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This study employs molecular dynamics (MD) simulations and lattice dynamics (LD) calculations
to investigate the superionic transition in UO2, as well as the characteristics of the superionic phase.
The superionic transition is found to be a second-order phase transition associated with an inflection
point in enthalpy and lattice parameter at 2600 K. This resembles displacive phase transitions and
is associated with an oxygen vibration mode becoming imaginary. The superionic state shows a
combination of different local environments and dynamic features similar to glass-forming liquids.
The analysis of its dynamics reveals seemingly contradictory characteristics: properties follow those
of the lower-temperature crystalline phase in some respects, while exhibiting liquid-like behavior
in others. The study highlights the complexity of the superionic phase, including heterogeneous
mobility and diffusion mechanisms involving string-like anion clusters.

I. INTRODUCTION

Accurate knowledge of the thermophysical behavior of
uranium dioxide (UO2) is crucial for optimizing its use
as a nuclear fuel. A comprehensive understanding of
high-temperature properties is also essential for assess-
ing fuel behavior in accident conditions. This has lead
to a considerable number of experimental and numerical
studies being carried out over the years and summarized
in extensive reviews [1–3]. However, conflicting observa-
tions of some key properties persist, especially at tem-
peratures close to its melting point. The topic of the
superionic transition is a particular example. The exis-
tence of a phase transition in solid UO2 at temperatures
around 80% of its melting point has been known since
the late 1960s and early 1970s. It was first described by
Dworkin and Bredig [4] in different materials, and called
the diffuse transition. It was called the Bredig transition,
Λ transition, or pre-melting by various authors, because
the heat capacity peak occurs at TS ∼ 85% of the melting
temperature Tm, or around 2 670 K [5, 6]. The melting
point of UO2 is in the range 3 030 K– 3 300 K, with most
values close to 3 100 K [2]. The transition is also more de-
scriptively called the superionic transition, because of the
oxygen ionic superconducting character of the phase [7].

This transition was hypothesized in UO2 by Leibowitz
et al. in 1968 [8], based on the analysis of enthalpy in-
crement measurements at high temperature, and then
demonstrated by Bredig in 1972 [5]. It is characterized by
a sharp Λ-shaped peak in the heat capacity [5, 6, 9–11],
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or equivalently by a small contribution to the enthalpy
increment [8]. An inflection point similar to the enthalpy
increment has been reported for the lattice parameter
using empirical potentials, resulting in another peak ob-
served in the linear thermal expansion coefficient with a
maximum in the range 2 300 K– 3 500 K, depending on
the potential [12, 13]. The cause of the superionic transi-
tion remains controversial in the literature. Some authors
ascribe it to the accumulation of point defects [7, 14],
while others discuss it in terms of a time-scale change
of collective relaxation mechanisms [15]. Likewise, the
structure of UO2 in the superionic phase is debated,
and is sometimes described as a highly-defective solid,
or as the combination of a liquid-like oxygen sublattice
and a still-crystalline cation sublattice [16, 17]. Previ-
ous works showed structural changes, with the appear-
ance of local environments similar to the Pbcn struc-
ture in the superionic phase [18]. Despite these disagree-
ments, the existence itself of the superionic transition
has been demonstrated several times, and has been the
focus of numerous studies in recent years. This transition
has been reproduced in the literature using atomic-scale
models based on several different empirical potentials for
UO2 [12–14, 16, 19], but also for PuO2 [20, 21]. It was
documented in several mixed oxides, both stoichiometric
and hypostoichiometric [19–27]. Although most of these
studies were based on empirical potentials, the transition
was also reproduced in DFT simulations [26]. Previous
works indicate that this transition is likely to occur in
all compounds with the fluorite structure [18], such as
CaF2 [28], Li2O [29], and CeO2 [30]. The associated
structural disorder has been linked with the freezing of
some low-energy optical (LEO) vibration modes [31], but
also with the energy of formation of Frenkel defects [7].
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Compounds with other structures can also undergo a sim-
ilar type of transition when they exhibit a chemical bond
hierarchy, with some bonds much weaker than others [32].

In addition to the superionic transition, an unexpected
increase of the enthalpy increment was observed. The
onset of this anomalous heat has been measured in the
range 1 600 K– 2 200 K [33]. It is commonly attributed
to anharmonic phenomena [34], inlcuding the formation
of oxygen Frenkel pairs (OFP) [11, 35], although the role
of electronic defects was also considered [36–38]. Experi-
ments to quantify oxygen disorder confirmed a significant
increase in oxygen defects starting at around 2 000 K, in
line with the onset of the anomalous increase in heat ca-
pacity at high temperatures [39, 40]. Since then, other
experiments have confirmed that, although electronic de-
fects contribute to the increase of the heat capacity, oxy-
gen Frenkel disorder was the major contribution to the
superionic transition itself [11].

The purpose of the present study is to provide a con-
sistent framework to better explain and understand the
superionic transition in UO2, particularly from a dynam-
ics point of view, supported by atomic-scale simulations.
The role of OFP and the effect of vibration modes will be
investigated, as well as the dynamical structure of the su-
perionic phase. This emphasis on dynamic features com-
plements previous works focused on structural aspects of
this transition [18].

II. METHODS

The simulations presented in this article are based on
semi-empirical potentials using pairwise and many-body
interactions. Two types of simulations have been carried
out, to investigate two different aspects of the superionic
transition: molecular dynamics (MD) and lattice dynam-
ics (LD).

1. Empirical potential

The potential model used throughout this study
is that of Cooper –Rushton –Grimes (CRG) [20, 41].
This potential has been shown to reproduce the high-
temperature thermophysical properties of UO2, as well
as other actinide single oxides [20] and mixed oxides [42],
including the superionic transition. It also predicts the
correct temperature for the melting point of UO2 and
mixed oxides [22, 43]. Thus, whilst some systematic shift
is expected for some properties because of the empirical
character of the model, trends and the evolution of the
material’s properties are accurately reproduced.

The CRG model is based on rigid ions with partial
charges, with a combination of pair interactions and
many-body EAM contributions. The electrostatic contri-
bution to the energies and forces are modelled using the
Wolf summation technique [44] to transform long-range

electrostatic interactions in a short-range potential, using
a convergence factor of 0.3 Å−1.

