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Abstract. Our aim is to develop a robust and flexible code to simulate flows in
nuclear core reactors. Discontinuous Galerkin schemes are thus proposed here
to solve the Stokes problem, which stands as a fundamental element in fluid
mechanics. A priori error estimates are provided when the solution is weakly
regular. Details on how to solve the large-scale linear system are given. We
moreover explain how to discretize a singular source term. Finally, we give
numerical results of two test-cases for which the solution is weakly regular.

1 Motivation

In order to develop a robust and flexible code to simulate flows in nuclear core reactors,
we develop numerical tools to solve the Stokes problem, which characterizes incompressible
Newtonian flows. In numerical analysis, the study of the Stokes problem plays an essential
role in the development of an appropriate numerical scheme to simulate the Navier-Stokes
equations. Moreover, it allows to model numerous phenomena observed in nature, ranging
from blood flows to oceanic movements. The numerical resolution of this problem thus holds
great significance, demanding efficient and accurate methods.

In this article, we study the resolution of the Stokes problem with some Discontinuous
Galerkin schemes, based on the Symmetric Interior Penalty method, which is well suited to
a discretization using quadratic polynomials.

In Section 2, we present the Stokes problem and its mathematical framework. In Section
3, we outline the variational formulation used to discretize this problem, giving a priori error
estimates when the solution is weakly regular. In Section 4, we detail how we solve the large-
scale linear system. In Section 5, we explain how we discretize a singular source term. In
Section 6, we present the numerical results of our simulations, comparing the performance of
the different approaches.
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2 The Stokes Problem

Let ND ∈ {2, 3} be the dimension and ID = {x, y} for ND = 2, ID = {x, y, z} for ND = 3.
Let (O, x, y) for ND = 2 and (O, x, y, z) for ND = 3 be the Cartesian coordinates system,
of orthonormal basis (ed)d∈ID . Let Ω ⊂ RND be a connected and bounded domain, with
polytopal1 Lipschitz boundary ∂Ω. The vector field u represents the velocity of the fluid, and
the scalar field p represents the pressure divided by the fluid density, which is assumed to be
constant. The constant parameter ν > 0 represents the kinematic viscosity. The vector field
f represents the external force field on the fluid, divided by the fluid density. Consider the
Stokes problem:

Find (u, p) s.t. − ν∆u + ∇p = f (i), ∇ · u = 0 (ii) in Ω, (1)

with Dirichlet boundary conditions for the velocity: u = 0 on ∂Ω; and a normalization

condition for the pressure p:
∫
Ω

p = 0. Equation (1)-(i) (resp. (1)-(ii)) corresponds to the

momentum equation (resp. the conservation of mass equation).
Let L2

0(Ω) = {q ∈ L2(Ω) |
∫
Ω

q = 0}, H1(Ω) = {v ∈ L2(Ω) | grad v ∈ (L2(Ω))ND }, H1
0(Ω) =

{v ∈ H1(Ω) | v|∂Ω = 0}. Recall the definition of fractional order Sobolev spaces cf. [6]. For all
0 < s < 1, we set:

Hs(Ω) :=
{
v ∈ L2(Ω) |

∫
Ω

∫
Ω

|v(x) − v(y)|2
|x − y|d+2s dx dy < ∞

}
. (2)

Note that Ht
0(Ω) = Ht(Ω), ∀t ∈]0, 1

2 [. Let X ∈ {H1
(0)(Ω), L2

(0)(Ω),Hs(Ω)}, X = XND and
L2(Ω) := (L2(Ω))ND×ND . For v ∈ H1(Ω), the tensor Grad v ∈ L2(Ω) is s.t. for all d, d′ ∈ ID,
(Grad v)d,d′ = ∂d′vd. The variational formulation of Problem (1) reads: Find (u, p) ∈ H1

0(Ω)×
L2

0(Ω) s.t. for all (v, q) ∈ H1
0(Ω) × L2

0(Ω)

ν (Grad u,Grad v)L2(Ω) − (div v, p)L2(Ω) + (div u, q)L2(Ω) = f (v), (3)

where f : H1
0(Ω)→ R is s.t. f (v) = ⟨f, v⟩H1

0(Ω).
Using [3, Corollary I-2.4], one proves that Problem (3) is well-posed.When Ω is polytopal
convex and f ∈ L2(Ω), the solution of (1) is s.t. (u, p) ∈

(
H1

0(Ω) ∩H2(Ω)
)
×
(
L2

0(Ω) ∩ H1(Ω)
)
.

