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Chemical disorder has a major impact on the characterization of the atomic-scale properties
of highly complex chemical compounds, such as the properties of point defects. Due to the vast
amount of possible atomic configurations, the study of such properties becomes intractable if treated
with direct sampling. In this work, we propose an alternative approach, in which samples are
selected based on the local atomic composition around the defect, and the defect formation energy
is obtained as a function of this local composition with a reduced computational cost. We apply this
approach to (U,Pu)O2 nuclear fuels. The formation-energy distribution is computed using machine-
learning generative methods, and used to investigate the impact of chemical disorder and the range
of influence of local composition on the defect properties. The predicted distributions are then used
to calculate the concentration of thermal defects. This approach allows for the first time for the
computation of the latter property with a physically meaningful exploration of the configuration
space, and opens the way to a more efficient determination of physico-chemical properties in other
chemically-disordered compounds such as high-entropy alloys.

I. INTRODUCTION

Multi-component solid solutions have raised much in-
terest due to the great versatility of their applications
and the possibilities of optimizing their properties. By
altering the chemical composition, it is possible to tune
the desired properties and increase, e.g., their irradiation
resistance [1, 2], or to modify their elastic or electronic
[3–5] properties. However, these compounds can be char-
acterized by different degrees of chemical disorder [6]. It
is the case for instance of high-entropy alloys (HEA) [7–9]
or mixed-actinide oxides used as nuclear fuels [10]. Be-
cause of the chemical disorder, determining their physical
properties at the atomic scale can be challenging. Since
different atomic species occupy the same crystal lattice,
they can be distributed on the lattice sites in many dif-
ferent ways. The large number of possible configurations
makes it computationally expensive to exhaustively ex-
plore the configuration space for computing properties
that depend on this distribution. As a result, character-
izing these properties is a challenging task.

Point-defect properties are an example of properties
that are strongly dependent on the atomic distribution.
Two main approaches exist in the literature to address
this challenge. The first one consists of using special
quasirandom structures (SQS) [11–13]. This allows for
the selection of the most disordered structures, which
are expected to be the most probable ones in ideally
disordered solutions, i.e., solutions with negligible mix-
ing enthalpy. This was the case for instance of previous
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works aimed at computing the vacancy formation and
migration energy in AlHfScTiZr HEAs [13], or the va-
cancy formation energy in NIFeMnCr HEAs [12]. How-
ever, if the solution is not perfectly ideal, the most dis-
ordered structures are not necessarily the most probable
ones. Furthermore, even in the case of perfectly disor-
dered solutions, SQS provides only few structures that
are not necessarily representative of the whole configu-
ration space. This can be sufficient to compute proper-
ties at higher temperature, where the energy difference
between different atomic configurations is limited, and
the system is less sensitive to the specific arrangement of
atoms. Conversely, at low temperature, only a few spe-
cific low-energy configurations contribute significantly to
the physical properties of the system, and they do not
necessarily correspond to perfectly disordered SQS su-
percells. This hinders the versatility of the SQS method.
The second approach is to select configurations via

Markov Chain Monte Carlo (MCMC) techniques. For
instance, in the work of Takoukam-Takoundjou et al.
[11], MCMC was applied to sample a large number of
configurations and compute the average thermodynamic
properties of chemically-disordered (U,Pu)O2. Due to
the large size of the configuration space, the ergodicity
of the Markov process of the MCMC calculations can be
ensured only with the exploration of a very large amount
of configurations. Depending on the method used to
compute the forces and energies of the system [14], this
can require a heavy amount of computational resources.
Takoukam-Takoundjou’s work was performed with an in-
teratomic potential [15], but it would have been impos-
sible to carry out such an extensive sampling with more
accurate ab initio methods such as density functional the-
ory (DFT) [16].
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A different approach was attempted by Bathellier et al.
[17] to study the defect formation energy in (U,Pu)O2 us-
ing an interatomic potential [15]. The idea is to carry out
a systematic exploration of the configuration space, by
limiting its size to a small atomic environment around the
defect, and then progressively increasing its size. Since
the number of configurations grows exponentially with
size, such a method becomes impractical if the range of
influence of chemical disorder around the defect is larger
than the size of the local environment that can be treated
within a reasonable computational cost. Indeed, Bathel-
lier et al. performed a systematic exploration up to the
second cationic nearest neighbors (nn) around the defect
(18 cations), while showing at the same time that the
local environment affects the defect formation energy up
to the third nn (42 cations). However, systematic explo-
ration up to the 3nn (242 possible configurations) with
the same interatomic potential would require approxi-
mately 367 billion hours of CPU time on an average su-
percomputing facility. Because of that, the systematic
approach in [17] was limited to the 2nn shell, and the
effect of the 3nn shell could not be determined.

The aim of our study is to propose an alternative ap-
proach, which allows for a physically significant explo-
ration of the configuration space while reducing the num-
ber of required configurations and thus minimizing the
computational cost. It consists of two parts. First, we re-
duce the size of the configuration space by focusing only
on the atoms in the closest vicinity of a defect. Many
studies conclude in fact that the chemical configuration
in the proximity of a vacancy has a strong impact on the
formation energy calculations, and it is reasonable to as-
sume that this impact fades out with distance [17–22].
Then, we sample configurations from this reduced space
to approximate the distribution of the targeted defect
property with a machine-learning (ML) model. This dis-
tribution can be used to extract the physical information
about the impact and the range of influence of the chem-
ical disorder on the defect property. We show that this
approach requires the sampling of far fewer configura-
tions than MCMC, while yielding a set of configurations
that is more physically representative than a few SQS
structures. In addition, we show that the size of the lo-
cal environment can be easily extended to the limit where
it has no more influence on the target properties, with
little added computational cost.

