

Corrosion behavior of a AISI-316 stanless grade type in nitrogen environment for a sodium-gas heat exchanger

S. Bosonnet, K. Ginestar, D. Gosset, F. Barcelo, B. Duprey, L. Martinelli

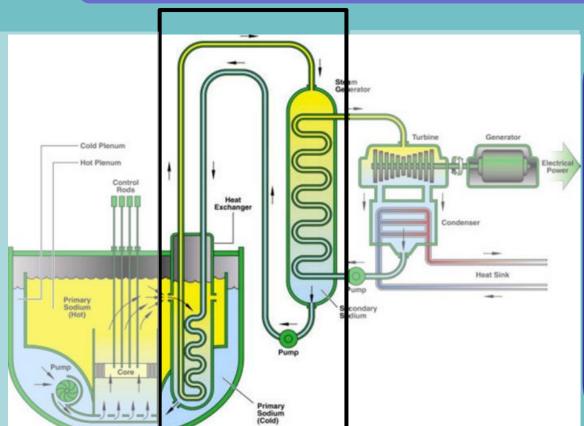
▶ To cite this version:

S. Bosonnet, K. Ginestar, D. Gosset, F. Barcelo, B. Duprey, et al.. Corrosion behavior of a AISI-316 stanless grade type in nitrogen environment for a sodium-gas heat exchanger. HTCPM 2016 - 9th International Symposium on High-Temperature Corrosion and Protection of Materials, May 2016, Les Embiez, France. hal-02441952

HAL Id: hal-02441952 https://cea.hal.science/hal-02441952

Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



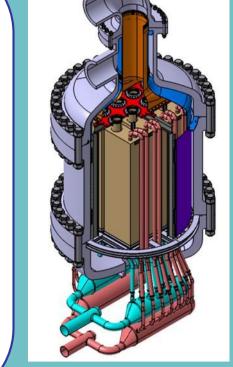
Corrosion Behavior of a AISI-316 Stainless Steel Grade Type in Nitrogen Environnment for a Sodium Gas Heat Exchanger

S. BOSONNETa, K. GINESTARa, D. GOSSETb, F. BARCELOb, B. DUPREYa, L. MARTINELLIa

^aDen-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France. ^b Den-Service de Recherches Métallurgiques Aplliquées(SRMA), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France.

CONTEXT: Generation IV for nuclear power plants: Energy Conversion System for ASTRID project

Energy Conversion in nuclear plants uses to be operated by steam generators. To eliminate the Sodium-Water Reaction Risk, an alternative option of Energy Conversion System operating with gas is developped in the framework of ASTRID project. Heat of the nuclear reaction is recovered by a secondary sodium system and transferred to a 3rd circuit containing **Nitrogen** and maintained at 180 bar to make the turbine rotate.


In Sodium-Gas-Energy Conversion System, heat transfer takes place inside modulus comprising 2 channels networks: one for nitrogen and the other one with larger

section for sodium flowing. Each channels are separated by a wall of 2 mm thick for good thermal conductivity. Selected material: AISI-316 SS grade

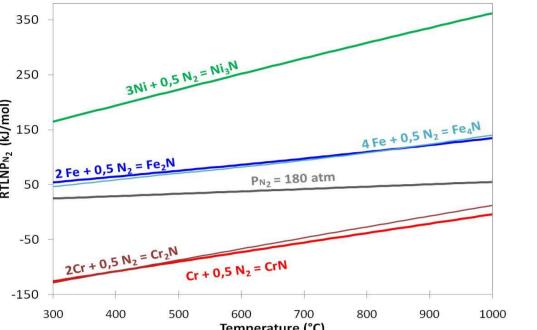
Working conditions in the modulus:

Na: P ~1bar; Inlet θ =530°C and Outlet θ =330°C N_2 : P=180 bar; Inlet θ =315°C and Outlet θ =515°C

Path C

 Fe_2O_3

Fe₃O₄


FeCr₂O₂

Matrix

OBJECTIVES

Good performance of the ECS has to be guaranteed for 30 years \rightarrow Compatibility of the 316L with N₂ environment at 515°C and 180 bar has to be checked.

Stability of main nitrides as a function of P_{N_2} . Activity values of Fe, Cr, and Ni are the molar fraction in 316L. At 515°C and 180 bar N₂, CrN and Cr₂N are potentially formed.

Main nitrides Ellingham diagram Thermodynamic data from HSC database.