However, when Ω is not convex and f ∈ L2(Ω) or when Ω is convex and f ∈ (Ht(Ω)
)′, with

t ∈]0, 1
2 [, the fields u and p are less regular and convergence of numerical methods are less

studied, and more difficult to obtain.

3 Discretization

Consider (Th)h a polytopal triangulation sequence of Ω, where h denotes the mesh size. For
a triangulation Th, we use the following index sets:

• Let IK be the set of polytope indices, s.t. Th :=
⋃
ℓ∈IK

Kℓ and NK = card(IK).

• Let IF be the set of facet2 indices, s.t. Fh :=
⋃
f∈IF

F f and NF = card(IF).

• Define IF = Ii
F ∪ Ib

F , where ∀ f ∈ Ii
F , F f ∈ Ω and ∀ f ∈ Ib

F , F f ∈ ∂Ω.

1i.e. polygonal (ND = 2) or polyhedral (ND = 3)
2i.e. edge (ND = 2) or face (ND = 3)
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Let N∂ be the maximum number of facets of a polytopal element of Th (N∂ = d + 1 for a
simplex), σ be the shape-regularity parameter of Th. Let IF = Ii

F ∪ Ib
F , where ∀ f ∈ Ii

F ,
F f ⊂ Ω ; ∀ f ∈ Ib

F , F f ∈ ∂Ω and Ni,b
F = card(Ii,b

F ). For all f ∈ IF , we let n f be its unit
normal (outward oriented if F f ∈ ∂Ω).
Let PhH1 =

{
v ∈ L2(Ω) ; ∀ℓ ∈ IK , v|Kℓ ∈ H1(Kℓ)

}
and PhH1 = [PhH1]ND and:

(v, w)h :=
∑
ℓ∈IK

(grad v, gradw)L2(Kℓ) ∥v∥2h =
∑
ℓ∈IK

∥ grad v∥2L2(Kℓ)

(v,w)h :=
∑
ℓ∈IK

(Grad v,Grad w)L2(Kℓ) ∥v∥2h =
∑
ℓ∈IK

∥Grad v∥2
L2(Kℓ)

Let f ∈ Ii
F s.t. F f = ∂KL∩∂KR and n f is oriented outward KL. Let v ∈ Hs(Ω), with s > 1

2 , the
jump (resp. average) of v across F f is defined as: [v] := v|KL − v|KR (resp. {v} := 1

2 (v|KL + v|KR )).
For f ∈ Ib

F , we set: [v] := v|F f and {v} := v|F f .
For all k ∈ N we denote Pk

disc(Th) =
{
v ∈ L2(Ω); ∀ℓ ∈ IK , v|Kℓ ∈ Pk(Kℓ)

}
, Pk

disc(Th) =

[Pk
disc(Th)]ND and Nk := dim(Pk(Kℓ)) =

(k + N)!
k! N!

. Let Ik = {1, · · · ,Nk}. Call (ϕℓ,i)i∈Ik a poly-

nomial basis of Pk(Kℓ)3 We discretize Problem (1) using discontinuous Galerkin schemes [2,
Chapter 6], [7]. Let’s denote by ku ∈ N⋆ (resp. kp ∈ N) the polynomial approximation order
of the velocity (resp. pressure). We set Xh = Pku

disc(Th) and Lh := Pkp

disc(Th) ∩ L2
0(Ω). The

bilinear form ah : Xh × Xh → R discretizes the first term of Eq. (3):

∀(vh,wh) ∈ Xh × Xh, ah(vh,wh) =
∑
d∈ID

asip
h ( (vh)d, (wh)d ), (4)

where for all k ∈ N⋆, asip
h : Pk

disc(Th) × Pk
disc(Th)→ R is s.t.

asip
h (vh, wh) = (vh, wh)h +

∑
f∈IF

({grad vh} · n f , [wh])L2(F f )

+
∑
f∈IF

({gradwh} · n f , [vh])L2(F f )

+η sh(vh, wh)

, (5)

with sh(vh, wh) :=
∑

f∈Ii
F

(hF)−1 ([vh], [wh])L2(F f ), ∀ (vh, wh) ∈ Pk
disc(Th) × Pk

disc(Th).

One can prove that when η >
(k + 1) (k + ND)

ND
σND N∂, the bilinear form asip

h (·, ·) is coercive

with respect to the following norm: ∥vh∥sip :=
(
∥vh∥2h + η−1sh(vh, vh)

) 1
2 .

The first and second (resp. third, fourth) term(s) in Equation (5) ensure consistency (resp.
ensures symmetry, stability) of the bilinear form asip

h (·, ·).
The bilinear form bh : Xh × Lh → R discretizes the second term of Eq. (3):

bh(vh, qh) = −
∑
ℓ∈IK

(div vh, qh)L2(Kℓ) −
∑
f∈IF

([vh] · n f , {qh})L2(F f ). (6)

The linear form fh : Xh → R discretizes the right-hand side term of Eq. (3) :

fh(vh) = ⟨f, vh⟩Ht(Ω) =
∑
ℓ∈Ik

⟨f, vh⟩Ht(Kℓ). (7)

3For ND = 2, k = 1, letting xℓ be the barycenter of Kℓ and hℓ be its diameter, we consider (ϕℓ,i)i∈Ik =

{1, x−xℓ
hℓ
,
y−yℓ

hℓ
}, with the convention notation xℓ := (xℓ, yℓ)T and (x, y) = (x1, x2).
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The discretization of Problem (3) reads:
Find (uh, ph) ∈ Xh × Lh s.t. for all (vh, qh) ∈ Xh × Lh

ν ah(uh, vh) + bh(vh, ph) − bh(uh, qh) + βsh(ph, qh) = fh(vh), (8)

with sh(vh, wh) :=
∑

f∈Ii
F

hF ([vh], [wh])L2(F f ), ∀ (vh, wh) ∈ Pk
disc(Th) × Pk

disc(Th).

Let us set X := H1
0(Ω) × L2

0(Ω) which a Hilbert space endowed with the norm:

For (u, p) ∈ X, ∥(u, p)∥X,ν =
(
∥Grad u∥2

L2(Ω) + ν
−2∥p∥2L2(Ω)

) 1
2 . (9)

Proposition 1 Problem (8) is well-posed for β =
{

0 when ku > kp

1 when ku ∈ {kp, kp − 1} . When β = 0

and ku > kp, the bilinear form bh(·, ·) satisfies a discrete inf-sup condition with a constant
which does not depend on h.

The following error estimates can be proven:

Theorem 3.1 (Convergence) Let (u, p) be the unique solution to Problem (1) and (uh, ph) ∈
Xh × Lh be the unique solution to Problem (8).
Let Ω be a domain with a Lipschitz boundary. There exist two constants, Cu(f), Cp(f) > 0
independent of h such that:

1. If Ω is convex and there exists s ∈]1/2, 1] such that f ∈ Hs−1(Ω). Then, by interpolation,
(u, p) ∈ H1

0(Ω) ∩H1+s(Ω) × Hs(Ω) ∩ L2
0(Ω), and we have:

∥u − uh∥L2(Ω) ≤ ν−1Cu(f) h1+s ∥p − ph∥L2(Ω) ≤ Cp(f) hs.

2. If Ω is non-convex, and f ∈ L2(Ω), then there exists s ∈]1/2, 1], such that (u, p) ∈
H1

0(Ω) ∩H1+s(Ω) × Hs(Ω) ∩ L2
0(Ω) and we have:

∥u − uh∥L2(Ω) ≤ ν−1Cu(f) h2s ∥p − ph∥L2(Ω) ≤ Cp(f) hs.

.

Denote by Nu = Nku × NT (resp. Np = Nkp × NT ) the number of degrees of freedom of
Pku

disc(Th) (resp. Pkp

disc(Th)). Let’s call A ∈ RNu × RNu the matrix s.t.:

∀(i, ℓ), ( j, ℓ′) ∈ Iku × IK , A(i,ℓ),( j,ℓ′) := asip
h (ϕi,ℓ, ϕ j,ℓ′ ). (10)

Let A ∈ RND×Nu × RND×Nu be the block diagonal matrix s.t.: A = (δd,d′A)d,d′∈ID . For d ∈
ID, we call Bd ∈ RNp × RNu the matrix s.t. for all (i, ℓ) ∈ Ikp × IK , ( j, ℓ′) ∈ Iku × IK ,
(Bd)(i,ℓ),( j,ℓ′) := bh(ϕℓ′, jed, ϕi,ℓ) andB = (Bd)d∈ID ∈ RNp×RND×Nu . Let Mp ∈ RNp×RNp and S p ∈
RNp × RNp the matrices s.t. for all (i, ℓ), ( j, ℓ′) ∈ Ikp × IK , (Mp)(i,ℓ),( j,ℓ′) = δℓ,ℓ′ (ϕi,ℓ, ϕℓ, j)L2(Kℓ)
and (S p)(i,ℓ),( j,ℓ′) = sh(ϕi,ℓ, ϕℓ′, j). Notice that A, Bd and S p are sparse: for ℓ, ℓ′ ∈ IK s.t. ∂Kℓ ∩
∂Kℓ′ = ∅, A(i,ℓ),( j,ℓ′) = 0, (Bd)(i,ℓ),( j,ℓ′) = 0 and (S p)(i,ℓ),( j,ℓ′) = 0. The matrix A is symmetric,
positive definite. When ku > kp, matrix B is of rank Np − 1. Notice that matrix S p is also of
rank Np − 1. When ku ≤ kp, matrix B is of rank < Np − 1. Let Fu = (Fu,d)d∈ID ∈ RND×Nu the
vector s.t. for all (i, ℓ) ∈ Iku × IK , (Fu,d)i,ℓ = fh(ϕi,ℓ ed). It stands: uh =

∑
ℓ∈IK

∑
i∈Iku

ui,ℓ ϕi,ℓ

and ph =
∑
ℓ∈IK

∑
i∈Ikp

pi,ℓ ϕi,ℓ. Let’s call Uh = (Uh,d)d∈ID ∈ RND×Nu (resp. Ph ∈ RNp ) the
vector of the discrete velocity (resp. pressure) degrees of freedom: for all (i, ℓ) ∈ Iku × IK

4
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(resp. (i, ℓ) ∈ Ikp × IK), (Uh,d)i,ℓ = ui,ℓ · ed (resp. (Ph)i,ℓ = pi,ℓ). The linear system related to
Problem (8) reads: Find (Uh, Ph) ∈ RND×Nu × RNp s.t.:


νAUh + B

T Ph = Fu
−BUh + β S p Ph = Fp

and

ℓ∈IK


i∈Ikp

pi,ℓ


Kℓ
ϕi,ℓ = 0, (11)

where Fp ∈ RNp vanishes when considering homogeneous Dirichlet boundary conditions. To
compute ph ∈ Lh, we can either impose the last equation in (11) at each iteration of our solver
or cancel a row from matrix B and the same row and corresponding column from matrices Mp

and S p. We make the abuse of keeping the same notation. Let’s call K = BA−1BT + βν S p ∈
RNp−1 × RNp−1, which is a symmetric positive definite matrix. To solve the coupled velocity-
pressure problem (11), one relies usually on the three + one steps below (the fourth step being
straightforward):

Prediction: Solve in U⋆h s.t. νAU⋆h = Fu.
Pressure solver: Solve in Ph s.t. KPh = ν(Fp + BU⋆h ).
Correction: Solve in δUh s.t. νAδUh = −BT Ph.
Update: Uh = δUh + U⋆h .

(12)

One can prove that matrix K is equivalent to M = Mp + βS p, so that M can be used as a
precontionner to solve KPh = ν(Fp+BU⋆h ). Using some iterative solver for this system, each
matrix-vector product with K requires the solution of linear systems such as AX = b at each
iteration, where A is defined by Eq. (10). Let us give details on our resolution algorithm.

