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Discontinuous Computation Offloading for
Energy-Efficient Mobile Edge Computing
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Emilio Calvanese Strinati, Member, IEEE, Sergio Barbarossa, Fellow, IEEE

Abstract—We propose a novel strategy for energy-efficient dy-
namic computation offloading, in the context of edge-computing-
aided beyond 5G networks. The goal is to minimize the energy
consumption of the overall system, comprising multiple User
Equipment (UE), an access point (AP), and an edge server (ES),
under constraints on the end-to-end service delay and the packet
error rate performance over the wireless interface. To reduce the
energy consumption, we exploit low-power sleep operation modes
for the users, the AP and the ES, shifting the edge computing
paradigm from an always on to an always available architecture,
capable of guaranteeing an on-demand target service quality with
the minimum energy consumption. To this aim, we propose an
online algorithm for dynamic and optimal orchestration of radio
and computational resources called Discontinuous Computation
Offloading (DisCO). In such a framework, end-to-end delay
constraints translate into constraints on overall queueing delays,
including both the communication and the computation phases
of the offloading service. DisCO hinges on Lyapunov stochastic
optimization, does not require any prior knowledge on the
statistics of the offloading traffic or the radio channels, and
satisfies the long-term performance constraints imposed by the
users. Several numerical results illustrate the advantages of the
proposed method.

Index Terms—Edge Computing, Beyond 5G, Green Network-
ing, Computation Offloading, Energy Efficiency.

I. INTRODUCTION

With the advent of beyond 5G networks [1], [2], mo-
bile communication systems are evolving from a pure com-
munication framework to service enablers, building on the
tight integration of communication, computation, caching, and
control functionalities [3], [4]. Indeed, future networks will
serve a plethora of new applications, not only addressed
to mobile end users, but also for whole different sectors
(verticals), such as Industry 4.0, Internet of Things (IoT),
autonomous driving, remote surgery, Artificial Intelligence
(AI) etc. These new services have very different requirements
and they generally involve massive data processing within low
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end-to-end (E2E) delays (in the order of ms). Among several
technology enablers at different layers (e.g., AI, network
function virtualization, millimeter-wave communications), a
prominent role will be played by Edge Computing, whose aim
is to move cloud functionalities (e.g., computing and storage
resources) at the edge of the network, to avoid the relatively
long delays necessary to reach central clouds. Edge Computing
is also the object of an ETSI Industry Specification Group,
called Multi-Access Edge Computing (MEC) [5]. In 5G net-
works, MEC functionalities will be placed behind the User
Plane Function (UPF), thus in the core network or virtualized
locally at the Access Point (AP) [6]. MEC is foreseen to
enable several novel applications and use cases [7], relying on
the enhanced performance of new beyond 5G technologies,
due to the massive volume of data to be transferred within
low-latency and/or extremely high-reliability constraints [8].
Recent surveys on MEC are available in [9], [10].

In this paper, we focus on computation offloading services,
in which the execution of applications is transferred from
mobile devices (or sensors in IoT environments) to a nearby
edge server (ES) [10]. Computation offloading helps reducing
the User Equipment’s (UE) energy consumption and/or the
overall delay of the service. When an application is offloaded,
the overall service time is composed of the uplink transmission
time of input data, the processing time of this input at the
ES, and the time needed to send the results back to the
UE [11], [12]. In edge-computing-aided networks, a critical
aspect for real-life implementations is the limited energy made
available by the battery at the mobile device, the need for
frequent battery recharge, and the high energy consumption
of network elements, due to the dense deployment of APs and
ESs necessary to enable the described ecosystem. In traditional
mobile networks, a large portion of the power is consumed at
the AP site [13], [14]. With the deployment of ESs, the power
consumption will certainly increase, so that new methods are
essential to reduce the impact of the ICT industry on the
global carbon footprint [15]. In such a context, the main target
of our paper is the energy efficiency of the overall network,
comprising UE, AP, and ES.

II. RELATED WORK AND CONTRIBUTION

In the context of mobile networks, several works focus
on novel strategies to reduce system power consumption. In
general, it is well-known that a large portion of the power is
consumed by the AP only for being in active state (RF chains,
power amplifiers, cooling, etc.) [14]. Thus, most of the works

ar
X

iv
:2

00
8.

03
50

8v
3 

 [
ee

ss
.S

P]
  2

1 
D

ec
 2

02
1



2

in the literature propose strategies based on possible ON/OFF
behavior of the APs, known as Discontinuous Transmission
(DTX) [14], [16]–[21], by which some components of the AP
are put in low-power sleep states when possible, e.g., in case of
low traffic. In the context of edge computing and computation
offloading, there exists a wide literature [12], [22]–[31]. In
particular, [25] proposes a dynamic computation offloading
strategy, based on Lyapunov stochastic optimization, to reduce
a weighted sum of UE and ES power consumption. [26]
extends the strategy to a multi-server multi-cell scenario,
introducing average delay and reliability constraints on the
queue lengths. In [27], a joint dynamic computation offloading
strategy was proposed with reliability guarantees, incorpo-
rating ultra-reliable low-latency communications and energy
harvesting devices. All these works mainly focus on power
consumption at the UE and ignore the network. The authors
of [28] propose a dynamic strategy aimed at minimizing the
average power consumption of mobile devices, under a latency
constraint and a constraint on the ES average power consump-
tion, without considering the AP. In [29], an auction-based
incentive mechanism is proposed to maximize the revenue of
a mobile network operator under delay constraints. In [30],
the authors present a multi-objective approach to minimize
the execution delay, energy consumption, and monetary cost
of the smart devices with service rate constraints. The work in
[31] proposes a scheduling and resource provisioning strategy
to minimize edge nodes’ power consumption under delay and
resource constraints. Recent contributions consider the energy
consumption of both radio access and MEC network [32]–
[39]. In particular, in [32], a scheduling strategy is proposed
to find a trade-off between task completion ratio and through-
put, hinging on Lyapunov optimization, while [33] aims at
minimizing the long-term average delay under a long-term
average power consumption constraint. In [34], the long-term
average energy consumption of a MEC network is minimized
under a delay constraint, using a MEC sleep control. Also,
in [35] the problem is formulated as the minimization of the
energy consumption under a mean service delay constraint,
optimizing the number of active base stations and the compu-
tation resource allocation at the ES, while considering a sleep
mode for both APs and ESs. In [36], Lyapunov optimization
is used to reduce the energy consumption of a fog network
while guaranteeing an average response time. The authors of
[37] minimize the offloading service delay with Lyapunov
optimization under constraints on the user’s and edge nodes’
energy consumption. In [38], the authors exploit Lyapunov
optimization, Lagrange multiplier, and sub-gradient techniques
to optimize devices’ and APs’ energy consumption under delay
constraints, exploiting AP sleep states. The authors of [39]
propose a method to minimize a weighted sum of users and
MEC energy consumption under delay constraints, considering
a dedicated time for wireless charging.

