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Abstract. Infrared or thermal images are used in many civilian and
military applications to detect objects due to the heat they emit, es-
pecially when environmental conditions such as nighttime or adverse
weather prevent the use of visible images. To train an object detector
based on a deep neural network, a significant amount of annotated data
is required to achieve good detection performance. However, annotations
for infrared images are often unavailable and costly to obtain. Besides,
the trained model may show poor robustness against the change of ther-
mal sensor. Therefore, unsupervised domain adaptation (UDA) methods
have been proposed to train an object detector with annotated visible
images, which are easily available, and unannotated infrared images. This
paper presents a new visible-to-thermal UDA approach for object detec-
tion based on Deformable-DETR with hybrid matching. Our approach
aims to establish common features between visible and thermal images
at the earliest stages of the backbone network. The feature distributions
extracted from visible and thermal images are aligned thanks to discrim-
inator networks and adversarial learning. Gradient images are also used
as a domain translation of input images to ease the alignment. Detec-
tion performance is further improved by randomly masking tokens at the
input of the transformer. Experiments on public datasets demonstrate
that our method consistently outperforms previous works.

Keywords: unsupervised domain adaptation · object detection with
transformers · thermal imaging · feature alignment

1 Introduction

Thermal infrared images are used in many applications in both military and
civilian domains. They enable the detection of people and objects by capturing
the heat they emit, which is particularly useful in nighttime or adverse weather
conditions. The detection task involves generating bounding boxes around ob-
jects and classifying them. Many detectors have been proposed in the literature
based on deep learning approaches, achieving good performance across a wide
range of objects. However, they require a significant amount of training data.
Large detection datasets in the visible domain, such as MS-COCO [30], have
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been proposed to train these models. Despite efforts to release large-scale in-
frared datasets [21, 11], annotated datasets in the infrared domain are much less
common than in the visible domain. Additionally, using different sensors (re-
sponse, quality, sensitivity, etc.) under varying weather conditions may result in
thermal images with different distributions.

The challenges related to thermal data collection and annotation have led to
the development of unsupervised domain adaptation (UDA) methods from the
visible to the thermal domain, allowing the utilization of knowledge from the
more readily available visible domain. The model is trained using both visible and
thermal images. However, annotations are only provided in the visible domain.
Consequently, the model learns the task in the thermal domain through pseudo-
labeling or feature distribution alignment. Some previous works have focused
on visible-to-thermal UDA for classification and segmentation tasks, while only
Marnissi et al. proposed an approach for the object detection task [31]. The UDA
for the detection task from one visible domain to another visible domain has been
widely studied in the literature [32]. However, UDA from the visible domain to
the thermal domain presents a different challenge. Approaches must contend
with two distinct domains that possess very distinctive features. Additionally,
thermal images have a single component, while RGB images have three.

We therefore propose a new visible-to-thermal UDA detection framework that
aims to early align the distribution of the features extracted from both domains.
Our framework is based on the Deformable-DETR detector with hybrid match-
ing (H-Deformable-DETR) [22]. Many previous works align the distribution of
features after the backbone, at the detection stage of the model. We demon-
strate that early alignment of the features within the backbone can be beneficial
for the visible-to-thermal domain adaptation task. Our detection model takes
multi-scale backbone features as input. We propose to align the distribution of
these features from the two domains using discriminator networks and adver-
sarial training. Furthermore, we align the visible and thermal images by using
gradient images as a common translated input modality for the model. Gradient
images extracted from visible and thermal images are indeed much more similar
than the original images. Finally, we apply token masking to the input of the
detector transformer to improve its robustness.

The remainder of the paper is organized as follows. In the second section, we
introduce previous work about UDA for detection and visible-to-thermal domain
adaptation. We describe our method in the third section. Experimental results
on two public datasets are provided in the fourth section.

2 Related work

Unsupervised domain adaptation (UDA) involves training a model with anno-
tated data in the source domain and unannotated data in the target domain.
This technique enables the training of a model adapted to a target domain with-
out requiring annotation for the target data. In the literature, various UDA
methods have been proposed for classification tasks, segmentation tasks, and
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detection tasks. In this section, we will first review previous work related to
UDA for object detection. Subsequently, we will delve into the specific case of
visible-to-thermal UDA.

