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HIGHLIGHTS

e We propose a physics-guided LSTM method for PEMFC fault diagnosis.
e A physics-based model allows to improve the accuracy, without additional sensors.

o Contrarily to pure data-driven approaches, the method is robust to PEMFC aging.

o The validation is performed on a real-life dataset, comprising 1000 h of operation.
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ABSTRACT

In this paper, we propose a novel hybrid method for fault diagnosis of Proton Exchange Membrane Fuel Cells
(PEMFCs) based on the combination of a physics-based model and a long short-term memory (LSTM) neural
network. By incorporating the physics-based model in the fault diagnosis algorithm, we can access to several
process variables not directly measured through sensors but related to the state of the PEMFC stack. The model
estimates are subsequently combined with signals measured on the PEMFC stack and inputted to a LSTM neural
network. The performance of the physics-guided LSTM is evaluated on an extensive dataset comprising a
thousand hours of operation of a PEMFC stack under dynamic load profiles, proving the enhanced capability of
the proposed fault diagnosis method in capturing complex fault patterns. Furthermore, the effectiveness of the
proposed method in dealing with PEMFC aging is tested by using data from the initial phase of stack operation
for algorithm training and reserving the data from the aged stack operation for the testing phase. The experi-
mental results reveal that the proposed physics-guided LSTM method allows for a significant amelioration over

purely data-driven LSTM.

1. Introduction

As environmental and global warming issues become increasingly
severe, proton exchange membrane fuel cells (PEMFCs) are considered
as one of the clean solutions for decarbonized transportation applica-
tions [1]. In order to get the best performances in terms of power gen-
eration, and to avoid accelerated degradation, PEMFCs must be operated
in optimal conditions [2,3]. However, due to the dynamic nature of the
system and the complexity to maintain an optimal control of the ideal
conditions, this is hardly achievable in practice. In a PEMFC stack, faults
are defined as anomalies in the internal operating conditions that cause
significant performance losses, accelerated degradation of the catalyst
and catalyst support and degradation of the membrane [4]. The
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occurrence of faults limits PEMFCs durability and reliability, eventually
hindering large-scale industrial deployment and commercialization of
the technology. If one could limit the occurrence and the amplitude of
faults through accurate diagnosis and effective control, serious damage
to the PEMFC stack could be avoided and its durability could be
extended [5]. Fault diagnosis is a well-established methodology in
several industrial systems [6] that integrates knowledge, information
and data, and aims at detecting and identifying any type of potential
abnormality and fault in the system. Accordingly, fault diagnosis of
PEMFCs has been receiving remarkably increasing attention during the
last two decades, as it is considered crucial for improving the reliability
and the durability of the stack, allowing an efficient and safe operation
[7,8]. In fact, through functional early fault alarms and appropriate
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dynamic adjustment of the operating conditions in real-time, the
occurrence of severe stack degradation could be avoided. However, in
practical applications, PEMFC fault diagnosis is challenging because the
stack is operating in dynamic conditions and in a continuously evolving
environment [9].

According to the current literature in the field, PEMFC fault diag-
nosis can be performed following two main approaches, the model-
based and the data-driven methods [10]. Model-based diagnosis is a
traditional way to identify faults in PEMFCs by building a model that
describes the behavior of the stack in nominal conditions. The imple-
mentation of the model-based diagnosis method is that while running,
the signals of the controller and actuators are sent to both the PEMFC
and the model. Then, the model reconstructs the values of the signals
expected in normal conditions and the model outputs are compared with
the measured signals from the PEMFC stack, in order to detect any
discrepancy. Finally, the occurrence of a fault is determined through
residual analysis [11]. In Ref. [12] the authors combined a
physics-based model of PEMFCs and a k-nearest neighbor (k-NN) clas-
sifier. The former generates the residuals and the latter classifies the
anomalies as water management faults or fuel starvation faults. The
diagnosis of the stack has been achieved by using only the voltage and
the high frequency resistance, retrieved by means of electrochemical
impedance spectroscopy (EIS). The work in Ref. [13] presents a
residual-based fault diagnosis which makes use of a residual generated
fault matrix to identify pressure sensor faults, temperature sensor faults
and compressor faults in PEMFC systems. In Ref. [14] a gray box model
based on analytical physical equations and decision trees is used to
extract residuals and isolate faults in the air supply subsystem of a
PEMFC. Based on this work, in Ref. [15] the approach is extended to
several subsystems of the PEMFC and the diagnosis of seventeen
different faults is successfully achieved by means of neural networks.

Contrary to model-based methods, data-driven methods do not
consider explicitly the complex internal mechanisms and electro-
chemical reaction processes of the PEMFC. Data-driven methods can be
subsequently classified in signal processing methods and pattern clas-
sification methods [10]. Several signal processing methodologies have
been developed to diagnose faults in PEMFC [16]. These methods
perform spectral analysis of the stack voltage by means of shapelet
transform [17], empirical Fourier decomposition and Hilbert transform
[18], wavelet transform [19,20], fast Fourier transform (FFT) [21], total
harmonic distortion [22] or distribution of relaxation times (DRT) [23,
24]. The authors in Ref. [25] introduced the reservoir computing
paradigm in the field of PEMFC fault diagnosis. This novel methodology
is based on the analysis of the frequency response of the stack voltage
under faulty conditions. With this approach, the authors can diagnose
low air stoichiometry, defective cooling, CO poisoning and aging,
achieving good performances during both offline training and online
testing. In recent years, with the development of artificial intelligence,
data-driven methods based on pattern classification are becoming pop-
ular for accomplishing fault diagnosis. Pattern classification methods
make use of the information available from historical experimental data
to recognize anomalous patterns attributable to faults by means of ma-
chine learning (ML) algorithms. Early attempts to perform data-driven
fault diagnosis of PEMFCs made use of support vector machine (SVM)
to detect and isolate four types of faults [26], namely low and high
pressure faults, drying faults and low air stoichiometry fault. Later on, a
methodology combining Fisher discriminant analysis (FDA) and
spherical-shaped multiple-class SVM (SSM-SVM) has been proposed to
isolate high current pulses and air stoichiometry faults in PEMFC stacks,
by extracting information from individual cell voltage [27]. The work in
Ref. [28] combined principal component analysis (PCA) and random
forest (RF) classification to discriminate between three fault states of the
PEMFC stack by using fifteen measured signals, obtained from sensors
used to monitor the stack. In Ref. [29], a method based on k-NN clas-
sification has been proposed to discriminate different levels of mem-
brane hydration and fuel starvation in the stack. A k-NN classifier has
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also been employed in Ref. [30], where 1D cell voltage signals have been
converted into 2D images, ad hoc features have been extracted from the
2D images by means of FDA and classification of flooding and drying
faults has been achieved using k-NN. Recently, traditional ML algo-
rithms, among which SVM, k-NN and RF, have been compared for
diagnosing flooding and drying faults, proving that RF achieves the
highest accuracy [8]. A detailed review of traditional ML methods used
for fault diagnosis of PEMFC can be found in Refs. [31,32].

Nowadays, as deep learning (DL) is becoming overly popular, the
application of DL-based fault diagnosis algorithms is experiencing fast
expansion. In fact, a DL algorithm is capable of automatically extracting
hierarchical representations from the data, avoiding dedicated features
extraction techniques to analyze the measured signals [33]. A number of
DL based methods has been proposed for fault diagnosis of PEMFC
recently, which include long short-term memory (LSTM) neural net-
works [34], convolutional neural network (CNN) [35], or combining
CNN with extreme gradient boosting (XGBoost) technique [36]. Among
these algorithms, LSTM has proven to be very suitable for analyzing time
series, and its effectiveness for PEMFC fault diagnosis has been widely
demonstrated. In this regard, the work presented in Ref. [37] combines a
bidirectional LSTM (BiLSTM) and t-distributed stochastic neighbor
embedding (t-SNE) to diagnose flooding and drying states with high
accuracy. However, it is worth noting that the authors have used four-
teen measured signals to achieve the diagnosis. In practical embedded
applications, a similar scenario, in which several sensors are available
for monitoring the stack is hardly attainable. In Ref. [38] an ensemble of
LSTM neural networks has been introduced for diagnosing flooding and
drying faults in the PEMFC stack by means of voltage, temperature and
relative humidity signals, showing better results with respect to using a
single LSTM neural network. The authors in Ref. [34] employ a neural
network consisting of multiple LSTM units to pre-diagnose flooding in a
PEMFC stack. They showcase that the capability of the LSTM to process
time series signals results in outstanding diagnosis performances.

