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Abstract

We develop a new Galerkin approximation of
boundary integral equations of ElectroMagnetic
(EM) scattering based on a Virtual Element
Method (VEM), which allows polygonal meshes.
This aims at improving the performance and
versatility of the classical Boundary Element
Method (BEM) solvers in applications involving
mesh refinement techniques. In this work, we
present the construction, the theoretical analy-
sis, the implementation of this virtual boundary
element approach, as well as the numerical ex-
periments highlighting its effectiveness on Radar
Cross Section (RCS) benchmarks.
Keywords: Maxwell equations, Boundary in-
tegral operators, Virtual elements, Convergence
analysis, Polygonal meshes.

1 Introduction

The BEM, relying on Galerkin approximation
by means of the lowest-order Raviart-Thomas
(RT) finite elements, have proven their efficiency
for the solution of boundary integral equations
describing the EM scattering of time-harmonic
waves by electrically large structures. However,
these methods, which only necessitate a surface
mesh of the physical domain, can show a lack of
flexibility in meshing complex, multiscale struc-
tures. Indeed, the standard RT finite elements
setting does not allow hanging nodes that may
appear during adaptive mesh refinement to cap-
ture local EM details. This mesh conformity
requirement can significantly limit the perfor-
mance of classical BEM.

To relax the nature of the allowed meshes,
authors in [1] devised a discontinuous Galerkin
approximation of boundary integral operators,
but at the expense of an increase in the num-
ber of unknowns at the nonmatching-grid in-
terfaces, as well as the complexity of the weak
formulation. In this work, as an alternative,
we propose a new conforming Galerkin approx-
imation of boundary integral equations, based

on the newly introduced virtual elements [2],
namely, the natural div-conforming virtual el-
ement counterparts of RT elements. The re-
sulting discretization improves the flexibility in
dealing with ever-growing complex geometries
by supporting polygonal surface meshes.

2 Virtual boundary element method

For the sake of simplicity, we present the dis-
cretization of the Electric Field Integral Equa-
tion (EFIE) for perfectly conducting bodies.

Let Γ be the nonsmooth boundary of the
closed domain Ω ⊂ R3, n its outward unit nor-
mal andEI the electric field of the plane wave il-
luminating Ω, with κ > 0 being its wavenumber.
Let consider a polygonal mesh Th that approxi-
mates Γ (h denotes the mesh size), we derive the
virtual element-based discretization of the EFIE
(here termed V-BEM) by seeking an approxima-
tion Jh of the only unknown J , being the elec-
tric current living on Γ, in the div-conforming
lowest-order serendipity virtual space Vh [2] de-
fined on Th. The virtual basis functions span-
ning this space are not analytically known, but
their divergence and their L2-orthogonal projec-
tion π0

h : Vh → (P1(Th))3 such that π0
hu · n = 0

can be explicitly computed from the only knowl-
edge of the degrees of freedom (dofs) related to
the virtual functions. As a result, the V-BEM
weak formulation reads as: Find Jh ∈ Vh such
that ∀J ′h ∈ Vh,

ah(Jh,J
′
h) = fh(J ′h),

where the sesquilinear form is

ah(Jh,J
′
h) =

〈
Sκπ

0
hJh, π

0
hJ
′
h

〉
− 1

κ2

〈
Sκ∇Γ · Jh,∇Γ · J ′h

〉
,

and the right-hand side (rhs) is

fh
(
J ′h

)
= − 1

iκZ0

〈
n×EI × n, π0

hJ
′
h

〉
,

where Sκ and Sκ are the vectorial and scalar
single layer boundary integral operators of the
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Helmholtz equation [3], respectively, 〈·, ·〉 is the
classical duality pairing and Z0 is the impedance
in vacuum.

3 Theoretical and Implementation issues

The particularity of this V-BEM formulation
comes from the L2-projector that leads to an
approximate sesquilinear form ah and an ap-
proximate rhs fh, which is one of the principal
analysis difficulties. On the basis of the clas-
sical analysis methodology (Hodge decomposi-
tions) of the EFIE [3] and for a family of polyg-
onal meshes satisfying classical VEM regular-
ity assumptions, we have established the well-
posedness of the formulation by proving a uni-
form discrete inf-sup condition:

∃C > 0, h0 > 0 tel que ∀h ∈ (0, h0) ,

inf
Jh∈Vh

sup
J ′

h∈Vh

|ah(Jh,J
′
h)|

‖Jh‖W ‖J
′
h‖W

≥ C.

Moreover, the a priori error analysis reveals the
quasi-optimal convergence of the scheme in the
natural norm of W = H−1/2 (divΓ,Γ). As a
result, we get same convergence rates as the RT
discretization.

From the implementation point of view, the
way of assembling the Galerkin matrix is the
same as the one used in RT finite elements set-
ting. Nevertheless, a difficulty comes from the
evaluation of the elementary singular integrals
on polygons. To address this issue, we have em-
ployed a strategy that consists in partitioning
each polygon into a minimum number of trian-
gles in order to exploit classical numerical sin-
gularity extraction techniques. Finally, the re-
sulting linear system is solved using dense di-
rect methods with a fully MPI-type parallelism
based on LAPACK library.

4 Numerical Results

We numerically analyze the proposed V-BEM
scheme taking as reference approach the BEM.
Firstly, we consider the EM wave scattering by
a sphere in order to investigate the mesh conver-
gence in the H (divΓ,Γ)-norm (κ = 10.5 m−1).
To that end, we use triangular meshes for the
BEM, meshes mixing triangles and n-sided poly-
gons (V-BEMa) and n-sided polygonal meshes
(V-BEMb), with n > 3. We remark that both
schemes exhibit the same convergence rates (fig.
1). Afterwards, we demonstrate the effective-

ness of using the V-BEM approach on a cone-
sphere with gap benchmark along with a surface
mesh that is refined near the gap to capture its
RCS signature (fig. 2) (κ = 62.9 m−1). Com-
pared to the BEM that handles a dense trian-
gular mesh with no hanging nodes, the V-BEM
shows a clear performance gain for an equivalent
accuracy (tab. 1).
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Figure 1: Distribution of Jh (A.m−1) real part
(V-BEMb, left) and relative error on J vs. the
average mesh size hmean.
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Figure 2: Distribution of Jh (A.m−1) real part
(V-BEM, left) and the RCS of the cone-sphere.

BEM V-BEM Gains
hmean (m) π/(15κ) π/(13κ)
# dofs 61662 48640 -21%

Memory fp (Gb) 28.3 17.6 -38%
CPU time (s) 269 192 -29%

Table 1: Performances stats.
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