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ABSTRACT

Context. Internal gravity waves (IGW) are known as one of the candidates for explaining the angular velocity profile in the Sun
and in solar-type main-sequence and evolved stars due to their role in the transport of angular momentum. Our contribution deals
with critical layers, which are defined as the locations where the Doppler-shifted frequency of the wave approaches zero (i.e., they
correspond to corotation resonances).
Aims. The IGW propagate through stably stratified radiative regions, where they extract or deposit angular momentum through two
processes: radiative and viscous dampings and critical layers. Our goal is to obtain a complete picture of the effects of these processes.
Methods. First, we expose a mathematical resolution of the equation of propagation for IGW in adiabatic and non-adiabatic cases
near critical layers. Then, the use of a dynamical stellar evolution code, which treats the secular transport of angular momentum,
allows us to apply these results to the case of a solar-like star.
Results. The analysis reveals two cases depending on the value of the Richardson number at critical layers: a stable one, where
IGW are attenuated as they pass through a critical level, and an unstable turbulent case, where they can be reflected/transmitted by
the critical level with a coefficient larger than one. Such over-reflection/transmission can have strong implications on our vision of
angular momentum transport in stellar interiors.
Conclusions. This paper highlights the existence of two regimes defining the interaction between an IGW and a critical layer. An
application exposes the effect of the first regime, showing a strengthening of the damping of the wave. Moreover, this work opens up
new ways concerning the coupling between IGW and shear instabilities in stellar interiors.
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1. Introduction

Thanks to helio- and asteroseismology, we are able to extract
a huge amount of information about solar and stellar struc-
tures and compositions (e.g. Turck-Chièze & Couvidat 2011;
Aerts et al. 2010) and their internal differential rotation profile
(Garcia et al. 2007; Beck et al. 2012; Deheuvels et al. 2012). We
know that internal rotation modifies the stellar structure since
it generates flows, instabilities, and chemical elements mixing,
which modify stars’ evolution, for example, their lifetime and
their nucleosynthetic properties (e.g. Maeder 2009, and refer-
ences therein). Moreover, in order to understand the obtained
solar/stellar rotation profiles and the related rotational history,
it is essential to develop a complete theory incorporating the
different angular momentum transport mechanisms occuring in
stellar interiors (e.g. Mathis 2010, and references therein). In
this context, one legitimately asks the question about the ori-
gin of the internal rotation profiles. Four main processes are re-
sponsible, in different ways, for the secular angular momentum
transport in radiative interiors. First, a large-scale meridional cir-
culation is driven by structural adjustments of stars, externally
applied torques, and internal stresses (e.g. Zahn 1992; Mathis
& Zahn 2004; Decressin et al. 2009). Next, rotation profiles
may be subject to different hydrodynamical shear and baroclinic

instabilities and turbulence (e.g. Knobloch & Spruit 1982; Talon
& Zahn 1997; Maeder 2003; Mathis et al. 2004). Then, fossil
magnetic fields, trapped during early phases of stellar evolution
once radiation zones have been formed (Braithwaite & Spruit
2004; Duez & Mathis 2010), can transport angular momentum
through large scale torques and Maxwell stresses (e.g. Gough &
McIntyre 1998; Mathis & Zahn 2005; Garaud & Garaud 2008;
Strugarek et al. 2011). Finally, internal gravity waves (IGW)
that are excited at the convection/radiation boundaries consti-
tute the fourth mechanism able to transport angular momentum
over large distances in stellar radiation zones (e.g. Press 1981;
Goldreich & Nicholson 1989; Schatzman 1993; Zahn et al. 1997;
Talon & Charbonnel 2005; Mathis & de Brye 2012). We note
that all these processes are not necessarily present at the same
time everywhere in the Hertzsprung-Russel diagram. Moreover,
they act on various characteristic timescales in stars of different
masses and ages.

The object of this paper is the propagation of IGW and the
way they interact with the shear (i.e. the differential rotation) of
the surrounding fluid. They are common in the terrestrial atmo-
sphere and oceans (Eckart 1961; Chapman & Lindzen 1970),
which is why they are fairly well known in geophysics. We will
use this advantage in the stellar case. We here draw attention to
the mechanism whereby IGW exchange energy with the mean
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flow, independently of other dissipative processes such as ther-
mal and viscous diffusion. Indeed, when the frequency of ex-
cited waves is of the same order as the angular velocity of the
fluid (we present the accurate definition later), a phenomenon
of resonance occurs, which affects the properties of both the
wave and the shear of the surrounding fluid. This phenomenon
is called a critical layer. Under the assumption of a perfect fluid
(neither a heat conductor nor viscous), Booker & Bretherton
(1967) and Lindzen & Barker (1985) have provided first results
about critical layers in the geophysical case. They have shown
that, depending on the value of the Richardson number of the
fluid, which compares the relative strength of the shear and the
stable stratification (see Eq. (3)), the waves might be either at-
tenuated or reflected by the critical layer. This reflection may
even be an over-reflection together with an over-transmission
(see also Sutherland & Yewchuk (2004) for a laboratory evi-
dence). At the same time, Koppel (1964), Hazel (1967), Baldwin
& Roberts (1970), Van Duin & Kelder (1986) have completed
this work by taking into account the conduction of heat and the
viscosity of the fluid. Surprisingly, their conclusions about the
role of critical layers are identical. In the astrophysical case,
Rogava et al. (2007) have studied critical layers for gravito-
alfven waves. However, all these authors have produced their
studies in Cartesian coordinates, assuming that the stiffness of
the domain was thin enough to neglect its curvature. In the case
of stellar radiation zones where critical layers may play an im-
portant role (e.g. Barker & Ogilvie 2010; Barker 2011; Rogers
et al. 2012), these equations should thus be generalized to the
case of spherical coordinates to be able to treat deep spherical
shells.

Therefore, after exposing our notations and assumptions
(Sect. 2), we present a complete mathematical study of criti-
cal layers in the case of a perfect fluid (Sect. 3) and of a non-
perfect fluid (Sect. 4) in spherical geometry. Then, we determine
the related mean vertical flux of angular momentum transported
by IGW (Sect. 5). Next, we implement our theoretical results
in the dynamical stellar evolution code STAREVOL and apply
our formalism to the evolution of a one solar-mass star (Sect. 6).
Finally, we present the conclusion and perspectives of this work
(Sect. 7).

2. Definition, notations, and hypotheses

The star we consider is composed of (at least) a convective and a
radiative region. IGW are excited at the boundary between these
two regions. They propagate in the radiative zone and are evanes-
cent in the convective zone (e.g. Press 1981). As explained in the
Introductions, the study of IGW in geophysics is usually made
in Cartesian coordinates, justified by a local approach. In the
stellar case, however, a global approach using the spherical co-
ordinates (r,θ,ϕ) is necessary.

In the frame of Zahn (1992), we choose a shelular angular
velocity for the studied star’s radiation zone, Ω(r, θ) = Ω(r),
considering that, because of the strong stable stratification, the
shear instability decreases the horizontal gradient of the angular
velocity (e.g. Talon & Zahn 1997; Maeder 2003; Mathis et al.
2004). This consequently can be considered as only dependent
on radius. For the moment, we neglect the action of Coriolis and
centrifugal accelerations while the Doppler shift due to differen-
tial rotation is retained. We also neglect the action of a potential
magnetic field.

Now, we need to introduce some quantities to describe the
properties of the fluid in the studied radiative zone. Each scalar

field X is written as

X (r, θ, ϕ, t) = X (r) + X′ (r, θ, ϕ, t) , (1)

where we have introduced its horizontal average on an isobar, X,
and its associated fluctuation X′. The thermodynamic variables
employed are the density ρ, the pressure p, the temperature T ,
and the specific entropy S . Next, the stratification is described in
terms of the Brunt-Vaïsälä frequency

N2 = −ḡ

(
1
ρ̄

∂ρ̄

∂r
−

1
Γ1 p̄

∂p̄
∂r

)
, (2)

where ḡ(r) is the mean gravity in the Cowling approximation,
where fluctuations of the gravific potential are neglected (see

Cowling 1941), and Γ1 =

(
∂ ln p̄
∂ ln ρ̄

)
the adiabatic exponent. The

relative importance of the stable stratification restoring force and
the shear destabilizing effects is quantified by the Richardson
number

Ri =
N2r dΩ

dr

2 · (3)

When Ri is small, the velocity shear overcomes the stabilizing
buoyancy and turbulence and mixing occur (e.g. Talon & Zahn
1997). In contrast, when Ri is large, the fluid remains stable.
Finally, for the case of a non-perfect fluid (Sect. 4), we introduce
the viscosity ν of the fluid and the coefficient of thermal conduc-
tivity κ. These notations will be recaled at the proper moment.

IGW themselves are characterized by their relative
frequency

σ(r) = σw + m∆Ω(r), (4)

where σw is their excitation frequency (from the base of the
convective zone in low-mass stars or the top of the convective
core in intermediate and high-mass stars), m corresponds to a
Fourier expansion along the longitudinal direction (Eq. (10)),
and ∆Ω(r) = Ω(r) − ΩCZ is the difference between the angu-
lar velocity at the level r and at the border with the convective
zone. The introduction of m leads to the definition of two classes
of waves. Prograde (respectively retrograde) waves correspond
to negative (respectively positive) values of m.

