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Abstract— In this paper, a pragmatic semantic communica-
tion framework that enables effective goal-oriented information
sharing between two-intelligent agents is proposed. In particular,
semantics is defined as the causal state that encapsulates the fun-
damental causal relationships and dependencies among different
features extracted from data. The proposed framework leverages
the emerging concept in machine learning (ML) called theory
of mind (ToM). It employs a dynamic two-level (wireless and
semantic) feedback mechanism to continuously fine-tune neural
network components at the transmitter. Thanks to the ToM, the
transmitter mimics the actual mental state of the receiver’s rea-
soning neural network operating semantic interpretation. Then,
the estimated mental state at the receiver is dynamically updated
thanks to the proposed dynamic two-level feedback mechanism.
At the lower level, conventional channel quality metrics are
used to optimize the channel encoding process based on the
wireless communication channel’s quality, ensuring an efficient
mapping of semantic representations to a finite constellation.
Additionally, a semantic feedback level is introduced, providing
information on the receiver’s perceived semantic effectiveness
with minimal overhead. Numerical evaluations demonstrate the
framework’s ability to achieve efficient communication with a
reduced amount of bits while maintaining the same semantics,
outperforming conventional systems that do not exploit the ToM-
based reasoning.

I. INTRODUCTION

Future 6G wireless systems will transmit and process large
volume of data potentially under stringent requirements of
ultra-low latency, ultra-reliability and high throughput, to
support new connected intelligence (CI) applications such as
haptics, brain-computer interaction, flying vehicles, extended
reality (XR), and the metaverse [1]. 6G systems could transmit
only essential information relevant to the end-user to meet this
need for high-rate, high-reliability, and time-criticality for the
aforementioned CI applications, . This concept forms the basis
of semantic communication (SC) systems [2]–[4].

Despite a recent surge in SC research [5], [6], focus has
been mainly on potential SC gains assuming an error-free
SC channel. Nevertheless, no channel is error-free. With SC,
the communication channel has two components: wireless and
semantic. One critical challenge that often goes unnoticed is
the need to dynamically adapt transmission strategies at the se-
mantic level based on end-to-end performance. The evaluation
of errors at the semantic channel was provided by [7] for the
first time, showing that the semantic channel’s quality critically
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impacts the overall communication performance. In wireless
communication, adaptive mechanisms adjust transceiver de-
sign based on estimated link quality for a trade-off between
robustness and efficiency. This paper asserts the need for
adaptive mechanisms at the semantic level as well [8]. This
requires at the system architecture level the introduction of
a semantic plane [9] where feedback information from the
semantic receiver to the semantic transmitter can be exchanged
over a dedicated plane. The adaptation of semantic encoder
and decoder should be driven by the receiver’s performance
in reconstructing semantic information, ensuring optimized
communication and improved overall system efficiency. By
addressing these challenges, we can pave the way for the
successful integration of SC systems into existing digital com-
munication infrastructure, with minimal changes to existing
layered architecture. However, many existing works [5]–[7] 1)
fix the parameters of transmitter and receiver neural network
(NN) components during offline training and, 2) NN’s param-
eters are jointly learned to minimize semantic reconstruction
errors. This approach is often adopted due to the increased
complexity and re-training overhead to update the parameters
via online learning. The training aims to minimize semantic
reconstruction errors while maximizing a performance tar-
get such as semantic compression gain. Nevertheless, such
approach to training does not guarantee expected semantic
reliability [10] in dynamic communication scenarios where
environment variations or task’s specifications changes may
occur. Herein, a key concern arises: how should the semantic
design components be adjusted to avoid or rectify errors at
the semantic level in subsequent transmissions if the receiver
cannot decode the information reliably? This question draws
parallels to the concept of automatic repeat request (ARQ)
used in traditional systems where a feedback control channel
is used to inform on the positive or negative acknowledgement
on received information. In an SC system, transmitters and
receivers must extract (at the transmitter) and interpret (at the
receiver) semantic messages based on different beliefs and
knowledge. Such mismatch on logic and reasoning states at
transmitter and receiver can cause critical errors, which most
of the time are undetected and thus systematically repeated.

We propose harnessing the idea of “theory of mind” (ToM)
[11] to tackle these challenges by operating before communi-
cation at the transmitter an estimate of the mental state of the
receiver (a priori knowledge and believes). Thanks to such a
pragmatic communication approach, we contribute to improv-
ing the overall SC communication accuracy, reliability, and
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reduction of needed communication and processing resources.

A. Contributions

Our framework considers the semantic information present
in the data to be the causal state extracted using graph NNs
(GNN) [12] from observed time series data at the transmitter.
We chose GNN since it provides a rigorous framework to
extract the causal relations present among the features in the
data as a directed acyclic graph. By leveraging ToM, we can
dynamically adapt the parameters of NNs based on feedback
measures of semantic effectiveness. This approach enables
effective semantic design component adjustment, improving
subsequent transmissions’ reliability and performance in SC
systems. Additionally, to accurately reason about other nodes,
we introduce a two-level feedback mechanism. The first level
involves a semantic level of feedback, enabling dynamic ad-
justments to the semantic representation component and causal
state extraction. The second level consists of conventional
channel quality feedback, used to optimize the design of the
constellation-constrained channel input. Finally, we demon-
strate via simulations the superior spectral efficiency of the
proposed ToM-based SC system compared to conventional
schemes such as repetition coding and HARQ applied to
SC systems. Additionally, we demonstrated that the proposed
SC system requires fewer redundant semantic symbols to
be transmitted in order to achieve close to perfect semantic
reliability. This is in contrast to the state-of-the-art systems
that do not employ ToM reasoning.

II. SYSTEM MODEL

We consider the SC system shown in Fig. 1. In this
system, a transmitter has access to a sequence of observations
represented as a time series data, where each N−dimensional
vector of observations ot belongs to a set O. The transmitter’s
goal is to transmit a concise description, zt, of the data ot that
can be efficiently interpreted at the receiver. This description
captures the semantic information of the data, including the
intrinsic causal relationships [2]. The receiver aims to use the
reconstructed received messages ẑt to perform a set of actions
at ∈ A, sampled using the distribution π(at | ẑt). Contrary
to previous works [5], we constrain the channel input to a
finite constellation. As such, the channel inputs ut are selected
from a digital modulation scheme of order M , where the
constellation symbols are represented by M = {c1, · · · , cM}.
Consequently, the channel input ut is a digital sequence
of varying dimension (that gets learned), with each element
drawn from the constellation symbols M. Hence, we refer to
this sequence as a constellation symbol sequence.

The primary innovation that distinguishes this paper from
the state-of-the-art [5]–[7] is the incorporation of receiver
feedback, denoted as dt ∈ D (a scalar value), through a
feedback channel called the “semantic plane.” The set D
here represents the semantic effectiveness measure. Semantic
effectiveness captures the accuracy of the actions performed
at the receiver using the reconstructed semantic state ẑt. In
particular, to capture the semantic effectiveness, we introduce

the metric Ct, which captures the causal impact of the trans-
mitted message (via the receiver’s actions) as observed through
a channel with a response characterized using p(yt | ut)
(this distribution could capture the fading and interference in
the wireless environment). In other words, Ct measures the
semantic effectiveness (inversely proportional to Ct) of the
transmitted message to the end-user and is written as (1),
where KLD(p || q) represents the KL divergence between
p and q. Hence, the feedback dt gives the transmitter an
indication of whether those are accurate in terms of achieving
the system’s long term goal. The transmitter can adjust its
transmission strategy and update its causal reasoning compo-
nents by using the feedback received through the semantic
plane. This dynamic nature of our proposed method ensures
that the NN components are continuously updated based on
the real-time feedback from the receiver. As a result, the
system can adapt and optimize its performance dynamically
during communication, leading to more efficient and effective
semantic communication. We also consider a second level of
feedback through classical measures like the signal-to-noise-
ratio (SNR) or the channel quality indicator (CQI) measure,
defined as pt, which gets used by the channel encoder to
dynamically adjust its constellation sequence.