2.1 Unsupervised domain adaptation for object detection

The UDA methods for object detection can be classified into three main cat-
egories [32]: pseudo-labeling, domain invariant feature learning and image-to-
image translation.

Pseudo-labeling frameworks generate annotations for the target images us-
ing confident detections obtained by a model trained on the source data. Soft
labeling is employed in the framework proposed by RoyChowdhury et al. [35]
to mitigate the risk of incorrect pseudo-labels. In the approach by Khodaban-
deh et al. [24], bounding boxes are generated by the detection model trained on
labeled source data while pseudo-label classes are provided by an additional im-
age classifier. Kim et al. [25] proposed an algorithm that mines positive samples
and weak-negative samples for each class of pseudo-labels. Zhao et al. [47] in-
troduced a method that aligns features by minimizing the discrepancy between
the Faster R-CNN region proposal network and the region proposal classifier.
Other approaches utilize a mean-teacher architecture where the teacher model
generates pseudo-labels to train the student. The teacher weights are then up-
dated from the student model using exponential moving average (EMA). Cai et
al. [2] perform random augmentations on a target image to obtain two images,
ensuring the consistency of student predictions between them. In the recent MIC
approach [18], the student network is trained by matching the pseudo-labels it
generates on masked target images with those generated by the teacher. The
Harmonious Teacher method [10] focuses on improving the consistency between
classification scores and the Intersection-Over-Union between predicted and real
object bounding boxes.

Domain invariant feature learning methods focus on aligning the fea-
tures extracted by the model between the source and target domains. This is
often achieved by adding discriminator modules to the original detector, which
learn to classify whether the images come from the source domain or the target
domain. Thus, the objective for the detector is to generate common features be-
tween the two domains. Therefore, a gradient reversal layer [13] is often added
between the feature outputs and the discriminator in order to achieve this con-
tradictory goal. The approach of Chen et al. [6] aligns the features produced by
a Faster R-CNN model [34] at both the instance level and global image level. Its
extension [7] integrates a feature pyramid network to independently align the
image and object features of each scale. In the framework of Saito et al. [36],
local image-based features and global instance-based features are extracted and
aligned at two different levels of the network. Hsu et al. [19] align the instance
features at the center of the object proposals. MeGA-CDA [39] aligns the features
with a discriminator at the global level and a discriminator for each category.
Since the object categories are unknown for the target images, memory-guided
attention maps redirect the features to each discriminator. Li et al. [29] use a
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mean-teacher architecture and integrate a discriminator to align the distribution
of features generated by the student network.
Graph reasoning techniques model the relations between objects and categories
in the source and target images as graphs. The framework proposed by Xu et
al. [42] aligns the detected object proposals by merging them. It also aligns
the object classes between domains by improving the compactness of each class
and its separability from others. Similarly, I3Net [5] follows the same alignment
objectives. It weights the target samples based on adaptation difficulty, boosts
foreground objects, suppresses redundant background information, and aligns
category features between domains using consistency regularization. SIGMA [28]
transforms model features into graphs and employs graph matching theory to
align class feature distributions.

Image-to-image translation methods involve using a model to convert
images from one domain to another. Chen et al. [4] utilize CycleGAN [48] for
generating synthetic samples and enhancing the training of the adversarial do-
main discriminator. Similarly, CycleGAN is employed by Hsu et al. [20] to create
synthetic annotated images. Subsequently, their features are aligned with target
image features using an adversarial discriminator. Deng et al. [9] use images
translated from the source to the target domain with CycleGAN to mitigate the
bias of the teacher and student networks towards their trained domain.

The methods listed above are based on convolutional detectors, with the
most frequent one being Faster R-CNN. However, recent approaches have also
been proposed for Deformable-DETR detectors [49] based on transformers [38].
MTTrans [43] utilizes a mean teacher approach for pseudo-label generation. The
method proposed by Wang et al. employs a feature alignment strategy [40]. DA-
DETR [46] adds feature fusion modules to enable information communication
across channels. These approaches do not directly align features at multiple
output levels of the backbone. While multiresolution feature alignment has been
studied for Faster R-CNN detectors [17, 41], it has never been used with DETR
architectures. Visible and thermal images have very different characteristics. We
believe that early feature alignment is important for efficient visible-to-thermal
UDA. Multiresolution feature alignment in the backbone network can achieve
this objective.