The above research works have applied a variety of model-based and
data-driven methods to PEMFC fault diagnosis, making significant
contributions to the field. However, according to the authors, the pre-
sented methods have at least one of the following limitations or draw-
backs. First, the results are obtained in static and not dynamic operating
conditions, as it is the case in automotive applications. For instance, in
Ref. [38] only two different values of current have been considered
which are not enough to obtain an exhaustive representation of the
scenarios experienced by the PEMFC stack. Second, strong assumptions
are often made on the amount of the measured signals available for
diagnosing the system [39]. In practice, using a high amount of precisely
measured signals as input of the algorithm implies installing many ac-
curate sensors on the PEMFC stack, leading to an increased cost and a
decreased reliability. Third, the focus of some works is more on devel-
oping an algorithm with high diagnosis accuracy, than on providing a
thorough description of the experimental data used. Since the
data-driven methods rely on data for the recognition of anomalous
patterns attributable to faults, their performance is indeed heavily
dependent on the quality, quantity and representativeness of the data
used for training. It is therefore of fundamental importance to provide a
comprehensive description of the data. Moreover, the data used repre-
sent only a few hours of operation of the PEMFC stack. However, for the
algorithm to be employed throughout the whole life of the stack, its
validity has to be tested on a considerably broader range of operating
hours. Eventually, insufficient description of the algorithms architecture
and hyperparameters selected is provided, along with an inadequate
justification of the metrics used to assess the performances. Also, cross
validation of the algorithms is seldom performed.

In this article, we address the above gaps introducing a physics-
guided LSTM method that combines a physics-based PEMFC model
and a LSTM neural network. The physics-based PEMFC model, which
has been introduced in Ref. [40], is used in parallel to the real PEMFC
stack. However, instead of performing fault diagnosis based on residual
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analysis as in traditional model-based approaches, the model estimates
and the measured signals from the stack are aggregated together and
used as input of the LSTM neural network. By so doing, the
physics-based model offers access to new, unmeasured process variables
of the PEMFC that might be more sensitive to fault signatures [41] and,
consequently, can improve the ability of the algorithm to discriminate
the different faults in the stack. Among others, the physics-based model
can provide estimates of the membrane resistance, the membrane water
content and the current density distribution. These model estimates are
incorporated in the algorithm, thus resulting in a physics-guided LSTM
neural network, which has an enhanced input space and gains repre-
sentation power without increasing the number of sensors required on
the stack. The crux of the proposed fault diagnosis method is in that it
leverages the physics knowledge embedded in the physics-based PEMFC
model, as well as the ability of the LSTM neural network of processing
time series and extracting features to identify fault patterns in complex
dynamic signals. Moreover, while pure data-driven algorithms struggle
in discriminating between faults and aging as the PEMFC degrades [12]
due to limited data and limited measured signals, the physics-based
PEMFC model alleviates this issue. Four types of faults for the PEMFC
stack are investigated under dynamic operating conditions, namely
flooding, drying, air starvation and hydrogen starvation. This allows to
cover the faults that induce the most severe degradation phenomena in
PEMFC [42]. In a first step, the superior performances of the
physics-guided LSTM method with respect to a pure data-driven LSTM
algorithm is demonstrated for the first hours of operation of the stack.
Then, the analysis is extended to the entire dataset available. Eventually,
the robustness of the proposed method to PEMFC aging and signals
degradation is assessed by training the algorithm on data collected at the
beginning of life of the stack and testing it on the aged stack, that has
been operating for hundreds of hours. In this scenario, the
physics-guided LSTM neural network demonstrates the best perfor-
mances, over the alternative data-driven LSTM, as well as other algo-
rithms used for comparison, which fail in accurately diagnosing the
system. To further support the results, the average time to detect a fault
is introduced as an additional metric for the fault diagnosis method.

To the authors’ knowledge, this is the first time a hybrid method
combining a physics-based PEMFC model and a LSTM neural network
has been proposed to address PEMFC stack fault diagnosis, the validity
of which has been attested on a 1000 h long dataset.

The remainder of the paper is as follows. In Section 2 the physics-
based PEMFC model is introduced and a description of PEMFC faults
is provided. In Section 3 the proposed physics-guided LSTM for PEMFC
fault diagnosis is described. In Section 4 the experimental data and the
preprocessing steps are presented, together with the performance met-
rics. The different cases study are shown and the main results are dis-
cussed in Section 5. Finally, in Section 6 the main conclusions are drawn.

2. PEMFC stack system and physics-based model description
2.1. PEMEFC stack technology

A PEMFC stack is an electrochemical converter that transforms air
and hydrogen gases into electrical energy generating zero carbon
emissions [43]. It consists of a certain number of bipolar plates stacked
together with Membrane Electrode Assembly (MEA), assembled in se-
ries. The hydrogen is fed at the anode side and the air at the cathode side,
the gases pass through the gas diffusion layer (GDL) and the electro-
chemical reaction takes place at the catalyst layer. The reaction gener-
ates electrical power, along with water that has to be removed from the
stack.

The combination of electrical, fluidic and thermal phenomena that
take place inside the PEMFC stack, makes it a complex system. The
complexity is increased by the irreversible modifications of the physical
and chemical properties of the materials composing the stack. In fact,
the health and performance of a PEMFC stack gradually deteriorate
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throughout its lifetime, due to usage, continuous start and stop cycles,
environmental conditions, and non-optimal operating conditions,
particularly when used for vehicular applications.

2.2. PEMFC physics-based model

The physics-based model of PEMFC used in this work is a quantita-
tive mathematical model based on a set of theoretical equations that
accounts for transport phenomena, mass balances, enthalpy balances
and electrochemical processes governing the stack.

2.2.1. Model description

Detailed description of the physics-based PEMFC model can be found
in the literature [40]. The main modelling assumption is to consider that
all the cells composing the stack are identical and behave in the same
way. Accordingly, the stack voltage is the product of the single cell
voltage and the number of cells composing the PEMFC stack. Specif-
ically, the cell voltage is calculated by means of a semi-empirical rela-
tion derived from the Butler-Volmer equation [40].

Ucenn = Urey 7Rid+r] (1)

where Uy, is the reversible cell voltage from the thermodynamic equi-
librium, R is the ohmic resistance of the cell, i; is the current density and
n is the overpotential accounting for the activation losses, given in Eq.
(2)

e o o

. P02 PH2 PHzo
n=p +ﬁ2T+ﬁ3Tln(ld)+ﬂ4Tln(—PO) +ﬁ5Tln<—PO> +ﬂ6Tln( o >
(2

where T is the temperature, Py, , P}, and P}, , are the partial pressures of
oxygen, hydrogen and water, respectively, P° is the standard pressure
and ., k =1,...,6, are semi-empirical coefficients. The ohmic resistance
Risgiven by R = R + R,, where R, is the contact resistance and Ry, is the
membrane resistance, given in Eq. (3)

em em

Ry=—2—+—2— 3

 oUmta) " oOmtie)
2 2

where ey, is the membrane thickness, ¢ is the membrane conductivity, A4,
e and A, are the membrane water content at anode and cathode, and
inside the membrane, respectively, which can be computed with the
semiempirical equation presented in Ref. [40].

The physics-based model gives access to global and local conditions
of the PEMFC stack, for a wide range of operating conditions and with
different levels of detail. Furthermore, it accounts for the effects of
PEMFC degradation. Fuel cell degradation mechanisms have been the
focus of a number of studies in the literature, and it has been demon-
strated that platinum dissolution is the mechanism contributing the
most to the overall degradation [2]. Accordingly, in Ref. [4] Eq. (2) has
been adequately modified to include a simple equivalent model that
accounts for the catalyst degradation by introducing the degradation
rate 74 as follows

In( - in (P in (e
n=p1+p,T+psTIn T +/,TIn 0 + 45T In o

eg

-
+ BT ln( ;go> 4)

Multiple approaches can be used to estimate 74,. Since platinum
dissolution rate exponentially increases with time [44], one can assume
that the degradation rate 74, is also exponentially increasing over time.
Thus, in this study we define 74, = a e t?, where t is the operating time
of the PEMFC stack, and a and b are empirical parameters.
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2.2.2. Model calibration

In order for the physics-based model to be representative of a PEMFC
stack, some parameters have to be set. Among these parameters, the
physical properties of the membrane, catalyst layer, bipolar plates and
GDL are usually known from the stack specifications. However, to
improve the alignment between model estimates and measured signals,
we resort to model calibration. Specifically, for the parameters ., k = 1,
..., 6, introduced in the previous paragraph, manual calibration is an
impractical option and a dedicated procedure has been developed which
makes use of experimental polarization curves [45]. Regarding the
empirical parameters related to the degradation rate 74, the calibration
implies minimizing the mean squared error (MSE) of the voltage at
different operation times, given the polarization curves at different
operating conditions.

Once all the model parameters have been identified, the physics-
based PEMFC model will be representative of the real PEMFC stack
with a certain level of accuracy. In general, model calibration is a sto-
chastic problem, and this, together with the missing physical represen-
tation of the modelling equations, has an impact on the model
performance.

