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Dream of a fusion reactor: the tokamak

m High heat fluxes on the divertor

m Challenges of a good plasma confinement

m Simulations to understand and predict plasma behaviour

SOLEDGE3X is a FVM fluid code for edge plasmas

m Solve drift-reduced Braginskii equations

Study edge turbulence to understand plasma confinement
Turbulence is driven by E x B drifts

Understand and predict heat fluxes on the wall

Estimate transport coefficients for reduced models

Limitations of the SOLEDGE3X turbulence
m Low electric resistivity in Ohm’s law at high temperature

m In H-mode plasmas electromagnetic effects dominate
Model of the ITER reactor radial transport

Cea R. Dill, ECCOMAS 2024, Lisbon 03/06/2024



Do we need electromagnetic effects in electrostatic

turbulence ?

m Non-negligeable effects on edge transport

s EM response to external magnetic field variations (e.g.
ripple)
m Impact on divertor heat transport [Xu et al, NF 2019]

m EM flutter stabilizes EM turbulent structures [Zhang et
al, NF 2024]

m Towards the LH transition
m Existence of drift Alfvén turbulence [Scott, PPCF 1997]

m Impact on filament shape in turbulent blob propagation
[Lee et al, INM 2015]

m Turbulent simulations on large machines (e.g. ITER)
require electromagnetic effects

m Stronger effects for high-£ plasmas
m Electron inertia becomes mandatory

m Constrain the shear Alfvén wave speed to physical
values [Dudson et al, PPCF 2021]

m Improvement of the numerical stability [Stegmeir et al,
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The electrostatic vorticity equation

1al - The electric field for E X B drifts is obtained from the potential: E;, = -V, ®
0.2+ 250 . .
- m The potential ® appears in:
o1 e, m Polarization current jP° = 3,
oFf 5 o o lnl
|00 with the vorticity w = =V, @+ 7 Bz V,p;
0.1+ .
150 m the parallel electric fleld E”b =-Vo
-0.2+
0 for Ohm's IaWj” = O] (E” + L(b . V”pe St Re I ))
03 5 €ne '
-0.4+ g
1‘ - - s . m The total charge conversation V - jt°t = 0 gives us the system:

WEST turbulent proflle

F Mg _
VEeZ B2 achq’JfV (UlEqu’)b Vg Pe+ Rey) |b+V-j,
:----q IIIII l ‘. .l
L {
Ratio between 6 ) ) : "
oo . > 10 ,
e T e P T High anisotropy ->poor numerical condition !
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Magnetic induction in the vorticity equation

Implicit system on 3 fields: electric potential ®; parallel magnetic vector potential 4, ; parallel current density j,

eZ Bz atVJ-CD =V-(yb)+V-jL Vorticity equation

IIIIIIIIII Illqlllllll

giEEEEESE b Vp

7Uwﬁ S0 + 7 Qn;ﬁ- —b-V®:— 0 Ap+ ——— + Ry

Lasmmmnm e

‘IGIIIIIIIIIllll......lllllllllllll

: |7 (V. 4, = Hojy : Ampére's law

Ohm's law

/ ) Boundary conditions for 4, and j :
1T 1 1 ’ = Dirichlet 47“=0 on the sheath and tangential wall
i ¥ = Sheath current jB¢ = jo,. (1 — eA~®/Te)
X X x f
X X T Improved matrix condition expected with a finite
X X 1 electron mass

- Parallel diffusion coefficient on ®: 1+
X XK X X 77|| mtH

with u = me/(my n.6;)

A, and j, are defined on a poloidally

and toroidally staggered grid
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ipg=0, ir=1(2.941190e - 02s) ip=0, k=1(2.941190e - 02s)

Electromagnetic flutter

1.4x1073 ’

= Definition of the electromagnetic potential: ¥ Y3,

VXA=B

1.2x1073 P

=  Assume small perturbations of the equilibrium
magnetic field:

B=B., +B

o F 1.ox10!

1.0x107?

