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ABSTRACT

The cosmic microwave background (CMB) is of premier importance for cosmologists in studying the birth of our universe.
Unfortunately, most CMB experiments, such as COBE, WMAP, or Planck do not directly measure the cosmological signal, be-
cause the CMB is mixed up with galactic foregrounds and point sources. For the sake of scientific exploitation, measuring the CMB
requires extracting several different astrophysical components (CMB, Sunyaev-Zel’dovich clusters, galactic dust) from multiwave-
length observations. Mathematically speaking, the problem of disentangling the CMB map from the galactic foregrounds amounts
to a component or source separation problem. In the field of CMB studies, a wide range of source separation methods have been
applied that all differ in the way they model the data and in the criteria they rely on to separate components. Two main difficulties are
i) that the instrument’s beam varies across frequencies and ii) that the emission laws of most astrophysical components vary across
pixels. This paper aims at introducing a very accurate modeling of CMB data, based on sparsity to account for beams’ variability
across frequencies, as well as for spatial variations of the components’ spectral characteristics. Based on this new sparse modeling
of the data, a sparsity-based component separation method coined local-generalized morphological component analysis (L-GMCA)
is described. Extensive numerical experiments have been carried out with simulated Planck data. These experiments show the high
efficiency of the proposed component separation methods for estimating a clean CMB map with a very low foreground contamination,
which makes L-GMCA of prime interest for CMB studies.

Key words. cosmic background radiation – methods: data analysis – methods: statistical

1. Introduction

A very large number of experiments have been dedi-
cated to studying the cosmic microwave background (CMB)
anisotropies. Launched in 2001, the WMAP satellite has been
observing the sky in five frequency bands ranging from 22 GHz
to 94 GHz (Bennett et al. 2003a). This survey has been pro-
viding full-sky maps of the CMB fluctuations up to a resolu-
tion of 13.2 arcmin at 94 GHz. More recently, the Planck mis-
sion (Planck Collaboration 2006), launched in May 2009, is
currently providing full sky observations in 9 frequency bands
from 30 GHz to 857 GHz at resolutions ranging from 33 arcmin
at 30 GHz to 5 arcmin at 857 GHz. Expected to be released
in early 2013, Planck will provide full-sky maps of the CMB
anisotropies at an unprecedented resolution of 5 arcmin.

The CMB is generally not observable directly; most
CMB experiments such as WMAP or Planck provide multi-
wavelength observations in which the CMB is mixed with other
astrophysical components. Recovering useful cosmological in-
formation requires disentangling the contribution in the CMB
data of several astrophysical components, namely CMB itself as
well as various foreground components see (Bouchet & Gispert
1999).

The main foreground contributors include:

– Synchrotron: this emission arises from the acceleration of
cosmic-ray electrons in magnetic fields. It follows a power
law with a spectral index that varies across pixels from −3.4
and−2, 3 (Bennett et al. 2003b). In the Planck data, this com-
ponent mainly appears at lower frequency observations (typ.
ν < 70 GHz).

– Free-free: the free-free emission develops from the electron-
ion scattering. This component has power-law emission with
a rather constant spectral index across the sky (around –2.15;
Dickinson et al. 2003).

– Dust emission: this component arises from the thermal ra-
diation of the dust grains of the Milky Way. This emission
follows a gray body law that depends on two parameters:
dust temperature and spectral index (Finkbeiner et al. 1999).
Recent studies involving the joint analysis of IRAS and the
545 GHz and 857 Ghz observations from Planck show sig-
nificant variations in the dust temperature and spectral in-
dex across pixels on both large and small scales (Planck
Collaboration 2011a).

– AME: the AME (anomalous microwave emission) or spin-
ning dust may develop from the emission of spinning dust
grains on nanoscale. This component spatially correlates
with the thermal dust emission but has an emissivity that
roughly follows a power law in the range of frequencies ob-
served by Planck and WMAP (Planck Collaboration 2011c).

– SZ: the Sunyaev-Zel’Dovich effect results from the interac-
tions of high energy electrons and the CMB through inverse
Compton scattering (Sunyaev & Zeldovich 1970). The elec-
tromagnetic spectrum of the SZ component is well known
and constant across pixels.

– Point sources: these components are made of two categories,
radio and infrared point sources that can be of galactic or
extra-galactic origins. Most of the brightest compact sources
are found in the ERCSC catalogue provided by the Planck
mission (Planck Collaboration 2011b). These point sources
have individual electromagnetic spectra.
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Unseen by WMAP, the emission of carbon monoxide (CO) will
also be seen by Planck in its 100, 217 and 353 GHz chan-
nels. The recovery of all these sources falls in the framework
of component separation. For an efficient component separation
over a large portion of the sky, a range of channels needs to be
observed to disambiguate the various foregrounds. Component
separation consists of estimating a set of parameters (i.e. mix-
ing matrix, power spectral and spectral index to only name a
few) that describes the components of interest, as well as how
they contribute to the data. For example, it could be parameters
describing the statistical properties such as power spectra, elec-
tromagnetic spectra to name only two.

A wide range of component separation techniques have been
proposed. They mainly differ from each other in the way they
model the data and the assumptions made on the components to
be separated. An overview of the major component separation
techniques is given in Sect. 2. The modeling of the data is chal-
lenging because it involves a wide variety of instrumental and
physical phenomena, such as:

– Instrumental noise: it is generally correlated and nonstation-
ary, because each position in the sky is not observed the same
number of times. The noise variance varies across pixels.

– Point sources: point sources are very hard to account for
in component separation, because each point source has its
own electromagnetic spectrum. Therefore the contribution of
point sources cannot be defined as a simple spatial template
that scales across frequencies.

– Emissivity variations: it is well established that the emissiv-
ity of most foregrounds, such as dust (Planck Collaboration
2011a) or synchrotron (Bennett et al. 2003b), varies across
the sky. Again, assuming that the electromagnetic spectrum
of these components is constant across pixels is inaccurate.

– Heterogeneous beams: the observed maps generally have
different resolutions; furthermore, the beams are not neces-
sarily isotropic and spatially invariant.

Each observed channel xi, at frequency νi, contains informa-
tion about several sky emissions (CMB, dust, etc.), which can
be written at each pixel k as

xi[k] = bi ⋆

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Ns
∑

j=1

ai, j[k]s j[k]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ ni[k]. (1)

In this equation i is the channel number, k the pixel position, Ns

the number of sky emissions, bi the instrument beam (i.e. point
spread function), ai, j[k] models for the contribution of source j
in channel i, s j is the jth sky component and ni[k] the noise. The
observation xi centered on frequency νi is defined as the integra-
tion across the detector spectral transmission Ti(µ). In Eq. (1),
this integration is hidden in the terms ai, j[k] which can be pre-
cisely defined as

ai, j[k] =

∫

ν

Ti(ν) fν, j[k]dν

where fν, j[k] stands for the spectral energy distribution (SED) of
the component s j at pixel k. If we omit the effect of the beams
and assume that the sky component spectral behavior does not
vary across the sky (i.e. ai, j[k] is constant for any fixed (i, j)),
then the above equation can be recast as

X = AS + N. (2)

The matrix X represent the observed multichannel data, S the un-
known sources, and A the unknown or partially unknown mixing

matrix (ai, j the contribution of component s j to the channel i at
frequency νi). Therefore, one needs to find S and A from the
observed data X alone. This is obviously a very ill-posed prob-
lem known, in the statistics community, as blind source sepa-
ration (BSS; Comon & Jutten 2010). During the last decades,
various methods have been introduced to tackle BSS problems.
The main differences between all these component separation
methods are the statistical assumptions made to differentiate be-
tween the sources. A famous example is independent component
analysis (Hyvarinen et al. 2001) which relies on the statistical
independence of the sources. Although independence is a strong
assumption, it is physically acceptable in many cases, and pro-
vides much better solutions than using a simple second order
decorelation assumption generally obtained with methods such
as using principal component analysis (PCA; Hastie et al. 2009).
In the field of astrophysics, a very wide range of CMB map esti-
mation techniques have been proposed in the last decades.