2.3. PEMFC faults description

The faulty mechanisms of PEMFC have been widely investigated in
the literature [29,46]. Massive water droplets formation in the flow
channels or inside the electrodes leads to a flooding fault, during which
the excess of water prevents the gases to reach the reaction sites. Pres-
sure drop increases inside the stack, eventually leading to oscillations in
the partial pressures of the active sites and, thus, to oscillations of the
stack voltage [32]. In the opposite case, a drying fault can appear if the
membrane is poorly hydrated. Given that membrane ionic conductivity
is highly dependent on its hydration, a drying fault will cause an in-
crease in the ohmic resistance and therefore a drop in the voltage.
Eventually, drying can also lead to accelerated formation of radicals,
which speed up the degradation of the membrane. Moreover, poor gas
control can lead to starvation fault, both of air and hydrogen. These
faults are very common in PEMFC, specifically when dynamic current
loads are imposed. Indeed, when the gas flow is insufficient to sustain
the current load, local starvation can occur in the fuel cell and can
induce variation in the current density distribution, as well as voltage
decrease. Hence, we consider the following fault classes for the PEMFC
stack: flooding fault (F1), drying fault (F2), air starvation fault (F3) and
hydrogen starvation fault (F4). The stack in nominal condition is
referred as healthy (H).

In order to immediately remedy the fault states and prevent the stack
from being irreversibly damaged, it is essential to accurately monitor, in
real-time, the state of the stack and correctly diagnose a fault when it
occurs. Therefore, the main goal of this study is to develop a method that
can accurately estimate the state of the PEMFC stack under dynamic
conditions, from the signals monitored on the stack.

3. Fault diagnosis method

In this work, we aim to demonstrate the benefits of combining the
knowledge embedded in a PEMFC physics-based model with a LSTM
neural network for fault diagnosis. We propose to enhance the input
space of the LSTM neural network by compounding the measured sig-
nals, collected through sensors on the PEMFC stack, with estimates of
observable and unobservable variables provided by the physics-based
PEMFC model, in which a degradation mechanism has been
embedded. Since LSTM neural networks have proven to be particularly
well-suited to capture temporal information in data and have shown an
excellent ability to reveal hidden complex functional mapping between
input and target fault labels [34,37,38], we select this type of DL algo-
rithm to classify faults. Indeed, using LSTM neural networks, we can take
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into consideration that the state of dynamical systems is not only
correlated to the values of the diagnosis signals at the time of mea-
surement, but also to their values at previous time steps.

3.1. LSTM neural network

Recurrent Neural Networks (RNNs) are designed to record and pre-
serve correlation information from sequential data [47], thus are suit-
able for analyzing time series signals. LSTM neural network is a type of
RNN which has been developed to address the problems of the vanishing
or exploding gradient that are typically encountered when training a
RNN [48]. The core of the LSTM neural network is the memory cell, that
replaces the conventional neurons in the hidden layers. Let us consider a
time series Xr = (x1, ..., Xr), i.e., an input signal containing the infor-
mation from an initial time ¢t = 1 until the current time ¢t = T. In each
memory cell, a cell state C; controls the network information using the
input gate, output gate and forget gate. At time t, when a new obser-
vation x; is fed to the network, the forget gate determines whether to
keep or remove the information of the preceding memory block output
h;_1. The output of the forget gate is

fe=0(W o [he1,x] +by) ©

where Wy and by are the input weights and bias of the forget gate,
respectively.
The input gate determines whether x; is stored in the cell state C;

iy =o(W; e [h1,x]+ b)) ©

where W; and b; are the input weights and bias of the input gate,
respectively. A tanh layer function is used to generate a new information

vector Et to be added to C;.
C.=tan h(W, o [h,_1,x.] +b.) %)

where W, and b, are the input weights and bias of the input gate,
respectively. Then, the cell state C; is updated as follow

Co=f9Cor+iroC, ®

Eventually, the output of the memory cell h;, is generated by using the
output gate and a tanh layer

o,=0c(W, e [ht—l s xt] +by) 9
h; =0, ¢ tanh C, (10)

where W, and b, are the input weights and bias of the input gate,
respectively.

Eventually, a layer of the LSTM neural network consists of N,
memory cells, which determine the expressive capacity of the network.
Given N time series signals, the input of the LSTM neural network is the
multivariate time series X; € R™Y. Then, each LSTM layer maps the
input matrix to the hidden state matrix Hy € R™™:, and the output layer
translates the last hidden state into a probability vector y; for the fault
states of the system.

3.2. Physics-guided LSTM method

To perform PEMFC fault diagnosis, we propose a physics-guided
LSTM method. It involves using the physics-based PEMFC model intro-
duced in Section 2 in parallel to the PEMFC stack and an LSTM neural
network as classification algorithm. The method is illustrated in Fig. 1.

Once it has been calibrated, the physics-based model takes as input

the actuator signals, i.e., command variables inferred from the system, at
timet, a, = [dl] fi“l,
the total number of actuator signals to be able to run the model. Then,
the physics-based model outputs the estimates of several process vari-

where dl is the i-th actuator inferred signal and N, is
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Fig. 1. The flowchart of the proposed physics-guided LSTM method.

ables, i.e., model estimates of the process variables at time t, x" =
4N .
{x;'” ] o where x{" is the j-th model estimate at time t and N;, are the
j=
number of process variables estimated by the model. In addition, we

N
have access to measured signals at time t, x; = {xﬁ‘l]l , where xﬁ‘l is the
-1

1-th signal measured from the stack and N; are the number of measured
signals. Eventually, the model estimates and the measured signals are
aggregated, i.e., x, = [x"x{] € R to enhance the information
available for the LSTM neural network. The continuous stream of model
estimates and measured signals during a time window of length T is then
obtained as X = (X,_g, ..., X;) = [XP, X5] € RT*®n+N)which in the
extended form is given by the following multivariate time series

XXt X
Xe=1| ... . an

Xin'l . XT'N’" JC:'I . Xz‘N‘
Finally, the LSTM neural network takes as input the multivariate
time series X; in Eq. (11)and outputs the fault state prediction yr.

It should be noted that among the model estimates x]" there are es-
timates of process variables that are not directly measurable [4,12]. This
can be related to the unavailability of dedicated sensors for real-time
applications, to the high cost of sensors or to the inherent
non-observability of the variables. The assumption we make here is that
the additional information given by these variables allows the algorithm
to be more discriminative with respect to the PEMFC stack fault state.
Thus, integrating them into the multivariate time series X; as input of
the LSTM neural network could be advantageous for a number of rea-
sons. First, it allows for an increase in the representation power of the
available information. In addition, the extended knowledge provided by
the physics-based PEMFC model could increase the ability of the LSTM
classification algorithm to better isolate the root causes of the faults,
since different variables can capture different aspects of the underlying
phenomena. For instance, the model estimates could enforce the
disentanglement of similar patterns generated by different faults in the
measured signals. Furthermore, the enhanced input space enforces the
coupling between sensored signals and model estimates, guiding the
LSTM neural network to be more generalizable and, thus, making it
robust to noise fluctuations. In fact, while the measurements from sen-
sors may be affected by noise and may deteriorate in time, there is no
such an impact on the model estimates, which are rather affected by
modelling errors, thus not depending on the environmental conditions.
Conversely, the physics-based model has a positive effect in limiting the
consequences related to the aging of the PEMFC stack, and of the

consequent distribution shift of the data, on the performances of the
diagnosing algorithm. In a pure data-driven LSTM the complex degra-
dation mechanism of PEMFC cannot be discerned from the faults due to
the limited representativeness of the available data. By complementing
the measured signals with informative and realistic model estimates, the
LSTM has a larger set of inputs that allows it to capture a richer view of
the data, and makes it less sensitive to shift caused by aging. Lastly, the
interpretability of the algorithm, and more widely of the fault diagnosis
method, is improved.

At training time, we have access to a dataset of measured signals,
collected through sensors from the PEMFC stack, and to model estimates
of the process variables provided by the physics-based PEMFC model.
We also have access to the corresponding labels for the fault states of the
stack. We are referring to a situation in which labelled data are avail-
able, therefore the standard supervised approach can be implemented
for algorithms training. The validity of the proposed physics-guided
LSTM method is assessed on a separate test set, and its feasibility is
proven on three different cases study.

3.3. Diagnostic features

In the literature, it is widely mentioned that the stack voltage is a
relevant indicator of a deviation in the state of the PEMFC stack. This,
together with its easy online attainability, makes it the favored diag-
nosing signal in most of the PEMFC diagnostic algorithms [8,17,49].
However, the stack voltage alone falls short of effectively isolating the
nature of the faults in the stack. Pressure drops at cathode and anode
have been proposed as indicators of stack flooding and starvation [50]
and proved to be beneficial in several diagnosis algorithms [29,37,51].
In the present work the current load and the coolant flow have also been
included as monitoring signals to decouple the effect of load variation
from the effect of state variation on the fault indicators. In fact, being the
PEMFC stack a highly dynamic system, it is crucial to separate the two
effects for effectively discriminating the system states, i.e., nominal and
faulty. A complete overview of the measured signals x{ € R™ used in the
present study is given in Table 1.

