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Diagnosis of incipient electrical defects on long
cables using a chaotic Duffing oscillator

Fabrice Auzanneau

Abstract—Electrical wires are always present in critical modern
systems, for the transmission of energy and signals. Due to ageing
or harsh environmental conditions, cables can develop defects
that can reduce their performance and create severe problems.
Reflectometry-based methods have been studied and implemented
over the last thirty years and have shown good performance in
detecting faults in cable networks. They rely on the analysis of
echoes created by faults on the cable, and can detect defects whose
echoes are a few percent of the input signal. But these methods are
limited when it comes to detecting incipient faults characterized by
echoes one order of magnitude smaller.

This paper presents the proof of concept of an entirely different
diagnosis method. The method proposed here does not analyse the signal returned by the cable but uses this signal
to disturb a system in an unstable equilibrium position. A chaotic Duffing oscillator is coupled to the cable under test and
a test signal is sent into the cable: the returned signal is added to the oscillator control signal. The system parameters
are chosen so that the oscillator is at the limit of stability, and a very slight disturbance of the cable causes a change in
behavior that is much easier to detect than a very small peak sometimes drowned in noise on a reflectogram.

The sensitivity of this new method is higher than that of state-of-the-art ones, enabling it to detect faults of sighature of 1
percent or less of the amplitude of the test signal in long cables.

Index Terms— Cable, Chaos, Chaotic oscillator, Fault diagnosis, Virtual sensor.

[. INTRODUCTION These are just a few examples of the large-scale use of elec-
trical wires, all of which demonstrate their crucial importance.
Defects or failures in the wired network can have catastrophic
consequences, in human, technical and economic terms. Elec-
trical network diagnostic, which provides information on fault
detection, severity and location, can be of major importance
in all these application areas.

Among several diagnostic methods, reflectometry has been
shown to have the highest potential [3]. As with radar,
reflectometry injects an electrical probe signal at one end
of the network under test. This signal propagates along the
cables, and each impedance discontinuity encountered (load,
junction or fault) sends part of its energy back to the injection
port. The analysis of the received signal (called reflectogram)
provides information on the presence, location and type of
these discontinuities.

Often used in the time domain, reflectometry generates
a signal made up of numerous peaks, corresponding to the
various discontinuities in the network. The amplitude of these
peaks can vary greatly depending on the impact of each
discontinuity. In the case of a defect, a distinction is made
between a hard defect (short-circuit or open circuit [4]) and
a soft defect (any other defect). As shown in [5], soft defects
soft faults are characterized by peaks on the reflectogram of

LECTRICAL wires are used in almost all modern ap-

plication domains, both public and industrial, for power
and signal transmission [1]. They are considered as the back-
bones of electrical installations, which heavily depend on their
service and reliability. In the transport sector, modern cars
carry more than 5 km of cables in cumulative length, and their
importance has grown with the advent of the electric vehicle.
In aviation, the length of cables has increased steadily since the
end of the 20" century, and regulation authorities and aircraft
manufacturers have become aware of their importance [2]
following two tragic accidents in the late 1990s. The concept
of Electrical Wiring Interconnect System (EWIS) was created
and the U.S. Federal Aviation Administration (FAA) published
EWIS regulations and guidance for equipment manufacturers
and aircraft makers. The EWIS is now considered a critical
aircraft system on its own.

Moreover, the importance of electrical cables has also been
recognized in other industrial sectors. The recent exponential
growth in artificial intelligence applications has led to the con-
struction of numerous large-scale infrastructures or computing
farms hosting huge numbers of cloud servers. Depending on
their size, these farms are likely to be equipped with lengths of

electrical cable that can reach or exceed a thousand kilometers.
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an amplitude around a few percent of the TDR injected signal,
but they can be detected if the measurement is not too noisy.
The amplitude of a peak associated to a soft defect can be
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very low, or even hidden in the measurement or propagation
noise. Incipient defects [6], [7], defined as the precursors of
soft defects, require specific detection methods, which are still
being studied in laboratories. Their reflectometry signatures
are an order of magnitude smaller than soft defects.

Some reflectometry methods use sine waves as probe signals
(Frequency Domain Reflectometry — FDR) [8] and analyse the
standing waves present on the line: they are mainly limited to
hard defects.