2. Molecular dynamics

MD simulations were carried out using the LAMMPS
code [45]. This program has the advantage of offering
high-quality implementations of the Nosé–Hoover ther-
mostat and Parinello–Rahman barostat in its Tuckerman
integrator [46]. All the simulations used a timestep of
0.002 ps, and characteristic relaxation times of 0.01 ps
and 1.0 ps for the barostats and thermostats respectively.
Equilibrium MD calculations were performed at several
temperatures across the 300 K– 4 000 K range, with a
temperature interval of 46,25 K. The initial structure of
the simulation boxes consisted in 12 × 12 × 12 super-
cells of the perfect Fm3̄m structure. This corresponds to
lengths of 65 Å and 20 736 atoms. Each simulation con-
sists of a fixed-temperature and room-pressure (NPT )
equilibration for 240 ps, during which the average box
lengths are calculated. In a second relaxation step, the
box size is changed to match the average calculated dur-
ing the NPT relaxation, and each supercell is relaxed
at a fixed temperature and constant volume (NV T ) for
10 ps. Finally, data is accumulated over 20 ps runs at
constant volume and energy (NV E). To reduce noise
in the measured data by improving statistical sampling,
three different simulations are run at each temperature,
each one using the perfect crystal structure as a starting
point, but with different initial atomic velocities.
The enthalpyH(T ) is determined for each temperature

T in K by taking its average over the NV E runs. For
the purpose of comparison with experimental results, the
reduced enthalpy increment

∆Hred(T ) =
H(T )−H(300)

T − 300
(1)

is deduced from these data points. The constant-pressure
heat capacity CP(T ) is determined by differentiating the
enthalpy

CP(T ) =
∂H

∂T
(2)

This is carried out numerically using a first-order cen-
tred finite difference scheme. To limit numerical noise
resulting from fluctuations of the measured enthalpy, a
five-point Savitzky –Golay filter [47] was applied before
taking the derivative. This results in no visible differ-
ence in the enthalpy curves, but improves the evaluation
of the heat capacity. In a similar way, the linear thermal
expansion coefficient

α(T ) =
∂ ln(a)

∂T
(3)

is calculated using the measured lattice parameter a(T ),
with the same protocol employed to calculate CP(T ).
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Equation (3) is used instead of the equivalent and more
common expression α = 1/a ∂a/∂T for the increased
numerical precision of its finite differences discrete form.

The atoms’ trajectories calculated during the simula-
tions are used to determine vibration spectra g(ε) by
taking the Fourier transform of the velocity autocorre-
lation function (VAF). Partial spectra corresponding to
the separate contributions from oxygen and uranium are
calculated using partial VAFs.

Defects are detected and counted using an implicit
Voronoi scheme, in which each atom is mapped to the
closest lattice site in the perfect structure. If two atoms
are mapped to the same site, then the atom further from
the site is an interstitial. Conversely, each lattice site that
is not associated with an atom is a vacancy. The number
of defects for each temperature is obtained by averaging
the number of defects in snapshots taken every ps during
the 20 ps NV E simulations.

3. Lattice dynamics

LD calculations were carried out to characterize vibra-
tion modes and investigate their changes associated with
the superionic transition. Instead of using the standard
quasi-harmonic approximation to account for thermal ex-
pansion, the lattice parameter for each temperature was
taken from the MD simulation results. Thus, the calcu-
lations partially but implicitly account for anharmonic
effects. In particular, the dilation caused by the presence
of oxygen defects is reproduced, which would be impos-
sible using simple methods based on the quasi-harmonic
approximation.

Because of their high computational cost, which results
from the need to diagonalize the dynamical matrix of
each structure, LD calculations have been restricted to
the conventional unit cell for the perfect crystal. The
k-points used to calculate the densities of states were
generated using a 60×60×60 Monkhorst-Pack grid [48].

Each mode’s contribution from both elements have
been determined by projecting the polarisation vectors
onto the relevant ionic degrees of freedom. Thus, partial
spectra directly comparable to those obtained from MD
can be calculated. In the same way, the relative con-
tribution of both elements to each vibration mode can
be quantified, offering additional information about the
nature of any frozen mode.

The thermodynamic properties H and CP were cal-
culated using finite difference methods, as was the case
for MD simulations. Phonon-related properties Svib and
CV can also be calculated by integrating the vibration
spectra.

III. RESULTS

A. Enthalpy and heat capacity

The enthalpy increment and constant-volume heat ca-
pacity show a well-behaved, low-temperature regime, up
to 2 000 K. This is well known experimentally, and over
that range the enthalpy can be described using a polyno-
mial function [2]. Another contribution to the enthalpy
is also well documented, usually referred to as anoma-
lous heat [35], the onset of which is reported around
2 000 K [33]. This is consistent with MD simulations car-
ried out using the CRG [42] and other potentials [12, 13].
Although this has been widely reported, it is presented
here because it is one of the bases for our description of
the superionic transition.
The enthalpy increment in Figure 1 shows a hump

around 2 500 K similar to the lattice parameter. In the
lower-temperature range 300 K– 2 000 K, the enthalpy is
well reproduced by the polynomial

H̃1(T ) = −13.5695 + 2.80400 · 10−4 · T
− 2.22534 · 10−8 · T 2 + 1.59364 · 10−11 · T 3

− 2.392815 · 10−15 · T 4 + 1.32687 · T−1 ,

(4)

which is a form similar to other fits available for UO2 [2].
The coefficients differ from previous calculations using
the CRG potential [20], where a larger temperature range
than that of equation (4) was considered to fit the en-
thalpy increment. This polynomial behavior changes at
2 000 K, where the enthalpy starts increasing noticeably
over that baseline. The excess enthalpy can be repre-
sented as an Arrhenius contribution, expressing the effect
of the increase of the number of defects with temperature.
Therefore, the enthalpy in the 2 000 K– 2 500 K range is
well described by the form

H̃2(T ) = H̃1(T ) +A · e−βEf/2 , (5)

where Ef corresponds to the formation energy of the de-
fects responsible for the anomalous heat and β = 1/kBT .
This additional contribution is of the same form pro-
posed by Szwarc to model the effect of oxygen Frenkel
pairs [35]. The fit for this exponential term shown in
Figures 1 and 2 was obtained from defects populations,
as will be described later. After a transition between
2 500 K and 2 800 K, the enthalpy follows another poly-
nomial expression

H̃3(T ) = −13.2613 + 6.65045 · 10−5 · T
5.20425 · 10−8 · T 2

(6)

until a sharp step at 3 425 K.
The heat capacity obtained by finite differences of the

MD enthalpies, shown in Figure 2, agrees with the ana-
lytical derivatives of the enthalpy fits over their respec-
tive validity range. The numerical noise present in the
enthalpy is magnified in the heat capacity. Because of
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FIG. 1: Reduced enthalpy increment of UO2: (a) whole
temperature range (b) higher temperatures. The dots
show results from MD simulations, the dashed line

shows a fit to the low-temperature regime, the dotted
line shows the sum of the low-temperature fit and the
isolated defects contribution. The solid line is the

reference fit [2].

this, the exact position of the Λ peak is difficult to lo-
cate accurately. However, it is still between 2 500 K and
2 600 K.

