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Abstract

Face recognition and verification are two computer vi-
sion tasks whose performances have advanced with the in-
troduction of deep representations. However, ethical, legal,
and technical challenges due to the sensitive nature of face
data and biases in real-world training datasets hinder their
development. Generative AI addresses privacy by creating
fictitious identities, but fairness problems remain. Using the
existing DCFace SOTA framework, we introduce a new con-
trolled generation pipeline that improves fairness. Through
classical fairness metrics and a proposed in-depth statisti-
cal analysis based on logit models and ANOVA, we show
that our generation pipeline improves fairness more than
other bias mitigation approaches while slightly improving
raw performance.

1. Introduction

Face recognition and verification technologies (FRT and
FVT) have seen significant advancements in recent years,
with applications ranging from security and surveillance
to personal device authentication [22, 65, 72]. However,
the widespread adoption of face recognition models has
also raised concerns about fairness and potential biases in
these systems [14, 42]. Studies have shown that FRT and
FVT can exhibit disparities in performance across different
demographic groups, particularly along the lines of gen-
der, ethnicity, and age [60, 74]. To address these fairness
challenges, researchers have explored various approaches,
including the development of demographically diversified
datasets [29, 74], and debiasing methods [57, 78]. In par-
allel, synthetic datasets, generated using computer graphics
technique [8, 77] and generative AI models [8, 19, 45, 82],
offer the potential to mitigate privacy and copyright issues
[34] associated with real datasets [15, 30, 43].
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Figure 1. Comparison of the face verification fairness (equalized
odds ratio) and micro-average accuracy metrics for models trained
with real and synthetic images on the RFW dataset [74]. The pro-
posed pipeline improves the generation fairness and accuracy com-
pared to other synthetic approaches and shows major potential for
fairness mitigation compared to real sets. A performance gap in
accuracy still subsists with real images.

Nonetheless, the effectiveness of synthetic datasets in
improving fairness remains an open question. While ex-
isting studies highlighted the potential for generated data
to reproduce or even exacerbate the biases present in real
datasets [51], most recent works still do not sufficiently
analyze the fairness impact on models trained with their
synthetic images [8, 45, 54], despite encouraging initiatives
[18, 50]. However, these approaches can theoretically pro-
vide greater control over data distribution and diversity.
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Our first contribution, therefore, introduces a new gen-
eration control component based on the existing DCFace
pipeline [45]. The resulting approach increases the diversity
of sensitive attributes such as gender, ethnicity, and
age, and also varies the pose, resulting in two new syn-
thetic datasets DCFace + Cge , DCFace + Call . We compare
models trained on these proposed sets with models trained
using existing generation datasets, with or without bias mit-
igation techniques applied.

We employ a range of common metrics to measure fair-
ness. Still, we find them insufficient for an in-depth analysis
of the origins of the biases since they do not decorrelate the
impacts of the considered attributes. We consequently in-
troduce, as a second contribution, a new analysis approach
based on logit regression models that unveils the impact
of individual attributes. Furthermore, we use an Analysis
of Variance (ANOVA) to examine the relation between at-
tributes and distance in the models’ latent space.

As highlighted in Figure 1, our results demonstrate that
the proposed controlled generation approach significantly
improves fairness metrics while maintaining accuracy. The
logit regression and ANOVA analyses draw coherent con-
clusions and reveal the effectiveness of the proposed con-
trolled generation method in reducing attribute-based biases
in both the model predictions and the latent space represen-
tations.

The code and data are released to facilitate the adoption
of fairness in FRT and FVT: https://github.com/
afm215/FaVGen (generation) and https://github.
com/MSoumm/FaVFA (stat. analysis).

2. Related Work
Face verification is a classical yet still open research topic.
Following [57], a model is trained to perform face recog-
nition. Then, given a pair of images, the evaluation task
is determining whether they belong to the same identity
using the trained model as an embedding extractor. A
threshold is optimized to separate and predict the posi-
tive and negative pairs. Following [52, 53, 74], we advo-
cate for selecting hard negative images to make verification
more realistic and consider datasets including difficult neg-
atives to evaluate the models’ performance. We also ad-
vocate for more efforts to integrate fairness in the verifi-
cation evaluation process. Fairness evaluation can be im-
proved by designing demographically-diversified verifica-
tion datasets [29,53,74] and integrating demographic meta-
data in them [60]. Demographic attributes balance deserves
particular attention because it is required for analyzing po-
tentially serious discrimination [22, 60].
Real training datasets for face recognition are usually cre-
ated by scraping a large number of images from publicly
available sources [43,64] and then cleaning them [15,30,79]
to reduce the number of unrepresentative samples. How-

ever, these datasets face several challenges. First, obtain-
ing subjects’ consent at scale is impossible, posing a se-
rious legal challenge when collecting sensitive data such
as identified faces. Second, most datasets [15, 30, 79] in-
clude copyrighted photos, raising licensing issues. The
lawfulness of distributing copyrighted content is a long-
standing discussion that applies to other computer vision
tasks [55] and was recently revived by the success of foun-
dation models trained with very large datasets [63]. Third,
existing large datasets exhibit demographic (gender, eth-
nicity, age) [53, 60, 74], face characteristics (size, make-
up, hairstyle) [4, 5, 69], and visual biases [81], mostly re-
flecting the sampling bias affecting images datasets [24].
These biases affect underrepresented segments [14, 42, 60]
and should be addressed to improve fairness. These prob-
lems make the sustainable publication of real datasets very
complicated, as proven by the withdrawal of most re-
sources [15, 30, 43] following public pressure [72].