In this paper, we first review in Sect. 2 the major classes
of component separation methods, and we discuss the advan-
tages and drawbacks of each of them. In Bobin et al. (2007,
2008), we introduced a novel component separation method
coined generalized morphological component analysis method
(GMCA) which profits from how foreground emissions can be
sparsely represented in a well chosen signal representation (e.g.
wavelets). The estimation of the components and the unknown
coefficients in the mixing matrix is performed by enforcing the
sparsity of the components in the wavelet domain. Section 3 dis-
cusses the use of sparsity prior for CMB estimation in more de-
tails. We show in Sect. 5 how the GMCA method can be modi-
fied to properly take into account the different resolutions of the
different channels, and the spatial variation of the mixing ma-
trix. Based on this sophisticated data modeling, a novel sparse
component separation method local GMCA (L-GMCA) coined
is described. Finally, results of extensive numerical experiments
are presented in Sect. 6, which shows the advantage on the
sparse recovery method over the ILC-based approach. Except for
GMCA1, codes relative to these different methods are not pub-
lic. This makes the comparison between them relatively difficult.
However, a first comparison of these methods has been done in
(Leach 2008) on full-sky simulated Planck data. Regardless of
the kind of approach one adopts, efficient CMB estimation re-
quires an accurate modeling of the data, as well as a robust and
effective separation technique. Also, with the future Planck re-
lease in 2013, we need to have a much better understanding of
what methods work better to recover a high-quality CMB map
from full-sky surveys.

2. Overview of CMB recovery methods

One of the first attempts to recover full-sky estimates of the
CMB map was made through multichannel Wiener filtering
(Bouchet et al. 1999). Since, a very large number of compo-
nent separation techniques have been proposed to estimate com-
ponents from CMB data. These methods can be split up into
three categories: i) template fitting; ii) statistical methods derived
from blind source separation (BSS) and iii) parametric meth-
ods. In a nutshell, template fitting techniques (Dunkley et al.
2009) profit from some prior knowledge of spatial templates for
the major components to be extracted. Given a parametric mod-
eling of the components, parametric methods (Stolyarov et al.
2005; Eriksen et al. 2008) generally estimate the components’

1 GMCA is part of the ISAP toolbox: http://jstarck.free.fr/
isap.html
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parameters from their posterior distributions. Finally, inspired by
BSS in the statistics community (Comon & Jutten 2010), blind
source separation (BSS) techniques (Delabrouille et al. 2009;
Bobin et al. 2008a; Bedini et al. 2005) rely on some statistical
measure of diversity (i.e. statistical independence or sparsity to
name only two) between the sources to separate out the different
components. All these component separation methods therefore
differ from each other in the way they model the data as well as in
the criteria they use to distinguish the sources. In this section we
present an overview of the various methods proposed for CMB
recovery and discuss their relative advantages and drawbacks.

Template fitting

Having the foregrounds as additional components of the mi-
crowave sky, one can perform a fit of the template to the data
for foreground analysis. For Nt template vectors, {ti}i=1,··· ,NT

, the
template-corrected data has the form at frequency νi

x̃i = xi −

Nt
∑

j=1

β jt j, (3)

where the best-fit amplitude, β j, for each foreground template

can be obtained by minimizing x̃T
i
C−1 x̃i, where C is the total

covariance matrix for the template-corrected data C =
〈

x̃i x̃
T
i

〉

.

Template-fitting can be performed either in the pixel domain or
in harmonic space. Pixel-based implementation allows for in-
complete sky coverage, as well as a refined modeling of nonsta-
tionary noise at the expense of a more complex modeling of the
data: the CMB covariance matrix is large and dense. Conversely,
spherical harmonics make the modeling of CMB much simpler
but requires crude stationary assumptions for noise. CMB clean-
ing by template fitting has a number of advantages, starting with
its simplicity. The technique makes full use of the spatial in-
formation in the template map, which is important for the non-
stationary, highly non-Gaussian emission distribution, typical of
Galactic foregrounds. There are also disadvantages to this tech-
nique because the noise of the template is added to the solu-
tion, and imperfect models of the templates could add system-
atics and non-Gaussianities to the data. We refer the reader to
(Dunkley et al. 2009) for a more detailed description of template
fitting techniques. Template cleaning of the COBE/FIRAS data
reduced a complicated foreground by a factor of ten by using
only three spatial templates (Fixsen et al. 1998).

Second order statistical methods

ILC: internal linear combination In the field of cosmology in-
ternal linear combination has ben widely used, (see Eriksen et al.
2004; Hurier et al. 2010; Remazeilles et al. 2011; Delabrouille
et al. 2009). In this framework, very little is assumed about the
different components to be separated out. The main component
is assumed to be the same in all the frequency bands, and the
observations are calibrated with respect to this component. Each
observation xi is modeled at pixel k as

xi[k] = s[k] + fi[k] + ni[k] (4)

where i denotes the frequency channels at frequency νi, fi[k],
and ni[k] are the foregrounds and noise contributions at pixel k,
respectively. One then looks for the solution

ŝ[k] =
∑

i

wi[k]xi[k]. (5)

The simplest version of ILC assumes the weights wi[k] are
constant across the sky and therefore are not functions of k.
The ILC estimate of the CMB is then obtained by estimating
the weights w, which minimize the variance of the estimated
CMB map:

min
w
wTXXTw s.t. wTa = 1 (6)

where a is the electromagnetic spectrum of CMB (a vector made
of ones for data in thermodynamic units) and ΣX = XXT.
Solving the minimization problem in Eq. (6) leads to

w =
aT
ΣX
−1

aTΣX
−1a
·

The final CMB map is then ŝ = aT
ΣX
−1

aTΣX
−1a

X.

Additionally, the ILC solution can be interpreted equiva-
lently as a maximum likelihood estimate assuming that the co-
variance matrix of the error is the covariance matrix of the data
themselves (this assumption is a good approximation when the
foregrounds and/or intrumental noise are preeminent). This is
equivalent to minimizing the weighted least square of the resid-
ual X − as: ŝ = mins(X − as)T

ΣX
−1(X − as). This interpretation

makes ILC closely linked to the “best linear unbiased estimator”
(a.k.a. BLUE; Kay 1993) in statistics with the assumption that
the covariance of the error is identical to the covariance of the
data. To improve on this, the map is generally decomposed into
several regions, and ILC is applied to them independently. The
ILC performs well when no prior information is known about
the different components: the only prior knowledge is the CMB
electromagnetic spectrum.

Correlated component analysis (CCA): this method (Bedini
et al. 2005) is a semiblind approach that estimates the mixing
matrix on sub patches of the sky based on second-order statistics.
It makes no assumptions about the independence of the sources.
This method adopts the commonly used models for the sources
to reduce the number of parameters estimated and exploits the
spatial structure of the source maps. The spatial structure of the
maps are accounted for through the covariance matrices at dif-
ferent shifts (τ, ψ)

Cd(τ, ψ) = ACs(τ, ψ)At + Cn(τ, ψ), (7)

where Cd(τ, ψ) is estimated from data, and the noise covariance
matrix Cn(τ, ψ) is derived from the map-making noise estima-
tions. Then by minimizing the equation
∑

τ,ψ

∥

∥

∥ACs(τ, ψ)At −
[

Cd(τ, ψ) − Cn(τ, ψ)
]

∥

∥

∥ , (8)

where the Frobenius norm is used, one can estimate the mixing
matrix and the free parameters of the source covariance matrix.
Given as estimate of Cs and Cn, the above equation can be in-
verted and component maps obtained via the standard inversion
techniques of Wiener filtering or generalized least square inver-
sion. To obtain a continuous distribution of the free parameters
of the mixing matrix, CCA is applied to a large number of par-
tially overlapping patches.

Spectral matching ICA (SMICA): SMICA (Delabrouille et al.
2003) is a ICA-based components separation technique that re-
lies on second-order statistics in the frequency or spherical har-
monics domain. For multichannel maps xi[k], one computes

R̂ℓ =
1

2ℓ + 1

∑

m

xℓm x
†

ℓm
(9)
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for each ℓ and m. One then models the ensemble average as

Rℓ =
〈

R̂ℓ

〉

=
∑

j R
j

ℓ
where the sum is over the components.

For each component, R
j

ℓ
is a function of a parameter vector θ j,

where the parameterization embodies the prior knowledge about
the components, as well as the mixing matrix. The parameters
are determined by minimizing the spectral mismatch

minθ

∑

ℓ

(2ℓ + 1)K

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

R̂ℓ|
∑

j

R
j

ℓ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (10)

where K(C1|C2) is a measure of mismatch between C1 and
C2 (typically the Kullback-Leibler divergence between two
Gaussian distributions with same mean and covariance matrices
R̂ℓ and

∑

j R
j

ℓ
). This technique has also been extended to analyze

polarized data (Aumont & Macías-Pérez 2007).

Parametric methods

Maximum entropy method (MEM): having a hypothesis H in
which the observed data {xi}i=1,··· ,M are a function of the under-
lying signal s, one can follow Bayes’ theorem, which tells us
the posterior probability is the product of the likelihood and the
prior probability divided by the evidence:

P(s|d,H) =
P(d|s,H)P(s|H)

P(d|H)
· (11)

Then following the maximum entropy principle, one uses a prior
distribution that maximizes the entropy of the estimate given a
set of constraints (Hobson et al. 1999).