As an illustrative example of the proposed system, we
consider a variant of the problem of rendezvous between two
robots exploring an unknown environment [13]. That is, how
can two autonomous exploring agents that can communicate
with one another over long distances meet if they start ex-
ploring at different locations in an unknown environment. The
intended application is collaborative map exploration. Herein,
we can consider the case in which only one of the robot, say A
has the necessary sensing modalities to detect the landmarks
near it. Robot A communicates this information to robot B,
which receives it over a wireless channel. Moreover, utilizing
the extracted information, B attempts to make additional
movements along the trail and feedback its actions back to
robot A. Next, we define the causal generative model that
describes the data generation and transmission signal.
A. Causal discovery model

The causal relationships present within the source data can
be represented as a causal graph, and the process of learning
this graph is referred to as the causal discovery problem [14].
In a complex environment with high-dimensional observations,
such as images or video, learning a compact latent state space
that captures the causal dynamics of the environment has
been shown to be more computationally efficient than learning
predictions directly in the observation space [15]. This latent
space, denoted st is the semantic representation here. The
generative model for a dataset of observations and transmitter
actions (ut), represented as (o0:T ,u0:T ), can be formulated
as follows (θ is the set of the NN parameters):

p(o0:T ,u0:T ) =

∫ ∏
t

pθ(o
t | zt)pθ(z

t | zt−1, dt−1)

πθ(s
t | zt)dπθ(u

t | zt, pt−1)dz0:T ds0:T ,
(2)
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Fig. 1: Proposed system model.

Ct(s
t, ŝt) = KLD

(
π(at | zt) ||

∑
yt,ut,ŝt

p(yt | ut)p(ŝt | yt)p(ẑt | st)π(at | ẑt)

)
. (1)

where pθ(o
t | zt) and pθ(z

t | zt−1, dt−1) are the observation
model and the causal transition model, respectively. The causal
structure zt is represented as a sequence of entities (scalar
variables present in ot) and their relations. While extracting
the causal structure, any variables in ot that remain uncon-
nected in the graph can be considered irrelevant and will not
be transmitted. As mentioned in previous studies [10], [16],
acquiring causal representations can result in AI solutions that
exhibit distribution invariance, enabling adaptability across
various interventional distributions. In this paper, we opted
not to delve into discussions about interventions as they have
already been addressed in our previous work [10]. From SC
perspective, this implies constructing solutions with reduced
training overhead, leading to improved real-time decision-
making capabilities compared to data-intensive AI approaches.
It is important to note that none of the factors in equation (2)
are known and must be learned from the data. The feedback
of the receiver actions dt is reflected in the transmitter policy
πθ(s

t | zt) that chooses the transmitted semantic represen-
tation, at time t. The design of the representation st relies
on the specific semantic information intended to be conveyed,
which, in turn, is influenced by the receiver’s actions. Hence,
we next define the semantic information St, essential for the
subsequent problem formulations.

B. Semantic information measure

Using the novel semantic information measures in [10], we
directly obtain the transmitted and received semantic informa-
tion as follows. We omit the time superscript for convenience.

Lemma 1. The semantic information conveyed by any causal
state z ∈ C1 can be written as the average across the
information carried by the possible actions (a) that follow
from z. Further, mathematically, we can write the semantic
information conveyed by z as

S(z) =
∑
a∈A

π(a | z) log π(a | z)
π(a)

= KL(π(a | z) || π(a)).