Thus, on the basis of enthalpy and heat capacity data,
4 temperature ranges can be distinguished:

1. below 2 000 K: the material is in a perfect crystal
state, with negligible defect populations and the
enthalpy following H̃1 (equation 4);

2. 2 000 K– 2 500 K: the material is still crystalline,
but with a significant oxygen Frenkel pairs (OFP)

concentration and its the enthalpy is H̃2 (equation
5);

3. 2 500-3 450 K: UO2 is in its superionic phase; the
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FIG. 2: Constant-pressure heat capacity of UO2 derived
numerically from the enthalpy increment shown in

figure 1. The solid blue line is the reference fit [2], and
the solid orange line indicates the value expected from

the Dulong –Petit law.

enthalpy converges to, and then follows, H̃3 (equa-
tion 6);

4. above 3 450 K: UO2 is in its liquid phase, which is
outside the scope of the present work.

B. Thermal expansion

The temperature-dependent lattice parameter ob-
tained from MD simulations is shown in figure 3a. A
third-order polynomial

ã(T ) =5.45259 + 5.5753 · 10−5 · T
− 3.50256 · 10−10 · T 2 + 3.13032 · 10−12 · T 3

(7)

was fitted to reproduce the lattice parameter in the lower-
temperature range between 300 K and 2 000 K, the same
range identified for H̃1 in equation 4. This fit is in re-
markable agreement with the recommendation from Mar-
tin [49], which is a fit based on several experimental stud-
ies. The expression for the linear thermal expansion coef-
ficient in the low-temperature range can be derived from
ã(t):

α̃(T ) =
1

ã(T )

(
5.5753 · 10−5 − 7.00512 · 10−10 · T

+1.021875 · 10−11 · T 2
) (8)

This again shows good agreement with the reference
fit [49].
As expected from previous studies using the same po-

tential [50], a deviation from the lower-temperature be-
havior is observed from around 2 000 K, with a hump
on the lattice parameter curve in the 2 000 K– 3 000 K
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range. This is clearer in the linear thermal expansion co-
efficient shown in Figure 3c, where it appears as a sharp
Λ peak with a maximum at 2 525± 25 K. This is an-
other measure for the superionic transition temperature
TS predicted by the CRG potential.

It should be noted that the thermal expansion coeffi-
cient, and to a lesser extent the lattice parameter, exhibit
noticeable noise above 2 500 K. Nevertheless, the noise is
in general lower than in the heat capacity and enthalpy
data.

A sharp step is visible in the lattice parameter between
3 450 K and 3 475 K, which corresponds to melting.
This is higher than the melting point measured using
the moving interface method with the same potential,
3 050± 50 K [20], which is closer to the experimental
values clustered around 3 030± 20 K [2]. It is well known
that the type of simulation carried out here, starting
from a perfect crystal, significantly overestimates melt-
ing points. This is because the limited length- and
time-scales prevent nucleation of the liquid phase [51].

C. Elastic constants

Significant structural changes tend to be associated
with changes in the elastic constants. This is true, for
example, for displacive phase transitions. The elastic
constants are also linked to the stability of the structure
via the Born criteria [52]: to be stable, a structure must
exhibit C44 > 0, (C11 −C12) > 0, and (C11 +2 C12) > 0.
Because the superionic transition is characterized by ex-
tensive disorder on the oxygen sublattice, and therefore a
form of instability, the elastic constants can provide some
information about its behavior. The elastic constants rel-
evant to the stability criteria, C44 and (C11 − C12), cal-
culated using LD with the lattice parameters measured
from MD equilibration, are shown in Figure 4.

In the low-temperature regime, below 2 000 K, C44

decreases slightly, in an almost linear fashion. Its be-
havior changes at 2 000 K, where it starts to decrease
more abruptly. Our calculations show an inflection point
around 2 500 K, followed by another quasi-linear decrease
regime. Finally, C44 drops to zero at 3 450 K, coincident
with the appearance of the liquid phase. These features
are broadly similar to those of the experimental data [40],
which agree with our calculations on the magnitude of
C44. The main difference is that no inflection point is
seen in the experimental curve. However, this could be
explained by the limited accuracy of the measurements,
particularly at high temperatures, and the proximity of
the experimental melting point at 3 100 K.

The evolution of the second stability indicator C11 −
C12 is similar to that of C44, both in the LD curves and
the experimental data. However, there is some disagree-
ment on the magnitude of C11 − C12 at low tempera-
tures, which worsens as temperature increases and the
experimental values decrease more rapidly than the sim-

ulations.
In any case, no discontinuity has been seen in the elas-

tic constants, and the slope change at TS in the LD calcu-
lations is minor and there is no drastic change in elastic
properties. The limitation of these calculations is that
although the expansion caused by the defects was taken
into account, the contribution of the defects themselves
was not.

D. Static structure

The static structure was probed by calculating radial
distribution functions (RDF) for the crystalline, superi-
onic, and liquid phases, which are shown in Figure 5.
As expected, the RDF at 2 000 K shows a well-defined
cristalline structure, with clear and sharp peaks with
density gaps between them. In the liquid phase, here at
3 500 K, both U–U and O–O RDFs have a first neigh-
bor peak slightly shifted to larger distances compared to
the crystal, due to the thermal expansion. The peaks in
the liquid are also broad and short, but otherwise still
visible. However, there are no clear minima after these
peaks and the RDF tend to their long-range limit with
small fluctuations.
The RDFs for the superionic phase, in the 2 600 K–

3 400 K range, borrow features from both crystalline and
liquid phases. The U–U curve still shows peaks at the
neighbor distances, as in the crystal, but the minima be-
tween these peaks is greater than zero. The first peak is
higher and better defined than that of the liquid. This
indicates the presence of a lattice with significant local
distortion and large thermal vibrations. The O–O curve,
on the other hand, is very similar to that of the liquid
phase. The first nearest neighbor peaks in both phases
have the same height, and neither are followed by a visi-
ble minimum. Therefore, from a structural point of view,
the superionic phase looks like a crystalline uranium lat-
tice whose holes are filled with oxygen in a liquid or fluid
state. This picture is very similar to the part-crystalline,
part-liquid state described in some materials with specific
bond hierarchies [32], and consistent with the liquid-state
interpretation of the superionic transition [24, 53]. How-
ever, previous works showed that the oxygen sublattice
retained some structure in the superionic phase, and even
had coexisting local environments with different struc-
tures [18].