4 Domain Decomposition and Schur Complement

Let N ∈ N⋆, IN = {1, · · · ,N} and ĨN = {1, · · · ,N − 1}. We split Th into N disjoint
subsets (Th,n)n∈IN . Let’s denote by (Fh,n)n∈IN the associated sets of facets. The splitting
is s.t. for n, m ∈ ĨN , for n � m, Fh,n ∩ Fh,m = ∅. For n ∈ IN , we consider matrices
An, n =


(Aℓ,ℓ′ )ℓ∈Th,i,ℓ′∈Th,n


, An,N =


(Aℓ,ℓ′ )ℓ∈Th,i,ℓ′∈Th,N


and for n, m ∈ ĨN , An,m = 0. The ma-

trix A can be rewritten by blocks as follows: A =
�

(An,m)n,m∈IN×IN


. For all n ∈ IN , An, n is

a symmetric positive definite matrix, and for all n ∈ ĨN , An,N is the coupling matrix between
Fh,n and Fh,N (we have: AN, n = (An,N)T ). Similarly, we set X = (Xn)n∈IN and b = (bn)n∈IN .
The linear system A X = b is solved as follows:

For all n ∈ ĨN , compute


b̃n = AT

n,N A−1
n, n bn

Ãn, n = AT
n,N A−1

n, n An,N

.

Compute



b̃N = bN −


n∈ĨN

b̃n

ÃN,N = AN N −


n∈ĨN

Ãn, n
.

Solve for XN s.t. ÃN,N XN = b̃N .

For all n ∈ ĨN , solve for Xn s.t. An, n Xn = bn − An,N XN .

(13)

For n ∈ ĨN , we store the Cholesky decomposition of matrix An, n to compute vector b̃i and
matrix Ãn, n. These computations can be done in parallel. After, we build ÃN,N and store its
LU decomposition. The matrices (Ãn, n)n∈ĨN

can be calculated once and for all in parallel. For

5
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the resolution, we can also calculate the vectors (b̃n)n∈ĨN
and (Xn)n∈ĨN

in parallel. This work
is in progress.
The code is being developed in MATLAB, based on a prototype created by Erell Jamelot,
which is available on GitHub [5]. This code will be published soon on GitHub.
In order to validate our theoretical analysis and our numerical developments , we study low-
regular test-cases, when Ω is non-convex and f = 0; and when Ω is convex and f � L2(Ω). In
the next section, we give details on this last implementation.

5 Numerical integration of a low-regular source term
Consider here the 2D case where Ω = (0, 1)2 and the meshes (Th)h are made of triangles. Let
S 0 = (x0, y0), where x0 = y0 = 0.5 and x0 =

−−→
OS 0.

Call (r, θ) the polar coordinates centered in S 0: r = |x−x0|, θ = arctan
(
y−y0
x−x0

)
+λπ, with λ = 1

if x ≤ x0, and elsewhere.
Let’s set IK,x0 := {ℓ ∈ IK : x0 ∈ Kℓ} and define Ωx0 = {Kℓ, ℓ ∈ IK,x0 }.
The polar basis (er, eθ) is s.t.: er = cos θex + sin θey, eθ = − sin θex + cos θey.
Let α, β ∈ R⋆. We will compute the following prescribed solution to Problem (1):

(u, p) = (rαeθ, rβ − p0), where p0 =
1
|Ω|

∫
Ω

rβ dx (14)

When α = 1, β = 2, it is close to the Rankine vortex model [11, Annexe B]. The source term
is s.t. f ∈ (Ht(Ω))′, with t = 1 − s, s = min{α, β + 1} and:

f = ν (1 − α2) rα−2 eθ + β rβ−1 er. (15)

Notice that f|Ωx0
∈ L1(Ω) and f|Ω\Ωx0

∈ L2(Ω). Let vh ∈ Xh. It stands:

∑
ℓ∈IK

⟨f, vh⟩Ht(Kℓ) =
∑

ℓ∈IK\IK,x0

∫
Kℓ

f · vhdx +
∑
ℓ∈IK,x0

⟨f, vh⟩Ht(Kℓ). (16)

Hence, computing the right-hand side of Equation (8) is not straightforward.
The seven-point Gauss quadrature [8] is used to approximate the first term in the right-hand
side of (16).
To approximate the second term in the right-hand side of (16), we change the variables to
polar coordinates, integrating first with respect to r and then using a trapezoidal rule with
respect to θ.
Let Kℓ = S 0S 1S 2, ℓ ∈ IK,x0 be a triangle s.t. S i = (xi, yi) (resp. S i = (R(Θi),Θi) in Cartesian
(resp. polar) coordinates for i = 1, 2.
Let (Xi, Yi) := (xi − 0.5, yi − 0.5), (X, Y) := (x − 0.5, y − 0.5). We aim to evaluate∫

Kℓ
rγ f (θ) Xk Yk′dx, for γ ∈ {α − 2, β − 1} and k, k′ ∈ N and where f (θ) = sin θ or cos θ.

We need to compute the intersection of linesD12 := (S 1S 2) andDθ = (S 0, er):

• In the case where X1 � X2, the equations ofD12,Dθ are s.t.:

D12 : Y =
Y1 − Y2

X1 − X2
X +

X1 Y2 − X2 Y1

X1 − X2
; Dθ : Y = tan θ X.

D12 andDθ intersect at (Xθ, Yθ) s.t.:

Xθ =
X1 Y2 − X2 Y1

eθ ·
−−−−→
S 1S 2

cos θ, Yθ =
X1 Y2 − X2 Y1

eθ ·
−−−−→
S 1S 2

sin θ,

Let Rθ := (X2
θ + Y2

θ )
1
2 =

X1 Y2 − X2 Y1

eθ ·
−−−−→
S 1S 2

.

6
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• In the case where X1 = X2 the equations ofD12,Dθ are s.t.:

D12 : X = X1 Dθ : Y = tan θ X.

D12 andDθ intersect at (Xθ, Yθ) s.t.: Xθ = X1, Yθ = tan θ X1.

Let Rθ := (X2
θ + Y2

θ )
1
2 =

X1

| cos θ| .

We have to evaluate:

∫
Kℓ

rγ f (θ) Xk Yk′d x =
∫ Θ2

θ=Θ1

∫ R(θ)

r=0
rγ f (θ) X(r, θ)k Y(r, θ)k′ r d r f (θ) dθ.

S 0

S 1

S 2

x

y

Dθ

θ Θ1

Θ2

Figure 1: Triangle s.t. X1 � X2.

Let γ′ = γ + k + k′ and f̃ (θ) = (cos θ)k (sin θ)k′ f (θ).

We get:
∫

Kℓ
rγ f (θ) Xk Yk′dx =

1
γ′ + 2

∫ Θ2

Θ1

R(θ)γ+2 f̃ (θ) d θ.

Let Nθ ∈ N⋆, θ0 = Θ1, θNθ+1 = Θ2, and ∆θ = Θ2−Θ1
Nθ+1 . Using the following trapezoidal rule, it

stands:

∫ Θ2

θ=Θ1

R(θ)γ+2 f̃ (θ) d θ ≈
Nθ∑

n=0

∆θ

2

(
R(θn+1)γ+2 f̃ (θn+1) + R(θn)γ

′+2 f̃ (θn)
)
.

6 Numerical Results

The results presented here are based on a in-house code that will be shared soon. Denote by
Pku

dg − Pkp

dg the DG scheme s.t. (uh, ph) ∈ Pku
dg × Pkp

dg.
Call Πh (resp. πh) representing the L2 orthogonal projection onto Xh (resp. Lh). The errors
are given by:

εν0(uh) :=
∥Πhu − uh∥L2(Ω)

∥(u, p)∥X,ν
and εν0(ph) :=

ν−1∥πh p − ph∥L2(Ω)

∥(u, p)∥X,ν

The convergence rates of εν0(uh) and εν0(ph) are denoted by τu and τp.
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6.1 Validation of the theoretical convergence rates

The results are given here for ν = 1.
For the convex domain, consider Problem (1) with solution (14) and (α, β) = (0.7,−0.3).
Then (u, p) ∈ H1+0.7(Ω) × H0.7(Ω), hence (τu, τp) = (1 + 0.7 , 0.7).
For the non-convex domain, consider Problem (1) with Ω = (0, 1)2\[1/2, 1]2 and (u, p) ∈
H1+α(Ω) × Hα(Ω) given in [1]. It is studied in [9, 10], with α ≈ 0.54, α± = α ± 1 and
ω = 3π/2: 

u(r, θ) = rα

cos(θ)ψ′(θ) + α+ sin(θ)ψ(θ)
sin(θ)ψ′(θ) − α+ cos(θ)ψ(θ)



p(r, θ) = −rα− (α−)−1 (α+)2ψ′(θ) + ψ(3)(θ)

