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Abstract

Two-phase turbulence has been studied using a DNS of an upward turbulent bubbly flow in a so-called plane channel. Fully deformable
monodispersed bubbles are tracked by the Front-Tracking algorithm implemented in TrioCFD code on the TRUST platform. Realistic
fluid properties are used to represent saturated steam and water in pressurised water reactor (PWR) conditions. The large number of
bubbles creates a void fraction of 10%. The Reynolds friction number is 180. After the transitional regime, the flow is simulated until
convergence of statistics is achieved. Time- and space-averaging is used to compute main variables at the average scale (e.g. void
fraction, phase velocities. . . ). Budget of forces and Reynolds stresses are also computed from the local fields. They provide reference
profiles to improve momentum transfer closures and turbulence modelling. The velocity profile and the flow-rate are compared to a
similar single-phase flow simulation. Strong buoyancy forces create a large relative velocity. Averaged surface tension forces also play
a significant role in the flow equilibrium. In the prospect of assessing a single-pressure Euler-Euler two-fluid model, the macroscopic
momentum jump condition is deduced from averaging DNS fields. The resulting balance shows that the classical assumption of opposite
forces acting on each phase should be revised. Indeed, neither surface tension, nor pressure difference is negligible.
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1. Introduction

Direct Numerical Simulations (DNS) of two-phase flows
used as “numerical experiments” are excellent tools to develop
local closures to the averaged two-phase RANS CFD models. In
this paper, we focus on the realisation of an up-scaling approach
from a local-scale simulation towards two-phase RANS CFD
modelling. This approach aims at inferring information (such
as correlations of velocities’ fluctuations or interfacial transfer)
from fine-scale simulations so as to assess turbulence modelling
or models for the interfacial momentum transfer. As a first up-
scaling step, emphasis is laid on the interfacial transfers, leaving
aside the matter of the turbulent fluxes (see [2] for analyses dedi-
cated to turbulence modelling).

The general interest for industrial applications covers a wide
range of very different flows, from classical single-phase turbu-
lent flows, to very complex boiling flows (with many different
topological regimes). As a first step away from single-phase tur-
bulence, we focus on an adiabatic bubbly flow of pressurised
steam/water between two infinite parallel walls. The first DNS of
single-phase flow in this geometry has been performed by Kim
et al. [15], for a friction Reynolds number Reτ = ρuτh/µ of
180, where ρ is the density, h is the channel half-width, µ is the
liquid viscosity and uτ is the wall friction velocity defined by
uτ =

p
τw/ρ, where τw is the mean shear stress at the wall.

DNS of turbulent two-phase flows are much more recent. A
comprehensive review of DNS of bubbly flows is presented in
[25, 26]. Latest works have moved towards the study of convec-

tive heat transfer or multiple sized bubbles [6, 24]. The present
study is a novelty because we have simulated an upward bubbly
flow with 10% void fraction in Pressurised Water Reactor (PWR)
incidental conditions, for a friction Reynolds number of 180. To
our knowledge, the void fraction of 10% is a significant increase
from existing literature. Besides, no DNS of high-pressure steam-
water turbulent bubbly flow has been achieved yet.

This article starts with a description of the test-case and the
numerical method (section 2). Then, the two-fluid model is pre-
sented in section 3 with emphasis on the interfacial transfer mod-
elling. Section 4 presents DNS results starting with the profile of
averaged main variables and then given the procedure and sub-
sequent analysis to extract information on momentum transfer.
Finally, conclusions and prospects are drawn in section 5.

2. Computational setup and numerical method

The rise of buoyant bubbles in turbulent upflow is simulated
for pressurised steam/water conditions using a finite-difference
method with Front-Tracking. The physical and numerical con-
ditions of the test case are described. They are followed by the
governing equations and the numerical method used.