Synthetic datasets have the potential to reduce or remove
privacy, copyright, and unfairness issues compared to real
datasets [18,45,50]. Computer graphics techniques are used
in [8, 77] to render diversified face images, and strong aug-
mentations are added to increase accuracy. Most works rely
on generative AI, with [82] being an early example that uses
dual-agent GANs to generate photorealistic faces. The au-
thors of [54] identify the lack of variability of generated
images as a central challenge and propose identity and do-
main mixup to improve synthetic datasets. Diffusion mod-
els were used very recently [45] to create identities and to
diversify their samples based on a style bank. Synthetic
datasets have the advantage of including fictitious identi-
ties, alleviating privacy and copyright issues associated with
real-face datasets. However, privacy issues can remain re-
garding data replication in GANs [25] and diffusion mod-
els [67] but can be controlled and mitigated as shown in
[9, 20, 21]. When uncontrolled, synthetic datasets are also
likely to reproduce and even exacerbate the biases of real
datasets in a constrained evaluation setting [51].

Debiasing methods have been proposed to mitigate biases
in face verification. One approach is to adapt the veri-
fication process to demographic segments. The authors
of [57, 70] propose adaptive threshold-based approaches to
improve fairness. Another approach is to address ethnicity-
related bias by learning disparate margins per demographic
segment in the representation space [73, 75, 78] or by sup-
pressing attribute-related information in the model [59].
While technically interesting, these methods are ethically
and legally problematic in practice since they assume dis-
parate treatment of human subjects by AI-based systems.
We advocate for bias mitigation directly within model train-
ing sets, which we show to have a very concrete conse-
quence on model biases.
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Figure 2. Global pipeline overview for training and evaluating models with the baselines and our proposed generative approach. Critical
attributes are collected on image sets (a) that enable using bias mitigation techniques before or during model training (b). Models are
then evaluated on FVT evaluation sets (c), and their biases are then analyzed using fairness metrics and our proposed statistical analysis.
Contributions of this paper are colored green.

3. Methodology
The overall training and evaluation pipeline (Figure 2)

comprises three parts: Part (a) regroups training sets and
their attributes. These training sets may or may not be com-
bined with bias mitigation techniques to train models (part
(b)). These techniques include our proposed controlled data
generation (in green). Finally, as explained in section 2,
these models are used in part (c) to perform FVT using the
setup of [39, 57]. The results obtained on FAVCI2D [53],
RFW [17], and BFW [58] are analyzed in terms of raw per-
formance (accuracy), fairness metrics, and using the statis-
tical approach we introduce in this paper.

Following recent face recognition work [8, 45], we train
models using a ResNet50 architecture [35] with a loss de-
signed specifically for this task [44]. We create face recog-
nition models with different training sets. We ensure com-
parability between these training sets by using the same
structure and similar size, compatible with previous stud-
ies [8,54,79]. They contain 10,000 unique identities and 50
samples per identity.

3.1. Considered Biases

We balance the created datasets for four attributes:
ethnicity, gender, age, and pose. The first three
are sensitive attributes contributing directly to demographic
fairness and are usually employed in the literature [3,58,61,
80]. The fourth ensures face appearance variability and aug-
ments model performance. ethnicity and gender are
attributes associated with each identity. When unavailable
in the datasets’ metadata, these attributes are inferred using
FairFace [42]. In this case, ethnicity and gender are
categorical (Asian, Black, Indian, White) and binary vari-
able (female/male). Since they are supposed to be consis-
tent across the images of the same identity, we mitigate the
potential inference errors by averaging the FairFace outputs
per identity. Age is also inferred at the image level using

FairFace.
The pose attribute is extracted using the model intro-

duced in [36]. We use face rotation around the pitch, the
yaw, and the roll axes (i.e., the rotations around the x, y,
and z axes) to characterize pose.

3.2. Proposed Balanced Dataset Generation

Our controlled approach relies on the DCFace [45] gen-
eration pipeline. It applies the style of a real picture (style
image) to a synthetic face picture (ID image) using a dual-
conditioned diffusion model. DCFace combines a single ID
with several style images to produce the samples represent-
ing each synthetic identity in the training set. The identity-
level attributes (ethnicity and gender) are, therefore,
controlled by the choice of the ID image. The picture-level
attributes (age and pose) are controlled by the choice of
the style images.

We thus introduce a joint diversification process on
gender, ethnicity, age, and pose attributes. We se-
lect a list of ID images generated with DDPM [37] whose
joint gender×ethnicity distribution is perfectly bal-
anced. We diversify pose and age by iteratively pop-
ulating the less-represented age and pose categories of
each identity. We also match the demographic segment
(gender×ethnicity) of ID and style images to facil-
itate the loss convergence process. We implemented this
matching following initial tests, which showed that con-
vergence is not guaranteed without anything else. We cre-
ate two versions of the balanced dataset to assess the in-
fluence of identity-level and image-level attributes. DC-
Face + Cge uses only gender×ethnicity , DCFace
+ Call considers all four attributes.

3.3. Training Set Baselines

We compare DCFace + Cge and DCFace + Call with
a representative set of real and synthetic datasets: CA-



SIA [79] - real dataset representing celebrities from the
IMDB dataset. BUPT [75] - real dataset that is balanced for
ethnicity. Note that the full version includes more than
1M images. We subsample BUPT to match the structure of
other baselines [8, 54, 79]. SynFace [54] - synthetic dataset
created with a GAN architecture using identity and domain
mixup to diversify generated faces. DigiFace [8] - synthetic
dataset created using rendering technique to obtain diversi-
fied representations of faces of each identity. DCFace [45]
- synthetic dataset generated using the default uncontrolled
pipeline of [45].

3.4. Dataset Biases Analysis

We report the attribute diversity a for a dataset D com-
puted as the normalized entropy applied on the frequency
pai

for the attribute sub-groups ai∈[1,m].

Diversitya(D) = − 1

ln(N)

N∑
i=0

pai
ln(pai

) (1)

Table 1 enables a data-oriented comparison of our
datasets and baselines. It highlights the proposed pipeline’s
effectiveness and the need for joint attribute balancing to
avoid unwanted side effects. For instance, balancing ethnic-
ity and gender alone induces a notable lack of age diversity,
and our pose balancing indeed results in more pose diver-
sity. For instance, only balancing on ethnicity and gender
reduces age diversity and does not affect pose, while bal-
ancing for all attributes results in a better global trade-off.

Attribute CASIA BUPT DigiFace SynFace DCFace DCFace + Cge DCFace + Call

Gender 1.00 0.93 0.93 0.99 0.99 1.00 1.00
Ethnicity 0.47 0.92 0.65 0.40 0.56 0.93 0.90

Age 0.59 0.71 0.42 0.64 0.64 0.61 0.69
Pose 0.61 0.57 0.67 0.58 0.51 0.51 0.58

Table 1. Inferred diversity for several training datasets. The degree
of balance is quantified by the entropy for the considered attributes
across the dataset. Datasets introduced in this paper are in bold.

3.5. Baseline Debiasing Methods

We compare the proposed dataset bias mitigation
pipeline with two classical baseline methods: resampling
[6, 10, 46–48, 71, 85] and loss weighting [26, 38, 76]. We
apply these common debiasing techniques on imbalanced
sets (CASIA and DCFace). The frequency of the con-
sidered classes determines an image’s sampling probabil-
ity and sample weight, which are used in resampling and
weighting, respectively. We detail these methods in the
supplementary material. We add +Sge and +Wge to initial
dataset names for resampling and loss weighting limited to
gender and ethnicity. We add +Sall and +Wall when
all attributes are debiased.

4. Toward a Fairer Analysis of FVT evaluation
4.1. Evaluation Sets and Protocol

We use RFW [17], FAVCI2D [53], and BFW [57] in our
fairness analysis. We selected the two first face verifica-
tion datasets because they have sufficient identities per de-
mographic segment for rigorous analysis, and the third one
because of its balancing. We provide additional accuracy-
oriented results using classical datasets, such as LFW [39],
AgeDB [49], and CPLFW [83] in the supplementary mate-
rial. These datasets are either too small or demographically
imbalanced to enable robust fairness in assessment.

Similar to training datasets, we extract FairFace at-
tributes whenever they are not provided. For RFW and
BFW, we use the included ethnicity (as well as
gender for BFW) attribute since the datasets are already
balanced for it. Figure 4 presents a brief description of the
pair attributes in the RFW, FAVCI2D, and BFW datasets.
While the three datasets have similar balancing on age and
pose attributes, they exhibit different characteristics in
terms of gender and ethnicity distributions. FAVCI2D has
a relatively balanced gender distribution but a skewed eth-
nicity distribution, with the White ethnicity being the most
prevalent. In contrast, RFW has a more balanced represen-
tation of ethnicity, with a uniform distribution, like BFW,
across African, Indian, Asian, and Caucasian eth-
nicities, but is unbalanced in terms of gender, unlike
BFW. Despite being balanced, BFW has very few identities
that might introduce singularity. This can explain the sur-
prising behavior of fairness metrics on this dataset (e.g. CA-
SIA being fair for most metrics). These differences allow
for a comprehensive evaluation of face verification mod-
els’ fairness and performance across diverse demographic
groups, assessing how well the models handle gender and
ethnicity variations and identifying potential biases arising
from imbalanced training data.

4.2. Fairness and Performance Metrics

To evaluate face recognition performance, we consider
the following metrics: Micro-Average Accuracy [56] is
commonly used for evaluating the overall performance of a
face recognition model. It is particularly useful when deal-
ing with unbalanced data, as it gives equal weight to each
dataset segment, regardless of the group size. Consequently,
the overall accuracy is not biased toward the majority group.
True Match Rate (TMR)1, or TPR, measures the propor-
tion of actual positive cases that are correctly identified.
False Match Rate (FMR), or FPR, measures the propor-
tion of negative cases incorrectly identified as positive by
the face recognition model. We follow existing face recog-
nition literature [22,72] and consider FMR as a more critical
metric compared to TMR.

1is equivalent to 1−FNMR
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Figure 4. Attribute analysis of the evaluation datasets. Attributes
are generated using FairFace [42], except for the gender of BFW,
and ethnicity for RFW and BFW included with the datasets.

To evaluate face recognition fairness, we consider the
following metrics: Degree of Bias (DoB) [28] is the
standard deviation of accuracy across different subgroups,
which is higher when the performance varies a lot w.r.t
each subgroup. However, datasets with low accuracy tend
to have a smaller overall variance inherently. Moreover,
DoB does not allow for fine-grained error analysis, which
is central to understanding performance variations in our
case. Demographic Parity Difference (DPD) and Demo-
graphic Parity Ratio (DPR) [1, 2] require that the proba-
bility for individuals to receive a positive outcome should
be the same across all demographic groups. DPD is the ab-
solute difference between the highest and lowest probability
across all subgroups, whereas DPR is the ratio between the
lowest and highest. The closer the DPD is to zero and the
closer the DPR is to one, the fairer the results are. Equal-
ized Odds Difference (EOD) and Equalized Odds Ra-
tio (EOR) [1, 32] require that the face recognition model’s
TMR and FMR are independent of the demographic groups,
thus ensuring consistent accuracy across groups. EOD is

calculated as the maximum absolute difference between the
TMRs or FMRs across groups. EOR is the minimum be-
tween the ratios of the TMRs and FMRs across groups. The
closer the EOD is to zero and the closer the EOR, the fairer
the results are.

4.3. Proposed Statistical Analysis Approach

Our statistical analysis pipeline comprises logit regres-
sion [7] and Analysis of Variance (ANOVA) [27]. These
methods provide complementary insights into the impact of
the studied attributes on fairness.

Logit regression [7] models the relation between at-
tributes and the binary outcome of a model. It is a general-
ized linear model that estimates the probability of a binary
outcome based on one or more independent variables using:

ln
P[y = 1|X]

P[y = 0|X]
= β0 + β1X1 + ...+ βkXk (2)

where y is a target binary variable to explain, X1, ...Xk are
the k explanatory variables; and β0, ..., βk are the fitted co-
efficients. In the fairness analysis context, for an image pair
given as input to a face verification algorithm, the binary
outcome represents the quantity 1(ypred = ytrue). When
properly fitted, the logit regression coefficients represent the
impact on the binary outcome for a unit change in the cor-
responding attribute, holding other attributes constant.

ANOVA [27] is used to determine whether significant
differences exist among the means of multiple groups. In
fairness analysis, ANOVA can be applied to a continuous
variable, such as the distance between face representations
in the latent space, to measure the importance of each at-
tribute in explaining the observed variations. By treating
the latent space distance as the dependent variable and the
attributes as independent variables or factors, ANOVA can
partition the total variance in the distances into compo-
nents attributable to each attribute. Additionally, a quantity
named η2 can be computed for each variable and used to
represent the variance the variable explains.

ANOVA identifies the overall importance of attributes in
explaining variations in the latent space, while logit regres-
sion quantifies the specific impact of attributes on binary
identification outcomes. Section 5 presents the detailed ap-
plication of these methods to the datasets and fairness met-
rics, along with the interpretation of the results.



RFW [74] FAVCI2D [53] BFW [57]
DoB↓ DPD↓ EOD↓ DPR↑ EOR↑ Acc↑ DoB↓ DPD↓ EOD↓ DPR↑ EOR↑ Acc↑ DoB↓ DPD↓ EOD↓ DPR↑ EOR↑ Acc↑

BUPT 30.3 23.6 11.9 68.4 28.6 89.5 38.4 13.0 14.4 75.2 19.3 81.8 25.7 5.5 12.5 88.8 26.1 92.6
CASIA 35.3 19.0 22.0 71.1 5.2 85.1 39.0 21.2 28.5 66.3 16.5 81.1 29.1 9.2 14.9 82.2 1.3 90.3
CASIA + Seg 39.4 11.5 18.8 80.4 29.4 79.9 43.1 15.5 18.7 70.6 31.6 75.1 31.8 10.0 18.9 80.4 11.3 88.0
CASIA + Sall 48.2 17.8 24.0 68.8 43.7 62.3 48.6 22.0 24.1 60.3 43.8 61.8 43.5 19.3 33.6 67.8 23.1 74.0
CASIA + Weg 43.5 17.3 22.8 70.2 23.8 74.0 45.3 22.3 21.0 59.2 32.7 71.1 35.4 12.5 18.5 77.0 18.5 84.9
CASIA + Wall 49.1 26.7 36.2 54.7 30.7 59.1 49.1 28.1 31.2 47.1 31.0 59.4 46.4 29.6 38.5 52.4 23.5 68.2

SynFace 48.6 13.8 24.9 73.6 44.0 60.9 48.5 22.7 26.4 57.3 37.4 62.0 45.4 20.4 23.2 63.3 36.4 70.7
DigiFace 45.9 15.5 25.6 73.6 37.0 69.2 47.3 21.0 22.2 62.1 40.4 66.0 45.7 16.0 21.1 70.1 44.8 70.0
DCFace 42.7 17.2 32.7 71.4 15.3 75.6 45.1 20.0 18.9 62.8 32.1 71.6 35.4 14.2 21.5 74.4 11.7 85.0
DCFace + Seg 44.0 13.7 36.7 76.5 18.2 72.3 45.9 15.5 21.2 68.4 31.5 69.5 37.2 18.6 29.7 68.3 10.1 82.9
DCFace + Sall 48.0 16.7 23.8 69.5 38.7 63.6 48.1 22.1 23.0 58.2 43.8 63.4 42.9 16.8 25.8 68.7 21.8 75.3
DCFace + Weg 44.2 16.7 33.4 70.7 18.9 72.7 46.0 19.2 20.9 62.1 29.9 69.4 36.9 14.6 20.1 72.3 12.5 83.5
DCFace + Wall 49.0 19.4 31.6 59.9 23.4 59.9 48.5 23.7 26.0 54.9 36.5 61.8 44.4 24.0 24.3 56.5 27.3 72.8
DCFace + Ceg 42.2 12.7 13.7 77.1 41.2 76.4 44.7 14.3 15.6 71.1 66.0 72.4 34.7 11.3 13.8 77.8 23.0 85.7
DCFace + Call 41.6 11.2 14.6 80.3 45.9 77.3 44.5 14.2 14.9 70.9 58.6 72.7 34.2 11.5 13.5 77.5 24.1 86.1

Table 2. Fairness metrics and Micro-average accuracy scores of tested datasets and bias mitigation techniques. Real and synthetic datasets
are separated. Groups are defined as a combination of gender and ethnicity . DPD: Demographic Parity Difference; EOD: Equalized
Odds Difference; DPR: Demographic Parity Ratio; Equalized Odds Ratio; Acc: Micro-average Accuracy. The best results for each dataset
type are in bold, and the second-to-best results are underlined.

5. Results and Analysis
We report and discuss fairness metrics on both

FAVCI2D and RFW sets. Statistical and ANOVA analy-
sis is performed on RFW and is reported for FAVCI2D in
the supplementary material.

5.1. Performance & Fairness Comparison

We report the fairness metrics and micro-average accu-
racy for all training approaches on RFW, FAVCI2D, and
BFW, both for real and synthetic datasets (Table 2).

Among the real datasets, the model trained on BUPT
achieves higher accuracy than models trained on CASIA on
RFW, FAVCI2D and BFW. BUPT also gets the best fairness
metrics on FAVCI2Dand BFW but surprisingly, on RFW,
it shows a mitigated behavior, being first in terms of EOD
only. Overall on RFW, CASIA+Sge shows the best behav-
ior in terms of fairness (DPR, DPD, EOD), at the cost of
5.2 points of accuracy compared to the original CASIA set.
This surprising behavior is not noticed with our in-depth
analysis (especially in Figure 5), which draws other conclu-
sions for BUPT model sensitivity, advocating for the use-
fulness of our analysis approach. Findings are similar for
BFW, with CASIA fairness being close to BUPT’s. This
surprising behavior might come from the few identities that
compose the dataset. BUPT accuracy is also better than CA-
SIA’s, with some variability between the three tested veri-
fication datasets. This is probably the result of a different
degree of shift between train and verification data.

Among synthetic datasets, the proposed DCFace +
Cge and DCFace + Call show the most promising results
across the evaluation sets. These balanced variants im-
prove fairness compared to DCFace, the original genera-
tion pipeline they build upon. The fairness gains are large
for DPD, EOD, DPR, and EOR and less important for
DoB. The differences between DCFace + Call and DCFace

+ Cge are small for most fairness metrics, but DCFace +
Call provides a mild accuracy gain. The results demon-
strate that the proposed balancing pipeline, particularly DC-
Face + Call, substantially improves fairness metrics across
different verification datasets. Importantly, a small accu-
racy gain compared with the original DCFace dataset is
also observed, along with fairness improvement. The mod-
els trained with balanced datasets probably benefit from a
smaller shift between training and verification datasets, re-
flected in the micro-average accuracy measured during eval-
uation. Similar results are obtained in terms of raw accuracy
and are reported in the supplementary on five additional ver-
ification sets used in prior works [8, 45].

5.2. Logit Model for Bias Quantification

To quantify the biases in face recognition outcomes more
precisely, we employ a logit model that estimates the im-
pact of person attributes on face verification model predic-
tions. Hence, we examine the relationship between the stud-
ied attribute and the face recognition system’s performance
in terms of FMR and TMR. The two logit regressions are:

(TMR) 1(ŷ = 1|y = 1) = σ(β0 + β1 · ethnicity
+β2 · gender+ β3 · age
+β4 · pose)

(FMR) 1(ŷ = 1|y = 0) = σ(β0 + β1 · ethnicity
+β2 · gender+ β3 · age
+β4 · pose)

where ŷ is the prediction of the model; y is the ground-truth
label of the pair; σ is the sigmoid function; ethnicity
and gender are categorical variables implemented with
the dummy variable coding [33]; age and pose are han-
dled as continuous variables.

The logit model coefficients βk represent the change
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Figure 5. Marginal effect on FMR (lower is better) for each method compared to the unprotected group. Example: ”When using CASIA ,
on average and other things being equal, two people from the African subgroup are 22% more likely to be wrongly misidentified than
two people from the Caucasian subgroup”. Non-significant effects are shown in transparency. Our controlled generation reduces biases
of DCFace more effectively than other bias mitigation techniques.

in the log odds of the binary outcome (e.g., false posi-
tive or true positive) for a unit change in the correspond-
ing attribute, holding other attributes constant. The unit
change is computed with respect to the unprotected group
(Caucasian for ethnicity and Male for gender), which
is the reference level in the dummy coding. Since the βk

are not easily interpretable by themselves, we then com-
pute the mean marginal effects of each attribute, i.e., how
much the TMR or FMR change when we shift from the un-
protected value to a protected one (for instance Male to
Female). Since we control for all other variables simul-
taneously, this effect can be interpreted as an effect with
all other attributes kept constant. Therefore, the marginal
effect estimates the effective demographic biases while ac-
counting for confounding factors.

Figure 5 presents the logit model results for the
ethnicity and gender attributes on RFW, showing the
computed marginal effects on FMR. The marginal effects
are calculated relative to each attribute’s unprotected refer-
ence group. The higher the bar, the higher the bias against
the protected subgroup. For example, when using DCFace,
our analysis shows that the FMR for the African sub-
group is 35 points higher than for the White subgroup,
independently of the other considered attributes. The ad-
dition of re-weighting does not affect this bias, while re-
sampling reduces it to 22 points. Our method further re-
duces it to 12 points. Concerning gender bias, despite de-
creasing the bias for ethnicity, re-sampling increases
the bias for gender. The proposed controlled generation
reduces biases for ethnicity while keeping the bias in
gender non-significant. The results of the logit model on
TMR and on FAVCI2D are provided in the supp. material.

The logit model results provide valuable insights into the
fairness implications of different face recognition methods
and datasets. By comparing the marginal effects across at-
tributes and methods, we identify the extent and nature of
biases of each approach. The significantly smaller marginal
effects observed in Figure 5 shows our controlled dataset
generation reduces biases compared to the original DC-
Face dataset and baseline mitigation techniques. The inter-
pretation of the logit model results highlights the disparities
in face recognition performance across different attribute
subgroups, showing the importance of considering fairness
in the development and evaluation of face recognition sys-
tems and the need for effective bias mitigation strategies.

5.3. ANOVA on Latent Space

The variation of the performance and fairness metrics
across demographic segments can be seen as a consequence
of the variability in the distribution of feature vectors in
the model’s latent space. Therefore, we utilize ANOVA to
investigate the influence of personal attributes on the dis-
tances in this latent space. In our case, the groups are de-
fined by the person’s attributes, such as gender, age, and
ethnicity, and the explained variable is the distance between
face representations in the latent space. We use the sum
of squares computed during ANOVA to extract the η2 as-
sociated with each attribute. Each η2 value represents the
impact of the variable on the distance variance in the la-
tent space. The η2 of each attribute sum to the R2 of the
ANOVA, i.e. the total variance explained by the model.

Figure 6 shows the result of ANOVA on the distances
in the latent space of the RFW dataset, both on the posi-
tive and negative pairs. As expected, the explained variance
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Figure 6. ANOVA results on RFW: total height corresponds to R2,
the explained variance by the variables. Each bar is decomposed
into multiple η2, i.e. the individual contributions to the variance.

on the positive pairs is generally smaller than the explained
variance of the negative pairs, since two images of differ-
ent people are likely to have more variability than two im-
ages of the same person. Moreover, the total R2 = 0.18
of the ANOVA shows that 18% of variance in the dis-
tances in the latent space can be attributed solely to the
considered people’s attributes. pose has the strongest in-
fluence on the positive pairs, a finding explained by the
strong pose variability for the same person. However, nei-
ther ethnicity nor gender play a big role, meaning
that across demographic segments, the spread of the latent
vectors of a single person is very similar. This is expected
since the training loss tries to bring closer the latent vectors
of the same individual, who has only one ethnicity and
gender value.

