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ABSTRACT

The spectral energy distribution (SED) of observed stars in wide-field images is crucial for chromatic point spread function (PSF)
modelling methods, which use unresolved stars as integrated spectral samples of the PSF across the field of view. This is particularly
important for weak gravitational lensing studies, where precise PSF modelling is essential to get accurate shear measurements. Previous
research has demonstrated that the SED of stars can be inferred from low-resolution observations using machine-learning classification
algorithms. However, a degeneracy exists between the PSF size, which can vary significantly across the field of view, and the spectral
type of stars, leading to strong limitations of such methods. We propose a new SED classification method that incorporates stellar
spectral information by using a preliminary PSF model, thereby breaking this degeneracy and enhancing the classification accuracy.
Our method involves calculating a set of similarity features between an observed star and a preliminary PSF model at different wave-
lengths and applying a support vector machine to these similarity features to classify the observed star into a specific stellar class. The
proposed approach achieves a 91% top-two accuracy, surpassing machine-learning methods that do not consider the spectral variation
of the PSF. Additionally, we examined the impact of PSF modelling errors on the spectral classification accuracy.

Key words. techniques: image processing – stars: general

1. Introduction
Significant efforts have been made in recent decades to study
the stars in our galaxy in detail. For this purpose, several spec-
troscopic surveys have been carried out, which provide very
high-resolution catalogues of stellar spectra (Bagnulo et al.
2003; Baranne et al. 1996; Pickles 1998; Sánchez-Blázquez et al.
2006; Valdes et al. 2004). Stars are generally categorised accord-
ing to the Morgan-Keenan (MK) system (Morgan et al. 1943).
This system segments stars in descending order of tempera-
ture, with O-type stars being the hottest and M-type stars the
coolest. Each of these stellar classes has a distinctive spectrum,
the main characteristics of which are shared between stars of
the same class. Stellar classification is crucial for studying the
composition of stars and their properties, and for understanding
the evolution of the galactic stellar population. One particularly
interesting case where stellar spectra play a significant role is in
modelling the instrumental response of wide-field, single-band
telescopes.

Current space telescopes such as Euclid (Euclid
Collaboration: Mellier et al. 2025; Laureijs et al. 2011) or
upcoming telescopes such as the Nancy Grace Roman space
telescope (Akeson et al. 2019; Spergel et al. 2015) and the Vera
C. Rubin Observatory (Ivezić et al. 2019; LSST Science Col-
laboration 2009) will observe the Universe with unprecedented
accuracy and coverage, providing vast amounts of data in the
coming decades that will drive cosmology forward and enable
new discoveries to be made. Given their depth and coverage,

⋆ Corresponding author; ezequiel.centofanti@cea.fr

these surveys will be able to examine the large-scale structure
of the late-time Universe using statistical probes, such as Weak
gravitational Lensing (WL). The WL signal is measured by cor-
relating the shape and orientation of large numbers of galaxies.
The apparent shape of the observed galaxies is corrupted by the
instrumental response of the telescope, which directly limits the
quality of the measured WL signal (Massey et al. 2012). Hence,
an accurate model of the point spread function (PSF), that is, the
instrumental response of the optical system, is a fundamental
requirement for obtaining unbiased and competitive constraints
on cosmological parameters. Cutting-edge space telescopes
have such low aberrations that the instrumental response is
diffraction limited and is mainly driven by the optical system
(Euclid Collaboration: Cropper et al. 2025). Even so, in addition
to having a spatial and temporal dependence, the PSF is also
strongly wavelength-dependent, which is particularly challeng-
ing for wide single-passband instruments. Most PSF modelling
methods (for a review see e.g. Liaudat et al. 2023b), in particular
data-driven methods, such as PSFEx (Bertin 2011), RCA (Ngolè
et al. 2016), MCCD (Liaudat et al. 2021), and WaveDiff (Liaudat
et al. 2023a), make use of observations of unresolved stars to
sample the underlying instrumental response of the telescope.
These samples allow the PSF model to be constrained at various
positions in the field of view (FOV). Chromatic PSF models
(e.g. Liaudat et al. 2023a) additionally require knowledge of the
SED of the stars that are used to fit the model to account for
the spectral dependence of the PSF of Euclid-like (i.e. optical
single-band wide-field) telescopes.

Given the temporal variation caused by temperature fluctua-
tions and the resulting mechanical stress on the optical system
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of space telescopes, the PSF model has to be recalibrated
for each individual exposure using only the unresolved stars
present in that exposure. Additionally, stellar spectra are typ-
ically measured for a small number of stars (at most several
hundred), which is largely insufficient for chromatic PSF mod-
elling. Astrometric missions, such as GAIA (Gaia Collaboration
2016; Perryman et al. 2001), can provide spectral information for
a considerably larger number of stars, albeit at a lower spectral
resolution. Nevertheless, these complementary surveys will only
measure the brightest stars in the FOV of a Euclid-like expo-
sure. Therefore, the availability of spectral information for the
observed stars is a limiting factor in the estimation of data-driven
chromatic PSF models.

Stellar classification from photometric observations provides
a way to increase the number of available stars for PSF mod-
elling. There are numerous methods to classify stellar spectra
with spectroscopic data, such as in Sharma et al. (2019) and
Chaini et al. (2023). Other studies, such as Yang & Li (2024),
propose classification from multi-band photometric observa-
tions. Previous work by Kuntzer et al. (2016) introduced a stellar
classifier that assigns spectral templates to single-band star
observations. Their method is based on a principal component
analysis (PCA) decomposition of the observed stars followed by
a fully connected neural network classifier. Each star to be clas-
sified is projected onto the PCA feature space and the associated
coefficients are fed into a multi-layer perceptron (MLP) network
(Bishop 1995). The MLP classifies the coefficients into a given
stellar class, assigning a specific spectral template to the obser-
vation. Their work demonstrated that it is possible to perform
stellar classification with single wide-band star images. How-
ever, the methodology they propose does not account for the
degeneracy between the size of the PSF and the spectral type
of the star. This degeneracy (detailed in Sect. 4) refers to the
fact that stars at different positions in the sky with different stel-
lar types can have very similar image properties (i.e. size and
shape) due to variations in the PSF across the field of view.
As the classification method only has access to the image prop-
erties, there is an inherent limitation in the accuracy that can
be achieved.

In this work, we consider stellar classification from single-
band photometric images for a Euclid-like survey. We propose a
stellar spectral classification method from single-band star obser-
vations that takes into account the PSF spectral variation by
using a preliminary PSF model, thus breaking the degeneracy
between the size of the PSF and the spectral type of the star.
We only consider the WaveDiff PSF model since it is the sole
data-driven model that accounts for the chromatic variation of
the PSF. Firstly, we apply the PCA+MLP classification method
introduced by Kuntzer et al. (2016) to Euclid-like simulated stel-
lar images to establish a baseline for comparison. Secondly, we
introduce a modified version of their method, where the PCA
decomposition is replaced by a convolutional neural network
(CNN) that takes the single-band stellar image pixels and outputs
a feature vector, which is then similarly fed into an MLP net-
work that assigns the stellar type. Finally, we introduce our new
PSF-aware classification method and compare it to the previous
solutions. The structure of this paper is the following: in Sect. 2
we describe stellar observations in the context of PSF mod-
elling, in Sect. 3 we introduce the pixel-only stellar classification
algorithms, in Sect. 4 we present the PSF-aware classification
method, in Sect. 5 we explain the simulated star observations
and the PSF modelling details, in Sect. 6 we show the results of
the classification methods and finally, Sect. 7 summarises this
work and outlines future steps that could be taken.