The MEM can be implemented in the spherical harmonic do-
main where the separation is performed mode-by-mode, which
speeds up the optimization. Based on this maximum entropy
approach, FastMEM is a non-blind method, which means that
the power-spectra and cross-spectra of the components must be
known beforehand. Further details of this method are presented
in Stolyarov et al. (2005).

Commander: given a parametric model of the foreground sig-
nals, Commander (Eriksen et al. 2008) is a Bayesian inference
technique that estimates the joint foreground-CMB posterior dis-
tribution through statistical sampling (Gibbs sampling). This ap-
proach allows for estimation of the marginal posterior the differ-
ent parameters from the CMB power spectrum to the foreground
spectral index. By maximizing the posterior marginal of the
CMB map, one obtains the Wiener filtered version of this map
– therefore biased – because sampling techniques are compu-
tationally demanding, estimation of the foreground parameters
is generally performed at large-scales (e.g. 3 degrees in Eriksen
et al. 2008). If this allows to efficiently capture the large-scale
contribution of the foregrounds, it is not adapted well to estimat-
ing the small-scale variation in these parameters.

2.1. Comparisons of assumptions and modeling

These different methods give a rather large overview of the dif-
ferent approaches used so far to estimate the CMB from multi-
wavelength observations. They all differ in the way they model
the data and in the assumptions made to disentangle the different
components:

– Instrumental noise: only pixel-based or wavelet-based meth-
ods are able to, at least approximately, model for the varia-
tion across pixels of the noise variance. Methods based on

spherical harmonics rely only on the power spectra or on
cross spectra to perform the separation. Instrumental noise
can be accounted for via its power spectrum which does not
precisely characterize its nonstationarity.

– Frequency beams: the beam of the observations varies
across frequencies. Since the effect of the beam is a sim-
ple multipole-wise product in spherical harmonics, methods
performing in this domain can effectively model for its ef-
fect. Pixel-based methods generally neglect the variation in
the beam across frequency or at least estimate the mixture
parameters (i.e. mixing matrix) at a common low resolution
at the expense of losing small scale information.

– Component’s modeling: parametric methods such as
FastMEM (Stolyarov et al. 2005) or Commander (Eriksen
et al. 2008) are attempts to make use of accurate model-
ing of astrophysical components involving spatially variant
parameters (e.g. spectral index and dust temperature). The
dimension of the parameter space growing with the reso-
lution, parameters are generally estimated at low resolution
and extrapolated to higher resolution. If this allows for pre-
cise modeling of foregrounds at large scale, this model is still
inaccurate for capturing small scale variations in the compo-
nents. BSS-based methods such as CCA (Bedini et al. 2005)
have also been extended so as to incorporate a parametric
modeling of the major foregrounds (free-free, synchrotron
and dust emissions) but with the assumption that the electro-
magnetic spectra of these components is fixed across the sky.
To our knowledge, ILC (Delabrouille et al. 2009) is the only
nonparametric method that has been extended to perform on
patches in the needlet domain to allow for space-varying ILC
weights.

– Separation criteria: when no physics-based assumptions
are made on the components, blind source separation tech-
niques, such as CCA (Bedini et al. 2005) or SMICA
(Delabrouille et al. 2003) rely on statistical separation cri-
teria to differentiate between the components. As described
in the previous section, CCA and SMICA both make use of
second-order statistics to separation components, covariance
matrices either in the pixel domain for CCA and ILC or in
spherical harmonics for SMICA. If second-order statistics
provide sufficient statistics for Gaussian random fields like
the CMB, it is no more optimal for nonstationary and non-
Gaussian components such as foregrounds. In this, higher-
order statistics should also play a preeminent role to measure
discrepancies between the sources.

As emphasized in the introduction, designing a component sep-
aration method allowing for accurate modeling of the data (i.e.
space-varying noise variance, heterogenous beams) as well as
a precise modeling of the data (i.e. accounting for the space-
variant spectral characteristic of components, effective separa-
tion criterion for both non-Gaussian foregrounds and CMB), is
a challenging task. Up to know, none of the proposed meth-
ods takes all the aspects of data and component modeling into
consideration.

2.2. Toward wavelets and sparsity

The discussion of the previous section sheds light on the respec-
tive advantages of data modeling in pixel space and in spherical
harmonics. However, it clearly appears that neither of these two
different approaches deals appropriately with the separation of
nonstationary and/or non-Gaussian signals as well as the corre-
lation between pixels of the components.
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Taking the best of both approaches is generally made by
switching to a wavelet-based modeling of the data: i) the wavelet
decomposition of the data leads to splitting the spherical har-
monics domain which allows for a localization in frequency or
scale together with a localization in space. Harmonic methods
such as SMICA, and pixel-based techniques such as ILC, have
thus been extended with success in the wavelet domain, using
isotropic wavelets on the sphere (Starck et al. 2006; Marinucci
et al. 2008), leading to the WSMICA (Moudden et al. 2005),
N-ILC (Delabrouille et al. 2009) and GenILC (Remazeilles et al.
2011) methods.

Owing to the spatial localization of the wavelet representa-
tion, CMB estimation is carried out on different regions of the
sky in the different wavelet scales, which allows for a more
effective cleaning of nonstationary components. Similarly, a
template-fitting technique such as SEVEM is now applied in the
wavelet domain (Fernández-Cobos et al. 2012) to capture scale-
space variabilities of the templates’ emissivity. However, this
method makes use of Haar wavelets on Healpix faces, which is
certainly less than optimal since this specific wavelet function is
irregular and exhibits very poor mathematical properties. If the
data modeling is more complex than a simple template fitting,
this approach does not have the versatility of N-ILC and cannot
capture variation in the spectral emission of a given component
on a given scale.

It is important to note that the wavelet transform has the
ability to capture coherence or correlation across pixels while
averaging the noise contribution. This essential property is also
known in the field of modern statistics as sparsity, where cor-
related structures in the pixel domain are concentrated in a
few wavelet coefficients. As an illustration, Fig. 1 displays the
histogram of the pixel intensity of simulated dust emission at
857 GHz in the pixel domain in the top panel and in the wavelet
domain in the bottom panel. This figure particularly shows that if
all the pixels of dust are nonzero, the vast majority of its wavelet
coefficients are very close to zero, and only a few have a sig-
nificant amplitude. This highlightens the ability of the wavelet
transform to concentrate the geometrical content (i.e. correlation
between pixels) of dust emission in a few coefficients.

Extensions to the wavelet domain of the above CMB estima-
tion techniques benefit from the space/frequency localization of
the wavelet analysis. However they do not profit from the spar-
sity, hence highly non-Gaussian, property of the wavelet decom-
position of the components. Conversely, GMCA further enforces
sparsity to better estimate the sought after sources in the wavelet
domain. This component separation method is described in the
sequel.

3. Sparse component separation: generalized

morphological component analysis (GMCA)

3.1. Sparsity for component separation

Sparse priors have been shown to be very useful in regulariz-
ing ill-posed inverse problems (Starck et al. 2010). In addition,
sparse priors using wavelet bases have been used with suc-
cess to various signal processing problems in astronomy includ-
ing denoising, deconvolution, and inpainting (Starck & Murtagh
2006). Like the ICA-based techniques, GMCA aims at solving a
blind or semiblind source separation problem. However, GMCA
performs in the wavelet domain (Bobin et al. 2008a) to benefit
from the sparsity property of the foregrounds in this domain. It is
worth mentioning that sparsity has also been used for component

Fig. 1. Histogram of simulated dust emission at 857 GHz in pixel do-
main (top), and wavelet domain at the (bottom). More details about the
simulations can be found in Leach (2008).

separation in fields of research outside astrophysics (Zibulevsky
& Pearlmutter 2001; Bobin et al. 2008b, 2009).

In the sequel, we denote the forward wavelet transform by
Φ and its backward transform byΦT. Mathematically speaking,
this is a matrix made of wavelet waveforms. One can uniquely
decompose each source s j in the wavelet domain as

s j = α jΦ,

where α j are the expansion coefficients of source s j in the
wavelet basis. The sparsity of the sources means that most of
the entries of α j are equal or very close to zero, and only a
few have significant amplitudes. The multichannel data X can be
written as

X = AαΦ + N. (12)

The objective of GMCA is to seek an unmixing scheme through
the estimation of A, which yields the sparsest sources S in the
wavelet domain. This is expressed by the following optimization
problem written in the augmented Lagrangian form:

min
1

2
‖X − AαΦ‖2F + λ

Ns
∑

j=1

∥

∥

∥α j

∥

∥

∥

p
, (13)

where typically ‖α‖p =
(∑

k |α[k]|p
)1/p

. Sparsity is generally
enforced for p = 0 which measures the number of non-zero
entries of α (or its relaxed convex version with p = 1) and

‖X‖F =
(

trace(XTX)
)1/2

is the Frobenius norm. The problem in
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Eq. (13) is solved in an iterative two-step algorithm such that at
each iteration q

1. Estimation of the S for A fixed to A(q−1).
Solving the problem in Eq. (13) for p = 0 assuming A is
fixed to A(q−1), the sources are estimated as

S(q) = ∆λ

(

A(q−1)+XΦT
)

Φ

where ∆λ stands for the hard-thresholding operator with
threshold λ. This operator sets all coefficients with ampli-
tudes lower than λ to zero. In practice, the threshold λ is set
to be equal to three times the standard deviation of the noise

level to exclude noise coefficients. The term A(q−1)+ denotes
the Moore pseudo-inverse of the matrix A(q−1). The Moore

pseudo-inverse of some matrix A is defined as (ATA)
−1

AT.
2. Estimation of the A for S fixed to S(q):

Updating the mixing matrix assuming that the sources are
known and fixed to S(q) is as

A(q) = XS(q)+.