Finally, all these notations allow us to define properly a crit-
ical layer. It arises for a wave whose relative frequency σ(r) be-
comes zero. The coherence with the qualitative definition given
in the introduction is respected since σ(rc) = 0 means that the
excitation frequency of the wave equals −m times the angular
velocity of the fluid. It corresponds to a corotation resonance.
It is important to highlight that the position of the critical layer
depends on both wave characteristics (m andσw) and shear prop-
erties (∆Ω(r)). In our approximation, σ(rc) = 0 means that Ω(rc)
is constant, so the critical levels are isobaric surfaces of the star.

3. Case of the perfect fluid

In this first approach, we treat the hydrodynamic equations as-
suming that the fluid is neither viscous nor a heat conductor.

3.1. Equation of propagation of IGW near a critical layer

Our aim is to calculate the Eulerian velocity field of a fluid par-
ticle. We introduce the time t and the unit vectors (êr, êθ, êϕ),
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which are associated with the classical spherical coordinates (r,
θ,ϕ). The velocity field is

V(r, θ, ϕ, t) = r sin θΩ̄(r)êϕ + u(r, θ, ϕ, t), (5)

where u is the velocity associated with the wave and VΩ
ϕ =

r sin θΩ̄(r) the azimuthal velocity field of the differential rota-
tion. We note that we have neglected all other large-scale ve-
locities such as meridionnal circulation. Then, we give the lin-
earized equations of hydrodynamics governing IGW dynamics
in an inertial frame, i.e. the momentum, continuity, and energy
equations:

Dtu = −
∇p′

ρ̄
+
ρ′

ρ̄
g,

Dtρ
′ + ∇.(ρ̄u) = 0,

Dt

(
ρ′

ρ̄
−

1
Γ1

p′

p̄

)
−

N2

ḡ
ur = 0,

(6)

where Dt = ∂t + ∆Ω∂ϕ. The equation of energy conservation is
obtained using the linearized equation of state

ρ′

ρ̄
=

p′

p̄
−

T ′

T̄
=

p′

Γ1 p̄
−

S ′

cP
, (7)

and assuming the ideal gaz law

p̄ = Rρ̄T̄ , (8)

whereR is the gaz constant and cP the specific heat-per-unit mass
at constant pressure.

We define the Lagrangien displacement ξ as u = Dtξ and fol-
lowing Rieutord (1986), we expand it on the vectorial spherical
harmonics basis (Rm

l ,S
m
l ,T

m
l ) defined by

Rm
l (θ, ϕ) = Ym

l (θ, ϕ) êr,

Sm
l (θ, ϕ) = ∇⊥Ym

l = ∂θYm
l êθ +

1
sin θ

∂ϕYm
l êϕ,

Tm
l (θ, ϕ) = ∇⊥ × Rm

l =
1

sin θ
∂ϕYm

l êθ − ∂θYm
l êϕ,

(9)

where Ym
l are the spherical harmonics with l ∈ N and m ∈

~−l, l�. Thus,

ξ(r, θ, ϕ, t) =

∞∑
l=0

l∑
m=−l

{
ξ̂r;l,m(r)Rm

l (θ, ϕ) (10)

+ ξ̂H;l,m(r)Sm
l (θ, ϕ) + ξ̂T ;l,m(r)Tm

l (θ, ϕ)
}
eiσwt.

Then, we decompose ρ′ and p′ using spherical harmonics:

ρ′(r, θ, ϕ, t) =

∞∑
l=0

l∑
m=−l

{
ρ̂′l,m(r)Yl,m(θ, ϕ)

}
eiσwt, (11)

p′(r, θ, ϕ, t) =

∞∑
l=0

l∑
m=−l

{
p̂′l,m(r)Yl,m(θ, ϕ)

}
eiσwt, (12)

and we obtain a new system made up of radial equations of
momentum
ρ̄σ2ξ̂r;l,m =

d p̂′l,m
dr

+ ρ̂′l,mḡ,

ρ̄σ2ξ̂H;l,m =
p̂′l,m
r
,

ρ̄σ2ξ̂T ;l,m = 0,

(13)

of mass conservation

ρ̂′l,m +
1
r2

∂

∂r

(
r2ρ̄ξ̂r;l,m

)
−

l(l + 1)
r

ρ̄ξ̂H,l,m = 0, (14)

and of energy in the adiabatic limit

ρ̂′l,m

ρ̄
=

1
Γ1

p̂′l,m
p̄

+
N2

ḡ
ξ̂r;l,m. (15)

The combination of these relations leads to the system presented
by Press (1981):

dyl,m

dr
=

(
σ2 − N2

)
ξ̂r;l,m +

N2

ḡ
yl,m,

d
dr

(
r2ξ̂r;l,m

)
+

1
Γ1

d ln p̄
dr

(
r2ξ̂r;l,m

)
=

[
l(l + 1)
σ2 −

ρ̄

Γ1 p̄
r2

]
yl,m,

(16)

where yl,m(r) = p̂′l,m/ρ̄.
In stellar radiative regions, the transport of angular momen-

tum is dominated by low-frequency IGW with σ � N, where N
is the Brunt-Vaïsälä frequency defined in Eq. (2). It allows us to
apply the anelastic approximation (Press 1981), where acoustic
waves are filtered out. Introducing

Ψl,m(r) = ρ̄
1
2 r2ξ̂r;l,m, (17)

we obtain the following equation of propagation:

d2Ψl,m

dr2 +

(
N2

σ2 − 1
)

l(l + 1)
r2 Ψl,m (18)

=

1
4

(
d ln ρ̄

dr

)2

+
1
2

d2 ln ρ̄
dr2 −

1
Γ1

d2 ln p̄
dr2

 Ψl,m·

As the right-hand side of Eq. (18) is of order 1/H2
P with HP

the characteristic pressure or density height scale, it can be
neglected if(

N2

σ2 − 1
)

l(l + 1)
r2 �

1
H2

P

, (19)

which is the case here. Finally, we obtain the equation of propa-
gation of IGW in a perfect fluid:

d2Ψl,m

dr2 + k2
V (r)Ψl,m = 0, (20)

with

k2
V (r) =

(
N2

σ2 − 1
)

l(l + 1)
r2 · (21)

In Cartesian coordinates, this equation is called the Taylor-
Goldstein-Synge (TGS) equation. We observe that the value
r = rc, where σ(rc) = 0, is a singular point for this equation.
Thus, we now focus on the study of the behaviour of this equa-
tion around such a critical point. Then for r ≈ rc, the equation of
propagation becomes

d2Ψl,m

dr2 +

[
l(l + 1)

m2

Ric
(r − rc)2 − k2

Hc

]
Ψl,m = 0, (22)

where

Ric =


N2(

r
dΩ̄

dr

)2


r=rc

, (23)
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is the value of the Richardson number at the critical level, and

kHc =

√
l(l + 1)

rc
, (24)

the horizontal wavenumber at the critical layer. We saw in the
introduction (Eq. (3)) that the Richardson number is relevant to
distinguish between the relative importance of shear and strati-
fication. We describe this divergence of cases from a quantitave
point of view in the following part.

3.2. Mathematical resolution with the method of Frobenius

The Frobenius method offers an infinite series solution for a
second-order ordinary differential equation of the form

u′′ + p(z)u′ + q(z)u = 0,

where p(z) =
1
z

∞∑
j=0

p jz jand q(z) =
1
z2

∞∑
j=0

q jz j

in the vicinity of the singular point z0 = 0. For more details, a
mathematical description of this method can be found in Teschl
(2011).

In our case, p(r) = 0, q(r) =
l(l+1)

m2
Ric

(r−rc)2 − k2
Hc, and the theory

brings out two cases depending on the value of l, m, and Ric:

– Case 1:
l(l + 1)

m2 Ric =
1
4

The solution is

ΨFro
l,m (r) = A1(r − rc)1/2 + B1(r − rc)1/2 log(|r − rc|), (25)

where A1 and B1 are constants representing the wave
amplitude.

– Case 2:
l(l + 1)

m2 Ric ,
1
4
.

We define the complex parameter

ηl,m =

√
1
4
−

l(l + 1)
m2 Ric, (26)

and the solution is given by

ΨFro
l,m (r) = A2(r − rc)1/2+ηl,m + B2(r − rc)1/2−ηl,m , (27)

where A2 and B2 are constants.

We exclude this special value of Ric and choose to consider
only two different cases for the rest of the paper: l(l+1)

m2 Ric > 1
4

and l(l+1)
m2 Ric < 1

4 . The results can then be extended to the
case l(l+1)

m2 Ric = 1
4 without recourse to the logarithmic solution

(Van Duin & Kelder 1986).
We now discuss the hydrodynamical behaviour correspond-

ing to the situations where Ric > 1
4

m2

l(l+1) and Ric < 1
4

m2

l(l+1) ·

Applying the classical method exposed in Drazin & Reid (2004)
to the generalized spherical TGS equation (Eq. (22)), we can
identify that the first regime corresponds to the case where the
fluid stays stable with respect to the vertical shear instability at
the critical layer. In the other case, this instability and thus tur-
bulence can develop. This clearly shows how it is necessary to
go beyond the currently used formalisms for stellar evolution,
where IGW and vertical shear instability are considered as un-
coupled. Indeed, if a fluid becomes shear unstable, mixing oc-
curs that modifies the local stratification and thus IGW propa-
gation (see e.g. Brown & Sutherland 2007; Nault & Sutherland
2007). Thus, we now distinguish the case of critical layers when
the fluid is stable from the one when it is unstable.