Notation. In this paper, we adopt the notation for PSF modelling
and astronomical imaging defined in Liaudat et al. (2023b). A
summary of the chosen notation can be found in Table A.1.

Terminology. In this article, the terms polychromatic PSF or
PSF sample are equivalent to a star observation (or simulation)
since they include the spectral information of the star. The term
PSF by itself refers to the underlying instrumental response of
the instrument or a simulated PSF model, a function of the FOV
coordinates and the wavelength. A monochromatic PSF is the
PSF model evaluated at a single wavelength for a specific FOV
position. The wavefront error (WFE) is the phase difference
between the incoming light wavefront and an ideal hemispherical
wavefront at the pupil plane of the optical system.

2. Stellar image model

PSF modelling for Euclid-like telescopes involves several key
challenges. First, the observations are integrated over the pass-
band of the telescope (i.e. single-band or polychromatic obser-
vations), thus blending the spectral variation of the PSF with
the SED of the star. Second, the observation is subsampled on
the detector (High et al. 2007; Lauer 1999) and contains obser-
vational noise that encompasses thermal noise, readout noise
(Basden et al. 2004), and dark-current shot noise (Baer 2006).
Finally, the number of stars for which the SED is known is
very limited (Gillis et al. 2020). Thus, PSF modelling from low-
resolution star observations proves to be a challenging task that
would benefit from an increase in spectral information (SEDs)
of distant stars in the FOV.

Distant stars can be considered as point sources whose inten-
sity varies with wavelength according to the SED of each star.
The observational model of a distant star at the position (ui, vi)
in the FOV is as follows

Istar(ū, v̄|ui, vi) =

Fp

{∫ +∞
0
T (λ)SED(λ) Hint(u, v; λ|ui, vi) dλ

}
+ N(ū, v̄|ui, vi), (1)

where Hint(u, v; λ|ui, vi) is the PSF of the telescope with its cen-
tre at the position of the star1. The PSF is positively valued and
has two spatial coordinates (u, v) and one spectral coordinate λ.
The PSF sample is integrated over the passband of the telescope,
given by the transmission function T (λ), together with the SED
of the star. The Fp operator is a discretisation function that mod-
els the pixelisation of the detector (sampling) and N represents
the observational noise. The observed image Istar, with pixel
coordinates (ū, v̄), is a single-band discrete version of the star cor-
rupted by the PSF of the telescope and the observational noise.

Measuring stellar spectra to high precision is a challeng-
ing task that can only be carried out for a limited number of
stars, generally reserved for the brightest stars in the FOV. Deep
and wide space-based optical surveys can observe hundreds to
thousands of unresolved stars in one exposure (Laureijs et al.
2011). However, only a fraction of the observed stars will have
complementary SED information from spectroscopic surveys.
Thus, estimating the spectra of the remaining stars is crucial for
improving PSF modelling and maximising the scientific returns
of these observations.

1 In the adopted notation (Appendix A) the symbol | means centred at
the given position.
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Equation (1) describes the observational model of an unre-
solved star. The PSF of a telescope at the position of the star in
the FOV is integrated alongside the SED of the given star. Thus,
the observation is directly affected by the spectrum of the star.
O-type stars, being hotter and bluer, have higher flux at shorter
wavelengths. Conversely, M-type stars, being cooler and redder,
have a higher flux at longer wavelengths. The fact that the PSF
has a chromatic variation allows some of the spectral information
of the stars to permeate into the observations, meaning that dif-
ferent types of stars at the same position in the FOV will produce
different observations. Hence, a spectral classification of stars
from their polychromatic (wavelength integrated or single-band)
observations is physically supported.

3. Star classification from a single wide band

In the following, we present some methods of stellar classifica-
tion from single wide-band star observations. The objective of
these classification methods is to assign SED templates to the
stars without spectral information using the pixels in the corre-
sponding postage stamps. For all of the methods, we assume a
scenario in which, given an exposure of a Euclid-like telescope,
source detection is performed with a tool, such as SExtrac-
tor (Bertin & Arnouts 1996), SFIND (Hopkins et al. 2002) or
IMSAD (Sault et al. 1995). Then, these sources are efficiently
classified as stars or galaxies, and postage stamps are extracted
at the positions of the stars. For the purpose of this work, sources
of contamination in the star selection such as galaxies, binaries,
or other misclassifications are not considered. We expect only a
small fraction of the detected stars to have spectral information
(SEDs) available from complementary measurements.

3.1. PCA MLP

The method proposed by Kuntzer et al. (2016) can be sepa-
rated into two steps: the preprocessing of the input data and the
actual spectral classification. The first step aims to extract rel-
evant structure from the observations by compressing the input
into a reduced number of coefficients. This is done by applying
PCA to project the input onto 24 orthogonal components (i.e.
the PCA coefficients). The second step implements a fully con-
nected MLP neural network (Bishop 1995) classifier that takes
as input the 24 PCA coefficients associated with the star image
to be classified, and outputs the predicted spectral class among
the 13 spectral classes considered (Pickles 1998). We imple-
mented this method from scratch2 and adapted it to our synthetic
star observations (see Sect. 5). We use 10 000 simulated stars
to obtain the PCA components and train the MLP classifier. We
present the first seven PCA components as well as the dataset
mean in the top panel a of Figure 1. In the bottom panel b,
we show a star observation and its reconstruction from the first
24 PCA components. The relative values of the 24 coefficients
are shown in the last figure in the lower panel. The reconstruc-
tion maintains the overall shape of the observed star filtering out
the high frequency variations. In other words, the observation is
denoised. This process significantly reduces the size of the data,
compressing the 32 × 32 px images (1024 pixels) into 24 coef-
ficients. As in Kuntzer et al. (2016), we train a committee of 48
networks from which we compute the ensemble average of the

2 The code is available here:
https://github.com/CentofantiEze/sed_spectral_
classification
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Fig. 1. PCA decomposition of input stars. (a) First seven PCA compo-
nents and PCA mean. (b) Original star observation and its reconstruc-
tion from the first 24 PCA components. The last figure in the lower panel
shows the relative values of the coefficients associated with the 24 PCA
components.

32x32 12x12 10x10x32 8x8x32 6x6x32 4x4x32 2x2x32 32

CNNCrop
Input
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Fig. 2. CNN+MLP model diagram. In light blue, the convolutional
blocks. In yellow, the multi-layer perceptron classifier.

predictions, allowing us to obtain a more robust classification.
Each MLP classifier has two hidden layers of 26 nodes each.

3.2. CNN MLP

Convolutional neural networks (Krizhevsky et al. 2012; LeCun
et al. 1989) are widely used for recognising structure in two-
dimensional data and have been widely applied to astronomical
data (Akhaury et al. 2022; Farrens et al. 2022; Schaefer et al.
2018; Schuldt et al. 2021). It has been shown that the first con-
volutional filters of properly trained CNNs resemble classical
image processing filters (Zeiler et al. 2011; Zeiler & Fergus
2013), and are able to identify patterns and the multi-scale struc-
ture of images. Auto-encoder networks (Baldi 2012; Kramer
1991) extract relevant features of the data, encoding the input
into a reduced number of values. In a similar approach, we pro-
pose to replace the PCA preprocessing step in the Kuntzer et al.
(2016) approach with an encoder-like CNN network, keeping the
same two-step process: preprocessing and classification.

