
HAL Id: cea-04924902
https://cea.hal.science/cea-04924902v1

Submitted on 1 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Stellar hot spots due to star–planet magnetic
interactions

Arghyadeep Paul, Antoine Strugarek, Victor Réville

To cite this version:
Arghyadeep Paul, Antoine Strugarek, Victor Réville. Stellar hot spots due to star–planet magnetic
interactions. Astronomy & Astrophysics - A&A, 2025, 694, pp.A55. �10.1051/0004-6361/202452719�.
�cea-04924902�

https://cea.hal.science/cea-04924902v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Astronomy
&Astrophysics

A&A, 694, A55 (2025)
https://doi.org/10.1051/0004-6361/202452719
© The Authors 2025

Stellar hot spots due to star–planet magnetic interactions

Power transmission to the chromosphere

Arghyadeep Paul1,⋆ , Antoine Strugarek1 , and Victor Réville2

1 Université Paris Cité, Université Paris-Saclay, CEA, CNRS, AIM, 91191 Gif-sur-Yvette, France
2 IRAP, Université Toulouse III – Paul Sabatier, CNRS, CNES, Toulouse, France

Received 23 October 2024 / Accepted 26 December 2024

ABSTRACT

Context. Star-planet magnetic interactions (SPMIs) have been proposed as a mechanism for generating stellar hot spots with energy
outputs on the order of 1019−21 watts. This interaction is primarily believed to be mediated by Alfvén waves, which are produced by the
planetary obstacle and propagate towards the star. The stellar atmosphere, as a highly structured region, dictates where and how much
of this incoming energy can actually be deposited as heat.
Aims. The stellar transition region separating the chromosphere from the corona of cool stars gives rise to a significant variation of
the Alfvén speed over a short distance. Therefore, a reflection of the Alfvén waves at the transition region is naturally expected. We
aim to characterize the efficiency of energy transfer due to SPMIs by quantifying a frequency-dependent reflection of the wave energy
at the stellar transition region and its transmission to the stellar chromosphere.
Methods. We employed magnetohydrodynamic (MHD) simulations to model the frequency-dependent propagation of Alfvén waves
through a realistic background stellar wind profile. The transmission efficiency as a function of the wave frequency was quantified.
Further analyses were conducted to characterize the overall energy transfer efficiency of SPMIs in several candidate systems where
chromospheric hot spots have been tentatively detected.
Results. Low-frequency waves experience greater reflection compared to high-frequency waves, resulting in reduced energy transfer
efficiency for lower frequencies. Conversely, the parametric decay instability of Alfvén waves substantially diminishes the energy
transfer efficiency at higher frequencies. As a result, there is a specific frequency range where energy transfer is most efficient. A
significant fraction of the Alfvén wave energy is reflected at the stellar transition region and, in most realistic scenarios, the transmission
efficiency to the chromosphere is found to be at a level of approximately 10%.

Key words. stars: atmospheres – stars: chromospheres – planetary systems

1. Introduction
Exoplanets can generally undergo a complex array of inter-
actions with their host stars (Vidotto 2019; Strugarek 2023).
Interactions between an exoplanet’s outer layers and the stellar
radiation can significantly affect its atmosphere, leading to atmo-
spheric heating and evaporation (García Muñoz 2023). Addi-
tionally, interactions with the ambient stellar wind can reshape
the magnetic field configuration in the vicinity of the planet to
form either intrinsic magnetospheres (for magnetized planets) or
imposed magnetospheres (for non-magnetized planets), analo-
gous to the planets within our own solar system(Strugarek 2018).
Tidal interactions between the planet and its host star may drive
orbital migration for the planet (Wu et al. 2024) and, in some
cases, even result in a noticeable increase in the star’s angu-
lar momentum (Penev et al. 2016). Another intriguing class of
interactions, particularly prevalent in close-in planets, is known
as star–planet magnetic interactions (SPMIs). In these types of
interactions, the coupling between the stellar and exoplanetary
magnetic fields forms a magnetic tether, which manifests as mag-
netic flux tubes connecting the planet to its host star (Strugarek
2018; Fischer & Saur 2022). Such interactions are exceptional
in close-in exoplanets due to the presence of an Alfvén surface
around each star, which is a three-dimensional (3D) boundary
⋆ Corresponding author; arghyadeepp@gmail.com;
arghyadeep.paul@cea.fr

where the accelerating stellar wind speed matches the local
Alfvén speed (Strugarek et al. 2022; Vidotto et al. 2023). Only
planets located within this Alfvén surface can transmit any form
of influence back towards the host star. Although all planets
within the solar system orbit in a super-Alfvénic wind, analogous
sub-Alfvénic interactions have been observed within a planet’s
magnetosphere between natural satellites and their host planets
(e.g., the interactions between Io-Europa-Ganymede and Jupiter)
(Saur et al. 2013).

Shkolnik et al. (2005) and Shkolnik et al. (2008) reported
the first tentative detections of an SPMI, observing that the
stars HD 179949 and υ Andromedae, both hosting hot-Jupiter
companions, exhibited chromospheric activity that was synchro-
nized with the orbital period of the exoplanet. Follow-up studies
by Cauley et al. (2019) sought to further support the concept
of SPMIs, confirming synchronized activity in certain systems
and providing estimates of the power emitted by these chromo-
spheric regions. It is important to note, however, that tracers
of star–planet interactions observed in stellar activity indica-
tors have exhibited significant variability (Shkolnik et al. 2008),
with clear signals detected at certain epochs and no discernible
activity at others (e.g., Cauley et al. 2018 for the particular case
of HD 189733). According to the current scientific understand-
ing, close-in exoplanets located within the Alfvén surface of
their host stars can generate substantial energy flux through var-
ious mechanisms (Strugarek 2018; Saur 2018). These include
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Fig. 1. Schematic illustrating key elements of Alfvén wave-mediated SPMIs. The funnel-shaped isosurface represents an isocontour of the Poynting
vector projected along the Alfvén characteristics. Magnetic field lines connect the planet to the star, enabling energy transfer from the planet to the
star, with a portion reflected at the stellar transition region and the rest transmitted.

magnetic reconnection between the stellar and planetary mag-
netic fields (Cuntz et al. 2000), perturbations caused by the
planetary obstacle that can produce Alfvén waves (Saur et al.
2013), and dissipation of mutual magnetic stresses on the stel-
lar chromosphere (Lanza 2013). As these planetary obstacles
move through a sub-Alfvénic plasma, they can generate flow cav-
ities in the dominant stellar wind flow, known as Alfvén wings
(Fischer & Saur 2022; Strugarek et al. 2015, 2019), which are
essentially 3D structures that harbor magnetic field lines con-
necting the planetary obstacle to the star. The white translucent
isosurface of (S · cA) in Fig. 1 shows a pictorial representation
of the Alfvén wings generated by an exoplanet within a 3D
simulation (Strugarek 2016; Paul et. al., in prep.). The energy
flux generated near the planet can travel toward the star along
the magnetic field lines within the Alfvén wings in the form of
Alfvén waves, thereby establishing a two-way magnetic connec-
tion between the planet and the star (Lanza 2012, 2013; Saur
et al. 2013; Cauley et al. 2018, 2019; Strugarek et al. 2015,
2019; Strugarek 2016, 2018). Upon reaching the stellar corona,
these Alfvén waves traverse the stellar transition region and
eventually reach the chromosphere, where they can dissipate
and give rise to chromospheric hot spots. In principle, these
hot spots would migrate longitudinally across the surface of
the star, synchronized with the orbital motion of the planet
(Shkolnik et al. 2003, 2008; Cauley et al. 2018, 2019; Castro-
González et al. 2024). Fischer & Saur (2019) explored the
potential role of SPMIs in triggering stellar flares within the
system but found no conclusive evidence supporting such a cor-
relation. Similarly, Ilin & Poppenhaeger (2022) concluded that
significantly longer observation times are needed to determine
whether the flaring activity in the AU Mic system aligns with the
expected signatures of SPMI-induced flares. Building on this,
Ilin et al. (2024) analyzed observations from a sample of over
1800 exoplanet candidates and identified flares from HIP 67522
as the most promising case for SPMI-triggered stellar flares.
Despite numerous studies investigating the link between SPMIs
and stellar flares, the results remain far from definitive at present
(Klein et al. 2022; Loyd et al. 2023).

Much of the observational evidence supporting theories of
sub-Alfvénic SPMIs has been derived as physics-driven analo-
gies from solar system planets with sub-Alfvénic conditions
within their magnetospheres. This includes Earth’s artificial
satellites (Drell et al. 1965) and Jupiter with its natural satel-
lites. Energetic particle populations have indeed been observed
within the footprint of the Alfvén wing associated with Io on
Jupiter’s surface (Clark et al. 2020). Hotspots in ultraviolet
(UV) wavelengths have also been distinctly observed in Jupiter’s
polar regions, corresponding to the magnetic footprints of Io,
Ganymede, and Europa (Clarke et al. 2002). Auroral radio emis-
sions from Jupiter and other outer planets also act as indicators of
the magnetic field strength around the planet (Nichols & Cowley
2022). Detection of such emissions in exoplanet populations
could provide valuable insights into the extent of SPMIs within
these systems and help constrain the magnetic field strengths of
the exoplanets. However, no definitive detections of auroral radio
emissions from exoplanets have been reported to date (Zarka
2018; Vedantham et al. 2020; Pineda & Villadsen 2023; Shiohira
et al. 2023). In the context of detecting chromospheric hot spots
related to SPMIs, numerous attempts have been documented
in the literature, with varying degrees of robustness. Notable
studies include those by Shkolnik et al. (2003), Shkolnik et al.
(2005), Gurdemir et al. (2012), Shkolnik et al. (2008), Cauley
et al. (2018), and Cauley et al. (2019). In particular, Cauley et al.
(2019) was the first to present flux-calibrated absolute values of
the power associated with SPMI observations across four differ-
ent exoplanetary targets, estimating a flux in the range of 1020 to
1021 W. Among the various scaling laws commonly used to esti-
mate the power generated by an obstacle in a magnetized plasma,
it has been found that, under realistic stellar and planetary con-
ditions, the energy released purely by the process of magnetic
reconnection between the planetary and stellar magnetic fields
can account for power on the order of 1018 W (Lanza 2009).
Saur et al. (2013) provided scaling laws for a scenario where
the SPMI power is generated by Alfvén wings associated
with the planetary body, with the energy budget estimated to
reach approximately 1019 W for realistic systems considered
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in their study. These scaling laws were validated against sub-
Alfvénic satellite-planet interactions observed in the solar sys-
tem. Although the magnetic reconnection scenario considerably
underestimates the observed power in SPMIs, the second sce-
nario, which involves Poynting flux generation by Alfvén wings,
only barely approaches the observed SPMI power levels, leaving
little margin to account for powers exceeding 1020 W. Con-
sequently, Cauley et al. (2019) based their power estimations
on the model proposed by Lanza (2013), which attributes the
power budget to magnetic stresses induced by the planet’s orbital
motion through the stellar magnetic field. Although this has yet
to be fully validated by numerical simulations, the scaling law
proposed by Lanza (2013) is currently one of the few models that
can reasonably account for SPMI power outputs in the range of
1020 to 1021 W for hot-Jupiter systems with realistic parameters.