The physics-based PEMFC model takes as input the actuators signals
a, € RN, inferred from the PEMFC system. It is worth noting that, even
though these signals are commonly attainable in PEMFC systems, they
are usually affected by a certain level of uncertainty, and, in practice,
only a rough estimate is available. A detailed overview of the actuator
inferred signals is provided in Table 2.

Eventually, in Table 3 are listed the process variables estimated with
the calibrated physics-based PEMFC model, which can be observable or
unobservable variables. As previously mentioned, variables 1-3 are
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Table 1
Measured signals from PEMFC stack.
# Symbol Description Units
1 Current [A]
2 Voltage vl
3 Cathode pressure drop [Pa]
4 Anode pressure drop [Pa]
5 Inlet coolant flow [m3/s]
Table 2
Actuators inferred signals.
# Symbol Description Units
1 Coolant temperature [K]
2 H2 inlet relative humidity [%]
3 Air inlet relative humidity [%]
4 H2 stoichiometry [-]
5 Air stoichiometry [-]
6 H2 inlet pressure [Pa]
7 Air inlet pressure [Pa]

critical for diagnosing the PEMFC stack and are the model estimate
equivalents of measured signals. Variables 4-8 are especially well
adapted to describe phenomena related to water management faults in
the stack [12], and variables 9-10 have been selected due to their cor-
relation with starvation faults [29,52]. It should be pointed out that
these process variables are usually unobtainable through sensors, either
because the dedicated sensors are overly costly, or because the sensors
cannot be adapted for online applications, or because the signal is not
directly measurable. As a result, the proposed physics-guided fault
diagnosis method relies on a more exhaustive and detailed representa-
tion of the PEMFC stack.

4. Experiment description
4.1. Data description

The dataset used for the validation of the proposed method has been
collected in a previous work, presented in Ref. [12]. The PEMFC stack
used comprises 20 cells, with an active surface of 220 cm?, and can reach
a maximum power of 2600 W. The proton exchange membrane consists
of Nafion and has a thickness of 25 pm. The platinum load is 0.5 mg/m?.
The stack has been operating under Fuel Cell Dynamic Load Cycle
(FC-DLQ), derivated from the New European Driving Cycle (NEDC) load
profile, resulting in a highly dynamic current profile.

The PEMFC stack has been operated and monitored for more than
1000 h, during which water management faults and starvation faults
have been occasionally injected. Concurrently, the stack voltage, the
cathode pressure drop, the anode pressure drop, the coolant flow rate
and the current, along with the actuators signals, have been recorded
with a sampling frequency of 0.5 Hz.

During stack operation, irreversible degradation phenomena took

Table 3

Model estimates from the physics-based PEMFC model.
# Symbol Description Units
1 Voltage [v1
2 Cathode pressure drop [Pa]
3 Anode pressure drop [Pa]
4 Membrane resistance [Q]
5 Membrane water content [-]
6 Membrane temperature [K]
7 Relative humidity at cathode outlet [%)]
8 Relative humidity at anode outlet [%]
9 Current density distribution [A/m?]
10 Thermal power [W]
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place, as it can be observed in Fig. 2. The polarization curves recorded
after 50 h, 300 h and 800 h show dissimilar levels of performance of the
stack, with the 800 h curve presenting an average voltage loss of 0.67 V.

4.2. Model calibration and validation

The physics-based PEMFC model has been calibrated using the po-
larization curves collected in the first 50 h of operation of the PEMFC
stack, following the procedure illustrated in Ref. [45] for determining
the optimal values of the parameters f;, k = 1, ..., 6. The parameters
representing physical properties are obtained from the PEMFC charac-
teristics provided by the manufacturer. Eventually, the empirical pa-
rameters for the degradation rate 74,, have been set through a hands-on
procedure to minimize the MSE on the stack voltage, which is obtained
from the polarization curves collected in the first 250 h of stack opera-
tion. Albeit being a coarse approximation, by so doing we are able to
capture the degradation trend in the data. The model validation results
with respect to stack voltage are shown in Fig. 3a, for a frame of the
FC-DLC cycle. The mean absolute error of the model on the stack voltage
is 0.803 V and the mean relative error is 1.5 %. For illustrating purposes
in Fig. 3b are given the model estimates of the membrane resistance and
of the membrane water content, which are also inputted to LSTM neural
network, to achieve PEMFC fault diagnosis.

4.3. Proposed algorithms architecture

This work aims at demonstrating the capability of the physics-guided
LSTM method to accurately assess the faults in the PEMFC stack, and to
compare its performance to that of a pure data-driven LSTM algorithm.
The architecture of the LSTM neural network proposed in this study
comprises 4 layers. The network has three initial LSTM layers, with
number of hidden units equal to 20, 20 and 15, respectively, and one
dense layer with 5 neurons and softmax activation function. We utilize
the Adam algorithm with adaptive learning rate to optimize the training
of the neural network. The initial learning rate is set to 0.02. The batch
size is set to 512 and the number of epochs is set to 100.

To evaluate the effectiveness of the proposed method, a comparative
analysis against traditional ML algorithms widely used in the literature
for fault diagnosis of PEMFC is also included in the study. The ML al-
gorithms implemented are: SVM, with regularization parameter C = 2
and Radial Basis Function (rbf) kernel; RF, with number of estimators
equal to 10; GB, with number of estimators equal to 50; FNN, with 2
hidden layers, 50 neurons per layer.

From the exploration of the parameters space, we selected the
hyperparameters so to maximize the accuracy on the test set and to
ensure the best achievable performance. To thoroughly validate the
performance of the algorithms, ensure a robust assessment and avoid
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Fig. 2. Polarization curves at time 50 h, 300 h and 800 h.
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Fig. 3. Validation of the physics-based PEMFC model. (a) The stack voltage measured (blue) and estimated by the physics-based PEMFC model (red). (b) Membrane
resistance (solid line) and membrane water content (dashed line) provided by the physics-based PEMFC model. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)

overfitting, stratified k-fold cross validation, with k =
mented.

5, is imple-

4.4. Data preprocessing

The dimension of the input data X varies depending on the method
selected. The pure data-driven LSTM takes in input solely the measured
signals X7.. The proposed physics-guided LSTM takes in input also the
model estimates X7, thus it takes in input the multivariate time series
Xr = [X},X7]. The input space to the LSTM neural network is normal-
ized to a range [—1,1] by a min/max normalization given by the
available dataset in the first 50 h of operation, and preprocessed with a
sliding time window of size 20 s. The sliding time window means that
the first sample comprises the signals from time 1-20 s, the second from
21 to 40 s, and so on. While the LSTM neural network processes the
entire time series X = (X,_r,...,X;), the ML algorithms used in the
comparative analysis take in input the average of the time series along
the time window T.

4.5. Performance evaluation metrics

To quantitatively compare the performance of the fault diagnosis
method, we apply the following metrics, which are commonly used in
fault diagnosis algorithms: accuracy (acc), precision (prec), recall (rec)
and F1 score (F1). They are defined as follows

acc = 1P+ 1N (12)

" TP+ TN+ FP+FN
P
Prec=prp 13
TP

rec = TPLEN a4

_ 2prec X rec (15)
prec + rec

where TP is the number of correctly detected faults, FP that of incor-
rectly detected ones, TN is the number of correctly assigned fault-free
cases and FN that of incorrectly assigned fault-free.

In addition to the above metrics, for a more precise characterization
of the quality and robustness of the fault diagnosis method we propose
the time to detect. This is the time between the moment the PEMFC stack
changes state and the moment the algorithm detects the change, clas-
sifying it as the correct fault. The motivation behind this metric is that by
detecting a fault as soon as possible, we can promptly restore nominal
operating conditions, thus limiting the degrading effects that the fault
has on the PEMFC stack.

5. Results and discussion

The application of the proposed method on the dataset introduced in
the previous Section is presented below. Initially, to illustrate the ben-
efits of using the physics-guided LSTM method over the pure data-driven
counterpart, the performances are tested on the first 250 h of operation
of the stack. Then, the methodology is tested over the entire dataset
available, comprising 1000 h of operation. In addition, to demonstrate
the generalization and the robustness to PEMFC stack aging of the
physics-guided LSTM method, we train the algorithm exclusively with
data of the first 250 h of operation and, then, we test the performance on
the data collected after 600 h of operation, which is affected by distri-
bution shift due to degradation.

5.1. Case study 1: validation of the methodology on the initial phase of
stack operation

In this section, the performance of the proposed physics-guided
LSTM method is evaluated and compared to a pure data-driven LSTM
neural network, on the data collected at initial phase of stack operation.
This allows to study the performance of the method with a limited effect
of aging. We keep the data in the first 250 h of operation only, then we
randomly split them into a train and a test set, with no overlap between
them so to reduce the effect of overfitting. This is shown in Fig. 4.