Figure 2 shows the proposed architecture for the classifier.
The first layer centre-crops the star observations to get rid of
pixels that only contain noise, reducing the size of the input.
Then, the cropped image passes through six convolutional lay-
ers. Each layer has 32 channels and gradually reduces the width
and height of the data. The convolutional kernel size is 3 × 3,
thus reducing the data dimension by 2 pixels per layer. The last
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Fig. 3. Ilustrative example of the degeneracy between the PSF size and spectral type of stars. (a) Middle rows: monochromatic PSFs for two
positions in the FOV. The PSFs are shown for eight equally spaced wavelength values. Top and bottom: eight-bin spectral energy distribution of
two stars, a M5 star (top) and an O5 star (bottom), located at positions 1 and 2 respectively. The wavelength axis is shared between all rows. (b)
Observation of the respective stars.

convolutional layer kernel size is 2× 2 given the size of the input
data in this layer. The output of the last convolutional layer is a
32-dimensional vector that encodes the main structural features
of the input. These features are fed into a multi-layer perceptron
with two hidden layers of 32 neurons each and an output layer of
13 neurons that correspond to the 13 stellar classes. Every layer
(CNN and MLP) uses a ReLU activation function, except for the
output layer which has a softmax activation function. This acti-
vation function enforces the output to be a probability vector,
that is, the i-th element of the output vector represents the proba-
bility that the input belongs to the i-th stellar class. We compare
the performance of these two pixel-only classification methods
on simulated data in Sect. 6.

4. Breaking the degeneracy

A significant challenge for the methods described in Sect. 3 is
the degeneracy between the PSF size and the spectral type of
the star. This degeneracy is not addressed since these methods
rely solely on the star image pixels for the classification, and do
not include any information on the underlying PSF model corre-
sponding to the observations. As a result, this degeneracy sets a
cap on the classification accuracy of these types of methods. To
illustrate this issue, consider the example shown in Fig. 3. The
left-hand side (a) of the figure presents two different monochro-
matic PSFs (PSF1 and PSF2) at two different positions in the
FOV. The chromatic variation of the PSFs is shown for eight dif-
ferent equally spaced wavelength values. Suppose that in each
FOV position we observe an unresolved star. At FOV position 1
(top half of the figure) a M5-type (red) star is observed, whose
eight-bin SED is shown in the top panel. At FOV position 2 (bot-
tom half of the figure) an O5-type (blue) star is found, with its

corresponding eight-bin SED in the bottom panel. According to a
discrete version of Eq. (1), where the integral is approximated by
a summation, the star observations are the sum of the monochro-
matic PSFs weighted by the corresponding SED values (see
Eq. (2)). The fact that PSF1 at long wavelengths is similar in size
to PSF2 at shorter wavelengths produces observations of simi-
larly shaped stars, even if they correspond to completely different
stellar types. The right-hand side of the figure (b) shows the cor-
responding observed stars. The observed star at position 2 has
a similar, if not larger, size than star at position 1. In principle,
we would associate a larger shape with a redder (M-type) star3,
which is the opposite of what is shown in this example.

This example highlights that it is very difficult, if not improb-
able, to make a highly accurate spectral classification of stars
from single-band observations alone. While many stars can be
correctly classified, the confusion introduced by this degener-
acy can only be overcome if the spatial and spectral variation
of the PSF are considered along with the single-band observa-
tions. Two key issues must be considered in this regard. On the
one hand, we need to know with a good level of precision the
PSF (including its spatial and spectral variations) of the tele-
scope with which the observations are obtained. On the other
hand, we have to come up with an architecture capable of tak-
ing as input both the star observation and the approximate PSF
model at the corresponding star position. We elaborate on these
two issues in the following subsections.

3 It is important to note that the observed stars are unresolved and
therefore appear as point sources. The apparent sizes discussed here
are due to the PSF at different positions in the FOV and at different
wavelengths, not the physical sizes of the stars themselves.
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4.1. Approximate PSF model

To generate the simulated observations (see Sect. 5) we model
a ground truth (GT) PSF representing the instrumental response
of the telescope. This GT model is assumed to be completely
unknown when processing the simulated observations (i.e. per-
forming the classification). To obtain an approximation of this
GT model we have to fit a PSF model to the simulated observa-
tions. The approximate PSF model H̃ is estimated with a reduced
number of observations since the SEDs are not available for all
the observed stars prior to the stellar classification. In this work,
we use the WaveDiff PSF modelling software (Liaudat et al.
2023a). Details about the WaveDiff PSF model can be found in
Appendix C.

4.2. Similarity features

There are many ways in which one could envision adapting
the classification models already presented to take into account
the PSF. Our approach is perhaps the simplest and is based on
the approximate star observation model, where the integral in
Equation (1) is approximated by the sum of the monochromatic
PSFs weighted by the SED of the star

Istar(ū, v̄|ui, vi) =
nλ∑

k=1

SED(λk) H(ū, v̄; λk |ui, vi) + N, (2)

where nλ is the number of wavelength bins centred at λk. We can
expand this summation for each bin as follows

Istar(ū, v̄|ui, vi)
= b0 H(ū, v̄; λ0|ui, vi) + ... + bn H(ū, v̄; λn|ui, vi) + N, (3)

where H(ū, v̄; λk |ui, vi) are the monochromatic PSFs (i.e. evalu-
ated at a single wavelength) at the position of the star and bk are
the SED values. We use the approximate PSF model H̃, evalu-
ated at the position of the star, to compute a similarity metric,
referred to as similarity features (SF), for each wavelength λk
by comparing the approximate monochromatic PSFs with the
observation,

SF
〈
Istar(ū, v̄|ui, vi); H̃(ū, v̄; λk |ui, vi)

〉
(λk |ui, vi)

=
1 − ∥Istar(ū, v̄|ui, vi) − H̃(ū, v̄; λk |ui, vi)∥2ūv

nλ −
∑nλ

j=1 ∥Istar(ū, v̄|ui, vi) − H̃(ū, v̄; λ j|ui, vi)∥2ūv
, (4)

where ∥ · ∥2ūv is the Frobenius matrix squared norm over the image
pixels,

∥Iimg(ū, v̄|ui, vi)∥2ūv =
Npix,Npix∑

ū,v̄=1

|Iimg(ū, v̄|ui, vi)|2. (5)

The resulting similarity features serve as a proxy for the SED
values bk. Therefore, we expect higher similarity in the bins
that contributed the most to the star observation, that is, to the
weighted sum of monochromatic PSFs (Eq. (3)).

Figure 4 shows the similarity features, coloured accord-
ing to the corresponding stellar class, of the full classification
dataset (10 000 simulated stars) using the ground truth PSF
model. The visible distinction between the curves for each stellar
type demonstrates a clear correlation between spectral type and
similarity features. This strongly suggests that the similarity met-
ric extracts relevant spectral information from the single-band
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Fig. 4. Normalised similarity features as a function of monochromatic
PSF wavelength for the 10 000 stars. Each set of features is coloured
according to the corresponding observation stellar type.

observations. The dispersion in the similarity feature distribution
(Fig. 4) for stars of the same spectral class is driven by the spec-
tral variation of the PSF for each star, and more specifically how
alike the monochromatic PSFs are to each other at that position
in the FOV.