2.1. DNS of a turbulent bubbly flow

The computational domain is a rectangular channel bounded
by two vertical walls (normal to y-axis) and periodic boundary
conditions in the spanwise (z) and in the streamwise (x) direc-
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tions. The channel dimensions are 2πh × 2h × πh in x, y and
z, where h = 5 mm is the channel half-width (Fig. 1). The
flow was computed on a uniform mesh of 85 million hexahedral
cells, with 384 × 1152 × 192 cells in x, y and z respectively,
hence resolving the flow at the wall up to a first cell-centre of
y+ = y/Reτ = 0.1563. A uniform mesh with a finer resolu-
tion in the wall-normal direction was adopted so as to accurately
capture the turbulent structures, while maintaining a satisfactory
resolution of the bubbles and their deformations independently of
their location in the channel. In this way, we eliminate potential
competition between numerical and physical effects in the deter-
mination of the wall-normal bubble distribution. Careful atten-
tion has been devoted to the consideration of physical properties
of water and saturated steam similar to PWR conditions for some
incidental scenarios where boiling occurs before the depressuri-
sation of the system. The physical properties are summarised in
Table 1.

Table 1: Physical properties of saturated water and steam
(T sat = 618 K, P sat = 15.5 MPa).

liquid vapour
ρ [kg.m-3] 594.38 101.93
µ [Pa.s] 68.327 10−6 23.108 10−6

σ [J.m-2] 4.6695 10−3

The non-dimensional parameters describing the flow are the
void fraction α, the ratio of the bubble mean diameter over the
channel half-width Db/h, the Reynolds friction, the Atwood, the
Eötvös, the Morton and the Archimedes numbers given by:

α = 10%, Db/h = 0.2, Reτ = ρluτh/µl = 180,

At = (ρl − ρg)/ρl = 0.83, Eo = (ρl − ρg) gD2
b/σ = 1.03,

Mo = gµ4
l /
`
ρlσ

3´ = 3.53 10−12 and

Ar = Eo3/2At−1/2Mo−1/2 = ρl (ρl − ρv) gD3
b/µ

2
l = 6.15 105.
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Figure 1: Description of the DNS set-up (close-up). x and z are
periodic directions.

The computation was initialised with uniformly distributed
spherical bubbles. The flow moves upwards along the direction
of the gravitational force g = 9.81m.s-2. The motion and defor-
mation of 942 bubbles with an equivalent diameter Db = 1mm
is fully resolved by the Front-Tracking algorithm so that the void
fraction is αv = 10%. Bubbles leaving the computational do-
main are replicated at the opposite periodic boundary so as to
be correctly resolved. The flow-rate is controlled to reach a
Reynolds friction number of Reτ = 180. The volumetric flow
rate and the bubble volume are controlled. Thus, after a tran-
sitional regime, the flow reaches a statistical steady-state from
which statistics can be computed. Converged statistics have been
gathered over an averaging period of T = 3.34s of physical time
which corresponds to 4 crossing of the channel (of length 2πh),
or a non-dimensional period of T+ = Tτw/µl = 498 viscous
units. Since the flow variables are spatially homogeneous in x-
and z-directions, the statistical average (noted with an overbar ·)
is assimilated to the average over time and over the (xz) plane.
Every timestep has been used to compute statistics for any cell-
centre along the y-axis. Because of flow symmetry, only the aver-
ages of the left and right-hand side of the channel are presented.

2.2. Governing equations and numerical method

A finite-difference method with Front-Tracking is used to
perform the numerical simulations. In order to avoid spurious
current, the “one-fluid” Navier-Stokes equations [3, 14] are for-
mulated as follows:

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇Pn +∇ ·

h
µ
“
∇u +∇Tu

”i
+ Si + Sf (1)

∇ · u = 0 (2)

Here, u is the velocity vector, ρ and µ are the discontinuous den-
sity and viscosity fields respectively (assumed constant for each
phase). The source term Sf = Sxf ex is introduced in the stream-
wise direction to control the flow rate and to balance, on aver-
age, the Archimedean thrust and the wall shear stress. Tempo-
ral fluctuations of the source term are controlled by a relaxation
equation towards the nominal wall friction τ0 = 0.101kg.m-1.s-2

corresponding to a Reynolds number of Reτ = 180. The aver-
aged pressure gradient in the channel generated by gravity and
wall friction is modelled by Sf and we resolve a periodic numer-
ical pressure Pn from which the averaged pressure gradient due
to wall friction and gravity has been removed. The surface ten-
sion term is computed along with the gravitational and possible
repellent forces:

Si = (σκ−∆ρg · xr − φr)∇χl (3)

Here, g is the gravity vector, σ is the constant surface tension,
κ = −∇s · nv is twice the mean curvature (usually negative for
bubbles) and nv is the unit vector normal to the interface, orien-
tated towards the liquid such that nvδ

i = −∇χl where δi is a
three-dimensional delta function located over the interfaces, xr
is the position vector of the real interface1 and χl is the phase in-
dicator function equal to 1 in the liquid and 0 in the vapour phase.
φr is a repellent potential to artificially prevent coalescence and
thereby ensure uniqueness of the bubble’s volume

φr = max

„
Ir
δr − dmin

δr
, 0

«
(4)

where dmin is the minimal distance towards other bubbles. The
intensity Ir of the force and the range δr have been empirically
fitted to their lowest value to prevent coalescence. This force is

1The marker’s position is corrected by Lx for the virtual part of the bubble in order to retrieve the correct Archimedean thrust over a bubble crossing a boundary.
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zero when there is no other inclusion within the range δr . Be-
sides, similar treatment with smaller values was applied at the
walls in order to avoid wall contact.

This ad-hoc short-range force has little impact on the local
properties of the flow but is necessary to reach a fully-established
two-phase turbulent flow. The behaviour of the flow is believed to
be more representative of flows with higher Reynolds numbers,
not yet achievable via DNS. Suppressing coalescence is a com-
mon practice in a classical step-by-step approach to a complex
physical problem [6, 17]. The effect of buoyancy forces on the
flow dynamics is isolated from other aspects related to liquid film
drainage and bubble sliding at a wall. The control of the bub-
ble equivalent diameter is also very useful to compare the DNS
results to averaged models because we can focus on the mod-
elling of turbulence and interfacial forces without perturbation
from other models (e. g., for coalescence and break-up) that are
rather complicated and influential.

The Navier-Stokes equations are solved by a mixed Volume-
Of-Fluid/Front-Tracking (VOF/FT) algorithm similar to Bunner
and Tryggvason [3] except for the original discretization of the
surface tension and gravitational forces that eliminates spurious
current [19]. The original formulation (3) releases the exact mo-
mentum conservation in favour of a numerical scheme free of
any spurious currents. Mathieu [18] proves that with the new nu-
merical formulation, the mechanical energy of the discrete sys-
tem decreases when it is isolated, hence allowing an equilibrium
state with a zero velocity field. The interface (also called “the
Front”) is followed explicitly by connected marker points that are
advected by interpolations of the velocity field. Dedicated algo-
rithms ensure the preservation of the mesh quality and the volume
of each inclusion (based on a VOF-like transport of the phase in-
dicator function). The Front is then used to compute the phase in-
dicator function χl, the density and the viscosity on the Eulerian
grid. The algorithm is implemented in the TrioCFD code devel-
oped by CEA relying on the TRUST platform (formerly known
as Trio_U [4]). The code is fully parallel, written in C++ and has
been widely used for industrial applications on single-phase fluid
dynamics [e. g., 1, 5, 23].

The algorithm rely on a two-step prediction-correction algo-
rithm on a fixed, staggered Cartesian grid, with a third-order ac-
curate time advancing scheme [27]. In the prediction step, the
source term Si is added to the main flow source term Sf and to
the fourth-order central differentiation of the convection and dif-
fusion operators in order to obtain the predicted velocity. Then,
an elliptic pressure equation is solved by an algebraic multigrid
method to impose a divergence-free velocity field. This part of
the algorithm is responsible for most of the computational power
consumption (60 to 80% of the whole CPU time), hence spe-
cific efforts have been made to improve its efficiency. The new
data structure, stored on a Cartesian grid structured by 3 indices
(i, j, k) allows heavy strong-scaling with approximately 150 000
elements per processor. Convection and diffusion operators have
also been revised to avoid non-contiguous memory access and to
improve the use of cache memory.