Numerical simulations have proven to be an essential tool
for constraining various parameters associated with SPMIs in
close-in exoplanetary systems. Matsakos et al. (2015) classi-
fied the morphology of SPMIs in close-in hot Jupiter systems,
identifying four general types of interactions that depend on
a combination of fundamental stellar, planetary, and orbital
parameters. Strugarek (2016) developed numerically motivated
scaling laws to estimate the magnetic torque acting on exoplanets
and the energy flux produced by SPMIs for different planetary
magnetic field orientations. They also found reasonable agree-
ment between the Poynting flux generated in self-consistent 3D
MHD simulations and the analytical scaling laws proposed by
Saur et al. (2013). Strugarek et al. (2022) further evaluated the
power budget of SPMIs for a particular exoplanetary system
and predicted its temporal modulation to facilitate comparison
with observational data. Their findings indicated that, while the
Alfvén wing model estimates the generated power with reason-
able accuracy, the power output remains insufficient to account
for the full energy budget of the observed signal. Fischer & Saur
(2022) analyzed the interactions between Alfvén wing structures
in scenarios where multiple planets generate their respective
Alfvén wings, which subsequently interact with one another.
They observed a notable intensification of the resulting Poynt-
ing flux, particularly during the initial phases of the wing-wing
interaction. As the scientific community continues to refine these
models and extend them to interpret potential observations of
SPMIs in known exoplanetary systems, several uncertainties and
unknowns remain. These challenges primarily revolve around the
exact mechanisms responsible for driving the observed energy
outputs, as well as efficiencies in the processes of energy gen-
eration, transfer, and emission. This paper specifically focuses
on addressing the latter category of unknowns, particularly the
efficiency factors associated with SPMIs. Briefly stated, there
are several efficiency factors to be considered during the stages
of energy transfer in systems exhibiting SPMIs. First, near the
location of the exoplanet, there exists an efficiency factor related
to the conversion of the stellar Poynting flux at the planet’s
orbital position into the Poynting flux directed back toward the
star along the connecting magnetic field lines (shown in Fig. 1).
This efficiency has been the focus of many SPMI models so far
(Saur et al. 2013; Lanza 2013). Secondly, the wave structures
carrying energy along these magnetic field lines may dissipate
during their propagation due to interactions with the ambient
medium and its inhomogeneities giving rise to another effi-
ciency factor. Thirdly, as these waves approach the star, they
encounter the stellar transition region, a sharp discontinuity in
plasma properties. As highlighted in Fig. 1, this discontinuity
introduces another efficiency factor, as a portion of the wave
energy is likely reflected back by the transition region, much like

the reflection process envisioned by Leroy & Bel (1979), Leroy
(1980), and Leroy (1981) in the context of solar-driven Alfvén
waves. Finally, of the energy that successfully reaches the stel-
lar chromosphere, an additional efficiency factor governs how
effectively this energy is dissipated into detectable emissions via
various emission mechanisms. Efficiency factors such as these
are pivotal for estimating the energy budget in SPMI systems
based on observable emission signatures, making their accurate
determination crucial. As an initial step, this paper focuses on
estimating the efficiency of energy transfer via Alfvén waves as
they traverse the stellar transition region – a critical factor in
the chain of energy generation and its eventual dissipation and
emission within SPMI-exhibiting systems.

The paper is organized as follows. Section 2 describes
the details of the numerical setup used to perform the study.
Section 3 highlight the main results obtained in this study with
a quantification of the efficiencies involved in transmission of
SPMI powers through the stellar transition region. Section 4
highlights the implications of the obtained results for the obser-
vational detections of SPMIs. Finally, Sect. 5 summarizes the
paper and presents some concluding remarks.

2. Numerical setup

As illustrated in the schematic depicted in Fig. 1, a close-in exo-
planetary system typically consists of a host star and its orbiting
exoplanet, linked by magnetic field lines. Alfvén wings, depicted
as the translucent isosurface in the schematic form due to the
interaction between the star and the planet. These Alfvén wings
channel a significant amount of Poynting flux back toward the
star in the form of Alfvén waves. The Alfvén waves travel along
the magnetic field lines within these wings, connecting the exo-
planet to the star, as shown in the schematic. In simple terms,
the 1D numerical domain used in this study, as explained in the
subsequent sections, corresponds to a computational grid along
a single magnetic field line connecting the exoplanet to the star.
Within this numerical domain, we first describe the stellar wind
properties, as detailed in the following section.

2.1. Background solar wind

We adapt the numerical solar wind setup developed by Réville
et al. (2018) that involves solving the following set of ideal MHD
equations in one dimension using the PLUTO code:

∂ρ

∂t
+ ∇ · (ρv) = 0

∂(ρv)
∂t
+ ∇ ·

[
ρvv − BB

]
+ ∇

(
p +

B2

2

)
= −ρ∇Φ

∂B
∂t
+ ∇ × (cE) = 0

∂Et

∂t
+ ∇ ·

[(
ρv2

2
+ ρe + p

)
v + cE × B

]
= Q,

(1)

where ρ is the mass density, v is the gas velocity, p is the ther-
mal pressure, and B is the magnetic field. The vector fields are
defined in spherical coordinates (r, θ, ϕ), with variations only in
the radial direction. Such a prescription using the above equa-
tion describes the evolution of a single radial flux tube under the
influence of a gravitational potential given as

Φ = −
GM⋆

r
. (2)
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Fig. 2. Physical properties of the background wind. Panel a shows the temperature, Alfvén speed and density of the background stellar wind model
on the highest resolution grid. Panel b highlights a comparison of the Alfvén speed, sound speed and bulk radial speed profiles. The gray dotted
and solid lines in both panels represent the location of the transition region and the planet, respectively.

A factor of 1/
√

4π has been absorbed in the definition of B.
Et is the total energy density which can be described as

Et = ρe +
ρv2

2
+

B2

2
. (3)

The quantity Q in the RHS of the energy equation is a source
term comprising of three components

Q = Qh − Qr − Qc. (4)

that describe the usual heating, cooling and thermal conduction
terms for a typical wind of a Sun-like star. The individual terms
are implemented as follows:

Qh =
Fh

h

(R⋆
r

)2

exp
[
−

( r − R⋆
H

)]
, (5)

where H = 1 R⋆ is the heating scale height, and Fh = 1.5 ×
105erg cm−2s−1 is the stellar photospheric energy flux. This value
of the heating rate has been chosen in order to obtain a mass loss
rate of Ṁ = 3 × 10−14M⊙yr−1, which is consistent with observa-
tions for a Sun-like star (Réville et al. 2018). The radiation term
describes an optically thin radiative cooling prescribed as

Qr = n2Λ(T ), (6)

with n and T being the electron density and temperature respec-
tively. The function Λ(T ) is described in Athay (1986). The ther-
mal conduction flux comprises of a combination of a collisional
and collisionless prescription:

Qc = ∇ · (αqs + (1 − α)qp), (7)

where qs is the usual Spitzer-Harm conduction with the value
of κ0 = 9 × 10−7 in cgs units; qp is the free-stream heat flux
as defined in Hollweg (1986) and is given by qp = 3/2pv. The
coefficient α is defined as

α =
1[

1 +
(

r−R⋆
rcoll−R⋆

)4
] . (8)

This prescription creates a smooth transition between the col-
lisional and the collisionless regimes at a characteristic height

of rcoll = 5 R⋆. An ideal equation of state provides the closure
as ρe = p/(γ − 1) wherein, γ is the ratio of specific heats hav-
ing a value of 5/3. The flux computations have been performed
with the second order accurate variation of the Harten-Lax-
vanLeer (HLLD) solver and the solenoidal constraint (∇ · B =
0) is imposed by coupling the induction equation to a gen-
eralized Lagrange multiplier (GLM) and solving a modified
set of conservation laws in a cell-centered approach (Dedner
et al. 2002).

The 1D computational grid extends from the stellar photo-
sphere assumed to be located at 1 R⋆ up to a radius of 20 R⋆.
To save on computational time, we first initiate a steady state
background stellar wind solution on a computational grid that
is divided as follows. The region from 1 R⋆ to 1.001 R⋆ is dis-
cretized into 256 uniformly spaced grid cells. Thereafter, the
region from 1.001 R⋆ to 1.5 R⋆ is divided into 4096 grid cells
having a “stretched” configuration. This imposes that the grid
cells become recursively larger by a constant geometrical fac-
tor with increasing radial distance. Finally, the region from
1.5 R⋆ to 20 R⋆ is discretized into 28 416 uniform grid cells.
Once the background stellar wind reaches a stationary solution
in the aforementioned grid, we change the grid layout into a
higher resolution one. The new grid has a similar prescription
till 1.001 R⋆, but thereafter, the region between 1.001 and 1.049
is divided into 2112 stretched grid cells. Further, from 1.049 R⋆
to 4.1 R⋆, we employed 48 064 uniform grid cells. Finally, the
region from 4.1 R⋆ to 20.0 R⋆ is then covered by 64 stretched
grid cells. This layout was motivated by the aim of the study,
namely, to investigate Alfvén waves traveling from an exoplanet
situated at 4 R⋆ towards its host star. As such, we resolve with a
very high grid cell count, the region between the stellar pho-
tosphere and the planet. Anything beyond the planet is less
critical for this study and therefore has been simply buffered
with a relatively coarse grid. We apply a zero-gradient bound-
ary condition to waves traveling towards the inner boundary,
while maintaining all other physical quantities at their equilib-
rium values. Conversely, at the outer boundary, a zero-gradient
boundary condition is imposed universally on all physical quan-
tities. As the wind itself is supersonic and super-Alfvénic at the
outer boundary, no wave reflection is physically possible.