4.3. SVM classifier

We use the similarity features as the input to our SED classifier.
This greatly reduces the complexity of the classifier and thus
the computational needs for training and inference. We use the
C-Support Vector Classification model from the sklearn.svm
(Pedregosa et al. 2018) Python library. This algorithm allows us
to find optimal boundaries in the nλ-dimensional similarity fea-
ture space for classifying the data into the 13 stellar classes. If
the data are linearly separable, the algorithm finds optimal sepa-
rating hyperplanes by maximising the distance from the nearest
data points of each class to the given hyperplane. When the data
are not linearly separable, kernel transformations are used to map
the data points onto a higher dimensional space where they can
be separated by hyperplanes.

We use radial basis functio (RBF) kernels, also known as
Gaussian kernels, which tend to cluster close points (with respect
to the Euclidean distance) to the same class. This is based on the
fact that we consider that the distribution of similarity features is
directly related to the SED and therefore the same types of stars
will have comparable similarity features.

5. Simulated data

To simulate synthetic star observations we use the WaveDiff4

PSF model. WaveDiff provides a wavefront-based parametric
PSF simulator that addresses the spectral and spatial dependence
of the PSF across the FOV. This makes it possible to evaluate
the PSF model at any desired wavelength, for any arbitrary posi-
tion in the FOV. See Appendix C for details on WaveDiff PSF
modelling. With the WaveDiff PSF simulator we can simulate
observations of distant stars at any position in the FOV. To do so,
we approximate the integral in Eq. (1) by Eq. (2). We note that
the SED of the star and the simulated PSF of the telescope are
discretised in this approximation. In the following paragraphs we
provide further details regarding the PSF model and the selection
of SEDs and stellar types.

5.1. WaveDiff PSF simulator

Figure 5 shows different components of the PSF simulator: the
WFE, the monochromatic PSFs, and the star observations (with
4 https://github.com/CosmoStat/wf-psf
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Fig. 5. WaveDiff simulations. (a) Wavefront error, noiseless star obser-
vation, and noisy star observation at a particular position in the FOV for
a simulated PSF field. (b) Monochromatic PSFs for multiple wavelength
values.

and without noise). First, the WFE for a random position in the
FOV is shown in the first column of the top panel. Then, eight
monochromatic PSFs computed from the aforementioned WFE
are shown in the bottom panel. Finally, the middle and right-
hand side columns of the top panel show an example of a star
observation with and without added noise.

The noise is modelled pixel-wise by an additive independent
Gaussian random variable of zero mean and standard deviation
σS/N . The total amount of noise added to a simulated observa-
tion depends on the desired signal-to-noise ratio S/N (defined as
Liaudat et al. 2023a) as follows,

σ2
S/N =

∥Istar(ū, v̄|ui, vi)∥2ūv
S/N N2

pix

, (6)

where Npix is the stamp size (width and height) of the simulated
star observations and ∥ · ∥2ūv is the Frobenius matrix squared norm
as defined in Eq. (5).

5.2. SED templates

The PSF simulator allows us to obtain monochromatic PSFs
from the simulated WFE at any position in the FOV. To simu-
late a stellar observation, we sum the monochromatic PSFs over
the wavelength weighted by the SED of the star as described by
Eq. (2). Therefore, we need the spectral information of the stars.
For this, we use 13 SED templates from Pickles (1998) corre-
sponding to the following star types: O5, B0, B5, A0, A5, F0,
F5, G0, G5, K0, K5, M0, and M5. The spectra are limited to the
passband of the Euclid VIS instrument (Euclid Collaboration:
Cropper et al. 2025), from 550 to 900 nm, to simulate Euclid-
like star observations. In Fig. 6, we present the flux-normalised
spectrum template fstar(λ) for each stellar type. To obtain the
observed star simulation as described in Eq. (2), we compute the
discrete SED of the star by integrating the spectrum over nλ reg-
ular wavelength bins bk, matching the number of monochromatic
PSFs. The centre of each bin corresponds to the wavelength of
each monochromatic PSF. The bins, of size ∆bk are computed as
follows,

SEDbk (λk) =
1
wbk

∫ λk+∆bk/2

λk−∆bk/2
fstar(λ)dλ, (7)

where wbk normalises the bin such that
∑nλ

k=1 SEDbk (λk) = 1.
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Fig. 6. Spectral templates for the 13 stellar classes taken from Pickles
(1998). Spectra are limited to a Euclid-like passband [550–900] nm,
with a resolution of 1 nm. Spectra are flux normalised to unit sum.

5.3. Simulation parameters

The simulations used in this work are built from a random
realisation of a WaveDiff PSF field, mainly governed by the
following parameters: nZ , the maximum Zernike order in the
WFE representation; dmax, the degree of the polynomial vari-
ation of the Zernike coefficients Ck(x, y) across the FOV; nλ,
the number of spectral bins, which corresponds to the number
of monochromatic PSFs and SED bins; and S/N, the signal-to-
noise-ratio range for the stellar observations. The selection of
these parameters depends mainly on the telescope that is taken
as a reference for simulating the PSF and corresponding observa-
tions. The trade-off between the closeness of the simulations to
real observations, and the available memory resources and com-
puting power is also taken into consideration. We consider for
the WFE a maximum Zernike order dZ = 45 and a polynomial
spatial variation of its coefficients of degree dmax = 4. The num-
ber of spectral bins to be used is limited by the computational
resources and the resolution of the available SEDs. For each
wavelength value of the SED, the monochromatic PSF must be
computed. Therefore, a larger number of bins requires a linear
increase in time and memory resources. However, a larger num-
ber of bins allows for more realistic simulations, thereby making
Eq. (2) a closer approximation to Eq. (1). Simulated observations
are generated with eight spectral bins to speed up the compu-
tation time for both the generation of the observations and the
training of the PSF models. For the results shown in the follow-
ing sections, we consider that eight bins are sufficient to capture
the spectral information of the star in the single-band simulated
observation. Furthermore, Fig. 4 demonstrates a clear visual
separation of spectral classes based on the computed similarity
features, further supporting that eight spectral bins provide suffi-
cient resolution for our simulations. Finally, we vary the additive
noise level for each simulated star so that the signal-to-noise ratio
falls in the range [20–110], which corresponds to the standard
deviation of the Gaussian additive noise σ falling approximately
in the range (10−3; 2 × 10−3). The pre-noise observations pro-
duced by WaveDiff are flux-normalised to one (i.e. the sum of the
pixels is equal to one). Table 1 summarises the values selected
for the simulation parameters, as well as other relevant features
of the simulations. The parameters concerning the dimensions
and optics of the telescope and its characteristics, such as focal
length, aperture radius, obscurations, passband, etc., are set as in
Liaudat et al. (2023a) considering a Euclid-like telescope.