E. Defects population

It has been shown that defects, and more specifically
OFPs, play an important role in the deviation from the
low-temperature described previously [11]. It is therefore
necessary to consider defects populations to have a com-
plete understanding of the changes in thermodynamical
properties. The characteristics of point defects, such as
formation energies, are generally well known in the low
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FIG. 3: Thermal expansion of UO2 as a function of temperature: (a) lattice parameter; (b) and linear thermal
expansion coefficient. The points indicate values obtained from MD simulations, the dashed lines show fits to the

low-temperature regime, and the solid lines show Martin’s fit [49].
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temperature regime, with results from experiments [54],
DFT simulations [55] as well as empirical potentials [56].
Uranium defects tend to be very unfavorable compared
to oxygen defects, and OFPs are consistently the lowest
energy defects, followed by Schottky defects [55, 57].

The defects observed in our simulations were mostly
oxygen defects. Only a very small concentration of ura-
nium defects were detected close to 3 450 K. The fraction
of OFPs measured in our simulation boxes are presented
in Figure 6. No defects were detected in the low temper-
ature regime below 2 000 K. Whilst this is to some extent
a result of the limited size of the simulation box — an
equilibrium population of defects would be expected to be
present in a macroscopic sample, but in a very small con-
centration. Defects can still be created by other means,
e.g. radiation damage or non-stoichiometry. An expo-
nential growth becomes noticeable above 2 000 K, until
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3 000 K. The purple curves are O –O distribution
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about 2 600 K. In this regime, the defect concentration
followed the law Ñf = N0 ·e−βEf , where Ef is an effective
formation energy for oxygen Frenkel pairs. By fitting to
the MD number of defects, the value Ef = 7.3 eV was
found. This value was used in the fit of the enthalpy
increment H̃2(T) in Figure 1b and in the exponential
regime of the heat capacity in Figure 2. Simulations
have shown that the precise formation energy of an OFP
is highly dependent on the defect’s configuration, partic-
ularly the distance between the vacancy and the inter-
stitial [55, 56, 58]. The simulation boxes used here are
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not large enough to consider the defects truly isolated,
which could in principle cause the effective formation en-
ergy to deviate slightly from its value at the dilute limit.
Moreover, the way defects are detected in our simulation
can under-estimate their population, which makes this
value difficult to compare directly to references, which
are generally in the 3.5 eV – 4.5 eV range. In particular,
the best experimental data available show OFP energies
of 4.6 ± 0.5 eV [40] and 3.71 eV [11]. Even though the
CRG potential is known to over-estimate the OFP en-
ergy, its value from static calculations is 5.73 eV [20],
lower than the value of Ef we measured from MD data.
For these reasons, the energy obtained from fitting to the
defects population is an effective value, which does not
correspond to a specific configuration and deviates from
values obtained from static calculations usually reported.
Nevertheless, deviation from exponential growth happens
close to the superionic transition temperature TS, which
suggests that there is indeed a change in the mechanism
for OFP creation at the superionic transition.

The exponential increase in defect concentrations stops
around 2 600 K, after which it follows a linear law until
the appearance of the liquid phase. Thus, the defect
concentration over the whole temperature range can be
represented using the fit

Ñf(T ) =

{
A · e−βEf/2, T ≤ 2 600 K
B · T + C, 2 600 K < T ≤ 3 425 K

. (9)

In the temperature range over which the concentration
of OFPs increases exponentially, their contribution to the

enthalpy of the material can be estimated by considering
that each defect contributes its formation energy. The
resulting function is ∆H̃f = Ef N0 e−βEf/2. The compar-
ison with the enthalpy increment in Figure 1 and with
the heat capacity in Figure 2 shows that this exponential
factor is responsible for the exponential increase of the
enthalpy increment between 2 000 and 2 500 K. However,
defect population alone cannot explain the enthalpy at
higher temperatures, which does not have a linear be-
havior.

An intuitive understanding of the end of the exponen-
tial regime is that the assumption about large separa-
tion between defects and the absence of interactions is no
longer true. As the concentration of defects increase, they
can either recombine and disappear, or arrange them-
selves into clusters. Therefore, a natural candidate to
explain the transition and the linear regime is defects
clustering or structure change. This is consistent with
the understanding of the superionic transition as driven
by the collapse of the anionic sub-structure following its
saturation with point defects. Assuming a purely ran-
dom distribution of oxygens on their cubic sub-lattices,
under the constraint that no site can be occupied by more
than two particles, the saturation OFP concentration is
about 0.32. These assumptions are a simplification, but
seem to be justified in light of our measurements and ge-
ometric considerations. And indeed, experimental OFP
concentrations such as those from Pavlov et al. [11] reach
half this saturation threshold at TS, and come close to
it near the melting point. In comparison, from calcu-
lations assuming that the superionic transition is caused
by instability resulting from electrostatic interactions be-
tween defects we would expect a concentration of 0.26 at
TS [7]. However, this is clearly not the case in our simula-
tions, where the fraction of defects is 0.02 at TS, despite
the superionic transition clearly happening. The current
simulations are therefore consistent with oxygen defects
saturation not being the mechanism behind the transi-
tion.

Some empirical laws have been proposed to correlate
the OFP formation energy and the superionic transition,
such as [7],

TS ∼ Ef/20 kB . (10)

This seems to work in UO2, if one takes the experimental
OFP formation energy of 4.5 eV, which would quite ac-
curately predict TS at 2 610 K. However, this completely
fails in the case of the CRG potential, which should have
TS = 4240 K. It also does not work with Pavlov’s exper-
imental OFP formation energy, which would correspond
to TS = 2150 K, or with the Morelon potential [59] ,
which has an accurate Ef = 4.45 eV and yet has TS

around 2 850 K [13] instead of 2 480 K as equation (10)
would predict. Thus, the correlation between OFP for-
mation energy and the superionic transition temperature,
based on the assumption of defect saturation, does not
generally hold.
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F. Lattice vibrations

Vibration modes have been investigated using two dif-
ferent techniques: by calculating the phonon density of
states from the velocity autocorrelation function accumu-
lated over the duration of MD simulations on one hand
(MD approach), and by calculating the eigenvalues and
eigenvectors for a conventional cell (LD approach). To
keep both approaches consistent, the unit cells for the LD
calculations were scaled to reproduce the lattice parame-
ter measured from room-pressure MD relaxations. Both
types of calculations are complementary: MD spectra im-
plicitly account for anharmonic effects such as phonon –
phonon interactions, defects, and defect clusters, whilst
LD offer much more information by making the whole po-
larisation vector available for each vibration mode. By
using the MD lattice parameter, the polarisation vectors
from LD calculations implicitly account for thermal ex-
pansion, which is a manifestation of anharmonicity. How-
ever, other anharmonic effects are missing.