We used a sliding time window of 20 s, resulting in a dataset con-
sisting of 8437 samples for the nominal state (H), 3846 samples for the
flooding fault (F1), 1692 samples for the drying fault (F2), 477 samples
for the air starvation fault (F3) and 485 samples for the H2 starvation
fault. The performance metrics for the physics-guided LSTM method and
the data-driven LSTM, are shown in Table 4, validated with cross vali-
dation. Also, the performance of the other ML algorithms is given, for the
data-driven as well as the physics-guided approach.

The results highlight that the physics-guided LSTM method surpasses
the data-driven LSTM neural network, in all the metrics, with an in-
crease of 3.00 % in the accuracy and of 3.86 % in the F1 score, as well as
all the other ML algorithms considered. We evaluate the time to detect
for the physics-guided LSTM neural network, which results in 10.1 s, in
average, against 14.2 s for the data-driven LSTM, proving that the
physics-guided method facilitates the diagnosis of the stack by reducing

|trainl test @ left out [

Oh 250 h

1000 h

Fig. 4. — Illustration of the dataset splitting for case study 1.
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Table 4
Comparison of different methods for fault diagnosis, over the initial phase (250
h) of stack operation.

acc prec rec F1

Data-driven

SVM 0.776 0.862 0.534 0.604
RF 0.939 0.945 0.908 0.925
GB 0.877 0.900 0.828 0.857
FNN 0.795 0.807 0.559 0.612
LSTM 0.966 0.964 0.954 0.958
Physics-guided

SVM 0.947 0.968 0.871 0.913
RF 0.980 0.985 0.952 0.968
GB 0.959 0.975 0.927 0.949
FNN 0.954 0.959 0.919 0.938
LSTM 0.995 0.995 0.994 0.995

the time to detect of 28.9 %.

5.2. Case study 2: validation of the methodology on the entire dataset,
with the aging effect

Considering that the PEMFC stack has a durability of thousands of
hours, it is not enough to prove that the fault diagnosis algorithm is valid
in the first 250 h of operation. In fact, under the effect of degradation
phenomena the diagnosis signals tend to deteriorate. The effect of
degradation phenomena cumulates with the effect of faults in the
measured signals, e.g., the voltage, causing a shift in the distribution of
the fault classes and eventually hindering fault discriminability. A
robust fault diagnosis method must be capable of addressing this chal-
lenge. Accordingly, we extend the study of the previous paragraph to the
entire dataset, which consists of more than 1000 h of operation of the
stack. An illustration of the train-test splitting of the dataset is shown in
Fig. 5. The splitting procedure ensures there is no overlap between the
train and the test sets.

A sliding time window of 20 s is used to process the data, and the
samples available for each system state are the following: 12726 for the
nominal state (H), 5383 for the flooding fault (F1), 2682 for the drying
fault (F2), 658 for the air starvation fault (F3) and 785 for the H2
starvation fault (F4). Table 5 shows the results, validated through cross
validation for the physics-guided LSTM and the data-driven LSTM, as
well as for the ML algorithms introduced for comparison.

The proposed physics-guided LSTM method outperforms the data-
driven LSTM in terms of diagnostic performances, with an improve-
ment is 5.89 % for the accuracy and 15.0 % for the F1 metrics. Although
the ML algorithms considered show commendable performances in the
physics-guided approach, they fall short of the physics-guided LSTM
effectiveness. For the physics-guided LSTM method the time to detect
has an average value of 17.9 s, while for the data-driven LSTM it is 43.2
s, corresponding to a reduction of 58.6 %.

5.3. Case study 3: assessment of the robustness of the methodology with
unseen aging data

To further investigate the robustness of the physics-guided LSTM
method to PEMFC stack aging, we split the entire dataset in train and
test as shown in Fig. 6. The first 250 h are used to train the algorithms,

[train W test W left out M|

Oh 1000 h

Fig. 5. Illustration of the dataset splitting for case study 2.
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Table 5
Comparison of different methods for fault diagnosis, over the 1000 h dataset.
acc prec rec F1

Data-driven
SVM 0.748 0.848 0.505 0.586
RF 0.904 0.916 0.859 0.885
GB 0.799 0.859 0.677 0.745
FNN 0.743 0.755 0.512 0.561
LSTM 0.933 0.913 0.881 0.859
Physics-guided
SVM 0.944 0.968 0.871 0.913
RF 0.973 0.980 0.937 0.957
GB 0.939 0.972 0.866 0.912
FNN 0.944 0.951 0.907 0.928
LSTM 0.988 0.990 0.987 0.988

then the performance are tested on the last part of the dataset, from 600
h to 1000 h, so to validate the ability to discriminate faults when PEMFC
aging is established and distribution shift becomes an issue in the
measured signals. Since in real life it is hard to obtain a faulty dataset
comprehending the whole operation time of the PEMFC stack to train
the fault diagnosis algorithm, this study enables the validation of the
robustness of fault diagnosis method in a more rigorous and realistic
scenario.

For this study, the results for the physics-guided LSTM and the data-
driven LSTM, and for the ML algorithms included for comparison, are
shown in Table 6.

The findings presented in Table 6 illustrate that the sole method that
achieves satisfactory performances in diagnosing the PEMFC stack
under aging condition is the physics-guided LSTM. The accuracy score
and the F1 score are 0.817 and 0.812, respectively. All the ML algo-
rithms included for comparison, both data-driven and physics-guided,
fail in accurately diagnosing the stack, underscoring the importance of
adopting a LSTM neural network for correctly analyzing time series
data. Compared to the data-driven LSTM neural network, the proposed
physics-guided LSTM method shows a notable improvement, 55.9 % for
the accuracy and 76.9 % for the F1 score. In order to illustrate the
diagnosis performances more effectively, in Fig. 7 we provide the
confusion matrices for the data-driven LSTM neural network and the
physics-guided LSTM method.

The physics-guided LSTM diagnoses well the faults in the test data-
set, remarkably showing a score of 0.978 for the hydrogen starvation
fault (F4), while the data-driven LSTM is not capable of diagnosing
starvation faults (F3, F4) and achieves inadequate scores on the other
fault classes.

Furthermore, in Fig. 8 we show the 2D representation of the feature
extracted by the LSTM neural network in the two methods, after the last
hidden state, through t-SNE visualization. Fig. 8a shows the features
extracted by the data-driven LSTM neural network, while Fig. 8b shows
the distribution of the feature extracted by the physics-guided LSTM
neural network. Only for the latter 5 different clusters, one for each fault
state, are clearly distinguishable, highlighting the motivation behind the
notable performance improvement.

Eventually, the time to detect metric confirms these results. The
physics-guided LSTM requires 66.9 s to diagnose the faults at test time,
against 298.1 s of the data-driven LSTM, with a reduction of the
detection time of 77.6 %.

|trainl test @ left outEIl

600 h 1000 h

Oh 250 h

Fig. 6. — Illustration of the dataset splitting for case study 3.
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Table 6

— Comparison of different methods for fault diagnosis on the dataset shown in

Fig. 6.

acc prec rec F1

Data-driven
SVM 0.495 0.389 0.296 0.283
RF 0.448 0.378 0.302 0.296
GB 0.434 0.219 0.230 0.222
FNN 0.486 0.356 0.304 0.283
LSTM 0.524 0.584 0.439 0.459
Physics-guided
SVM 0.721 0.833 0.592 0.669
RF 0.731 0.731 0.541 0.579
GB 0.698 0.641 0.433 0.467
FNN 0.662 0.668 0.514 0.539
LSTM 0.817 0.807 0.853 0.812

5.4. Discussion

As stated in the introduction and demonstrated in the cases study, the
proposed physics-guided LSTM method is designed to increase the
discriminative power and improve the generalization ability of the fault
diagnosis algorithm. The estimates of the fault related variables pro-
vided by the physics-based PEMFC model are informative of the state of
the PEMFC stack and, as a result, increase the accuracy and decrease the
time to detect of the physics-guided LSTM compared to the data-driven
LSTM. Indeed, by integrating the model estimates and the measured
signals, it is possible to significantly enhance the input space of the
LSTM neural network without increasing the number of sensors installed
on the stack. Furthermore, case study 3 evidences that the physics-
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guided LSTM is the only method capable of adapting to degraded sig-
nals, and thus, it is robust to PEMFC aging, also indicating a greater
generalization ability, which is a clear advantage with respect to the
data-driven LSTM neural network, as well as traditional ML algorithms,
i.e., SVM, RF, GB, FNN. These results yield several key insight.

1) The LSTM neural network is confirmed to be the most suited algo-
rithm to deal with time series signals, collected through sensors on
the PEMFC stack. Their ability to capture complex functional pat-
terns in the input data yields a clear advantage in diagnosing the
faults.

2) The model estimates of process variables compensate for the limited
sensors that can be embedded on a PEMFC in real vehicular appli-
cation. The physics-based model can thus provide meaningful in-
sights on the PEMFC fault state, allowing to infer informative process
variables not available from the measured signals, which demon-
strate to be beneficial for diagnosing the stack.

