

Nanoporous scintillators for radioactive gas detection

Raphaël Marie-Luce, Pavlo Mai, Frédéric Lerouge, Yannis Cheref, Sylvie Pierre, Benoit Sabot, Frédéric Chaput, Christophe Dujardin

▶ To cite this version:

Raphaël Marie-Luce, Pavlo Mai, Frédéric Lerouge, Yannis Cheref, Sylvie Pierre, et al.. Nanoporous scintillators for radioactive gas detection. 12th international conference on Luminescent Detectors and Transformers of Ionizing Radiation, University of Latvia; European Radiation Dosimetry Group (EURADOS); SIA Baltic Scientific Instruments, Jun 2024, Riga, Lithuania. cea-04938900

HAL Id: cea-04938900 https://cea.hal.science/cea-04938900v1

Submitted on 10 Feb 2025 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Porous scintillators for radioactive gas detection

R.Marie-Luce², P.Mai¹, F.Lerouge², Y.Cheref^{1,2}, S.Pierre³, B.Sabot³, F.Chaput², and C. Dujardin^{1,4,*}

¹Institute of Light and Matter, University Claude Bernard Lyon1, CNRS UMR 5306

- ² Laboratoire de Chimie ENS-Lyon, University Claude Bernard Lyon1, CNRS UMR 5182
- ³ CEA,LIST, Laboratoire National Henri Becquerel (LNE-LNHB), University Paris Saclay ⁴ Instititut Universitaire de France (IUF)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 899293

Context: detection of particular radioactive gases

It exists various kinds of radioactivies

Туре	Nuc	lear equation	Representation	Change in mass/atomic numbers
Alpha decay	ξx	${}^{4}_{2}$ He + ${}^{A-4}_{Z-2}$ Y		A: decrease by 4 Z: decrease by 2
Beta decay	Åχ	$^{0}_{-1}e + ^{A}_{Z+1}Y$		A: unchanged Z: increase by 1
Gamma decay	ÅΧ	$^{0}_{0}\gamma$ + $^{A}_{Z}Y$	Excited nuclear state	A: unchanged Z: unchanged
Positron emission	Âx	$^{0}_{+1}e + ^{A}_{Y-1}Y$	$\bigotimes^{} \xrightarrow{V} \bigotimes^{} \bigotimes^{}$	A: unchanged Z: decrease by 1
Electron capture	Âx	$^{0}_{-1}e + ^{A}_{Y-1}Y$	X-ray VVVS	A: unchanged Z: decrease by 1

) Q (

< 同 > < 三 > < 三 >

A common situation: as an illustration ¹³⁷Cs

Here, it is easy to detect the γ with mature technologies (even from far since γ -rays can travel in air)

Context: case of pure β -ray emitters

But in some cases

Here, no γ -rays \rightarrow need to detect the β (electron) (these 3 are really critical for the survey of nuclear power plants)

ヘロト ヘ戸ト ヘヨト ヘヨト

Context: societal impact

For production (case of various reactor technologies)

Table 6.3	Annual	release	of ra	dionucli	ides (pe	r GWe	of	electricity	generation)	from	nuclear
reactors (ba	sed on th	he data r	report	ed for th	e 1990-	1994 p	eric	d) (data so	urce: UNSCI	EAR 2	2000)

	Normalized	l releas	e per G	(TBq	(TBq per GWe per year)		
	Airborne Release						Liquid Release
	Noble gas (¹³³ Xe, ¹³⁵ Ye				Particulates (mostly as ⁸⁸ Rb, ⁸⁹ Rb,		Other (⁹⁰ Sr, ¹³⁷ Cs, ⁵¹ Cr, ⁵⁴ Mn, ⁵⁸ Co, ⁶⁰ Co, and
	⁸⁵ Kr)	³ H	¹⁴ C	¹³¹ I	139Ba)	^{3}H	⁹⁵ Zr)
PWR	27	2.3	0.22	0.0003	0.0002	22	0.019
BWR	350	0.94	0.51	0.0008	0.18	0.94	0.043
GCR	1600	4.7	1.4	0.0014	0.0003	220	0.51
HWR	2100	650	1.6	0.0004	0.00005	490	0.13
LWGR	1700	26	1.3	0.007	0.014	11	0.005
FBR	380	49	0.12	0.0003	0.012	1.8	0.049
Total	330	36	0.44	0.0007	0.040	48	0.047
	Total combined release: 415 (TBq)						

For reprocessing of nuclear fuel

Table 6.4 Annual average release of radioactivity from reprocessing (as release in TBq per GWe of electricity generation during the period 1990–1994) (data source: UNSCEAR 2000)

	Airborne release	Liquid release		
ЗН	24	270		
14C	0.4	0.8		
⁸⁵ Kr	6300	-		
⁹⁰ Sr	-	2.0		
¹⁰⁶ Ru	-	2.1		
¹²⁹ I	0.001	0.03		
¹³¹ I	9 x 10 ⁻⁵	-		
137Cs	8 x 10 ⁻⁵	1.03		

Yim M.S. Generation of nuclear Waste from Nuclear Power, (Springer) Netherlands, Dordrecht, 2022

\rightarrow Need for an efficient and real-time detector for these ones = $9 \circ 10^{-1}$

christophe.dujardin@univ-lyon1.fr Lumdetr 2024, Riga, Latvia

Context: very short penetration in air

But

Context: very short penetration in air

calculations for ${}^{3}H$ and ${}^{85}Kr$

Simulated energy distributions

Efficiency of detection (1 keV limit)

 \rightarrow the ideal detection system needs to mix the gaz with the sensor !