For more technical details about GMCA, we refer the interested
reader to (Bobin et al. 2008a), where it is shown that sparsity,
as used in GMCA, allows for a more precise estimation of the
mixing matrix A and more robustness to noise than ICA-based
techniques. Prior astrophysical knowledge can also be easily
introduced in GMCA. This includes the electromagnetic spec-
tra of components, such as CMB and SZ. BSS methods, such
as SMICA or CCA are intuitively well understood since they
rely on second-order statistics astrophysicists customarily use
in their everyday life: correlations, covariance matrices, power
and cross-spectra. More details can be found in Bobin et al.
(2008a). Sparsity is not only sensitive to second order statis-
tics but also to the higher order statistics of the components.
In Bobin et al. (2008a), it has been shown on toy model sim-
ulations (all frequency channels at the same resolution and no
spatial variation of the mixing matrix) that the sparsity criterion
was more efficient than the SMICA criterion at separating the
different components.

3.2. Limitations of GMCA

According to the mixture model underlying GMCA, all the ob-
servations are assumed to have the same resolution. However,
in most CMB experiments, this assumption does not hold true:
the WMAP (resp. Planck) full width at half maximum (FWHM)
varies by a factor of about 5 (resp. 7) between the highest reso-
lution and the lowest resolution.

Assuming that the beam is invariant across the sky, the linear
mixture model should be substituted with

∀i = 1, · · · ,M; xi = bi ⋆

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

n
∑

j=1

ai js j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ ni

where bi stands for the impulse response function of the PSF at
channel i. This model can be expressed more by introducing a
global multichannel convolution operator B defined so that its
restriction to the channel i is equal to a convolution with bi:

X = B (AS) + N. (14)

Fully parametric methods have the ability to account for the
full mixture. In the family of non-parametric approaches, only

blind source separation methods performed in spherical harmon-
ics carefully account for the full mixture model in Eq. (14),
where such a model can be simplified naturally (i.e., the con-
volution operator is diagonalized by the spherical harmonics as
in Fourier space for data sampled on regular Euclidean grids).
However, this holds true as long as the beam is assumed to be
isotropic and invariant across the sky. Extending the data model-
ing to anisotropic and/or space varying beams can only be made
in the pixel domain.

The standard version of GMCA does not model for the differ-
ent resolutions of the data. For the sake of simplicity, the effect
of the beam was neglected during the source separation process.
The mixing matrix with GMCA was estimated directly on the
data assuming that the linear mixture model is valid. In this set-
ting, the CMB map is evaluated by applying the Moore pseudo-
inverse of the estimation mixing matrix to the raw data:

s = [A+]1X,

where A+ = (ATA)−1AT and the notation [Y]i stands for the ith
row of the matrix Y. By convention, matrix elements related to
the CMB map have index 1. Neglecting the beam effect implies
that the CMB map estimated by GMCA is biased. Hopefully this
bias can be computed explicitly by observing that, for each (ℓ,m)
in the spherical harmonics domain:

sℓ,m =

M
∑

i=1

[A+]1,i[A]i,1bi,ℓs
⋆
ℓ,m + r,

where r is a residual term that models for noise and foregrounds
contaminating the estimated CMB. The variable s⋆

ℓ,m
stands for

the true bias-free CMB in spherical harmonics. By neglecting
the residual term, the beam-induced bias can be regarded as a
filter in spherical harmonics Bℓ:

sℓ,m ≃

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M
∑

j=1

[A+]1, j[A] j,1b j,ℓ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

s⋆ℓ,m (15)

≃ Bℓs
⋆
ℓ,m (16)

where Bℓ =
∑M

j=1[A+]1, j[A] j,1b j,ℓ. The final estimate is com-
puted by inverting the above filter.

Neglecting the beam effect in the component separation pro-
cess however has two major drawbacks:

– Discrepancy with the linear mixture model: the linear mix-
ture model does not hold when the data do not share the
same resolution. This very likely leads to a nonoptimal pa-
rameter estimation process. According to the linear mixture
model, the contribution of the CMB in the data is the same
across frequencies for each (ℓ,m), and this contribution is
given by the electromagnetic spectrum of the CMB. This is
no longer true when the resolution varies from one obser-
vation to another and the contribution now varies across ℓ.
This means that carrying out component separation from the
raw data without accounting for the beam effect should lead
to an inaccurate unmixing procedure. The dominant ener-
getic content of the components is mainly concentrated at
low frequencies where the beams do not differ too much
from each other. At these frequencies, the linear mixture
model is a good first-order approximation that may ex-
plain the seemingly good performances of GMCA in Leach
(2008). However, performances on smaller scales should be
enhanced by correctly modeling the beam in the separation
process.
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– Noise: following the previous argument, computation of the
mixing matrix in GMCA is mainly driven by the low fre-
quency content of the components. However the signal-to-
noise ratio (S/N) of the observations highly depends on their
resolution; low resolution observations typically have a low
S/N at high spatial frequencies. This entails estimating the
mixing parameters from the low frequency content for the
data but it does not carefully account for the noise contami-
nation on smaller scales, which is likely to lead to low S/N
CMB estimates at high ℓ.

Like most component separation methods used so far, GMCA
explicitly assumes that the mixing matrix does not vary across
pixels. This is a strong limitation since it is clearly not suited
to capturing the expected emissivity variation of galactic fore-
grounds across the sky.

We show how GMCA can be modified to solve these prob-
lems in the next two sections.

4. GMCA and frequency map resolutions

4.1. Component separation from heterogenous data

The heterogeneity of the data in the separation process can be
accounted for in two different ways: the most straightforward
technique would consist in adapting GMCA by substituting the
data fidelity term in Eq. (13) by the more rigorous expression:
‖X − B (AS)‖2F,ΣN

where B represents the beam effect. If this
approach has been explored with some success in a different
imaging context (Bobin et al. 2009), its high computational cost
makes it hard to apply to large-scale CMB data.

The second approach would instead consist in finding ways
to apply GMCA to data that share the same resolution. This
could be obtained by first converting all the observations to
the common desired resolution. However, the beams at low-
frequency vanish much faster than at higher frequency and this
means that a brute-force deconvolution of the low frequency
channels will yield large amplification of the noise. In practice,
such a deconvolution is also prohibited by numerical issues. It is
important to underline that low resolution channels will mainly
add noise to the final estimate at high spatial frequencies (or
equivalently high ℓ multipoles in the spherical harmonics do-
main). Therefore low resolution observations will be the most
informative at low frequencies and should be avoided for recon-
structing the high frequency content of the CMB map. In the
next paragraph, we introduce an elegant strategy for extending
GMCA to cope with data involving frequency-dependent beams.

4.2. Multiscale GMCA

A solution to this problem is to adapt the wavelet decomposition

for each channel such that the wavelet coefficients w
(µ)

1
, ..., w

(µ)

M
of the M available channels at scale µ do have exactly the same
resolution. This can be easily obtained by choosing a specific
wavelet function for each channel i (i = 1, · · · ,M) such that

Ψ
(µ)

i
(ℓ) =

btarget(ℓ)

bi(ℓ)
ψ(µ)(ℓ) (17)

where bi is the beam of the ith channel, btarget the Gaussian beam
related to the targeted resolution, and ψµ is the standard wavelet
function on scale µ. This approach is closely related to the
wavelet-based deconvolution techniques introduced in (Donoho
1995; Khalifa et al. 2003) and called, in the statistical literature,

wavelet-vaguelette decomposition. According to this formalism,
the decomposition of a function f is defined by

btarget ⋆ f =

Nµ
∑

µ=1

Np
∑

k=1

〈

bi ⋆ f ,Ψ
(µ)

k

〉

ψ
(µ)

k
(18)

where Nµ is the number of wavelet scales and Np the number of
pixels in the map.