8.0x107*

= From the value of the toroidal perturbation field
Ay

r 0.0

Z[m]

6.0x107% v »

s ,\ I -1.0x10}
4.0x1074 g

E — (V X beq )A|| - beq X V/I"

= The perturbation field b is calculated from A, at
the previous timestep

2.0x107* ¥
—2.0x10}

= b is considered for the advection and the
parallel diffusion of the conserved fluid
quantities: 0.7 0.8 R[mc]).s 1.0 11 ’ 0.7 0.8 R[mcl).s 1.0 11

= jon density n; Amplitude of the perturbation field |B| (left) and radial flutter
drift velocity (right) for a TCV case with B; = 0.95T

_ The plasma g is ~1073 at the core, ~10~* at the separatrix
= electron and ion temperature T, and T; and below ~10-5 in the far SOL

= jon momentum n;v;
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Model verification
and validation



MMS verification Linear validation
Reduced four-field model on a 3D slab:
Use the method of manufactured solutions on. =1V . jub
[Roache, SFMA 2019] to check the new —_— P e :
system on @, 4, and j V. [ BLZ l atVltb] =V - (jb)
1'+mea'—(TeV1 VCID)b d.A
Pe—— [ J”Ju n,e2 thi =\ Vit e I tA]
A D T S — V-V Ay = —pojy
s | A g We expect a decaying standing wave with frequency:
¢ ,  Vi+Kk:
© A W W " ——————
. 4 O 14ckz !
£ — The parallel wave speed is bound by:
g = Alfvén wave group velocity v = _BZ_MO for low k
T | i S 3 = Electron thermal speed v, , = % = em—Te for high k

Grid resolution - 1.3% 0.75

Estimated numerical errors for different 3D mesh
resolutions. The dashed lines indicate the theoretical
2"d order convergence.

normalized values
=]
o
=

0.0 0.2 0.4 0.6 0.8 1.0
time [s] le—6
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Inductive effects on plasma blobs

geometry.
of the turbulent filaments.

dominate again

. R. Dill, ECCOMAS 2024, Lisbon

We consider a single blob that evolves in a curved slab

The blob is initialized as a local density perturbation of a _c
background plasma with a high 8 ~ 1072 where
magnetic induction has a strong impact on the formation

As the blob diffuses into the background plasma, Its 8
value decreases and classic drift wave dynamics
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Impact on turbulence with the TCV-X21 case

=  Simulation of a quarter of a torus with ~2e6 cells
= Density feedback on the separatrix to ng, = 7 - 10'® part/m?

= 200kW ohmic heat source and fluid neutrals with 90% recycling

ne- [m=3] _ E::J - — E::J . .
— Phiag — PHIAY Total kinetic energy of the ExB drift

flutter — flutter

velocity over the full simulation time

—— PHI
—— PHI-J
—— PHI-A-)
—— flutter
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Numerical implications

= Simulations run on MARCONI with 768 cores on 16 nodes
= PETSc iterative solver: GMRES with multigrid GAMG preconditionner

—— PHI —— PHI — PHI
— PHIJ — PHI-J —— PHI-)
—— PHI-A-J —— PHI-A-J —— PHI-A-J
— flutter — flutter —— flutter

= -
o N
o o

o2}
o
solve time [s]

w
c
o
S
©
-
[
=
o
]
p4

()]
o

H
o

N
o

o

time [ms] time [ms] time [ms]

1 — optimal timestep size (to match theCFL condition)
2 — number of iterations of the implicit solver

Magnetic induction only slightly decreases 3 — CPU time spent on the vorticity system per timestep

the performance compared to the
electrostatic reference

Electron inertia reduces the computing time
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Conclusion




Conclusion

= Addition of two new fields to the SOLEDGE3X model:
m the parallel electromagnetic vector potential A; known from Ampere’s law
« generates magnetic induction in the parallel electric field
 causes small perturbations to the magnetic equilibrium
m Afinite electron mass to reduced Ohm’s law causing inertia of the parallel current density j,
- Improves the numerical stability
- constrains the Alfvén wave speed
m Verification via the Method of Manufactured Solutions and validation on a linear test case
m Even at low 3, electromagnetic effecs impact drift-wave turbulence
m Magnetic induction affects blob propagation and filament formation
m Flattening of mean profiles and increased turbulent transport
m Flutter only has a local impact on filament shapes
m Additional numerical costs for electromagnetic effects remain within limits

@ R. Dull, ECCOMAS 2024, Lisbon 03/06/2024 17



Backup: Turbulent profiles

PHI PHI-J

flutter

= 15

- 10

- -10

- 15

time: 3.756e-03 s

Toroidal perturbations of the electron temperature T, [eV] after 3.8ms simulated time
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Backup: Comparison with the TCV-X21 case
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