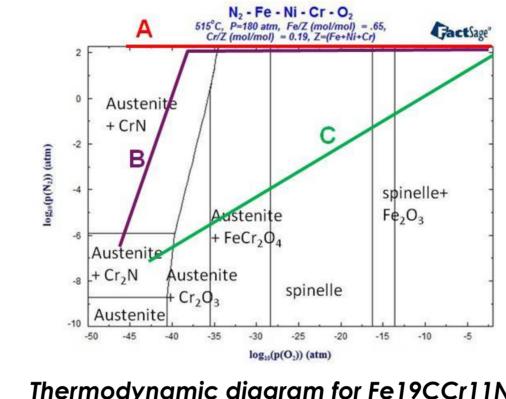
- Expected phenomenon:
- Nitrogen diffusion onto the surface
- → nitriding layers;
- No continuous layer
- \rightarrow internal nitridation (in the matrix).

Severity of damages depends on affected thickness.

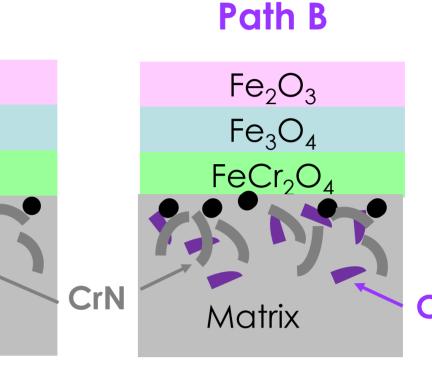
Few relevant data within the ECS conditions: they concern other environment than pure N_2 (NH₃, N_2 /air or complex atmospheres), other materials (Nibased alloys) and higher temperature.

If oxygen is present, competition between nitridation and oxidation may occur. Oxidation susceptibility to take into account.

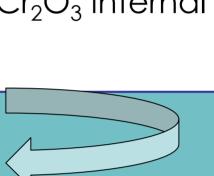
Considering that both P_{N_2} and P_{O_2} decrease in serial corrosion layers from external to bulk material, thermodynamic diagram suggests 3 scenarios:


Path A

 Fe_2O_3

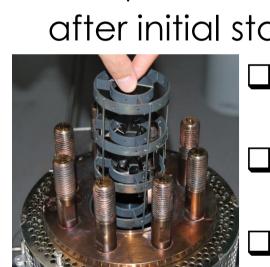

Fe₃O₄

FeCr₂O₄


Matrix

Thermodynamic diagram for Fe19CCr11Ni at 515°C and 180 bar. Obtained with FactSage.

Cr₂O₃ internal oxidation


Literature do not rule on the absence of damaging on 316L in ECS conditions. Experimental program set up to acquire long term corrosion kinetics (up to 5000 hours)

EXPERIMENTAL

STATIC UNDER PRESSURE TEST (P = 180 bar)

Cylindrical pressure sealed vessel with up to 40 samples hung up to holder; ☐ Filled with 67 bar industrial

 N_2 (4.5) at RT and heated at 515°C for variable cumulative durations: 100, 300, 500, 1000, 200, 2500, 3500, 5000 and 5500 hours after initial starting;

☐ Samples withdrawing after heating stop and gas purge; ■ New samples introduced in-

between;

☐ Corrosion kinetics evaluated by weighting before and after test.

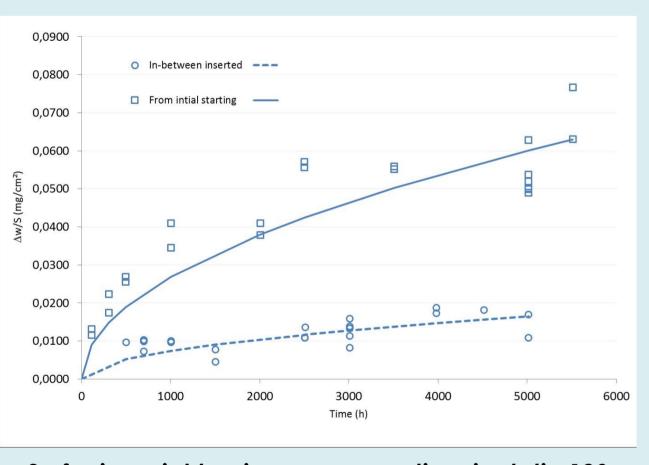
MATERIAL

The design of this ECS module is innovative with a specific fabrication route. A module consists of a stacking of 4 mm thick sheets welded together by diffusion actived by Hot Isostatic Pressure. Test coupons are sampled in a module mock-up so as to have welding junctions within the samples. Material tested is 1.4404.