6. Experiments

Using the WaveDiff PSF simulator we generate a total of
13 000 star observations from a single ground truth PSF model.
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Fig. 7. Project workflow: 13 000 star observations were simulated with the WaveDiff PSF simulator. Each star observation is located at a particular
FOV position (ui, vi), has a random noise level S/N and belongs to a spectral class Ci. 10 000 stars are directly used for training the pixel-only
classification models, and 1000 stars to test them. 2000 stars are used to optimise the approximate PSF models required to calculate similarity
features. The quality of the PSF models is evaluated with the 1000 test stars. Once the train and test similarity features have been computed, the
PSF-aware stellar classifier is trained with 10 000 stars and tested with 1000 stars.

Table 1. WaveDiff simulation parameters.

Parameter Description Value

nZ Maximum Zernike order 45
dmax Ck(x, y) polynomial degree 4
nλ Number of spectral bins 8
Npix Simulated observations size 32 px
K Number of stellar classes 13
S/N Signal to noise ratio range [20–110]
WFErms Maximum WFE rms value 50 nm

The star positions (ui, vi) are selected randomly over the FOV
with a uniform distribution. The associated SED for each simu-
lated observation is chosen randomly from the 13 spectral classes
Ci. The choice of a flat stellar type distribution is intended to
mitigate any classification bias due to sample imbalance. Fig-
ure 7 summarises all the models and simulation tools presented
in this article. Star observation images are directly used to train
(10 000 stars) and test (1000 stars) the pixel-only classification
models (PCA+MLP and CNN+MLP). The remaining 2000 stars
are divided into six nested datasets used to train six approximate
PSF models, which are tested with the 1000 test stars. We com-
pute the monochromatic PSFs for every approximate PSF model
at every star position in the FOV and we use them to compute
the similarity features for the PSF-aware model.

In this section, we present the classification results for
each method. First, we define the metrics used to compare the
models. Then, we show the classification results of the pixel-
only algorithms, validating Kuntzer et al. (2016) results and
contrasting them with our CNN approach. Finally, we present
the performance of our novel PSF-aware classification method.

6.1. Classification metrics

To assess the performance of multi-class classification tasks,
there exists a large variety of metrics, such as F-score, preci-
sion, recall, accuracy, cross entropy, etc. (Grandini et al. 2020).

Many of these metrics are based on the confusion matrix (CM);
we will therefore devote special attention to it.

6.1.1. Confusion matrix

The CM is a cross table that for each available class enumerates
the number of assignments to the output classes. Each row of the
table corresponds to the predicted labels ŷ for a specific class Ci
of the input data. The diagonal of the table, or matrix, shows
the number of correctly classified elements per class (ŷ = y).
Formally, the elements of the CM are defined as follows,

CMi j =
∑
x∈Ci

1[ŷ = i], (8)

where f (x) = ŷ is the predicted class for the element x.

6.1.2. Precision, recall, & F1-score

Precision and recall are the main building blocks of binary
classification metrics. In binary classification, precision is the
fraction of correctly retrieved elements (true positives) and the
total number of retrieved (claimed positives, that is true positives
plus false positives) instances; and recall is the ratio between the
true positives and the total number of relevant elements.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

. (9)

The F1-score is widely used in binary classification because it
leverages the number of correctly detected instances, true pos-
itives (TP) and true negatives (TN), and the number of missed
instances, false positives (FP) and false negatives (FN). The
F1-score is the harmonic mean of precision and recall,

F1 =
2

Precision−1 + Recall−1 =
2TP

2TP + FP + FN
. (10)

The precision and recall, and thus the F1-score, can be gener-
alised to multi-class classification by computing them class by
class in an one-vs-all scenario, and then averaging over every
class.
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6.1.3. Accuracy

Another relevant multi-class classification metric we consider is
the accuracy, defined as the ratio between the number of cor-
rectly classified elements and the sample size. This metric is
derived from the trace of the confusion matrix,

Accuracy =
Tr (CM)∑

i j CMi j
. (11)

Given the proximity between neighbouring stellar types, which
have a difference of half a spectral class, a top-two accuracy
metric is considered. This is mainly motivated by the similar-
ity between two spectra of neighbouring classes (see Fig. 6),
which when discretised into 8 wavelength bins the difference
between two neighbouring spectral classes lies in the range of
the SEDs photometric measurement noise. The top-two accu-
racy allows for neighbouring stellar type misclassification. These
cases are located on the super diagonal and sub diagonal of the
CM, defining the top-two accuracy metric as follows,

Top-two accuracy =
∑

i= j+1 CMi j +
∑

i= j CMi j +
∑

i= j−1 CMi j∑
i j CMi j

.

(12)

In Kuntzer et al. (2016), this metric is referred to as the success
rate.

6.2. Pixel-only classification

We train, evaluate, and compare the pixel-only classification
methods: PCA+MLP and CNN+MLP. Both methods were
trained with the same dataset of 10 000 simulated star observa-
tions. We evaluate both methods on the 1000 test dataset using
the aforementioned classification metrics. The results are pre-
sented in Table 2. Each row of the table corresponds to a different
model, and the first two rows correspond to the pixel-only meth-
ods. The first column corresponds to the one-vs-all F1-score
averaged over all the classes, the second column is the accuracy
of each model, and the third one is the top-two accuracy.

We note that the metrics for the PCA+MLP method are con-
sistent with those of Kuntzer et al. (2016). The performance of
the model is slightly lower, but this is expected as the data we
are using has a higher complexity in the spatial variation of the
PSF, higher noise levels, and the total number of samples used
for training is lower.

While using a convolutional network instead of the PCA
decomposition uses state-of-the-art deep learning techniques and
gives more flexibility to the extraction of spatial features, we
do not observe a significant improvement in classification. We
believe this is primarily due to the degeneracy between PSF
and spectral type, which imposes a limit on the accuracy of
pixel-only classification, regardless of which technique is used.

In addition to the metrics shown in Table 2, which are aver-
aged across all stellar classes, we show the one-vs-all metrics for
each class in Fig. 8. The exact values are detailed in Appendix D.
We observe that the one-vs-all F1-score accuracy and top-two
accuracy have a similar distribution for both the PCA+MLP
model (in red dot-dashed line) and the CNN+MLP model (in
violet dashed line). We note that these metrics are higher for the
redder stars. This is expected when examining the spectra shown
in Fig. 6. The figure demonstrates that the spectral differences
between adjacent stellar types are larger for red stars (M-type)
compared to blue stars (O-type). This is also consistent with the

Table 2. Classification metrics for the PCA+MLP, CNN+MLP, and
SVM+PSF models.

Model F1 Accuracy Top-two accuracy

PCA+MLP 0.366 0.370 0.757
CNN+MLP 0.385 0.391 0.746

SVM+PSFS1 0.392 0.410 0.755
SVM+PSFS4 0.506 0.512 0.873
SVM+PSFGT 0.546 0.549 0.910

Notes. SVM+PSFS1 stands for the SVM+PSF classifier that uses the
similarity features computed with an approximate PSF model trained on
the S1 dataset, which has a relative error of 2.4%. Analogously for the
S4 dataset with 500 stars and a relative error of 1%. The SVM+PSFGT
row uses the ground truth PSF to compute the similarity features.
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Fig. 8. F1 score, accuracy, and top-two accuracy by stellar type for the
PCA+MLP, CNN+MLP, and SVM+PSF models. The SVM+PSFS1 line
shows the SVM+PSF classifier that uses the similarity features com-
puted with an approximate PSF model trained on the S1 dataset, which
has a relative error of 2.5%.

distribution of similarity features shown in Fig. 4, where we see
that the red stars (and neighbouring types) have a similarity fea-
ture distribution that is easily distinguishable by eye from the
other types.