Figure 2 shows a few physical parameters of the steady state
background field solution on the highest resolution grid. In panel
a, the red, green and blue profiles represent the temperature, den-
sity and the Alfvén speed profiles of the background stellar wind
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on their individual ordinates. The lower boundary of the domain
behaves as a stratified atmosphere fixed at a specific tempera-
ture of T ∼ 6000 K. The prescribed phenomenological heating
term in Eq. (4), Qh, heats up the stellar atmosphere up to a max-
imum temperature of ∼1.7 × 106 K as seen by the temperature
profile denoted by the red curve in panel a of Fig. 2. Such a
prescription also leads to the formation of a sudden temperature
jump, also known as the transition region (TR), at a height of
∼2.8 × 10−3 R⋆ highlighted by the gray dotted line in panel a
of Fig. 2. Panel b of Fig. 2 shows a clear comparison of the
Alfvén speed, the sound speed and the bulk stellar wind speed
within the domain on a linear ordinate. Upon comparison, it can
be clearly seen that the stellar wind turns super-sonic at a height
of ∼3 R⋆ (orbital radius of ∼4 R⋆ from the center of the Sun) and
super-Alfvénic at a height of ∼13 R⋆. The blue and red squares
represent the locations where the wind speed equals the local
sound speed and the Alfvén speed, respectively.

2.2. Exoplanet characteristics

We flag two grid cells located at 4 R⋆ (height of 3 R⋆ from the
stellar surface) to simulate a close-in hot Jupiter-like planet that
injects circularly polarized, inward propagating (towards the star)
Alfvén waves into the domain. As the domain is primarily 1D,
the region between 1 R⋆ to 4 R⋆ can be considered to be along
one of the magnetic field lines that connects the exoplanet to the
star in Fig. 1. The location of the planet in the 1D domain is
marked with solid gray vertical line in panels a and b of Fig. 2. It
can be clearly seen from panel b that at the location of the planet,
the stellar wind is both sub-sonic as well as sub-Alfvénic. At
the injecting grid, the pressure, density, vr and Br are untouched
whereas the quantities vθ, vϕ, Bθ, bϕ (together denoted as v⊥ and
b⊥) are varied with time in order to inject inward propagating
Alfvén waves into the domain. To that end, we define the Els̈asser
variables as

z± = v⊥ ±
b⊥
√
µ0ρ
, (9)

which denote propagating Alfvénic fluctuations. For inward
propagating Alfvén waves, we use the ‘+’ (plus) sign in the above
equation and define the perturbations as

z+ = 2|δv|
[
cos(ω0t)θ̂ + sin(ω0t)ϕ̂

]
, (10)

where θ̂ and ϕ̂ are the unit vectors along their usual direc-
tions, ω0 = 2π f0 is the angular frequency of the wave, and
the quantity |δv| sets the magnitude of the perturbations. For
the purposes of this study, we set the value of δv = 50 km
s−1 with the motivation that the magnetic field perturbations
produced by such an amplitude is approximately ∼5 × 10−2

times the local background magnetic field. This puts the sim-
ulations within the limit of small-amplitude perturbations. It is
imperative to achieve an appropriate balance between the per-
turbation amplitudes considered and the spatial resolution used
in this study. It is well understood that higher amplitude per-
turbations can result in the formation of additional shocks and
discontinuities in the medium, necessitating significantly higher
spatial resolution to capture and evolve these effects accurately
(Alielden & Taroyan 2022). Consequently, another indirect moti-
vation behind the choice of the perturbation amplitude was to
remain safely within a range that avoids such potential compli-
cations, thereby ensuring overall numerical stability within the

Table 1. Set of frequencies probed in this study.

Frequency (Hz) Name Obstacle size

1.0 × 10−3 f0 1.52 RJ
1.6 × 10−3 f1 0.91 RJ
2.7 × 10−3 f2 0.54 RJ
4.6 × 10−3 f3 0.32 RJ
7.7 × 10−3 f4 2.21 RE

1.29 × 10−2 f5 1.32 RE
2.15 × 10−2 f6 0.79 RE
3.59 × 10−2 f7 0.47 RE
5.99 × 10−2 f8 0.28 RE
1.0 × 10−1 f9 0.17 RE

Notes. The second column highlights the nomenclature of frequencies
in this study and the third column corresponds to the obstacle sizes
they represent. RJ and RE correspond to the radius of Jupiter and Earth,
respectively.

model with the resolution considered. A brief outlook on the
variation of the perturbation amplitude on the principal results
of this study is presented in 3.1. In the analysis that follows, the
time is normalized to the Alfvén crossing time (tA) for inward
propagating waves from the planet to the star and is calculated as

tA =

∫ R⊙

4 R⊙

dr
vA − vwind

= 2994s ≈ 50 min. (11)

In the following paragraphs, we elaborate the motivation
behind the range of the Alfvén wave frequencies we chose to
probe in this study. It is reasonable to infer that Alfvén waves are
triggered by the interaction between stellar magnetic field lines
and obstacles within the solar wind plasma. These obstacles
could be the planetary body itself for an unmagnetized planet, or
the magnetosphere for a planet with an intrinsic magnetic field
(Zarka 2007; Saur et al. 2013).

Within a simplistic model of encounter, we can assume that
a magnetic field line sweeps across the diameter of the obsta-
cle. The time of such an encounter would depend on (a) the size
of the obstacle and (b) the orbital speed of the obstacle rela-
tive to the magnetic field lines. For a planetary obstacle at an
orbital radius of 4 R⋆ around a Sun-like star, the orbital velocity
can be calculated to be ∼218 km s−1. Considering an obstacle
comparable to the size of Jupiter, a field line sweeping through
its diameter would interact with the obstacle for ∼320 seconds.
Therefore, the minimum frequency of the Alfvén waves that
could be generated by such an interaction is of the order of 0.001
Hz. We therefore considered this as the lower limit of our fre-
quencies. Conversely, the upper limit of the frequency has been
set with a similar calculation for an obstacle that is approxi-
mately half the size of the smallest planet in the solar system,
Mercury (Rmercury ∼ 0.35 RE), leading to a frequency of ∼0.1 Hz.
Within this range of 0.001 Hz to 0.1 Hz, we probed ten different
frequencies that are logarithmically spaced to span these bounds
forming a frequency set given in Table 1. For easier reference
throughout the paper, these frequencies are also designated as f0
to f9. The third column of Table 1 also represents the obstacle
(either the planet itself for an unmagnetized case or the magne-
tosphere for a magnetized planet) radius from which, waves of
such frequencies can be expected. Armed with the background
solar wind to propagate Alfvénic fluctuations in and a logically
motivated set of frequencies, we proceed further into the study.
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3. Transmission of Alfvén waves into stellar
chromospheres

Upon the establishment of a steady state background stellar wind
with desirable characteristics, Alfvén waves are injected into the
domain that propagate from the location of the exoplanet’s orbit
towards the host star. As illustrated by the profile of the Alfvén
speed in panel a of Fig. 2, the variation in vA from the planet’s
location towards the star is predominantly smooth and grad-
ual, with the exception of the TR where the relative change is
abrupt. As expected, Alfvén waves are found to propagate with
minimal reflection up to the TR, where this sudden change in
Alfvén speed causes a significant portion of the wave energy
to be reflected back, while the remaining energy is transmitted
through the TR towards the stellar surface. We show this with
the help of a quantity defined as the wave action flux (WAF). In
a stationary uniform medium, the energy of a wave-train is gen-
erally expressed in terms of the wave energy density. However,
for waves travelling in a streaming medium with a variation of
the wave velocity along the direction of propagation, the wave
energy density along a wavetrain may not be constant even when
the total wave energy is conserved. Therefore, a more convenient
approach to mathematically describe wave evolution is in terms
of a ‘wave action density’ which, in its simplest form is defined
as E/ω where ‘E’ is wave energy density and ω is the intrinsic
frequency of the wave. In the absence of non-linear interactions,
the total wave action behaves as a conserved quantity. For Alfvén
waves of the form described above, the associated wave action
flux can be defined conveniently as (Réville et al. 2018; Jacques
1977; Huang et al. 2022):

S ± = ρr2 (v ∓ vA)2

vA

|z±|2

8
. (12)

Within the context of this study, the quantities S + and S − denote
the WAF for waves traveling towards and away from the star
respectively.

We monitor the evolution of wave action flux over time as
the waves from the planet’s location propagate towards the star.
For highlighting the general trend in evolution of the WAFs, we
explore the profiles at two different times for one of the frequen-
cies considered in the study, specifically, f2. The blue and red
dashed lines in Fig. 3 represents the normalized incoming (S +)
and reflected (S −) WAF components at t = 0.92 tA, just before
the waves reach the transition region (TR). These WAF values
are normalized to S p which is the WAF value at the location
of the planet. The figure shows that the incoming component is
dominant and the reflected component is negligible before the
waves hit the TR. At a later time, t = 1.06 tA, the blue and red
solid lines in Figure 3 represent the normalized WAFs when the
waves have reached the stellar boundary. It is evident that a por-
tion of the incoming WAF is transmitted through the TR, while
a significant portion is reflected back, as indicated by the much
higher S − value to the right of the TR. This reflected compo-
nent gradually travels back toward the planet while interacting
with the incoming component giving rise to a complex overall
evolution pattern. We now explore how the transmission of wave
energy varies with frequency.

We can see from Figure 3 that the profile of the normalized
incoming WAF (S +) can be conveniently used to derive a trans-
mittance of the WAF, named as TWAF . The transmittance can be
defined as the ratio of the WAF values at the surface of the star to
that at the location of the planet. Upon normalizing the WAF pro-
files to S p, TWAF can simply also be defined as the value of the
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Fig. 3. Normalized incoming (S + in blue) and reflected (S − in red) WAF
components at two distinct times. Dashed lines indicate the values at
t = 0.92 tA, before the waves reach the transition region. Solid lines
represent the values at t = 1.06 tA, after the waves have reached the stel-
lar boundary. The WAF values are normalized relative to the incoming
WAF values at the location of the planet (S p).
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Fig. 4. Wave propagation through the transition region. Panel a shows
the normalized incoming WAF (S +) profiles for four different frequen-
cies, namely f0, f2, f4, and f6 at t = 1.33 tA, highlighting a frequency
dependent transmission of the WAF through the TR. Panel b shows a
zoomed in view of the WAF for the same frequencies just after the
waves cross the TR (t = 0.93 tA). The entire extent of the abscissa in
panel b is highlighted by the light blue strip in panel a.

normalized WAF at the stellar boundary (i.e. at r = 1 R⋆). As per
the foundations laid in the above sections in terms of the Alfvén
wave properties, we inject wave trains from the planet towards
the star with the frequencies given in Table 1. The general evolu-
tion pattern of the waves of all frequencies show a similar trend
as that in Fig. 3; namely, the waves travel up to the TR with a
minimal amount of reflection, and upon encountering the TR, a
significant portion of the WAF is reflected. The reflected waves
interact with the incoming waves leading to stationary wave-like
patterns to the right of the TR in the WAF profiles. More inter-
estingly, it is seen that there exists a variation in the magnitude of
the normalized WAF at the stellar boundary; namely, the trans-
mittance TWAF , for different frequencies. We highlight this in
panel a of Fig. 4 with the help of the WAF profiles for four dis-
tinct frequencies from the set given in Table 1. It is also evident
from panel a that TWAF increases with increasing frequency of
the waves.
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Fig. 5. Transmittance (TWAF) obtained from the simulations of frequen-
cies f0 to f8, shown as red scatter points. The blue solid line is the
analytical profile of transmittance obtained using the Leroy-1981 model.
The horizontal dotted line represents the asymptotic value of the TWAF
profile having a value of 0.75 obtained using the Leroy-1981 model. The
gray hatched region is where PDI was found to significantly influence
the transmittance.