Another class of recent works propose data-driven solu-
tions as, e.g., Deep Reinforcement Learning (DRL) [40]–
[43]. In [40], a decentralized approach based on DRL is
proposed to minimize a weighted sum of user local powers,
offloading powers, and buffering delays. In [41], the authors
solve the problem of computation offloading with a deep

Q-network aimed at minimizing the energy consumption of
MEC nodes and users under task delay constraints. DRL is
also exploited for content caching in [42], where the authors
aim at maximizing the content provider saving costs, with an
incentive mechanism used to motivate end nodes to participate
in the offloading process. In [43], DRL is used to minimize
a weighted sum of energy consumption and delay in an IoT
scenario. While [40]–[43] exploit pure data-driven solutions,
other recent results show the possibility of merging model-
based optimization with the power of data-driven optimization
[44]–[47]. The common point of all these works is the lack of
a holistic view of APs’ sleep control, radio resource allocation,
ESs’ sleep and CPU scheduling, and UE’s sleep control, under
E2E delay constraints, involving average and out-of-service
events, which is the goal of this paper. Our main challenge, not
addressed in the available literature, is to design a strategy able
to deal with complex time-varying scenarios with unknown
statistics and several discrete optimization variables, involving
heterogeneous entities (i.e. UE, APs and ESs), looking for
low-complexity solutions able to run online.

A. Our Contribution

In this paper, we extend and improve our preliminary results
of [48]. In contrast with the state of the art, we simultaneously
optimize the modulation and coding scheme selection and the
power of both the UE’s uplink and the AP’s downlink radio
transmission, the CPU frequency allocation at the ES, and
the duty cycles of all the network elements. We propose a
dynamic computation offloading strategy based on Lyapunov
stochastic optimization that minimizes the weighted sum of
UE’s, AP’s, and ES’s long-term average energy consumption,
under an average end-to-end delay constraint and a reliability
constraint. The latter is defined as the probability that the end-
to-end delay exceeds a prescribed threshold. These constraints
are handled through the definition of an uplink queue of
data to be offloaded by each UE, a computation queue at
the ES, and a downlink queue of results at the AP. These
constraints translate into a constraint on the average length of
the sum of the three queues and a probabilistic bound on the
maximum total queue length, as in [48]. However, differently
from [48], we introduce the sleep mode operation at the UE’s
side and an adaptive algorithm to translate the probabilistic
constraint on the queue lengths into a reliability constraint on
the actual end-to-end delay. Our proposed strategy does not
require any a priori knowledge of the statistics of the radio
channels or of the data arrivals. In particular, starting from a
non-convex non-differentiable long-term average optimization
problem with unknown statistics, we devise an algorithm that
solves a deterministic problem on a per-slot basis, yielding
an asymptotically optimal solution of the original problem (as
a consequence of Proposition 1, as explained in Section IV).
The proposed optimal solution of each deterministic problem
has very low computational complexity and can be found
via Algorithm 1, 2, and 3, presented in Section V. Several
numerical results show the performance of our strategy, also
compared with other methods, due to the fact that it takes into
account the whole network energy consumption, reducing that
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of all agents simultaneously, thus achieving a globally green
solution.

III. SYSTEM MODEL

To capture the dynamic aspects of the problem, we consider
time as organized in slots t = 1, 2, 3 . . . of equal duration τl.
In the following, we present: the UE’s, AP’s, and ES’s energy
consumption model; the queueing model used to handle the
delay constraints; the reliability performance over the radio
interface in terms of Packet Error Rate (PER).

A. Energy consumption model

Computation offloading generally entails three phases: an
uplink phase, where a UE sends data to the AP, a processing
phase at the ES, and a downlink phase for the transmission
of results to the UE [10], [12]. In our dynamic scenario, the
overall slot duration τl is divided into two portions: a period of
τs seconds dedicated to control signaling and transition among
sleep/active states, and a period of τ seconds for the actual
three phases of computation offloading. Indeed, we assume
that the AP, the ES, and the UE can enter low-power sleep
states for energy saving purposes during the slot fraction
reserved to offloading (not for the whole slot duration, due
to the need for control signaling and state transitions at each
time slot). When in sleep state, the AP and the UE cannot
receive nor transmit and the ES cannot process data, thus
consuming less power. Our goal is to optimize the long-term
fraction of time that the entities spend in sleep state with the
aim of minimizing the overall system energy consumption, but
guaranteeing a targeted Quality of Service (QoS) measured by
the overall delay of the computation offloading service. Since
at the beginning of every slot each network element must be
active, before the end of the slot all network elements wake
up (if they were sleeping), to be active at the beginning of the
next slot for control signaling. Thus, τs comprises a portion
at the beginning of the slot, devoted to control signaling and
eventual transition from active to sleep, and a portion at the
end of the slot, needed to wake up if in sleep state, to be
active for control signaling at the beginning of the next slot,
as depicted in the top right part of Fig. 1. Finally, the total
duration of a time slot is τl = τs + τ . It should be noted that,
when dimensioning τs, the transition time has to be taken
into account. Thus, in this paper, we exploit sleep operation
modes compatible with the slot duration from a transition time
point of view, as it will be clarified in the following sections.
The transition energy is neglected, as typically done in works
related to DTX [19]–[21], [34], [35], [38], [49]. However, our
model can be easily extended to take into account the transition
energy consumption, being just an additional term of power
consumed during a sleep phase.

1) AP’s Energy Consumption: Nowadays, around 80% of
the total power consumption of the wireless networks is
consumed at the AP [49], which consumes a considerable
fraction of its total power only for being in active state [13],
[49]. Let us denote by pon

a the overall power consumption
of the AP for being in active state. This parameter generally
includes the consumption of power amplifiers, power supply,

analog front-end, digital baseband, and digital control. In
active state, the AP can transmit and/or receive. Thus, we
denote by pd(t) the overall downlink transmit power. Let us
note that the AP can enter a low-power sleep mode to save
energy whenever possible, without compromising the QoS.
Obviously, the deeper the sleep mode, the higher the energy
saving, but also the higher the time needed to wake-up, i.e., the
minimum sleep period. In Section VI, we will present more
specific considerations on the sleep modes, active and sleep
power consumption of the AP, and transition times (e.g. from
sleep to active). To control the active and sleep state of the AP,
we introduce the binary variable Ia(t) ∈ {0, 1}, which equals
1 if and only if the AP is in active state at time slot t. In
each slot, the AP is forced to be active for the first portion of
τs seconds to perform Channel State Information acquisition
and control signaling. For simplicity, we neglect the transmit
power necessary for this reduced exchange of information,
thus taking into account only the active state power pon

a during
the signaling period. Then, the AP energy consumption at time
slot t is

Ea(t) = τ
(
Ia(t)

(
pon
a + pd(t)

)
+ (1− Ia(t))ps

a

)
+ τsp

on
a ,

(1)
where ps

a represents the (low) power consumed by the AP
in sleep mode. The power consumed in the receiver chain
is neglected, as it is typically much smaller than the other
contributions.