3.3. The case of stable critical layers: Ric > 1
4

m2

l(l+1)

It is now time to understand the physical behaviour of the so-
lutions given above. First of all, we propose to cut the physical
domain into two parts: above and below the critical layer. As
l(l+1)

m2 Ric > 1
4 , ηl,m defined by (26) is a purely imaginary number.

In order to clearly distinguish between real and imaginary parts,
we introduce

αl,m =

√
l(l + 1)

m2 Ric −
1
4

= iηl,m. (28)

The two solutions can be written as{
ΨFro

l,m+
(r) = A+(r − rc)1/2+iαl,m + B+(r − rc)1/2−iαl,m ,

ΨFro
l,m−(r) = A−(r − rc)1/2+iαl,m + B−(r − rc)1/2−iαl,m ,

(29)

where ΨFro
l,m+

(r) (resp. ΨFro
l,m−(r)) is available when r > rc (resp.

r < rc). Booker & Bretherton (1967) and Ringot (1998) both
explain a way to connect these solutions, considering that the
term (r − rc)1/2+iαl,m can be compared to an upward propagative
wave of the form eikr and respectively that (r − rc)1/2−iαl,m can be
compared to a downward propagative wave of the form e−ikr. We
obtain the following identification:

ΨFro
l,m± = (r − rc)1/2

 A±(r − rc)+iαl,m︸            ︷︷            ︸
upward propagating wave

+ B±(r − rc)−iαl,m︸            ︷︷            ︸
downward propagating wave

 . (30)

In order to connect the solutions, we observe the behaviour
of (r − rc) above and below the critical level. As r − rc decreases
from positive to negative values, its complex argument changes
continuously from 0 to −π (Ringot 1998). Mathematically,
we get

if r > rc: (r − rc)1/2±iαl,m = |r − rc|
1/2±iαl,m , (31)

if r < rc: (r − rc)1/2±iαl,m = |r − rc|
1/2±iαl,m e−iπ/2e±παl,m . (32)

It follows that the solutions above and below the critical layer
can be written as

ΨFro
l,m+

(r) = A|r − rc|
1/2+iαl,m + B|r − rc|

1/2−iαl,m ,

ΨFro
l,m−(r) = −iAeαl,mπ|r − rc|

1/2+iαl,m − iBe−αl,mπ|r − rc|
1/2−iαl,m .

(33)

Physically, these equations can be explained this way. Starting
from above the critical layer, the downward propagating wave
passes through the critical layer and is attenuated by a factor
equal to e−αl,mπ. At the same time, starting from below the criti-
cal layer, the upward propagating wave is attenuated by the same
factor and its amplitude becomes equal to A. We also underline
that both waves take a phase difference when they cross the crit-
ical layer. In Fig. 1, we represent the attenuation rate of different
waves defined by the numbers l and m passing through a critical
layer. The greater the ratio l(l+1)

m2 , the stronger is the attenuation

Att = e−π
√

l(l+1)
m2 Ric− 1

4 for the same value of Ric. The axis scale
depends on l and m because the condition of validity of this re-
sult is Ric > 1

4
m2

l(l+1) . We so deduce that waves of high ratio l(l+1)
m2

(which do not necessarily correspond to high order) are strongly
attenuated if they reach their critical layer.
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Fig. 1. Attenuation rate Att = e−π
√

l(l+1)
m2 Ric− 1

4 of the wave passing through
a critical layer as a function of the Richardson number. We observe that

Att increases with
l(l + 1)

m2 ·

We have not yet discussed a latter point: the choice of
the method of resolution. Most of the publications concern-
ing IGW use another process to solve the equation of propa-
gation (Press 1981; Zahn et al. 1997; Mathis 2009). In fact, the
Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) theory is particu-
larly adapted to the resolution of this equation. However, it is
not convenient in our case because it imposes a condition on the
value of the Richardson number as demonstrated in appendix A.
It is shown that the WKBJ approximation is available only if
Ric � 1

4
m2

l(l+1) . Despite this restriction, we write the solution: by
separating the domain into two parts, we obtain

ΨWKBJ
l,m± =

1
√

kV (r)

(
C±ei

∫
kV(r)dr + D±e−i

∫
kV(r)dr

)
. (34)

As

kV −→
Ric� 1

4
m2

l(l+1)

1
r − rc

√
l(l + 1)

m2 Ric, (35)

it becomes:

ΨWKBJ
l,m± =

m
√

l(l + 1)Ric
(r − rc)1/2

(
C±(r − rc)+i

√
l(l+1)

m2 Ric

+D±(r − rc)−i
√

l(l+1)
m2 Ric

)
. (36)

It is comforting to see that both methods (Frobenius and WKBJ)
give the same solution to a multiplicative constant when the
Richardson number becomes high:

ΨFro
l,m −→

Ric� 1
4

m2
l(l+1)

ΨWKBJ
l,m . (37)

3.4. The unstable case: Ric < 1
4

m2

l(l+1)

In the unstable regime, the Frobenius method also gives a solu-
tion but we are not able to identify upward and downward prop-
agating waves because of shear-induced instability and turbu-
lence. As a consequence, we can not connect the solutions at the

r=rc-δ 

r=rc+δ 

r=rc 

€ 

l(l +1)
m2 Ri >>

1
4

Zone I 

€ 

l(l +1)
m2 Ri >>

1
4

Zone III 

l(l +1)
m2 Ri < 1

4

Zone II 

Fig. 2. Assumed neighbourhood of an unstable critical layer for the cal-
culation of the IGW’s reflection and transmission coefficients. We as-
sume that the unstable region around the critical layer (in red) has a
thickness given by 2δ (zone II). The surrounding regions where IGW
are propagative are in beige (zones I and III).

critical layer. In order to avoid this difficulty, we here propose to
solve Eq. (22) following the method developped by Lindzen &
Barker (1985). They applied it in the case of Cartesian coordi-
nates, and our work is to generalize it to spherical coordinates.
The parameter ηl,m defined in Eq. (26) is real in this case, and we
introduce

X = kHc(r − rc). (38)

Equation (22) becomes

d2Ψl,m(X)
dX2 +

 1
4 − η

2
l,m

X2 − 1

 Ψl,m(X) = 0. (39)

We are seeking solutions of the form Ψl,m(X) = X
1
2 Φl,m(X),

where Φl,m is the solution to the Bessel equation

X2 d2

dX2 Φl,m + X
d

dX
Φl,m − (η2

l,m + X2)Φl,m = 0. (40)

Consequently, Φl,m is a combination of the Bessel’s modified
functions Iηl,m (X) and I−ηl,m (X):

Φl,m = K1Iηl,m (X) + K2I−ηl,m (X). (41)

The final solution is given by:

Ψl,m(X) = X
1
2

(
K1Iηl,m (X) + K2I−ηl,m (X)

)
. (42)

We would like to calculate the reflection and transmission coef-
ficients of the wave passing through the unstable critical layer.
We assume that the fluid has the profile described in Fig. 2. We
decompose the studied region into three zones defined by the
value of the quantity l(l+1)

m2 Ric. In zones I and III, the Richardson
number is high enough to allow us to apply the WKBJ method
described in the previous section. However, around the studied
critical layer, in unstable zone II, we must use the solution with
the modified Bessel functions. Moreover, we assume here that
the thickness 2δ of this zone is small in comparison with the
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characteristic length of the problem. Then, we can consider that
the wavenumber kV is constant as

k2
Vc =

l(l + 1)
m2

Ric
δ2 −

l(l + 1)
r2

c
· (43)

We consider a wave coming from the overside of the criti-
cal layer (zone I). It is partly transmitted toward zone III and
partly reflected backward to zone I. We thus write the solutions
corresponding to the three zones:

ΨI(r)=e−ikV(r−rc)+ReikV(r−rc),

ΨII(r)= (r − rc)1/2
[
AIηl,m (kHc(r − rc))+BI−ηl,m (kHc(r − rc))

]
,

ΨIII(r)=TeikV(r−rc), (44)

where ΨI(r) is available if (r− rc) > δ, ΨII(r) if −δ < (r− rc) < δ
and ΨIII(r) if (r − rc) > −δ. The coefficients A, B, T , and R are
calculated by to the following four continuity equations:

ΨI(rc + δ) = ΨII(rc + δ),
dΨI

dr
(rc + δ) =

dΨII

dr
(rc + δ),

ΨIII(rc − δ) = ΨII(rc − δ),
dΨIII

dr
(rc − δ) =

dΨII

dr
(rc − δ).

(45)

They correspond to the continuity of the solution and of its
first derivative, which physically means that both displacement
and mechanical stresses are continuous. After some algebra,
we obtain the coefficients R and T of reflection and transmis-
sion, which depend on the stiffness δ, the vertical and horizontal
wavenumbers kVc and kHc (see Eqs. (43) and (24)) , and the vari-
able ηl,m (Eq. (26)). In order to simplify the formula, we note
I±ηl,m instead of I±ηl,m (kHcδ). Then, we obtain

R =
Rnum

Rdenom1 + Rdenom2
, (46)

with

Rnum =

[
kHcI′ηl,m

+

(
1
2δ
− ikVc

)
Iηl,m

][
kHcI′−ηl,m

+

(
1
2δ
−ikVc

)
I−ηl,m

]
,

Rdenom1 =k2
HcI′−ηl,m

I−ηl,m +

(
1

4δ2 +k2
Vc

)
I−ηl,m Iηl,m ,

Rdenom2 =−
2kVc

πδ
cos

(
ηl,mπ

)
+

kHc

2δ

(
Iηl,m I′−ηl,m

+I−ηl,m I′ηl,m

)
and

T =
Tnum

Tdenom
, (47)

with

Tnum =
2ikVc

δπ
,

Tdenom = Rdenom1 + Rdenom2.