Panel b of Fig. 4 provides a close-up view of the WAFs near
the transition region for the frequencies highlighted in panel
a. While panel a displays the WAFs at a stationary state (t =
1.33 tA), panel b focuses on an epoch (t = 0.93 tA) when the
waves have just crossed the TR. The entire span of the x-axis
in panel b corresponds to the light blue vertical strip in panel
a, illustrating the extent of the zoom. Panel b highlights that a
maximum transmission of the WAF, ∼0.72, occurs at the very
leading edge of each wave train and that maximum value is prac-
tically independent of the wave frequency. This indicates that the
change in the steady state TWAF as seen in panel a of Figure 4
arises purely from the interaction of the incident waves with the
reflected wave components at the TR. This establishes an upper
limit on the TWAF for the wind profile considered in this study
where, TWAF ∼ 0.7 in an ideal scenario.

3.1. Quantifying the transmittance

As elaborated in Sect. 3, the transmittance of Alfvén waves is
frequency dependent. Naturally, the next step in the process is
to characterize this dependence for the frequency range consid-
ered in this study. An approximate stationary state is achieved
at the stellar boundary for the WAF profiles of all frequencies
after t ∼ 1.03 tA. The term “approximate” is used because (as
seen from the yellow curve ( f6) in panel a of Fig. 4) the WAF
reaching the stellar (left) boundary exhibits small-scale fluctu-
ations around a certain value in some cases. To tackle this, we
determine the transmittance (TWAF) by taking the median of the
values obtained at the stellar boundary between t = 1.06 tA and
t = 1.33 tA. We have not calculated TWAF for f9 at this stage
because the Alfvén waves associated with f9 undergo parametric
decay, leading to a significant reduction in transmittance. Conse-
quently, this region is shaded with a gray hatched line in Fig. 5
to indicate that it does not conform to the expected trends from
the other simulations and the Leroy-1981 model (see below). The
onset of parametric decay instability (PDI) for certain frequen-
cies requires special consideration and is discussed in detail in
Sect. 3.3.

The red scatter points in Fig. 5 represent the transmittance
derived from simulations conducted across the frequency range
of f0 to f8. Within this frequency spectrum, it is observed that

low-frequency waves exhibit significant reflection, with a trans-
mittance of only TWAF ∼ 0.08 at a frequency of 10−3 Hz ( f0). As
the frequency increases, TWAF progressively rises and eventually
saturates around TWAF ∼ 0.73 for higher frequencies, such as f7
and f8. It is important to note that the frequencies in this study
are logarithmically spaced, reinforcing the robustness of the sat-
uration trend. As discussed in Sect. 3, on the basis of panel b
of Fig. 4, a maximum value of TWAF ∼ 0.7 is achievable in the
absence of reflected waves at the TR. For the higher frequen-
cies, the reflected WAF trends to be minimal and therefore the
observed saturation of the TWAF ∼ 0.75 is consistent with the
previous assertion.

We now turn our attention briefly to a simplified yet signifi-
cant variation of the previous scenario, focusing on the emission
of an Alfvén wave pulse from the planet instead of a continuous
wave train. Limiting the wave injection to a single wavelength
reveals that the evolution pattern closely resembles the WAF pro-
files observed with continuous injection up to the first leading
wavelength. However, a steady state is obviously not attained in
this case. Given that a maximum value of of TWAF ∼ 0.7 exists
for the very leading edge of waves of any frequency ( f0 to f8) and
also given that TWAF either saturates at this value or decreases
depending on the frequency, it indicates that when assuming
the total energy budget on the planetary side of the TR to be
enclosed in (a) a wave pulse or (b) a wave train, a greater pro-
portion of the total wave energy will be transmitted through the
TR for a wave pulse than for a wave train, especially at lower fre-
quencies. Another noteworthy aspect is the impact of varying
wave amplitude on transmittance. A preliminary analysis was
also conducted by adjusting the wave amplitude at a specific
frequency, revealing that such a variation resulted in negligible
changes to the overall transmittance. Given the minimal influ-
ence observed, we determined that extending this line of analysis
across all frequencies would yield limited insight. Consequently,
we opted to focus our efforts on other aspects of the study as
discussed in the following sections.

3.2. Theoretical estimates of the transmittance

An analytical description of the propagation of Alfvén waves
in a radially stratified stellar atmosphere is not trivial. Vari-
ous attempts have been made towards tackling this problem for
non-WKBJ waves, notably among them, there are the works of
Ferraro & Plumpton (1958); Hollweg (1972, 1986); Leroy & Bel
(1979); Leroy (1980, 1981); Verdini et al. (2005).

Among the references mentioned, we focus here on the study
by Leroy (1981) due to its ease of generalization. Leroy (1981)
presented a systematic analytical method for calculating the
transmittance of Alfvén waves in a stratified solar wind, which
we refer to as the ‘Leroy-1981’ model henceforth. Although this
methodology was originally envisioned to calculate the transmit-
tance forwaves propagating outward from the stellar boundary,
the resulting transmittance is expected to be an intrinsic property
of the medium itself and thus should be independent of the direc-
tion of wave propagation. Consequently, we evaluate its applica-
bility to the Alfvén wave propagation considered in this study.

We begin by outlining some inherent assumptions of the
model. The propagation medium is considered to consist of
two isothermal layers connected by a temperature discontinuity.
Specifically, the first isothermal layer, with a temperature, T1,
extends from the stellar surface up to the base of the discontinu-
ity at a height (“h”). At this point, the temperature discontinuity
increases the temperature from T1 to a value of T2. The sec-
ond isothermal layer at a temperature, T2, then extends from this
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Fig. 6. Highly magnified view near the transition region of the back-
ground solar wind profiles for ρ and T. The yellow, red, and green
shades represent three distinct regions, with parameters from each used
as inputs to the Leroy-1981 model. For reference, we also include the
black dotted line indicating the location of the TR, consistent with the
previous plots.

discontinuity up to a height ‘d’. The density profiles in the two
isothermal layers are modeled as

ρ1(z) = ρ01exp
[
−z
H1

]
for r⋆ < z < h, (13)

ρ2(z) = ρ02exp
[
−z
H2

]
for h < z < d, (14)

where the quantities ρ01 and ρ02 are the densities at the stel-
lar boundary and the discontinuity, respectively. The quantities
T1, T2, H1, H2, “h,” and “d” are then given as inputs to the
model. The model then computes an analytical, frequency-
dependent transmittance based on the methodology detailed in
Leroy (1981).

To apply the analytical model to the simulations presented
in this paper, we progress as follows. First, similar to the ana-
lytical model, we divide up the numerical domain into three
distinct regions. The first region extends from the stellar surface
to the base of the TR denoted by the region shaded in yellow in
Fig. 6. We note that the yellow region extends up to the stellar
boundary on the left. The temperature profile in panel a of Fig. 2
clearly shows a sharp rise over a very short distance, which we
broadly define as the TR. However, a detailed examination of
the zoomed-in view of the same region in Fig. 6, reveals that
the TR actually comprises two distinct sub-profiles: an initial
steep rise followed by a more gradual increase. In the context
of the Leroy-1981 model, we designate the steepest rise in the
temperature profile as the “discontinuity.” This discontinuity is
represented by the region shaded in red in Fig. 6. We now address
the second exponential from the Leroy-1981 model within our
numerical background model. We find that Eq. (14) produces
a very poor fit of the region to the right of the discontinuity
(see also the appendix in Réville et al. 2018). Therefore, for the
sake of completeness, we select a very thin slice of this region,
approximately 0.3 times the local density scale height, and treat
it as a placeholder region analogous to the second exponential in
the Leroy-1981 model. This region is denoted by the green slice
in Figure 6. Such an approach was also considered in Réville
et al. (2018) given the poor fit of the second exponential in their
work as well. The dashed line profiles in Fig. 3 indicate minimal
wave reflection as the waves approach the TR. It is therefore evi-
dent that the region to the right of the TR has negligible impact
on wave reflection and the transmittance. Such a region is there-
fore redundant in the calculation of the TWAF and its exclusion

is therefore also deemed to be inconsequential. We also confirm
that, upon applying the Leroy-1981 model algorithm to the back-
ground wind profile in this study, any change in the parameter
“H2,” which results from fitting the second exponential, has a
very negligible effect on the overall theoretical TWAF profile.

Taking the above considerations into account, we fit our
background solar wind profile to the assumptions of the Leroy-
1981 model and obtain the parameters of the Leroy-1981 model
as T1 = 11 365 K, T2 = 103 232 K, H1 = 348 km, H2 =
6344 km, h = 1921 km, d = 2326 km, ρ0 = 1.6 × 10−12 g cm−3,
and B0 = 1.5 G. We note that the values obtained here differ
significantly from those used in the examples of Leroy (1981).
However, our parameters are dependent on the background wind
model considered in this study and are therefore consistent with
the wave propagation results presented. The analytical profile of
TWAF obtained from the above set of parameters is plotted as the
blue solid line in Fig. 5. We see that the analytical profile does
indeed closely follow the scatter points, namely, values of the
TWAF obtained from the simulations in Sect. 3.1. The analytical
profile also shows a strong attenuation of the TWAF for the lower
frequencies. The profile then shows an increase over a range of
values, eventually attaining a saturation at an asymptotic value
of TWAF ∼ 0.75.