 $\rightarrow \mbox{the element}$ to be detected has to be intermixed with the sensor

gaz - liquid mixing

bubbling the gaz in liquid scintillator

- ullet pprox 1 week for 1 measurement
- only for ${}^{3}H$
- organic wastes

伺 ト イヨト イヨト

Context

 \rightarrow the element to be detected has to be intermixed with the sensor

gaz - liquid mixing bubbling the gaz in liquid scintilllator

- ullet pprox 1 week for 1 measurement
- only for ${}^{3}H$
- organic wastes

gaz - gaz mixing proportionnel counter

- $\bullet\,\approx\,150\,{\rm k}{\in}$
- requires a carrier gaz
- fragile and sensitive electronics

 \rightarrow can we do better with gaz-solid mixing approach?

The concept of porous scintillator: the scintillating sponge

christophe.dujardin@univ-lyon1.fr Lumdetr 2024, Riga, Latvia

Main requirements: a few cm sizes, transparent, bright and fast

transparent = nano-sized architechture

Aerogel of silica

network of nanoparticules

ヘロマ ふぼう くほう くほう

bright and fast: an aerogel of inorganic nanoscintillators or MOF

The concept and target (h \approx 5 cm, $\varnothing\approx$ 2.5cm)

The H2020-FET-OPEN SPARTE project

- University Lyon 1 France, Aerogel of inorganic scintillator, Scintillation, data analysis
- Czech Technical Univeristy Czeck Rep., Nanoscintillator with photochemical synthesis
- Milano Biccoca University, Italy, MOF nanocrystals, Scintillation
- Materias srl, Italy, MOF based aerogel synthesis
- CEA, France, MOF crystals, Radioactive gaz analysis
- Lyon Ingenierie Projet, France, Project administration

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 899293

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

With MOF

nature protonics		6		
Article	https://doi.org/10.1038/s41566-023-01	1211-2		
Efficient rad scintillating	ioactive gas detection by porous metal–organic			
frameworks				
frameworks	Matteo Orfano @ ¹⁴ , Jacopo Perego ¹⁴ , Francesca Cove @ ¹ ,			
frameworks	Mattes Orfano ⁶¹ Jacopo Porego ¹⁰ , Francesca Cova ⁶ , — Chart X. Beroldenbourd ⁶ , Sergio Pive ⁶ , Christophe Dujerdin ⁶ , Renni Stadvide "Svide Pierre" ¹ Per John ¹⁰ , Christophe Dusind ⁶ ,			
frameworks Received: 15 November 2022 Accepted: 7 April 2023 Published online: 18 May 2023	Matteo Orfano® ¹⁹ , Jacopo Perego ¹⁹ , Francesca Cova® ; Charl X. Bezuidenhout ®, Sergio Piva® (. Christophe Dujardin® ¹ , Benolt Sabot ®', Sylvie Perer ³ , Pavio Mai ² , Christophe Daniel® ¹ , & Silvie Bracce), Anna Vedda® (. Angicha Cancomtic®) = &			

RESEARCH ARTICLE

FUNCTION

www.afm-journal

< ロ > < 同 > < 回 > < 回 > .

Detection of Radioactive Gas with Scintillating MOFs

Sharvanee Mauree, Vincent Villemot, Matthieu Hamel, Benoit Sabot, Sylvie Pierre, Christophe Dujardin, Francesca Belloni, Angiolina Comotti, Silvia Bracco, Jacopo Perego, and Guillaume H. V. Bertrand*

It performs well as building block: bright and fast (organic dyes) but hard to get a transparent monolith yet.