3. The two fluid model

The DNS presented in section 2 is used as a reference
and a source of information for the two-fluid model. In the
present work, we focus on adiabatic bubbly flows and micro-to-
macroscale model up-scaling is applied to the closure of interfa-
cial momentum transfers, setting aside the issue of the Reynolds
stresses modelling. Models for interfacial transfers are in fact
very influential in two-phase flows and they are chosen as the
main interest of the up-scaling methodology presented here. We
begin with the definition of averaged and fluctuating quantities.
Then, phase-averaging the Navier-Stokes equations and intro-

ducing constitutive relations for the Reynolds stresses and for
the interfacial momentum transfers of each phases leads to the
two-fluid model [11] solved e. g., in the averaged RANS CFD
code NEPTUNE_CFD [10]. The presentation and discussions
are mainly focused on the classical hypotheses used to close the
interfacial transfers.

3.1. Averaging operator

For practical purpose, the statistical averaging operator [11],
noted with an overbar φ, is replaced by the space- and time-
averaging using the periodic x and z directions and an averaging
period ∆t sufficiently large to make φ(y, t) practically indepen-
dent of time

φ(y, t)=̂
1

∆tLxLz

Z t+∆t/2

t−∆t/2

Z Lz

0

Z Lx

0

φ(x, y, z, τ)dxdzdτ

Phase or interfacial average are respectively defined by

φk
k
=̂
χkφk
αk

and φk
i
=̂
φkδi

ai
(5)

where α = αv = χv is the void fraction and ai = δi is the
interfacial area concentration (IAC). Quantities are then decom-
posed into an averaged and a fluctuating part, e. g., for the veloc-
ity: uk = ukk + u′k.

3.2. Derivation of the exact equations governing the phase-
averaged momentum

The averaged equations describing the evolution of each
phase are obtained from the Navier-Stokes equations written for
phase k multiplied by the phase indicator function and then aver-
aging [7–9, 12, 20]. Due to the commutability of the averaging
operator with derivatives, we obtain the following equations

∇ ·
“
αku

k
k

”
= 0 (6)

∂αkρku
k
k

∂t
+∇ ·

“
αkρku

k
k ⊗ ukk

”
= −∇αkpkk + αkρkg + Mk

+∇ ·
“
αkτk

k − αkρku′ku′k
k
”

(7)

where τk = µk
`
∇uk +∇Tuk

´
is the viscous stress tensor,

Rk = u′ku
′
k

k
the turbulent Reynolds stresses and Mk the inter-

facial momentum transfers (from the interface to phase k) given
by:

Mk = Mi→k = pk∇χk − τk · ∇χk (8)

From the microscopic jump conditions [7, 14], we know thatX
k

Mk = Mσ=̂σκnvδi (9)

where Mσ is the mixture momentum source due to surface ten-
sion. Following the proposal of Ishii and Hibiki [12], the macro-
scopic interfacial momentum transfer Mk is decomposed using
the surface mean values (noted φ

i

k) into

Mk = Mik + pik∇αk +∇αk · τ ik (10)

where Mik is the total generalised drag force (following Ishii
and Hibiki’s notations [12]). Using Eqns. (9) et (10), one gets the
exact macroscopic jump condition at the interface:

Mil + Miv = Mσ +
“
pil − p

i
v

”
∇αl +∇αl ·

“
τ il − τ iv

”
(11)

Therefore, this relation states that the imbalance of forces exerted
at the interface by both phases is given by the three contributions
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on the RHS of Eqn. (11), namely: the mixture momentum source
related to surface tension, the interfacial pressure jump and the
viscous stress disequilibrium. In the general case, the accumula-
tion of energy over the interfaces by means of the surface tension
or redistribution between the components of velocity can occur.

