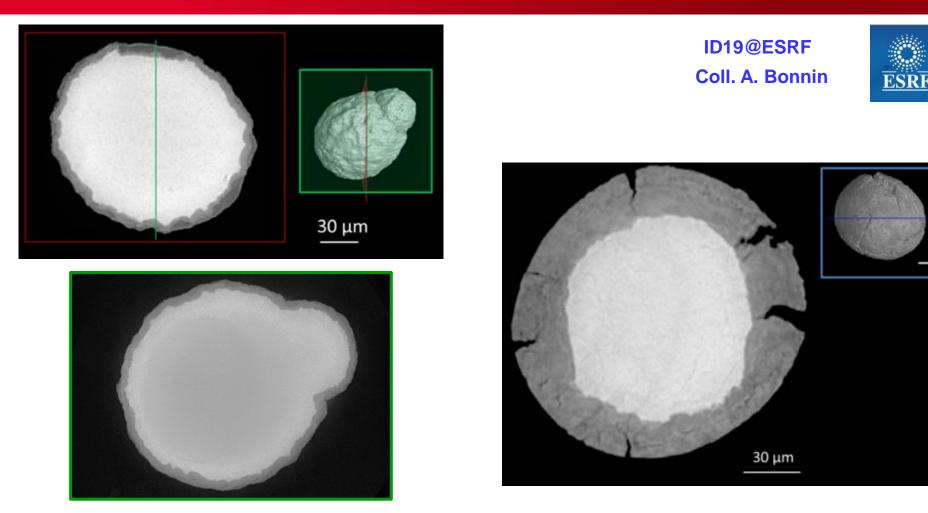
$V_{ m Shell}^{ m Powder}$		$\int_{0}^{\infty} f_{V}(D) V_{\text{Shell}}^{\text{Particle}} \mathrm{d}D$	
V ^{Powder} Core	$+ V_{\text{Shell}}^{\text{Powder}}$	$\int_{0}^{\infty} \int_{0}^{\infty} f_{V}(D) V_{\text{Shell}}^{\text{Particle}} \mathrm{d}D + \int_{0}^{\infty} f_{V}(D) V_{\text{Core}}^{\text{Particle}} \mathrm{d}D,$	
	e = 0	$0.0004V_{\text{ratio}}^2 + 0.0902V_{\text{ratio}} + 0.0013$	

Validation of the method

Method firstly validated on 1 μ m thick UO₂ coated U-Mo particles using tomography

H. Palancher et al., J. Appl. Cryst. (2012). 45, 906-913

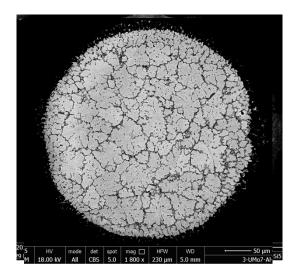
Method firstly validated on 0,4 µm thick ZrN coated U-Mo particles using FIB/SEM (INL measurements)


T. Zweifel et al., J. Nucl. Mater. (2013). 442, 124-132.

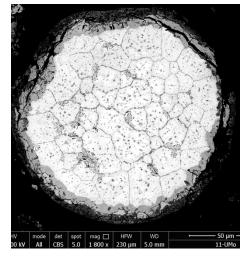
The UMo(N) case

Phases from the coating represent more than 37 wt% of the material which is not consitent with a 2-3 μ m thick layer measured with SEM: N diffusion deep into UMo particles has damaged the U-Mo long-range crisytallinity

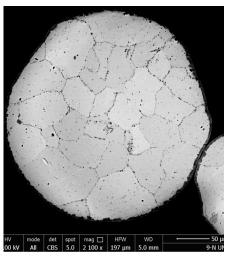
COATING: HE-MCT ON U-MO(SI)


µ-CT helps evidencing:

- The good quality of the coating even around particles with non-spherical shapes
- cracks that can not be due to sample preparation contrary to SEM for example.


36th RERTR Conference

U-MO MICROSTRUCTURE EVOLUTION AFTER MEAT EXTRUSION AND TT : SEM AND HE-XRD ANALYSES


U-Mo(Si)/AI,Si5

U-Mo(Si)/Al (1000°C 1h)

U-Mo(N)/Al (1000°C 6h)

SEM examinations:

much higher destabilization of the γ UMo phase (starting at grain boundaries) in U-Mo(Si)/AI than in U-Mo(N)/AI

HE-XRD:		U-Mo/Al	U-Mo(Si)/Al	U-Mo(N)/AI
	Destabilisation ratio	15.1	23.7	2.1

Good agreement between both analyses !!!

CONCLUSIONS

A wide range of cutting edge measurements have been performed to investigate both the coating and the microstructure of U-Mo particles

	As-atomised U-Mo	U-Mo(Si) (1000°C 1h)	U-Mo(N) (1000°C 6h)
Average grain size (µm)	<6	15	17
Grain shape	dendritic	Sharpe edges	Sharpe edgesSome « single crystal particles »
Consequences of the coating		 Precipitation of Mo, Si, O High oxygen pollution 	Lower long range order in U-Mo phase
Destabilisation ratio In the annealed meat	15	24	2

CONCLUSIONS

A wide range of cutting edge measurements have been performed to investigate both the coating and the microstructure of U-Mo particles

	As-atomised U-Mo	U-Mo(Si) (1000°C 1h)	U-Mo(N) (1000°C 6h)
Average grain size (µm)	<6	15	17
Grain shape	dendritic	Sharpe edges	Sharpe edgesSome « single crystal particles »
Consequences of the coating		 Precipitation of Mo, Si, O High oxygen pollution 	Lower long range order in U-Mo phase
Destabilisation ratio In the annealed meat	15	24	2
Coating crystallographic composition		Composed of wide range of crystallographic phases	Mainly UN
Presence of cracks		Some particles with radial cracks	Too thin to exhibit large cracks

A. Bonnin, post-doc (2010-2012)

Development of a non destructive approach for coating layers and their evolution at the different steps of the manufacturing process

Alight ESRF	į į z · y Ξμπ	т. Тат., 5 µm	ζ , 5μm	
X-ray beam size	0.1 µm	0.1 µm	20-120 µm	~ CM ²
Cructellegrephi	Nano- XRD	Nano XRD-CT	Far field 3D- XRD	HE-XRD
Crystallographic composition:	C X	×	×	×
Thickness:	×	×	×	×
Other coating c (Density, shape coating/core int	1	Porosities VU-Mo	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	HE-μCT ×

H. Palancher *et al.*, *J. Appl. Cryst.* (2012). **45**, 906-913

Ce	22	3D MULTI SC	ALE ANALYSIS USING RADIATIONS	G SYNCHROTRON	
A. Bonr	nin, post-doc (2010-2012)	As-atomis	ed U-Mo particle micros		F
_	ta, sum 0.1 μm	ریم دیم 0.1 μm	5μm 20-120 μm	~ cm ²	
	Nano- XRD	Nano XRD-CT	Far field 3D- XRD	HE-XRD	•
	z y 5μm	 U(C, O) grain orientation re with U-Mo U(C,O) precip 	elationships	 Two γU-Mo lattice constants Additional tetragonal superlattice Quantification of impurities: U(C,O) =1 wt.% 	

DE LA RECHERCHE À L'INDUSTRIE

24th March 2015 A. Bonnin, J. Wright, R. Tucoulou, <u>H. Palancher</u>, Appl. Phys. Lett. **105** (2014), 084103. UO₂ =0.3 wt.%

THANK YOU FOR YOUR ATTENTION