(3)

Leveraging [10, Corollary 1], we obtain the average seman-
tic information extracted by the receiver as (5). Zẑtzt

is the
semantic similarity between the transmitted and reconstructed
causal states, which is defined in [10, Corollary 1].
C. Semantic reliability

Semantic reliability is quantified by the expression,
p (Et (z

t, ẑt) < δ) ≥ 1 − ϵ, where Et(z
t, ẑt) = ∥zt − ẑt∥2

represents semantic distortion and ϵ is arbitrarily small. This
definition follows our previous works [10], [16]. This metric
reflects the receiver’s ability to reliably reconstruct all the
causal aspects in the decoded causal structure. Unlike classical
reliability measures, in semantics, we can recover the actual
meaning of transmitted messages even with a higher bit error
rate (BER), as long as the semantic distortion remains within
the set limit. This is illustrated by the choice of δ here,
which depends on the concept of semantic space. The semantic
space K is defined as an N -dimensional topological ball
centered at the actual state zt, where all points inside the ball
corresponding to the same semantic information. Formally, we
can express this as Et(z

t, ẑt) ≤ δ such that Iϕ(zt) = Iϕ(ẑt),
where Et is the topological distance between states zt and ẑt,
δ is the radius of the topological ball, and Iϕ is a mapping
function that maps states to their corresponding semantic
information.

Having defined the necessary metrics, we next formulate
the problem for the transmitter and receiver components in
our SC system.

III. THEORY OF MIND BASED SC DESIGN

Here, we first discuss the causal discovery component at the
transmit side, that represents the mapping from ot to zt.

A. Causal discovery at the transmitter
The fundamental assumption underlying causal discovery

here is that there exists a fixed function g that characterizes the
dynamics of all samples ot ∈ O, given their past observations
up to time t and the underlying causal graph G. This can be
written using the Granger causality concept [17] as follows:

ot+1 = g(o≤t,G) + nt+1. (6)



Eut [Sr,t(ẑk,t;uk,t | lk,t, [ẑk,t−1], πl,t)] = (4)∑
ut,yk,t

π (uk,t | [zt])S(zt | [zt−1])p(yt | ut)

∑
ẑt

πzt log
πzt

π(ẑt | ẑt−1])
Zẑtzt

 . (5)

In this data-generating process, we model two variables:
the causal graph G, and the dynamics g, which are shared
across all samples. By separating the causal graph from the
dynamics, we can design our model accordingly. Specifically,
we introduce a causal discovery encoder fθ, which learns to
infer the causal graph G given the sample ot. θ represents
the NN parameters. Additionally, we introduce a dynamics
decoder gθ that learns to approximate the dynamics g. This
division of the model allows us to effectively capture the
relationship between the causal graph and the shared dynamics
within the data.

1) Problem formulation: To approach the problem of causal
discovery, we adopt a probabilistic framework and model the
functions fθ and gθ using variational inference. We choose the
encoder fθ by incorporating an encoding function qθ(z | o),
which produces a distribution over z that represents the
predicted edges EEnc in the causal graph. Simultaneously, we
train a decoder pθ(o | z) that probabilistically captures the
dynamics of the time-series based on the predicted causal
relationships.

In our framework, we select the negative log-likelihood
as the loss function Vf for the decoder. Additionally, we
incorporate a regularizer that measures the Kullback-Leibler
divergence (KLD) to a prior distribution over G. This regular-
izer encourages the model to learn causal structures consistent
with our prior knowledge. Overall, our loss function Vf

represents a variational lower bound [18]:

Vf = Eqϕ(z|o) log pθ(o | z)− KL(qϕ(z | x) || p(z)). (7)

Further, we formally write the causal discovery problem as
(with variables x∗ representing the optimized quantities):

[G∗, z∗t ] = argmin
G

−Vf . (8)

2) Causal discovery solution: To optimize (7), The encoder
qθ(z | o) is designed as a GNN [12], denoted as fenc,θ.
The output zij of the encoder represents the predicted edges
Eenc in the causal graph G. The decoder pθ(o | z) captures
the dynamics of the time-series data based on the predicted
causal relations. It takes into account both the predicted causal
relations zij and ot as its input. First, it propagates information
along the predicted edges by applying a NN fe, and compute
ht
ij =

∑
e>0

zij,efe([o
t
i, o

t
j ]). Then, the decoder accumulates the

incoming messages to each node and applies a NN fv to
predict the change between the current and the next time-step:

µt+1
j = otj + fv(

∑
i ̸=j h

t
ijo

t
j)

pθ(o
t+1
j | ot, z) = N (µt+1

j , σ2).
(9)

Having discussed the causal discovery problem, we next move
on to computing the semantic representation st.