3.3. Closures of the phase-averaged momentum

In the context of the two-fluid one-pressure model of dis-
persed bubbly flows, it is classically assumed that pik = pvv = pll
and the effect of the interfacial shear τ ik and the mixture momen-
tum source Mσ are often neglected in a first approximation, thus
leading to the approximate macroscopic jump condition at the in-
terface:

Mil + Miv = 0 (12)

In the end, the main variables αv , ull, u
v
v and the only pressure2

p describe the evolution of the averaged thermodynamic system.
They are governed by four Partial Differential Equations for the
vapour, for the total mass and for the liquid and vapour momen-
tum conservation, namely

∂αv
∂t

+∇ · (αvuvv) = 0

∂ (αlρl + αvρv)

∂t
+∇ ·

“
αlρlu

l
l + αvρvu

v
v

”
= 0 (13)

∂αlρlu
l
l

∂t
+∇ ·

“
αlρlu

l
l ⊗ ull

”
= −αl∇p+ αlρlg + Mil

+∇ ·
“
αlτl

l − αlρlu′lu′l
l
”

∂αvρvu
v
v

∂t
+∇ · (αvρvuvv ⊗ uvv) = −αv∇p+ αvρvg + Miv

+∇ ·
`
αvτv

v − αvρvu′vu′v
v´

supplemented by constitutive relations to define secondary vari-
ables: αl = 1 − αv , u′lu

′
l

l
, u′vu′v

v , Mil and Miv . In single-
phase flow, the closure issue is limited to the modelling of the
turbulent Reynolds stresses whereas in two-phase flow, the prob-
lem is made more complex by the interactions between phases
that produce interfacial momentum transfer.

In the two-fluid Euler-Euler model, the liquid Reynolds
stresses Rij = u′lu

′
l

l
can be modelled by a second order tur-

bulence model (Rij − ε) whereas the vapour Reynolds stresses
are generally neglected: u′vu′v

v ≈ 0 [10].
As far as the interfacial transfers are concerned, it is very

common to use the simplified approximation (12) of Eqn. (11) as
a constitutive equation to define e. g., the liquid-to-interface mo-
mentum transfer from its vapour counter-part: Mil = −Miv .
Local equilibrium is assumed. One then need to specify the con-
tribution on the vapour side (Miv) as a series of forces [12, 20].
For instance in NEPTUNE_CFD [10], the model of Ishii and Zu-
ber [13] is used to model the drag force. The virtual mass and
Basset forces are accounted for by means of Zuber’s model [28].
The lift and wall lubrication forces are presented in Tomiyama
[21] and Tomiyama et al. [22]. Lastly, the model for turbulent dis-
persion force is given in Laviéville et al. [16]. For completeness,
one should stress that those models require additional informa-
tion on the flow topology, such as the distribution of the bubble
diameters for instance. A modelled equation governing the in-
terfacial area transport is therefore usually necessary but this is
beyond the scope of this paper. Finally, the set of equations (13)
can be solved in averaged codes to predict the flow evolution.

In the next section, the DNS data is used to assess the assump-
tion of interfacial momentum equilibrium given by Eqn. (12).

4. Results and discussion

This section starts with wall-normal profiles of mean vari-
ables and the comparison of macroscopic flow characteristics to
the equivalent single-phase flow. Then, in the up-scaling method-
ology, information on the macroscopic jump condition at the in-
terface is extracted from the DNS results. The procedure used
to compute several contributions is presented. Each term of
Eqn. (11) is evaluated as a function of the distance to the wall
and the validity of the assumption of interfacial momentum equi-
librium (Eqn. (12)) is therefore assessed.