3) Moreover, as proven in the last case study, the process variables
provided by the model serves as additional information for the al-
gorithms to better discern the faults, limiting the confusion given by
the data distribution shift due to aging. Indeed, instead of relying
only on voltage and pressure drop, we can also consider membrane
temperature, membrane water content, relative humidity and cur-
rent density. Increasing the amount of information that the LSTM
neural network has access to, the algorithm has greater flexibility in
representing complex phenomena and, thus, it can better capture the
underlying relationship in the data.

However, to some extent, certain limitations in the presented method
persist. First, the feasibility of the online implementation of the physics-

based PEMFC model is not investigated here. Limited computational
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Fig. 7. Confusion matrix for the data-driven LSTM (a) and the physics-guided LSTM (b) method. The train and test datasets are illustrated in Fig. 6.

° o H
20 = F1
Ry o F2
. 2%
L% y o Fa
Ly .® o 4
-
101 o &3 s ™
2 ¥ g
e .
w o ®
S
e .
L
1 -
0 w0 4
o s ®
-ys
-20 5
-20 -10 0 10 20 20

x-TSNE

(@)

@ H
404 n$ F1
o2
2
304 F4
201
w ! N
31 23 ‘»
S "o %,
e o
o] . R o "y oo™
L] .
¥ u -,
104 Yy .
ERA )
201 N a
e
301
20 10 [ 10 20
xTSNE

(b)

Fig. 8. Two-dimensional representation by means of t-SNE of the features extracted by the LSTM neural network, (a) data-driven LSTM, (b) physics-guided LSTM.

The dataset is shown in Fig. 6.
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capability to embed it on the fuel cell management system is a general
issue of physics-based models. This highlights the need for a dedicated
model order reduction technique so to adapt the proposed method for
online implementation. Another limitation is the need for labelled data.
The required experimental campaign is time consuming and extremely
expensive if it can only be used for a specific PEMFC technology.
Adequate problem formulation should be explored, e.g., including
domain adaptation, to extend the applicability to different PEMFC
technologies.

It is also worth noting that, despite using a simple exponential
degradation model for the PEMFC, more complex degradation models
could be implemented in the physics-based PEMFC model, which could
directly account for phenomena like Ostwald ripening [4], or membrane
degradation [53], thus providing more accurate estimates of process
variables, and eventually better fault diagnosis performances.

6. Conclusion

In this paper, a novel method for PEMFC fault diagnosis based on a
physics-guided LSTM is proposed. A physics-based PEMFC model is used
to estimate observable and unobservable process variables, which are
related to the state of the PEMFC stack. The model estimates are
aggregated with the measured signals to increase the information
inputted to the LSTM neural network. The results show that the pro-
posed method, by providing additional, physics relevant variables, can
effectively increase the fault discrimination capability of the LSTM
neural network, eventually imposing the generalization and the accu-
racy of the network without additional physical sensors. The physics-
guided LSTM method represents a notable improvement for PEMFC
fault diagnosis. Its ability to accurately diagnose the faulty states of the
stack under dynamic load profiles and in a wide range of operation times
is essential for making the PEMFC technology more reliable and reduce
the effects of degradation on the diagnosis performances. We emphasize
on the fact that this is the first time that a fault diagnosis method has
been tested on a real-life faulty dataset, comprising 1000 h of operation
of the PEMFC stack.

The benefits of the method we present in this work are threefold.
First, as demonstrated in the cases study, the proposed physics-guided
LSTM method has an improved diagnosing accuracy compared to the
data-driven LSTM. Second, the detection time is considerably reduced.
This is a critical aspect in PEMFC, since reducing the time the stack
remains in a faulty state has a direct impact on its durability. Eventually,
we demonstrated that the physics-guided LSTM method, contrary to the
other algorithms considered, is highly robust to the degradation of the
system, effectively tackling the issue of signals deterioration, making a
significant advancement in extending the validity of the method and
improving its generalization.

This work lays the ground for more innovations in the field, with the
ultimate goal of extending PEMFC durability. Further studies will focus
on employing model reduction techniques to allow for the online
implementation of the physics-based model, aiming to make it more
adaptable to the limited memory space of embedded systems.

CRediT authorship contribution statement

Chiara Pettorossi: Writing — review & editing, Writing — original
draft, Visualization, Validation, Software, Methodology, Formal anal-
ysis, Data curation, Conceptualization. Raphaél Morvillier: Writing —
review & editing, Visualization, Validation, Software. Vincent Heiries:
Writing - review & editing, Supervision, Project administration,
Conceptualization. Sébastien Rosini: Writing — review & editing, Su-
pervision. Mathias Gerard: Writing — review & editing, Supervision,
Funding acquisition, Conceptualization.

10

Journal of Power Sources 626 (2025) 235696

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported by a government grant managed by the
French national research agency (ANR) under the France 2030 with
reference “ANR-22-PEHY-0002”.

Data availability
The data that has been used is confidential.

References

[1] J. Stoll, N. Zhao, X.-Z. Yuan, F. Girard, E. Kjeang, Z. Shi, Impacts of cathode
catalyst layer defects on performance and durability in PEM fuel cells, J. Power
Sources 583 (2023), https://doi.org/10.1016/j.jpowsour.2023.233565.

L. Vichard, N.Y. Steiner, N. Zerhouni, D. Hissel, Hybrid fuel cell system degradation
modeling methods: a comprehensive review, J. Power Sources 506 (2021), https://
doi.org/10.1016/j.jpowsour.2021.230071.

Z. Hua, Z. Zheng, E. Pahon, M.-C. Péra, F. Gao, A review on lifetime prediction of
proton exchange membrane fuel cells system, J. Power Sources 529 (2022),
https://doi.org/10.1016/j.jpowsour.2022.231256.

C. Robin, M. Gérard, M. Quinaud, J. D’Arbigny, Y. Bultel, Proton exchange
membrane fuel cell model for aging predictions: simulated equivalent active
surface area loss and comparisons with durability tests, J. Power Sources 326
(2016) 417-427, https://doi.org/10.1016/j.jpowsour.2016.07.018.

E. Dijoux, N.Y. Steiner, M. Benne, M.-C. Péra, B.G. Pérez, A review of fault tolerant
control strategies applied to proton exchange membrane fuel cell systems, J. Power
Sources 359 (2017) 119-133, https://doi.org/10.1016/j.jpowsour.2017.05.058.
J. Peng, J. Huang, X. long Wu, Y. wu Xu, H. Chen, X. Li, Solid oxide fuel cell (SOFC)
performance evaluation, fault diagnosis and health control: a review, J. Power
Sources 505 (Sep. 2021) 230058, https://doi.org/10.1016/J.
JPOWSOUR.2021.230058.

Z.1i, Z. Zheng, F. Gao, Diagnosis and prognosis of proton exchange membrane fuel
cells, in: A. Soualhi, H. Razik (Eds.), Electrical Systems 2, 2020, https://doi.org/
10.1002/9781119720584.ch5. Ch. 5.

G. Gibey, E. Pahon, N. Zerhouni, D. Hissel, Diagnostic and prognostic for
prescriptive maintenance and control of PEMFC systems in an industrial
framework, J. Power Sources 613 (2024), https://doi.org/10.1016/j.
jpowsour.2024.234864.

E. Zio, Prognostics and Health Management (PHM): where are we and where do we
(need to) go in theory and practice, Reliab. Eng. Syst. Saf. 218 (2022), https://doi.
org/10.1016/j.ress.2021.108119.

J. Wang, et al., Recent advances and summarization of fault diagnosis techniques
for proton exchange membrane fuel cell systems: a critical overview, J. Power
Sources 500 (2021), https://doi.org/10.1016/j.jpowsour.2021.229932.

M. Sani, M. Piffard, V. Heiries, Fault detection for pem fuel cells via analytical
redundancy: a critical review and prospects, Energies 16 (14) (2023), https://doi.
org/10.3390/en16145446.

Gauthier Jullian, Catherine Cadet, S. Rosini, M. Gerard, V. Heiries,

Christophe Bérenguer, Fault detection and isolation for proton exchange
membrane fuel cell using impedance measurements and multiphysics modeling,
Fuel Cell. 20 (2020) 558-569.

E. Ariza, A. Correcher, C. Vargas-Salgado, PEMFCs model-based fault diagnosis: a
proposal based on virtual and real sensors data fusion, Sensors 23 (17) (2023),
https://doi.org/10.3390/523177383.

J. Won, et al., Hybrid diagnosis method for initial faults of air supply systems in
proton exchange membrane fuel cells, Renew. Energy 180 (2021) 343-352,
https://doi.org/10.1016/j.renene.2021.07.079.

J. Young Park, 1. Seop Lim, Y. Ho Lee, W.-Y. Lee, H. Oh, M. Soo Kim, Severity-based
fault diagnostic method for polymer electrolyte membrane fuel cell systems, Appl.
Energy 332 (2023), https://doi.org/10.1016/j.apenergy.2022.120486.