Spectra obtained at 300 K using both approaches,
shown in Figure 7a, agree very well with each other,
as well as with spectra from other studies obtained
from DFT-based LD calculations [60–63]. The disper-
sion curve in Figure 8a provides more detailed infor-
mation. It shows the presence of three clearly distinct
bands: band I with the acoustic modes in which both ura-
nium and oxygen take part, band II with optical modes,
with almost no contribution from the oxygen ions, and
finally a high-energy band III composed of optical oxygen
modes. This band structure is clearly visible on the dis-
persion curves at 300 K in Figure 8a, in which the color
code indicates the relative contribution of oxygens. The
low-temperature spectra show no visible overlap between
bands II and III, although there is no band gap as some-
times reported in the literature [61]. This type of phonon
band structure has been observed in compounds related
from a structural point of view, such as CeO2 [30].

As temperature increases, a general softening of the
modes in band III is observed, with the high-energy part
of the oxygen spectrum being rigidly shifted towards
lower energies. This is visible on both LD and MD spec-
tra at 2 200 K shown in Figure 7b. Though, as expected,
the agreement between LD and MD spectra worsens as
temperature increases. Notably, the high-energy tail of
band III is much longer, and the peaks are smaller and
wider in the MD spectra. This longer tail at high ener-
gies is caused by high-frequency vibrations of the atoms
neighboring interstitials and vacancies, and is therefore a
consequence of the presence of defects, which are absent
from the LD calculations. The peaks in bands I and II
become sharper and taller as the temperature increases
in LD calculations, whilst they shrink and spread in MD
simulations. Band III seems to lose its structure, and no
peak is visible by 2 200 K. The discrepancy is probably
caused by phonon scattering by defects, which increases
the line widths of individual modes. It cannot be ex-
plained by a structural change as it is already visible in
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FIG. 7: Vibrational density of states in UO2 at different
temperatures: (a) 300 K; (b) 2 200 K; (c) 3 000 K

(superionic phase); (d) 3 500 K (liquid phase). Thin
grey lines show densities of states calculated from MD
simulations using velocity autocorrelations; thick black
lines show densities of states from LD calculations.
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the 2 000 K– 2 500 K range, where the only structural dif-
ference with the perfect crystal is isolated point defects.

The MD density of states does not show any qualitative
change at the superionic transition, between 2 200 and
3 000 K. Moreover, even compared to the liquid phase
at 3 500 K on Figure 7d, the oxygen density of states is
very similar to that of the superionic phase at 3 000 K,
as well as that of the high-temperature defective crystal
at 2 200 K.

G. Modes softening

Some oxygen modes on the lower edge of band III un-
dergo significantly more softening than the rest of the
band, as can be seen when comparing Figures 8a and 8b.
These modes become frozen, i.e. their frequency tends
to zero, at 2 450± 50 K. Beyond that temperature, their
frequencies as calculated in the LD framework becomes
imaginary. At these temperatures, the 8c tetrahedral
sites of the Fm3̄m structure, which are the oxygen sites
in a perfect UO2 crystal, become mechanically unsta-
ble. This results in disorder in the oxygen sublattice as
the force keeping the oxygens on their lattice sites van-
ish. The imaginary modes are low-energy optical (LEO)
modes, with a wavevector corresponding to the X point of
the Brillouin zone of the primitive unit cell, similarly as
what was reported in CeO2 [30] and Li2O [64]. The fact
that the contribution to these modes from uranium ions
is zero means that the instability resulting from these
imaginary modes is confined to the oxygen sublattice.
Thus, the uranium sublattice, and therefore the overall
material, retains its structural integrity even as the oxy-
gen sublattice breaks down.

The eigenvectors corresponding to these modes calcu-
lated with lattice dynamics, represented in Figure 8d,
offer a complete description of the motion of the atoms
involved. We can verify that this mode does not move
any uranium ion. Moreover, it shows that the associated
deformation is a specific distortion of the oxygen cube in
the cell. All the particles involved move predominantly
along a [100] axis in the conventional Fm3̄m cubic cell.
They also move in pairs, with both atoms on the same
[100] edge moving towards the same direction, and adja-
cent, parallel edges moving in oposite directions.

The link between imaginary vibration modes and the
onset of superionic transitions has been observed in ma-
terials with the fluorite structure such as CeO2 [30] or
anti-fluorite structure such as Li2O [64].
Increasing the lattice parameter further, to reproduce

higher temperatures, there comes a point where the con-
tribution from uraniums to the imaginary modes becomes
significant (see Figure 8c). This happens in an acoustic
mode close to the Γ point along the [ζ ζ 0] line. At
this point, both sublattices become unstable and col-
lapse. This is the mechanical melting point TM of the
material [52]. The melting point measured experimen-
tally and using the moving interface method with MD
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FIG. 8: Phonon dispersion curves in UO2 at different
temperatures from LD simulations: (a) 300 K; (b)

2 500 K, showing the imaginary LEO oxygen mode; (c)
3 450 K, showing the mechanical melting of the

material. Subfigure (d) shows a representation of the
deplacement associated with one of the LEO imaginary

modes visible in the 2 500 K dispersion curve. An
animated version of this subfigure is available in the

supplementary information.
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simulations, and usually reported in the literature, is the
thermodynamic melting point Tm. The difference be-
tween both melting points is that beyond Tm, the liquid
phase is more stable from a thermodynamic point of view
(i.e. it has a lower Gibbs free energy than the superionic
and crystalline phases). But there is still an energy bar-
rier to overcome to melt the material. This means that
melting is thermally activated and usually happens at
specific locations where a nucleation and growth process
starts. For temperatures between TM and Tm, the superi-
onic phase is metastable. Given a nucleus, like in moving
interface simulations, the liquid phase grows until it con-
sumes the superionic phase. For temperatures greater
than TM, the superionic phase is unstable and small su-
percells or the lack of nucleus cannot prevent its melting,
which is instantaneous over the whole simultaion box.

H. Lindemann parameter

The Lindemann parameter is a quantification of the
disorder in thermal fluctuations of the atomic positions.
It relies on the difference uα between the position of each
atom α and its perfect crystal site. It can be defined for
a subset A of the atoms in the structure of interest, as
the root mean square of the norm of the displacement
uα, averaged over the atoms in A

lA =
1

dA−A

√√√√ 1

NA

NA∑
α∈A

||uα||2 (11)

where dA−A is distance between nearest neighbors in the
A sublattice. The Lindemann criterion posits that a ma-
terials reaches its melting point if this parameter reaches
a critical value around 0.1 [65]. In practice, this value is
somewhat material-dependent, but the criterion is useful
to help investigate the onset of melting transitions. In
the case of UO2, both sublattices need to be treated sep-
arately, because they are loosely coupled and are domi-
nated by different vibration modes, and thus are expected
to be displaced by different magnitudes. The displace-
ments uα are calculated from the same Voronoi mapping
used to quantify point defects. This is a simple, robust,
and computationally inexpensive method. Its main lim-
itation is that the reference lattice sites correspond to
those of a perfect crystal. Thus, values for very highly-
disordered or liquid phases cannot be interpreted quan-
titatively. This leaves, however, qualitative information
that can be discussed to help understanding the changes
that occur at the superionic transition.