4.1. Mean variables

As a consequence of the high void fraction considered and of
the preservation of a realistic buoyancy force, the flow exhibits a
behaviour that, to our knowledge, has not been observed yet. Nei-
ther wall nor core peaking of the void fraction appears (Fig. 2).
The repellent forces used to prevent wall contact are only effec-
tive up to y+ ≈ 5.8 and the void fraction is nil for y+ < 2. The
void fraction profile at steady-state results from the intricate bal-
ance between the turbulent shear, the surface tension force and
the Archimedean thrust. The bubble distribution remains rather
homogeneous with α ≈ 10.3%, even in the wall normal direc-
tion. Close to the wall, two consecutive peaks are observed at
y+ ≈ 27 and y+ ≈ 68. Figure 2 shows that the peaks fit well to
the law that would be obtained for a layer of spherical bubbles

α(y+) = αmax

 
1−

`
y+ − yc

´2
r2
a

!
(14)

where αmax is the maximum void fraction, yc = ra + δ is
the location of this peak defined by the apparent bubble ra-
dius ra and the offset between the wall and the bubble layer δ.
The triplet (αmax, ra, δ) for each peak is: (13.4%, 25, 2) and
(10.9%, 50, 18). The equivalent dimensionless radius of the bub-
bles is r+

b = 18. From visual inspection of Fig. 1, bubbles are
slightly elongated in the wall-normal direction. A meandering
pattern of the bubbles is added to these deformations to result in
the void fraction profile of Fig. 2. Hence, in the near-wall layer,
the lateral motion of bubbles is rather limited whereas in the sec-
ond layer their trajectories are more scattered in the wall-normal
direction. In actual fact, bubbles are not trapped in any layer.

Figure 3 shows the liquid, the vapour and the mixture velocity
profiles. The relative velocity between the liquid and the bubbles
is very strong. The signature of the first void fraction peak is
clearly visible. In the viscous and buffer layers (y+ < 20), the
liquid velocity follows the power law u+ = 1.211

`
y+
´0.6215

and the mixture velocity is similar to the liquid velocity in a
single-phase flow for the same pressure drop. However, after the
void fraction wall peaks, the velocity gradient is smaller than for
a pure liquid flow, hence leading to the following log law:

u+ = 1/k ln
`
y+´+B with: k = 1.3 and B = 5.2 (15)

The values of k and B in a low-Reynolds single-phase turbulent
flow are: k = 0.4 and B = 5.5 [15].

4.2. Assessment of the macroscopic jump relation

In order to evaluate the terms of Eqn. (11), one needs to post-
process the DNS results so as to estimate Mk, pik and τ ik. Such
interfacial quantities are very difficult to compute directly be-
cause some local instantaneous one-fluid fields (such as µ, p,∇u)
are discontinuous at the interface. Consequently, any attempt to
evaluate Mk directly from its definition (8) or pik and τ ik from
their local discretized values at the interface is subjected to con-
siderable uncertainty and is likely to be useless for the analysis of
the balance (11). Therefore, we have preferred to evaluate Mk by

2It can be the pressure of either the liquid, the vapour or the mixture as they are all equal in the model because the pressure difference is neglected.
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Figure 2: Void fraction profile. Figure 3: Velocities profiles.

computing the other terms in the averaged momentum equation
(Eqn. (7)). Besides, interfacial averaged quantities are assumed
equal to the phase-average following a similar reasoning as for
the closure of the two-fluid model [12]: pik ≈ pkk and τ ik ≈ τkk.
Then, Mik can be constructed from Eqn. (10). Furthermore, the
interfacial mixture momentum Mσ is readily accessible with our
numerical method as it is the average of a part of Si in Eqn. (3).

Following this procedure, the terms of Eqn. (11) are com-
puted and plotted in Figs. 4 and 5 for streamwise and wall-normal
components respectively. The viscous stresses τkk have been
found negligible and are not presented for simplicity. The repel-
lent forces used to preserve the topology of the flow (monodis-
persed bubbles) act randomly on the bubbles and their intensity
is sufficiently small to result in a negligible contribution behind
the surface tension term Mσ .