D. Ritzberger, S. Jakubek, Nonlinear data-driven identification of polymer
electrolyte membrane fuel cells for diagnostic purposes: a Volterra series approach,
J. Power Sources 361 (2017) 144-152, https://doi.org/10.1016/j.
jpowsour.2017.06.068.

Z. Li, R. Outbib, S. Giurgea, D. Hissel, A. Giraud, P. Couderc, Fault diagnosis for
fuel cell systems: a data-driven approach using high-precise voltage sensors,
Renew. Energy (2019) 1435-1444, https://doi.org/10.1016/j.
renene.2018.09.077.

A. Cheikh, N.Y. Steiner, E. Pahon, C. Damour, M. Benne, D. Hissel, Proton exchange
membrane fuel cell signal-based diagnostics using empirical fourier transform, in:
2022 IEEE Vehicle Power and Propulsion Conference, VPPC 2022 - Proceedings,
2022, https://doi.org/10.1109/VPPC55846.2022.10003412.

H. Lu, J. Chen, C. Yan, H. Liu, On-line fault diagnosis for proton exchange
membrane fuel cells based on a fast electrochemical impedance spectroscopy

[2]

[3]

[4]

[5]

[6]

[71

[8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]


https://doi.org/10.1016/j.jpowsour.2023.233565
https://doi.org/10.1016/j.jpowsour.2021.230071
https://doi.org/10.1016/j.jpowsour.2021.230071
https://doi.org/10.1016/j.jpowsour.2022.231256
https://doi.org/10.1016/j.jpowsour.2016.07.018
https://doi.org/10.1016/j.jpowsour.2017.05.058
https://doi.org/10.1016/J.JPOWSOUR.2021.230058
https://doi.org/10.1016/J.JPOWSOUR.2021.230058
https://doi.org/10.1002/9781119720584.ch5
https://doi.org/10.1002/9781119720584.ch5
https://doi.org/10.1016/j.jpowsour.2024.234864
https://doi.org/10.1016/j.jpowsour.2024.234864
https://doi.org/10.1016/j.ress.2021.108119
https://doi.org/10.1016/j.ress.2021.108119
https://doi.org/10.1016/j.jpowsour.2021.229932
https://doi.org/10.3390/en16145446
https://doi.org/10.3390/en16145446
http://refhub.elsevier.com/S0378-7753(24)01648-3/sref12
http://refhub.elsevier.com/S0378-7753(24)01648-3/sref12
http://refhub.elsevier.com/S0378-7753(24)01648-3/sref12
http://refhub.elsevier.com/S0378-7753(24)01648-3/sref12
https://doi.org/10.3390/s23177383
https://doi.org/10.1016/j.renene.2021.07.079
https://doi.org/10.1016/j.apenergy.2022.120486
https://doi.org/10.1016/j.jpowsour.2017.06.068
https://doi.org/10.1016/j.jpowsour.2017.06.068
https://doi.org/10.1016/j.renene.2018.09.077
https://doi.org/10.1016/j.renene.2018.09.077
https://doi.org/10.1109/VPPC55846.2022.10003412

C. Pettorossi et al.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

measurement, J. Power Sources 430 (2019) 233-243, https://doi.org/10.1016/j.
jpowsour.2019.05.028.

M.A. Rubio, D.G. Sanchez, P. Gazdzicki, K.A. Friedrich, A. Urquia, Failure mode
diagnosis in proton exchange membrane fuel cells using local electrochemical
noise, J. Power Sources 541 (2022), https://doi.org/10.1016/j.
jpowsour.2022.231582.

A.H. Detti, S. Jemei, S. Morando, N.Y. Steiner, Classification based method using
fast fourier transform (FFT) and total harmonic distortion (THD) dedicated to
proton exchange membrane fuel cell (PEMFC) diagnosis, 2017 IEEE Vehicle Power
and Propulsion Conference, VPPC 2017 - Proceedings 2018-Janua (2018) 1-6,
https://doi.org/10.1109/VPPC.2017.8331040.

N.J. Stefty, S.V. Selvaganesh, M. Kumar L, A.K. Sahu, Online monitoring of fuel
starvation and water management in an operating polymer electrolyte membrane
fuel cell by a novel diagnostic tool based on total harmonic distortion analysis,

J. Power Sources 404 (2018) 81-88, https://doi.org/10.1016/j.
jpowsour.2018.10.012.

S. Nasarre Artigas, H. Xu, F. Mack, Use of distribution of relaxation times analysis
as an in-situ diagnostic tool for water management in PEM fuel cells applications,
J. Power Sources 600 (2024), https://doi.org/10.1016/j.jpowsour.2024.234179.
Y. Ao, Z. Li, S. Laghrouche, D. Depernet, D. Candusso, K. Zhao, Stack-level
diagnosis of proton exchange membrane fuel cell by the distribution of relaxation
times analysis of electrochemical impedance spectroscopy, J. Power Sources 603
(2024), https://doi.org/10.1016/j.jpowsour.2024.234420.

Z. Zheng, et al., Brain-inspired computational paradigm dedicated to fault
diagnosis of PEM fuel cell stack, Int. J. Hydrogen Energy 42 (8) (2017) 5410-5425,
https://doi.org/10.1016/j.ijhydene.2016.11.043,

Z. Li, et al., Online implementation of SVM based fault diagnosis strategy for
PEMFC systems, Appl. Energy 164 (Feb. 2016) 284-293, https://doi.org/10.1016/
J.APENERGY.2015.11.060.

Z.1i, R. Outbib, S. Giurgea, D. Hissel, Diagnosis for PEMFC systems: a data-driven
approach with the capabilities of online adaptation and novel fault detection, IEEE
Trans. Ind. Electron. 62 (8) (2015) 5164-5174, https://doi.org/10.1109/
TIE.2015.2418324.

R.-H. Lin, Z.-X. Pei, Z.-Z. Ye, C.-C. Guo, B.-D. Wu, Hydrogen fuel cell diagnostics
using random forest and enhanced feature selection, Int. J. Hydrogen Energy 45
(17) (2020) 10523-10535, https://doi.org/10.1016/j.ijhydene.2019.10.127.

J. Aubry, Diagnostic, pronostic, controle tolérant aux défauts et au vieillissement
d’une pile a combustible a membrane échangeuse de protons, appliqués a
I’automobile [dissertation], France, Universite de Franche-Comte (2022).

Z. Liu, M. Pei, Q. He, Q. Wu, L. Jackson, L. Mao, A novel method for polymer
electrolyte membrane fuel cell fault diagnosis using 2D data, J. Power Sources 482
(2021), https://doi.org/10.1016/j.jpowsour.2020.228894.

S. Zhou, P.R. Shearing, D.J.L. Brett, R. Jervis, Machine learning as an online
diagnostic tool for proton exchange membrane fuel cells, Curr. Opin. Electrochem.
31 (2022), https://doi.org/10.1016/j.coelec.2021.100867.

A. Julie, Y.S. Nadia, M. Simon, Z. Noureddine, V.D.L. Fabian, H. Daniel, Fuel Cell
prognosis using particle filter: application to the automotive sector, in: IEEE
International Symposium on Industrial Electronics, 2022, vol. 2022-June,

pp. 360-365, https://doi.org/10.1109/ISIE51582.2022.9831770.

S. Khan, T. Yairi, A review on the application of deep learning in system health
management, Mech. Syst. Signal Process. 107 (Jul. 2018) 241-265, https://doi.
org/10.1016/J.YMSSP.2017.11.024.

X. Gu, Z. Hou, J. Cai, Data-based flooding fault diagnosis of proton exchange
membrane fuel cell systems using LSTM networks, Energy Al 4 (2021), https://doi.
org/10.1016/j.egyai.2021.100056.

S. Zhou, Y. Lu, D. Bao, K. Wang, J. Shan, Z. Hou, Real-time data-driven fault
diagnosis of proton exchange membrane fuel cell system based on binary encoding
convolutional neural network, Int. J. Hydrogen Energy 47 (20) (2022)
10976-10989, https://doi.org/10.1016/j.ijhydene.2022.01.145.

F. Xiao, T. Chen, J. Zhang, S. Zhang, Water management fault diagnosis for proton-
exchange membrane fuel cells based on deep learning methods, Int. J. Hydrogen
Energy 48 (72) (Aug. 2023) 28163-28173, https://doi.org/10.1016/J.
IJHYDENE.2023.03.097.

11

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Journal of Power Sources 626 (2025) 235696

J. Liu, Q. Li, H. Yang, Y. Han, S. Jiang, W. Chen, Sequence Fault diagnosis for
PEMFC water management subsystem using deep learning with t-SNE, IEEE Access
7 (2019) 92009-92019, https://doi.org/10.1109/ACCESS.2019.2927092.