However, as stated above, all the current diagnosis methods
rely on the analysis of the measured reflectogram. Kafal et al.
[9] have used Finite Element Method and a genetic algorithm
to characterize the incipient defect’s electrical parameters.
Lee et al. [10] used Time—Frequency Domain Reflectometry
(TFDR) to filter the measured signal and infer the position of
the fault. Time-Reversal (TR) imaging methods [11] provide
very accurate position information but have difficulties in
the presence of multiple defects [12]. But all these methods
require additional electronic components and complex signal
processing algorithms, and sometimes a numerical model
or the use of commercial numerical simulation software to
provide a baseline of a fault-free cable. As a result, they cannot
easily deal with propagation noise due to inhomogeneities,
which create additional peaks that can be mistaken for defects,
creating false alarms.

Chaos has been used recently to enhance the performances
of Time Domain Reflectometry (TDR) [13]-[16], taking ben-
efit of the possibility to generate virtually an infinite number
of probe signals of arbitrary length. The use of binary chaotic
signals enables the accurate detection of intermittent defects
[17] and amplifies the signatures of incipient defects for
better detection [18], [19]. But these methods are still based
on reflectogram analysis, and are therefore limited by the
sensitivity of the electronic systems they use. They can’t
distinguish a very weak peak too close to another peak with a
higher amplitude, such as a soft defect close to a junction
or connector. Furthermore, they cannot recognize the peak
of a soft defect from the peak due to local propagation
inhomogeneity on the cable in question.

Incipient faults are characterized in a reflectogram by very
low-amplitude peaks, which are difficult to distinguish because
they are often drowned in noise or hidden by other nearby
peaks. But it is very important to be able to detect them
as early as possible - before they develop into more serious
faults, as they are linked to early cable damage (cracks in
the insulation, incipient corrosion, local heating) that can
be corrected by a minor maintenance operation. However,
it has been shown that the intensity of TDR echoes is not
a reliable estimator of fault severity [20], as faults of very
different importance can generate virtually identical echoes.
In this context, the usual methods of analyzing reflectograms
to diagnose the condition of a cable are no longer appropriate,
and it is necessary to propose alternative methods. Chaos-
based weak signal detection methods have been studied for
many years [21], focusing on the use of chaotic oscillators
coupled to a physical system [22]. These methods are highly
effective due to their noise immunity and their sensitivity to
specific frequency signals.

This article presents the proof of concept of a new method
that no longer relies on analysis of the measured reflectogram,
but on observation of the behavior of a chaotic oscillator at
the limit of stability. As with standard reflectometry methods,
a test signal is injected into the cable, but the measured signal
is added to the control signal of a Duffing oscillator whose
parameters are chosen so that it is at the chaotic transition
limit. This chaotic system is highly sensitive to disturbances,
such as the signal returned by the presence of an incipient
fault. Any transition to or from chaotic behavior is easily
detected, indicating the appearance of a fault on the monitored
cable.

The paper is organized as follows: section II provides more
details on the weak signal detection methods and the chaotic
oscillators used, section III presents the numerical model and
section IV gives simulation results. Section V shows a possible
hardware implementation and section VI concludes the paper.

[I. WEAK SIGNAL DETECTION USING CHAOTIC
OSCILLATORS

A. The Duffing oscillator

The Duffing oscillator [23] is a nonlinear dynamic system
which is commonly used for the detection of weak periodic
signal [24], [25], defined by:

1 d®x  ddx
w? dt? + w dt
where ¢ is a damping term and ~ycos(wt) is the driving force,
which dictates the oscillation rhythm at the frequency f, with
w = 2xf. Depending on the values of the parameters, the
Duffing oscillator can have either a periodic or a chaotic
behavior.
The usual way to solve equation (1) is to decompose it into
a set of two first-order differential equations, as follows:

— x4 2% = ycos(wt) (1)

dlEl

— = wre

J 2)
d—tz =w (—6z2 + 1 — 2} + v cos(wt))

An eighth-order Runge Kutta algorithm is used to solve system
(2). Plotting x, as a function of z; in time generates a
phase diagram, which emphasizes the oscillator’s state: figure
1 compares the two states, chaotic on the left and periodic
on the right, ¢ varying from O to 2000 seconds in both cases.
Depending on the initial values, the oscillator may reach the
periodic state sooner.

Fig. 1. Chaotic and periodic behavior examples of a Duffing oscillator.

Adding noise does not change these results [26].
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B. Weak signal detection

If a perturbation signal — the weak signal to be detected — is
added to equation (1), the right-end side changes as follows:

S(t) = v cos(wt) + acos(wt + ¢) 3)

where ¢ is a phase shift and a is the amplitude of the weak
signal, which is supposed very small compared to ~.