, where: (17)

ψ(θ) = (α+)−1 sin(α+ θ) cos(αω) − cos(α+ θ) + (α−)−1 sin(α− θ) cos(αω) + cos(α− θ). We
expect τu = 2α ≈ 1.09 and τp = α.
Let us consider the P1

dg − P1
dg scheme. Figures 2b and 2a represent εν0(uh) and εν0(ph) against

the mesh size. Observe that the errors are lower when the domain is convex.

10−2 10−110−7

10−6

10−5

10−4

10−3

h

εν 0(
u h

),
εν 0(

p h
)

εν0(uh) εν0(ph)

(a) Test-case (14) (Ω convex)

10−2 10−110−6

10−5

10−4

10−3

10−2

h

εν 0(
u h

),
εν 0(

p h
)

εν0(uh) εν0(ph)

(b) Test-Case (17) (Ω non-convex).

Figure 2: Plots of εν0(uh) and εν0(ph) against the mesh size.

Convergence rates between two consecutive meshes are recorded in Table 1. In both
test-cases, we observe a good agreement with the theoretical ones (cf. Th. 3.1).

test-case τ theory mesh 1-2 mesh 2-3 mesh 3-4 mesh 4-5

(14) (Ω convex) τu 1.7 1.63 1.66 1.67 1.68
τp 0.7 0.78 0.74 0.73 0.71

(17) (Ω non-convex) τu 1.09 1.02 0.94 1.08 1.08
τp 0.54 0.85 0.59 0.59 0.53

Table 1: Convergence rates computed between two consecutive meshes.
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6.2 Comparing different DG schemes

Consider test-case (14) with ν = 10−6 which is close to the kinematic viscosity of the pressur-
ized water in nuclear reactor core and (α, β) = (6, 3). In order to compare DG schemes with
different pairs of polynomial orders (ku, kp), we plot the error εν0(uh) (resp. εν0(ph)) against
the mesh size on Fig. 3 or against the CPU time on Fig. 4.

• P1
dg−P1

dg vs P2
dg−P1

dg: for a given CPU time, the error εν0(uh) and the error εν0(ph) are similar
for both schemes. However, using the P1

dg − P1
dg scheme requires less memory footprint

and seems therefore more efficient.

• P1
dg −P2

dg vs P2
dg −P2

dg: for a given CPU time, the error εν0(ph) are similar for both schemes,
and the error εν0(uh) is better using the P1

dg − P2
dg scheme, which therefore seems more

efficient.

10−2 10−1
10−11

10−9

10−7

10−5

h

εν 0(
u h

)

10−2 10−1

10−7

10−6

10−5

10−4

10−3

h

εν 0(
p h

) P1
dg − P1

dg

P2
dg − P1

dg

P2
dg − P2

dg

P1
dg − P2

dg

Figure 3: Plots of εν0(uh) and εν0(ph) against the mesh size.

10−2 10−1 100 101 102 103
10−11

10−9

10−7

10−5

CPU time (s)

εν 0(
u h

)

10−2 10−1 100 101 102 103

10−7

10−6

10−5

10−4

10−3

10−2

CPU time (s)

εν 0(
p h

) P1
dg − P1

dg

P2
dg − P1

dg

P2
dg − P2

dg

P1
dg − P2

dg

Figure 4: Plots of εν0(uh) and εν0(ph) for ν = 10−6 against CPU time (s).
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Observe that for a given CPU time, the P1
dg − P2

dg scheme yields better results. Addition-
ally, it exhibits the fastest convergence rate.

7 Conclusion

This study explored DG schemes for solving the Stokes problem. Through analysis and nu-
merical experiments, we demonstrated their efficiency and accuracy even with low-regularity
solutions. The P1

dg − P2
dg scheme seems more efficient, which, to our knowledge, is a new

result. We provided robust a priori error estimates and we proposed to solve the linear system
with the help of a domain decomposition method (DDM). Further, we plan to challenge the
DDM in parallel and to implement Oseen problem, using non polynomial basis functions.
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