Fig. 2: A semantic decoder function maps points in C1×C2 to C1×C2

via L (the semantic language), where fe is the encoder function and
fd the decoder function.

B. Theory of mind based semantic representation
Communication is successful when the concept defined as

zt ∈ C1 is perceived correctly by the receiver. This means
that the extracted causal state at the receiver, ẑt ∈ C2 is such
that it belongs to the semantic space (defined as the Euclidean
space over which the semantic information conveyed by ẑ
is the same within a ball of radius δ) [10]. Ci represents
the conceptual space that includes the set of all possible
meanings or structure present in the data [19]. The decoded
state description at the listener, constrained to a semantic
message space (represented as Szt corresponding to message
zt), can convey the same semantic content (defined Szt ). As a
result, they are considered semantically similar. Hence, we can
achieve the same semantic reliability. This semantic message
space corresponding to ẑt can be described as

E(zt, ẑt) ≤ δ, s.t. E(St, Ŝt) = 0, (10)
where E(x, x̂) = ∥x− x̂∥2. St denotes the semantic in-
formation conveyed by zt. From an SC point of view (see
Fig. 2), the aim is to ensure that the pair of state descriptions
(zt, ẑt) ∈ C1 × C2 satisfy the following conditions that
represent a meeting of minds between transmitter and receiver,

L(zt, ẑt) = (zt, ẑt). (11)

The language represented by L is a cascade of two functions,
L = fd ◦ fe, where 1) the encoder function fe defined as
st ∗ = argmax

st

πθ(s
t | zt, dt−1), and 2) the decoder function

fd defined as ẑt ∗ = argmax
zt

pϕ(z
t | ŝt). Further, we make

the following assumption on the transmitted symbol.

Assumption 1. For every state description zt, extracted at
time t, only one semantic symbol vector st is computed.
Further, the feedback (dt) about the actions executed at the
receiver decide the future semantic states to be transmitted
(indirectly represent retransmissions at the semantic level).

The semantic level of feedback dt serves as an indicator
of the system’s overall performance, encompassing end-to-
end aspects. By incorporating the semantic level of feedback,



the requirement for multiple layers of feedback found in
conventional digital communication systems can be mitigated,
reducing control information overhead.

1) Problem formulation at the transmitter: Given the causal
state zt, we further discuss how to compute the mapping
from zt to the semantic symbol st. Here, we assume that
transmitter states can be decomposed into physical states and
private receiver states, namely, Z̃s = C1×Ωr, where C1 is the
transmitter state space (zt belongs here), Ωr is the receiver’s
NN parameter space. Each element part of Ωr is denoted
as ωr,i. For transmitter, it performs according to its value
function, Qs : Z̃s ×As → R, where As represents the action
space (the semantic symbol set for transmitter). We can define
the value of a state as V π(st) = Est,dt+1,···

∑
t
γtr(dt, st),

where dt = 1
1+Ct(st,ŝt) , and r(dt, st) is the reward obtained

upon performing the control actions at by the receiver. Here,
the semantic effectiveness measure fed back from the re-
ceiver represents the state transitions akin to reinforcement
learning (RL). Further, we can also define the Q-function
as Qs(d

t, st) = r(dt, st) + γEdt+1∼p(dt+1|dt,st)

[
V π(st+1)

]
.