On the negative pairs, ethnicity is the attribute hav-
ing the highest impact on the latent vectors. This means that
the distances for negative pairs are much higher for some
demographic segments than others. This result quantifies
how much the demographic imbalance translates into the
geometry of the latent space. Confirming previous works
[42, 61] with another approach, our analysis shows a sig-
nificant impact of the demographic attributes on the spread
of the latent vectors. Once more, the impact of the pro-
posed datasets, DCFace + Call and DCFace + Cge, on the
η2 shows the effectiveness of our controlled generation. By
contrast, traditional training strategies such as re-sampling
and loss-weighting are not as good at mitigating the biases
in the latent space.

6. Limitations

Attribute inference tools are needed to obtain demo-
graphic attributes but introduce prediction errors. FairFace
is widely used in the field [45, 62, 75] and could be im-
proved, particularly for a finer-grained ethnicity detec-
tion. The statistical bias analysis is sensitive to the variabil-
ity and size of evaluation sets. Consequently, it should only
be applied to datasets having sufficient samples for each de-
mographic segment to obtain significant results. This dis-
cards using classical datasets, such as LFW [39], for fair-
ness analysis. We present a dataset-balancing pipeline com-
bining several attributes and implement it for DCFace [45],
a recent and competitive face generator. The pipeline can
be adapted to other generators, such as IDiff-Face [12].
ethnicity and gender are the most sensitive attributes,
and their balancing focuses on seed ID images needed to
drive identity generation in most existing methods.

7. Conclusion

We addressed FVT fairness by evaluating the perfor-
mance and bias of models trained on various real and syn-
thetic datasets. We proposed a novel controlled generation
approach to create balanced synthetic datasets, DCFace +
Cge and DCFace + Call, which prioritize attribute diversity.
Our experiments demonstrated that models trained on bal-
anced datasets significantly improved face verification fair-
ness metrics while maintaining competitive accuracy. The
proposed analysis based on logit regression and ANOVA re-
vealed that the controlled generation method effectively re-
duces attribute-based biases in both model predictions and
latent space representations. It also highlights a persis-
tent disparity in fairness across all considered approaches,
which penalizes the African subgroup in particular.

Our findings have important implications for develop-
ing fairer and more inclusive FVT systems. By demon-
strating the effectiveness of attribute balancing in synthetic
data generation and providing a comprehensive evaluation
framework, we advocate for more efforts in addressing bias
issues in computer vision applications. Future research
could explore integrating our approach with other bias miti-
gation techniques and investigate the generalizability of our
findings to other computer vision tasks and datasets.
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[19] Moreno D’Incà, Christos Tzelepis, Ioannis Patras, and Nicu
Sebe. Improving fairness using vision-language driven im-
age augmentation. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
4695–4704, 2024. 1

[20] Perla Doubinsky, Nicolas Audebert, Michel Crucianu, and
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Supplementary Material

A. Parameters for training and generation
For training the face classifier, we use the Adaface train-

ing pipeline [44]. We apply the same augmentations, crop,
and low-resolution augmentations, for all training sets, with
an exception on DigiFace , where we also use the augmen-
tation of the authors to reach optimal performances. We
perform the training on 4 GPUs with a batch size of 256
(i.e. 64 per GPU), the optimizer is the standard SGD with
a learning rate of 0.1 and a momentum of 0.9. We use as a
scheduler a multi-step learning rate decay whose milestones
are the epochs 12,20,24 and the decay coefficient is 0.1. The
training loss is that of Adaface [44]. The margin parameter
m is set to 0.4, and the control concentration constant h to
0.333 as recommended by [44]. On each training set, the
training lasts 60 epochs.

For generating the DCFACE set and its variants, we use
the generation pipeline of [45]. We impose the Xid image
and the Xsty to be of the same demographic group as we
found that mismatching is likely to induce non-convergence
of the resnet50 model when training on the resulting dataset
(in particular when mismatching in gender). Randomly
sampling the style image within the CASIA dataset thus
results in a non-decreasing loss of the ResNet network.
Within the code of [45], there is a sampling strategy we
haven’t tested: combining DDPM images with the closer
CASIA faces. This approach was and still is, unfortunately,
non-usable due to incomplete critical files 2 Moreover, this
strategy is not mentioned in the original paper and, since it
combines similar CASIA and DDPM faces in a resnet100
latent space, it seems to be in contradiction with what is
stated within the ID Image Sampling subsection of [45]. We
thus chose to ignore this strategy, our study being primarily
an analysis of fairness and improvement research in this re-
gard.

For all methods, similarly to what the original paper did,
we introduce variability within the considered DDPM Xid

pictures by using a similar Feval model as in [45]. How-
ever, one should be aware that the Cosine Similarity Thresh-
old might vary depending on the training of the Feval net-
work. We used the network trained on [86] provided by
the Adaface Github repository and found 0.6 as an effective
threshold to filter similar images. We also get rid of faces
wearing glasses with the following solution [11].

B. Performance in Accuracy on other sets
In addition to FAVCI2D , BFW, and RFW, we report in

Table 3 the raw accuracy results on 5 common evaluation
2The provided center ir 101 adaface webface4m faces webface

112x112.pth file doesn’t have a required ”similarity df” field. Also,
the dcface 3x3.ckpt file doesn’t seem to store the following property:
recognition model.center.weight.data

Verif.
dataset

Real dataset Synthetic datasets
CASIA BUPT SynFace DigiFace DCFace DCFace + Cge DCFace + Call

LFW 99.46 99.55 87.28 94.88 98.13 98.24 98.25
CFP-FP 94.87 90.03 67.01 83.4 80.92 80.03 81.28
CPLFW 90.35 85.98 64.91 76.61 79.94 79.32 80.17
AgeDB 94.95 94.3 61.78 78.26 87.96 86.77 86.53
CALFW 93.78 94.38 73.53 79.78 90.39 90.6 90.03

RFW 86.38 90.35 64.3 72.73 76.95 78.51 79.5
FAVCI2D 82.77 81.81 61.19 67.17 72.84 73.31 73.73

BFW 89.3 92.48 70.08 77.27 84.47 85.45 88.53
AVG 91.48 91.11 68.76 78.76 83.95 84.03 84.75

Table 3. Raw Accuracy obtained for the different used sets on
8 datasets including five commonly used datasets in addition to
BFW, RFW and FAVCI2D

sets used in prior work on the FR task [8, 44, 45, 54] : (1)
Labeled Faces in the Wild (LFW) [39], the reference dataset
for the task (2) CALFW [84], a version of LFWwith a larger
age variability, (3) CPLFW [83], a version of LFWwith
pose variability, (4) AgeDB [49], a dataset designed for
maximizing age variability, and (5) CFP-FP [66] that is de-
signed for pose variability.