The Lindemann parameters calculated in this way are
shown in Figure 9. The uranium sublattice exhibits a
simple and expected behavior, with lU increasing mono-
tonically until it jumps just below 3 475 K, which is the
mechanical melting temperature TM. At this temper-
ature, lU is 0.12, which is the order of magnitude we
would expect from the simple Lindemann melting crite-
rion. This is not the case for the the oxygen sublattice.
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FIG. 9: Lindemann parameter for oxygens and
uraniums in UO2, over the temperature range

considered in this study. The dashed line indicates the
0.1 value corresponding to the standard Lindemann

melting criterion.

Overall, lO is always greater than lU calculated at the
same temperature. Both datasets show similar behaviors
for low temperatures. However, the oxygen sublattice
shows signs of additional increase around 2 000 K. This
can be explained by the disorder induced by the point
defects that start appearing at these temperatures and
the associated lattice distortions. This increase tapers
off between 2 500 K and 2 600 K, after which the param-
eter once again grows monotonically.

These observations underline the smooth transition
from the low-temperature perfect crystal and the high-
temperature superionic phase between 2 000 K and
3 000 K. Over this transition, the parameter jumps be-
yond the 0.1 value that could be considering as an indi-
cation of melting of the structure. There are, however,
two main differences compared with a melting transition.
The first is that this transition is smooth and the parame-
ter varies continuously. This is in stark contrast with the
true melting transition observed for the uranium sublat-
tice at 3 450 K, which does indeed show a step. The
second observation is that even in the superionic tem-
perature range, the oxygen Lindemann parameter is still
far from its value in a true liquid, which it reaches at
3 500 K, at the same time as lU.

I. Oxygen diffusion

Oxygen diffusion coefficients were calculated from
mean squared displacements extracted from the MD
simulations. The diffusion behavior in UO2 is very
well known [12], including predictions using the CRG
potential [50]. Diffusion in the perfect structure below
2 000 K is low (smaller than 10−9 cm2·ps−1 in our
simulations), owing to the low concentration of oxygen
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FIG. 10: Oxygen diffusion coefficient as a function of
temperature in UO2. The dotted lines show exponential

fits corresponding to different temperature ranges.

defects. It increases in the 2 000 K– 2 500 K range,
with the exponential increase in concentration of OFPs.
The activation enthalpy for diffusion in this range is
4.9 eV. This is an over-estimation compared to values
from the literature, which are closer to 2.3 eV [12], but
is consistent with other calculations using the CRG
potential [42]. Beyond the superionic transition, another
Arrhenius behavior is observed, but with a different
pre-exponential factor and an activation enthalpy of
1.38 eV. The melting point is notable by the rate of
change of the diffusion coefficient shown in Figure 10.
However, whilst this is associated with a jump in the
pre-exponential factor, the change in activation enthalpy
is very small. Its value in the liquid phase is 0.98 eV,
very close to the reference value of 0.95 eV [12]. The
small difference between the activation enthalpies in the
superionic and liquid phases is indicative that diffusion
mechanisms in both phases are likely similar.

The van Hove correlation function [66] provides infor-
mation on the diffusion mechanisms, beyond the aver-
age given by the diffusion coefficients. We calculated the
self-contribution GS(r, t), which indicates the probability
density that a particle has traveled a distance r over a
time t during the simulation, and is shown in Figure 11
for t = 20 ps and for different temperatures. Separate
functions were calculated for oxygen and uranium ions,
GO

S and GO
S respectively, to describe their different be-

haviors.

In a perfect crystal, GS(r, t) shows a peak close to the
origin on the distance axis, which goes to zero for dis-
tances shorter than the first neighbor distance r1NN. This
means that, although particles move because of ther-
mal fluctuations, thus broadening the peak, the prob-
ability of one of them leaving its site is effectively zero:
GS(r > r1NN, t) = 0. This is what we observed for UO2

in our simulation, and is shown for oxygens at 2 000 K
(Figure 11a), and for uraniums at 3 000 K (Figure 11b).
The opposite behavior is that of a liquid, in which case
the small-distances peak disappears completely over very
short time scales, leaving a broad hump that widens and

shifts to larger distances as time increases. This was ob-
served as expected above the mechanical melting point,
for example for uranium ions at 3 500 K (Figure 11b).
The superionic phase shows a combination of both

archetypical behaviors. On the uranium sublattice, no
significant diffusion occurs before the melting point, and
only a small number of cations are displaced, resulting
in a very small amount of numerical noise in GU

S (r, t)
around 3 400 K. The melting transition is unmistakable
and occurs between 3 400 and 3 500 K, with very small
changes before that. On the anion sublattice, however,
the picture is drastically different. The characteristics of
a perfect crystal with very low diffusion is retained until
about 2 200 K. Then, a secondary peak becomes notice-
able at 2 300 K, at a distance of ∼2.9 Å, which is a/2, or
the first neighbor distance on the cubic anion sublattice.
The minimum between these two peaks, indicating the
spatial extent of the oxygen sites and the inner radius of
the first neighbor shell, is close to a/3. The initial peak de-
creases significantly in magnitude as the secondary peak
raises with increasing temperature. A very small tertiary
peak is visible at 4 Å and 2 500 K, which corresponds to
the second nearest neighbor distance. However, these
three peaks disappear as temperature increases, leaving
only the broad signature of a liquid phase at 3 000 K.
This indicates that, although the behavior of the oxygen
ions seem very similar to that of a liquid at 3 000 K (and
beyond, to the liquid phase), crystal-like diffusion mech-
anisms remain visible at 2 500 K, which is the peak of the
superionic transition. Thus, up until around the superi-
onic transition temperature, diffusion can be explained
by a hopping mechanism between adjacent oxygen sites
at the time-scale of 20 ps. The uranium sublattice, which
remains largely intact right until the melting point, is
expected to constrain the oxygen diffusion by preventing
anions from coming too close to the cation sites, which
could be a cause for crystal-like features in the van Hove
correlation functions. However, despite this, GO

S (r, 20 ps)
is indistinguishable from that of a liquid at 3 000 K.