2) UE’s Energy Consumption: Going beyond [48], we
assume that all K UE can switch their radio equipment to
a low-power sleep mode whenever possible. In particular, we
assume that UE k (for k = 1, . . . ,K) consumes a generic
power pon

k only for being active. Also, we denote by puk(t) the
power necessary to transmit, assuming that it is a monotone
increasing function of the transmit power ptx

k (t). In Section VI,
we will be more specific with a model from the literature for
the typical values of pon

k , the function linking puk(t) and ptx
k (t),

and the transition times. Recalling that the UE is always active
at the beginning and the end of the slot for control signaling,
the total energy consumption of the UE is

Eu(t) =

K∑
k=1

[
τ (Ik(t) (pon

k + puk(t)) + (1− Ik(t))psk)

+ τsp
on
k

]
, (2)

where Ik(t) equals one if UE k is active in time slot t, and 0
otherwise.

3) ES’s Energy Consumption: As pointed out in [50], the
power management of a CPU is all about efficiently (and
dynamically) controlling both current and voltage in order
to minimize power while providing a desired performance.
Power-saving techniques can be divided into two main cate-
gories: turn it off and turn it down. The first one consists in
switching off some components of the CPU, which are then
put into low-power sleep states. In modern processors, there
exist several possible idle states, called C-states [50], which
allow the processor to enter more or less deep sleep modes.
Obviously, a deeper sleep mode provides higher energy sav-
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Fig. 1: Network model

ings, but requires more time to wake up. This defines a trade-
off between energy consumption and latency. Furthermore, C-
states can operate on each core separately or on the entire
CPU package [51].

In this paper, we adopt C-states operating on a specific core,
dedicated to treat the offloaded tasks of all the UE of our
system. In particular, we consider two states: the C0-state, in
which the CPU core is active and executing some thread, and
the Cx-state (x = 1, 2, . . .), in which the CPU clock frequency
is driven to zero. The transition time from Cx to C0 depends
on the specific choice of the Cx state. For instance, for C1-
state, it is in the order of µs [51]. In Section VI, we will present
more specific considerations on the choice of the Cx state,
based on the duration of the slot. In our model, the CPU core
consumes a power pon

m just for being in active state (C0-state)
and a power psm in sleep state (Cx-state). Moreover, when
the ES is active, the dynamic power spent for computation is
pcm(t) = κf3

c (t), where fc(t) is the CPU cycle frequency at
time slot t and κ is the effective switched capacitance of the
processor [52]. We suppose that it is possible to use dynamic
voltage frequency scaling to scale down the frequency [53],
thus reducing the dynamic power consumption. In particular,
we assume that fc can be selected from a finite set F =
{0, . . . , fmax} and we introduce the binary variable Im(t) ∈
{0, 1}, which equals 1 if and only if the ES is in active state.
Then, recalling that τl = τs + τ , the energy consumption in
each time slot is given by

Em(t) = τ (Im(t)pon
m + (1− Im(t))psm + pcm(t)) + τsp

on
m ,

(3)
where Im(t) = 1{fc(t)}, with 1{·} the indicator function;
note that pcm(t) = 0 whenever fc(t) = 0, because pcm(t) =
κf3

c (t). Then, from (1), (2), (3), the total energy consumption
in slot t is:

Etot(t) = Eu(t) + Em(t) + Ea(t). (4)

B. Delay and queueing model

Computation offloading involves three main steps: an uplink
transmission phase of input data from the UE; a computation
phase at the ES; a downlink transmission phase of results back
to the UE. We consider a dynamic scenario, in which new input
data units are continuously generated from an application at
the UE’s side and have to be offloaded and processed at the
ES. To model the system dynamics, we use a simple queueing
model, taking into account the three phases of computation
offloading. This model allows us to characterize the total delay
experienced by a data unit from its generation at the mobile
side until the reception of its corresponding result, sent by the
AP to the UE. In particular, the considered queueing model
is depicted in Fig. 1. Specifically, in Fig. 1, we can notice
three different queues: i) A local communication queue at each
device (red) of data buffered before uplink transmission; ii)
A remote computation queue at the ES (blue) of data buffered
before being processed; iii) A downlink communication queue
(green) of results buffered before being sent back to the
devices. Accordingly, each data unit experiences three different
delays: a communication delay, including buffering at the
UE; a computation delay, including buffering at the ES; a
communication delay, including buffering at the AP. As we
will show later, we take into account these three sources of
delay jointly, as in [27]. For the multiple access over the radio
channel, we consider a simple Frequency Division Multiple
Access, both for the uplink and the downlink.

1) Uplink communication queue: In uplink, allocating
bandwidth Buk to UE k, the symbol duration is T s,uk = 1

Bu
k

.
Since the time for data transmission is τ = τl − τs, under
the assumption of a perfect pulse shaping, UE k can transmit
Ns,u
k (t) =

⌊
τ

T s,u
k

⌋
= bτBuk (t)c symbols at time t. Assuming

that bits are encoded against radio channel noise into packets
of fixed length Nb bits, employing an M -QAM modulation,
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the number of packets transmittable at time t is given by:

Np,u
k (t) =

⌊
Ns,u
k (t) log2(Mu

k (t))Rc,uk (t)

Nb

⌋
(5)

where Mu
k (t) is the modulation order and Rc,uk (t) is the

channel coding rate. In particular, we assume that the up-
link Modulation and Coding Scheme (MCS) pair mu

k =
(Mu

k (t), Rc,uk (t)) is chosen from a discrete finite set Mu
k .

Also, we assume that a data unit has to be transferred in one
time slot, i.e., it cannot be split and partially transmitted over
different time slots. Thus, the number of data units that UE k
can send at time slot t over the radio interface is

Nu
k (t) =

⌊
Np,u
k (t)Nb
Sik

⌋
, (6)

where Sik is the size in bits of an input data unit. Then, the
local queue of input data units to be offloaded evolves as

Qlk(t+ 1) = max
(
0, Qlk(t)−Nu

k (t)
)

+Ak(t), (7)

where Ak(t) is the number of newly arrived data units gener-
ated by the application running at UE k; Ak(t) is modeled as
a random process whose statistics are not known a priori.

2) Remote computation queue: We assume that the number
of input data units processed by the ES to serve UE k
is proportional to the number of CPU cycles allocated for
this task. Given the computation rate fk(t) assigned to user
k, measured in CPU cycles per second, and defining the
coefficient Jk as the ratio between the number of processed
data and the number of CPU cycles, the number of data units
processed by the ES for UE k at time slot t is

N c
k(t) = bτfk(t)Jkc . (8)

Hence, the queue of data waiting for being processed by the
ES for UE k evolves as

Qmk (t+ 1) = max(0, Qmk (t)−N c
k(t)) + min(Qlk(t), Nu

k (t)).
(9)

3) Downlink communication queue: Finally, we define K
queues at the AP, containing the computation results to be
sent back to the UE. We assume that every processed input
data unit produces one output data unit, with size Sok possibly
different from Sik. The queue evolves as:

Qak(t+ 1) = max
(
0, Qak(t)−Nd

k (t)
)
+min(Qmk (t), N c

k(t)),
(10)

where Nd
k (t) is the number of output data units sent back to

user k in downlink, which is computed as

Nd
k (t) =

⌊
Np,d
k (t)Nb
Sok

⌋
, (11)

where Np,d
k (t) is the number of packets sent in downlink,

given similarly as in (5), using Bdk(t) for the bandwidth
assigned to UE k for downlink communication at time t.
Md
k (t) is the downlink M -QAM modulation order, and Rc,dk (t)

is the channel coding rate for downlink. As for the uplink, the
pair md

k =
(
Md
k (t), Rc,dk (t)

)
belongs to a discrete set Md

k.