The excellent fit between the analytical profile and our simu-
lation results opens a new avenue for exploration. It now gives
us confidence that we can reasonably estimate TWAF by sim-
ply varying the parameters of the analytical model, without fully
depending on computationally expensive numerical simulations.
Due to the numerous parameters needed to calculate the analyti-
cal model, varying all parameters simultaneously to analyze the
behavior of the TWAF profiles is extremely challenging. There-
fore, we consider variations in specific individual parameters
while keeping the others fixed, allowing us to assess how the
TWAF profiles depend on these individual parameters.

We first varied the stellar magnetic field, considering values
from slightly weaker than the Sun’s magnetic field to strengths
comparable to those of M dwarfs, which can reach kilo-Gauss
levels. Figure 7 shows the analytical profiles of TWAF obtained
from the above exercise. The frequency range considered in this
analytical exploration is significantly larger than the simulations
performed in this study and the range considered in the numeri-
cal simulations is shaded in blue in Fig. 7 for a quick comparison.
We chose to show a higher frequency range in for this plot to bet-
ter capture and emphasize variations across a broader range of
magnetic fields, which would not be as effectively represented
with an abscissa range of [0.001–0.1] Hz.

It is seen that as the stellar magnetic field increases, lower
frequencies tend to be reflected significantly, for instance, for a
stellar magnetic field of 1 kG, all frequencies below ∼0.2 Hz
have a TWAF below 0.08 (8%). The maximum TWAF achiev-
able by these profiles is independent of the stellar magnetic field
strength and tends to be around 0.75. Notably, for higher stellar
magnetic fields, only the frequencies towards the higher end of
the spectrum are reflected the least.

Our next aim is to vary the surface temperature of the star
and explore its effects on the analytical TWAF profiles, how-
ever, this turns out to be slightly more involved. Although the
model assumes an isothermal layer from the stellar surface to
the discontinuity, the simulation reveals a temperature differ-
ence between these two points. Consequently, while the stellar
surface temperature is ∼5977 K in the simulation, the tempera-
ture at the bottom of the discontinuity reaches around 11 365 K.
Using this data, we can make a crude approximation by consid-
ering a simple monotonous slope in temperature from the stellar
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Fig. 7. Analytical profiles of TWAF obtained for different stellar mag-
netic field strengths. The blue profile corresponds to frequency range of
the simulations explored in this study.
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Fig. 8. Analytical profiles of TWAF obtained for different stellar surface
temperatures. The letters in parentheses denotes the stellar spectral class
representative of the temperature.

surface to the discontinuity, allowing us to estimate the temper-
ature at the discontinuity for various stellar surface temperatures
which we can then use in the Leroy-1981 model. We consider
four different spectral types of star, namely, M, K G, and F hav-
ing typical temperatures of 3900 K, 5300 K, 6000 K, and 7300 K,
respectively.

Figure 8 shows the analytical profiles of TWAF obtained for
different stellar surface temperatures. In the plots, the surface
temperatures, denoted by Teff , serve as a proxy for the stel-
lar spectral type. The corresponding spectral types are also
indicated in the legend within parentheses. It is seen that the
TWAF profiles are relatively unaffected by changes in stellar sur-
face temperature. However, the general trend shows that lower
frequencies are transmitted slightly more as the stellar sur-
face temperature increases. The asymptotic maximum of TWAF
also increases slightly with rising stellar surface temperature,
reaching a value of approximately 0.78 for F-type stars. The
asymptotic maxima level of each spectral type is denoted by
the correspondingly colored dashed line in Fig. 8. As evident,
this increase is minimal, however, this analysis relies on several
assumptions and a thorough exploration of the entire parameter
space is necessary for a precise assessment and will be achieved
in a future work. Consequently, this part of the analysis should be
considered as indicative of a general trend rather than a precise
quantification. Such a trend may also not be directly applicable to
stars with highly distinctive surface features, such as M-dwarfs,
which can exhibit significant variations in temperature across
their surfaces.
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Fig. 9. Density and velocity fluctuations obtained using Eqs. (15) and
(16) near the injection region for f = 0.1 Hz ( f9).

3.3. Parametric decay of high frequency Alfvén waves

We now explore another aspect of Alfvén waves that could
potentially alter the overall transmittance of planetary waves.
Parametric decay instability (PDI) is a well established phe-
nomenon affecting Alfvén waves, where an incoming wave
moving towards the star decays into an incoming compressive
fluctuation and an outgoing (moving away from the star) Alfvén
wave (Shi et al. 2017). Alfvén waves are known to be susceptible
to PDI when plasma β ≪ 1 and are strongly stabilized for β ∼ 1
and higher. It is also known that PDI and Alfvénic turbulence are
interrelated. In general, PDI generates large amplitude backscat-
tered Alfvén waves, which interact with the parent waves and
can lead to turbulence (Tenerani et al. 2017). In addition to
a dependence of the onset of PDI on the plasma-β and the
relative perturbation amplitude, Tenerani et al. (2017) also high-
lighted that the high frequency waves are susceptible to PDI
whereas their low frequency counterparts are stabilized. Indeed,
the plasma beta within the region where the planetary waves are
injected into the domain is of the order of ∼10−4 and therefore
provides a suitable condition for the occurrence of PDI. While
the primary focus of this study is not on PDI, it is essential to
highlight its relevance here as the phenomenon plays a crucial
role in assessing the transmittance for the high frequency end
of the spectrum considered here. Specifically, we find that the
highest frequency wave considered in the frequency set, namely,
f = 0.1 Hz exhibits signatures of PDI. Tenerani et al. (2017) also
reemphasized that PDI occurrence leads to fluctuations in the
density and radial velocity profiles. To illustrate these fluctua-
tions in our simulation domain, we plot the density and velocity
perturbations occurring near the injection region, defined as

δρ =
ρ(t = 1.06tA) − ρ(0)

ρ(0)
, (15)

δvr =
vr(t = 1.06tA) − vr(0)

vr(0)
. (16)

The presence of these perturbations is a clear indicator of
PDI occurrence. Similar features have been observed in previ-
ous studies on PDI in Alfvén waves (Tenerani et al. 2017; Réville
et al. 2018). Such signatures of PDI have been observed in two
of the highest frequencies simulated in this study, namely, f8 =
5.99 × 10−2 Hz and f9 = 0.1 Hz. For the case of f8 = 5.99 ×
10−2 Hz, PDI develops at a significantly later stage, possibly due
to a much slower growth rate, thereby allowing us to calculate
the TWAF before the onset of PDI affects the WAF profile. For
f = 0.1 Hz, however, the development of PDI occurs immedi-
ately after the waves are injected into the domain. As a result,
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Fig. 10. Normalized incoming (S +) component of the WAF for f =
0.1 Hz ( f9) at t = 1.2 tA, highlighting the effect of PDI on the WAF
profile.

the WAF profiles are significantly affected and the calculation
of the TWAF corresponding to the true frequency of the primary
wave becomes impossible. The PDI converts the injected Alfvén
waves into acoustic waves traveling towards the star due to the
wind being just below supersonic at the location of the plane-
tary orbit, as shown in panel b of Fig. 2. If the planetary orbit
was in supersonic wind, the compressive waves would not prop-
agate towards the star. Additionally, the process also generates
backward-propagating Alfvén waves that move away from the
star, carrying away a portion of the primary wave’s energy in the
process. In effect, the incoming WAF diminishes significantly by
the time it travels from the location of the planet to the TR.

The red curve in Fig. 10 represents the instantaneous nor-
malized incoming (S +) WAF profile at t = 1.2 tA. It is clear that
the level of the instantaneous WAF reaching the stellar surface
(left boundary of the plot) is extremely small and is practically
zero. This is in contrast to the values obtained for higher fre-
quencies in Fig. 5, which sets an expectation of TWAF ∼ 0.75
for such frequencies. Most of the WAF level drops very close
to the injection region which is why we highlight the intense ρ
and vr fluctuations in such a zoomed-in region in Fig. 9. Due
to the nonlinear interactions between the backscattered Alfvén
waves generated by PDI and the parent Alfvén waves, the overall
WAF profile is also highly variable over time with small bursts
of slightly higher TWAF values. We therefore assert that in the
presence of additional constraints in wave propagation, such as
PDI, the resultant normalized WAF that finally reaches the stel-
lar surface (also defined as the TWAF) drops significantly. This
reduction is not due to reflection at the transition region, but
rather because PDI distributes most of the parent Alfvén wave’s
energy into secondary sonic waves (which are dissipative) and
also into an Alfvén wave that propagates away from the star. The
small amount of star-ward propagating WAF is therefore a result
of the turbulent cascade between the counter-propagating daugh-
ter Alfvén waves and the primary monochromatic wave. This
extremely low value of transmittance due to PDI is the reason
why we omit the simulated TWAF value for f = 0.1 Hz in Fig. 5.

4. Implications for SPMI detectability

Star–planet magnetic interactions occurring within the Alfvén
surface of a star generate Alfvén waves that carry energy from
the planetary obstacle toward the star. These Alfvén waves
propagate along the magnetic field lines connecting the star to
the planetary obstacle or its magnetosphere. The stellar transi-
tion region, characterized by a steep gradient in Alfvén speed,

interacts with these waves, resulting in a partial transmission
wherein a portion of the energy is reflected back. The most
reliable indicators of SPMIs to date are believed to be chromo-
spheric hot spots generated by the energy carried by these Alfvén
waves. It is therefore crucial to characterize the transmittance of
these waves through the stellar transition region to determine the
fraction of energy that successfully reaches the chromosphere.
This study is focused on analyzing this interaction and has quan-
tified this frequency-dependent transmission of Alfvén waves
at the transition region. Such a frequency-dependent transmis-
sion has significant implications, particularly in observational
contexts, which we explore further below.

The frequency dependent transmission quantified in the
results above leads us towards an intriguing inference: a fre-
quency window exists, bounded by the obstacle size at the lower
end and the frequency of onset of PDI at the upper end, within
which Alfvén wave-mediated energy transfer is most efficient.
The lower frequency limit is set by the physical constraint that an
obstacle of a given size cannot generate waves below a certain
threshold. While the classical upper frequency limit is techni-
cally defined by the ion-cyclotron frequency, the onset of PDI
at a certain frequency in Alfvén waves prevents the parent waves
from transferring energy effectively through the transition region
beyond this frequency and upon the onset of PDI, the effi-
ciency of energy transfer via Alfvén wave propagation drops
significantly.