2.2 Visible-to-thermal domain adaptation

The unsupervised domain adaptation from visible-to-thermal images has re-
ceived less attention in the literature. For the semantic segmentation task, MS-
UDA [26] performs UDA from a large visible dataset to a smaller unlabeled
visible and thermal paired dataset using pseudo-label generation. Gan et al. [12]
employ domain-specific attention maps for segmentation and classification tasks.
The network is trained with adversarial learning and fine-tuned with pseudo-
labels. Akkaya et al. [1] select high-confidence pseudo-labels that fool a trained
domain discriminator. Regarding the detection task, Lee et al. proposed a GAN-
based visible to thermal image translation method [27] that focuses on preserving
the edges. It is trained on a combination of large visible and thermal datasets.
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They conducted thermal detection experiments by training a VFNet detector
[44] on a synthetic dataset [23] translated using their method. To our knowledge,
only Marnissi et al. [31] have attempted visible-to-thermal UDA for detection.
Their UDAT framework, based on Faster R-CNN, requires annotations only in
the visible domain. It also aligns features at four different feature map levels and
instance levels. Given the distinct characteristics of visible and thermal images,
our approach proposes to align thermal and visible features at shallower levels
of the network so that deeper levels can benefit from features with common dis-
tributions. It also aligns visible and thermal images by using gradient images, as
a common translation domain, at the input of the model.

3 Our method

3.1 Overview
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Fig. 1. Illustration of the training of our visible-to-thermal unsupervised domain adap-
tation method for object detection based on H-Deformable-DETR. The model is trained
with a supervised detection loss Ldet on visible images. The distribution of features
extracted from visible and thermal images are aligned with adversarial learning. The
discriminative loss Ldisc trains the discrimination networks FFNdisc connected to the
token generators FFNtok of the backbone output levels through gradient reversal lay-
ers GRL (details in section 3.3). Gradient images are also used as a common modality
for backbone inputs (details in section 3.4). Token masking improves the detection
robustness (details in section 3.5).

Our framework is based on the H-Deformable-DETR detector [22]. In order
to detect objects in the thermal domain, for which we do not use annotated
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training data, we simultaneously train our detector in a supervised manner with
annotated training data from the visible domain and align the distribution of
features extracted at several levels of the backbone network. We refer to this
strategy as "early alignment" (EA) because the prioritized feature distribution
alignments occur at the shallowest output levels of the backbone network. This
alignment is performed using discriminator networks connected to the model
through gradient reversal layers. We use the image gradient operation as an
image domain translation method. The gradient images, extracted from visible
and thermal images, serve as inputs to the model. They reduce the domain gap
between the visible and thermal images. Finally, we apply token masking at the
output of the backbone to increase the model’s generalization.

3.2 Baseline detector

The H-Deformable-DETR detector belongs to the DETR family of detectors [3]
based on transformers [38]. With the Deformable-DETR detector [49], the input
images are first processed by a ResNet-50 backbone [16] that extracts features
at a single resolution. These features are then transformed into tokens by the
feedforward networks FFNtok. The shallowest output layer of the ResNet-50
backbone is discarded, and an additional output layer is artificially added by
applying another FFNtok to the last output layer. Positional embedding is then
added to the tokens. They are processed by a transformer encoder and then by
a transformer decoder. The decoder takes as additional inputs object queries
that are learned parameters. The model predicts for each decoder output token
a class score and a bounding box. During training, each ground-truth object is
associated with a decoder query using Hungarian matching based on class scores
and bounding box IoU criteria. Deformable-DETR replaces the transformer at-
tention modules with multi-scale deformable attention modules. Instead of com-
puting an attention map for all input feature locations, the deformable attention
module is trained to sample only a few significant points around the reference
point. This sampling is done at different feature-map scales. It speeds up the
model training and improves the detection of small objects. The hybrid match-
ing of H-Deformable-DETR increases performance by employing a second round
of ground truth and object query matching. In this round, each ground truth can
be assigned to multiple decoder queries from a second set of queries. We utilize
the two-stage variant of H-Deformable-DETR [49]. The encoder generates object
proposals, and the proposals with the highest scores are selected to be refined
by the transformer decoder. Their bounding boxes are fed to the transformer
decoder as positional embeddings of the decoder object queries. The model is
trained in a supervised way with the images and the annotations of the visi-
ble domain. The supervised detection losses are the same as with the original
H-Deformable-DETR. We call their sum Ldet.
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3.3 Early feature distribution alignment