We have now calculated the transmission and reflection coef-
ficients of an IGW, through an unstable region around a given
critical layer, where Ric < 1

4
m2

l(l+1) . We represent the level lines of
|R| and |T | in Fig. 3 for l = 4 and m = ±3. They are plotted as a
function of the Richardson number at the critical layer Ric, grow-
ing from 0 to its maximum value defined by l(l+1)

m2 Ricmax = 1
4 .

For instance, in Fig. 3, Ricmax = 1
4

32

4(4+1) ≈ 0.11. The other
variable is the half-thickness δ of the unstable layer (zone II),

arbitrarily chosen, that points the non-local character of unsta-
ble turbulent layers. The main result is that both coefficients are
greater than 1 when l(l+1)

m2 Ric is small enough. Consequently, for
a low Richardson number at the critical layer, the wave can be
over-reflected and over-transmitted at the same time. This means
that, in contrast to the first stable case, the wave takes potential
energy from the unstable fluid and converts it into kinetic en-
ergy. In other words, the turbulent layer acts as an excitation
region. If |R| < 1 and |T | < 1, we speak about IGW tunneling
(Sutherland & Yewchuk 2004; Brown & Sutherland 2007; Nault
& Sutherland 2007). Another remark concerns the dependency
of |R| and |T | on m. We note that the sign of m does not matter
since only its square appears in the expressions. Physically, it
shows that the critical layer’s action is the same on prograde and
retrograde waves. This point is of importance because we know
that other dissipative processes occuring during the propagation
of IGW discriminate between both types of waves. In order to vi-
sualize the action of the critical layer on different waves, Fig. 2
shows the level lines |R| = 1 for 1 ≤ l ≤ 5 and 1 ≤ m ≤ l. We
previously said that it is useless to consider negative values of m
since |R| depends only on m2. The pair (l,m) is indicated on each
line, followed by the value of l(l+1)

m2 . Lines in the same colour cor-
respond to the same value of l. These lines mark out the limit to
observe over-reflection for a chosen wave. We observe that the
higher the value of l(l+1)

m2 , the stronger is the condition on Ric to
observe an over-reflection.

3.5. Choice of the method

We decided to apply different methods to solve the stable and
unstable cases. However, it could be legitimate to wonder if both
methods are equivalent from a mathematical point of view. In
this section, we present a short comparison between the solu-
tions obtained with the method of Frobenius and the one with
Bessel functions. The modified Bessel function Iηl,m (X) can be
computed using

Iηl,m (X) =

(
1
2

X
)ηl,m ∞∑

k=0

(
1
2 X

)2k

k!Γ(ηl,m + k + 1)
· (48)

At the neighbourhood of the critical layer, X tends to 0 and the
first-order expression is

Iηl,m (X) =

(
1
2

X
)ηl,m

(
1

Γ
(
ηl,m + 1

) + O(X2)
)
. (49)

Close to the critical layer, the global solution given in Eq. (42) is
then

ΨBessel
l,m (X) =

∆1
X

1
2 +ηl,m

Γ(ηl,m + 1)
+ ∆2

X
1
2−ηl,m

Γ(1 − ηl,m)
+ O

(
X2

) . (50)

Now, we recall the expression of the solution given by the
method of Frobenius (Eq. (27)), rewritten with the previous
notations

ΨFro
l,m (r) = A2|r − rc|

1/2+ηl,m + B2|r − rc|
1/2−ηl,m . (51)

In conclusion, for a fixed couple (l,m), ΨFro
l,m (r) and ΨBessel

l,m (X)
vary in the same way as function of r − rc.

4. Case of the non-perfect fluid

Until now, we have studied the role of the critical layers assum-
ing that the fluid was perfect. In order to make the problem more

A86, page 6 of 17



L. Alvan et al.: Critical layers for internal waves in stellar radiation zones

Fig. 3. Level lines of reflection |R| and transmission |T | coefficients of an IGW at a critical layer as a function of the Richardson number Ric and
the thickness δ of the critical layer (zone II in Fig. 2). The top panels represent the level lines for an arbitrarily chosen value of (l,m) = (4,±3),
while the bottom panels show level lines |R| = 1 and |T | = 1 for different couples (l,m).

realistic, we include in the second part the viscosity ν of the
fluid and the coefficient of thermal conductivity κ (e.g. Koppel
1964; Hazel 1967; Baldwin & Roberts 1970; Van Duin & Kelder
1986).

4.1. Equation of propagation of IGW near a critical layer

The linearized equations of hydrodynamics in Eq. (6) become
Dtu = −

∇p′

ρ̄
+

ρ′

ρ̄
g + ν∆u,

Dtρ
′ + ∇.(ρ̄u) = 0,

Dt

(
ρ′

ρ̄
− 1

Γ1

p′

p̄

)
− N2

g
ur = κ

ρ̄
∆ρ′.

(52)

The following method for forming the propagation equation is
adapted from the work of Baldwin & Roberts (1970). We as-
sume that the mean density ρ̄ of the fluid takes nearly a constant
value, that is to say that 1

ρ̄
dρ̄
dr is small compared with the charac-

teristic lengths of the problem. First, we project Eq. (52) onto êr
and apply the operator ∇2. Then we apply Dt − κ∇

2. After com-
bination with the two other equations, we obtain

(
Dt − κ∇

2
)[(

Dt−ν∇
2
)
∇

2ur +

(
Ω′′ +

2
r

Ω′
)
∂ϕur

]
= N2
∇

2
⊥ur. (53)

Table 1. Dimensionless numbers used for the resolution of Eq. (53).

Pr ν/κ Prandtl number
Re VL/ν Reynolds number
Ri (LN/V)2 Richardson number

Notes. L and V are respectively the length and velocity scales.

As in the previous section, we decompose the radial velocity on
the basis of spherical harmonics

ur(r, θ, ϕ, t) =
∑
l,m

ûr;l,m(r)Yl,m(θ, ϕ)eiσwt, (54)

where σ = σw + m∆Ω(r). Moreover, it is easier to work with
dimensionless numbers. For this reason, we introduce the nota-
tions detailed in Table 1.

Then, Eq. (53) becomes for each pair (l, m) such as l ∈ N
and m ∈ ~−l, l�:(

∆l − k2
H − iσRePr

) (
∆l − k2

H − iσRe

) (
∆l − k2

H

)
ûr;l,m =

−k2
HR2

e PrN2ûr;l,m, (55)

where ∆l is the scalar spherical Laplacian operator:

∆l = ∂2
rr +

2
r
∂r −

l(l + 1)
r2 · (56)
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Lastly, we introduce η = (imΩ′cRe)1/3(r − rc) and due to a devel-
opment close to the critical layer obtain the sixth-order equation:

1
Pr

∂6χl,m

∂η6 − η

(
1 +

1
Pr

)
∂4χl,m

∂η4 −
2
Pr

∂3χl,m

∂η3

+η2 ∂
2χl,m

∂η2 +
l(l + 1)

m2 Ricχl,m = 0, (57)

where now χl,m = ρ̄1/2ηûη;l,m. Equation (57) can be compared
with the one obtained by Press (1981), who has neglected the
viscosity ν. Moreover, we can see that if we take ν = κ = 0, and
without forgetting that Pr also depends on ν, Eq. (57) is identical
to Eq. (22) for the perfect fluid.

4.2. Mathematical resolution

The resolution of Eq. (57) requests several substitutions and
is quite complex. The detailed calculation can be found in
Appendix B, and we give only the main steps here. We drew
our inspiration from Hazel (1967), Baldwin & Roberts (1970),
Koppel (1964), Van Duin & Kelder (1986), who solved the same
equation in Cartesian coordinates. However, the resolution in
spherical coordinates has some differences. The aim is to rewrite
the equation here under a known form: the Whittaker differen-
tial equation; then, after some algebra, we can show that Eq. (57)
can be written in the following form:

d2V
ds2 +

 1
4 − M2

l,m

s2 +
Λ

s
−

1
4

 V = 0. (58)

The solutions of Eq. (58) are thus the Whittaker functions
(Abramowitz & Stegun 1965):

VΛ,Ml,m (s) = e−
s
2 s

1
2 +Ml,m

1F1

(
1
2

+ Ml,m + Λ; 1 + 2Ml,m; s
)
, (59)

where 1F1 is the confluent hypergeometric function of Kummer

1F1(a; b; z) =

∞∑
n=0

(a)n

(b)n

zn

n!
(60)

with (k)n =
n−1∏
i=0

(k + i) =
Γ(k+n)

Γ(k) and (k)0 = 1, Γ (z) being the usual

gamma function,

M2
l,m =

1
4
−

2 +
l(l+1)

m2 Ric
9

, (61)

and

Λ = −
1
3
· (62)

Because of this solution, we obtain the expression of the radial
displacement of the wave:

ρ̄1/2η2ξ̂η;l,m∝

f (κ, Pr)
∫ b

a eηt−t3/3t3Ml,m−3/2
1F1

(
1
6

+ Ml,m; 1 + 2Ml,m; t
)

dt.

(63)

We will clarify the function f (κ, Pr) of the thermal diffusivity
coefficient later.

C3	

C1	



C2	



€ 

2π
3

€ 

4π
3
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C’1	

C’2	
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2π
3

€ 

4π
3

Fig. 4. Left: curves (C1,C2,C3) defining the basis
(U1,U2,U3,V1,V2,V3). Right: curves (C′1,C′2,C′3) defining the ba-
sis (u1, u2, u3, v1, v2, v3).