Raw accuracy differs from the micro accuracy reported
on the paper. Micro accuracy gives the same importance to
each demographic segment, whereas raw accuracy performs
a simple mean across all images, without any distinction.

Table 3 confirms the performance gain of DCFace +
Call over the original generation pipeline: The genera-
tion pipeline slightly improves accuracy for four of these
datasets (+0.12, +0.36, +0.23, and +0.89 for LFW, CFP-
FP, CPLFW, and FAVCI2D ) and slightly degrades perfor-
mance for the other two (-1.43 and -0.36 points for Age-DB
and CALFW). On the balanced sets, (i.e. RFW and BFW)
the pipeline induces important gains in accuracy (+2.55 for
RFW and +4.06 for BFW).

C. Bias Mitigation techniques details
We provide implementation details about the baselines,

re-sampling, and loss weighting used to compare with our
approach.

C.1. Re-sampling

Data re-sampling balances class distribution within train-
ing data by employing strategies other than the default
uniform sampling. These strategies can consist of over-
sampling the data from the under-represented classes and/or
under-sampling majority classes [41, 68].

Oversampling [6, 10, 46, 85] increases the number of
samples by replicating existing data. However, duplicating
data by sampling the several times can lead to over-fitting.
On tabular data, interpolating techniques such as SMOTE
and its variants [13, 16, 31] can be used in order to tackle
this overfitting issue. Still, such approaches are not trivial
and more costly for non-tabular data such as images.

Undersampling, on the other hand, consists in the re-



duction of the majority classes so that their representativ-
ity matches the underrepresented classes. [47, 48, 71]. The
main drawback of such an approach is that it results in un-
used data, which is not an optimal setup.

Here we use Re-Sampling as a baseline for bias mit-
igation by combining over-sampling and under-sampling.
Specifically, for each attribute a with values aj , we count
nj , the number of images with value aj . We then assign
a weight wj = 1/nj to each image sharing value aj . For
each image xi, we compute its weight wi as the product
of the weights of all attributes associated with the image.
The sampling probability for each image is calculated as
pi = wi/

∑
k wk. At each beginning of a training epoch,

we sample N images according to the probability distribu-
tion {pi}, where N is the size of the original dataset.

Note that this approach, coupled with the set of random
image augmentations used during training, should mitigate
to a certain extent the mentioned limitations of both over-
sampling and under-sampling.

C.2. Loss Weighting

Loss weighting tries to adapt the loss scale depending
of the characteristics of the sample. This weighting can
be linked to the difficulty of the sample as done implic-
itly by the Adaface Loss [44], which can be induced by the
class imbalance or in our use case, by the corresponding
attributes representativity. A common way to weight the
loss is to use the same weights computed in subsection C.1,
i.e. using the invert of the frequency/count [26, 38, 76]. We
thus use the same weights wi for weighting the loss. The
weights are normalized batch-wise to ensure the same order
of gradient amplitude. The loss of the batch is defined as:

L(x1, ..., xK) =

∑
k wkL(xk)∑

k wk
(3)

where L(xk) is the sample-wise loss for image xi.

D. Diagnostics on the regressions
To be valid, a linear regression needs to satisfy a few

properties, mainly:

• Correct specification: The model is correctly specified,
meaning all relevant variables are included, and no ir-
relevant variables are included.

• Normal distribution of errors: While not strictly nec-
essary for estimation, the assumption that errors are
normally distributed allows for valid hypothesis test-
ing and the construction of confidence intervals.

• Zero conditional mean (exogeneity): The expected
value of the error term is zero for any given value of
the independent variables. This implies that the inde-
pendent variables are uncorrelated with the error term.

Figure 7. QQ-plot of residuals and Residual vs. predicted plot:
logit model is adapted and log-odds are linear in the variables.

• Homoscedasticity: The variance of the error term is
constant across all levels of the independent variables.

For a generalized linear model, such as the logit model,
these assumptions are not possible to verify strictly due
to the non-linearity of the model. Therefore, we use the
DHARMa package [23] in R to run diagnostics on our mod-
els and verify the validity of our regressions. DHARMa
uses simulation-based residuals. It creates new data from
the fitted model and then calculates the empirical cumula-
tive density function for each observation. This approach
allows for standardized residual calculation even for non-
normal distributions like in logit models.

The package provides several diagnostic plots:

• QQ-plot of residuals: Checks for overall deviations
from the expected distribution (Figure 7-left).

• Residual vs. predicted plot: Helps detect heteroscedas-
ticity and nonlinearity (Figure 7-right).

• Residual vs. predictor plots: Useful for identifying
problems with specific predictors (similar to exogene-
ity) (Figure 8).

• Overdispersion Test: helps to identify if there’s more
variation in the data than expected under the binomial
distribution (Figure 9).

• Zero-inflation Test: check for an excess of zeros or
ones (Figure 10).

Here, we will show the diagnostics only for the model
DCFace + Call on RFW, but diagnostics graphs are constant
across all tested models on both test datasets.

E. Statistical Analysis on FAVCI2D
We present here the results of our statistical analysis on

FAVCI2D . Be aware that while the metadata of this dataset
contains gender information, it doesn’t provide ethnicity.



Figure 8. Residual vs. predictor plots: exogeneity is verified.

