

X-rays, Protons and Electrons Radiation Effects on Fiber Bragg Gratings

Thomas Blanchet, Adriana Morana, Timothé Allanche, Emmanuel Marin, Aziz Boukenter, Youcef Ouerdane, Philippe Paillet, Marc Gaillardin, Olivier Duhamel, Claude Marcandella, et al.

▶ To cite this version:

Thomas Blanchet, Adriana Morana, Timothé Allanche, Emmanuel Marin, Aziz Boukenter, et al.. X-rays, Protons and Electrons Radiation Effects on Fiber Bragg Gratings. RADiation Effects on Components and Systems (RADECS 2017), CERN, Oct 2017, Genève, Switzerland. cea-04952682

HAL Id: cea-04952682 https://cea.hal.science/cea-04952682v1

Submitted on 17 Feb 2025 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

X-rays, Proton and Electron Radiation Effects on Fiber Bragg Gratings

<u>Thomas Blanchet</u>, A. Morana, T. Allanche, C. Sabatier, I. Reghioua, E. Marin, A. Boukenter, Y. Ouerdane, P. Paillet, M. Gaillardin, O. Duhamel, C. Marcandella, M. Trinczek, G. Assaillit, G. Auriel, D. Aubert, G. Laffont and S. Girard

Optical Fibers

- Use in:
 - Telecommunication
 - Sensors
 - Lasers
 - Lighting
 - Medicine
- Sensors:
 - Space Environment (1kGy/year)
 - Nuclear Power Plants:
 - Inside the core < MGy/year

Fiber Bragg Grating based sensors for temperature and strain measurements in harsh environments

Fiber Bragg Gratings based Optical Fiber Sensors for distributed measurements under radiation

- The Radiation Induced
 - Attenuation (RIA):
 - Ionization and/or Knock on process
 - degradation of the fiber transmission properties
 - decrease of the signal-to-noise ratio

Radiation Induced Bragg Wavelength Shift (RI-BWS):

• error on the sensing parameter measurements

Type I UV-FBGs are the more classical ones

	Pre-inscription hydrogenation	Fiber	Composit		
1.			Core	Cladding	H ₂
2.	 Inscription : • cw Laser at 244 nm (Argon) • Interferometric method : Lloyd's mirror Post-Inscription annealing 8 h 120°C	Germanium (High Content)	Ge >15 wt%	Pure silica	yes
		Germanium (Low Content)	Ge ~5 wt%	Pure silica	yes
		Boron/ Germanium	Ge ~10 wt% B ~5 wt%	Pure silica	no
		Phosphorus/ Cerium	P ~8 wt% Ce (below EDX detection limit)	Pure silica	yes
	FROM RESEARCH TO INDUSTR	Ω.			

How the different types of radiation influence the FBG responses?

•TRIUMF Facility (Vancouver – CANADA) :

- 63 MeV proton Irradiations
- Irradiations: equivalent dose rate of 0,75 Gy/s up to a least 7 kGy

• CEA GRAMAT (France) :

- 6 MeV electron irradiations
- Irradiation: 120 Gy/s up to 500 kGy

TO COMPARE THE EFFECTS

• X –rays Chamber MOPERIX LabHC:

- 40 45 keV X-rays irradiations
- Irradiations:
 - 0.75 Gy/s (SiO₂) up to 10 kGy
 - 60 Gy/s to 500 kGy

Comparison Protons/X-rays

10/03/2017

7

FROM RESEARCH TO INDUSTR

No significant difference between proton and X-rays effects at low dose for Gedoped fiber

RI-BWS more important under X-rays than under protons?

No difference between proton and X-rays effects at low dose for Ge-doped fiber

The higher the Ge concentration, the larger the shift induced under X-rays and protons

No difference between proton and X-rays effects at low dose for B/Ge co-doped fiber

No proton effect on the FBG in P/Ce codoped fiber

FBG	S	RI-BWS (pm) under X-rays at 7 kGy	RI-BWS (pm) under Protons at 7 kGy
P/Ce	e	7 ± 2	4 ± 1
	RATOIRE		10/03/2017

Comparison Electrons/X-rays

		Ŭ0	100	200	300	400	500
FBGs RI-BWS (pm) under RI-BW X-rays at 500 kGy Electro		RI-BWS (pm) u Electrons at 500	nder D kGy	Dose (kGy)			
Ge Low Content 5 wt%	190 ± 2	170 ± 10		More Ge-doped the is, more the shift is			the fiber t is
Ge High Content > 15 wt%	170 ± 10		important				
						FROM RESEARC	H TO INDUSTRY

10/03/2017

The FBG in B/Ge co-doped fiber is more sensitive to electron beam than to X-rays

no stabilisation under electrons

The FBG in P/Ce doped fiber is less sensitive to electron beam

Conclusions

Conclusions

•Ge-doped fibers:

• Influence of the dopant concentration: the larger the Ge content, the larger the RI-BWS

•Comparison X-rays and protons:

•Proton and X-rays induce similar effects on the grating response (with an error of less than 15% on the dose-rate), maybe with a slightly larger effect of X-rays

•Comparison X-rays and electrons:

- For the Ge doped fibers : FBGs seems less sensitive to electrons than X-rays + saturation of the BWS under electrons
- For the B/Ge co-doped fibers : BWS more important under electrons with no saturation effects
- For P/Ce co-doped fibers : BWS less important under electrons

Thank you for your attention

10/03/2017

FROM RESEARCH TO INDUSTRY