There is still the last step to carry out. We must find a curve
along which we integrate the solution, that is to say, we deter-
mine a and b. During the calculation detailed in the Appendix B,
Eq. (B.3),[
−

(
1 +

1
Pr

)
t4veηt −

d
dt

(
t2v

)
eηt + zt2veηt

]b

a
= 0, (64)

has not been used yet. A sufficient condition to make this equal-
ity true is −t3

3 −→
|t|→+∞

∞. Considering that t3 = |t|3e3iθt (θt being

the complex argument of t), we have

−t3

3
−→
|t|→+∞

∞ ⇔ θt ≡ 0
[
2π
3

]
· (65)

There are several possibilities for the choice of curves. Koppel
(1964) proposed building a basis of six solutions using the
curves (C1,C2,C3) represented in Fig. 6 (left). Therefore, the
solutions of the sixth-order equation (Eq. (57)) are linear
combinations of

Ui(η) = f (κ, Pr)

×

∫
Ci

eηt−t3/3t3Ml,m−3/2
1F1

(
1
6

Ml,m; 1 + 2Ml,m; t
)

dt (66)

and Vi(η) with i ∈ {1, 2, 3}, where Vi(η) corresponds to Ui(η)
with the opposite sign for Ml,m.

4.3. Application to IGW

It is now time to apply these mathematical results to IGW.
We recall the solution for the perfect fluid obtained in Sect. 3.
For the moment, it is not necessary to distinguish between the
stable regime, i.e. l(l+1)

m2 Ric > 1
4 , and the unstable one, i.e.

l(l+1)
m2 Ric < 1

4 . The Frobenius solution is available every-

where if we take ηl,m =

√
1
4 −

l(l+1)
m2 Ric as a complex number.

Remembering that Ψl,m(r) = ρ̄
1
2 r2ξ̂r;l,m(r), the radial Lagrangian

displacement is
ξ̂P+ = 1

ρ̄1/2r2

(
A|r−rc|

1/2+iαl,m +B|r − rc|
1/2−iαl,m

)
ξ̂P−= 1

ρ̄1/2r2

(
−iAeαl,mπ|r − rc|

1/2+iαl,m−iBe−αl,mπ|r−rc|
1/2−iαl,m

)
.

(67)

For easier reading, we have removed the indices r; l,m.
Subscript P designates the solution for the perfect fluid.
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Table 2. Expressions of u3 and v3 when Re → +∞, below the critical
layer.

r > rc

u3(η)
2iπ

Γ( 3
2 − iαl,m)

(imΩ′cRe)
1
3 ( 1

2 −iαl,m)|r − rc|
1
2 −iαl,m

v3(η)
2iπ

Γ( 3
2 + iαl,m)

(imΩ′cRe)
1
3 ( 1

2 +iαl,m)|r − rc|
1
2 +iαl,m

Table 3. Expressions of u3 and v3 when Re → +∞, above the critical
layer.

r < rc

u3(η)
2π

Γ( 3
2 − iαl,m)

e−αl,mπ (imΩ′cRe)
1
3 ( 1

2 −iαl,m)|r − rc|
1
2 −iαl,m

v3(η)
2π

Γ( 3
2 + iαl,m)

e−αl,mπ (imΩ′cRe)
1
3 ( 1

2 +iαl,m)|r − rc|
1
2 +iαl,m

Concerning the solution for non-perfect fluids, Hazel (1967)
proposed using another basis for the solutions of Eq. (57). The
curves (C′1, C′2, C′3) are represented in Fig. 6. The new ba-
sis (u1, u2, u3, v1, v2, v3) is defined by

– u1 = U1 + U2 + U3 and v1 = V1 + V2 + V3,
– u2 = U1 + U2 + U∗3 and v2 = V1 + V2 + V∗3 ,
– u3 = U1 + U∗2 + U3 and v3 = V1 + V∗2 + V3,

where X∗ is the complex conjugate of X. Consequently, the so-
lution for the non-perfect fluid (subscript NP) can be written as

ξ̂NP± =
1

ρ̄1/2η2

3∑
i=1

[
αi±ui (η) + βi±vi (η)

]
. (68)

A relation between both solutions ξ̂P± and ξ̂NP± exists if we con-
sider that the Reynolds number is great. In the case of the Sun
(e.g. Brun & Zahn 2006), the microscopic viscosity in the radia-
tive zone is weak. For this reason, it is appropriate to consider
that the Reynolds number Re = VL

ν
is much greater than 1. This

assumption leads to the relation

ξ̂NP± −→
Re→+∞

ξ̂P±. (69)

Baldwin & Roberts (1970) give tables for the asymptotic be-
haviour of ui and vi (i ∈ 1, 2, 3). The solutions u1, u2, v1 and v2
diverge when Re → +∞. They are therefore physically unac-
ceptable and we deduce that

ξ̂NP± =
1

ρ̄1/2η2α3±u3(η) + β3±v3(η). (70)

Tables 2 and 3 give the asymptotic expressions of u3 and v3 as a
function of the sign of r − rc.

In the stable case where l(l+1)
m2 Ric ≥ 1

4 , αl,m =

√
l(l+1)

m2 Ric − 1
4

is a real number. The same findings as in the previous section
can be made: after the passage through the critical layer, the
wave is attenuated by a factor e−αl,mπ. In the unstable case, where
l(l+1)

m2 Ric < 1
4 , αl,m =

√
l(l+1)

m2 Ric − 1
4 is a complex number, so we

cannot interpret the solution as upward and downward propagat-
ing waves. But the expressions given in Tables 2 and 3 remain
comparable to those in the first section, and we deduce that the
calculation of R and T will lead to the same result: the possibility
of over-reflection and over-transmission.

4.4. Radiative and viscous dampings

4.4.1. General equations

We volontarily left aside the factor f (κ, Pr) in Eq. (66). In order
to establish its expression, Zahn et al. (1997) used the equation
of the propagation of IGW, taking into account heat diffusion but
with a viscosity coefficient (ν) equal to zero. Here, we generalize
their result for ν , 0 (i.e. Pr , 0) and obtain

f (κ, Pr) = e−τ(κ,Pr)/2, (71)

where

τ (κ, Pr)= [l(l+1)]
3
2

∫ rZC

rc

κ (1+Pr)
NN2

T

σ4

(
N2

N2−σ2

) 1
2 1

r3

 dr.

(72)

We introduced the general expression for N2, the Brünt-Väisälä
frequency, to be able to take chemical stratification into account.
Then, we have

N2 = N2
T + N2

µ , (73)

with N2
T =

gδ
HP

(∇ad − ∇) and N2
µ =

gφ
HP
∇µ where HP = |dr/d ln P|

is the pressure heigh-scale, ∇ =
(
∂ ln T/∂ ln P

)
the temperature

gradient, and ∇µ =
(
∂ ln µ/∂ ln P

)
the mean molecular weight (µ)

gradient. Moreover, we introduced the generalized equation of
state (EOS) given in Kippenhahn & Weigert (1990):

dρ
ρ

=
1
Γ1

dP
P
− δ̃

dT
T

+ φ̃
dµ
µ
, (74)

where δ̃ = − (∂ ln ρ/∂ ln T )P, µ and φ̃ = (∂ ln ρ/∂ ln µ)P,T . Next,
σ = σw + m∆Ω is the Doppler-shifted frequency of the wave
relative to the fluid rotation with an excitation frequency σw, rc
and rCZ are respectively the positions of the critical layer and the
boundary between the studied radiative zone and the convection
region where IGW are initially excited. This damping is another
source of attenuation independent of the presence of a critical
layer. Moreover, as shown in Sects. 3.4. and 4., we have to con-
sider IGW reflected and transmitted by unstable critical layers in
addition to those initially excited by convection. Then, we intro-
duce the notation

τ [κ, Pr, r1, r2] =

[l(l + 1)]
3
2

∫ r1

r2

κ (1 + Pr)
NN2

T

σ4

(
N2

N2 − σ2

) 1
2 1

r3

 dr, (75)

where r1 and r2 are respectively the emission point of the IGW
and the position with r1 > r2 (in the opposite case, where r1 < r2,
limits in the integral have to be reversed). This will enable us to
describe radiative and viscous dampings in every configuration.
We note that in stellar radiation zones Pr � 1 (Brun & Zahn
2006) inducing that the damping is mostly radiative. We now
compare it with the effects of critical layers.

4.4.2. Prograde and retrograde waves

For a same environment, prograde waves have a frequency lower
than retrograde ones (e.g. Eq. (4)). We chose, for example, a
couple of IGW with the same excitation frequency, σ0, the same
number l and opposite azimuthal degrees m. Thus, we compared
a prograde wave of frequency σ1(r) = σ0 − |m|∆Ω and a ret-
rograde one of frequency σ2(r) = σ0 + |m|∆Ω. We obtained
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Table 4. Summary of the different cases.

Wave and fluid properties

σ(rc) κ ν l(l+1)
m2 Ric

, 0 Not a critical layer

0

0 0

≥1/4 attenuation Fig. 1

<1/4 Possible over-reflection + possible over-transmission Fig. 3

,0

�1 ≥1/4 Attenuation + radiative damping

�1 <1/4 Possible over-reflection + possible over-transmission + radiative damping

�1 Non-stellar case

Notes. The observed effects depend on the properties of the wave (the frequency (σ) and degrees (l, m)) and of the fluid (thermal conductivity (κ),
viscosity coefficient (ν), Richardson number (Ri)).