In this paper, we propose extending these ideas to the case
of component separation. Replacing the data matrix X by the

matrix of wavelet coefficients W (Wi,∗ = wi =
〈

xi,Ψ
(µ)

i,k

〉

), and

applying the pseudo inverse of A to W, we get Z = A+W.

The quantity z
(µ)

j,k
is now related to the wavelet coefficients of the

jth source in the µth wavelet scale at location k. The estimated
sources can then be estimated via the following reconstruction
formula

s̃ j =

Nµ
∑

µ=1

Np
∑

k=1

z
(µ)

j,k
ψ

(µ)

k
(19)

where the notation s̃ j denotes the estimate of the jth source. The
reconstruction formula cannot be implemented in practice, be-

cause the wavelet coefficients of the ith channel w
(µ)

i
on scale µ

cannot be calculated when the fraction
btarget(ℓ)

bi(ℓ)
ψ(µ)(ℓ) is undefined

or numerically unstable. It means that on each wavelet scale µ,
only the channels with non-vanishing beams can be used. At the
largest wavelet scale, all channels are active, while at the finest
wavelet scale, only few channels are active.

We note Cµ the number of channels available for a given res-

olution level µ, and N
(µ)

j
the number of wavelet scales that can

be used for a given source j. This implies introducing a mixing
matrix A(µ) per wavelet scale; this mixing matrix will be evalu-
ated from the Cµ channels available on scale µ. The size of these
matrices and the number of sources (limited to the number of
channels) vary with µ. For each wavelet resolution level µ, we

now have a solution s̃
(µ)

j

s̃
(µ)

j
=

Np
∑

k=1

z
(µ)

j,k
ψ

(µ)

k
, (20)

where Z(µ) = A(µ)+W(µ), and w
(µ)

i
=
〈

xi,Ψ
(µ)

i,k

〉

, with i =

1, · · · ,Cµ, and µ = 1, · · · ,Nµ.
The final solution s j for the jth source is obtained by a simple

wavelet reconstruction

s̃ j =

N
(µ)

j
∑

µ=1

Np
∑

k=1

〈

s̃
(µ)

j
, ψ

(µ)

k

〉

ψ
(µ)

k
. (21)

Multiscale GMCA (mGMCA) is similar to a harmonic space
method, where we consider one mixing matrix per wavelet band
(or frequency band), but unlike SMICA, the mixing matrix is cal-
culated from high-order statistics of wavelet coefficients. Like
SMICA, mGMCA can properly take the resolution of the dif-
ferent channels into account but with the paramount advantage
that it does not make any assumption on the stationarity of the
sources.

4.3. Practical implementation

Though the wavelet-vaguelette source separation method seems
a complicated procedure, it can be simplified to a large extent.

A73, page 7 of 17



A&A 550, A73 (2013)

Table 1. Example of resolution levels to use in mGMCA, with the num-
ber of active channels per resolution level.

Observations used Scale Cµ

30 to 857 GHz 33 arcmin 9
44 to 857 GHz 24 arcmin 8
70 to 857 GHz 14 arcmin 7
100 to 857 GHz 10 arcmin 6
143 to 857 GHz 5 arcmin 5

Indeed, thanks to the linearity of both the beam convolution op-
erator and the wavelet operator, the matrix W(µ) relative to the
active channels at resolution level µ can be computed by putting
the active maps at the same resolution (which depends on µ)
and then computing the same wavelet decomposition on each of
them. Once the matrix W(µ) is obtained, one can run the GMCA
algorithm to get the mixing matrices A(µ). This can be repeated
for each resolution level µ. This way, a CMB map is evaluated
for each resolution level, with a number of active channels de-
creasing with scales. The final solution is then derived by aggre-
gating these solutions in the wavelet space as in Eq. (21).

This procedure leads to not considering in each band the ob-
servations that do not have enough resolution; it is noticeable
that a similar approach is also used in a recent extension of the
ILC (Basak & Delabrouille 2012). Another advantage to this ap-
proach is its ability to benefit from the structure of the Healpix
format, where different values for the parameter nside can be
chosen depending on the resolution level, which speeds up the
computation time.

As an illustration, we give a possible parameterization of
mGMCA for Planck data. In this case, we have nine channels
from 30 to 857 GHz, with a resolution that goes roughly from
33 arcmin to 5 arcmin. We have therefore considered five res-
olution levels, with a number of active channels varying from
nine to five (see Table 1). The corresponding wavelet filters are
depicted in Fig. 2.

However, the underlying modeling of mGMCA does not al-
low for a precise separation of components with spectral vari-
ations. The next section shows that the spatial variation of the
matrix can also be taken into account when using a partitioning
of the wavelet scales.

5. GMCA and spatially variant mixing matrix

5.1. A refined modeling to get closer to astrophysics

As emphasized in the introduction, the complexity of CMB data
makes it very hard to fully model for all the physical phenomena
with a simple linear mixture model. The linear mixture model
used so far in most component separation methods assumes that:
i) the number of components is limited to the total number of
observations; and ii) explicitly that the emissivity of the com-
ponent is space invariant (i.e. the mixing matrix does not vary
from one pixel to another). Unfortunately, these assumptions are
not verified by common CMB data. The components one ob-
serves between 30 GHz and 857 GHz include the CMB, Sunyaev
Zel’Dovich effect, free-free, synchrotron, CIB, anomalous dust
and dust emissions as well as IR and radio sources the number
of which largely exceeds the number of observations provided
by Planck. From the current knowledge in astrophysics, some
of these components can be approximated quite accurately with
space-invariant emissivity, which is the case for the CMB, SZ ef-
fect, free-free and synchrotron emission. The dust emissions

provide a very important, if not dominant, contribution in high
frequency channels. These channels have the highest spatial res-
olution (typ. 5 to 10 arcmin); modeling for such a component
should thus be of utmost importance for a high-resolution esti-
mate of the CMB map. However modeling dust emission is a
strenuous problem. Indeed, contrary to well-characterized fore-
ground emissions such as free-free or synchrotron, most com-
ponent separation models do not satisfactorily model this con-
tribution. As an example, the gray-body dust model, known as
one of the most accurate dust models, involves two parameters:
a spectral index and temperature varying across pixels. These
remarks imply that the linear mixture model does not allow for
enough degrees of freedom to fully capture the complexity of
CMB data in the frequency range observed by most CMB sur-
veys like Planck. In the following, we focus on extending this
model to account for spatially variant spectra.

5.2. Multiscale local mixture model

The global mixture model used by most component separa-
tion methods do not allow for enough degrees of freedom to
naturally capture scale/space-dependent astrophysical phenom-
ena. The scale-dependance of the analysis naturally arises from
the mGMCA formalism, and localization requires decomposing
each wavelet scale into patches. It is worth mentioning that local-
izing the estimation of the CMB has also been proposed within
the ILC framework (Delabrouille et al. 2009) to analyze WMAP
map data. N-ILC consists in: i) decomposing each wavelet scale
into patches with a scale-dependent size; and ii) performing ILC
on each patch independently. However, the spectral behavior of
many components is not expected to change dramatically from
one patch to its neighbor, but such an independent processing
each on patch may not be optimal.

For this purpose, we have extended the mixture model to a
multiscale local mixture model. In such modeling, each location
of the sky in each wavelet scale is analyzed several times with
different patch sizes which allows the best parameters to be lo-
cally selected.

Before going any further, we first recall some useful nota-
tions. If X denotes the data, we denote the matrix composed of
the µth wavelet scale of the data X by W(µ). In what follows,
the indexing W(µ)[k] denotes the square patch of size p cen-
tered on pixel k. Following the multiscale local model, a patch-
based representation of the data on scale µ and location k is
modeled as

W(µ)[k] = A(µ)[k]S(µ)[k] + N(µ)[k]. (22)

A direct extension of mGMCA to solve this problem would sim-
ply amount to applying GMCA independently to each patch at
location k and on each scale µ. However, this approach would
suffer from certain drawbacks assuming that some “optimal”
patch size at each scale µ is known and fixed in advance.
However, fixing a priori the patch size is a very strong constraint
because the appropriate patch size should be space-dependent as
well and may vary from one region to another.

This suggests that a trade-off should be made between
small/large patches which would balance between statistical
consistency (large patches) and adaptivity (small patches). This
indicates that the choice of the patch size should be adaptive and
dependent on the local content of the data. Inspired by best basis
techniques in multiscale signal analysis, an elegant way to allevi-
ate this pitfall is to perform GMCA on each wavelet scale µ with
various patch sizes in a quadtree decomposition. In a nutshell,
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Fig. 2. Wavelet filters in the spherical har-
monics domain. Abscissa: spherical harmon-
ics multipoles ℓ. Ordinate: amplitude of the
wavelet filters.

