

Analyses multi-élémentaires par XRF, ICP-AES et ICP-MS dans le cadre de l'étude du colmatage au niveau des plaques entretoises des tubes de générateurs de vapeur pour les centrales nucléaires de type REP.

A. Labet, S. Pontremoli, V. Pointeau

▶ To cite this version:

A. Labet, S. Pontremoli, V. Pointeau. Analyses multi-élémentaires par XRF, ICP-AES et ICP-MS dans le cadre de l'étude du colmatage au niveau des plaques entretoises des tubes de générateurs de vapeur pour les centrales nucléaires de type REP.. Spectr'Atom 2016, May 2016, Pau, France. hal-02441947

HAL Id: hal-02441947 https://cea.hal.science/hal-02441947

Submitted on 16 Jan 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Analyses multi-élémentaires par XRF, ICP-AES et ICP-MS dans le cadre de l'étude du colmatage au niveau des plaques entretoises des tubes de générateurs de vapeur pour les centrales nucléaires de type REP.

A. LABET¹, S. PONTREMOLI¹, V. POINTEAU² CEA - 1 DEN/DEC/SA3C/LARC ; 2 DEN/DTN/STCP/LHC F - 13108 Saint-Paul-Lez-Durance, Cadarache, FRANCE

Contexte et objectif

Malgré des progrès considérables depuis plus de trente ans dans les générateurs de vapeur des centrales nucléaires, le phénomène de corrosion du circuit secondaire, bien que maîtrisé, est inéluctable. Récemment, un nouveau phénomène est apparu : le colmatage au niveau des passages foliés des plaques entretoises, qui maintiennent les tubes de générateurs de vapeur. Ce phénomène de dépôt de matières solides est dommageable vis-à-vis des performances du générateur de vapeur. Afin de comprendre et de remédier à ces bouchages progressifs, le CEA Cadarache et EDF ont lancé un programme expérimental, dont l'objectif est de reproduire les premiers stades de développement du phénomène de colmatage, d'identifier les mécanismes de formation de ces dépôts colmatants, ainsi que les paramètres clés de leur développement. C'est pourquoi un grand nombre d'échantillons de ces expériences ont été analysés au LARC (Laboratoire d'Analyse Radiochimique et Chimique) par XRF, ICP-AES et ICP-MS. L'utilisation de la XRF a permis l'analyse multi-élémentaire des filtres concernés par cette étude. L'avantage de l'analyse panoramique par ICP-AES sur un appareil simultané sera mis en évidence pour l'analyse des filtrats. L'importance du mode CRI (Collision Reaction Interface) pour le dosage du fer en ICP-MS sera soulignée

Cette étude met l'accent sur la complémentarité de ces trois techniques dans la caractérisation de fluide secondaire pour examiner le colmatage au niveau des plaques entretoises des tubes de générateurs de vapeur de réacteur nucléaire à eau pressurisée.

1^{ère} étape = méthode d'analyse semi-quantitative

 ${} \odot$ durée d'analyse < 3 minutes et V_{solution} ~ 3 mL

- d'obtenir une information à la fois rapide et exhaustive sur la

- de connaître les concentrations approximatives des éléments présents

de faciliter l'optimisation des analyses quantitatives (choix des

⇒ équipement bien adapté pour réaliser des analyses panoramiques multi-élémentaires

✓ Appareil avec système optique simultané

✓ Intérêt d'une méthode d'analyse semi-quantitative : % permet de mesurer 71 éléments / 245 raies d'émiss

> analyse <u>semi-quantitative</u> permet

composition globale des échantillons

longueurs d'onde, étalonnages, dilutions...)

Echantillons de filtrats 🖨 matrice aqueuse = morpholine, ammoniaque, HNO₃ 2%

1 1 20 🔆 🛈

50 🚔 💿 🛅 Fast pu 50 🔅 🗇 Tast pum

Plasma flow (L/min) 12.0

1.00

uction:
Manual

1.20 🚖

30 0 0

urement Conditions 20 ÷ 0

LACINDIE DE LESUITUIS LINUUA EN DU/L DUUL LES LINIUI	Exempl	le de re	ésultats	finaux en	ua/L	pour les	filtrats
--	--------	----------	----------	-----------	------	----------	----------