σ1(r) − σ2(r) = −2|m| (Ω(r) −ΩCZ) < 0 in the presence of neg-
ative gradient of Ω and σ1(r) − σ2(r) > 0 if the gradient is posi-
tive. We stress that τ given in Eq. (71) varies globally as 1

σ3 . As
a consequence, assuming that a negative Ω-gradient is present
near the excitation layer (see Sect. 6), the radiative damping is
stronger for prograde waves than retrograde waves. Therefore,
prograde IGW are absorbed by the fluid much closer to their re-
gion of excitation, while the retrograde waves are damped in a
deeper region. This process is responsible for the net transport
of angular momentum by IGW in stars. On the other hand, crit-
ical layers do not introduce such net bias between prograde and
retrgrade IGW because their effects scale with m2.

4.4.3. Dependency in l and m

The second comment concerns the variation of radiative and vis-
cous dampings as a function of l and m. On one hand, looking
at the multiplicative factor, which is in front of the integral in
Eq. (72), we can roughly write that τ ∝ [l(l+1)]3/2

m4 . On the other
hand, the expression of the attenuation factor due to stable crit-
ical layers is proportional to

(
l(l+1)

m2

)1/2
, which is always greater

than unity since |m| ≤ l. The comparison between radiative and
viscous dampings and the one due to stable critical layers for an
IGW with given (l,m) will be examined in Sect. 6.2.3.

4.4.4. Location
Lastly, radiative and viscous dampings occur throughout the
whole propagation of IGW. In contrast, critical layers are lo-
calised. Moreover, there is a condition for a wave to reach a crit-
ical layer: the rotation speed of the fluid must be of the same
order as the wave frequency for a chance of observing σ = 0.
Finally, all IGW are concerned by radiative and viscous damp-
ings, which increase around critical layers since τ ∝ σ−4.

In Table 4, we sum up the different cases studied in these
work. Depending both on the properties of the fluid and the stud-
ied wave, the wave is submitted to different phenomena.

5. Transport of angular momentum

As stated in the introduction, our goal is to study the transport of
angular momentum in stellar radiation zones and to unravel the

Initial excitation region 

Shear unstable critical layer 

Initial wave kinetic energy flux 

Reflected or/and transmitted wave kinetic energy flux 

r = rc 2δ

Stable  
critical layer 

Shear unstable  
critical layer 

Damping (Th.) and 
possible over-reflection  

& over-transmission (CL) 
Damping (Th. & CL)  

Fig. 5. Two configurations in a low-mass star with an external convec-
tive envelope. Left: the case of a stable critical layer (CL) where IGW
are damped. Right: the case of an unstable critical layer where IGW can
be over-reflected/transmitted.

role of critical layers. Therefore, the first step is to recall the flux
of angular momentum transported by propagative IGW and by
the shear-induced turbulence. To illustrate our purpose, we focus
here on the case of a low-mass star, where IGW are initially ex-
cited at the border of the upper convective envelope (see Fig. 5)
by turbulent convection (Garcia Lopez & Spruit 1991; Dintrans
et al. 2005; Rogers & Glatzmaier 2005; Belkacem et al. 2009;
Brun et al. 2011; Lecoanet & Quataert 2013) and by tides if there
is a close companion (Zahn 1975; Ogilvie & Lin 2007) with an
amplitude A (corresponding results for massive stars with an in-
ternal convective core can be easily deduced by reversing signs).

5.1. Angular momentum fluxes

5.1.1. Angular momentum flux transported by propagative
IGW

First, we have to calculate the angular momentum flux trans-
ported by a propagative monochromatic wave over a spherical
surface. It is given by the horizontal average of the Reynolds
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stresses associated with the wave (e.g. Zahn et al. 1997):

FJ;l,m,σ (r) = ρ̄r sin θ〈ur;l,muϕ;l,m〉θ,ϕ, (76)

where 〈...〉θ,ϕ =
1

4π

∫
Ω

... sin θdθdϕ. Besides, Mathis (2009)

shows that

FJ;l,m,σ =
−m
σ
FE;l,m,σ (r) , (77)

where FE;l,m,σ is the horizontal average of the energy flux in the
vertical direction expressed by Lighthill (1986) as

FE;l,m,σ = 〈p̂′l,mur;l,m〉θ,ϕ. (78)

So finally, the angular momentum flux is given by

FJ;l,m,σ =
−m
σ
〈 p̂′l,mur;l,m〉θ,ϕ. (79)

To calculate this angular momentum flux, we need the expres-
sions of ur;l,m and p̂′l,m. The expression of ur;l,m is immediately
accessible from Eq. (33), solution of Eq. (22). It is a little more
complicated for p̂′l,m because we need to go back in the calcu-
lation leading to Eq. (22). The expression of p̂′l,m results from
the first equation of the system given in Eq. (16), which can be
reduced to

d
dr

( p̂′l,m
ρ̄

)
=

(
σ2 − N2

)
ξ̂r;l,m, (80)

applying the anelastic approximation and neglecting terms of or-
der 1/L2.

The total vertical flux of angular momentum transported by
propagative IGW is then given by

FJ (r) =
∑
l,m,σ

FJ;l,m,σ, (81)

and we define the associated so-called action of angular momen-
tum as

LJ(r) = 4πr2FJ . (82)

5.1.2. Angular momentum flux transported by shear-induced
turbulence

In the case of shear-unstable regions, such as region II in the
regime where Ric ≥ 1

4
m2

l(l+1) , IGW are unstable (e.g. Drazin &
Reid 2004). After the non-linear saturation of the instability, a
steady turbulent state is reached. Then, as established, for exam-
ple, in Zahn (1992); Talon & Zahn (1997), and now confirmed by
numerical simulations (see Prat & Lignières 2013), the vertical
flux of angular momentum transported by shear-induced turbu-
lence is given by

FT ;V (r) = ρr2νV (r) ∂rΩ, (83)

where

νV =
Ric

N2
T /(κ + νH) + N2

µ/νH

(
r∂rΩ

)2
. (84)

The adopted value for the critical Richardson number is Ric =
1/6, and νH is the horizontal turbulent viscosity for which we
assume the prescription derived by Zahn (1992).

5.1.3. Equation of transport of angular momentum

We now refocus these results in the wider frame of the com-
plete angular momentum transport theory. Considering the other
transport mechanisms we presented in the introduction, the
angular momentum transport equation that takes into account
meridional flows, shear-induced turbulence, and IGW (e.g. Talon
& Charbonnel 2005; Mathis 2009) becomes

ρ
d
dt

(
r2Ω

)
=

1
5r2 ∂r

(
ρr4ΩU2 (r)

)

+


−

1
4πr2 ∂rLJ (r) where IGW are propagative

1
r2 ∂r

(
r2FT ;V (r)

)
for unstable regions.

(85)

The first term on the right-hand side corresponds to the advec-
tion of angular momentum by the meridional circulation, where
Ur = U2 P2(cos θ) is its radial component. The Lagrangian
derivative d

dt = ∂
∂t + ṙ ∂

∂r takes into account the radial contrac-
tions and dilatations of the star during its evolution, which are
described by ṙêr. According to our hypothesis, we do not take
into account the transport by the Lorentz force, associated with
magnetic fields in stellar radiative zones (Mathis & Zahn 2005).

The major difference with previously published equations
is that IGW and shear-induced turbulence transports of angu-
lar momentum are not summed linearly since they are, as we
demonstrated before, intrinsically coupled. Therefore, for sta-
ble regions, one must consider the Reynolds stresses of IGW
(Eq. (82)), while for unstable regions, only the vertical turbulent
flux given in Eq. (90) must be taken into account.

5.2. Stable critical layer
(
Ric ≥ 1

4
m2

l(l+1)

)
5.2.1. Case of the perfect fluid

This is the simplest case of a stable critical layer in a perfect
fluid. We apply Eq. (79) to obtain the expressions for the trans-
ported fluxes by propagative IGW below and above the critical
layer:
FJ;l,m,σ (r ≥ rc) =

1
r2

1
2

mA2 Jl,m

l (l + 1)

FJ;l,m,σ (r < rc) =
1
r2

1
2

mA2 Jl,m

l (l + 1)
e−2παl,m ,

(86)

where A is the initial amplitude of the IGW at r = rCZ, αl,m =√
l(l+1)

m2 Ric − 1
4 (see Eq. (28)) and

Jl,m =

〈[
Pm

l (cos θ)
]2
〉
θ

=
1
2

∫ π

0

[
Pm

l (cos θ)
]2

sin θdθ

=
2

2l + 1
(l + |m|)!
(l − |m|)!

, (87)

where Pm
l are the associated Legendre polynomials. Booker

& Bretherton (1967) obtained similar results in Cartesian co-
ordinates. We see the expected attenuation of the flux by
a factor e−2παl,m when the wave passes through the critical
layer. Moreover, FJ;l,m,σ± depends on m (and not on m2).
As a consequence, we recover the classical result that pro-
grade waves (m < 0) and retrograde ones (m > 0) have
opposite angular momentum flux (respectively a deposit and
an extraction). Finally, the monochromatic action of angular
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momentum LJ;l,m,σ(r) = 4πr2FJ;l,m,σ is constant in each region
because of the absence of dissipation.