ML methods of generative type [23] are well suited for
the prediction of probability distributions. There are sev-
eral different types of generative methods. For example,
generative adversarial networks (GANs) [24] allow for the
construction of probability distributions by framing the
objective as a supervised learning problem with two com-
peting sub-models. Other examples are variational au-
toencoders (VAE) [25, 26] or deep belief networks (DBN)
[27], both allowing for the generation of complex distribu-
tions. A model with an excessive amount of adjustable
parameters can often demand a substantial amount of
training data. However, using large and complex archi-

FIG. 1. Representation of three types of bound Schottky
defects in the fluorite structure of (U,Pu)O2, with the oxygen
or cation vacancies marked as Va or Vc respectively

tectures is not always necessary, as we show in this work.
In our approach, we consider the defect property (e.g.,
the formation energy) to be mainly influenced by the
atoms closest to the defect, and treat the impact of fur-
ther atoms as a random noise that we assume is normally
distributed. Therefore, we adopt a semi-supervised ap-
proach to model the formation-energy distribution using
a Mixture Density Network (MDN) [28], which treats the
distribution as a Gaussian random variable [29]. Further
details on this approach are provided in Section IID.
We demonstrate the benefits of this approach by study-

ing the formation energy of bound Schottky defects
(BSD) properties in (U,Pu)O2, namely the calculation
of their formation energy and equilibrium concentration
as a function of temperature. A schematic representa-
tion of different types of BSD defects in the (U,Pu)O2

fluorite structure is shown in Fig. 1. These defects are
a predominant radiation damage feature and a favorable
site for fission gas trapping in UO2, as shown by Positron
Annihilation Spectroscopy (PAS) measurements [30, 31]
coupled with DFT calculations [32, 33]. This indicates
that bound Schottky defects are among the most stable
defects in uranium oxides. However, there is very scarce
data about the properties of BSD or other point defects
in (U,Pu)O2 in the literature [11, 17, 34]. We show that
MDN can be effectively applied to such a system in a very
robust and cost-efficient way, allowing for the determina-
tion of disorder-dependent properties and the influence
of larger local environments with relatively little com-
putational effort, compared to the previous study [17].
Moreover, the same approach could be useful from the
perspective of studying other disordered systems, for in-
stance for the investigation of defect properties in HEAs.
The paper is organized as follows. The mathemati-

cal framework to compute the concentration of thermal
defects in disordered compounds is presented at the be-
ginning of Sec. II. In Sec. II C, we show how we compute
defect concentration from a formation-energy distribu-
tion, and how we predict this distribution with an MDN.
Descriptor notation and the MDN framework are intro-
duced in Sec. IID. Databases used for training the model
and the architecture of the latter are described in Sec. III.
Finally, the results concerning defect concentration and
the range of influence of chemical disorder are presented
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in Sec. IV and discussed in Sec. V.

II. MATHEMATICAL FRAMEWORK

A. Concentration of thermal defects

The concentration of vacancy-type defects can be com-
puted as the ensamble average of the exponential of the
Gibbs formation free energy Gd(T ):

Cd(T ) =

〈
exp

(
−Gd(T )

kBT

)〉
=

〈
exp

(
−(Hd − TSd)

kBT

)〉
,

(1)

which can be re-written as:

Cd(T ) =

〈
exp

(
Sd

kB

)
exp

(
−Hd

kBT

)〉
. (2)

Here, Hd is the formation enthalpy, Sd the formation
entropy, T the temperature, d the defect type, and kB the
Boltzmann constant. In the harmonic approximation,
the entropy term in Eq. (2) is independent of tempera-
ture, and the vibrational contribution to Sd can be com-
puted from the phonon spectrum of the system. Since
Sd gives only a second-order contribution to Cd(T ), we
will neglect it in this work, and focus on the approxima-
tion of enthalpy Hd. However, the approach to chemical
disorder presented in this work can be equally applied to
the calculation of Sd.
Let us define an atomic configuration xc ∈ X as a given

atomic supercell, where X ∈ R3N is the space of atomic
configurations, and c denotes the type of cation that was
removed from the supercell to form the Schottky defect.
From now on, we impose Hd = Ef

d(xc) and refer to the
formation enthalpy as formation energy. The average
defect concentration can be written as:

Cd(T ) =

〈
exp

(
−Ef

d(xc)

kBT

)〉
=

N∑
i=1

w(xi
c) exp

(
−Ef

d(x
i
c)

kBT

)
.

(3)

Ef
d(xc) is the formation energy of a defect of type d

in the configuration xc, N denotes the number of config-
urations in the configuration space X, and xi

c indicates
iterating over all configurations in a set of size N . Here
w(xc) is the normalized weight that corresponds to the
Gibbs-Boltzmann distribution and depends on the con-
figuration energy E(xc) as follows:

w(xc) =
exp

(
−E(xc)

kBT

)
Z

,
(4)

where Z is the partition function, calculated over all of
the configurations N in the configuration space X:

Z =

N∑
j=1

exp

(
−
E
(
xj
c

)
kBT

)
. (5)

As this work focuses on the study of bound Schottky
defects, from this point on ’d’ will be replaced with ’BSD’
in the following formulas.

B. Formation energy of bound Schottky defects

The BSD formation energy in concentrated disordered
compounds can be calculated as [35, 36]:

Ef
BSD(xc) = EBSD(xc)− E(xc) + µc + 2µO − kBT log(yc),

(6)

where c can be either U or Pu, µ is the chemical potential
of U, Pu, or O, and yc is the concentration of species c
in the supercell, so yU = 1 − yPu. E(xc) is the energy
of a supercell without defects, where the cation vacancy
has been replaced by a cation of type c. EBSD(xc) is the
energy of the same supercell with the cation c and two
oxygen atoms removed.
If we consider the case of an ideal solution, where local

order can be neglected, the chemical potentials are given
by [17, 35]:

µ0
U + 2µ0

O =
E(UO2)

NC
+ kBT log(yU),

µ0
Pu + 2µ0

O =
E(PuO2)

NC
+ kBT log(yPu).

(7)

E(UO2) and E(PuO2) are the energies of the pure UO2

and PuO2 supercells, respectively. µ0
U, µ

0
Pu and µ0

O are
the chemical potentials of U, Pu, and O in the perfectly
disordered solution. By NC is denoted the number of
cations in the supercell. This formula is valid under the
assumption that the effect of defects or short-range order
on the chemical potentials is negligible. This is equivalent
to treating the system as an ideal solution as has been
the case in previous works [11, 37]. The formation energy
can be expressed in a simplified form [17]:

Ef,0
BSD(xU) = EBSD(xU)− E(xU) +

E(UO2)

NC
, (8)

Ef,0
BSD(xPu) = EBSD(xPu)− E(xPu) +

E(PuO2)

NC
. (9)

In principle, the difference between Eq. (8) and Eq. (9)
comes from the interactions between the cation (U or Pu)
and its local environment. However, in the case of ideal
solid solutions, choosing either one of the above formulas
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Ef,0
BSD(xU) or E

f,0
BSD(xPu) is equally valid and should give

the same defect concentration CBSD(T ), given by Eq. (3).
Since the chemical potentials are written under the as-

sumption that local order can be neglected, the difference
between defect concentration computed with Eq. (3) us-
ing EBSD(xU) or EBSD(xPu) as a reference can give an
indication on the level of local ordering in the system.
In Appendix A, we show that this difference is relatively
low, which indicates that local order has a limited effect
in (U,Pu)O2 according to the used interatomic poten-
tial (the Cooper-Rushton-Grimes potential or CRG [15]).
Therefore, in this work, all calculations are performed un-
der the assumption of an ideal solution, using Eq. (8) to
calculate the BSD formation energy.

C. Calculation of defect concentration from the
formation energy distribution

The concentration of defects can be calculated in a
direct way using Eq. 3, i.e., by computing the defect for-
mation energy in all configurations in the configuration
space. This is, however, extremely computationally ex-
pensive in the case of disordered compounds. In order
to reduce this computational cost, we aim to compute
the defect concentration by approximating the underly-
ing formation energy distribution.

Equation (3) can be rewritten as:

CBSD(T ) =

N∑
i=1

w(xi
c)f(x

i
c), (10)

where f(xc) = exp
(
−Ef

BSD(xc)
kBT

)
. Under the ideal solid-

solution approximation, we can assume that w(xc) is con-
stant and equal to 1

N , similarly to what was done in
Bathellier’s work [17]. In other words, we assume that ev-
ery configuration has the same probability of occurrence,
so we can write:

CBSD(T ) =
1

N

N∑
i=1

f(xi
c). (11)

If we denote the probability distribution of configura-
tions by p(xc), we can approximate the defect concentra-
tion in the following way:

CBSD(T ) = Exc∼p(xc)[f(xc)] ≃
1

M

M∑
i=1

f(x(i)
c ), (12)

where every configuration xc has the same probability
p(xc), and M is the number of samples used for the ap-
proximation, so that M ̸= N and we need in particular
M ≪ N . However, the number of samples M needed to
obtain an accurate estimate of CBSD(T ) is in principle

very high. Computing the formation energy Ef
BSD(xc)

in each configuration xc, for instance by DFT or inter-
atomic potentials, is a very computationally demanding
task.
Since the defect concentration depends exclusively on

the formation-energy distribution, we assume that it can
be computed by sampling the latter one. We therefore
re-write Eq. 11 to express CBSD(T ) as a function of the
formation-energy distribution. Using the fact that there
is exactly one formation energy value for each configura-
tion, we can write:

CBSD(T ) =
1

N

N∑
i=1

f(xi
c)

=
1

N

N ′∑
j=1

fE(E
f,j)

N∑
i=1

δ(Ef,j − Ef
BSD(x

i
c))

=

N ′∑
j=1

(
1

N

N∑
i=1

δ(Ef,j − Ef
BSD(x

i
c))

)
fE(E

f,j)

=

N ′∑
j=1

g(Ef,j)fE(E
f,j),

(13)

where Ef is a value of the function Ef
BSD(xc) for a given

configuration xc, and fE(E
f) = exp

(
− Ef

kBT

)
. While ev-

ery configuration has one formation energy only, one en-
ergy can correspond to multiple configurations. There-
fore, g(Ef) expresses the density of states that describes
the number of occurrences of a given energy Ef , and N ′

is the number of discrete values of energy Ef , so N ⩾ N ′.
Since g(Ef) ≥ 0 ∀j and

∑
j g(E

f,j) = 1, we can write:

CBSD(T ) = EEf∼p(Ef )[fE(E
f)] ≃ 1

M

M∑
i=1

fE(E
f,(i)),

(14)
where p(Ef) = g(Ef), so:

p(Ef) =
1

N

N∑
i=1

δ(Ef − Ef
BSD(x

i
c)). (15)

Instead of sampling the probability distribution of con-
figurations p(xc), CBSD(T ) can be obtained by sampling
the probability distribution of formation energies p(Ef).
Since the actual p(Ef) is unknown, we rely on a ML
model to estimate it as accurately as possible. The ad-
vantage is that sampling from this estimated distribu-
tion of p(Ef) does not require additional energy calcula-
tions. In other words, the computational cost to obtain
CBSD(T ) is shifted from the direct formation-energy cal-
culation of many samples to the training of a ML model.
The objective is thus to obtain accurate ML model pre-
dictions using minimal data.
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D. Semi-supervised estimation of formation-energy
probability distribution

The probability distribution p(Ef) expresses the dis-
tribution of formation energy over all possible configu-
rations. In this work, the latter will be expressed with
descriptors used in [17]. In this framework, each config-
uration is described by its descriptor k, later also called
“mode”, representing the atomic environment around the
BSD defect. Different modes can be viewed in Fig. (2),
where each mode (or each k) is represented by the pair of
(N c

Pu, N
a
Pu). N c

Pu ∈ N is the number of Pu atoms (from
0 to 12) in the first sphere of influence near the cation
vacancy, and Na

Pu ∈ N the number of Pu atoms (from 0
to 6 for BSD2 and BSD3, from 0 to 5 for BSD1) among
them that are located near oxygen vacancies. Since N c

Pu
considers all atoms in the first sphere of influence (see
Sec. IIIA), Pu atoms that are close to oxygen vacancies
Na

Pu are also counted in N c
Pu, so that N c

Pu ≥ Na
Pu.

We can rewrite p(Ef) as:

p(Ef) ≈
∑
i

p(Ef |ki)p(ki), (16)

where the approximation comes from the used local de-
scriptor k. Here p(Ef |k) is the conditional probability of
energy Ef given descriptor k, and p(k) is its probability.
Given the previously undertaken assumption that every
configuration has the same probability, as in Eq. (11),
we can compute p(k) analytically by counting the total
number of configurations included in each k:

p(k) =
Lk

P
, (17)

where Lk is the number of configurations that can rep-
resented by descriptor k, and P is the total number of
configurations corresponding to all possible permutations
of U and Pu in the first sphere of influence (1nn):

Lk =

(
N c,k

Pu

Na,k
Pu

)(
N c,k

Pu

Na
BSD −Na,k

Pu

)
yPu

nPuyU
nU , (18)

P =

KBSD∑
i=1

Lki . (19)

Na
BSD is the number of possible cationic positions

around the anionic vacancies and it depends on the BSD
type (Na

BSD1 = 5;Na
BSD2, N

a
BSD3 = 6). nPu (nU) is the

total number of Pu (U) atoms in the whole supercell,
respectively, KBSD is the number of possible descriptors
that depends on the BSD type (BSD1 = 48; BSD2, BSD3
= 49), and ki indicates iterating over all descriptors in a
set of size KBSD.
The estimation of the probability distribution p(Ef),

defined in Eq. (16), can be approached in a semi-
supervised way. Thanks to the undertaken assumption

FIG. 2. BSD3 formation energy [17] in (U,Pu)O2 with 50%
Pu content, for all possible atomic configurations in the first
sphere of influence around the defect (see Sec. IIIA). Each
point is described by the number of Pu near cation (Nc

Pu)
and anion (Na

Pu) vacancies.

that local order between the atoms can be neglected, the
unsupervised part p(k) of Eq. (16) is calculated analyt-
ically. However, the likelihood of the supervised part
p(Ef |k) is not known and has to be addressed differ-
ently. As it is not possible to calculate p(Ef) for the
whole spectrum of configurations due to the high com-
putational cost, we thus aim at computing the approxi-
mation pθ(E

f) of p(Ef):

pθ(E
f) =

∑
i

pθ(E
f |ki)p(ki). (20)

Therefore, the task of estimating p(Ef) comes down to
the approximation pθ(E

f |k) of p(Ef |k) for each descrip-
tor k. As we are expecting the impact of atoms on the
formation energy calculations to fade with distance and
that the closest atoms have the most important influence,
we can decompose Ef into two main parts:

Ef = Ef(N c
Pu, N

a
Pu) + ε = Ef(k) + ε. (21)

By Ef(k) is denoted the impact on the formation en-
ergy calculations of Ef that comes from the 12 1nn atoms
around the defect. Here we assume ε to be a random
normally distributed noise coming from the more distant
neighbors. In this example, one can consider Ef(k) as a
factor that mostly influences the mean, and ε the vari-
ance of the calculated energies. This can be observed in
Fig. (2), where the mean corresponds to the center of
each mode and the variance influences its spread.

Based on the assumption given in Eq. (21), we approx-
imate p(Ef |k) using a Mixture Density Network. As the
MDN predicts a distribution that is a Gaussian mixture,
then the approximation pθ(E

f |k) of p(Ef |k) can be ex-
pressed as:

pθ(E
f |k) =

∑
j

πj(k, θ)N (Ef |µj(k, θ), σ
2
j (k, θ)). (22)
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TABLE I. Summary of the number of configurations in the
1-4nn formation energy databases of different types of BSD
defects. The different amount of produced configurations for
BSD1 (1440) and BSD2 or BSD3 (1470) comes from the fact
that the number of modes is different between BSD1 (48)
and BSD2/BSD3 (49). This is the consequence of different
possible placement of oxygen atoms around a BSD1, which
can have a maximum of 5 neighboring Pu atoms, with respect
to the 6 possible placements around a BSD2 or a BSD3 (see
Fig. 1).

Database 1nn 2nn 3nn 4nn

BSD1 4096 1440 1440 1440

BSD2 4096 1470 1470 1470

BSD3 4096 22668 1470 1470

Here, j is the number of Gaussian distributions used in
the mixture, πj(k) is the mixing coefficient, while µj(k)
and σ2

j (k) correspond to the mean and variance of each
component in the mixture, respectively. The component
density N can be described as follows:

N (Ef |µ, σ2) =
exp −(Ef−µ)2

2σ2√
2πσ2

. (23)

To measure the difference between pθ(E
f) and p(Ef),

a standard approach based on the Kullback-Leibler di-
vergence (KL) [38–40] was applied. A more detailed ex-
planation is included in Appendix B.

III. DATABASES AND MODEL
ARCHITECTURE

A. Description of databases

To compute the conditional probability distribution
pθ(E

f |k) in Eq. (22), several MDN models are trained
on specifically prepared databases. The outcome of the
MDN can provide relevant physical information, such as
the impact and range of influence of chemical disorder on
defect properties.

Atomic configurations are built as 2592 atoms super-
cells (864 cations and 1728 anions) of (U,Pu)O2 with 50%
Pu concentration. This corresponds to a 6×6×6 replica-
tion of a primitive cell of a fluorite structure. All atomic
configurations are built with the same reference supercell
and differ from each other only in their atomic composi-
tions in the closest proximity of the defect. In this way,
we are limiting the size of the configuration space only
to the possible atomic configurations on the xnn sphere,
where x varies depending on the sphere radius. The refer-
ence supercell contains a random distribution of Pu and
U in a perfect fluorite structure without defects. The
BSD defect is then placed in the center of the supercell,
and the composition of the xnn sites around the latter is

FIG. 3. General architecture of the used MDN models. Nc
Pu

is the Pu content in the first sphere of influence around the
BSD defect, Na

Pu is the Pu content near oxygen vacancies,
whereas µ, σ2 and π represent the mean, variance and mixing
coefficient of every element of the mixture, respectively.

altered to produce sets of locally-changing configurations.
The radius x of the local environment is progressively in-
creased from 1nn to 4nn atoms, containing respectively
12, 18, 42, and 54 atoms in total.
We build a configuration database for each local-

environment radius, as shown in Table I. All the 1nn
databases and the 2nn-BSD3 one are taken from [17].
The other databases are built by selecting 30 1nn config-
urations for each descriptor k = (N c

Pu, N
a
Pu). The U/Pu

distribution for the other atoms in the local environment
(from 2nn to 4nn) is then determined randomly. In this
way, the calculation of the formation energy is based on
the main influence coming from 1nn atoms, and the noise
induced by 2-4nn atoms, accordingly with Eq. (21).
The BSD formation energies in each configuration are

obtained via classical molecular statics (or 0-K energy
minimization) with the LAMMPS code [41] and the
Cooper-Rushton-Grimes (CRG) empirical potential [15].

B. MDN architecture and training

A general structure of the used MDN model is shown
in Fig. 3. The architecture is optimized so to achieve a
trade-off between training cost and model accuracy. This
leads to an architecture containing 2 inputs in an input
layer, 10 neurons in one hidden layer, and 3 outputs in
the output layer, corresponding to the mean µ, variance
σ2, and mixing coefficient π of a single Gaussian, i.e.,
63 parameters in total. We observed that adding more
gaussians to the output distribution (j > 1 in Eq. (22))
or more hidden layers for the predictions for a single de-
scriptor k does not result in significant performance im-
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provements. Also, smaller models are preferred, as they
require fewer data for training. For the hidden layer, a
hyperbolic tangent activation function is used.

Each of the training datasets described in the previ-
ous section is used to train a different MDN model, re-
sulting in several training sessions for each of the BSD
defects. The procedure including database preparation,
the training of the MDN model, and the CBSD(T ) esti-
mation described in the next section is summarized in
Procedure 1.

Procedure 1: CBSD(T ) estimation with MDN

Data: D = {(ki, Ef,i)}Li=1

1 Find the parameters θ∗ by training pθ(E
f) on

database D, e.g., as in Appendix B;
2 for each unique k in D do
3 Evaluate [µ, σ2, π] from trained MDN model;
4 Calculate p(k) as in Eq. (17);

5 Vmix ← [µ, σ2, π ∗ p(k)];
6 end

7 Sample M energies Ef from Gaussian mixture Vmix;
8 Approximate CBSD(T ) as in Eq. (14);

To train the MDN model, the training dataset is first
prepared. Configurations are described by their descrip-
tor k = (N c

Pu, N
a
Pu) and the associated BSD formation

energy Ef . Then, the MDN model is trained to predict a
single Gaussian distribution of Ef for each descriptor k in
a supervised way, as explained in Appendix B. Next, to
obtain the final mixture of Gaussian distributions Vmix of
formation energies, the MDN model is tasked to evaluate
the parameters of Gaussian distributions (µ, σ2, π) for
each unique k in the initial database. Additionally, the
probability p(k) of each descriptor k is computed analyt-
ically. Vmix is then expressed as a collection of Gaussian
distributions, one for each k, where each element is given
by:

V k
mix = π(k)p(k)N (µ(k), σ2(k)). (24)

In this work, each element V k
mix consists of only one

Gaussian distribution, therefore π = 1, and the ampli-
tudes of each element of the mixture Vmix are equal to
p(k). For example, for BSD3 databases, Vmix would con-
sist of 49 of such vectors, i.e. 49 Gaussian distributions.
In our specific case, we found that increasing the num-
ber of Gaussian distributions for each descriptor k, such
as using 2 or 3 distributions (which would mean 98 or
147 Gaussian distributions in Vmix respectively), did not
lead to improved accuracy in our predictions.

Based on the calculations of the negative log-
likelihood, detailed in Appendix C, we determine that
approximately 200 configurations are required as a min-
imum for MDN training. As we increase the number
of configurations in the training, the rate of increase of
the MDN accuracy gradually diminishes, until the im-
provement becomes negligible above ≈ 1000 configura-

FIG. 4. Probability distribution of the BSD3 formation en-
ergy in (U,Pu)O2 with 50% Pu, for local atomic configura-
tions with Nc

Pu = 6 (6 Pu atoms near the cation vacancy), as
predicted by the MDN models trained on 980 configurations
from 1-4nn databases.

tions. Even though the predictions of the MDN mod-
els are more accurate when trained on larger datasets,
this does not necessarily entail much improvement in the
CBSD(T ) computations. As we show in the next section,
roughly 200 configurations can be sufficient for calcula-
tions of ensemble averages, as is the case of the CBSD(T ).
However, higher precision is necessary for the examina-
tion of the range of influence of the local environment
on the BSD formation energy. For the results shown in
the next section, training datasets are built by drawing
4 or 20 samples at random, from each mode, which cor-
responds to 192 and 960 samples for BSD1 and 196 and
980 samples for BSD2 and BSD3, respectively.

IV. RESULTS

The MDN is applied to predict the probability distri-
butions of formation energy for the three types of BSD
defects, with the models including the 1-4nn local envi-
ronment. The predictions for the BSD3 formation energy
for configurations with N c

Pu = 6 is shown in Fig. 4. For
instance, the blue 1nn curve corresponds to the prob-
ability distribution of the formation energies predicted
by the 1nn model, where only the variance on the first
nearest-neighbor shell is taken into account. The sharp
peaks correspond to the ”modes” that can be observed
in Fig. 2 for N c

Pu = 6. The sharpness of the peaks de-
pends on the size of the considered sphere of influence.
When the size of the local environment is increased, ad-
ditional noise from 2-4nn atoms is included, resulting in
a decreasing height and wider spread of the visible peaks
as in the orange, green, and red curves. The modes can
still be visible in the 2-4nn curves, but due to the in-
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TABLE II. Concentration of BSD defects CBSD(T ) per cationic site for selected temperatures in (U,Pu)O2 with 50% Pu, and
effective formation energy Ef

eff calculated as the negative slope of CBSD(T ) in logarithmic scale (Eq. (25)). The name of the
database indicates: the considered sphere of influence, the calculation mode (namely, the direct calculation (DC) or the MDN
approach), the type of BSD defect, and the number of configurations in the (training) database. The values of the MDN
predictions are given as a mean ± 2 times standard deviation, calculated from the predictions of 100 MDN models trained on
different data subsets.

Database 500K 1000K 1500K Ef
eff [eV]

1nn, DC, BSD3, 4096 2.51× 10−48 6.84× 10−25 6.25× 10−17 4.70
1nn, MDN, BSD3, 980 (2.50± 0.47)× 10−48 (6.82± 0.25)× 10−25 (6.24± 0.12)× 10−17 4.70± 0.01
1nn, MDN, BSD3, 196 (2.52± 0.44)× 10−48 (6.83± 0.32)× 10−25 (6.25± 0.16)× 10−17 4.70± 0.01
3nn, MDN, BSD3, 196 (4.28± 1.58)× 10−48 (8.31± 0.87)× 10−25 (7.04± 0.45)× 10−17 4.68± 0.02
3nn, MDN, BSD2, 196 (2.88± 0.88)× 10−51 (2.64± 0.28)× 10−26 (7.43± 0.50)× 10−18 5.00± 0.01
3nn, MDN, BSD1, 192 (2.06± 0.75)× 10−59 (1.74± 0.20)× 10−30 (1.12± 0.08)× 10−20 5.80± 0.02

troduced noise, their mean values are slightly shifted in
comparison to the 1nn distribution.

Including larger local environment have a decreas-
ingly lower impact on the formation energy calculation.
To obtain an insight on the relative contribution of 1-
4nn atoms to the formation energy computations, the
Kullback-Leibler (KL) divergence in Eq. (B2) [38] can
be used to compare the differences between the distribu-
tions. We obtain KL(1nn||2nn) ≈ 0.805, KL(2nn||3nn) ≈
0.272, and KL(3nn||4nn) ≈ 0.048. We can observe a
significant difference between the 1nn and 2nn distribu-
tions, and a lower but still relevant between the 2nn
and 3nn ones. However, the difference is considerably
smaller between the 3nn and 4nn distributions. Hence
we can conclude that the boundary beyond which fur-
ther atoms start to have negligible influence on Ef

BSD is
the 3nn cationic sphere of influence, corresponding to a
radius of 7 Å around the defect in the (U,Pu)O2 fluo-
rite structure. This is consistent with what was found
in Bathellier’s work with a different approach [17]. The
same conclusions apply to the other types of BSD defects.

Next, the obtained probability distribution is used to
compute the BSD concentration with a Monte Carlo sam-
pling as in Eq. (14), for a range of temperatures between
500K and 2000K, as shown in Fig. 5. For this compu-
tations specifically, we use the 1nn database of Bathel-
lier et al. [17] of BSD3 formation energy, consisting of
4096 configurations. This is because the available 1nn
database is complete (consisting of all possible configu-
rations of U and Pu atoms in the first sphere of influ-
ence), so it is possible to compare defect concentrations
calculated from the MDN predictions with the direct cal-
culation (DC) of CBSD(T ) with Eq. (11). It is worth re-
minding, however, that using only 1nn atoms is a weak
approximation of CBSD(T ), and is used only for the eval-
uation of the performance of the 1nn MDN model. The
orange and green curves in Fig. 5 represent the Monte-
Carlo based calculation of CBSD(T ), done by sampling
the probability distribution predicted by the MDN model
trained on 196 and 980 random configurations from the
1nn database, respectively. Based on the CBSD(T ) cal-
culations, an effective formation energy Ef

eff can be ob-

FIG. 5. Calculated BSD3 concentration CBSD3(T ) in
(U,Pu)O2 with 50% Pu. Comparison between the direct cal-
culation, based on the whole 1nn database of 4096 configura-
tions in the work of Bathellier et al. [17], and the one obtained
by Monte-Carlo sampling of the formation energy distribution
predicted by two MDN models, trained on 196 and 980 config-
urations picked from the 1nn database. The subplot presents
the ratio between the results of different models in the whole
range of temperatures.

tained as the negative slope of each curve:

CBSD(T ) = exp

(
−Ef

eff

kBT

)
,

Ef
eff = −kBT log (CBSD(T )).

(25)

To estimate the variance of the MDN model parame-
ters and its effect on the predicted defect concentration,
100 models are trained on different training datasets,
formed by picking configurations at random from the 1nn
database. The resulting Ef

eff and CBSD(T ) calculations
for selected temperatures are shown in Table II.
As can be seen in Fig. 5, MDN provides a sufficiently

accurate prediction of CBSD(T ) even with only 196 train-
ing configurations. Larger training databases improve
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FIG. 6. Comparison between the concentration CBSD(T ) of
different BSD defects in (U,Pu)O2 with 50% Pu, computed
by Monte-Carlo sampling of the formation-energy distribution
provided by three MDNmodels, trained on the 3nn databases.

the model accuracy, but concerning the BSD equilibrium
concentration and their effective formation energies Ef

eff ,
this results in a small difference of about ≈ 10 meV. It
is important to note that 10 meV is well below the accu-
racy level that one can expect from empirical interatomic
potentials such as CRG, and not far from what can be
normally achieved with electronic-structure calculations.

Finally, the defect concentration is computed for the
three types of BSD defects, as shown in Fig. 6. In this
case, each graph is obtained by Monte-Carlo sampling
of the energy distribution provided by the MDN model
trained on ≈ 200 configurations from the 3nn databases.
Similarly as before, 100 models were trained to estimate
the variance of the MDN model parameters. The results
for selected temperatures are presented in Table II.