We define τs as transmitter’s observation and action history
{d0, s0, · · · , dt, st}. The transmitter estimates a belief about
the receiver’s knowledge of the transmitted message (obtained
through the respective NN parameters) and their private states.
The transmitter must maintain a belief about the private
state of receiver, denoted as bts(ωr,i). The transmitter policy
averaged over the receiver’s belief distribution will be:

πs(s
t | zt,ωt

s, τ
t
s) =

e

(
β

∑
ωr,i∈Ωr

bts(ωr,i|τt
s)Qs(s

t,ωs,ωr,i)

)

∑
st ′∈St

e

(
β

∑
ωr,i∈Ωr

bts(ωr,i|τt
s)Qs(st,ωs,ωr,i)

) ,

(12)
where ωs represents the NN parameters of transmitter. The
next challenge lies in how the transmitter can maintain its be-
lief given its observation history. We can utilize counterfactual
reasoning in our belief update function [20]. The transmitter
traverses all possible private states ωr and estimates how likely
the actions it observed are taken given a specific set of private
agent states are the correct one. Then, it updates its belief
using Bayesian rule:

bts(ωr,i | τ ts) = P (ωr,i | τ ts ,at) ∝ π̂r(a
t | st,ωr,i)b

t−1
s (ωr,i),

(13)
where π̂r is transmitter’s estimation of receiver policy, learned
in centralized training. As per Assumption 1, the transmit-
ter utilizes the fed back actions at (denoted dt) from the
receiver to compute (13). To complete the ToM framework,
the transmitter must maintain a belief about the receiver’s
private states, and conversely, the receiver must also estimate
the transmitter’s state. This is because maintaining accurate
beliefs about each other’s private states is crucial for effective
coordination among agents. Utilizing the obverter technique
[20], we let the transmitter holds a belief b̂r as the estima-

tion of receiver’s belief about ωs (representing transmitter’s
NN parameters). All we need is a belief update function,
fr : ∆(Ωs)×As × Z̃s → ∆(Ωs), where ∆(Ωs) represents a
distribution. Belief update function fr takes in the old belief,
transmitter’s action, the physical state and returns a new belief
as its new estimation of receiver’s belief over ωs. The ability
to correctly infer receiver’s private states from their actions
and predict others belief about oneself introduces ToM into
our agents. Given the semantic representation st, which is
a continuous signal, mapping to the nearest element in the
constellation Mt can be computed using a scheme discussed
in [21] and is beyond the scope of this paper.

2) Problem formulation for ToM based receiver design:
The generative model of the observations and actions sequence
at the receiver side can be written as follows:

p(ŝ0:T ,a0:T ) =∫ ∏
t
pθ(ŝ

t | ut)pθ(z
t | zt−1, ŝt)πθ(a

t | zt)dz0:T , (14)

where we split the observation model, pθ(ŝ
t | ut) =∫

st,zt pθ(y
t | ut)pθ(u

t | st)pθ(s
t | zt)pθ(s

t | zt)dsdz.
In other words, receiver also learn the transmitter semantic
encoder pθ(s

t | zt), the channel model pθ(yt | ut) and the
channel encoder pθ(u

t | st). Here one can ask: how does
receiver obtain the true transmit signal ut to learn channel
distribution? We propose that the receiver also have a trans-
mitter model (including the semantic and channel encoders)
that generates the transmit signal ut. Hence, it is essential the
receiver’s NN model matches accurately with the transmitter
model, if the receiver design can correct the errors in the
channel and lead to higher semantic reliability.