5.2.2. Case of the non-perfect fluid

We saw in the previous section that the solution of the equation
of propagation in the case of a non-perfect fluid is similar to the
one obtained for a perfect fluid. For this reason, we are able to
apply the same method for the calculation of FJ;l,m,σ. We obtain



FJ;l,m,σ (r ≥ rc) =
1
r2

1
2

mA2 Jl,m

l (l + 1)
e−τ [κ, Pr, rCZ, r]

FJ;l,m,σ (r < rc) =
1
r2

1
2

mA2 Jl,m

l (l + 1)
e−2παl,me−τ [κ, Pr, rCZ, r].

(88)

The difference to Eq. (86) comes from the introduction of radia-
tive and viscous dampings (Eq. (75)).

The conclusion is that, in the stable case, the attenuation due
to the passage through a critical layer is added to dampings due
to dissipation. This observation leads us to simply implement the
role of stable critical layers as an additional term in the damping
coefficient.

5.3. Unstable critical layer
(
Ric ≤

1
4

m2

l (l + 1)

)
5.3.1. Region I: rc + δ ≤ r ≤ rCZ

Using the summary given in Fig. 5 for the unstable case and
the obtained results for regions where IGW are propagative
(Sect. 5.2.2), we obtain:

FJ;l,m,σ (rc + δ ≤ r ≤ rCZ) =

1
r2

1
2

mA2 Jl,m

l (l + 1)
e−τ [κ, Pr, rCZ, r]

+
1
r2

1
2

m
[
A2|R|2e−τ [κ, Pr, rCZ, rc + δ]

]
Jl,m

l (l + 1)

× e−τ [κ, Pr, r, rc + δ], (89)

where we identify the transport induced by the incident wave,
which propagates downward, and the one induced by the re-
flected one, which propagates upward. We see that the unstable
critical layer is a second excitation source for IGW propagat-
ing in region I and that the angular momentum transport will
be modified in such situation, particularly when over-reflection
(|R| > 1) occurs.

5.3.2. Region II: rc − δ < r < rc + δ

In this unstable region, we directly use results obtained in
Sect. 5.1.2. to describe the flux of angular momentum trans-
ported by the shear-induced turbulence, i.e.:

FT ;V (rc − δ < r < rc + δ) = ρr2νV∂rΩ. (90)

5.3.3. Region III: r 6 rc − δ

Using the same methodology as for region I, we get in a straight-
foward way

FJ;l,m,σ (r 6 rc − δ) =

1
r2

1
2

m
[
A2|T |2e−τ [κ, Pr, rCZ, rc + δ]

]
Jl,m

l (l + 1)

× e−τ [κ, Pr, rc − δ, r], (91)

where we indentify the transport induced by the transmitted
wave, which propagates downward. As in region I, we can see
that the unstable critical layer constitutes a secondary excitation
source for IGW propagating in region III and that the angular
momentum transport will be modified, particularly when over-
transmission (|T | > 1) occurs.

Since the general theoretical framework has been given, we
now explore the possibility of the existence of the two different
regimes (stable and unstable) along the evolution of a given star.
As a first application, we chose to study the case of a solar-type
star which has already been studied without critical layers by
Talon & Charbonnel (2005).

6. A first application: the evolution of a solar-type
star

6.1. The STAREVOL code

We used the one-dimensional hydrodynamical Lagrangian stel-
lar evolution code STAREVOL V3.10 (see Lagarde et al. (2012)
and references therein for a detailed description of the input
physics). We recall the main characteristics and parameters used
for the modelling that are directly relevant for the present work.
We use the Schwarzschild criterion to determine the position of
convective zones, and compute their temperature gradient ac-
cording to the mixing length theory with a αMLT = 1.75. The
solar composition is taken from Asplund et al. (2005) with the
Ne abundance from (Cunha et al. 2006). We generated the opac-
ity table for temperatures higher than 8000 K following Iglesias
& Rogers (1996) by using their website1. The opacity table at
lower temperatures follows Ferguson et al. (2005)2. The mass
loss rate is determined following Reimers (1975) with a param-
eter ηR = 0.5. The increase of mass loss due to rotation is taken
into account following Maeder & Meynet (2001). However due
to the small mass loss and velocity of our models this effect
remains weak.

In radiative regions, we follow Mathis & Zahn (2004) for-
malism for the transport of angular momentum and chemicals as
well as the prescription from Talon & Zahn (1997) for the ver-
tical turbulent transport (Eq. (84)). We assume that convective
regions rotate as a solid body. The treatment of IGW follows
Talon & Charbonnel (2005, 2008), with the difference that the
volumetric excitation by Reynolds stresses in the bulk of con-
vective zones (e.g. Goldreich & Kumar 1990; Goldreich et al.
1994; Belkacem et al. 2009) is consistently computed at each
time-step as a function of their physical properties.

We start with an initial model of 1.0 M� at solar metallicity,
with an initial surface velocity of 70 km s−1. The rotation profile
is initially flat. We add magnetic braking through the following
law: dJ

dt = −KΩ4 with a constant K = 3 × 1030. This value has

1 http://adg.llnl.gov/Research/OPAL/opal.html
2 http://webs.wichita.edu/physics/opacity/
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Fig. 6. Position of the critical layers for retrograde IGW for three differ-
ent frequencies, superimposed with the rotational velocity profile in the
star.

been calibrated to reproduce the surface velocity determined in
the Hyades by Gaige (1993).

6.2. The effects of critical layers

6.2.1. Location of critical layers

We studied theoretically the impact of the critical layer for a
given IGW, thus assuming that there are some radii where the
relation σ(r) = 0 is satisfied. As a consequence, the first ques-
tion we may answer due to the simulation concerns the existence
of such critical layers and their location in the radiative zone.
Figure 6 shows that critical layers do exist in the radiative core
of the solar-like star studied here. In the three panels, we super-
impose the rotational velocity of the star’s interior as a function
of the normalized radius with the position of potential critical
layers, which are indicated by colored squares that correspond
to positions where σ = σw + m∆Ω = 0. Each panel corresponds
to a given value of the excitation frequency σw. As expected,
the positions of the critical layers only depend on the azimuthal
number m of the wave, and not on the degree l. Through this
plot, we confirm that critical layers exist in the solar-like star.
However, we did take into account the fact that not all waves can
reach these positions.

First of all, we only consider retrograde waves because the
prograde ones are damped immediately after their excitation (see
Sect. 4.4.2). Moreover, in the left-hand panel of Fig. 7, we rep-
resente in logarithmic scale the luminosity of a given IGW at
the moment of its initial stochastic excitation by the turbulent

convection as a function of its degrees l and m, following the
spectrum adopted in Talon & Charbonnel (2005). The differ-
ence between the three plots is the value of the excitation fre-
quency σw. Through this representation, we can see that the
maximum of excitation lies in a domain where l and m are close
and quite small. Moreover, it shows that for each excitation fre-
quency, the amplitude of the excited wave depends on l and m
and may be close to zero. As a consequence, some critical lay-
ers represented in Fig. 6 may belong to a non-excited wave or
to a wave completely damped at this depth. Fortunately, results
obtained show that some waves really meet their critical layer.

6.2.2. Interaction between waves and critical layers

Concerning the way IGW interact with the surrounding fluid, the
theory predicts two possible regimes depending on the value of
the Richardson number Ric at the critical level. In our simula-
tion, it appears that for every detected critical layer, the relation
Ric > 1

4
m2

l(l+1) , which correponds to the stable regime, is veri-
fied. As a consequence, we establish that the second unstable
regime (with the associated possible tunneling or over-reflection
and transmission) does not occur for the solar-like star of our
simulation; forthcoming studies may explore other types of stars
at different evolutionary stages, to see if this regime can occur.
Therefore, for the solar-type star studied here, we only imple-
ment in STAREVOL the terms related to stable critical layers:
each time a wave passes through a critical layer, it is damped

with a coefficient e−π
√

l(l+1)
m2 Ric− 1

4 (see Eq. (88)).

6.2.3. Effect of critical layers

Since all interactions between waves and critical layers are of
the same kind in the star studied here, we can concentrate on the
quantitative importance of their effect on the transport of angu-
lar momentum. We know that in the stable regime (Sect. 5.2.2.),
the wave passing through its critical layer is damped by the fac-
tor given in Eq. (88) that is added to radiative damping (here
Pr � 1 and the viscous damping is thus negligible), which has
already been taken into account in previous works (e.g. Talon
& Charbonnel 2005). In the right-hand panel of Fig. 7, we thus
choose to represent the ratio between τCL, the rate of attenuation
due to the passage of the wave through its stable critical layer,
and the sum τtot of this rate and that of the radiative damping.
The explicit formula is

τCL

τtot
= (92)

2π
√

l(l+1)
m2 Ric − 1

4

2π
√

l(l+1)
m2 Ric − 1

4 +[l (l + 1)]
3
2

∫ rzc

rc

κ
NN2

T

σ4

(
N2

N2 − σ2

) 1
2 1

r3 dr

·

In contrast to the left-hand panel, only waves are represented
here which meet a critical layer. That is the reason why several
white zones are seen. They correspond to the waves which have
been attenuated before reaching the depth of their critical layer.
In the case of low σw (upper panels in Fig. 7), the high-degree
waves (l > 45) are simply not excited, as we can see on the right.
In red zones, the role of critical layers is important in comparison
with the radiative damping, while dark blue regions are those
where the radiative damping dominates. Therefore, this figure
shows that critical layers should be taken into account.
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Fig. 7. Left: luminosity of the waves at the location of their excitation as function of l and m. Right: ratio between τCL and τtot = τCL + τrad (see
Eq. (92)).