To better understand the total power budget available from
SPMIs and the efficiency of Alfvén wave-mediated energy trans-
fer, which ultimately determines the fraction of this power
reaching the stellar chromosphere, we construct a grid of exo-
planetary systems with varying stellar and planetary magnetic
field strengths. The planetary magnetic fields (Bp) are varied
from 0.1 G to 500 G, while the stellar photospheric magnetic
fields (B⋆) range from 0.5 G to 1000 G within our grid. The
lower limit of B⋆ ensures that the planetary orbit remains within
the star’s Alfvén radius, and the upper limit reflects typical mag-
netic field strengths for M-dwarf stars. The range for Bp is based
on the optimistic expected magnetic field strengths of exoplan-
ets (Yadav & Thorngren 2017), including that of hot-Jupiters.
As there are a large number of parameters that can influence
SPMIs, it is imperative that we keep some of them fixed in order
to simplify the rest of the calculations. As such, in this study,
we consider that the stars with varying magnetic fields have
approximately similar atmospheric temperature and density pro-
files as that of the Sun. We defer a proper self-consistent
characterization of these to a future work. We also consider for
now that the planetary orbital radius is fixed at 4 R⋆. Chang-
ing the orbital radius can have two implications, (a) it can dictate
whether the planet is within or outside the Alfvén surface thereby
switching on/off any Alfvén waves propagating towards the star
and (b) it would change the orbital speed thereby influencing
the lower limit of the frequency that can be produced by that
obstacle. A similar analysis to that presented in the following
paragraphs can be readily applied to exoplanets with different
orbital radii when investigating specific exoplanetary systems
motivated by observations.

We begin by estimating the efficiency of power transfer, fol-
lowing the outlined analysis. For each point on the [Bp, B⋆] grid,
we calculate the effective obstacle size of a magnetized planet
within the sub-Alfvénic stellar wind using the magnetic pressure
balance equation:

Robs = Rp

(
Bp

B⋆(r=rorb)

) 1
3

, (17)
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where Rp represents the planetary radius, which is assumed to
be equivalent to one Jupiter radius in this specific case. The
planetary radius represents the minimum obstacle size when the
planetary magnetic field approaches zero. Bp represents the sur-
face magnetic field of the planet at the equator and B⋆(r=rorb)
represents the magnitude of the stellar magnetic field at the
location of the planet. B⋆(r=rorb) is derived from the stellar pho-
tospheric magnetic field considering that the field strength falls
off with an inverse square dependence with distance. The obsta-
cle size determines the lower limit of the frequency ( flow) of
the Alfvén waves that the planet can possibly generate and is
calculated using the expression:

flow =
vorb

2Robs
(Hz), (18)

where vorb represents the orbital speed of the planet and is depen-
dent on the stellar mass and the radius of the orbit. The upper
frequency bound for the Alfvén waves is considered to be demar-
cated by the local ion cyclotron frequency ( fhigh = Ωci). We now
turn our attention to existing estimates of the total power budget
generated by SPMIs. An analytical model proposed by Saur et al.
(2013) (and reproduced satisfactorily in numerical simulation by
Strugarek 2016) provides an expression for this power, which is
given by:

SSPMI = 2πR2
obsvA

(αMAB⋆(r = rorb) cos θ)2

µ0
[watts], (19)

where vA, MA, B⋆(r=rorb) represent the Alfvén speed, Alfvénic
Mach number, stellar magnetic field at the orbital location of the
exoplanet, respectively. The parameter α quantifies the interac-
tion efficiency, indicating how much of the Poynting flux at the
planet’s location is directed back toward the star via the Alfvén
wings, whereas, the quantity θ represents the relative alignment
between the stellar and planetary magnetic fields For the pur-
poses of this analysis, both α and cos θ are set to unity to estimate
the maximum possible power output. For each point on the [Bp,
B⋆] grid, we distribute this available power into frequency bins
bounded at the lower end by flow and at the upper end by fhigh. For
simplicity, we consider a Kolmogorov type power-law spectrum
of the power throughout this frequency range and the division
of the total power (SSPMI) into the frequency bins is done on the
basis of the following expression:

S SPMI =

∫ fhigh

flow
P( f ) d f =

∫ fhigh

flow
K f

−5
3 d f , (20)

where the constant K can be calculated from the analytical
integration of the integrand. Next, since the Leroy-1981 model
provided an excellent fit of the simulation data as demon-
strated in Sect. 3.2, we calculate the transmittance for each
frequency bin TWAF( f ) from the previous step from this model.
Using this transmittance, we then estimate the power transmit-
ted by each of these frequency bins as an element-wise product
Ptr( f ) = TWAF( f ) ⊗ P( f ). The quantity Ptr( f ) is then summed
up over the frequency bins to finally determine the total power
that is actually transmitted to the stellar chromosphere through
the transition region (Str =

∑
Ptr(f )). For a particular stellar

and planetary magnetic field strength, the efficiency of this
transmission is then quantified using the following expression:

S% =
Str

SSPMI
× 100. (21)

When calculating the transmittance, we also keep in mind that
certain frequencies can be unstable to PDI. It is important to
note that the occurrence of PDI in high-frequency Alfvén waves
depends on thresholds for plasma β and the parent Alfvén wave
amplitude and frequency (Li et al. 2022; Réville et al. 2018). In
the present work, the wave amplitudes has been fixed as men-
tioned in Sect. 2. The growth rate of PDI can be given as γmax =
[ω0(a(1−

√
β)1/2)]/[2β1/4(1+

√
β)] wherein a is the relative per-

turbation amplitude and ω0 is the wave frequency (Jayanti &
Hollweg 1993; Réville et al. 2018). It can be seen that within
the low-β regime, the expression reduces to γmax ∝ ω0β

−1/4. For
each point on the [Bp, B⋆] grid, we calculated a threshold fre-
quency for PDI onset using the following logic. In the simulated
system, with a certain fixed value of β, PDI occurs rapidly at f ∼
0.1 Hz. This information essentially reveals a value of γmax that
would definitively give rise to a rapid PDI onset. For systems
with different β values, we therefore leverage this value of γmax
to obtain a threshold frequency (ω0) of PDI onset by plugging
it into the expression γmax ∝ ω0β

−1/4. In the frequency distribu-
tion of the total Poynting flux budget, all frequencies above this
threshold for each point in the [Bp, B⋆] grid are assigned a trans-
mittance value of TWAF ∼ 0.002, inferring from Sect. 3.3. Since
the effective obstacle size, given by Eq. (17) depends on the plan-
etary radius as a lower bound, the resulting efficiency profile
for the [Bp, B⋆] grid also inherently possesses this dependence.
Therefore, we present the efficiency profiles within the [Bp, B⋆]
grid for three different planetary sizes; Rp = 0.1 RE, representing
a small planet; Rp = 1 RE, representing a moderately sized planet;
and Rp = 1 RJ, representing a large planet comparable to Jupiter.

It is immediately apparent that there is a specific region
within the entire [Bp, B⋆] grid where energy transfer is most
efficient. For small planetary sizes, ∼0.1 RE, the most effi-
cient power transfer occurs at higher planetary magnetic field
strengths. For intermediate-sized planets comparable to the size
of the Earth, efficiency peaks at intermediate magnetic field
strengths. Conversely, for large planets comparable to the size
of Jupiter, the most efficient power transfer is observed at lower
planetary magnetic field strengths. The above analysis leads to
an inference that there in fact exists an optimal obstacle size that
corresponds to small planets with large magnetospheres or large
planets with small magnetospheres which eventually gives rise to
the most optimal transmission of Alfvén waves through the tran-
sition region. In panels a and b of Figure 11, there are regions
where the efficiency approaches zero. These areas arise because,
for certain combinations of stellar and planetary magnetic field
values, the lowest frequency ( flow) that the obstacle can generate
is sufficiently high to make the waves unstable due to PDI. As a
result, the overall efficiency of power transmission through the
entire spectrum of these waves is effectively zero. In contrast,
for larger planetary sizes, the lowest frequency that the obsta-
cle can generate is lower than the frequency required to trigger
PDI, which is why regions of near-zero efficiency are absent in
panel c. Additionally, it is important to note that the maximum
efficiency reaches approximately 70% for specific combinations
of planetary sizes, planetary magnetic fields, and stellar mag-
netic fields. However, for most of the [Bp, B⋆] parameter space
considered, the efficiency is relatively lower.

We now focus on quantifying the amount of power trans-
mitted to the stellar chromosphere, using the power estimates
provided by the Saur et al. (2013) model and the efficiencies
determined in this study. For a Jupiter sized planet at an orbital
radius of 4 R⋆, Figure 12 represents the power transmitted to
the chromosphere as a function of the planetary and stellar mag-
netic field strengths. The dashed lines in the Fig. 12 represent
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Fig. 11. Efficiency of power transmission to the stellar chromosphere within a parameter space of [Bp, B⋆] for different exoplanetary sizes.

Fig. 12. Power transmitted to the chromosphere, as estimated using
the transmission efficiencies calculated from this work along with the
total power budget from the Saur et al. (2013) model. The dashed lines
indicate the contours of transmission efficiency (S%), while the solid
contour delineates a transmitted power level of 1019 watts.

transmission efficiency contours having values of 10%, 20%,
30% and 40% wherein lighter shades represent higher values.
The black circle represents the position of a planet with an equa-
torial magnetic field of 4 G (Jupiter like) orbiting around a star
having an average surface magnetic field of 1.5 G (Sun like). The
total power transmitted to the chromosphere for such a planet
is calculated to be 4 × 1017 W. And the efficiency of power
transmission at this location in the [Bp, B⋆] grid is estimated
at 24%.