GMCA is first performed on the full field to obtain a first estima-

tor of the mixing matrix denoted by A
(µ)

2
[k] in Fig. 3. The field is

further decomposed into four identical non overlapping patches
on which GMCA is applied to provide a set of mixing matrices

denoted A
(µ)

1
[k] in the figure. The process is iterated until the

patch is equal to the desired patch size pµ. The number of anal-
ysis levels is equal to Lµ. Interestingly, because the same area of
the sky is analyzed on different mixture scales (i.e. patch sizes),
it makes it possible to choose the “optimal” patch size from the
different estimates obtained for l = 0, . . . , Lµ afterwards. It there-
fore allows for more degrees of freedom in selecting an adapted
patch size at each location. An exhaustive description of the pa-
rameter selection strategy is given in Appendix A.

5.3. The L-GMCA algorithm

The local GMCA (L-GMCA) algorithm can be described as
follows:

1. Compute the wavelet decomposition of the data.
2. For each wavelet scale µ = 1, · · · ,Nµ:

2.1 Put the Cµ active channels to the same targeted
resolution

2.2 For each local k:
2.2.1 – Compute a set of mixing matrices at different

patch sizes (Lµ levels of analysis)
2.2.2 – Select the optimal mixing matrix
2.2.3 – Compute the CMB map estimate at scale µ

and location k.
3. Reconstruct the CMB map following Eq. (21).

Once the mixing matrices are estimated with L-GMCA
(steps 2.2.1 and 2.2.2 of the algorithm), estimating the CMB map
requires performing both a wavelet-vaguelette decomposition
and a weighting of the wavelet coefficient of the multifrequency
data on each wavelet scale according to the pseudo-inverse val-
ues of the estimated local mixing matrix. This sequence of op-
erations is particularly computer intensive for high resolution
data (e.g. Npix ≃ 50 million pixels for Planck data for each
of the 9 frequency maps), requiring for each resolution level and
each channel two back and forth spherical harmonic transforms

Fig. 3. Multichannel quadtree decomposition to display the tree-based
decomposition of the multichannel data W(µ). A sequence of mixing
matrices is estimated on patches with dyadically decreasing size. Large
sized patches are used as a warm startup for the estimation process on
smaller patches.

(of asymptotic complexity Npix3/2) followed by two wavelet
transforms for each HEALPix face (of asymptotic complexity
Npix log(Npix)), and a weighting of each coefficient map on
each scale and each resolution level (of asymptotic complexity
Npix). This should be multiplied by the number of Monte-Carlo
simulations. We developed a C++ parallelized program using
OpenMP. As an illustration of how crucial computer speed might
be, on a shared-memory multiprocessor system containing eight
Six-Core AMD Opteron(tm) running at 2.4 GHz, recovering the
CMB map from one Monte-Carlo simulation takes about nine
minutes when 24 processors are used.

6. Experiments

6.1. Simulations and comparisons

In early 2013, the finest – low noise, high resolution – CMB data
will be Planck data. Therefore, in this section, we propose evalu-
ating the performances of the proposed approach with simulated
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Planck data. To the best of our knowledge, the only publicly
available full-sky simulated Planck data are the dataset used to
evaluate preliminary performances of various CMB map esti-
mation techniques in 2008. This pre launch study has been pub-
lished in Leach (2008). In the sequel, numerical experiments will
be performed using exactly the same Planck simulated dataset.
Before going deeper into the description of the numerical re-
sults, the next paragraphs clarify the astrophysical content of the
simulation, as well as the evaluation protocol we opted for.

Some words about the simulations: the Planck-like dataset
described in Leach (2008) has been simulated using an early
version of the Planck Sky Model (PSM) developed by J.
Delabrouille and collaborators2 in Delabrouille (2012). In 2008,
the PSM included most astrophysical signals and foregrounds,
as well as simulated instrumental noise and beams. In detail, the
simulations were obtained as follows.

– Frequency channels: the simulated data are com-
prised of the 9 LFI and HFI channels at frequency
33, 44, 70, 100, 143, 217, 353, 545, 857 GHz. The frequency-
dependent beams are perfect isotropic Gaussian PSF with
FWHM ranging from 5 arcmin at 217, 353, 545, 857 GHz
to 33 arcmin at 33 GHz. Real data differ from the model
since the scanning strategy adopted by full-sky surveys,
such as WMAP or Planck is likely to produce non-isotropic
and spatially varying beams that are more elongated in the
scanning direction.

– Instrumental noise: in full-sky surveys, the sky coverage
is generally not uniform, because some areas are more of-
ten observed than others. To some extent, this entails that
the instrumental noise variance is not homogenous as well.
The noise statistics (i.e. noise variance map for each fre-
quency channel) are assumed to be known accurately. These
statistics are consistent with the Planck noise variance maps
(Leach 2008). In statistical signal processing, this kind of
statistical process is better known as heteroscedastic noise.
A second effect of the scanning strategy is the correlation of
the noise along the scanning direction. In the sequel, simu-
lations account for the heterogeneity of the noise but noise
samples are assumed to be uncorrelated.

– Cosmic microwave background: the CMB map is a corre-
lated random Gaussian realization entirely characterized by
its power spectrum. In the simulations, the CMB power spec-
trum is identical to that of WMAP. Higher order multipoles
are based on a WMAP best-fit power spectrum at high ℓ. The
simulated CMB is Gaussian, and no non-Gaussianity (e.g.
lensing, ISW, fNL) has been added. This will allow for non
Gaussianity tests under the null assumption in the sequel.

– Dust emissions: the galactic dust emissions is composed of
two distinct dust emissions: thermal dust and spinning dust
(a.k.a. anomalous microwave emission). Thermal dust is
modeled with the Finkbeiner model (Finkbeiner et al. 1999),
which assumes that two hot/cold dust populations contribute
to the signal in each pixel. The emission law of thermal dust
varies across the sky.

– Synchrotron emission: the synchrotron emission, as sim-
ulated by the PSM, is an extrapolation of the Haslam
408 MHz map (Haslam et al. 1982). The emission law of the

2 For more details about the PSM, we invite the reader to visit
the PSM website: http://www.apc.univ-paris7.fr/~delabrou/
PSM/psm.html

synchrotron emission is an exact power law with a spatially
varying spectral index.

– Free-free emission: the spatial geometry of free-free emis-
sion is inspired by the Hα map built from the SHASSA and
WHAM surveys. The emission law is a perfect power law
with a fixed spectral index.

– Point sources: infrared and radio sources were added based
on existing catalogs at that time. In the following, the bright-
est point sources is masked prior to the evaluation results.

– Sunyaev Zel’Dovich effect: thermal SZ is modeled in the
simulations.

Low-resolution templates were employed for the main fore-
ground components (i.e. free-free, synchrotron and dust) but at
lower resolution. Small scales (up to Planck resolution) were
added to these templates following the procedure described in
Miville-Deschênes et al. (2007). More details about the simula-
tions can be found in Leach (2008).

Comparison protocol: in 2008, most of the estimated
CMB maps used for comparisons were quite heterogenous by
not necessarily sharing the same beams. As a consequence, pre-
cise and quantitative evaluations were very hard to carry out.
However, with the exception of GMCA3, none of the codes used
to estimate CMB maps in Leach (2008) is publicly available.
The major objective of this paper has been to evaluate the im-
pact of the local and multiscale mixture model, as well as the
sparsity-based component separation technique we introduced in
this paper. Since WMAP, ILC and its extensions (Delabrouille
et al. 2009; Remazeilles et al. 2011) are very popular in the
astrophysics community. Like most component separation tech-
niques in cosmology, ILC relies on second order statistics (more
precisely, χ2 minimization) to estimate the CMB map. For this
reason, we first chose to compare two different separation meth-
ods: GMCA (based on sparsity) and ILC (based on second order
statistics). Furthermore, we believe that one of the contributions
of this paper is the use of the local modeling in the wavelet do-
main. We also evaluate the performances of methods along with
a global mixture model (the corresponding methods will be ILC
and GMCA), as well as with the local mixture model in wavelets
(L-GMCA).

The local and multiscale model requires defining four param-
eters: i) the number of sources is set to be equal to the number
of channels; ii) the number of wavelet scales; iii) the number
of quad-tree decomposition levels Lµ; and iv) the nominal patch
size pµ. All these parameters are given in Table 2. There is no
automatic strategy for optimally selecting these parameters. We
would like to point out that a non-exhaustive series of exper-
iments; the particular choice of Table 2 turned out to provide
lower power spectrum bias, especially at high ℓ. NILC (Needlet-
ILC) has also been performed (Delabrouille et al. 2009; Basak
& Delabrouille 2012).

In the sequel, a 92% common mask, which preserves a very
large part of the sky, has been defined as the union of a small
galactic mask and a point source mask that has been derived
from the brightest point sources.