6.2.4. Evolution of the rotation profile

We now concentrate on the evolution of the rotation profile,
when momentum deposition due to the interaction between
waves and critical layers is taken into account. The other
transport mechanism (IGW’s radiative damping effects, shear-
induced turbulence, and meridional circulation) have been pre-
viously implemented in the code (Talon & Charbonnel 2005).

In the centre of the star, the rotation velocity is lower and in-
creases the radiative damping of retrograde waves (see Eq. (72)).
This forms an angular momentum extraction front, which prop-
agates from the core to the surface to damp the differential ro-
tation. Three fronts are seen in the top panel of Fig. 8 and have
the same form as those already obtained in Talon & Charbonnel
(2005). To isolate the action of critical layers on the evolution
of the rotation profile, we superimposed in the bottom panel
of Fig. 8 the surface velocity as function of the evolution time
with (black line) and without (red line) critical layer effects be-
tween 2.8 × 108 and 3.5 × 108 years. Both curves are nearly
identical, which shows that despite their local action as repre-
sented in Fig. 6, IGW’s stable critical layers do not disturb the
dynamical evolution of surface velocity in the case of the stud-
ied star. This can be easily understood since the radiative damp-
ing becomes mostly efficient around the positions of critical lay-
ers because of its dependance on σ−4. Moreover, if in Talon &
Charbonnel (2005) the IGW’s action and the shear-induced tur-
bulence have been added as uncoupled physical mechanisms, it
has been demonstrated that in the upper region (r > rc) where
IGW are propagative, the coefficient νV is negligible, while in the
inner one (r < rc) the differential rotation has been damped, lead-
ing to the same result with a transport dominated by the merid-
ional circulation.

This clearly indicates that unstable critical layers will lead
to major modification of the transport of angular momentum in
stellar interiors. A systematic exploration of different types of
stars for different evolutionary stages will be undertaken in the
near future. Moreover, in order to give quantitative information,

it is necessary to improve the way waves are excited in this
model. Future work will implement a prescription about pene-
trative convection processes. The best way to do this is to use a
realistic numerical simulation of such a mechanism to obtain the
excitation spectrum at the base of the convective zone (Rogers
& Glatzmaier 2005; Brun et al. 2011; Alvan et al. 2012).

7. Conclusion

In this paper, we study in detail a new mechanism of interac-
tion between IGW and the shear of the mean flow that occurs
at corotation layers in stably stratified stellar radiation zones.
Taking advantage of the work in the literature about atmospheric
and oceanic fluids, we highlight the similarities with such stel-
lar regions and propose an analytical approach adapted to the
related case of deep spherical shells. The use of spherical coor-
dinates brings differences in the equations and make their res-
olution more complicated, but the final results are comparable.
We then demonstrate the intrinsic couplings between IGW and
the shear-induced instabilities and turbulence that can thus not
be added linearly, as done previously in stellar evolution litera-
ture. We highlight the existence of two regimes where the inter-
actions between IGW and the shear at critical layers are strongly
different:

– In the first case, the fluid is stable and the amplitude of IGW
is overdamped by the critical layer compared to the classical
case, where only radiative and viscous dampings are taken
into account.

– In the second case, the fluid is unstable and turbulent and the
critical layer acts as a secondary excitation region. Indeed,
through over-reflection/transmission (when |R| > 1 and
|T | > 1), energy is taken from the unstable shear that in-
creases the amplitude of an incident IGW. Moreover, even
in the case of simple reflection and transmission where
|R| < 1 and |T | < 1, this demonstrates the existence of

A86, page 14 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321210&pdf_id=7


L. Alvan et al.: Critical layers for internal waves in stellar radiation zones

Fig. 8. Evolution of the rotation profile, where the role of the critical
layers in the transport of angular momentum is taken into account.
The curves are labelled according to the corresponding ages in Gyr.
Parameters are indicated above where K is the braking constant. Right:
comparison between the evolution of the rotation with (red) and without
(black) taking into account the effect of the critical layers.

IGW tunneling through unstable regions as identified by
Sutherland & Yewchuk (2004) in laboratory experiments and
by Brown & Sutherland (2007), Nault & Sutherland (2007)
in geophysics.

Therefore, these mechanisms opens up a new field of investiga-
tions concerning angular momentum tranport processes by IGW
in stellar interiors.

Indeed, even if according to our first evolutionary calcu-
lations with STAREVOL, only the first stable regime exists
in solar-type stars, we expect to find stars where the unstable
regime and possible tunneling or over-reflection/transmission

take place. Moreover, while the formalism presented in this work
is general, several uncertainties remain. First, concerning the
stochastic excitation of IGW by convection, the model used in
our evolutionary code certainly underestimates the wave flux
since it considers only the volumetric excitation in the bulk of the
convective envelope, while convective penetration should also
be taken into account. This will influence the measured action of
critical layers since it is proportional to the initial amplitude of
the IGW. Then, only retrograde waves are simulated here, con-
sidering that prograde ones are immediately damped and do not
penetrate deeply in the radiation zone. This should normally not
affect our results because the critical layers we detected are lo-
cated in the deep radiation zone, but formal equations take both
types of waves into account.

The last point to bear in mind is that no latitudinal depen-
dence on the angular velocity is considered here. We explained
the reason for this choice in the introduction, but one must
not forget this approximation. Finally, since our goal is to ob-
tain a complete and coherent picture of the transport of angu-
lar momentum in stellar radiation zones for every stellar type or
evolutionary stage, it will be important to extend this work to
cases of gravito-inertial waves, where the action of Coriolis and
centrifugal accelerations is considered (e.g. Lee & Saio 1997;
Dintrans & Rieutord 2000; Mathis 2009; Ballot et al. 2010)
and magneto-gravito-inertial waves, when radiation zones are
magnetized (e.g. Rudraiah & Venkatachalappa 1972; Kim &
MacGregor 2003; MacGregor & Rogers 2011; Mathis & de Brye
2012).
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Appendix A: Validity of the WKBJ approximation

The form of the equation to solve is

d2Ψ

dr2 = f (r) Ψ (r) . (A.1)

The first step is to introduce the Liouville transformation (e.g.
Olver 1974), i.e.,

W (r) = f 1/4Ψ, and ξ (r) =

∫ r

f 1/2dr′. (A.2)

We deduce

dW
dξ

=
1
4

f −5/4 f ′Ψ + f −1/4Ψ′, (A.3)

d2W
dξ2 = −

5
16

f −11/4 f ′2Ψ +
1
4

f −7/4 f ′′Ψ + f −3/4Ψ′′, (A.4)

and Eq. (A.1) becomes

d2W
dξ2 = [1 + Φ (r)] W, (A.5)
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where Φ =
4 f f ′′ − 5 f ′2

16 f 3 ·

In the present case we have

f (r) = −k2
V (r) = −

l(l + 1)
r2

(
N2

σ2 − 1
)
· (A.6)

The WKBJ approximation is available when N2 � σ2.
Consequently, we get

f ≈ −l(l + 1)
1
r2

N2

σ2 , (A.7)

f ′ (r) ≈ l(l + 1)
2N2

r2σ3 mΩ̄′, (A.8)

f ′′ (r) ≈ −l(l + 1)6m2 N2Ω̄′2

r2σ4 , (A.9)

and

Φ(r) ≈ −
1
4

m2

l(l + 1)

(
dΩ̄
dr

)2
r2

N2 ≡ −
1
4

m2

l(l + 1)
Ri, (A.10)

where Ri is the Richardson number of the fluid defined in Eq. (3).
Finally, we determine that the condition for applying the

WKBJ approximation is |Φ| � 1, which leads to Ri �
1
4

l(l + 1)
m2 .

Appendix B: Mathematical treatment
for the non-perfect fluid case

We introduce

χl,m =

∫ b

a
eηtv (t) dt, (B.1)

where a and b are the limits of a domain which will be defined
later. The equation of propagation can then be written as

1
Pr

t6v +

(
1 +

1
Pr

)
d
dt

(
t4v

)
+

d2

dt2

(
t2v

)
+ Ricv = 0, (B.2)

and[
−

(
1 +

1
Pr

)
t4veηt −

d
dt

(
t2v

)
eηt + zt2veηt

]b

a
= 0. (B.3)

The new variable u, defined by v = t−2e−
1
3 t3

u, transforms the
original equation into

d2u
dt2 −

(
1 −

1
Pr

)
t2 du

dt
+

l(l + 1)
m2 Ric

1
t2 u = 0. (B.4)

Then, we introduce s = Dt3 where D ∈ C∗:

9s2 d2u
ds2 +

[
6s −

3s2

D

(
1 −

1
Pr

)]
du
ds

+
l(l + 1)

m2 Ricu = 0. (B.5)

Finally, u = s−1/3Ve
1

6D

(
1− 1

Pr

)
s leads to

9s2 d2V
ds2 +

[
2 +

l(l + 1)
m2 Ric +

s
D

(
1 −

1
Pr

)
(B.6)

−
s2

4D2

(
1 −

1
Pr

)2 V = 0

To obtain the final equation, we define

D = −
1
3

(
1 −

1
Pr

)
, (B.7)

M2
l,m =

1
4
−

2 +
l(l+1)

m2 Ric
9

, (B.8)

Λ = −
1
3
, (B.9)

and we get the following Whittaker equation:

d2V
ds2 +

 1
4 − M2

l,m

s2 +
Λ

s
−

1
4

 V = 0· (B.10)
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