6.3. PSF-aware classification

Before training the PSF-aware stellar classifier, we compute the
approximate PSF models with differently sized datasets. We
present below the estimated PSF models and then the results of
the PSF-aware stellar classifier.
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Fig. 9. Relative error at observation resolution for each approximate
PSF model as a function of the number of training stars. The error bars
represent the standard deviation of the relative errors of the stars in the
test dataset.

Table 3. List of nested datasets with the corresponding number
of stars.

Dataset S1 S2 S3 S4 S5 S6

Size 50 100 200 500 1000 2000

6.3.1. Approximated PSF models

As mentioned in Sect. 4.1, we need to produce an approximate
model of the PSF to compute the similarity features of each
star, as the ground truth PSF is in principle unknown. We use
WaveDiff to compute an approximate PSF model from the star
observations. We employ 2000 simulated star observations for
training the approximate PSF model. To assess various levels
of PSF modelling uncertainty and analyse the impact on stellar
SED classification, we subdivide the 2000 stars into six datasets
with increasing number of stars, where each dataset is contained
in the next S1 ⊂ S2 ⊂ ... ⊂ S6. Since each star observation is a
sample of the GT PSF, we expect that a larger number of stars
will lead to a more accurate PSF model. We fit a WaveDiff PSF
model H̃(u, v; λ) to each of the datasets listed in Table 3. Figure 9
shows the relative error of each PSF model as a function of the
number of training stars contained in the dataset. The relative
error is defined as

Errrel =
1
n

n∑
i=1

RMS(I(i)
star − Î(i)

star)

RMS(I(i)
star)

× 100%, (13)

where Istar is the target PSF, Îstar is the predicted PSF, n is the
total number of test stars and RMS(·) is the root mean square
of a matrix as defined in Liaudat et al. (2023a). For each PSF
model in Fig. 9 the relative error is averaged over the 1000 test
stars. These six approximate PSF models provide the basis for
computing the similarity features used in the classification algo-
rithm. The resulting PSF relative error at observation resolution5

is around 2.5% for dataset S1 containing 50 stars, and 0.7%
for dataset S6 containing 2000 stars. The relative error range of
the PSF models is consistent with what is shown in Fig. 9 of
Liaudat et al. (2023a) therefore we assume that we cover a
sufficient range of PSF model accuracy for our analysis.

6.3.2. Classification results

With each approximated PSF model we evaluate the eight
monochromatic PSFs, H̃(ū, v̄; λk |ui, vi), at each star position
(ui, vi) in the classification dataset. From the monochromatic
5 In this study, we evaluate the PSF only at observation resolution and
not at super-resolution as is done in Liaudat et al. (2023a).
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Fig. 10. Accuracy (dashed blue line) and top-two accuracy (continuous
blue line) metrics for the PSF-aware model (SVM+PSF) as a function
of the PSF model error. In red and violet (horizontal lines), correspond-
ing metrics for the pixel-only classification methods (PCA+MLP and
CNN+MLP) are plotted as a reference.

PSFs and the star observations we compute the similarity fea-
tures following Eq. (4). We fit the proposed SVM algorithm to
the similarity features, independently for each dataset S, and
make the predictions for each star in the test dataset. We also
consider the scenario in which we have perfect knowledge of the
PSF by using the ground truth PSF for computing the similarity
features. This sets a baseline for the best possible performance
of the PSF-aware classification method.

The classification accuracy and top-two accuracy are pre-
sented in Fig. 10. The detailed F1-score and accuracy val-
ues are provided in Table E.1. The PSF-aware method,
SVM+PSF, outperforms both pixel-only classifiers (PCA+MLP
and CNN+MLP) for every considered error level of the PSF.
We obtain a 91% top-two accuracy with perfect knowledge of
the PSF, and 76% top-two accuracy with the least precise PSF
model we tested. We recall that this model was trained with only
50 stars in the FOV, which is much less than what we expect for a
Euclid-like survey (Laureijs et al. 2011). In addition, we note that
the approximate PSF model trained with the 2000 fiducial stars
allows for a 89% top-two classification accuracy, which is very
close to that obtained with the ground truth PSF model. Also,
models trained with fewer stars (between 200 and 2000) lead
to a similar classification performance. These approximate PSF
models, although not accurate enough for weak-lensing analy-
ses (Cropper et al. 2013; Massey et al. 2012; Paulin-Henriksson
et al. 2008), are able to assist stellar classification methods by
breaking the degeneracy between PSF size and spectral type, and
outperforming pixel-only classification methods.

6.3.3. Improving the final PSF model

To demonstrate a potential application of our novel PSF-aware
classifier we test how much of an impact additional stars with
classified SEDs in a given FOV would have on improving the
final PSF model. The aim is to extract more information from
the observations and improve the quality of the PSF model.

Figure 11 shows a diagram of the proposed PSF improvement
scenario. We assume a single Euclid-like wide-band exposure.
A fraction of the unresolved stars present in this exposure have
known SEDs from complementary measurements (in yellow)
and the remaining do not (in blue). We propose to obtain an
approximate PSF model from the stars with known SEDs. Then,
to use this approximate PSF model with our PSF-aware classifier
to assign SEDs to the remaining stars. Finally, we can attempt to
improve the PSF model considering both the stars with measured

A228, page 9 of 14



Centofanti, E., et al.: A&A, 694, A228 (2025)

50
stars

?
✔ 

✔ ✔ 

✔ 

✔ 
??

?

Approximate PSF

 

(50 stars + SEDs ✔ )

Spectral
Classifier

Similarity Features

50 stars

2000
Mono
PSFs

2000 stars

FOV: 

Improved PSF model

 
(50 stars +  ✔ )

(2000 stars +  ✔ )

2000
stars

✔ 

Unknown SEDs (?)
Known SEDs ✔ 

Fig. 11. PSF improvement scenario. The observed exposure contains
2050 stars, of which 50 have complementary spectral information (in
yellow) and 2000 do not (in blue). An approximate PSF model is trained
from 50 stars with known SEDs. The approximate PSF is used in the
context of the PSF-aware classifier to spectrally classify the remaining
2000 stars. The classified stars are assigned a SED template and can be
used to train an improved PSF model.

SEDs and the ones with assigned SED templates. We expect the
final PSF model to have a lower error as it uses more samples
of the underlying PSF and the spatial distribution of the addi-
tional samples better captures the spatial variation of the PSF in
the FOV.