6.1.1. CMB map estimation

In this paragraph, we mainly focus on the quality of the esti-
mation of the full-sky CMB map. Figure 4 displays the input

3 GMCA is available at this address: http://jstarck.free.fr/
isap.html

A73, page 10 of 17

http://www.apc.univ-paris7.fr/~delabrou/PSM/psm.html
http://www.apc.univ-paris7.fr/~delabrou/PSM/psm.html
http://jstarck.free.fr/isap.html
http://jstarck.free.fr/isap.html


J. Bobin et al.: Sparse component separation for accurate cosmic microwave background estimation

Table 2. Parameters used in local and multiscale sky model.

Band µ # common resolution # sources # quad-tree levels: Lµ Nominal patch size: pµ

1 33 arcmin 9 3 64
2 24 arcmin 8 3 64
3 14 arcmin 7 3 32
4 10 arcmin 6 3 32
5 5 arcmin 5 3 16

Fig. 4. Input (top) and estimated CMB maps in mK.

CMB at a resolution of 5 arcmin on top and the maps we ob-
tained by performing ILC, GMCA, NILC, and L-GMCA. More
interestingly, Fig. 5 shows the residual maps we defined as the
difference between the estimated maps and the input CMB map
at 5 arcmin. These error maps have been filtered further at the
resolution of 45 arcmin to filter out the noise contamination that
dominates at high frequency, which allows the low frequency
foreground residuals which remain in the final estimates to better
unveiled. The ILC residual map (top-left picture) clearly exhibits

large-scale features which are reminiscent of the synchrotron
emission (negative bulb centered about the galactic center), as
well as free-free emissions relics (well-known positive free-free
on the right of the residual map) and dust emission. The NILC
residual show significant large scale “blobby” effects that may be
related to the use of the needlet filters used for the analysis rather
than more space-localized wavelet filters. Visually, GMCA and
L-GMCA seem to have similar remaining foreground contami-
nation, which is evocative of dust emission.
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Fig. 5. Residual CMB maps. These maps are defined as the difference between the estimated maps and the input CMB map. Units in mK.

Fig. 6. Power spectrum of the maps. The solid
black line is power spectrum of the input
CMB map at the resolution of 5 arcmin.
Abscissa: spherical harmonics multipoles ℓ.
Ordinate: power spectra value – units in ℓ(ℓ +
1)Cℓ/(2π) mK2

Figure 6 shows the power spectra of the CMB maps. These
spectra were computed from the noisy CMB maps. Therefore,
on intermediate and small scales (ℓ > 500.) the observed bias
mainly comes from the contribution of noise as shown by the
dotted lines. In this figure, the differences between the differ-
ent methods highlight their respective noise contamination level.
Global methods, and especially ILC, exhibit a large noise level at
high ℓ, but these methods do not account for the beam variation
across channels. Therefore, ILC and GMCA are mainly sensitive
to the largest scales and do not carefully deal with noise contam-
ination on smaller scales. Space/scale localized approaches like

L-GMCA and NILC have lower noise contamination with only
slight differences between them. It is remarkable that, if NILC is
expected to exhibit low noise contamination (i.e. it relies on the
second order statistics of the data), L-GMCA is also designed
well to provide low noise contamination levels.

6.2. Foreground contamination

An accurate measure of foreground contamination is the cross
power spectrum between the residual map and the maps of the
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Fig. 7. Cross-power spectra of the estimated CMB map with the syn-
chrotron template.

input foregrounds. We evaluated the cross power spectra of fore-
ground templates used in the simulations with the error maps
defined by the difference between the input CMB map (a.k.a.
the true CMB map) and estimated CMB maps. These cross
power spectra have been performed with synchrotron emission
in Fig. 7, free-free in Fig. 8, dust emission in Fig. 9, and SZ ef-
fect in Fig. 10. The same study has been carried out with syn-
chrotron but it did not show significant differences between the
four methods.

The conclusion we can draw from this cross-correlation
study are the following:

1. Accurately accounting for the beams: the heterogeneity of
the data (i.e. the beam varies across frequencies) is better
accounted for. As explained in Sect. 4.1, an inaccurate mod-
eling for the beams increases the complexity of the mixtures.
Even if the emission law of a given component is spatially in-
variant, the variability of the beam across frequencies make
this emission law variant across multipoles in spherical har-
monics. This is especially striking for the SZ component in
Fig. 10, because its emission law is known exactly and fixed
in both GMCA and L-GMCA. However, the two methods
show radically different cross-correlation with the SZ tem-
plate. Fixing the SZ emission does not guarantee that its con-
tamination level vanishes if the beam is not properly taken
into account.
In these simulations, the electromagnetic spectrum does not
vary across the sky. Assuming the beam does not change
across frequencies, its estimation should be made efficiently
on all scales with methods based on global mixture models.
However, as shown in Fig. 8, GMCA and ILC exhibit a high
level of free-free contamination; especially for ℓ > 100 in
the case of ILC. Again, the ability of the proposed modeling

Fig. 8. Cross-power spectra of the estimated CMB map with the free-
free template.

to account for heterogeneous beams allows for a lower free-
free contamination level.

2. More flexible modeling: whether NILC or L-GMCA, the lo-
cal and multiscale mixture model we introduced in this paper
allows for more degrees of freedom to better analyze compli-
catedly mixed components. In all the correlations computed
so far, the techniques based on this modeling have outper-
formed the methods using the simple (but commonly used)
global linear mixture model. This is particularly the case for
synchrotron, free-free and dust emissions in Figs. 7–9, where
methods based on the local/multiscale model exhibit lower
foreground contamination.

3. Sparsity versus second-order statistics: the strong SZ con-
tamination of ILC-based methods enlightens the low effi-
ciency of second-order statistics to capture non-Gaussian
foregrounds. Conversely, sparsity-based component separa-
tion techniques are much more effective at separating the
CMB and non Gaussian contaminants. The sensitivity of
sparsity to higher order statistics is very likely at the origin of
the lower synchrotron and dust contamination of L-GMCA
for ℓ > 1000.

6.3. Non Gaussian contamination

The CMB we used in these simulations is a perfect correlated
Gaussian random field; more precisely, it contains no trace of
non-Gaussianity regardless of whether it is ISW, lensing, or fNL .
CMB non-gaussianities will evidently come from spurious fore-
ground contaminations. In this paragraph, we propose evaluating
the level of (non) Gaussianity of the estimated CMB. Since the
CMB is perfectly Gaussian in these simulations, such a study
will give a different measure of the contamination level.
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Fig. 9. Cross-power spectra of the estimated CMB map with the thermal
dust template.

Common non-Gaussianity tests consist in computing the
higher order statistics of the estimated residual maps in the
wavelet domain (Starck & Murtagh 2006). The aim of this study
is to give a different way to measure foreground contamination.
We instead opted for evaluating of the non-Gaussianity (NG)
level of the residual maps instead of the CMB. This has the
crucial advantage of providing a contamination level measure
insensitive to CMB fluctuations. For this purpose, several sta-
tistical tests were performed: the kurtosis (i.e. statistics of or-
der 4) is calculated on the 5 first wavelet scales of the residual
maps. These results are shown in the top pictures of Fig. 11.
The residual map then contains the foreground residuals as well
as the remaining instrumental noise that contaminates the esti-
mated CMB maps. If one wants to quantify the level of fore-
ground residuals, noise is the only statistical component. The
significance of the results is then evaluated through 25 indepen-
dent Monte-Carlo simulations of noise maps. The dotted lines
in Fig. 11 are computed as the 3σ confidence interval which
we derived from these simulations. Except on very large scale
(ℓ < 200), these two measures of non-Gaussianities draw very
similar conclusions: i) on the first wavelet scale, all the three
methods are likely to be compatible with a Gaussian contam-
ination, and this mainly comes from the preeminence of noise
in this range; ii) the sparsity – based separation criterion used
in L-GMCA yields lower NG levels in the scales 2 to 4 (i.e.
200 ≤ ℓ ≤ 1600). At large scale, L-GMCA has a lower kurtosis
value. At that stage, massive simulations of all the components
(and not only noise) would be mandatory to precisely evaluate
the performances of these methods at low ℓ. The lower graph of
Fig. 11 features the value of the kurtosis on fixed wavelet scales
but in different equiangular bands of latitude. By convention, the
data were in galactic coordinates where latitude 0 corresponds
to the galactic plane. From these pictures, L-GMCA is likely to

Fig. 10. Cross-power spectra of the estimated CMB map with the SZ
template.

be less contaminated than the three other residual maps. More
significantly, GMCA exhibits lower NG contamination at all lat-
itudes on scales 2 to 4. This highlightens the role of GMCA and
more precisely the use of sparsity to better extract non-Gaussian
sources. It is very likely that the second order statistics used as a
separation criterion in ILC is less sensitive than sparsity to sep-
arate foregrounds. This unveils the positive impact of the local
and multiscale model, together with a sparsity-based separation
criterion as used in L-GMCA.