Our main objective is to build a detector that has a high performance in the
thermal domain. Consequently, we want our backbone to generate domain ag-
nostic tokens. Our model should produce features with the same distribution for
the thermal or visible images. The features learnt with annotated visible images
should also be a good representation of thermal images. To this end, we add at
each output of the backbone, gradient reversal layers GRL followed by discrimi-
nator networks FFNdisc. The role of the discriminators is to classify the tokens:
they determine whether tokens come from a thermal image or a visible image.
Each discriminator is composed of 5 linear layers with the same dimension as
the transformer. The first 4 layers are followed by a ReLU activation function.
The output dimension of the last layer is 1. Our discriminator learns to classify
tokens coming from either thermal or visible images. However, we aim for back-
bone features from both domains to be indistinguishable. Therefore, the GRL
inverses the signs of the gradients to enable the adversarial learning between
the backbone and the discriminators. We use a cross entropy loss to train the
discriminator networks:

Ldisc = −
∑
l

wl

∑
t

yl,t × log(xl,t) + (1− yl,t)× log(1− xl,t)

where l is the output layer of the backbone network, wl is a weight for the layer
l, t is the token, xl,t is the output of the discriminator network for the layer l and
token t and yl,t is its target value. Features extracted by the backbone network
at the shallowest layers are more of spatial nature while features extracted at
the deepest levels of the network are more semantic, so less dependent from the
input domain. As we want an early alignment of the features, we set much higher
weight wl to the shallower layer outputs than to the deeper ones.

During training, we build mini-batches with one half of the images coming
from the visible domain and the other from the thermal domain. The adversarial
discriminative loss Ldisc applies to both thermal and visible images. The feature
alignment task and the detection tasks have two objectives that may disturb
each other. The feature alignment task may want to generate completely uniform
distribution of features so the discriminator is unable to determine whether they
come from visible or thermal images. To balance the importance of the feature
alignment task relative to the detection task, we dynamically weight Ldisc with
the coefficient α based on the value of Ldet, ensuring that a constant ratio rloss
between the two losses is maintained:

αLdisc

Ldet
= rloss

where rloss is a constant positive parameter set for the entire training. At
each iteration, Ldet and Ldisc are first computed on the total of the mini-batch
of images. Then α is determined with the formula:

α =
rlossLdet

Ldisc
.
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No gradient is backpropagated before the determination of α. It becomes a
scaling constant for the computation of the total loss:

Ltot = Ldet + αLdisc.

Notice that α is forced to zero for the first epoch in order to bootstrap the
detector without the discriminative loss. This mechanism improves the stability
of the training.

3.4 Input gradient images

Fig. 2. Visible and thermal images from the Free FLIR dataset [11] (top) and their
respective Sobel gradient intensity images (bottom). Despite the fact that the visible
and thermal gradient images do not outline the same visual features, the domain gap
appears to be narrower than with the original images.

We use the gradient images as a common modality to reduce the domain
gap between the visible and thermal. The Sobel [37] and Prewitt [33] image
gradients have the advantage of being quick to compute. Their intensity images
have a similar appearance between visible and thermal images, as depicted in
Figure 2. The gradient outlines edges in the input images, which is crucial for
detecting objects in both domains. We compute the gradients for each axis with
the following convolutions:
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GPrewittx =

−1 0 1
−1 0 1
−1 0 1

 ∗ I ; GPrewitty =

−1 −1 −1
0 0 0
+1 +1 +1

 ∗ I

GSobelx =

−1 0 1
−2 0 2
−1 0 1

 ∗ I ; GSobely =

−1 −2 −1
0 0 0
1 2 1

 ∗ I

Gradient images are then obtained by taking the L2 norms of the gradients:

GSobel =
√

GSobelx
2 +GSobely

2 ; GPrewitt =
√
GPrewittx

2 +GPrewitty
2

The gradient images are then normalized between 0 and 1. During training,
we randomly switch between the Sobel and Prewitt gradients to artificially aug-
ment the amount of training data. During inference, only the Sobel gradient is
used.

3.5 Detector token masking

Image masking in the pixel space has shown its effectiveness for UDA [18]. In-
stead, we propose to leverage this mechanism by randomly masking the trans-
former tokens from all input levels. Token masking has also been shown to be
beneficial for pretraining Vision Transformer models [15]. In our case, it aims at
forcing the model to rely on features from all the input levels of the transformer
by reducing the overfitting. Token masking is performed by randomly selecting
a random ratio αm of token at the input of the transformer encoder and setting
their value to 0. Gradient backpropagation is halted for the masked tokens.

4 Experiments

4.1 Dataset

To run our experiments, we use the Free FLIR "aligned" dataset [45], version
derived from the original version 1.3 [11]. It provides annotations for 4,129 well-
aligned thermal and visible image pairs for training and 1,013 image pairs for
testing. However, in this UDA work no alignment is used: the visible and thermal
images from the training set are used in an unpaired way during training. The
testing is performed on the thermal images from the test set. In addition, only
the person, bicycle and car classes are considered.

Experiments are also performed on the KAIST dataset [21]. We use the
"sanitized" annotations and the image sets provided in the latest release of the
dataset, selecting one out of every four images for the train set and one out of
every twenty images for the test set. In line with previous evaluation protocols on
this dataset [45, 31], only instances annotated with the class "person", "person?"



10 Maglo and Audigier

or "people" are kept and grouped in a common "pedestrian" class. Bounding
boxes with the minimum of the width and height inferior to 50 pixels or flagged
as occluded are discarded. At the end, only images with at least a valid bounding
box are used for training and testing. This resulted in a dataset of 4,110 image
pairs with 7,908 instances in visible images for training and 859 thermal images
with 1,846 instances for testing.

4.2 Implementation details

We built our framework on top of the implementation of H-Deformable-DETR
[14] based on the Pytorch framework. Our model utilizes a ResNet-50 backbone
[16] pretrained on ImageNet [8], with the remaining parts of the model initialized
with random weights. As base configuration for the H-Deformable-DETR, we
chose the two-stage configuration from the official implementation that performs
the best on the MS-COCO dataset [30]. Thus, the number of queries for the one-
to-one matching is set to 300. For the one-to-many matching, each ground truth
is set to one of 1500 queries. The weight of the one-to-many matching loss is
set to 1. The mixed selection is used. The dimension inside the transformer
is set to 256 and its feed-forward network dimension is set to 2048. The data
augmentation techniques of Deformable-DETR are used: random horizontal flip,
crop and resize. In our experiments, all the model layers are trained during 12
epochs with the AdamW optimizer on two NVIDIA RTX A5500 GPUs with 24
GB or RAM. The learning rate is set to 2× 10−5 for the backbone network and
2 × 10−4 for the rest of the network. It is divided by 10 after 11 epochs. The
weight decay is set to 10−4. The batch size is set to 4: two random visible images
and two random thermal images. The wl feature distribution alignment weights
are set to 10, 1, 10−4 and 10−5 for shallower to deeper layers, respectively. The
token masking ratio αm is set to 0.2. The ratio between the discrimination and
the detection loss rloss was fine-tuned to 0.32 after a grid-search on the Free
FLIR dataset. The same value of rloss is used for the experiments on the KAIST
dataset. We observed that the concurrency between the supervised detection
loss Ldet and the discrimination loss Ldisc can lead to training instabilities and
catastrophic detection performance. Disabling Ldisc for the first training epoch
removed this issue in our experiments.

4.3 Results

Experimental results on the Free FLIR dataset are reported in Table 1. We use
the mAP metric with an IoU of 0.5. We compare our method to existing UDA
state-of-the-art approaches generaly evaluated on visible-to-visible benchmarks
[6, 7, 36, 4, 40, 18, 10]. Only UDAT [31] is specialized in visible-to-thermal UDA.
Some experimental results of previous work have been originally reported by
Marnissi et al. [31]. For methods we trained and evaluated, we provide mean
and standard deviation values over four different runs. Our method outperforms
all previous works in terms of mAP. It reaches an average mAP of 68.4 % on
the Free FLIR dataset, about 4.9 percentage points (pp) higher than the SOTA
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SFA [40]