The differences between the curves in Fig. 6 come from
the difference in BSD stability predicted by the CRG po-
tential. According to the calculations done in this work
and in agreement with Bathellier et al. [17], the BSD3
is the most stable among the BSD defects with the low-
est formation energy. This results in the higher concen-
tration of BSD3 defects that can be observed in Fig. 6
(blue curve). The same conclusions about the stability
of the BSD defects were obtained by Balboa et al. [42],
where the BSD formation energies were computed using
the CRG potential by an arithmetic average of the forma-
tion energies obtained in seven different configurations.
On the contrary, Cheik Njifon [43] found by means of
DFT+U calculations that the BSD2 is the most stable
BSD defect. However, D. Bathellier showed that this mis-
match is due to the small DFT supercell size (96 atoms)
used in Cheik Njifon’s work and that a match between
DFT and CRG is found when using 324-atom DFT su-
percells. Additionally, it is important to note that, in
Cheik Njifon’s work, only one SQS supercell was used,

so the results are not as reliable as the ones yielded by a
proper sampling of the configuration space.
It would be interesting to compare the BSD defect con-

centrations obtained in this work with the MDN method,
with experimental measurements in (U,Pu)O2. However,
to the authors’ knowledge, there is at present no such
study in the literature. For a comprehensive compari-
son with such experiments, the formation entropy would
have to be included. This could be done by exploring the
configuration space with the same MDN-based method.
From the perspective of extending our methodology to
local-atomic dependent properties of other multicompo-
nent materials such as HEAs, the application is relatively
straightforward. The primary modification required is to
extend the definition of descriptor k to include the ad-
ditional chemical species involved. In the case of more
complex configuration spaces, it might also be necessary
to increase the number of Gaussian distributions pre-
dicted for each unique descriptor. This would increase
the model capability to express the more complex rela-
tionships between constituents.

V. DISCUSSIONS AND CONCLUSIONS

This work showed that the semi-supervised applica-
tion of the Mixture Density Network (MDN) is a robust
approach to evaluate and investigate local-atomic depen-
dent properties in chemically disordered compounds such
as mixed-oxides (U,Pu)O2 nuclear fuels. In our study,
based on Cooper-Rushton-Grimes (CRG) potential [15],
we showed that by sampling configurations according to
their local environment, we can train the MDN model
to obtain an accurate prediction of the formation en-
ergy distribution with a very limited amount of config-
urations, thus greatly reducing the computational costs.
That allowed us to provide a first-of-a-kind calculation of
the equilibrium concentration of Bound Schottky Defect
(BSD) defects in (U,Pu)O2, with a guided sampling of
the configuration space that goes well beyond the extent
that had been reached so far. We showed in Fig. 5 that
it was possible to consider all the relevant local neigh-
bors around the defect (up to 4nn cations) and reach a
sufficient accuracy in the estimation of the formation-
energy probability density function with a relatively low
amount of configurations (about 200). As a comparison,
22668 configurations were required to characterize the
BSD3 formation energy in Bathellier’s work [17], just to
reach the 2nn sphere of influence. Assuming, as a rough
estimate, 5 minutes of computational time per energy
minimization of a 2592-atom supercell with the CRG po-
tential, that implies 17 hours of CPU time for the MDN
approach, as opposed to 1889 hours in the previous study
[17]. This makes the MDN approach much more flexi-
ble and transferable, allowing one to study, for instance,
other types of defects, or repeat the study with other
interatomic potentials. Comparing the MDN approach
with MCMC methods, the advantage is even more clear:
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the Monte-Carlo study of Takoukam-Takoundjou et al.
[11] on the thermodynamic properties in (U,Pu)O2 re-
quired in comparison 50 million configurations.

Furthermore, our approach allowed us to address the
issue of the size of the local environment to be considered
to obtain an accurate defect formation-energy estimation.
Previous studies were limited by the high computational
cost required to go beyond the 2nn sphere of influence.
Thanks to the chosen simple local descriptor of atomic
configurations, we showed that the training cost of MDN
models remained the same, while allowing us to obtain
the same accuracy independently from the size of the
considered sphere of influence. As a result, MDN suc-
ceeded in measuring the range of influence of larger local
environments on the formation energy distribution. Fur-
thermore, we observed in Fig. 4 that the added influence
of N-body interactions between the atoms beyond the
1nn sphere led to an increase of the variance of the for-
mation energy distributions predicted by the MDN mod-
els up to the 3nn sphere of influence. Beyond that, the
distribution was almost unaffected. This marks the 3nn
cationic sphere as a limit beyond which further atoms
start to have negligible influence on Ef

BSD calculations.
This conclusion confirms quantitatively what was shown
in the previous study in a more qualitative way [17]. By
the same approach, one could easily include the effect of
further spheres, which previously was computationally
unreachable.

It is worth reminding that in this work we used the sim-
ple local-environment descriptors introduced by Bathel-
lier [17]. The use of more advanced descriptors [44–47]
could potentially improve the model performance and
decrease the computation cost even further. Further-
more, the model considers the system as an ideal solu-
tion, and requires the preliminary calculation of a train-
ing database. This database was built based on previ-
ous physical knowledge (gathered in Bathellier’s work)
concerning the interactions between U/Pu atoms and O
vacancies. Namely, the existance of the ”modes” shown
in Fig. 2 was known, and the production of the training
database was optimized based on this knowledge. This
can be improved with alternative, fully unsupervised ap-
proaches. One of the possibilities that will be explored
in future work is the use of generative machine-learning
techniques capable of generating new configurations and
learning the hidden distribution without the requirement
for any initial data. Such an approach would also allow
us to go beyond the ideal-solution assumption.

The presented results show that the evaluation of lo-
cal properties influenced by chemical disorder can be effi-
ciently approached through the semi-supervised estima-
tion of their probability distribution functions in the con-
figuration space. The reduced amount of calculations
needed to obtain satisfactorily accurate estimations with
the MDN models makes it possible to envisage the direct
use of DFT to produce the training databases.

This work takes an important step forward in the
study of atomic-scale properties of disordered com-

pounds, a field that has been strongly affected so far
by computational-time limitations and a lack of efficient
sampling strategies. The same methodology can be ap-
plied to study other defects and other properties that
depend on the local atomic configuration, such as for-
mation entropies, migration energies, attempt frequen-
cies [48], and so on. The presented approach can also
be useful to address the properties of high-entropy alloys
(HEA) [8], where the same problem of characterization
of the vast configuration space can be often encountered.
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Appendix A: Impact of local order

The used formulas for the formation energy computa-
tion in Eq. (8) and Eq. (9) rely on the assumption that
local order can be neglected. If this is true, then both for-
mulas must yield the same defect concentration CBSD(T ).
In order to verify the assumption, we compare the BSD
concentration obtained by direct calculation on all data
in two 1nn datasets from [17]: namely, the datasets with
configurations where a U (Pu) atom was removed from
the original supercell to form a BSD3 defect. As it can
be seen in Fig. 8, the resulting defect concentrations are
close to one another. This means that the effect of local
order in this system (as predicted by the CRG potential)
is indeed small.