4) End-to-end delay constraints: As already mentioned,
the overall delay experienced by a data unit is the time
elapsed from its generation at the mobile side, to the mo-
ment the user receives back the result associated with it.
By Little’s law [54], the average overall service delay is
proportional to the average queue length. Then, the over-
all delay is directly related to the sum of the uplink and
downlink communication queues and the computation queue
Qtot
k (t) = Qlk(t) +Qmk (t) +Qak(t). In particular, given a data

unit arrival rate Aavg
k = E {Ak(t)/τl}, the long-term average

end-to-end delay experienced by a data unit generated by UE
k is D̄∞k = limT→∞

1
T

∑T
t=1 E {Qtot

k (t)/Aavg
k }, where the

expectation is taken with respect to the random radio channel
and data arrival realizations. Our first aim is to guarantee a
constraint on the long-term average delay Davg

k , written as:

lim
T→∞

1

T

T∑
t=1

E
{
Qtot
k (t)

}
≤ Qavg

k = Davg
k Aavg

k , ∀k. (12)

As a second objective, we want to ensure a long-term proba-
bilistic constraint on the E2E delay experienced by data units:

lim
T→∞

1

T

T∑
t=1

Pr {Dk(t) > Dmax
k } ≤ εk, ∀k, (13)

where Dmax
k is a predefined threshold, 0 < εk < 1, and Dk(t)

represents the overall delay experienced by a generic data unit
whose result is received back by UE k at time t. The aim of
this constraint is to reduce the variability of the delay. As
mentioned before, there is a direct dependence between the
overall delay and the overall queue length, therefore we can
translate (13) into the following probabilistic constraint on the
sum of the queues:

lim
T→∞

1

T

T∑
t=1

Pr
{
Qtot
k (t) > δkQ

avg
k

}
≤ εk, ∀k, (14)

with δk > 1 conveniently chosen to convert the delay threshold
into a queue-length threshold. In principle, there is no direct
analytical relation between δkQ

avg
k and Dmax

k , but we will
propose in Section V-C an online method to appropriately
select and adapt δk. Finally, note that (14) can be equivalently
recast as the expectation of a Bernoulli random variable as

lim
T→∞

1

T

T∑
t=1

E
{
u
(
Qtot
k (t)− δkQavg

k

)}
≤ εk,

where u(·) is the unitary step function. In the sequel, the event
{Qtot

k (t) > δkQ
avg
k } will be termed as “out-of-service”, and

εk will be the required out-of-service probability.

C. Packet error rate performance

To satisfy a target performance in terms of packet loss, we
want to guarantee that the uplink and downlink PER, denoted
respectively PERu

k and PERd
k for UE k, do not exceed some

targeted thresholds θuk and θdk. In this sense, given the radio
channel state at time t, recalling that the transmit power ptx

k (t)
used by UE k is a function of the chosen MCS mu

k ∈ Mu
k ,

we define ptx,min
k (mu

k , t) = min {ptx
k (t) : PERu

k ≤ θuk}. A
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minimum target PER translates into a minimum target SNR
γ̄k. Thus, the minimum transmit power is ptx,min

k =
γ̄kN0B

u
k

hu
k

,
where N0 is the noise power spectral density at the receiver,
and huk is the time-varying uplink channel power gain. The
same discussion is valid for the downlink transmission.

IV. PROBLEM FORMULATION

In this section, we formulate our optimization problem,
aimed at minimizing the long-term average weighted sum of
the UE’s, AP’s and ES’s energy consumption, as defined in
(1), (2), (3), whose value at time slot t is given by the convex
combination:

Ewtot(t) = α1Eu(t) + α2Ea(t) + α3Em(t), (15)

where αi ≥ 0, ∀i, and
∑3
i=1 αi = 1, with the coefficients

αi chosen in order to explore alternative priority mechanisms
assigned to different energy consumption sources, as clarified
later on. The long-term optimization problem is then:

min
Ψ(t)

lim
T→∞

1

T

T∑
t=1

E {Ewtot(t)} (16)

subject to
(a) Eqn. (12);
(b) Eqn. (13);
(c) mu

k(t) ∈Mu
k , ∀k, t;

(d) md
k(t) ∈Md

k, ∀k, t;
(e) ptx,min

k (mu
k , t)Ik(t) ≤ ptx

k (t) ≤ ptx,max
k Ik(t), ∀k, t

(f) Ik(t) ∈ {0, 1}, ∀k, t;
(g) pd,min

k (md
k, t)Ia(t) ≤ pdk(t) ≤ pd,maxIa(t)/K, ∀k, t

(h) Ia(t) ∈ {0, 1}, ∀t;
(i) fc(t) ∈ F , ∀t;
(j) fk(t) ≥ 0, ∀k, t;

(k)
∑K

k=1
fk(t) ≤ fc(t), ∀t;

where Ψ(t) =
[
{Φk(t)}Kk=1, fc(t), Ia(t)

]
, with Φk(t) =

[mu
k(t),md

k(t), ptx
k (t), pdk(t), fk(t), Ik(t)]. The constraints in

(16) have the following meaning: (a) the average end-to-end
delay of each user does not exceed Davg

k = Qavg
k /Aavg

k ; (b) the
out-of-service probability is lower than a threshold εk; (c)-(d)
the uplink and downlink MCS belong, respectively, to Mu

k

and Md
k; (e) the uplink transmit power of each UE guarantee

the PER constraints and is lower than some fixed budget
ptx,max
k ; (f) the indicator variable of each UE’s sleep state is

binary; (g) the downlink transmit power of each UE guarantee
the PER constraints and is lower than some fixed budget
pd,max/K; (h) the indicator of the AP’s sleep state is binary;
(i) the computation frequency of the ES is selected from a
discrete set F ; (j) the CPU cycle frequency assigned to UE
k is non-negative; (k) the sum of all CPU cycle frequencies
assigned to all UE does not exceed the ES’s total computation
frequency fc.

Clearly, the problem formulation in (16) raises many issues
in terms of high complexity and hard tractability. First of all, in
(16), the objective function and the long-term constraints (cf.