As a proof of concept, we test the proposed PSF improve-
ment scenario using a sample of 2050 simulated star observa-
tions. We train WaveDiff using 50 stars with GT SEDs and
obtain an approximate PSF model with a relative error of 2.4%
at observation resolution. We then use the approximate PSF in
our PSF-aware classifier to assign SED templates to the remain-
ing 2000 stars. For this purpose we employ an SVM classifier
pre-trained on 8000 similarity feature samples. We obtain a clas-
sification accuracy of 41% and a top-two accuracy of 76%,
which is consistent with the results presented in Sect. 6. Finally,
the 2000 newly classified stars are used together with the original
50 stars to train new WaveDiff PSF models. We study how the
PSF error varies as we increase the total number of training stars.
Figure 12 shows the relative error, at observation resolution, of
the PSF model as a function of the number of training stars. In
dark yellow, we present the baseline relative error of the approxi-
mate PSF model (i.e. trained on the 50 stars with GT SEDs). The
relative error of subsequent PSF models that use the additional
sample of spectrally classified stars is plotted in blue. We show
that, as we increase the number of stars with classified SEDs, the
relative error of the PSF decreases. Using the full sample of 2000
spectrally classified stars, we achieve a relative error of 0.78%.
This represents a PSF error reduction of almost 70%. Finally,
the dotted line (in green) represents the relative error obtained
by training the PSF model with 2000 stars and the correspond-
ing GT SEDs (i.e. an idealised performance assuming unlimited
spectroscopic counterparts) for comparison. The minimum error
is 0.65%, only slightly lower than that obtained using the sample
of stars with classified SEDs.

We emphasise that this is a highly idealised and simplified
test case and significant work would still need to be carried out
to conclusively demonstrate the applicability of this approach to
real survey data. However, the initial results are promising and

50
Baseline

+50 +100 +200 +500 +1000 +2000

Additional spectrally classified stars

1

2

3

4

Re
la

tiv
e 

er
ro

r [
%

] Baseline: 50 stars GT SEDs
Baseline + classified stars
Best: 2000 stars GT SEDs

Fig. 12. Relative PSF error, at observation resolution, as a function of
the number of training stars. The baseline is set to the performance of
the approximate PSF trained with 50 stars and ground truth SEDs (dark
yellow). The subsequent PSF models (blue points) are trained using
the 50 baseline stars in addition to increasing numbers of stars with
SEDs assigned by our PSF-aware classifier. The error bars represent the
standard deviation of the relative errors of the test dataset. The green
dashed line shows the idealised minimum relative PSF error that can be
obtained when using 2000 stars with ground truth SEDs, and the green
shaded area represents the standard deviation of the relative errors.

indicate that it may be possible to improve PSF modelling perfor-
mance in single wide-band images by increasing the star sample
with classified SED stars.

7. Conclusions

The SED of observed stars is crucial for chromatic PSF mod-
elling of wide-field single-band telescopes. However, SED mea-
surements are often expensive and scarce for low-brightness
stars, limiting the number of stars available for PSF modelling.
A reliable spectral classification method using survey data could
significantly benefit PSF modelling. Assigning SED templates
to observed stars would increase the number of stars available
for constraining the PSF model. This approach could enhance
the accuracy of PSF modelling and, consequently, improve vari-
ous astronomical studies, particularly weak gravitational lensing
analysis.

In this paper, we propose a novel method for spectral classi-
fication from single wide-band observations of stars. This new
method, referred to as the PSF-aware classifier, incorporates the
spectral variation of an approximate PSF model of the telescope
in order to break the degeneracy between the size of the PSF
and the spectral type of stars. To evaluate the performance of our
PSF-aware method, we compare it with pixel-only classifiers that
rely solely on the star image pixel values. We implement and val-
idate the results of the pixel-only classifier presented in Kuntzer
et al. (2016) and propose an update based on a convolutional
neural network. We find that the CNN method performs about
the same as the Kuntzer et al. (2016) approach. We emphasise
that these classifiers, since they use only the pixel values of the
observed stars, do not address the degeneracy between the PSF
size and the spectral type of the star. Consequently, we introduce
the PSF-aware stellar classification method and address how the
PSF modelling error impacts the spectral classification accuracy.

We show how the PSF-aware model breaks the aforemen-
tioned degeneracy, pushing the classification accuracy further
and outperforming both pixel-only classification methods by
around 10%. We obtain a top-two accuracy of 91% with the pro-
posed model and perfect knowledge of the PSF. We also study
how the level of fidelity of the PSF model impacts the classi-
fication metrics, resulting in a top-two accuracy of 87% with
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a PSF model trained with 500 stars (1% relative error over the
low-resolution PSF samples), and a top-two accuracy of 76%
with a PSF model trained with only 50 stars (2.4% relative
error over the low-resolution PSF samples). This shows that the
approximate PSF models, which assist the classifier, although
not sufficiently precise for WL analyses, are useful for break-
ing the degeneracy and improving the classification accuracy.
We use WaveDiff (Liaudat et al. 2023a) to obtain approximate
PSF models for the purposes of the work presented. However,
we expect similar performance from any PSF modelling method,
provided it can model the spectral variation of the PSF.

We then test the PSF-aware classifier in a proof-of-concept
study, where we evaluate how much the additional stars with
classified SEDs in a given FOV improve the modelling of the
final PSF. We show that PSF models trained with complemen-
tary classified stars allow the relative PSF error to be reduced by
almost 70%. The inclusion of spectrally classified stars reduces
the relative error of the PSF from 2.5%, for an approximate ref-
erence model trained with 50 stars and their GT SEDs, to an
error of 0.78% when using 2000 complementary stars spectrally
classified with our PSF-aware classifier. While this experiment is
rather simplistic and does not fully represent the complexity of
PSF modelling from real data, the results obtained are promising
and illustrate a potential use of the proposed spectral classifier.

Future studies can explore improvements to the PSF-aware
classifier, such as replacing the SVM classifier with a neural
network or using convolutional networks to compute custom fea-
tures optimised for the stellar classification problem. The next
steps for the work presented would include making more realistic
simulations by adding redshift information to the star observa-
tions and increasing the number of wavelength bins used for
stellar observations generation (Eq. (2)). In this case, we would
need to study the selection of the number of similarity features,
which we set equal to the number of spectral bins, in more detail.
By addressing these issues, we would move significantly closer
to applying our PSF-aware classifier to real survey data. This
could be of interest for space missions such as Euclid, where the
spectral information (SEDs) of the observed stars is crucial for
training the PSF model.
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Appendix A: PSF modelling notation

Table A.1. Coordinates and notation used throughout this article. (Liaudat et al. (2023b)).

Variable Description

Coordinates

(x, y) Pupil plane or output aperture plane coordinates.
(u, v) Image or focal plane coordinates.
(ξ, η) Object plane coordinates.
(ū, v̄) Pixel coordinates, the discrete counterpart of the image plane.

pi 3D spatial coordinate.
λ Wavelength
t Time

Notation

I,H , . . . Calligraphic uppercase variables are continuous functions.
I,H, . . . Uppercase variables are matrices.

cm, bk
1, . . . Lowercase variables are scalars.

Iimg(ū, v̄; t|ui, vi) ∈ R Pixel value at position (ū, v̄) for the image Iimg with its centroid at position (ui, vi)
observed at time t.

Iimg,(·|ui,vi) ∈ R
p×p Observed image with its centroid at position (ui, vi).

Appendix B: PSF modelling

PSF modelling (Liaudat et al. 2023b) can be divided into two main categories: parametric models and data-driven models. Parametric
models rely on building a physical representation of the optical system. After the physical model is built there is a reduced set of
parameters to adjust, but it can be very challenging to tune them properly, requiring costly measurements of the instrument, precise
calibrations, and time-consuming optical simulations. Data-driven or non-parametric models do not necessarily represent the physics
of the instrument and have a higher degree of freedom, which allows optimal parameter combinations to be found using optimisation
techniques. Such models typically use observations to constrain the PSF representation.