Figure 9. Overdispersion Test: Correct Specification and no auto-
correlation.

Figure 10. Zero-inflation Test: the model correctly predicts the
probability of the outcome.

We infer it using FairFace. We consider the prediction of
FairFace robust enough to compute macro metrics such as
the Diversity metric of the main paper however for a finer
study such as ours, it might introduce some uncertainty due
to model prediction error (Table 4). With that in mind, we
still get consistent results for the effects of demographic at-
tributes on the models (Figure 11). Our approach shows
even more insensitiveness on FAVCI2D than BUPT, by con-
trast to the results obtained on RFW. The increase of the

BUPT-trained model’s sensitivity with regard to the inferred
labels on FAVCI2D might come from the dataset balancing
done on the same labeling system as RFW. Results obtained
regarding the TMR (Figure 12) and FMR are coherent with
the idea that models tend to predict positive outcomes for
certain protected ethnical sub-groups. They thus have a high
recall for these groups (high TMR and high FMR). With the
gender provided by the metadata, we can thus confirm the
impact of the balancing on fairness relative to this attribute.
While most of the models are sensitive to gender, the model
trained on DCFace + Call DCFace has close to no sensitiv-
ity for this attribute, both being close to perfectly balanced
concerning gender.

Figure 13 shows the result of ANOVA on the distances
in the latent space of the FAVCI2D dataset, both on the pos-
itive and negative pairs. The results are coherent with the
ANOVA computed on RFW. It furthermore highlights the
sensitivity of some models’ latent space to gender, while
our balancing approach allows for more insensitivity about
demographic attributes.

F. Statistical Analysis on BFW
To tackle the issue of the lack of metadata, in addition

to BFW, other alternatives exist such as BFW [58] and De-
mogPairs [40]. While these datasets provide some ground-
truth metadata, they are composed of significantly fewer
identities compared to datasets like FAVCI2D or RFW.
This is a limitation of our analysis: Having too few iden-
tities might bring instability within Anova or marginal ef-
fect studies due to redundancy. We report the results ob-
tained with BFW on as similar number of pairs as RFW and
FAVCI2D (24k), meaning every single identity appears in
around 30 evaluated pairs. The impact of the number of
identities within benchmarking should be studied in future
works as this might affect the obtained analysis of perfor-
mance and fairness.

Figure 16 shows the ANOVA analysis performed on
BFW. As before, on the negative image pairs, our condi-
tional generation methods greatly reduces the variance ex-
plained by the sensitive attributes.

Figures 15 and 14 present the marginal effects of the at-
tributes, respectively, on TMR and FMR. As we see, the
fairness gain mostly comes from a fairer FMR between eth-
nicities: the FMR of the Asian and Black subgroups are
8 and 12 points higher than for the White subgroup in the
original DCFace , and become non-significant with DCFace
+ Call . For the TMR, however, just as for RFW, becomes
slightly more unfair between ethnicities. Still, as shown in
Table 2 of the paper, on all fairness metrics except EOR, our
method outperforms the other synthetic data approaches on
BFW.



ethnicity Black White East-Asian Indian Latino-Hispanic Middle-Eastern South-Asian

Prediction accuracy 0.863 0.777 0.784 0.724 0.581 0.631 0.641

Table 4. FairFace model accuracy when inferring on the Fairface validation set. Available Metadata only provides the race7 variable ground
truth while we are considering the race variable (whose values are White, Black, Asian, and Indian). The robustness of the model for this
latter should be thus greater.
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Figure 11. Marginal effect on FMR (lower is better) for each method compared to the unprotected group. Analysis done on FAVCI2D
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Figure 12. Marginal effect on TMR (lower in absolute is better) for each method compared to the unprotected group. Analysis done on
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BUPT
CASIA

CASIA
+S all

CASIA
+S ge

CASIA
+W ge

CASIA
+W all

Sy
nFa

ce

DigiF
ace

DCFac
e

DCFac
e+S ge

DCFac
e+S all

DCFac
e+W ge

DCFac
e+W all

DCF
ac

e+C ge
(o

ur
s)

DCF
ac

e+C all
 (o

ur
s)

0

2

4

6

8

10

12

14

%
 o

f e
xp

la
in

ed
 v

ar
ia

nc
e

Variability on positive image pair distances

BUPT
CASIA

CASIA
+S all

CASIA
+S ge

CASIA
+W ge

CASIA
+W all

Sy
nFa

ce

DigiF
ace

DCFac
e

DCFac
e+S ge

DCFac
e+S all

DCFac
e+W ge

DCFac
e+W all

DCF
ac

e+C ge
(o

ur
s)

DCF
ac

e+C all
 (o

ur
s)

0

2

4

6

8

10

12

14

%
 o

f e
xp

la
in

ed
 v

ar
ia

nc
e

Variability on negative image pair distances
Attribute

Ethnicity
Gender
Age
Pose

Figure 13. ANOVA results on FAVCI2D : total height corresponds to R2, the explained variance by the variables. Each bar is decomposed
into multiple η2, i.e. the individual contributions to the variance
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Figure 14. Marginal effect on FMR (lower is better) for each method compared to the unprotected group. Analysis done on BFW
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Figure 15. Marginal effect on TMR (lower in absolute is better) for each method compared to the unprotected group. Analysis done on
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Figure 16. ANOVA results on BFW: total height corresponds to R2, the explained variance by the variables. Each bar is decomposed into
multiple η2, i.e. the individual contributions to the variance
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Figure 17. Marginal effects on TMR (lower in absolute is better) for each method compared to the unprotected group. Analysis done on
RFW



G. Datasets Images examples

(a) Examples of images within our proposed DCFace + Call approach.
We notice a greater diversity of images.

(b) Examples of images generated with the original DCFace [45]
pipeline

(c) Examples of images generated with the SynFace pipeline [54] (d) Examples of images within the DigiFace dataset [8]



(e) Examples of images within the CASIA dataset [79] (f) Examples of images within the BUPT dataset [75]
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