Assume that, for every semantic state description, there is
an optimal action distribution (receiver policy) from which the
actions are sampled. This is represented as π∗θ(a

t | ẑt), which
represents the implicit semantics that entails from the state
description zt. The cross entropy loss for the pair (zt, ẑt) by
using any policy πθ at the receiver can be written as:

LCE(t) = −
∑
at

π∗θ log πθ (15)

Minimizing LCE is equivalent to minimizing the KLD be-
tween πθ∗ and πθ. Here, at the receiver, we assume that,
it is aware of the optimal π∗θ(a

t | zt), which is computed
using the transmitter model available at its end. The average
cross-entropy loss, which can be interpreted as the semantic
effectiveness measure can be written as:

L̄CE(t) = −
∑
zt,ẑt

∑
at

p(zt, ẑt)KLD(π∗θ || πθ), (16)

where p(zt, ẑt) = p(zt)p(ẑt | zt) = p(zt)
∫
p(ẑt |

ŝt, [ẑt−1])p(ŝt | ut)dsdu.
Now, we have the necessary ingredients to formulate the

problem at the receiver side, which can be written as:

p(zt | ŝt)∗ =argmax
p(zt|ŝt)

L̄CE(t)

s.t. p
(
Et

(
zt, ẑt

)
< δ
)
≥ 1− ϵ.

(17)



Algorithm 1 Proposed Solution for Adaptive ToM Collabora-
tion Emergence
Given: Randomly initialize θi, θ̂i, ηQ, ηπ, ηf , i ∈ {1, · · · , N}.
Learning rate η, Batch size B

1: for each round do
2: for i ∈ {s, r} do
3: Initialize replay buffer D ← ∅
4: while train agent i do
5: repeat
6: Agents sample actions according to equation (12)
7: Agents update their beliefs
8: Agents update their estimation of partners’ beliefs
9: until game ends

10: Update D with new trajectory
11:
12: Sample B trajectories {(ω1:N , s0:T ,a0:T , r0:T )

13: y
t,(k)
i = r

t,(k)
i + γ maxs∈As Q

θ̂i
(s, dt+1,(k),ω(k), b̂)

14: LQ =
∑

t,k|Qθ̂i
(s, dt+1,(k),ω(k), b̂)− y

t,(k)
i |2.

15: Lπ =
∑

t,k H(π̂s(a
t | dt+1,(k),ω(k)), π̂s(a

t |))
16: Lf = KL(̂b−i || f−i (̂b−i, â−i))
17: θi ← θi −∇θi

(ηQLQ + ηπLπ + ηfLf )

18: Periodically update θ̂i ← θi for Q-learning
19: end while
20: end for
21: end for

Further, we obtain the augmented Lagrangian as follows:

P2 :
[
p(zt | ŝt)∗

]
= argmax

p(zt|ŝt)

L̄CE(t) + λ
(
p
(
Et

(
zt, ẑt

)
< δ
)
− (1− ϵ)

)
.

(18)
The Lagrangian in (18) represents the Q-function for the
receiver side ToM formulation.

3) ToM Solution using centralized training: The algorithm
details are provided in Algorithm 1. During centralized train-
ing, transmitter needs to learn three components, Qs, π̂r, fr.
Similarly, the receiver learns Qr, π̂s, fs. The ToM in Algo-
rithm. 1 involves three components and are inspired from the
NN architecture in [11]. Qθ̂i

is learned using deep Q-learning.
The belief network whose lose function is described as Lπ is
implemented as a gated recurrent NNs (GRNN) [22]. Percep-
tion network represented by b̂r(ωs,i) is also implemented as
GRNN.

C. Training
The NN training is jointly performed at the transmitter

and receiver using Algorithm 1. The transmitter is assumed
to be unaware of the channel information and receiver ac-
tion distribution. Despite the initial training overhead, the
effective throughput remains unaffected as the transmitter NN
model dynamically adjusts its parameters based on the two-
level feedback information from the receiver. This adaptive
approach ensures generalizability and practical feasibility of
the SC systems, outperforming state-of-the-art methods [5],
[6] in various wireless channel conditions and tasks.