(12), (13)) cannot be computed a priori, since the statistics
of radio channels and data arrivals are not supposed to be
known. Furthermore, even by assuming perfect knowledge
of the statistics, several discrete variables over a long-term
time horizon are involved, thus making the problem to exhibit
exponential computational complexity, in principle. Neverthe-
less, hinging on Lyapunov stochastic optimization [55], we are
able to transform (16) into a pure stability problem, which is
solved in a per-slot fashion that requires only the observation
of instantaneous realizations. Building on stochastic optimiza-
tion theory, we prove the convergence and the asymptotic
optimality of the proposed strategy. Furthermore, we show
that the per-slot problem enables a low-complexity solution,
even in the presence of the discrete variables, thanks to the
decoupling across different slots. Optimality is asymptotically
achieved thanks to the introduction of virtual queues that
allow the algorithm to keep track online of how well the
method is behaving in the real case. In general, different
approaches can be followed when the system model (or part
of it) is not known or to handle complexity efficiently. For
instance, in [41], the authors approximate the original long-
term problem, which is a mixed integer linear program that
exhibits exponential complexity, using a Markov decision
process that is then solved via DRL. The main difference of
our work with respect to the data-driven solution of [41] is that,
by exploiting the mathematical models presented in Section
III and keeping track of the instantaneous (real and virtual)
queues’ state, it is possible to split the original problem into
a series of consecutive simpler problems that do not need a
reinforcement method to be solved, but rather enjoy closed
form expressions and fast iterative solutions, with asymptotic
theoretical guarantees.

A. Lyapunov stochastic optimization

We present now a way to guarantee the long-term con-
straints, based on Lyapunov stochastic optimization. The solu-
tion depends on the definition of two virtual queues for each
UE. For each UE k = 1, . . .K, the first virtual queue Zk(t),
used to impose constraint (a) in (16), evolves as

Zk(t+ 1) = max
(
0, Zk(t) +Qtot

k (t+ 1)−Qavg
k

)
. (17)

Similarly, for constraint (b), we define a virtual queue Yk(t)
that evolves as

Yk(t+ 1) = max(0, Yk(t)

+ µk
(
u
{
Qtot
k (t+ 1)− δkQavg

k

}
− εk

)
), (18)

where µk > 0 is a scalar stepsize.The mean rate stability of
the queues is defined as [55, p. 17]:

lim
T→∞

E{Zk(T )}
T

= 0, ∀k, lim
T→∞

E{Yk(T )}
T

= 0, ∀k.
(19)

In particular, the mean-rate stability of Zk(t) and Yk(t) is
sufficient to ensure constraints (a) and (b) in (16) [55]. We
now introduce the Lyapunov function [55, p. 32]:

L(Θ(t)) =
1

2

∑K

k=1

[
Z2
k(t) + Y 2

k (t)
]
,
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where Θ(t) = [{Zk(t)}k, {Yk(t)}k]. From L(Θ(t)), we can
define the conditonal Lyapunov drift [55, p. 33], which is the
conditional expected variation of L(Θ(t)) over one slot

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}. (20)

Minimizing (20) is enough to achieve (19), but may yield
the drawback of an unnecessary energy consumption. For this
reason, we need to integrate the objective function of (16) in
the drift, obtaining the drift-plus-penalty function [55, p. 39]:

∆p(Θ(t)) = ∆(Θ(t)) + V · E{Ewtot(t)|Θ(t)}, (21)

where V is a trade-off parameter used to tune the relative
importance given to the objective function with respect to the
average virtual queue backlog. ∆p(Θ(t)) is just a “penalized”
version of (20). Then, the parameter V is used to trade off the
average weighted energy consumption in (15) and the average
E2E delay, as it will be also clarified in Section VI with the
numerical results. Now, proceeding as in [55], we minimize
an upper bound of (21) in each time slot, whose derivation is
described in the appendix (cf. (40)). In particular, our method
requires the solution of the following optimization problem in
each time slot:

min
Ψ(t)

K∑
k=1

[
− 2Qlk(t)Nu

k (t) + 4Qmk (t) (Nu
k (t)−N c

k(t))

+ 4Qak(t)
(
N c
k(t)−Nd

k (t)
)
+Zk(t)

[
max

(
0, Qlk(t)−Nu

k (t)
)

+ max (0, Qmk (t)−N c
k(t)) + max

(
0, Qak(t)−Nd

k (t)
) ]

+ µkYk(t)u
{

max
(
0, Qlk(t)−Nu

k (t)
)

+Ak(t)

+ max (0, Qmk (t)−N c
k(t)) + min

(
Qlk(t), Nu

k,max

)
+ max

(
0, Qak(t)−Nd

k (t)
)

+ min
(
Qmk , N

c
k,max

)
− δkQavg

k

}]
+ V Ewtot(t)

subject to Ψ(t) ∈ Z(t), (22)

where Z(t) is the feasible set definde by (c)-(k) of (16).
Now, at every t, the Min Drift-Plus-Penalty Algorithm observes
the queue states Qlk(t), Qmk (t), Qak(t), Θ(t) and the random
events hk(t), Ak(t) and produces a control decision Ψ(t) ∈
Z(t) based on the solution of (22). The non-convex non-
differentiable objective function in (22) is difficult to optimize.
Thus, we proceed by finding a suitable approximation of
(22) that simplifies the solution but still provides optimality
guarantees. In particular, we hinge on the concept of Γ-
additive approximation [55, p. 59]:

Definition 1: For a given constant Γ, a Γ-additive approx-
imation of the drift-plus-penalty algorithm is one that, for a
given state Θ(t) at slot t, chooses a (possibly randomized)
action Ψ(t) ∈ Z(t) that yields a conditional expected value
of the objective function in (22) that is within a constant Γ
from the infimum over all possible control actions.

To find a suitable Γ-approximation, we first introduce the
following upper bound, used to get rid of the non-linearity
introduced by the b·c operator in (22). In particular, since
we can write x − 1 ≤ bxc ≤ x, we have max(0, Qmk (t) −

bτfk(t)Jkc) ≤ max(0, Qmk (t)− τfk(t)Jk + 1). Then, adding
without loss of generality the following additional constraint:

fk(t) ≤ min

(
Qmk (t) + 1

τJk
, fc

)
, ∀k, t,

we have max(0, Qmk (t)−τfk(t)Jk+1) = Qmk (t)−τfk(t)Jk+
1. Finally, to deal with the non-linearity introduced by the
step function u{·}, we note that u{x − A} ≤ u{x} ≤ x +
1, ∀x,A ≥ 0. Applying these bounds to the objective function
of (22) and removing the constant terms, the problem can be
re-formulated as follows (we omit the temporal index t for
ease of notation):

min
Ψ

K∑
k=1

[
(4Qmk − 2Qlk)Nu

k − Q̃kτfkJk − 4QakN
d
k

+ (Zk + µkYk)
(

max(0, Qlk −Nu
k )

+ max(0, Qak −Nd
k )
)]

+ V Ewtot

subject to

(a) Ψ ∈ Z; (b) fk ≤ min

(
Qmk + 1

τJk
, fc

)
, ∀k; (23)

where Q̃k = 4(Qmk − Qak) + Zk + µkYk and Ψ and Z are
defined as for (22). The following theoretical result applies.