Appendix B: Formation energy probability
distribution function

Let us define a dataset D as a collection of L energies,
L ≤ N , where N is the total number of configurations in
a configuration space:

D = {Ef,i}Li=1,

Ef ∼ p(Ef).
(B1)

The formation energy of a defect can be described
with a probability density function p(Ef) as defined in
Eq. (15). Since it is not possible to calculate p(Ef) for the
whole spectrum of configurations, we aim at computing
the approximation pθ(E

f) of the true distribution p(Ef),
as in Eq. (20). To measure the similarity between the
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a) b)

FIG. 7. MDN accuracy computed as the mean negative log-likelihood as a function of the number of configurations included
in the training database (BSD3 in (U,Pu)O2 with 50% Pu). Figures a) and b) show the models trained on the 3nn and 4nn
databases, respectively.

FIG. 8. Verification of the difference between the BSD3 con-
centration obtained by using either Eq. (8) or Eq. (9). The
proximity of the two curves indicates that the effect of local
order is small according to the CRG potential. The subplot
presents the ratio between both CBSD(T ) calculations for the
whole range of temperatures.

two distributions, the Kullback-Leibler divergence can be
used:

KL(p||pθ) =
∑
j

p(Ef,j) log

(
p(Ef,j)

pθ(Ef,j)

)
, (B2)

over all possible formation energies Ef . The objective
is to find the set of parameters θ∗ that minimizes the KL
divergence:

θ∗ = argθ min[KL(p||pθ)]. (B3)

We can rewrite the KL divergence as an expected value
as follows:

KL(p||pθ) =
∑
i

p(Ef,i) log

(
p(Ef,i)

pθ(Ef,i)

)
= EEf∼p(Ef )[− log(pθ(E

f))]

−EEf∼p(Ef )[− log(p(Ef))]

= EEf∼p(Ef )[− log(pθ(E
f))]−Hp ,

(B4)

where Hp is the Shannon entropy. Since Hp is not de-
pendent on θ, the minimal value of the KL divergence
can be written as:

θ∗ = argθ min[EEf∼p(Ef )[− log(pθ(E
f))]]. (B5)

Therefore, computing θ∗ comes down to computing
the minimal negative log-likelihood (using, e.g., the
gradient descent techniques):

θ∗ = argθ minL(θ,D),

L(θ,D) = − 1

L

L∑
i=1

log pθ(E
f,(i)),

(B6)

We therefore minimize the loss function in Eq. (B6) to
find the most optimal set of parameters θ∗ that yields
an approximation pθ∗(Ef) of the probability distribution.
The calculation of CBSD(T ) can then be approximated
similarly as in Eq. (14), but by sampling pθ∗(Ef):

CBSD(T ) ≈ EEf∼pθ∗ (Ef )[fE(E
f)] ≃ 1

M

M∑
i=1

fE(E
f,(i)).

(B7)

Appendix C: Verification of the MDN architecture

In Appendix B, we have shown that by minimizing the
loss function in Eq. (B6) we can increase the accuracy
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of the MDN model and it depends on the size of the
training database. Therefore, we evaluate the MDN per-
formance by computing the mean negative log-likelihood
as a function of the number of configurations used for the
model training. The results for the BSD3 3nn and 4nn

databases in (U,Pu)O2 with 50% Pu are shown in Fig. 7.
Similar results are obtained for all BSD defects. It can be
seen that the minimal number of configurations needed
for MDN training is ≈ 200. A further increase in the size
of the training dataset does not significantly improve the
accuracy.
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Manh, S. A. Maloy, et al., Outstanding radiation resis-
tance of tungsten-based high-entropy alloys, Science ad-
vances 5, eaav2002 (2019).

[2] S. Xia, X. Yang, T. Yang, S. Liu, and Y. Zhang, Irra-
diation resistance in Al x CoCrFeNi high entropy alloys,
Jom 67, 2340 (2015).

[3] J. Kim, H. Kwon, J.-H. Kim, K.-M. Roh, D. Shin, and
H. D. Jang, Elastic and electronic properties of partially
ordered and disordered Zr (C1- xNx) solid solution com-
pounds: a first principles calculation study, Journal of
Alloys and Compounds 619, 788 (2015).

[4] B. Ghebouli, M. Ghebouli, M. Fatmi, T. Chihi, Z. Heiba,
and S. Boucetta, Structural, Elastic, and Electronic
Properties of CuClxBr (1-x) Compounds under Pressure,
Chinese Journal of Physics 51, 738 (2013).

[5] K. Ciesielski, L. C. Gomes, G. A. Rome, E. A. Bensen,
J. M. Adamczyk, D. Kaczorowski, E. Ertekin, and E. S.
Toberer, Structural defects in compounds Zn X Sb (X=
Cr, Mn, Fe): Origin of disorder and its relationship
with electronic properties, Physical Review Materials 6,
063602 (2022).

[6] O. Madelung, Disorder, in Introduction to Solid-State
Theory (Springer Berlin Heidelberg, Berlin, Heidelberg,
1978) pp. 435–472.

[7] A. Lin-Vines, J. Wilson, A. Fraile, L. J. Evitts, M. Rush-
ton, J. Astbury, W. Lee, and S. Middleburgh, Defect be-
haviour in the MoNbTaVW high entropy alloy (HEA),
Results in Materials 15, 100320 (2022).

[8] E. J. Pickering, A. W. Carruthers, P. J. Barron, S. C.
Middleburgh, D. E. Armstrong, and A. S. Gandy, High-
Entropy Alloys for Advanced Nuclear Applications, En-
tropy 23, 98 (2021).

[9] E. P. George, D. Raabe, and R. O. Ritchie, High-entropy
alloys, Nature Reviews Materials 4, 515 (2019).

[10] M. Beauvy, G. Berthoud, M. Defranceschi, G. Ducros,
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