As noted by Lanza (2013) and Cauley et al. (2019), the total
power generated by SPMIs, as estimated by Saur et al. (2013),
is insufficient to account for the powers observed in chromo-
spheric hot spots, which exhibit levels on the order of 1020 to
1021 W (Shkolnik et al. 2005; Lanza 2013; Cauley et al. 2019).
The white contour in the upper right of the plot in Figure 12 rep-
resents a power level of 1019 W. It is evident that even achieving
power levels on the order of 1019 W at the chromosphere neces-
sitates a combination of extremely high stellar and planetary
magnetic fields. We therefore turn our attention to an alternate
model of SPMIs proposed by Lanza (2013) wherein the total
power generated by such interaction is given by:

Stot =
2πfAPR2

pB2
pvrel

µ0
[watts], (22)

where Rp,Bp and vrel represent the exoplanetary radius, the exo-
planetary polar magnetic field and the relative velocity between
the exoplanet and the stellar wind, respectively. As a first approx-
imation, we set vrel to be equal to the orbital speed of the
planet for now. This will be set to be the vector addition of the
orbital speed and the wind speed in the following sections when
observations of exoplanets will be considered. The quantity fAP
represents the fraction of the planetary surface magnetically
connected to the stellar field and is given by:

fAP = 1 −
1 − 3ζ

1
3

2 + ζ

 1
2

, (23)

where ζ is defined as

ζ =
B⋆(r=rorb)

Bp
. (24)

We highlight here that the efficiencies shown in Fig. 11 are inde-
pendent of the magnitude of the available power budget, and
therefore, the efficiency plots are equally valid for the power bud-
gets calculated by the Saur et al. (2013) and the Lanza (2013)
models. That said, we move on to show the power transmitted to
the chromosphere within our [Bp, B⋆] grid when the total avail-
able power budget from SPMIs is calculated using the Lanza
(2013) model for a Jupiter sized magnetized planet at an orbital
radius of 4 R⋆. As expected, the magnitudes of the total power
generated by SPMIs, estimated using the Lanza (2013) model
is significantly higher than the values obtained from the Saur
et al. (2013) model. Similar contours of 10%, 20%, 30% and
40% efficiencies are shown in this figure as well. The solid
black contour represents a level of 1020 W. The black circle once
again represents the position of a planet with a polar magnetic
field of 8 G (Jupiter-like) orbiting around a Sun like star hav-
ing an average surface magnetic field of 1.5 G. The total power
transmitted to the chromosphere in this case is calculated to be
1.9 × 1020 W which aligns more closely with the observed pow-
ers of chromospheric hot spots reported by Shkolnik et al. (2005)
and Cauley et al. (2019). It is evident that, despite the efficiency
factor associated with power transmission through the stellar
transition region, the power reaching the chromosphere is suf-
ficient to account for the tentative observations of SPMI power
in chromospheric hot spots. The efficiency of power transmis-
sion at this location in the [Bp, B⋆] grid is estimated at 22% and
this slight change in efficiency is due to the position of the point
on the [Bp, B⋆] wherein, the Saur et al. (2013) model considers
an equatorial magnetic field strength of the planet whereas the
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Table 2. Stellar and planetary parameters of some well known exoplanetary systems where SPMIs have been tentatively observed.

Exoplanet name R⋆ (R⊙) P⋆ (days) B⋆ (G) Rp (RJ) Porb (days) aorb (AU) SCa−IIK (×1020 Watts)

HD 179949b 1.23 11.0 3.2 1.22 3.0925 0.044 1.53 ± 0.27
HD 189733b 0.76 11.9 27.0 1.14 2.2186 0.031 0.28 ± 0.07
τ Boo b 1.48 3.7 2.6 1.13 3.3124 0.048 0.41 ± 0.11
υ And b 1.64 12.0 2.5 1.25 4.6170 0.059 1.14 ± 0.19

Notes. R⋆, P⋆, B⋆, Rpl, Porb and aorb represent the stellar radius, stellar rotation period, stellar magnetic field, the radius of the exoplanet, the orbital
period of the exoplanet and the semi major axis of this orbit respectively. SCa−IIK represents the SPMI power observed in Ca-II K band. The values
are as reported in Cauley et al. (2019) and have been used as input parameters in this work.

Lanza (2013) model considers a polar magnetic field strength
(Cauley et al. 2019).

The plots presented above can offer valuable insights for
target selection to observe potential SPMIs. Given the vast diver-
sity within the exoplanetary population, it is essential to identify
systems most likely to exhibit such interactions. This selection
process should focus on two key factors: the efficiency of energy
transfer between the planet and the star, and the total power trans-
mitted to the stellar surface via Alfvén waves, which constrains
the power available for emission as SPMI signatures. A degree
of ambiguity remains in the latter case, as evidenced by the total
transmitted power calculated using the models of Saur et al.
(2013) and Lanza (2013). Although the Saur et al. (2013) model
has been verified through numerical simulations and accounts
well for the power observed in planet-satellite interactions in
the solar system, it produces at least an order of magnitude less
power than required to match the observations. On the other
hand, the Lanza (2013) model can account for the observed
power, but it has yet to be validated by numerical simulations.
In any case, based on the efficiencies of transmission quantified
so far, which are independent of the model used to calculate the
SPMI power budget, one can identify exoplanetary systems that
are optimal for detecting magnetic interaction signatures and an
informed selection of such systems with favorable conditions in
terms of both energy transfer efficiency and magnitude of avail-
able power budget would enhance the likelihood of successful
SPMI detections.

We now turn our attention to several observational cases
where SPMIs have been tentatively detected and delve into the
insights that can be drawn from the analysis conducted thus far.
It’s important to note that in Figs. 11, 12, and 13, the planetary
orbit was kept fixed at 4R⋆. To accurately construct compara-
ble plots for various known exoplanets, we must re-calculate the
[Bp, B⋆] variation of the transmitted power for different plane-
tary orbital radii. We performed the following additional steps
for that. Cauley et al. (2019) recently reported tentative detec-
tions and estimates of SPMI power for four known exoplanetary
candidates. We begin by focusing on these four candidates, with
the details used for our calculations provided in Table 2.

The first significant variation from the previous analyses to
these exoplanets is their orbital radius, which differs for each
planet. For simplicity, and knowing that the orbits have very low
eccentricities, we consider circular orbits with a radius equal to
the semi-major axis (aorb) provided in Table 2. We also assume
that at the planet’s location, the stellar wind’s azimuthal speed
is nearly equal to the star’s rotational speed. Therefore, the rel-
ative rotational velocity in the orbital direction is the difference
between the Keplarian velocity of the planet and the star’s rota-
tional velocity at the orbit’s location if one considers a corotating
stellar atmosphere. The quantity vrel in Eq. (22) is therefore taken

Fig. 13. Power transmitted to the chromosphere, as estimated using the
transmission efficiencies calculated from this work along with the total
power budget from the Lanza (2013) model. The dashed lines indicate
the contours of transmission efficiency (S%), while the solid contour
delineates a transmitted power level of 1020 watts in this case.

to be the vector sum of this relative azimuthal velocity and the
radial velocity of the stellar wind at the location of the planet.
We focus exclusively on the Lanza (2013) model for flux quan-
tification, as it is currently the only model capable of accounting
for the magnitude of observed chromospheric hot spot fluxes,
despite its validity not yet being supported by numerical simu-
lations. Under the above assumptions, we construct plots similar
to Figure 13 for the four exoplanets highlighted in Table 2. One
such plot is shown for the exoplanet HD 189733b in panel a
of Figure 14. We draw attention to the fact here that panel a
only shows a very small portion of the [Bp, B⋆] space consid-
ered in the previous analyses with linear axes scaling, however,
the color of the transmitted power remains in the logarithmic
scale. The dashed contours in panel a represents the efficiency
of transmission within this parameter space. The five contour
lines shows transmission efficiencies of 8.0%, 8.1%, 8.2%, 8.3%,
and 8.4% starting from the top with lighter shades represent-
ing higher values. As anticipated from the trends observed in
Figure 7, the efficiency decreases as the stellar magnetic field
strength increases. The efficiencies also decrease with increas-
ing planetary magnetic fields. This can be attributed to higher
planetary magnetic fields leading to larger obstacle sizes or lower
minimum wave frequencies. As observed in Figure 5, transmit-
tance decreases with a reduction in wave frequency, leading to
this trend. Overall, for the planetary parameters of HD 189733b,
the predicted transmission efficiency is ∼8%.

Our objective here is to attempt to provide constraints on
the planet’s magnetic field, similar to the approach taken by
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Fig. 14. Planetary magnetic fields and expected SPMI powers. Panel a shows the variation of the transmitted Poynting flux for HD 189733b on a
[B⋆, Bp] grid. The dashed contour lines show transmission efficiencies of (from the top) 8.0%, 8.1%, 8.2%, 8.3% and 8.4% with lighter shades
representing higher values. Panels b and c illustrate the dependence of the required planetary magnetic field strengths to account for the observed
power emitted from certain exoplanetary systems suspected of exhibiting SPMIs. Panel b presents a lower limit for the magnetic field strength,
assuming that all the energy reaching the chromosphere is emitted in the Ca-II K band. In contrast, panel c offers a more realistic scenario, where
the fields are calculated considering the constraint that 0.2% of the energy reaching the chromosphere is emitted in the Ca-II K band.

Cauley et al. (2019), but with the added consideration of the
efficiency factor of power transmission through the transition
region of the star. This inclusion would provide new lower lim-
its for the planet’s magnetic field. With appropriate constraints
on the stellar average surface magnetic field strengths, the 2D
plot shown in panel a of Figure 14 can, in principle, be con-
densed into a 1D plot, illustrating the variation of the transmitted
Poynting flux as a function of the planetary magnetic field for
a specific value of the stellar surface magnetic field strength.
The white horizontal line in panel a of Figure 14 indicates the
level of stellar magnetic field strength for HD 189733b. While
observations of stellar magnetic field strength do carry some
uncertainties, for this particular analysis, the uncertainties are
ignored because as can be seen in panel a, shifting the horizontal
line slightly vertically would not significantly alter the variation
in transmitted Poynting flux profile along the line. We do, how-
ever, account for the uncertainties in the observed value of the
emitted power within the chromospheric hot spots. In panel a
of Figure 14, the thick segment of the horizontal line represents
the range of observed power values as indicated by the back-
ground color profile. We now examine the power profile along
horizontal lines corresponding to the stellar magnetic field lev-
els of all the exoplanets listed in Table 2 and plot the variation
in transmitted power with the planetary magnetic field strength
for these planets. This dependence is shown in panels b and c of
Figure 14. Each line is colored according to the legends in panels
b and c, and the thicker portions of the curves represent the range
of observed stellar hot spot power in the Ca-II K band for dif-
ferent considerations (elaborated in the following paragraphs).
We emphasize that the powers highlighted on the ordinate rep-
resent the transmitted powers to the stellar chromosphere, taking
into account the efficiency of transmission through the stellar
transition region. For the observed power range, it is indeed pos-
sible to have constraints on the planetary magnetic field. We first
consider a scenario where all of the power reaching the stellar
chromosphere is emitted in the Ca-II K band. While this is not
physically accurate, since only a portion of the power reaching
the chromosphere is emitted in this band, such an approach is
used to establish lower limits for the planetary magnetic field
strengths (Cauley et al. 2019).