Proposition 1: Suppose that the channel gains {hk(t)}k and
the data arrivals {Ak(t)}k are i.i.d over time, that (16) is
feasible, and that E{L(Θ(0))} < ∞; then, solving (23) in
each time slot guarantees that all virtual queues are mean-rate
stable (i.e., (19) holds) and Ewtot is such that:

lim sup
T→∞

1

T

T∑
t=1

E{Ewtot(t)} ≤ E
w,opt
tot +

ζ + Γ

V
, (24)

where Ew,opt
tot is the infimum time average energy achievable

by any policy that meets the required constraints, and ζ is a
positive constant defined in the appendix (cf. (41)).

Proof: The proof follows from the fact that the control
policy deriving from the solution of (23) is a Γ-additive
approximation of the drift-plus-penalty algorithm in (22). This
holds true because, for any given state Θ(t) of the physical
and virtual queues at slot t, function (22) is bounded from
above due to the finite size of the feasible set Z(t), for all t.
Thus, the conditional expected value of the objective function
in (22), evaluated in the solution of (23), is within a constant
Γ from the global optimum of problem (22). The derivations
leading to (22) and (41) are given in the Appendix. The main
claim comes as a direct consequence of [55, Th. 4.8].

Remark 1: The main consequence of Proposition 1 is that
the mathematically optimal long-term solution of (16) is
achieved by optimally solving (23), as V increases. This will
be also clearly visible in the numerical results of Section VI.

Remark 2: The algebraic manipulations that led to (23),
decouple the radio and computation optimization variables
and allow us to optimally split the main problem into two
different sub-problems: i) radio resource allocation problem,
both in uplink and downlink; ii) ES CPU scheduling problem.
We now present a low-complexity algorithm that achieves the
globally optimal solution of (23).
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V. SOLUTION OF THE PER-SLOT OPTIMIZATION PROBLEM

A. Radio Resource Allocation

The problem for radio resource allocation involves: (i) the
decision on the UE and AP sleep state, (ii) the uplink transmit
power and MCS selection, and (iii) the downlink transmit
power and MCS selection. Then, omitting the temporal index t,
defining Γ = [{mu

k}k, {md
k}k, {ptx

k }k, {pdk}k, {Ik}k, Ia], and
recalling (2), (4), and (15), the first sub-problem reads as:

min
Γ

K∑
k=1

[
(4Qmk − 2Qlk)Nu

k − 4QakN
d
k

+ (Zk + µkYk)
(

max(0, Qlk −Nu
k ) + max(0, Qak −Nd

k )
)

+ V α1Ek

]
+ V α2Ea

subject to Γ ∈ Z ′, (25)

where Z ′ is the feasible set for the radio resources according
to (c)-(h) of (16). Now, to solve (25), we can distinguish
between two different cases:
Case 1: Ia = 0. In this case, since the AP is in sleep
mode and cannot receive nor transmit, no user can transmit
or receive and Ik = 0, for all k. Thus, the trivial solution is
Nu
k = Nd

k = ptx
k = pdk = 0. Moreover, recalling that each

UE and the AP are forced to be in active state for a period
τs necessary for control signaling, the energy consumption of
each user is simply given by Ek = τpsk + τsp

on
k , while the

energy consumption of the AP is Ea = τpsa + τsp
on
a . Then,

the minimum value of the objective function of (25) in this
case, is given by:

Ls =

K∑
k=1

(Zk + µkYk)(Qlk +Qak)

+ V

[
α1

K∑
k=1

(τpsk + τsp
on
k ) + α2(τpsa + τsp

on
a )

]
. (26)

This value will be compared with the solution obtained in the
following second case.
Case 2: Ia = 1. In this case, the AP is available for transmis-
sion and/or reception, and the radio resources in uplink and
downlink can take different values. In particular each UE can
optimize its Ik. Thus, we can distinguish between the case
Ik = 0, in which no transmission or reception occurs for UE
k, and the case Ik = 1, in which the uplink and the downlink
resources can take any value of the feasible set. When Ik = 0,
we have Nu

k = Nd
k = ptx

k = pdk = 0 and the part of the
objective function associated with each UE is

Lsk = (Zk + µkYk)(Qlk +Qak) + V α1

(
τpsk + τsp

on
k

)
. (27)

On the other hand, in the case Ik = 1, the optimization of each
uplink and downlink variable is independent from the others.
We now show the solutions for each user in the case Ik = 1.

1) Optimal Uplink Radio Resource Allocation: As already
mentioned, in this work we assume that the spectral resources
(i.e., the bandwidth) are assigned a priori. This makes the

problem separable among different UE and can be formulated,
for all k with Ik = 1, as follows:

min
{mu

k ,p
tx
k }

(4Qmk − 2Qlk)Nu
k + (Zk + µkYk) max(0, Qlk −Nu

k )

+ V α1τp
u
k + V α1(τ + τs)p

on
k

subject to

(a) mu
k ∈Mu

k ; (b) ptx,min
k (mu

k) ≤ ptx
k ≤ p

tx,max
k ,

(28)

where we recall that puk is a (given) monotone increasing
function of ptx

k (cf. Section III-A2, and Nu
k is a function

of mu
k (cf. (6)). Since Mu

k is discrete and finite, (28) can
be easily solved via an exhaustive search over all possible
schemes in Mu

k (with linear complexity in the cardinality of
Mu

k), where the optimal choice for the transmit power for
each k is ptx

k = ptx,min
k (mu

k). Note that it might happen that
ptx,min
k (mu

k) ≥ ptx,max
k . In this case, the selected MCS cannot

be used to guarantee the required PER; thus, the solution
of (28) has to be searched in the subset of Mu

k that satisfies
the constraint on the PER. We denote by mu,opt

k and ptx,opt
k

the optimal values of the MCS and the uplink transmit power,
respectively. Then, the optimal value of Nu

k is obtained by
plugging mu,opt

k in (6). Finally, If no MCS can be used to
guarantee the required PER, the user k does not transmit, i.e.,
Nu,opt
k = ptx,opt

k = 0.
2) Optimal Downlink Radio Resource Allocation: The

downlink resource allocation is similar to the uplink case, so
that the following subproblem of (25) is solved for each user
in each slot:

min
{md

k,p
d
k}
− 4QakN

d
k + (Zk+µkYk) max(0, Qak −Nd

k )+V α2p
d
k

subject to

(a) md
k ∈Md

k; (b) pd,min
k (md

k) ≤ pdk ≤ pd,max/K,
(29)

where Nd
k is a function of md

k (cf. (11)). The solution of this
problem is obtained, as for the uplink case, via an exhaustive
search over the feasible values of md

k. We denote by md,opt
k

and pd,opt
k the optimal solutions of (29). The optimal value of

Nd
k , denoted by Nd,opt

k is obtained by plugging md,opt
k into

(11). Then, let Lak be the following quantity, resulting from
the UE’s active state:

Lak = (4Qmk − 2Qlk)Nu,opt
k − 4QakN

d,opt
k

+ (Zk + µkYk)
(

max(0, Qlk −N
u,opt
k )

+ max(0, Qak −N
d,opt
k )

)
+ V α1

(
τpu,opt
k + (τ + τs)p

on
k

)
+ V α2τp

d,opt
k . (30)

The optimal value of Ik, denoted by Iopt
k , is then chosen based

on the comparison between (27) and (30). In particular, Iopt
k =

1 if Lak < Lsk, and Iopt
k = 0, otherwise. Finally, letting

La =

K∑
k=1

(
Iopt
k Lak + (1− Iopt

k )Lsk
)

+V α2(τ + τs)p
on
a , (31)

the optimal value of Ia, denoted by Iopt
a , is chosen based on

the comparison between (26) and (31). In particular, Iopt
a = 1
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Algorithm 1 Radio Resource Allocation
In each time slot t, observe Qlk, Q

m
k , Q

a
k, Zk, Yk, h

u
k , h

d
k, ∀k.

S1. Solve (28) and (29) to find for each UE k the values
mu,opt
k , ptx,opt

k ,md,opt
k , pd,opt

k . Plug mu,opt
k and md,opt

k into (6)
and (11) to find Nu,opt

k and Nd,opt
k , respectively.

S2. Compute Lsk and Lak from (27) and (30), respectively, ∀k.
S3. for k = 1, . . . ,K do

if Lsk ≤ Lak then
Iopt
k = 0, Nd,opt

k = Nu,opt
k = pd,opt

k = ptx,opt
k = 0.

else
Iopt
k = 1.

end
end
S4. Compute Ls and La from (26) and (31), respectively.
S5. if Ls ≤ La then

Iopt
a = 0, Nd,opt

k = Nu,opt
k = pd,opt

k = ptx,opt
k = 0, ∀k.

else
Iopt
a = 1.

end

if La < Ls, and Iopt
a = 0, otherwise. The overall procedure for

the optimal radio resource allocation in uplink and downlink
is summarized in Algorithm 1.

B. Optimal CPU scheduling

The sub-problem of (25) for CPU scheduling at the ES is
formulated as follows:

min
Φ

V α3τ

(
Im(pon

m − psm) + psm + κf3
c

)
− τ

K∑
k=1

Q̃kfkJk + V α3τsp
s
m (32)

subject to

(a) fc ∈ F ; (b) 0 ≤ fk ≤ min

(
Qmk + 1

τJk
, fc

)
, ∀k;

(c)

K∑
k=1

fk ≤ fc,

with Φ = [fc, {fk}k], and we recall that Im = 1{fc}. From
(32), we notice that, for a fixed fc, the problem is linear in the
variables {fk}k and can be efficiently solved via a fast iterative
algorithm. Thus, we can perform a search for the optimal value
of fc within F . In particular, the overall procedure to select
the optimal fc, the ES’s sleep variable Im, and the optimal
scheduling frequencies {fk}k is described in Algorithm 2.
Steps S2-S6 find the optimal CPU resource allocation for a
given fc: to minimize Lc, we need to allocate the maximum
possible CPU frequency to the UE with the highest Q̃k; if
this leaves some available CPU frequency (cf. step S3), the
same principle is applied to the remaining UE. Note also that
the |F| iterations over the possible fc (steps S1-S7) can be
easily parallelized, being independent from each other. From
a complexity point of view, even when not parallelized, it is
important to notice that Algorithm 2 requires, in the worst
case, K × |F| iterations.

Algorithm 2 ES CPU Scheduling
In each time slot t, observe Qmk , Qak, Zk, Yk.
Define the |F| × 1 vector of the available CPU frequencies
ϕ = F . Define the |F| × K matrix F = {Fik}i,k, and the
|F| × 1 vector L = {Li}|F|i=1. Set Fik = 0 ∀i, k, and Li = 0
∀i.
for i = 1, . . . , |F| do

S1. Let ϕ̃ = ϕi, Im = I{ϕ̃}, and U = {k = 1, . . . ,K}.
while ϕ̃ > 0 and U 6= ∅ do

S2. k̃ = arg max
k∈U

{
JkQ̃k

}
.

S3. Fik̃ = min
(
(Qm

k̃
+ 1)/(τJk̃), ϕ̃

)
.

S4. U = U r
{
k̃
}

.
S5. ϕ̃ = ϕ̃− Fik̃.

end
S6. Define k̄ = {k : Q̃k ≤ 0}, and set fk̄ = 0.
S7. Compute the objective function Lc of (32) with fc =
ϕi and fk = Fik, ∀k; save it in Li.

end
S8. Find i∗ = arg min

i
{Li}, fopt

c = ϕi∗ , f
opt
k = Fi∗k ∀k.

C. End-to-end probabilistic delay constraint adaptation

We now present an online adaptation method to set the
parameter δk so that (14) accurately represents (13). Given
a starting point δk(0), the parameter is updated at each time
slot as follows:

δk(t) = max
(
δk(t− 1)− νk(t)(Pk(Dmax

k ,W t
k)− εk), 1

)
,

(33)
where Pk(Dmax

k ,Wk(t)) is a moving estimate of the out-of-
service probability evaluated on the set W t

k (of size |W t
k|)

composed by the last data units received by UE k until t:

Pk(Dmax
k ,W t

k) =
1

|W t
k|
∑
w∈W t

k

I{Dw
k > Dmax

k }, (34)

where Dw
k is the end-to-end delay of the w-th data unit in W t

k.
In particular, |Wk(t)| is the minimum between a given value
(chosen to accurately estimate the probability), and the actual
number of received data until time t, due to the fact that, at
the beginning, there might be no sufficient data to estimate
the probability. Furthermore, νk(t) is a stepsize sequence,
typically chosen either constant or using the diminishing rule

νk(t) =
νk(0)

tβk
, βk ∈ (0, 1]. (35)

The rationale behind the adaptation rule in (33) is the follow-
ing: first, we know from the theoretical analysis of Section IV
and from Proposition 1 that, for a given δk, Algorithm 1
and 2 yield a solution to (16) that satisfies (14). Therefore,
if (14) is satisfied but the current estimated Pk(Dmax

k ,W t
k)

is actually greater than the desired value εk, it means that
δkQ

avg
k misrepresents Dmax

k and it is actually greater than
it should. Consequently, δk has to decrease at the next time
step in order to impose a tighter threshold and let δkQ

avg
k

better represent Dmax
k . The opposite happens instead, when

Pk(Dmax
k ,W t

k) < εk, to achieve a lower-energy solution.
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Algorithm 3 Discontinuous Computation Offloading (DisCO)

Input data: K, F , Buk , Bdk , ptx,max
k , pd,max, Jk, Mu

k , Md
k,

α1, α2, α3, Davg
k , Dmax

k , εk, µk.
In each slot t do:
S1. Find the optimal radio and computation resource allocation
with Algorithms 1 and 2, respectively, and run accordingly the
computation offloading procedure.
S2. Update the physical and virtual queues as in (7), (9), (10),
(17) and (18), respectively.
S3. Update νk as in (35), estimate Pk(Dmax

k ,W t
k) as in (34),

and update δk as in (33).