Software

Source separation techniques used in cosmology and more pre-
cisely for CMB map estimation are generally high-end methods
that are seldom publicly shared and available online4.

7. Conclusion

The estimation of a high-precision CMB map featuring low
noise and low foreground contamination is crucial for the as-
trophysical community. This problem is customarily tackled in
the framework of component separation. As for any estimation
problem, accurate modeling of the data is essential. However, a
close look at the astrophysical phenonema in play in the CMB
data, such as WMAP or Planck, reveals that the linear mixture
model used so far by common component separation methods in
cosmology does not hold. First, the variation in the beam across
scale is seldom accounted for, which highly limits the perfor-
mances of these component separation methods, especially on
small scales. More important, the linear mixture model does not

4 The L-GMCA code will be made publicly available at http://www.
cosmostat.org/lgmca.html
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Fig. 11. Kurtosis of the estimated CMB maps in the wavelet domain. Top: per wavelet scale. Per latitude – top-left panel: first wavelet scale. Top-
right panel: second wavelet scale. Bottom-left panel: third wavelet scale. Bottom-right panel: fourth wavelet scale. Dashed lines are 3σ confidence
interval computed from 25 random noise realizations.

afford enough degrees of freedom to precisely capture the com-
plexity of the data, including the variability across space of the
emission law for some of the components of interest.

To alleviate these limitations, this paper introduces a new
modeling of the components’ mixtures using a multiscale and
local decomposition of the data in the wavelet domain. We in-
troduced a novel sparsity-based coined L-GMCA, which prof-
its from the proposed local/multiscale mixture model. In the
proposed framework, wavelet-based multiscale analysis allows
for precise modeling of the beam evolution across channels.
Capturing the variations across pixels of the emissivity of com-
ponents is carried out by partitioning each wavelet scale with
adaptive patch sizes. Extensive numerical experiments have been
carried out to show that the proposed modeling and separation
technique provides a clean, low-foreground CMB map estimate.
More precisely, we showed that the local and multiscale mod-
eling allows for improved separation results even when it is
used with separation techniques as different as ILC and GMCA.
Additionally, the numerical experiments brings out the dramatic

positive impact of the use of sparsity in L-GMCA to provide less
galactic foreground contamination, as well as significantly lower
non-Gaussianity levels.

Acknowledgements. This work was supported by the French National Agency
for Research (ANR -08-EMER-009-01) and the European Research Council
grant SparseAstro (ERC-228261).

Appendix A: Multiscale local mixture model

Before going further into the description of the method, princi-
ples of the multichannel quadtree decomposition and notations
have to be discussed. In multiscale image analysis, quadtree
decomposition amounts to decomposing each wavelet scale in
patches with dyadic sizes starting from the original field itself
and sequentially subdivide each patch to four. To our knowl-
edge, this multiscale analysis procedure has never been extended
to analyze multichannel data in a source separation framework.
In this specific context, such an extension consists in estimating
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the mixture parameters (i.e. the mixing matrix A and the sources
S) on each scale µ on patches with various patch sizes starting
from large patches of size 2Lµ pµ to smaller patches of size pµ.
The parameter Lµ denotes the number of decomposition levels
or subdivisions in which the estimation of the mixture parame-
ters is carried out. Figure 3 clearly illustrates the principle of the
decomposition where the analysis (i.e. estimation of the mix-
ing matrices) is first performed on the largest patch size allowed

2Lµ pµ: W
(µ)

Lµ
[k]. In the next step, the patch W

(µ)

Lµ
[k] is divided into

4 non overlapping patches of size 2Lµ−1 pµ on which the param-
eters estimation is carried out. The same process is performed
until the final patch size pµ is attained. The notation we use in
the sequel is the following:

– Multichannel patch W
(µ)

l
[k]: is the concatenation of Nµ fre-

quency patches of size 2l pµ × 2l pµ as defined in Fig. 3 cen-
tered on pixel k. We invite the reader to notice that the three

indices of the notations W
(µ)

l
[k] underlines the dependence

of this variable on the: i) the pixel at which the analysis is
carried out; ii) the wavelet scale µ and the quadtree decom-
position level l.

– Multichannel patch A
(µ)

l
[k]: mixing matrix estimated from

the multichannel patch W
(µ)

l
[k].

Interestingly, since the same area of the sky is analyzed on dif-
ferent mixture scales (i.e. patch sizes), it is possible to choose
afterwards the “optimal” patch size from the different estimates
obtained for l = 0, · · · , Lµ. It therefore allows for more degrees
of freedom in selecting an adapted patch size at each location.
Full-sky CMB data (e.g. WMAP, Planck) are generally sampled
on the Healpix sampling grid (Gorski et al. 2005). For the sake
of simplicity and computational efficiency, the most straightfor-
ward way to decompose an Healpix map into patches is to de-
compose each Healpix face.

Choosing the “optimal” patch decomposition

For each patch location k, L-GMCA provides a sequence of pa-
rameters or more specifically mixing matrices computed on dif-

ferent mixtures scales:
{

A
(µ)

l
[k]
}

l=0,··· ,Lµ
. These mixing matrices

have been computed from patches of increasing sizes; this en-
tails they offer different views of the data in the neighborhood of
pixel k. As emphasized in the previous section, this allows for
extra flexibility in choosing adapted local parameters: i) mix-
ing matrices estimated from larger areas will be more adapted
to stationary areas; ii) mixing matrices evaluated from local
patches analysis are well-suited to better capturing local vari-
ations in the foreground emissivity. The difficulty now mainly
consists in defining a strategy to select the optimal local estima-
tor of the mixing matrix (i.e. optimal amongst the set of available
estimators).

First, it has to be noticed that in the framework of GMCA and
similarly in L-GMCA, once the mixing matrices are estimated,
the final estimate of the components are computed by applying
the Moore pseudo-inverse of the mixing matrix to the data:

S(µ) = A(µ)+W(µ).

This way the sources linearly depend on the original data Wµ;
this is particularly important for controlling error propagation in
the final CMB map estimate.

Distinguishing between the available mixing matrices at lo-
cation k amounts to defining a criterion sensitive the local mis-
estimation of the CMB map. From the sequences of available

mixing matrices {A
(µ)

l
[k]}l=0,··· ,Lµ , one can compute a sequence

of various local CMB map estimates about pixel k at the level
of the smallest patch of size pµ. These estimates are com-
puted by applying the pseudo-inverse of the different matrices

{A
(µ)

l
[k]}l=0,··· ,Lµ to the smallest data patch about pixel k, W

(µ)

l=0
[k]:

S
(µ)

l
[k] = A

(µ)

l

+
W

(µ)

l=0
[k].

Quite naturally, the optimal mixing matrix amongst the avail-

able estimators
{

A
(µ)

l
[k]
}

l=0,··· ,Lµ
should be chosen such that the

estimated CMB is the least contaminated possible. Here con-
tamination is taken in the wide sense: foreground and noise. One
remarkable property of the CMB is its decorrelation with the in-
strumental noise and all other astrophysical components. More
quantitatively, owing to the linearity of the estimation process,
the estimated CMB can be modeled as

s(µ) = s(µ)⋆ + r(µ) + n(µ),

where s(µ) stands for the estimated CMB in scale µ, s(µ)⋆ the
sought-after clean CMB, r(µ) the residual coming from the fore-
grounds contaminants, and n(µ) the instrumental noise. Because
the CMB is decorrelated with both the residual and noise, the
variances of the three terms in the above equation add up to

Var
{

s(µ)
}

= Var
{

s(µ)⋆
}

+ Var
{

r(µ)
}

+ Var
{

n(µ)
}

.

As a consequence, a solution with higher noise or foreground
contamination will have higher variance. It is then natural to

choose the mixing matrix among the sequence
{

A
(µ)

l
[k]
}

l=0,··· ,Lµ
,

which yields the local CMB estimate with the lowest vari-
ance. This suggests that the optimal mixing matrix and local
CMB map should be chosen as

l
(µ)
⋆ [k] = Argminl=0,··· ,Lµ

Var
{

s
(µ)

l=0
[k]
}

where s
(µ)

l=0
[k] =

[

A
(µ)

l
[k]
+
W

(µ)

l=0
[k]
]

1
, (A.1)

where the operator [ . ]1 extracts the CMB out of the entire set of
estimated components.

Other estimator selection criteria can be envisioned based
on statistical characteristics of the CMB map such as its
Gaussianity. Foreground contamination are very likely to in-
crease the non-Gaussianity level of the estimated CMB map.
Non-Gaussianity measures such as higher-order cumulants
could be used to distinguish between various local estimates of
the CMB. However, these measures would be less sensitive to
the noise contamination.
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