J. Dynamical structure

The van Hove functions discussed previously provide
details on the diffusion of both uranium and oxygen ions.
However, it is difficult to extract from them information
about kinetics and how the structure changes over time.
To do this, we defined two population of oxygen ions:
static and mobile oxygens, or SO and MO respectively.
The former are oxygens that did not move beyond their
initial lattice site, whereas the latter have moved into
the first neighbor shell of their initial site. To estimate
both populations, we use a distance criterion, with mobile
atoms having a displacement greater than a(T )/3. This
is somewhat arbitrary, as the initial peak first neighbor
peaks overlap, as can be seen in Figure 11a. However,
slight changes in the displacement radius do not change
the trend of the results. Their respective populations
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FIG. 11: Van Hove self-correlation functions in UO2

after 20 ps of simulation time showing the effect of
temperature: (a) oxygen during the superionic

transition; (b) uranium below and at the melting point.
The curves have been shifted vertically to help with
visual comparison. Successive lines correspond to

temperature increments of 100 K.

change with time, as none of the ions are mobile initially.
The uranium ions, with a very low mobility below the
melting point are not considered in this analysis.

For each time-scale considered, the MO fraction as a
function of temperature, shown in Figure 12b, presents a
sigmoid shape, starting from zero at 2 000 K, and tend-
ing asymptotically towards 1, close to the melting point.
The inflection point is close to TS, separating the two
regimes. Below TS, the MO fraction can be represented
by an exponential function proportional to e−βEf/2, where
Ef is the formation energy for oxygen Frenkel pairs cal-
culated previously. This is consistent with the premise
that in the 2 000 K– 2 500 K range, mobility is driven by
mechanisms involving individual Frenkel pairs. This lin-
ear relationship between mobility and number of defects

breaks down at TS.
At a given temperature, the fraction of MO is expected

to increase with time, until it reaches a threshold asymp-
totically. In the case of UO2, as shown in Figure 12a, this
threshold would be 1 if all the anions are mobile over the
long term, or smaller if some of the oxygens remain im-
mobile. The rate at which the MO fraction approaches
the threshold increases with temperature and the associ-
ated mobility increases. A characteristic time τ(T ) can
be defined as the time at which half the the oxygen ions
have been displaced, i. e.

[MO]

[O]
=

∫ a/3

0

GO
S (r, τ) dr =

∫ ∞

a/3

GO
S (r, τ) dr =

1

2
(12)

This is a quantification of the time-scale over which
the oxygen substructure retains the memory of its initial
state. After this time, more than half the oxygen ions
have swapped positions and are now occupying lattice
sites different from their initial ones, even though the
overall structure of the material remains similar. This
characteristic time decreases with increasing tempera-
ture, following the expression

τ(T ) = a/(T−T0) (13)

until the crystal melts at TM, at which point it has a small
step. We could not measure τ below 2 500 K, because of
the time scale of our simulations. Fitting equation (13),
we obtain a critical temperature T0 =2550 K, at which
τ tends to infinity.
The fraction of MO at a given time can also be con-

sidered as a function of temperature, as in Figure 12b.
As would be expected, it increases with temperature,
as overall oxygen mobility increases. In the lower end
of the temperature range, between 2 000 and 2 500 K,
the MO concentration increases exponentially, propor-
tional to the OFP concentration in eβEf/2 discussed previ-
ously. This is consistent with a dominant diffusion mech-
anism involving individual point defects. At a given time
each defect can swap position with one of its neighbors,
thereby resulting in a number of displaced ions propor-
tional to the number of defects. There is an inflection
point at the superionic transition, between 2 500 and
2 600 K. In the superionic phase, the rate of growth of
MO concentration decreases as it approaches 1. This
is another indication of the change of diffusion mech-
anism at the superionic transition, consistent with the
well-documented change in the activation energy for dif-
fusion at TS [12].
The spatial distribution of MOs can be investigated

by counting the number of times the occupying ion is re-
placed on each lattice site. Thus, we can see “hot” sites
(which occupying ion changes frequently) and “cold”
sites (which are occupied by the same ion for longer peri-
ods of time). This is similar to techniques that are com-
monly used in studies on glass-forming and supercooled
liquids [67]. This analysis provides a visual representa-
tion of the heterogeneity of diffusion in the material, as
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FIG. 12: Dynamics of oxygen ions in UO2 at high
temperatures: (a) fraction of mobile oxygens as a
function of simulation time, for temperatures every

100 K; (b) fraction of mobile oxygens as a function of
temperature for different observation time-scales; (c)

characteristic relaxation time for the oxygen sublattice.

shown in Figure 13. In this picture, a slice from a super-
cell taken during a simulation at 3 000 K is divided into
cubes centred on the oxygen sites of the perfect Fm3̄m
structure. The gray scale shows the number of different
atoms having occupied each site over the course of 5 ps.
This time-scale has been chosen because it corresponds
to the value of τ for that temperature. The distribution
of hot and cold sites is clearly heterogeneous, forming
clusters or pockets. Superimposed on these sites are the
5% most mobile atoms, showing their distribution rela-

FIG. 13: Slice of a simulation box at 3 000 K showing
the displacement of oxygen ions over 5 ps. The color of
each square indicates how many times its occupying

oxygen has changed. The balls and sticks show the 5%
most mobile oxygens in the slice and their clusters.

tive to the hot channels. The heterogenous character of
the distribution of mobile anions in superionic UO2 has
been discussed in other studies, in which the presence
of “strings” of highly mobile ions was observed [15, 16].
However, this picture only accounts for the 5% most mo-
bile oxygens. Our simulations show that the dynamical
behavior of the oxygens in superionic UO2 is close to that
of a correlated supercooled fluid over time scales of the
order of 5 to 10 ps.

IV. DISCUSSION

Using a combination of MD simulations and LD calcu-
lations, we can explain several aspects of the superionic
transition in UO2, as well as some characteristics of the
superionic phase.
The properties of UO2 in the 2 000 K– 2 500 K temper-

ature range can be explained by the population of oxygen
Frenkel pairs we would expect considering their energy of
formation in the 3.0 eV – 4.6 eV range [57]. Indeed, these
temperatures are characterized by an exponential growth
of OFP population, with a consistent exponential growth
of the enthalpy and heat capacity. These defects also in-
crease the thermal expansion of the lattice, and are an
important cause of the observed anharmonic effects [35].
The behavior in this temperature range is well-known
experimentally, and our results are completely consistent
with the available references, with the caveat that the
high formation energy of OFPs using the CRG potentials
results in under-estimated defects populations compared
to experiments. In addition, the OFP-induced thermal
expansion causes significant softening of the LEO oxygen
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normal modes, which are critical to explain the superi-
onic transition in UO2.