<i>C</i> 048805	CO48813	CO48819	<i>C</i> 048821	C048837	CO48839	C048849	Technique analytique
52 ± 5	50 ± 5	30 ± 3	24 ± 2	15 ± 2	18 ± 2	13 ± 1	ICP-AES
< 10	< 10	< 10	20 ± 2	< 10	11 ± 1	< 10	ICP-AES
30 ± 3	97 ± 10	149 ± 15	65 ± 7	34 ± 3	27 ± 3	23 ± 2	ICP-AES
3,6 ± 0,4	12 ± 1	38 ± 4	14 ± 1	25 ± 2	11 ± 1	28 ± 3	ICP-MS
59 ± 6	165 ± 17	492 ± 49	31 ± 3	< 10	49 ± 5	< 10	ICP-AES
< 10	20 ± 2	17 ± 2	< 10	< 10	< 10	< 10	ICP-AES
nd	22 ± 2	15 ± 2	15 ± 2	16 ± 2	15 ± 2	18 ± 2	ICP-MS
49 ± 5	56 ± 6	43 ± 4	125 ± 13	< 10	51 ± 5	< 10	ICP-AES
900 ± 90	517 ± 52	287 ± 29	142 ± 14	189 ± 19	120 ± 12	225 ± 23	ICP-AES
nd	9 ± 1	7 ± 1	63 ± 6	< 2	8 ± 1	< 2	ICP-MS
	$\begin{array}{c} {\it C048805} \\ {\it 52 \pm 5} \\ {\it <10} \\ {\it 30 \pm 3} \\ {\it 3,6 \pm 0,4} \\ {\it 59 \pm 6} \\ {\it <10} \\ {\it rd} \\ {\it 49 \pm 5} \\ {\it 900 \pm 90} \\ {\it rd} \\ \end{array}$	CO48805 CO48813 52 ± 5 50 ± 5 10 4 30 ± 3 97 ± 10 $3, 6 \pm 0, 4$ 12 ± 1 59 ± 6 165 ± 17 \cdot 10 20 ± 2 nd 22 ± 2 49 ± 5 56 ± 6 900 ± 90 517 ± 52 nd 9 ± 1	C048805 C048813 C048819 52 ± 5 50 ± 5 30 ± 3 < 10	C048805 C048813 C048819 C048817 $52 = 5$ $50 = 5$ $30 = 3$ $24 = 2$ <10 <10 <0 $20 = 2$ $30 = 3$ $97 = 10$ $149 = 15$ $65 = 7$ $3.6 = 0.4$ 12 ± 1 38 ± 4 14 ± 1 $59 = 6$ 165 ± 17 492 ± 49 31 ± 3 <10 20 ± 2 17 ± 2 <10 m 22 ± 2 15 ± 2 15 ± 2 49 ± 5 56 ± 6 43 ± 4 125 ± 13 900 ± 90 517 ± 52 287 ± 29 142 ± 14 m 9 ± 1 7 ± 1 63 ± 6	C048805 C048813 C048819 C048821 C048821 C048821 C048837 52 ± 5 50 ± 5 30 ± 3 24 ± 2 15 ± 2 <10 <10 $<20 \pm 2$ <10 30 ± 3 97 ± 10 149 ± 15 65 ± 7 34 ± 3 3.6 ± 0.4 12 ± 1 38 ± 4 14 ± 1 25 ± 2 59 ± 6 165 ± 1 492 ± 49 31 ± 3 <10 <10 20 ± 2 17 ± 2 <10 <10 <10 20 ± 2 15 ± 2 15 ± 2 16 ± 2 99 ± 5 56 ± 6 43 ± 4 125 ± 1 6 ± 2 99 ± 5 56 ± 6 43 ± 4 125 ± 1 189 ± 19 90 ± 90 517 ± 52 287 ± 29 142 ± 14 189 ± 19	C048805 C048813 C048819 C048821 C048837 C048837 52 ± 5 50 ± 5 30 ± 3 24 ± 2 15 ± 2 18 ± 2 <10	C048805 C048813 C048819 C048827 C048837 C048839 C048339 C048339 C04833 C048339 C048339 <thclose constance<="" th=""> C048319</thclose>

Exemple de résultats finaux en μ g/filtre pour les filtres par XRF

				-				
Numéro d'échantillo	Co	Cr	Cu	Fe	Mn	Ni	Zn]
C048801	12 ± 1	٠ 4	< 8	266 ± 27	< 1	24 ± 2	< 5	
C048802	11 ± 1	٠ 4	< 8	60 ± 6	< 1	6 ± 1	< 5	
<i>C</i> 048815	10 ± 1	< 4	< 8	21 ± 2	< 1	< 5	< 5	
C048829	10 ± 1	27 ± 3	< 8	694 ± 69	10 ± 1	12 ± 1	< 5	
C048830	10 ± 1	< 4	< 8	33 ± 3	3 ± 1	< 5	< 5	
			_					

Conclusions

- Les analyses multi-élémentaires réalisées par XRF, ICP-AES et ICP-MS ont fourni des résultats très intéressants pour l'étude du colmatage dans les plaques entretoises des tubes de générateurs de vapeur pour les centrales nucléaires de type REP.
- Cette étude a donc montré la complémentarité de ces trois techniques dans la caractérisation du fluide secondaire.
- * L'intérêt de la XRF a été mis en lumière pour l'analyse quantitative directe des filtres sur échantillons solides
- * L'avantage de l'analyse panoramique par ICP-AES pour le dimensionnement de l'analyse quantitative a été souligné. L'importance du mode CRI en ICP-MS a été mise en avant.

Schéma de centrale nucléaire de type REP :

Etude expérimentale au CEA de Cadarache :