С	Si	Mn	Р	S	Cr	Мо	Ni	N	Со	Fe
0,022	0,335	1,286	0,034	0,002	16,543	2,044	10,093	0,048	0,132	bal

Composition (weight %) of studied material

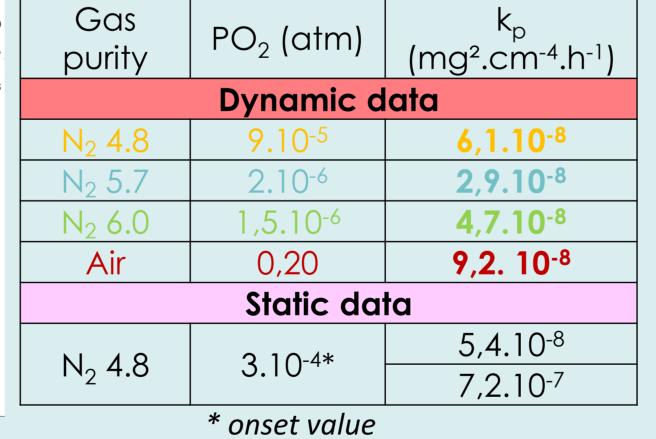
KINETICS

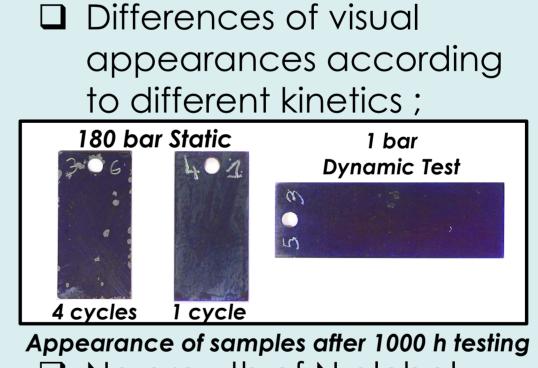

RESULTS

- \square Parabolic kinetics in both environment: $\frac{\Delta m}{\varsigma} = \sqrt{k_p t}$.
- □ Static test: 2 well-marked kinetics which depend on introducing time;
- \square Dyamic tests: no influence of N₂ purity in range tested;
- □ Lowest kinetic obtained in static test = kinetics obtained in dynamic tests.

DYNAMIC TEST (P=1 bar)

- ☐ In a symmetrical thermogravimetric system (Setaram® TAG24);
- \Box Gas linear flow rate = 2,2 cm/s at 515°C;
- \square 3 qualities of N_2 : with 20 ppm, 3 ppm and 1 ppm of impurities;
- Continuous mass gain acquisition;
- □ PO2 measured by a zirconia probe mounted at the nearest of the sample;
- One single sample by experiment;
- ☐ Air environment is also tested.





Surfacic weight gain vs exposure time in static 180 bar N₂ 4.5 at 515°C

TGA curves at 515°C for different purities of N2

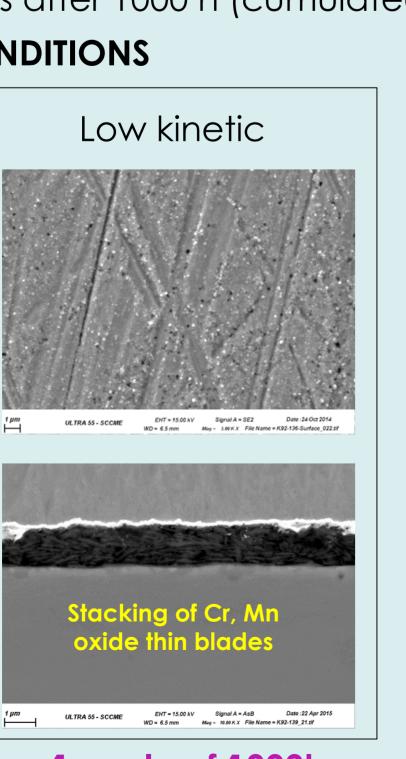
DYNAMIC CONDITIONS

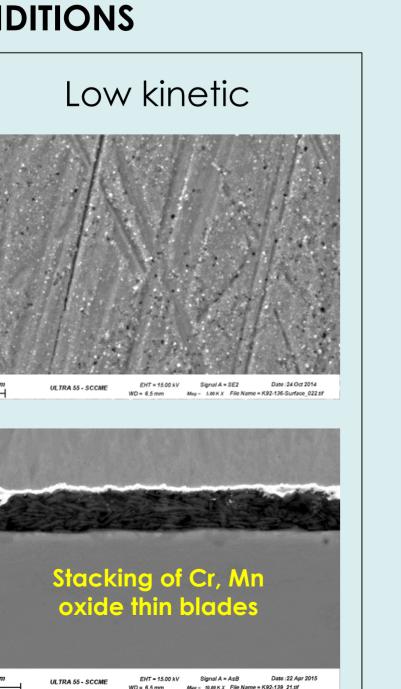
No growth of N global content with time; Well-marked increase of

O global content.