IV. SIMULATION RESULTS

In this section, we comprehensively evaluate the pro-
posed ToM-based SC system, assessing its performance based
on metrics such as spectral efficiency, semantic reliability,
and ability to adapt quickly to changing tasks. We be-
gin with a dataset X = {xs}Ss=1 of S samples where
each sample xs consists of N stationary time-series xs =

{xs,1,xs,2, · · · ,xs,N} across time-steps t = {1, · · · , T}. This
dataset represent the states observed at the expert agent. We
denote the t-th time-step of the i-th time-series of xs as
xt
s,i ⊂ RD. We consider an SCM captured by an associ-

ated DAG G1:T
s = {V1:T

s , E1:T
s }. underlying the generative

process of each sample. The SCM’s endogenous (observed)
variables are vertices vts,i ∈ V1:T

s for each time-series i
and each time-step t. Every set of incoming edges to an
endogenous variable defines inputs to a deterministic function
gts,i which determines that variable’s value. Using GNN, our
learned NN is assumed to follow the generation of xt

s as
xt+1
s = gs(x

≤t
s ,Gs,θ,a

t) + vt+1
s . We selected a multi-

dimensional discrete Gaussian action distribution with its mean
value proportional to the number of parents of any entity part
of zt. This choice ensures that the vector of actions (with the
same dimension as zt) are derived directly from the causal
state rather than from the actual observations ot, which may
contain variables irrelevant to the receiver actions.

For the constellation, we used BPSK and the single antenna
channel between the nodes are chosen as CN (0, 1). The noise
variance is adjusted based on the received SNR value.

In Fig. 3, we validate the spectral efficiency of the proposed
ToM-based SC system and compare it with 1) SC without ToM
(our algorithm without the belief and perception components)
and conventional wireless schemes (without any causal state
extraction) with repetition coding scheme or HARQ schemes.
The figure shows that inducing ToM at the communicating
nodes provides better spectral efficiency at low to mid SNRs
where the channel errors are predominant. The saturated
values at high SNRs are also higher for SC schemes than
conventional wireless due to the transmission efficiency arising
from capturing semantics, resulting in a reduced number of
redundant bit transmissions.

In Figure 4, we demonstrate the superior performance of
our ToM method in terms of semantic reliability compared
to several benchmarks. These benchmarks include: 1) causal
reasoning-based SC without ToM [10], 2) imitation learning
based implicit reasoning based SC proposed in [23], and
classical AI-based wireless systems that do not extract causal
relations [24] and utilize deep joint-source channel coding
approach. The figure clearly illustrates that our proposed ToM
method can dynamically adapt to task changes, resulting in
higher semantic reliability than the other benchmark methods.

Figure. 5 illustrates that the proposed ToM-based SC system
dynamically adjusts its NN parameters with fewer commu-
nication samples, resulting in higher semantic effectiveness.
The action distribution changes around 3K samples, indicating
a task change. However, state-of-the-art SC systems that do
not incorporate ToM-based reasoning struggle when the task
changes.

V. CONCLUSION

In this paper, we have presented a new vision of semantic
communication systems that relies upon ToM as a machinery
to enable dynamic updates of the NN components at the
transmit and receive side. We have formulated a ToM based
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joint transmit and receive design to learn an optimal represen-
tation space for transmission and extracting the semantic state
description at the listener. The optimized AI components at
the transmit side herein can be dynamically fine-tuned using
the semantic level feedback from the receive side. The causal
discovery component at the transmitter is implemented using
the GNN and is learned as a directed acyclic graph. Simulation
results have demonstrated superiority of our proposed SC in
terms of improving the communication efficiency (minimal
transmission) and reliability compared to classical communi-
cation and state of the art semantic communication.
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Channel Coding for Wireless Image Transmission,” IEEE Transactions
on Cognitive Communications and Networking, vol. 5, no. 3, pp. 567–
579, 2019.


	Introduction
	Contributions

	System Model
	Causal discovery model
	Semantic information measure
	Semantic reliability

	Theory of Mind based SC Design
	Causal discovery at the transmitter
	Problem formulation
	Causal discovery solution

	Theory of mind based semantic representation
	Problem formulation at the transmitter
	Problem formulation for ToM based receiver design
	ToM Solution using centralized training

	Training

	Simulation Results
	Conclusion
	References