K. Kim, et al., Pre-diagnosis of flooding and drying in proton exchange membrane
fuel cells by bagging ensemble deep learning models using long short-term memory
and convolutional neural networks, Energy 266 (2023), https://doi.org/10.1016/j.
energy.2022.126441.

Z. Tang, et al., Recent progress in the use of electrochemical impedance
spectroscopy for the measurement, monitoring, diagnosis and optimization of
proton exchange membrane fuel cell performance, J. Power Sources 468 (2020),
https://doi.org/10.1016/j.jpowsour.2020.228361.

C. Robin, M. Gerard, J. D’Arbigny, P. Schott, L. Jabbour, Y. Bultel, Development
and experimental validation of a PEM fuel cell 2D-model to study heterogeneities
effects along large-area cell surface, Int. J. Hydrogen Energy 40 (32) (2015)
10211-10230, https://doi.org/10.1016/j.ijhydene.2015.05.178.

H. Yuan, H. Dai, X. Wei, P. Ming, Model-based observers for internal states
estimation and control of proton exchange membrane fuel cell system: a review,
J. Power Sources 468 (2020), https://doi.org/10.1016/j.jpowsour.2020.228376.
J. Aubry, N.Y. Steiner, S. Morando, N. Zerhouni, D. Hissel, Fuel cell diagnosis
methods for embedded automotive applications, Energy Rep. 8 (2022) 6687-6706,
https://doi.org/10.1016/j.egyr.2022.05.036.

A. Jacome, D. Hissel, V. Heiries, M. Gerard, S. Rosini, Prognostic methods for
proton exchange membrane fuel cell under automotive load cycling: a review, IET
Electr. Syst. Transp. 10 (4) (2020) 369-375, https://doi.org/10.1049/iet-
est.2020.0045.

F. Peng, L. Ren, Y. Zhao, L. Li, Hybrid dynamic modeling-based membrane
hydration analysis for the commercial high-power integrated PEMFC systems
considering water transport equivalent, Energy Convers. Manag. 205 (2020),
https://doi.org/10.1016/j.enconman.2019.112385.

G. Jullian, Diagnostic robuste de la pile & combustible PEM par modélisation
physique et mesures d’impédance: prise en compte de conditions dynamiques et du
vieillissement, Université Grenoble Alpes, 2016.

Q. Xue, Z. Shan, J. Wang, Humidity impact on polarization dynamics in polymer
electrolyte membrane fuel cells through distribution of relaxation times analysis,
J. Power Sources 609 (2024), https://doi.org/10.1016/j.jpowsour.2024.234655.
H.-P. Nguyen, J. Liu, E. Zio, A long-term prediction approach based on long short-
term memory neural networks with automatic parameter optimization by Tree-
structured Parzen Estimator and applied to time-series data of NPP steam
generators, Appl. Soft Comput. J. 89 (2020), https://doi.org/10.1016/j.
asoc.2020.106116.

Y. Yu, X. Si, C. Hu, J. Zhang, A review of recurrent neural networks: Istm cells and
network architectures, Neural Comput. 31 (7) (2019) 1235-1270, https://doi.org/
10.1162/neco_a_01199.

Z. Li, R. Outbib, S. Giurgea, D. Hissel, Fault diagnosis for PEMFC systems in
consideration of dynamic behaviors and spatial inhomogeneity, IEEE Trans. Energy
Convers. 34 (1) (2019) 3-11, https://doi.org/10.1109/TEC.2018.2824902.

F. Jia, X. Tian, F. Liu, J. Ye, C. Yang, Oxidant starvation under various operating
conditions on local and transient performance of proton exchange membrane fuel
cells, Appl. Energy 331 (2023), https://doi.org/10.1016/j.apenergy.2022.120412.
E. Pahon, N. Yousfi Steiner, S. Jemei, D. Hissel, P. Mocoteguy, A signal-based
method for fast PEMFC diagnosis, Appl. Energy 165 (Mar. 2016) 748-758, https://
doi.org/10.1016/J.APENERGY.2015.12.084.

A. Mohammadi, A. Djerdir, N. Yousfi Steiner, D. Khaburi, Advanced diagnosis
based on temperature and current density distributions in a single PEMFC, Int. J.
Hydrogen Energy 40 (45) (2015) 15845-15855, https://doi.org/10.1016/j.
ijhydene.2015.04.157.

M. Chandesris, V. Médeau, N. Guillet, S. Chelghoum, D. Thoby, F. Fouda-Onana,
Membrane degradation in PEM water electrolyzer: numerical modeling and
experimental evidence of the influence of temperature and current density, Int. J.
Hydrogen Energy 40 (45) (2015) 1353-1366, https://doi.org/10.1016/j.
ijhydene.2014.11.111.



https://doi.org/10.1016/j.jpowsour.2019.05.028
https://doi.org/10.1016/j.jpowsour.2019.05.028
https://doi.org/10.1016/j.jpowsour.2022.231582
https://doi.org/10.1016/j.jpowsour.2022.231582
https://doi.org/10.1109/VPPC.2017.8331040
https://doi.org/10.1016/j.jpowsour.2018.10.012
https://doi.org/10.1016/j.jpowsour.2018.10.012
https://doi.org/10.1016/j.jpowsour.2024.234179
https://doi.org/10.1016/j.jpowsour.2024.234420
https://doi.org/10.1016/j.ijhydene.2016.11.043
https://doi.org/10.1016/J.APENERGY.2015.11.060
https://doi.org/10.1016/J.APENERGY.2015.11.060
https://doi.org/10.1109/TIE.2015.2418324
https://doi.org/10.1109/TIE.2015.2418324
https://doi.org/10.1016/j.ijhydene.2019.10.127
http://refhub.elsevier.com/S0378-7753(24)01648-3/sref29
http://refhub.elsevier.com/S0378-7753(24)01648-3/sref29
http://refhub.elsevier.com/S0378-7753(24)01648-3/sref29
https://doi.org/10.1016/j.jpowsour.2020.228894
https://doi.org/10.1016/j.coelec.2021.100867
https://doi.org/10.1109/ISIE51582.2022.9831770
https://doi.org/10.1016/J.YMSSP.2017.11.024
https://doi.org/10.1016/J.YMSSP.2017.11.024
https://doi.org/10.1016/j.egyai.2021.100056
https://doi.org/10.1016/j.egyai.2021.100056
https://doi.org/10.1016/j.ijhydene.2022.01.145
https://doi.org/10.1016/J.IJHYDENE.2023.03.097
https://doi.org/10.1016/J.IJHYDENE.2023.03.097
https://doi.org/10.1109/ACCESS.2019.2927092
https://doi.org/10.1016/j.energy.2022.126441
https://doi.org/10.1016/j.energy.2022.126441
https://doi.org/10.1016/j.jpowsour.2020.228361
https://doi.org/10.1016/j.ijhydene.2015.05.178
https://doi.org/10.1016/j.jpowsour.2020.228376
https://doi.org/10.1016/j.egyr.2022.05.036
https://doi.org/10.1049/iet-est.2020.0045
https://doi.org/10.1049/iet-est.2020.0045
https://doi.org/10.1016/j.enconman.2019.112385
http://refhub.elsevier.com/S0378-7753(24)01648-3/sref45
http://refhub.elsevier.com/S0378-7753(24)01648-3/sref45
http://refhub.elsevier.com/S0378-7753(24)01648-3/sref45
https://doi.org/10.1016/j.jpowsour.2024.234655
https://doi.org/10.1016/j.asoc.2020.106116
https://doi.org/10.1016/j.asoc.2020.106116
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1109/TEC.2018.2824902
https://doi.org/10.1016/j.apenergy.2022.120412
https://doi.org/10.1016/J.APENERGY.2015.12.084
https://doi.org/10.1016/J.APENERGY.2015.12.084
https://doi.org/10.1016/j.ijhydene.2015.04.157
https://doi.org/10.1016/j.ijhydene.2015.04.157
https://doi.org/10.1016/j.ijhydene.2014.11.111
https://doi.org/10.1016/j.ijhydene.2014.11.111

	Physics-guided fault diagnosis method for proton exchange membrane fuel cells based on LSTM neural network
	1 Introduction
	2 PEMFC stack system and physics-based model description
	2.1 PEMFC stack technology
	2.2 PEMFC physics-based model
	2.2.1 Model description
	2.2.2 Model calibration

	2.3 PEMFC faults description

	3 Fault diagnosis method
	3.1 LSTM neural network
	3.2 Physics-guided LSTM method
	3.3 Diagnostic features

	4 Experiment description
	4.1 Data description
	4.2 Model calibration and validation
	4.3 Proposed algorithms architecture
	4.4 Data preprocessing
	4.5 Performance evaluation metrics

	5 Results and discussion
	5.1 Case study 1: validation of the methodology on the initial phase of stack operation
	5.2 Case study 2: validation of the methodology on the entire dataset, with the aging effect
	5.3 Case study 3: assessment of the robustness of the methodology with unseen aging data
	5.4 Discussion

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	datalink4
	References