The first column in Table 3 lists the names of the exoplanets.
The second and third columns present the planetary magnetic
field strengths as determined by Cauley et al. (2019). The sec-
ond column titled ‘Bp(100%Ca−IIK)’ shows the lower limit of the

magnetic field strength, assuming 100% of the emitted energy
is in the Ca-II K band. The third column named ‘Bp(0.2%Ca−IIK)’
offers a more realistic estimate, where the magnetic field strength
is calculated based on only 0.2% of the available power being
emitted in the Ca-II K band. As shown in these columns derived
from Cauley et al. (2019), the absolute lower limit of the plane-
tary magnetic fields required to explain the emitted power ranges
from 0.4 G to 1.9 G for the candidates considered here, while
Bp(0.2%Ca−IIK) falls between 20 G and 117 G. The Bp(0.2%Ca−IIK)
values obtained by Cauley et al. (2019) are consistent with
the expected range for hot Jupiters as highlighted by Yadav &
Thorngren (2017). However, in the scenario where the power
from SPMIs is carried to the star by Alfvén waves, these val-
ues do not take into account the reflection of Alfvén waves at
the stellar transition region and the associated efficiency factor.
To address this, we go on to consider the efficiency of energy
transfer through the transition region which is a critical step for
Alfvén waves to propagate to the stellar chromosphere, and recal-
culate the planetary magnetic field strengths. The fourth column
of Table 3 similarly presents our obtained Bp(100%Ca−IIK) values as
a lower limit for the planetary magnetic field strength, factoring
in the efficiency of power transmission at the transition region.
The constraints on planetary magnetic field strengths for this sce-
nario is shown in panel b of Figure 14. The vertical range of the
thick segments of each line corresponds to the observed chro-
mospheric power values reported in Cauley et al. (2019), while
the horizontal extents represent the required planetary magnetic
field strengths to generate these power levels. The obtained val-
ues now range from 2.6 G to 8.8 G for the sample set, which,
although higher, remain comparable to the results of Cauley et al.
(2019). However, when calculating the magnetic field strengths
based on the more realistic Bp(0.2%Ca−IIK) metric, the required val-
ues to account for the observed power are significantly higher,
ranging from 121 G to 435 G. This is similarly plotted in panel
c of Fig. 14, which mirrors panel b but accounts for the assump-
tion that 0.2% of the total power is emitted in the Ca-II K band.
Indeed Yadav & Thorngren (2017) had highlighted that such high
values are possible for very massive hot-Jupiters with masses
∼10 MJ , however, that is not the case for the candidates consid-
ered here. Additionally, as elaborated before, our approach also
allows us to determine the efficiency of energy transfer through
the transition region for these systems. This efficiency depends
on the exoplanet’s position within the [Bp, B⋆] parameter space
and is detailed in the columns titled S%(100%Ca−IIK) (for the lower
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Table 3. A comparison of the results obtained in Cauley et al. (2019) and the results obtained in this study.

Exoplanet name Cauley et al. (2019) This work

Bp(100%Ca−IIK) Bp(0.2%Ca−IIK) Bp(100%Ca−IIK) S%(100%Ca−IIK) Bp(0.2%Ca−IIK) S%(0.2%Ca−IIK)

HD 179949b 1.9 ± 0.7 86 ± 29 8.8 ± 1.0 11.9 435.3 ± 47.9 9.5
HD 189733b 0.4 ± 0.1 20 ± 7 2.6 ± 0.4 8.2 120.9 ± 18.4 7.9
τ Boo b 2.7 ± 0.9 117 ± 38 5.4 ± 0.9 9.4 248.0 ± 41.8 8.5
υ And b 1.9 ± 1.8 83 ± 77 7.6 ± 0.8 11.8 373.4 ± 41.2 9.5

limit of the planetary magnetic field strengths) and S%(0.2%Ca−IIK)
(for the realistic estimate of 0.2% of the SPMI power being emit-
ted in the Ca-II K band), corresponding to each of the magnetic
field strengths calculated in this study. As indicated by these
columns, the efficiency for all the candidates examined in this
study is ∼10% which means that approximately 90% of the total
energy carried by the Alfvén waves will be reflected back and
will never actually reach the chromosphere in order to generate
emissions. Therefore, even when calculating the SPMI power
using the Lanza (2013) model, accounting for efficiencies at
the transition region still yields unrealistic values for the plan-
etary magnetic field strengths. The need for unrealistically high
planetary magnetic field strengths to account for the observed
power when using the Saur et al. (2013) model was a key fac-
tor in preferring the Lanza (2013) model. We now find ourselves
confronted with a similar issue once again.

Such discrepancies indeed highlight the need to move beyond
simplistic estimations of the power budget generated by SPMIs.
Even within the models considered, a large planetary magneto-
sphere would result in stronger stellar magnetic field strengths
on the planet’s dayside compared to the nightside. This chal-
lenges the assumption of a uniform magnetic field encountered
by the planetary obstacle and could lead to a larger Poynting
flux directed toward the star from the dayside. Additionally, the
Alfvén wings generated by these planets may exhibit complex
cross-sectional shapes, adding further complexity to the scenario
and suggesting that current estimates and scaling laws may need
refinement. There may also be notable uncertainties related to
the assumption that only 0.2% of the total energy is emitted
in the Ca II K band. These uncertainties arise because current
estimates are based on measurements of solar flares, where the
emission is primarily driven by bremsstrahlung radiation from
accelerated particles. This may not accurately reflect the situa-
tion when the power is generated by the dissipation of Alfvén
waves in the chromosphere.

5. Conclusions and discussions
In close-in exoplanetary systems exhibiting SPMIs, Alfvén
waves carry a significant amount of Poynting flux from the planet
towards the star eventually leading to the formation of stellar
chromospheric hot spots capable of generating observable sig-
natures. The stellar transition region introduces a discontinuity
in the Alfvén speed profile, affecting the propagation of these
waves along the magnetic field lines connecting the planetary
obstacle to the star. This discontinuity can reflect a portion of the
wave energy back, with the reflection dependent on the wave’s
frequency, resulting in a frequency-dependent transmission pro-
file of the Alfvén waves. The primary objective of this paper is
to quantify the overall efficiency of energy transfer by Alfvén
waves through the stellar transition region, with a specific focus
on how frequency-dependent transmission affects the energy
transfer process. We performed numerical studies of propagation

of Alfvén waves from an exoplanet to the host star along one
of the magnetic field lines connecting the two. The propagation
takes place in a realistic streaming stellar wind background. The
key findings of this study are summarized as follows:

– Alfvén waves propagate with minimal reflection up to the
transition region (TR), beyond which their transmission
through the TR exhibits a frequency dependence, which can
be reasonably quantified by the Leroy-1981 model of Alfvén
wave propagation through stratified media;

– Quantifying the transmittance of Alfvén waves through a
discontinuity such as the stellar transition region reveals that
a frequency window exists, bounded by the lowest frequency
wave an obstacle can physically generate at the lower end
and the onset of PDI at the upper end. Within this window,
energy transfer through the discontinuity by Alfvén waves is
most efficient, with a significant reduction in transmittance
outside this range;

– The efficiency of energy transfer varies with exoplanet size,
stellar surface field strengths, and exoplanetary polar field
strengths. In all cases, the maximum efficiency achieved in
the entire parameter space is approximately 70%, whereas
the typical efficiency of realistic exoplanetary hot Jupiter
systems is on the order of 10%;

– Incorporating the efficiency factor at the transition region,
the energy budget available for generating chromospheric
hot spots, as predicted by the Lanza (2013) model, once
again begins to approach the outstanding issue of a require-
ment of unrealistically high exoplanetary magnetic field
strengths to account for the observed power emitted by these
hot spots.

In summary, these discrepancies emphasize the need to move
beyond simplistic estimations of the power budget associated
with SPMIs. In the application of our efficiencies to the systems
observed by Cauley et al. (2019), we have considered that the
transition region and the corona of the star were structured like
the solar atmosphere. We need to move on to parameterize ade-
quately the structure of the transition region of cool stars to better
assess the transmittance of Alfvén waves through them. Also,
considering that the energy involved in SPMIs can (in theory)
generate chromospheric hot spots, the partitioning of this energy
between various stellar activity tracers is still largely unknown.
Detailed modeling of the heating associated with SPMIs within
the chromosphere would be required to assess whether, for
instance, the canonical 0.2% used in this work for Ca-II K emis-
sion is realistic or not. Such modeling efforts would also allow
the assessment of energy partition into other tracers, for instance,
in the visible Hα (e.g., Strugarek et al. 2019) or other chromo-
spheric tracers in the infrared (e.g., Klein et al. 2021). A precise
quantification of the additional efficiency factors associated with
the process is essential. This includes, for example, the overall
emission efficiency of Alfvén waves upon reaching the chromo-
sphere and the efficiency factors governing their propagation to
the transition region. Notably, lateral inhomogeneities along the
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Alfvén wings could induce phase mixing, leading to the eventual
decay of the waves during propagation. However, this aspect lies
beyond the scope of the present study (Heyvaerts & Priest 1983).

The small-scale topology of stellar magnetic fields can differ
significantly from the large-scale magnetic flux used to charac-
terize the star. For instance, in a Sun-like star, the global averaged
flux value corresponds to approximately 1.5 G. However, local
small-scale features can exhibit magnetic field strengths of the
order of 1000 G, which could have potential to influence local
transmittance values. A subtle point to consider is that such
small-scale magnetic structures, are typically confined in height
as well. Regions of very high field concentration experience pro-
nounced superradial expansion in the chromosphere and lower
corona. This expansion typically reduces the steepness of the
Alfvén speed gradient and, depending on the altitude at which
the expansion occurs, it can significantly enhance transmittance
(Similon & Zargham 1992). Therefore, in essence, relying solely
on global, large-scale magnetic field strengths derived from, for
instance, Zeeman-Doppler imaging (ZDI), which offers limited
spatial resolution, may be insufficient to accurately characterize
energy transmission in such systems.

It is important to note that large planetary magnetic fields
necessarily involve large magnetospheres, which will intercept
an inhomogeneous ambient medium across the day-to-night
sides. As a result, a more refined approach, supported by robust
analytical frameworks and validated through self-consistent 3D
numerical simulations (e.g., Strugarek et al. 2015, 2022), is
essential for a comprehensive understanding of the associated
processes starting from generation of the SPMI power bud-
get, the dissipation during the propagation through the stream-
ing stellar wind, and, finally, the eventual dissipation in the
chromosphere. The photosphere-chromosphere boundary itself
may act as a source of Alfvén waves, which could poten-
tially interact with SPMI waves originating from the planet.
Counter-propagating waves are known to facilitate the develop-
ment of Alfvénic turbulence, which could, in principle, influence
the overall transmittance. However, investigating the effects of
nonlinear interactions between counter-propagating waves on
transmittance profiles represents a complex and extensive area
of study. While this line of inquiry is beyond the scope of the
current work, it presents a promising avenue for future research.
Ultimately, these findings reveal that there is still much to be
explored in the complex physics underlying SPMIs.
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