In the streamwise direction, there is no gradient of void frac-
tion because the flow is periodic. Therefore, Eqn. (11) simply
reduces to:

Milx +Mivx = Mσx (16)

Figure 4 shows that the vapour contribution Mivx is roughly
nil through the channel whereas the liquid part Milx is almost
equal to the surface tension source term Mσx. Therefore, Mσx

cannot be neglected and is fully responsible for the momentum
source term acting on the liquid axial momentum.

Besides, we recall that the bubble mean diameter is
Db/h = 0.2 and that the contribution of surface tension is nil
over closed portions of interfaces. Therefore, we can infer from
Fig. 4 that energy is taken from the liquid in the near-wall layer.
It is stored onto the interfaces via their deformations and takes the
form of surface tension energy of the mixture. Then, when waves
propagates along the interface or when bubbles moves away from
the wall, this energy may be released and dissipated into the liq-
uid. A similar process seems to take place around the secondary
peak of the void fraction.

The two strong spikes for y/h < 0.05 may not be physi-
cal and could be related to imprecision in the a posteriori dif-
ferentiation operators used to evaluate Mk or in the poor resolu-
tion of small interfacial structures. In the centre of the channel
(y/h > 0.5), both phases are in equilibrium and almost no mo-
mentum transfer takes place (apart from buoyancy effect).

Figure 5 shows the budget of wall-normal components. Con-
tributions are much larger than in the spanwise direction. Alter-
nate positive and negative values also characterise intense trans-
fers at the scale of the bubble diameter. In first approximation,
Mily and Mivy are balancing each other out but the surface ten-
sion and the pressure difference still represents around 10% of
Mily each.

Finally, this work reveals that in the conditions of this DNS
(high void fraction and pressurised steam/water), the single pres-
sure and negligible surface tension hypotheses are not accurate:

Mivx ≈ 0, Mσx ≈Milx, Mivy ≈ −0.8Mily,“
pll − p

v
v

” ∂αl
∂y
≈ 0.1Mily and Mσy ≈ 0.12Mily (17)

Thus, new models for the pressure difference and for interfacial
energy should be investigated. For instance, the derivation of
a transport equation for the interfacial energy related to surface
tension could be investigated based on physical principles and on
the microscopic jump conditions. In a second step, constitutive
relations for the sink and source terms in this equation will be
necessary and will require additional modelling efforts.

5. Conclusion

The DNS of a bubbly flow in a channel in conditions close
to reactor core was achieved for a Reynolds friction number
Reτ = 180 and a void fraction α = 10%. At statistically steady-
state, the void fraction profile results of the complex equilibrium

Figure 4: Streamwise contributions to the averaged macro-
scopic jump condition evaluated from DNS results.

Figure 5: Wall-normal contributions to the averaged macro-
scopic jump condition evaluated from DNS results.
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between buoyancy, surface tension and shear stresses. Some vari-
ations of the void fraction and the velocity profiles are clearly re-
lated to the characteristic bubble size. Two small void fraction
peaks are observed near the wall whereas the two phases reach
an equilibrium in the centre of the channel with no momentum
transfer and a uniform void fraction. Velocity profiles are also
analysed. The flow-rate reduction in two-phase flow is related to
the effect of the void fraction main peak and to a strong reduction
of the velocity gradient in the log law region.

Then, the DNS data is used as a reference to compare to the
single-pressure one-fluid model of NEPTUNE_CFD. Upscaling
process towards two-phase RANS CFD modelling is covered fo-
cusing on momentum interfacial transfers. In the streamwise di-
rection, the force exerted by the liquid is stored over the interfaces
as interfacial energy due to surface tension. In the wall-normal
direction, inter-phases transfers are much stronger and more ef-
ficient. Pressure difference and surface tension force only rep-
resent 10% of this transfer each. Hence, some very common
hypotheses of two-fluid models such as the negligible effect of
surface tension on mean flow properties or the single pressure are
challenged and our work suggests they should be revised. Future
modelling efforts should focus on the interfacial transfer closure
for instance looking for the derivation and the closure of a trans-
port equation for the interfacial surface tension energy.
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