This approach is based on the observational model for an image centred at the position (ui, vi) in the FOV,

Iimg(ū, v̄|ui, vi) = Fp

{∫ +∞
0
T (λ) (IGT ⋆Hint)(u, v; λ|ui, vi) dλ

}
+ N(ū, v̄|ui, vi). (B.1)

The ground truth image IGT is convolved with the PSF of the telescope Hint (intensity impulse response) and integrated over the
passband of the telescope, which is given by the transmission function T (λ). The Fp operator is a discretisation function that models
the pixelisation of the detector (sampling) and N embodies the observational noise. The observed image Iimg, with pixel coordinates
(ū, v̄), is a discrete version of the ground truth image corrupted by the PSF of the telescope and the observational noise.

Observations of distant stars are particularly interesting for PSF modelling. Unresolved stars can be considered as point sources
represented by a 2-dimensional delta distribution with a chromatic dependence described by the spectral energy distribution of the
star,

Istar(u, v; λ|ui, vi) = SED(λ) δ(u − ui, v − vi). (B.2)

The convolution between the delta function and the PSF will result in a sample of the PSF at the (ui, vi) position. Therefore
each observation of an unresolved star provides a sample of the PSF of the telescope at the corresponding position in the FOV
(Mandelbaum 2018; Jarvis et al. 2020). The observational model of a distant star is as follows

Istar(ū, v̄|ui, vi) = Fp

{∫ +∞
0
T (λ)SED(λ) Hint(u, v; λ|ui, vi) dλ

}
+ N(ū, v̄|ui, vi), (B.3)

where Hint(u, v; λ|ui, vi) is the PSF of the telescope with its centre at the position of the star. The PSF has two spatial coordinates
(u, v) and one spectral coordinate λ. The PSF sample is integrated together with the star SED over the passband of the telescope
given by the transmission function T (λ). The Fp operator is a discretisation function that models the pixelisation of the detector
(sampling) and N embodies the observational noise. The observed image Istar, with pixel coordinates (ū, v̄), is a single-band discrete
version of the star corrupted by the PSF of the telescope and the observational noise.
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Appendix C: WaveDiff

WaveDiff (Liaudat et al. 2023a) is a data-driven PSF model that operates in the wavefront space and is based on a differentiable
optical module that models the physics of the optical process to go from the wavefront error (WFE) to the pixel-level PSF. By
simplifying the optical system of the telescope to a single converging lens, the Fraunhofer diffraction approximation can be applied,
thus relating the PSF at the focal plane and the wavefront error at the pupil plane as follows (Liaudat et al. 2023a, Eq. 5),

H(ū, v̄; λ|ui, vi) ∝

∣∣∣∣∣∣FT
{

exp
[
2πi
λ

WFE(x, y|ui, vi)
]} [

ū
λ fL
,
v̄

λ fL

]∣∣∣∣∣∣2 , (C.1)

where FT is the Fourier transform, u and v are the focal plane coordinates, x and y are the pupil plane coordinates and fL is the focal
length of the optical system.

The WaveDiff WFE parametric representation is composed of a weighted sum of Zernike polynomials (Noll 1976), which are
widely used by the optics community to represent the phase of spherical wavefronts. Zernike polynomials are two-dimensional
functions that are orthogonal to each other over the unit disc. The Zernike amplitudes vary across the FOV coordinates (u, v) for each
Zernike order l and are represented by a two-dimensional function CP

l (u, v). In addition, the WFE has a non-parametric contribution,
whose features, S NP

m (x, y), are trained together with the spatial variation coefficients, CNP
m (u, v), using unresolved stars observations.

The WFE as a function of the FOV coordinates (u, v) can be modelled as follows,

WFE(x, y|u, v) =

parametric︷                     ︸︸                     ︷
nZ∑
l=1

CP
l (u, v|θ) Zl(x, y) +

nNP∑
m=1

CNP
m (u, v|θ) S NP

m (x, y|θ)︸                            ︷︷                            ︸
non−parametric

, (C.2)

where Zl is the l-th order Zernike polynomial and nZ is the maximum order considered for the WFE representation. In this model,
the spatial variation of the Zernike coefficients is a polynomial of degree dmax.

WaveDiff employs single-band star observations to optimise the parameters θ, modelling both the spatial and spectral variations
of the GT PSF.
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Appendix D: One-vs-all metrics

Table D.1. F1-score for each classification model, for each individual class.

Model Stellar type

O5 B0 B5 A0 A5 F0 F5 G0 G5 K0 K5 M0 M5

PCA+MLP 0.07 0.42 0.3 0.29 0.24 0.23 0.24 0.26 0.26 0.24 0.44 0.76 1.0
CNN+MLP 0.38 0.31 0.26 0.25 0.2 0.26 0.25 0.16 0.24 0.34 0.57 0.8 0.99
SVM+PSFS1 0.19 0.41 0.3 0.2 0.3 0.18 0.32 0.11 0.27 0.39 0.62 0.83 1.0
SVM+PSF 0.39 0.5 0.41 0.37 0.47 0.41 0.47 0.32 0.35 0.55 0.88 0.97 1.0

Table D.2. Accuracy for each classification model, for each individual class.

Model Stellar type

O5 B0 B5 A0 A5 F0 F5 G0 G5 K0 K5 M0 M5

PCA+MLP 0.04 0.48 0.36 0.32 0.25 0.24 0.26 0.31 0.28 0.22 0.39 0.67 1.0
CNN+MLP 0.39 0.31 0.27 0.26 0.19 0.29 0.26 0.16 0.25 0.35 0.6 0.81 0.99
SVM+PSFS1 0.14 0.57 0.3 0.17 0.36 0.14 0.39 0.07 0.27 0.44 0.66 0.82 1.0
SVM+PSF 0.32 0.6 0.41 0.34 0.5 0.4 0.5 0.29 0.35 0.57 0.89 0.97 1.0

Table D.3. Top-two accuracy for each classification model, for each individual class.

Model Stellar type

O5 B0 B5 A0 A5 F0 F5 G0 G5 K0 K5 M0 M5

PCA+MLP 0.59 0.81 0.74 0.75 0.66 0.67 0.72 0.75 0.73 0.63 0.8 0.97 1.0
CNN+MLP 0.75 0.85 0.64 0.65 0.62 0.68 0.62 0.6 0.68 0.7 0.94 0.99 1.0
SVM+PSFS1 0.8 0.88 0.74 0.64 0.6 0.7 0.56 0.58 0.64 0.79 0.94 0.97 1.0
SVM+PSF 0.91 0.98 0.85 0.9 0.87 0.93 0.84 0.81 0.86 0.88 1.0 1.0 1.0

Appendix E: SVM+PSF results

Table E.1. Classification results for the SVM+PSF classifier.

Model F1 Accuracy Top-two accuracy

PCA+MLP 0.366 0.370 0.757
CNN+MLP 0.385 0.391 0.746

SVM+PSFS1 0.392 0.410 0.755
SVM+PSFS2 0.431 0.450 0.816
SVM+PSFS3 0.491 0.498 0.869
SVM+PSFS4 0.506 0.512 0.873
SVM+PSFS5 0.516 0.525 0.884
SVM+PSFS6 0.523 0.529 0.886
SVM+PSFGT 0.546 0.549 0.910

Notes: Each row shows a different PSF model used for computing the similarity features. The pixel-only classification metrics correspond to the
first two rows.
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