The principle of the detection method is to choose the values
of v and 0 in order to put the oscillator in a critical state, very
close to the chaotic transition.

Theoretical analysis has shown that when f varies, the state
of the oscillator can change from periodic to chaotic. But in
our case, the driving signal will be used as a reflectometry
probe signal injected into the cable under test: it must remain
unchanged during diagnosis and f must be constant. Therefore
we choose a critical value for ~, denoted ~., defined as a value
for which a small change will imply a state transition in the
oscillator. Equation (3) can be written in a different form:

S(t) =T cos(wt + 0) 4)

where

I = /92 + 2a. cos ¢ + a? 5)

If the amplitude of the total signal I is higher than a threshold
value, the oscillator’s state will change, and the weak signal
will be detected. We speak of a *forward transition’ if the state
goes from periodic to chaotic and a ’backward transition’ in
the other case (figure 2).

Fig. 2. Forward and backward detection.

[1l. SIMULATION MODEL
A. Synoptic

Figure 3 presents a first synoptic of the weak signal detector.
The FDR block generates the probe signal - cos(wt), which
is the monochromatic signal also used as the driving signal
of the oscillator. This signal is injected into the cable under
test. Since we expect the cable to return only the signal due
to the incipient fault, the cable’s impedance must be matched
at the input to the signal generation system, as well as at its
end. This is only required for the drive frequency f.

The Duffing system is then put in the chosen state: periodic
for a forward transition, or chaotic for backward. The drive
signal is injected into the cable and the measured signal is
added to the drive signal of the oscillator. The round trip time

y cos(wt) m
FDR /D

Drive \

y cos(wt)

asin(wt + ¢)

Fig. 3. Synoptic of a Duffing oscillator-based weak signal detector for
cable diagnosis.

necessary for the signal to reach the defect and bounce back
to the system creates a phase shift equal to:

¢ = 2k(w)d ©)

where k(w) is the propagation constant of the cable at the
chosen frequency.

B. Transition detection

To detect a transition, it is necessary to be able to estimate
whether the Duffing oscillator’s behavior has changed. The
Lyapunov exponents [27] are a standard measure of a system’s
degree of chaos. They measure the rate of divergence of two
nearby points in the system’s history. A chaotic system has
at least one positive Lyapunov exponent, implying that it is
highly sensitive to initial conditions. On the other hand, if all
Lyapunov exponents are negative, the system is stable.

The most common computing techniques are the Gram-
Schmidt method, which iteratively orthogonalizes the tangent
vectors in the system’s trajectory, and the Wolf algorithm,
which calculates the time evolution of the distance between
nearby trajectories to derive the Lyapunov exponents. But
the calculation of Lyapunov exponents can be complex and
computationally intensive.

In this application, if we compare the shapes of the trajecto-
ries of the chaotic and periodic phases of the Duffing oscillator
(figure 1), it appears that the central zone is more strongly
occupied by the chaotic behavior than by the periodic one. A
simpler indicator would be the presence rate of the trajectory
in the central zone:

N . .
P = 3 2w s = {1 <
i=1 )

where ||z(i)|]| = /2%(i) + 23(i), and R = 0.3 provides a
reasonably good estimator.

Howeyver, as shown later in section IV, there can be different
types of transitions, which are not necessarily compatible with
this estimator. We may need to use ad-hoc transition detection
methods.

@)

otherwise

[V. SIMULATION RESULTS
A. Finding critical states

Finding critical values of the parameters, putting the oscil-
lator at the edge of a state transition, is a complex problem.
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To find such critical values, a specific tool has been written in
Python, enabling a quick search by trial and error. This tool is
based on the tkinter library, for maximum interactivity. It plots
in a graphical window the oscillator’s trajectory corresponding
to a pair of v and § parameters, and the initial values for the
simulation. By pressing the arrow keys on the keyboard, one
can modify the value of +, either by adding or subtracting
a quantity, or by dividing or multiplying this quantity by 2.
When a change in behavior is visible in the graphical window,
this means that the current « value is close to a critical value.
By dividing the quantity while remaining at the transition
limit, an increasingly accurate approximation of the critical
parameter can be obtained. Figure 4 plots two trajectories of
the oscillator in the plane z1,zs (no units) and shows an
example of a critical value of v with § = 1. For the same
set of initial values, changing ~ from 0.789961073994637 to
0.7899610742926603 provides two very different trajectories.

8=1.0,init=[1.5,0]

# Gamma =0.789961074...

v =0.789961073994637 v =0.7899610742926603

Fig. 4. Example of a critical value of +. A difference of 2.98 10~10
implies the transition from a pseudo-periodic positive trajectory (left) to
a bipolar chaotic trajectory (right), all other things being equal.

The transition shown on Figure 4 is categorized as “pseudo-
periodic positive to bipolar chaotic”. The term positive”
refers to the fact that on the left part of Figure 4, the
trajectory remains on the right half of the picture, i.e. on the
positive horizontal axis. Other kinds of trajectories have been
identified, and will be exploited later, such as:

« bipolar pseudo-periodic,

¢ positive chaotic,

« bipolar chaotic.

B. Defect detection and location using chaos transition

In this chapter, Figures 5, 7, 9 and 11 compare the evolution
of oscillator trajectories with and without the presence of the
disturbance fault, in the x1, x2 (unitless) plane.

Table I summarizes the simulation settings.

We first use critical values of . = 0.7899768132015731
and § = 1, with initial values of [0.0, 0.0]. Figure 5 shows
the unperturbed trajectory of the oscillator on the upper
part (blue curve): this is another example of pseudo-periodic
positive trajectory. If a defect on the line occurs, it changes
the behaviour of the oscillator. We added a weak signal of

amplitude a = 0.008 V after 2.5 10~7 seconds (green line
on Figure 6). The trajectory changes drastically, and becomes
as shown on the lower part of Figure 5 (red curve). Figure
6 shows the evolution of z1,x5 without (two first curves)
and with (two last curves) the perturbation. Comparison of
the two red curves of Figure 6 shows the forward transition
from pseudo-periodic to chaotic. Note that the amplitude of
the signal is very small compared to the amplitude of the
oscillator, showing the detection of a very weak defect. The
transition occurs near ¢t = 3.10~7 seconds, 500 ns after the
occurrence of the defect. Assuming a propagation velocity
inside the cable of ¢ = 2.10% m/s, this represents a location
error of Sm.

Using . = 0.619689017534256 and § = 0.8, and initial
values equal to [1.5, 0.0], leads to the transition from positive
chaotic to bipolar chaotic, as shown on Figure 7. This time,
the signal’s amplitude is even smaller a = 0.004 V, and the
transition is detected near 2.7 10~7 seconds (Figure 8), leading
to a location error of 2m.

Using v, = 0.5382418727874758 and § = 0.3 leads to the
backward transition from bipolar chaotic to bipolar periodic,
as shown on Figure 9. This time, the signal’s amplitude is
down to a = 0.001 V, and the transition is detected near 2.9
107 seconds (Figure 10), leading also to a location error of
4m. The upper plots of Figure 10 show that this choice of
parameters v and J leads also to a maximum detection time
near t,,q; = 9.107% seconds, equivalent to a maximum length
of cable of

Dias = %25 _ 1350m,
2

Using 7. = 0.2728 and § = 0.3 leads to the forward transition
from positive pseudo-periodic to bipolar chaotic, as shown
on Figure 11. This time, the signal’s amplitude is down to
a = 0.0008 V (0.05% of the oscillator’s amplitude), and
the transition is detected near 3.7 10~7 seconds (Figure 12),
leading to a location error of 12m.

The extent of the location error obtained means that this
method can currently only be applied to the diagnosis of long
cables, i.e. in the range of tens of meters or longer.

C. Artificial intelligence tool for transition detection

As explained in section III-B, one can use the presence
rate of the trajectory in the central zone to estimate the
chaotic degree of a given trajectory. Figure 13 displays the
values of P(300) for the unperturbed oscillator of the first
case, 7. = 0.7899768132015731 (upper blue curve) and the
oscillator after the occurrence of the defect (medium red
curve). The bottom green curve plots the difference of the
two aforementioned curves: it provides a simple way to detect
a change in the trajectory. This is quite similar to the use of
a baseline [28], i.e. a reference measurement for a healthy
wired network, for comparison. A similar example is shown
on Figure 14, for the third case (7. = 0.5382418727874758).

It is also possible to train a neural network to recognize
the states of a given oscillator and raise an alarm when it
detects a transition. We have defined and trained a simple 1D
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Figure 0 ¥ Initial state Final state Defect’s amplitude
5 1 0.7899768132015731 | Positive pseudo-periodic | Bipolar chaotic 0.008
7 0.8 | 0.619689017534256 Positive chaotic Bipolar chaotic 0.004
9 0.3 | 0.5382418727874758 Bipolar chaotic Bipolar periodic 0.001
11 0.3 0.2728 Positive pseudo periodic | Bipolar chaotic 0.0008

TABLE |
SIMULATION SETTINGS

Gamma= 0.78998, Delta = 1.0, Signal= 0.008

054

004

_US -

Fig. 5. Duffing oscillator trajectory without (blue) and with (red) the
perturbation.

Gamma= 0.78998, Delta = 1.0, Signal= 0.008

Time (s}

Fig. 6. Plot of the Duffing variables showing the transition from pseudo-
periodic to chaotic, the defect occurs at 2.5 10~ 7s (green line).

convolutional network made of 2 convolutional layers and 2
fully connected layers. Figure 15 details the network topology.
The input signal is divided into 100-sample chunks which are
normalized between -1 and 1 before being injected into the
first 1D convolutional layer. A pooling layer calculates the
maximum value of patches of the feature map and subsamples
the signal for injection into two fully connected layers. All in-
termediate layers use ReLu (Rectified Linear Unit) activation.
A SoftMax layer transforms the output of the last layer into
a probability that the input vector is in one or other of the
categories. The input data is an array of 100 samples of the x5

Gamma= 0.61969, Delta = 0.8, Signal= 0.004

0.5 1

0.0 1

—0.5 1

0.5 1

0.0 1

=05 4

-15

Fig. 7. Duffing oscillator trajectory without (blue) and with (red) the
perturbation.

Gamma= 0.61969, Delta = 0.8, Signal= 0.004

Time (s}

Fig. 8. Plot of the Duffing variables showing the transition from positive
chaotic to bipolar chaotic, the defect occurs at 2.5 10~7s (green line).

variable over 4 periods of the oscillator’s drive, and the output
is either ’chaotic’ or ’pseudo periodic’. The network has only
43854 trainable parameters which require 17.5 kB of memory.
It was trained during 1000 epochs in less than 2 seconds, with
training data generated on the fly using the oscillator shown on
Figures 9 and 10, and presents a recognition rate of 97%. The
network detected a change in the oscillator state at 2.75 10~7
s, which is more accurate than the previous method which
detected the transition at 2.95 10~7 s (Figure 14). The location
accuracy is 2.5m using the neural network, compared to 4.5m
with the method based on the presence rate of the trajectory
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Gamma= 0.53824, Delta = 0.3, Signal= 0.001

i
—
|
——

—— :—-_:.;- <\
> 15 ()

e —

Fig. 9. Duffing oscillator trajectory without (blue) and with (red) the
perturbation.

Gamma= 0.53824, Delta = 0.3, Signal= 0.001

1 B
£ 0
_1 -
0.0 02 04 06 08 10
Time {s) le—-6

Fig. 10. Plot of the Duffing variables showing the transition from chaotic
to pseudo-periodic, the defect occurs at 2.5 10~ 7s (green line).

Gamma= 0.27280, Delta = 0.3, Signal= 0.0008

054

004

_US -

Fig. 11. Duffing oscillator trajectory without (blue) and with (red) the
perturbation.

Gamma= 0.27280, Delta = 0.3, Signal= 0.0008

14
£ 0y
-1 1

= 04
-1 A

1
0
-1 4
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1 i
2 0
-1 1
0.0 02 0.4 06 08 10
Time (s} le—6
Fig. 12.  Plot of the Duffing variables showing the transition from

pseudo-periodic to chaotic, the defect occurs at 2.5 10~ 7s (green line).

Gamma= 0.78998, Delta = 1.0, Signal= 0.008

0.4 1

0.2 4
0.0 L JRRUTMANY A RAATNEA AN AR

0.4 1

0.2 1

0.0 -
0.5

0.0 1

-0.5 T T T T T T

Time (s)

Fig. 13.  Presence rate of the trajectory in the central zone, . =
0.7899768. .. Upper curve: unperturbed oscillator, medium: oscillator
with perturbation signal, lower: difference of the 2 curves.

Gamma= 0.53824, Delta = 0.3, Signal= 0.001

| i“l Ll ll

0.4 1

0.2 1

0.0

0.4 1

0.2 1

0.0 T
05

L e L

_GE T T T T T T
0.0 0z o4 06 0.8 10

Time {s) le-&

0.0 1

Fig. 14.  Presence rate of the trajectory in the central zone, ~. =
0.53824187. .. Upper curve: unperturbed oscillator, medium: oscillator
with perturbation signal, lower: difference of the 2 curves.