Aerogel of inorganic nanoscintillator

It exists many compositions satisfying the needs: CeBr₃, Y_2SiO_5 :Ce³⁺, $Y_3AI_5O_{12}$:Ce³⁺, ...

but:

- It requires to prepare a large porous aerogel (a few cm)
- Chemical stability
- Radiopure (no Lu)
- With properties as nanosize preserved
- We do not care about density of the compound

 \rightarrow based on our experience, we have selected Y₃Al₅O₁₂:Ce^{3or4+}

cm	CHEMISTRY OF	Article
611	MATERIALS © Cite This: Chem. Mater. 2018, 30, 5460-5467	pubs.acs.org/cm

From Nanoparticle Assembly to Monolithic Aerogels of YAG, Rare Earth Fluorides, and Composites

Mateusz Odziomek,^{†,‡} Frederic Chaput,^{⊕,†} Frederic Lerouge,[†] Christophe Dujardin,[§][®] Maciej Sitarz,[‡] Szilvia Karpati,[†] and Stephane Parola^{40,†}[®]

< ロ > < 同 > < 三 > < 三 >

Aerogel of YAG:Ce⁴⁺

From a lab sample to a functional sensor (with $YAG:Ce^{4+}$)

 \rightarrow The best sample is 750°C in air $\langle \sigma \rangle$

christophe.dujardin@univ-lyon1.fr

Lumdetr 2024, Riga, Latvia

The Scintillation of the YAG:Ce⁴⁺ aerogel

 \rightarrow **4+ is not a typo**: we are dealing with scintillation! Ce⁴⁺ can be seen as a "pre-prepared" Ce³⁺ + 1 captured hole.

3

The selected YAG:Ce⁴⁺ aerogel sample

christophe.dujardin@univ-lyon1.fr

Lumdetr 2024, Riga, Latvia

The Scintillation of the YAG:Ce⁴⁺ aerogel

Radioluminescence spectra and time response under X-rays

Measuring the yield of aerogel

3 PMTs: Double and triple coincidence technique

A scintillation event \rightarrow several optical photons - for this scheme each pulse corresponds to a single <code>optical</code> photon

see: Broda R., Cassette P. and Kossert K. 2007: Radionuclide metrology using liquid scintillation counting; Metrologia 44 (2007) 36-52

Measuring the yield of aerogel

The Compton TDCR experiment

 \rightarrow It allows to know the yield at known electron energy

see: Sabot B.. 2024, Scientific Report 14, 6960

< ロ > < 同 > < 三 > < 三 >

Measuring the yield of aerogel

Efficiency under electron excitation

Compton-TDCR \rightarrow 0.124 phe/keV

0.124 phe /keV \rightarrow detection efficiency prediction: 96.3% for ⁸⁵Kr and 17.6% for ³H

The Experiment under radioactive Gaz

The detection module with 3 PMTs developed for Liquid Scintillation at CEA-LNHB

 \rightarrow Double and triple coincidences technique

The radioactive gas

3 aerogel pieces in the liquid scintillation vial were used.

< 同 > < 三 > < 三 >

Analysis in 100s per point (almost real time)

Very good linearity for ${}^{85}Kr$ and 100% of detection efficiency ! (96.3% was predicted)

通 ト イ ヨ ト イ ヨ ト

The results with ${}^{3}H$

Analysis in 100s per point (almost real time)

Very good linearity for ${}^{3}H$ and 18.1% of detection efficiency ! (17.6% was predicted)

通 ト イ ヨ ト イ ヨ ト

And a good detection reproducibility

We can detect sub-Bq / cm³ of ${}^{85}Kr \& {}^{3}H$ in real time! Current detection **sensitivity: a few 10mBq/cm**³ (atm. pressure)

< 同 > < 三 > < 三 >

Experimental evolution of T/D as a function of Δt

christophe.dujardin@univ-lyon1.fr Lumdetr 2024, Riga, Latvia

The Monte Carlo method with the X-ray decay

 \rightarrow It allows to evaluate D and T vs Δt for various m.

christophe.dujardin@univ-lyon1.fr Lumdetr 2024, Riga, Latvia

The Monte Carlo method to simulate T and D vs Δt

 \rightarrow let's take a poisson distribution to get T/D vs $\Delta t?$

回とくほとくほと

æ

Experience & simulation of T/D vs Δt

Analysis of the ratio triple coinc. / double coinc.

(an indicator of the mean number of photons per event)

It reflects the higher mean energy of electrons for $^{85}{\it Kr}$ \rightarrow It can be used for gaz identification

 \rightarrow The mixtures can be identified ! (but requires a system with 3 detectors)

通 ト イ ヨ ト イ ヨ ト

The same information considering D with 2 different time windows

 \rightarrow large electron energy: almost no difference \rightarrow small electron energy: large difference

 \rightarrow It can be obtained with only 2 detectors!

・ 同 ト ・ ヨ ト ・ ヨ ト

Identification with the 2D map: Activity (D_{400}) vs D_{400}/D_{40}

 \rightarrow It allows to check the "purity" of the gases as well !

 \rightarrow Measurement with the same gas mixtures (⁸⁵Kr + ³H)

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Example of measurements with the 2 gas mixtures (85 Kr + 3 H)

We can combine the 2 informations to "demix" the respective activities \rightarrow Almost real time information (100 s per point) - Patent 2307880 (July 2023) -

 \rightarrow Crucial information for nuclear power plants during operation

くぼう くほう くほう

Conclusion

Thank you for your attention

(R.Marie-Luce et al, under revision)

follow our project: https://www.sparte-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 899293

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト