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Abstract. Knowledge-Aware Visual Question Answering about Entities (KVQAE)
is a recent multimodal retrieval task aiming to answer visual questions about
named entities from a multimodal knowledge base. In this context, we focus more
particularly on cross-modal retrieval and propose to inject information about enti-
ties in the representations of both texts and images during their building through
two pretraining auxiliary tasks, namely entity-level masked language modeling
and entity type prediction objectives. We show competitive performance over ex-
isting approaches on 3 KVQAE standard benchmarks, revealing the interest of
raising entity awareness during cross-modal pretraining and specifically for the
KVQAE task3.

1 Introduction

Contrastive Learning (CL) has emerged as a powerful paradigm for improving the rep-
resentation learning capabilities of Vision-Language Pretrained Models (VLPMs) by
aligning Vision-Language representations in a common latent vector space, which of-
ten spills over into the performances of numerous multimodal applications, including
image captioning, visual question answering, and cross-modal retrieval. CLIP [22] is a
notable example that demonstrated great zero-shot performance in several cross-modal
tasks. However, several works pointed out the limitation of CLIP when adapting to
downstream tasks, in particular, due to its unique instance-level contrastive pretraining
[26,18]. In this context, we investigate in this paper how pretrained CLIP can han-
dle entity-level information and its potential benefits on the multimodal KVQAE re-
trieval task. Indeed, the KVQAE task involves unstructured text rich with general do-
main entity-level information (see Figure 1). We argue that leveraging such knowledge
can help capturing additional fine-grained cross-modal interactions and retrieve more
semantically relevant text-image pairs that boost the performance of multimodal re-
trieval. Our contributions are the following. (1) We formulate a contrastive objective for
disentangling passage representations of distinct entities. (2) We extend the standard

3 This manuscript is a preprint submitted to a conference which allow the release of the Accepted
Manuscript (i) on the authors personal websites e.g here (ii) on the employer and/or funder
repositories twelve (12) months after first publication
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Marie Curie. She was born in Warsaw, in what was then
the Kingdom of Poland, part of the Russian Empire. She 

studied at [...].

What was the first name of this
woman?


Multimodal Question Multimodal Passage Entity

Fig. 1: KVQAE illustrative example.

CLIP pretraining framework with two mask-based self-supervised learning objectives,
designed to implicitly incorporate entity information into CLIP representations. (3) Our
experiments on 3 datasets demonstrate that our CLIP entity-aware pretraining improves
performance for the KVQAE task.

Previous works aimed to improve the performance of pretrained CLIP models on
downstream tasks without degrading their zero-shot performance after standard fine-
tuning. [17] leverage new external knowledge by training new attention-based blocks
introduced between the original layers of the CLIP vision encoder while freezing all
the original weights to avoid catastrophic forgetting. Alternatively, [27] rely on a fine-
grained contrastive loss that considers the interactions between image patches and tex-
tual tokens. [23] proposed a prompting-based approach that includes special prefix to-
kens during training to condition the language encoder on the input data type. Similarly,
[28] augment CLIP with learned prompt vectors for image recognition tasks. In [26],
besides combining auxiliary self-learning and CLIP plain objectives, they employ an
image token removal data augmentation strategy that achieves significant performance
gains. More in line with our work, [19] propose EI-CLIP, a CLIP model adapted to
the e-commerce domain that handles the special meaning of entities. However, to the
best of our knowledge, no existing approach consider the integration of general-domain
entity-level information in PVLMs.

2 Method

2.1 Entity-aware cross-modal pretraining

Our approach leverages entity information during cross-modal passage retrieval by rais-
ing CLIP pretraining awareness to entity-level information. First, we explicitly formu-
late a contrastive objective for disentangling passage representations of distinct entities.
Second, we extend the standard CLIP pretraining framework with two mask-based self-
supervised learning objectives that implicitly inject entity information into CLIP rep-
resentations while preserving text-image alignments with the standard contrastive loss
(see Figure 3).
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Entity-centric contrastive learning Given a collection of text-image pairs representing
passages and their visual content associated with entities in a Knowledge Base (KB),
we build a batch of randomly sampled passage-image pairs such that each pair is as-
sociated with a distinct entity. This enables training a CLIP model such that passages
from the same entity are brought closer in the embedding space, while passages from
different entities are pushed apart. Formally, given a batch of N text-image pairs, texts
are tokenized into wordpiece sequences and images are transformed into vectors of 2D
patches. The textual and visual encoders ET(·), EV(·) encode these inputs into global
text and image embeddings (et, ev). Finally, a CLIP dual encoder is trained to mini-
mize a contrastive loss that align the positive text-image pairs and keep the negative
pairs apart, leading to a joint embedding space of text and image representations.

Self-supervised entity-level masked language modeling Similar to the standard MLM
objective used for pretraining LMs such as BERT [7], we pretrain the CLIP text en-
coder on Entity-Level Masked Language Modeling (EL-MLM). We perform entity-
level masking using the special token [MASK] on each token from the identified entity
span. We introduce an EL-MLM Head gMLM(·) similar to gtype(·) that maps the hidden
states of the input masked text to the token vocabulary space. Its weights are tied to the
token embedding layer. The CLIP text encoder is trained with the following EL-MLM
loss:

LMLM = − 1

N

N∑
i=1

|V |∑
k=1

(yi,k · log(li,k)) (1)

where |V |: CLIP text encoder vocabulary size; yi,k: index of the original tokens before
masking; l ∈ RN×|V |: logits after projection with gMLM(·).

Mask entity type prediction Several works [4,8] have demonstrated that capturing la-
tent entity-type information into embeddings may enhance their representation quality
followed by improvement on downstream tasks. Intuitively, we suggest that entity-type
information may help answer visual questions about entities. Thus, during pretraining,
given an input passage Pi, tokenized into n textual tokens and from which we identified
k entity spans (entity mentions), we replace each token ti that belongs to an entity span
sj with the special token [MASK] we added to the CLIP text token vocabulary. The
hidden states of the masked sequence htmask are generated using the CLIP text encoder
ET(·). Let Vtype be the vocabulary set of entity types, we design a mask prediction
head gtype(·) consisting of two linear layers with Gelu activation followed by a softmax
layer that projects htmask to the entity type distribution space which yields the logits
l ∈ RN×|Vtype|. We train CLIP text encoder to predict the entity type of each masked
token given its context using the cross-entropy loss:

Ltype = − 1

N

N∑
i=1

|Vtype|∑
k=1

(yi,k · log(li,k)) (2)

where N : size of the mini-batch; |Vtype|: entity type set size; yi,k: a label binary indica-
tor of the k-th entity type class of i-th token. This loss encourages the model to capture
the specific semantics of entity types by updating directly the text encoder weights. The
final loss is Lcombined = Lcon + Ltype + LMLM.
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2.2 KVQAE task

To extract answers about named entities, we follow a two-step pipeline involving Infor-
mation Retrieval (IR) followed by Reading Comprehension (RC). During the IR step,
given a text-image pair (QT , QI ) associated with a question, we retrieve the list of the k
most relevant text-image pairs {(PT , PI)1 · · · (PT , PI)k} from a KB KB = {(PT , PI)}
with respect to the query question. The KB includes passages in unstructured text, each
associated with visual content. Consequently, the RC step aims at extracting the correct
answers from the passages retrieved during the IR step. This extraction is performed
using multi-passage BERT [24] on the top-K relevant passages.

Passage retrieval KVQAE benchmarks come with an external unstructured KB built
from Wikipedia. Following [16], articles (entities) are split into passages of 100 words
and each passage is headed with its corresponding Wikipedia article title. Given text
and vision encoders, we map question and passage text-image pairs to dense vector
representations and perform a cosine similarity-based dense search to retrieve the top-
100 most relevant passages. Similarly to previous works [16,1,14], we assume that a
passage is relevant if its text contains the answer.

Similarity-level fusion To efficiently address the KVQAE task, cross-modal retrieval
needs to be combined with textual and visual mono-modal retrievals to consider all
query-candidate multimodal interactions. Specifically, we use the state-of-the-art Dense
Passage Retrieval (DPR) [13] dual encoder for mono-modal text retrieval (MMT ), and
the pretrained EA-CLIP models for mono-modal image (MMI ) and cross-modal re-
trieval (CMI→T ). Passages are ranked according to the final similarity scores S ob-
tained after a late fusion that combines the retrieval results using linear interpolation:
S = α0 ·SMMT

+α1 ·SMMI
+α2 ·SCMI→T

. Search scores are normalized to zero mean
and unit variance to have comparable distributions. The interpolation hyperparameters
αi are determined through a grid search conducted on the validation set of each dataset
to maximize the mean reciprocal rank at 100.

3 Experimental framework

Experiments are conducted on three recent KVQAE benchmarks, namely ViQuAE [16],
EVQA [20], and InfoSeek [5].
Baselines. We compare this work with several state-of-the-art baselines. Late fusion
approaches LF [16] and LFgcn [1] combine text and image mono-modal retrieval scores
using features from DPR [13], ArcFace [6], CLIP, and ImageNet-ResNet [9]; Early
fusion baselines ECA (Early Cross-Attention) and ILF (Intermediate Linear Fusion)
[14], where both perform retrieval using multimodal dense representations. Similar to
our work, [15] employed different retrieval and training strategies for finetuning CLIP.
We refer to their approach as CLIPFT and to ours as EA-CLIP. Note that we do not
include augmented-retrieval and large generative model-based approaches with billions
of parameters in our baselines such as in [20,5,11,10].
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Method ViQuAE InfoSeek EVQA (1-hop)

MRR P@1 EM F1 MRR P@1 SoftMatch MRR P@1 BEM F1

BM25 19.0 13.1 – – 4.2 2.4 – 21.1 15.6 – –
DPR 32.8 22.8 – – 8.4 5.2 – 19.7 13.2 – –
LF [16] 37.9 27.8 22.1 25.4 – – – – – – –
LFgcn [1] 38.3 29.0 – – – – – – – – –
ILF [14] 37.3 26.8 21.3 25.4 – – – – – – –
ECA [14] 37.8 26.7 20.6 24.4 – – – – – – –
CLIPFT [15] 37.6 28.6 30.9 34.3 – – (12.4) – – 29.1 26.6

DPR+CLIPzs 33.2 23.2 28.5 32.2 8.7 5.3 4.8 20.1 13.6 29.5 26.8
DPR+EA-CLIP 37.3 27.6 28.5 32.2 9.0 5.4 5.2 20.5 13.8 30.2 27.7

Table 1: Passage retrieval (MRR, P@1) and reading comprehension (EM, F1, SoftMatch, BEM)
results in the multimodal fusion setting.

Evaluation metrics. We evaluate the retrieval performance using Precision@1 (P@1)
and Mean Reciprocal Rank at 100 (MRR) metrics. Passages/articles are considered rel-
evant using text matching with the ground truth answers. Answer extraction is evaluated
using F1-score and Exact Match metrics for the ViQuAE dataset, BERT Matching met-
ric (BEM) [3] for InfoSeek and Soft matching score for EVQA.
Experiment Settings. We first pretrain a CLIP model following our approach on 12M
ViQuAE KB text-image passage pairs annotated with entity-level information [1]. Note
that we did not consider the text-to-image matching loss term Lt→i when computing the
contrastive loss. Indeed, our experiments showed poor performance on text-to-image
retrieval. We believe that CLIP struggles in this setting because textual questions are
quite different from its original caption-based pretrained data. We then continue fine-
tuning on each downstream KVQAE dataset. We used the released pretrained CLIP
model with the ViT-B/32 visual encoder and its corresponding transformer-based text
encoder. We consider 22k entity types obtained using the Wikidata is_instance relation.

4 Results

Passage retrieval. We report in Table 1 (cols MRR and P@1) the performance of our
approach in the late fusion setting against state-of-the-art (SOTA) baselines. Overall,
our approach (EA) achieves comparable performance on the ViQuAE dataset compared
to the best-performing ones [16,1]. Indeed combining mono-modal text (DPR), mono-
modal image (CLIP), and cross-modal retrieval (CLIP) is sufficient to reach the SOTA
performance without the need for specialized features such as face embeddings. Results
are confirmed on EVQA and InfoSeek while emphasizing the importance of finetuning
CLIP. However, passage retrieval results must be put into perspective with respect to the
KVQAE objective namely, extracting answers. Regarding how passages are considered
relevant, we experimentally observed that the best-performing retrieval system will not
necessarily yield the best answer extraction results, as the sole text-matching criterion
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Meth. Retr. ViQuAE InfoSeek EVQA

MRR P@1 MRR P@1 MRR P@1

CLIPZS

iq – ie 29.3 22.0 7.3 4.4 13.6 7.6
iq - te 32.7 22.0 5.5 2.5 14.5 7.7
fusion 40.8 32.9 7.0 3.9 16.0 9.4

EA-CLIP
iq – ie 29.4 21.5 7.9 4.0 14.3 8.2
iq – te 39.0 29.0 6.6 3.0 15.2 8.7
fusion 44.4 35.5 8.1 4.5 16.8 10.1

Table 2: Cross-modal entity retrieval evaluation on ViQuAE and EVQA test sets, and InfoSeek
validation set. Results show mono-modal image retrieval (iq – ie), cross-modal retrieval (iq - te),
and their score-level fusion.

for passage retrieval relevance may generate noisy passages. An alternative IR approach
followed by [15] is to perform entity-level retrieval first, then map the retrieved entities
to the corresponding passages. Thus, we evaluate our approach on cross-modal entity
retrieval for further assessment. Similarly to passage retrieval, given a visual question,
retrieved entities are relevant if their corresponding Wikipedia document contains the
ground truth answer. Table 2 shows that our approach yields competitive performance
consistently across all datasets and metrics with significant gains in cross-modal re-
trieval (iq - te).
Reading Comprehension. Table 1 (cols. EM, F1, BEM and SoftMatch) shows the RC
results, where answers are extracted from the retrieved passages provided by the afore-
mentioned IR systems. We can see that EA-CLIP contributes positively to the KVQAE
task by consistently outperforming all baseline methods across all evaluation metrics
on ViQuAE and EVQA. This illustrates the benefit of considering entity-level informa-
tion to retrieve passages with more relevant answers. Specifically, the best performance
gain is achieved on the ViQuAE dataset, with respectively +1.9 and +2.1 for EM and
F1 scores. Several factors impact the level of improvement across datasets. Obviously,
the size of the KB matters since IR and RC performances are affected by the number
of distractors. Moreover, despite the entity overlap between EVQA and ViQuAE KBs
(both built from Wikipedia), our EA-CLIP pretraining approach was performed on the
ViQuAE KB and passages, which favors the performance on the ViQuAE dataset. One
can also observe that CLIPzs slightly outperforms CLIPFT on EVQA, showcasing the
potential drawbacks of CLIP finetuning. While EA-CLIP achieves a Soft Match score
of 5.2 on InfoSeek, CLIPFT performs better (12.4). However, these results are not di-
rectly comparable due to differences in the KBs size used for evaluation. This highlights
even more the challenging nature of the KVQAE task with very large KBs.