FABRICE AUZANNEAU: DIAGNOSIS OF INCIPIENT ELECTRICAL DEFECTS ON LONG CABLES USING A CHAOTIC DUFFING OSCILLATOR 7

in the central zone.

=1=100

1=16x100

H

A
—
. output
SO0
‘Chaotic’
‘Pseudo-periodic’

Topology of a 1D convolutional neural network for transition

thape

Fig. 15.
detection.

V. HARDWARE IMPLEMENTATION

A possible implementation of the method is presented on
Figure 16: the diagnosis system is made of an analog part and a
digital part. The former generates a harmonic signal at a given
frequency f (FDR generator) and injects it down the cable
under test through a microwave circulator. The signal sent back
by the cable is digitized and fed into the digital part of the
system. This numeric data is added to a Duffing oscillator, as
per equation (3), and the values of the state variables (z; and
T9) are analysed to detect a possible change of the behavior
of the oscillator. Given the numerical precision required, this
last part must be run on a computer capable of handling a
precision of at least 32 bits.

Such a system can also run 2 oscillators in parallel: one
with no perturbation as a reference, and the other with the
additional signal from the cable. Comparing the values of the
state variables of the two oscillators over time enables to detect
a defect in the cable. However, as mentioned in the previous
section, the values of the zo variable can be fed into a properly
trained neural network to better detect and locate the defect.

As the system uses a monochromatic diagnosis signal, the
design of the analog part remains quite simple, and a narrow
band bandpass filter can be used after the circulator to reduce
the noise introduced in the system.

Such a system can be used to detect the occurrence of a
fault and trigger an alarm, or to locate a fault. In the first

case, the probe signal is sent continuously into the cable and
the change in state of the oscillator is an indication that a fault
has occurred. In the second case, the signal is sent periodically
through the cable and the oscillator is monitored afterwards.
If the state of the oscillator has changed, the distance to the
fault can be calculated using D = At % ¢/2 where At is the
difference between the signal injection time and the oscillator
state change time. The simulations in section IV have shown
that the accuracy in the distance to the fault is of the order of
magnitude of a metre, which means that this method should
be used to diagnose long cables.

Microwave
circulator

Defect

FDR ¥ cos(wt)

generator

asin(wt + ¢) signal
Anay,
g
D, Analog to
Stal Digial

Chaos
4
Transition detected
Distance: 255 m

Pseudo
[ periodic

Fig. 16. Example of hardware implementation.

VI. CONCLUSION

This paper has presented the proof of concept of a new
method, based on the frequency domain reflectometry (FDR),
able to detect and locate incipient defects on long cables,
thanks to chaotic analysis. Standard reflectometry methods rely
on the analysis of echoes created by faults on the cable, but
are limited when it comes to detecting incipient faults. The
method proposed here does not analyse the signal returned
by the cable but uses this signal to disturb a chaotic system
previously set in an unstable equilibrium position. The use
of a chaotic Duffing oscillator with critical parameters setting
it near a chaotic transition provides a very high sensitivity
to any perturbation. This enables the detection of incipient
defects, characterized by electrical signatures much lower than
attainable with state of the art methods.

When the FDR generator injects the signal into the cable,
a standing wave is created in the cable, which is therefore
placed in a stationary electrical state. This stationary state
encompasses all phenomena that occur during signal propa-
gation within the cable (due to any inhomogeneity, such as
one or more faults, junctions, connectors, load, etc.). The case
described in this article is the simplest possible, since we
assume that the signal is completely absorbed at the end of
the cable. The stationary wave present in the cable is only
the sum of the injected wave and the wave reflected at the
defect. In cases where the cable is not matched at the end,
or where different junctions or sections are present and create
several reflected signals, or if the cable is not homogeneous,
the shape of the standing wave will be different, but this does
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not change the fact that the cable positions itself and remains
in a stationary state. However, determining this stationary
state is more complex than is envisaged in this document.
If we are able to characterize this stationary state (either by
theoretical calculation or by measurement), we simply need to
inject it into the second member of the equation (1) so that
it is taken into account in the state equation of the chaotic
oscillator. A frequency model able to compute the stationary
wave present in a complex topology wired network with any
kind of defect is provided in [29]. It requires the knowledge of
the primary propagation parameters of the cable, the per unit
length resistance, inductance, capacitance and conductance
[30]. The updated equation will then be used to determine a
set of critical parameters that will naturally take into account
the presence of these cable artifacts. Any perturbation to this
complex critical state can then be detected as before.
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