Our method

Ground truth

Harmonious teacher [10]

MIC [18]

Fig. 3. Qualitative detection results on the thermal images of Free FLIR dataset. The
red, blue and green bounding boxes correspond respectively to the person, car and
bicycle classes. The score threshold is set to 0.4 for all the methods. No Non-Maximum
Suppression is used.
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Table 1. Performance in mAP (%) on the Free FLIR aligned dataset without using
alignment. Results marked by * have been originally reported by Marnissi et al. [31].
The others show mean and standard deviation of the mAP we obtained by training on
4 runs each. EA stands for the early alignment of features distributions; grad. img. for
the use of gradient images; mask. token. for the random masking of the transformer
encoder input tokens.

Method Car Bicycle Person Average mAP
DA-faster [6]* 59.90 24.30 26.60 36.93
SWDA [36]* 58.96 32.02 32.32 41.40
HTCN [4]* 56.37 37.95 33.17 42.49
SA-DA-faster [7]* 70.38 33.30 47.27 50.30
UDAT [31]* 66.83 49.34 43.41 53.19
MIC [18] 67.89 ±5.81 48.45 ±5.53 57.20 ±6.85 57.85 ±5.96
SFA [40] 77.33 ±1.37 45.14 ±3.66 55.58 ±2.23 59.35 ±1.44
Harmonious teacher [10] 78.36 ±1.25 45.67 ±0.71 66.46 ±1.43 63.50 ±0.79
Baseline 68.11 ±2.09 49.91 ±2.01 45.15 ±2.90 54.38 ±2.25
EA 75.29 ±1.16 53.35 ±0.94 50.46 ±1.56 59.70 ±1.04
EA + grad. img. 82.81 ±0.39 51.27 ±2.14 67.47 ±1.25 67.18 ±1.00
EA + grad. img. + mask. tok. 82.76 ±0.47 54.55 ±1.31 67.92 ±0.69 68.42 ±0.32

method Harmonious teacher [10]. In order to demonstrate the performance im-
provements brought by each of our components, we conducted an ablation study.
The results are provided in Table 1. The "Baseline" method corresponds to the
H-Deformable-DETR detector trained on visible images and tested on thermal
images without any adaptation. The early alignment of feature distributions im-
proves the mAP by approximately 5.3 pp. The use of gradient images results
in an additional improvement of around 7.5 pp. Finally, random token masking
enhances the mAP by 1.2 pp. Some qualitative detection results on the Free
FLIR dataset are provided in Figure 3.

Experimental results on the KAIST dataset are reported in Table 2. We
compare our method with the previous works that performed best on the Free
FLIR dataset. Surprisingly, the Harmonious teacher did not perform so well
in this benchmark, whereas our approach outperforms the best SOTA method,
MIC [18], by about 4.1 pp. We also conducted an ablation study on this dataset,
which shows performance increase for each of the components of our approach.

4.4 Discussion

Our approach consistently outperforms previous works on the Free FLIR and
KAIST datasets. It uses less computational resources during training than mean
teacher approaches [10, 18] that must store, at least, two versions of the model in
memory. Our method is easily implemented on top of the efficient H-Deformable-
DETR detector that has available source code [14]. It uses the same initial 48
million parameters with only 1 million extra parameters for the domain discrim-
inators FFNdisc during training.
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Table 2. Performance in mAP (%) on the KAIST dataset.

Method mAP
Harmonious teacher [10] 32.79 ±2.08
SFA [40] 37.86 ±0.80
MIC [18] 41.95 ±3.38
Baseline 26.45 ±3.69
Early alignment 34.04 ±3.35
Early alignment + gradient images 42.65 ±2.62
Early alignment + gradient images + masked tokens 46.04 ±1.94

5 Conclusion

We present in this paper a new visible-to-thermal unsupervised domain adap-
tation method based on an efficient H-Deformable-DETR detector. We demon-
strate that early feature distribution alignment combined with image domain
translation through gradient images is key to achieving good detection perfor-
mance in the thermal domain. For future work, we aim to study the perfor-
mance of our method on thermal images captured by various sensors under
different weather and temperature conditions. Additionally, we plan to explore
the applicability of the early alignment and gradient translation principles to
segmentation approaches.
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