5 Conclusion

The proposed entity-aware CL framework leverages the capabilities of CLIP for cross-
modal retrieval. By explicitly considering entity-level information in textual data, CLIP
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learns to align texts and images while considering entity information through auxiliary
prediction tasks. Our approach achieves SOTA results on the KVQAE task, demonstrat-
ing the benefit of raising entity-information awareness for training cross-modal models.
Acknowledgment This work was supported by by the ANR-19-CE23-0028 ANR MEERQAT
project and the ANR-23-PEIA-0008 ANR SHARP project, supported by France 2030.
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A Entity-centric Contrastive Learning Details

ET(·), EV(·) encode tokenized inputs yielding respectively the hidden state representa-
tions ht ∈ RN×L×D and hv ∈ RN×L×D, where D is the embedding dimension and L
is the max token sequence length. To perform instance level matching, the hidden state
of the special “Beginning of sequence” token [BOS] in the final layer ht

[BOS] ∈ RN×D

and hv
[BOS] ∈ RN×D are used for dense vector representation. pt[BOS] = g(ht

[BOS]) and
pv[BOS] = g(hv

[BOS]) are respectively the [BOS] text and visual features mapped to a
common multimodal space using the projection head g(·). The final global text and im-
age embeddings (et, ev) are the L2-normalization of (pt[BOS], p

v
[BOS]). We train CLIP

on minimizing the following contrastive loss:

Li→t = − 1

N

N∑
i=1

log
exp(eti · evi /τ)∑N
j=1 exp(e

t
i · evj/τ)

(3)

where τ is the temperature hyperparameter controlling the level of penalties on hard
negative pairs.

B Details about the experimental framework

In Table 3, we report the main features of the three datasets used for evaluation.

B.1 Evaluation metrics

Concerning the EVQA dataset, when specified, the evaluation is done on the 1-hop
questions, which adds up the templated and automatic subsets.

B.2 Hyperparameters and training settings

The 12M ViQuAE KB text-image passage pairs used for training our models are avail-
able on the Hugging Face data hub: https://huggingface.co/datasets/
usr256864/viquae_passage_linked_entities.

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://huggingface.co/datasets/usr256864/viquae_passage_linked_entities
https://huggingface.co/datasets/usr256864/viquae_passage_linked_entities


10 O. Adjali et al.

Table 3: KVQAE benchmark datasets and KB statistics.

KB-VQA
Benchmarks

Dataset Knowledge Base

Train Val Test #Entities #Passages

ViQuAE [16] 1,190 1257 1,250 1,495,352 11,885,968
EVQA [20] 212,338 2,950 5,750 2,004,561 31,341,692
InfoSeek [5] 934,048 73,620 347,980 6,084,491 42,529,637

The initial learning rate is set to 2e-6 and the total number of finetuning epochs is set
to 20. For the sake of fair comparison, all CLIP models were trained with a batch size
of 1,000 using gradient check-pointing. Models selection is done based on the in-batch
mean reciprocal rank on the validation set. Our implementation relies on PyTorch [21],
Transformers [25], Faiss library [12], and ranx [2]. Our code will be made publicly
available after the anonymity period.

C Details about the results

C.1 RC results

The number of retrieved passages, K, that feed the RC stage is set to 24 (ViQuAE) or
100 (InfoSeek and EVQA) according to a grid-search on the validation set.

C.2 Illustration of the difference between the original CLIP (ZS-CLIP) and our
entity-aware CLIP (EA-CLIP)

A qualitative analysis of the embedding space shows that EA-CLIP text encoder pro-
duces more qualitative passage representations compared to ZS-CLIP, where passages
belonging to the same entity are better clustered with less overall overlapping than ZS-
CLIP embeddings (see Figure 2). This highlights the potential benefit of considering
entity information for cross-modal retrieval.

D Pretraining Architecture Figure

Figure 3 illustrates the pretraining stages in the proposed approach.
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Fig. 2: t-SNE visualization of 25,000 randomly selected passages covering 1,000 entities (arti-
cles) in the ViQuAE KB. Passage embeddings are obtained with text encoders of our EA-CLIP
(left) and zero-shot CLIP (right). Colors represent entity labels.
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Fig. 3: Entity-aware cross-modal pretraining.
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