The superionic transition temperature TS, at least in
UO2, coincides with these soft modes becoming imagi-
nary, resulting in a fundamental instability of the oxygen
sublattice. The transition itself appears as a second-order
phase transition, with an inflection point in both en-
thalpy and lattice parameter at 2 600 K, associated with
a singular point in the heat capacity and thermal expan-
sion coefficient. This resembles displacive phase transi-
tions, also resulting from unstable vibration modes, such
as those already documented for UO2 [68]. In particular,
the transition to a Pbcn structure presents striking simi-
larities with the superionic transition: both of them hap-
pen at similar deformations from the ground structure at
300 K, and both of them involve similar collective mo-
tion of oxygens, resulting in a disruption of the Fm3̄m
oxygen sublattice. However, whereas the Pbcn transi-
tion is between two crystalline structures, the superionic
transition leads to a state with a combination of different
local environments and that shares somr dynamical fea-
tures with glass-forming liquids. In this sense it is more
similar to a mechanical melting [52, 69], when a crystal
collapses because of its mechanical instability [70, 71],
except that it involves only one sublattice and not the
whole crystal. Contrary to thermodynamical melting,
which requires nuclei of the liquid phase and is favored
by defects or interfaces [72], the superioninic transition
occurs over the whole sample and does not require a nu-
cleation and growth regime of the superionic phase. This
is the reason why schemes such as the moving interface
method have to be devised to make melting point mea-
surements accurate and reproducible [43]. Furthermore,
this also casts doubts on the interpretation of the supe-
rionic transition as resulting from the accumulation of
oxygen defects leading to a collapse of the anion sublat-
tice. Indeed, our simulations show that the transition
does not correlate with a saturation at TS, and the de-
fect population kept growing with temperature in the
superionic phase. Moreover, TS from our simulation is
very close to experimental values, despite the CRG po-
tential significantly over-estimating the formation energy
for OFPs, resulting in a much smaller defects population
than in experiments, even at TS. This indicates that,
whilst defects contribute indirectly to the transition by
enhancing thermal expansion, they are not a direct cause,
and the structure itself, without any defect, is unstable at
the volume UO2 reaches at 2 600 K. In addition, at that
temperature the Lindemann parameter for the oxygen
sublattice is close to 0.1, which is the traditional crite-
rion for melting. Thus, the superionic transition presents
several aspects associated with melting, and yet remains
a second-order transition with the uranium sublattice
responsible for the structural integrity of the material,
which prevents the discontinuity in both enthalpy and
lattice parameters associated with true melting. At the
upper end of the temperature range considered here, we
observed mechanical melting of the uranium sublattice

at 3 475 K, which is about 400 K above the thermody-
namical melting point Tm predicted for UO2 by the CRG
potential [20].
In the same way as the transition itself has seemingly

contradictory characteristics, the characterisation of the
superionic phase is challenging. In several respects, the
properties of the superionic phase follow those of the
lower-temperature crystalline phase. For example, the
thermal expansion coefficients have similar behavior and
are almost in continuity of each other. The structure
itself is not distorted at the macroscopic level, and is
still cubic with a FCC cation sublattice, with a Fm3̄m
structure. The oxygen ions are still more likely to be
found close to Fm3̄m 8c tetrahedral sites. The elastic
properties do not seem to suffer from a large drop
caused by the instability of the oxygen sublattice. On
the other hand, the oxygen sublattice looks very much
like a liquid by certain aspects, like its pair distributions
and van Hove correlation functions. Moreover, the
dynamic behavior of this sublattice depends on the
time scale at which it is considered. At short times, it
behaves like a solid overall, in which ions tend to stay on
their lattice sites. Then, after a temperature-dependent
characteristic time, the memory of the initial positions
is lost, which is illustrated by a van Hove function
being close to that of a liquid. The distribution of
active diffusion sites also presents some similarities with
glass-forming liquids, with hot channels in which ions
are replaced frequently, surrounded by pockets in which
atoms are much less mobile. Such systems are known for
their complex relaxation modes, which involve clusters
of up to a dozen atoms, and different characteristic times.

Overall, this phase is analogous to part-
crystalline/part-liquid materials such as some per-
ovskites [73], other fluorites [53], and other materials
with marked chemical bond hierarchies [32]. This
understanding of the superionic phase is consistent with
the observation of heterogenous mobility and diffusion
mechanisms invovling string-like ions clusters [15, 16].

V. CONCLUSION

Our study reveals several intricate aspects of the supe-
rionic transition in UO2. The transition is not driven by
defect accumulation but rather by an inherent instability
at elevated temperatures. Despite being categorized as
a second-order transition, it exhibits characteristics rem-
iniscent of melting, such as a high Lindemann param-
eter for the oxygen sublattice. However, the uranium
sublattice maintains structural integrity, preventing dis-
continuities in enthalpy and lattice parameters typically
associated with true melting. Above 3 475 K, the ura-
nium sublattice loses stability and mechanical melting is
observed.
The superionic phase presents a blend of crystalline

and liquid properties. It retains the overall cubic struc-
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ture (Fm3̄m) and elastic properties similar to those at
lower temperatures but exhibits liquid-like behavior in
its oxygen sublattice dynamics, as evidenced by pair dis-
tributions and van Hove correlation functions. The dy-
namic behavior of this sublattice is time-scale dependent,
behaving like a solid on short timescales and exhibiting
fluid-like behavior over longer periods. The observed mo-
bility patterns resemble those in glass-forming liquids,
with highly mobile ions forming channels and pockets.

Overall, the superionic phase in UO2 is analogous to
part-crystalline/part-liquid materials found in some per-
ovskites, fluorites, and other systems with strong bond
hierarchies. This understanding aligns with observations
of heterogeneous mobility and diffusion mechanisms in-
volving string-like ion clusters. However, it may seem at
odds with the observation of hexagonal structural pat-

terns in the superionic phases of compounds with the
fluorite structure [18]. These findings highlight the com-
plexity and unique characteristics of this phase transi-
tion, offering insights into the behavior of UO2 at high
temperatures.

ACKNOWLEDGMENTS

PCMF would like to thank Dr Alain Chartier for his
very helpful ideas and suggestions. The calculations pre-
sented here were run on the Blake cluster at CEA-Saclay.
The unit cell in Figure 8d, as well as the pictures used to
generate the videos in the electronic suplementary infor-
mation were made with Ovito [74].

[1] J. K. Fink, J. Nucl. Mater. 279, 1–18 (2000).
[2] R. J. M. Konings, O. Beneš, A. Kovács, D. Manara,
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