CHEMICAL ANALYSIS

Evolution of O and N content for all exposure conditions Analysis by inert gas fusion technique

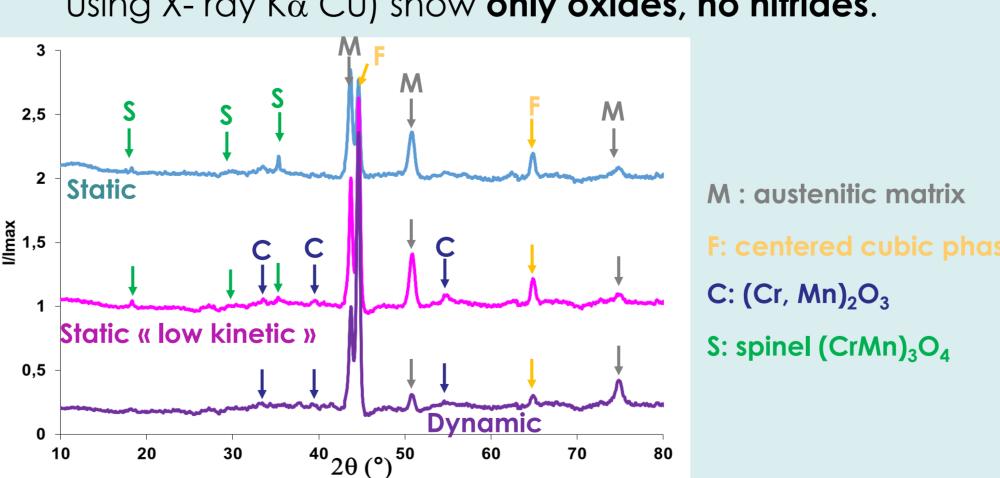

SURFACE MICROSTRUCTURES

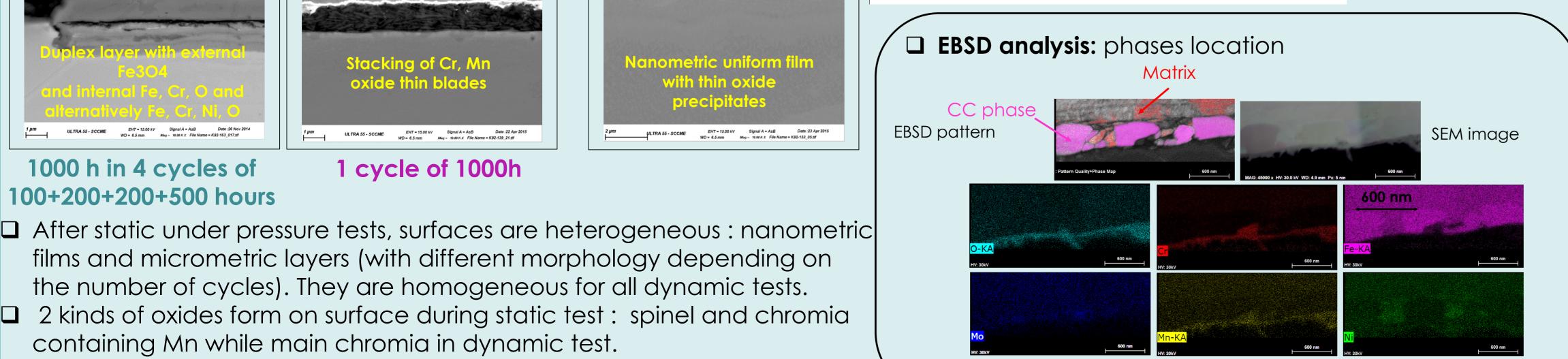

□ Comparison of surfaces after 1000 h (cumulated or continuous) exposure □ Low incidence angle diffraction (depth analysis~400 nm

STATIC CONDITIONS Less low kinetic

1000 h in 4 cycles of

100+200+200+500 hours


1bar N₂ 6.0 testing


1 cycle of 1000h

films and micrometric layers (with different morphology depending on

PHASES IDENTIFICATION

using X- ray $K\alpha$ Cu) show **only oxides**, **no nitrides**.

Elemental EDS- X mapping

CONCLUSION

Corrosion kinetics of 316 L steel in N_2 environment are low.

Although N has been detected in surface (few 100 nm depth) by GDOES other techniques used reveal no traces of N (even XPS). **Nitridation** risk in ECS conditions can be eliminated.

Corrosion phenomena is due to oxidation caused by O_2 impurities contained in N_2 . Under N₂ flow at 1 bar at 515°C, the oxide film is compact and uniform and seems to be protector (chromia).

In static atmospheres under 180 bar N_2 , behavior depends on oxidation individual duration of amount cumulative cycles. Fe₃O₄ crystallites formation is associated with increasing corrosion kinetics but those crystallites change with long period cycles.

PROSPECTS

In static conditions, gas content is gradually O₂ depleted and the consequences of this depletion will be studied to understand mechanisms in **non-stationary environment**.

containing Mn while main chromia in dynamic test. \square In both cases a new c.c phase in underlying metal (with Fe and Mo).

the number of cycles). They are homogeneous for all dynamic tests.

2 kinds of oxides form on surface during static test: spinel and chromia