Finally, the overall dynamic strategy is described in Algorithm
3, which will be termed as DisCO.

VI. NUMERICAL RESULTS

We present here simulation results to assess the performance
of our online optimization strategy. All simulations are per-
formed in Matlab®, with the following fixed settings.
Fixed settings. We consider a picocell placed at the center of
a square area of side 150 m. We assume an FDD system, with
total available bandwidth B = 10 MHz equally split between
uplink and downlink. We consider a total time slot duration
τl = 10 ms, with τs = 1 ms the portion of the slot used for
control signaling and optimization, i.e. where all entities are
in active state. Then, the slot duration for data transmission
and computation is τ = 9 ms. Therefore, the sleep modes
of all entities have to be selected according to these values,
taking into account the specific transition times. For the AP
power consumption, among the different models available
in the literature, we exploit that of [49], which provides a
tool, available online, to model the power consumption of
base stations of different kinds, with details on the specific
components (power amplifiers, supply power, etc.). However,
our proposed optimization strategy is not constrained to the
use of this model; it is more general and can be applied to
different models. Recalling the notation of Section III-A1, in
the case of a picocell, the AP active power is pon

a = 2.2 W. The
maximum transmit power of the AP is set to 251 mW [56],
so that the maximum transmit power of each user is 251/K
mW. In [49], four possible Sleep Modes (SM) are defined, with
different minimum sleep periods, corresponding to the OFDM
symbol, the sub-frame duration, the radio frame duration, and
a standby mode. For our simulations, we exploit Sleep Mode 2
from [49], whose minimum sleep time is 1 ms, while a single
transition (e.g. from sleep to active) requires 0.5 ms [49], so
that a total duration τs = 1 ms is enough, considering 0.5
ms at the beginning of the slot (for optimization and eventual
transition to sleep state) and 0.5 ms at the end of the slot to
wake up and being active at the beginning of the next slot
(see up right part of Fig. 1). The power consumption in sleep
mode 2 is psa = 278 mW [49].

The channel model is taken from [57], with a carrier fre-
quency of 28 GHz, and a Rayleigh fading with unit variance.
The noise power spectral density is N0 = −174 dBm/Hz,
with an additional noise figure of 5 dB both at UE and at the

AP. For the UE power consumption, recalling the notation of
Section III-A2, we exploit the empirical model of [58], where
it is shown that the active power is about pon

k = 0.9 W, and is
also affected by transmit powers above 10 mW, consuming an
additional 0.6-1.5 W. Here, we assume a maximum transmit
power ptx,max

k = 100 mW per UE. According to [58], the
power puk(t) consumed to transmit is a monotone increasing
function of the transmit power ptx

k (t). For the sleep operation,
similarly to the AP case, two different states are defined [58]:
a light sleep mode, with power consumption psk = 346 mW
and sub-ms transition time, and a deep sleep mode, with
psk = 20.3 mW and much longer transition time (around 10
ms). In this paper, we exploit the light sleep operation, due to
the sub-ms transition time. For the numerical model presented
in Section III-C, we can choose all M -QAM modulations
with M ∈ {4, 16, 64, 256}, coupled with coding rates in
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, both in uplink and in down-
link, so that Mu

k and Md
k have 28 elements. The packet

length used in Section III-C is 1500 bytes. The ES has a
maximum CPU cycle frequency fmax = 4.5×109 CPU cycle/s
and an effective switched processor capacitance κ = 10−27

W·
(

s
CPU cycle

)3

[52]. The vector of all possible CPU cycle fre-
quencies is ϕ = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]×
fmax. Finally, recalling the notation of Section III-A3, the
power consumption in active state is pon

m = 20 W, whereas
the sleep state power consumption is psm = 10 W.
Energy-Delay trade-off: As a first numerical result, we illus-
trate the performance of DisCO in terms of energy-delay trade-
off. We run our simulations with random configurations of the
following parameters: the input and output data size Sik = 10x,
Sok = 10y bits, with x and y uniformly randomly generated
(u.r.g.) in [2, 3] and [1, 3], respectively; we assume Poisson ar-
rivals with Aavg

k u.r.g. in [5, 15] data units; finally, Jk = 10−z

data/CPU cycle, with z u.r.g. in [2, 5]. The simulation has
run for T = 105 slots and it has been repeated over 100
independent realizations of the above random parameters and
of K = 5 users’ positions, uniformly distributed in a square
of side 150 m. All UE have an average delay requirement
Davg
k = 100 ms and, for this simulation, δk is fixed for all k,

with δk = [1.5, 1.6, 1.7, 1.8, 1.9]. The out-of-service constraint
is εk = 10−2, with stepsize µk = 10, ∀k (cf. (18)). We assume
the bandwidth to be equally shared among all UE and a target
PER of 10−4, both in uplink and downlink. In Fig. 2a, we show
the trade-off between the long-term average of (15) and the
average E2E delay, defined in (12). This trade-off is obtained
by increasing the Lyapunov parameter V (cf. (21)) from right
to left, as shown in the figure. We plot this trade-off for
different settings of the weighting parameters αi, i = 1, 2, 3 in
(15), which also correspond to proper customization of works
previously appeared in the literature to our framework and
system model. i) UE-centric setting (N): This strategy is
obtained by setting α1 = 1, α2 = α3 = 0 (cf. (15)), to only
consider the UE energy consumption. This strategy could be
possibly related to our previous work [27], where only the
UE’s energy consumption is optimized. ii) AP-centric setting
(�): This strategy is obtained by setting α2 = 1, α1 = α3 = 0,
to consider only the AP energy consumption. A radio -centric
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Fig. 2: Energy-delay trade-off.

optimization is proposed in [38], where the authors aim to
minimize the sum of UE’s and AP’s energy consumption in a
multi-AP scenario. iii) ES-centric setting (•): This strategy
is obtained by setting α3 = 1, α1 = α2 = 0, to only consider
the ES energy consumption; iv) Holistic solution (F): This
strategy is obtained by setting α1 = α2 = α3 = 1/3, to
take into account the overall network energy consumption.
We can notice how the average weighted energy decreased
as V increases, while the average E2E delay increases until
reaching its maximum value Davg

k imposed by constraint (a)
of (16), as suggested by the theoretical result in Proposition
1, for all strategies. Looking at Fig. 2a, one may conclude
that the AP-centric strategy (�) is the best one because it
achieves the best trade off between average weighted sum
energy and delay. However, this does not give any clue on
the energy consumption of the single agents and the network.
Therefore, we now wonder what is the behavior of the single
sources of energy consumption. Let us notice that, for the
highest values of V , all strategies reach the same E2E delay,
so that we can compare them in terms of energy consumption,
given an E2E delay. Thus, in Fig. 2b-e, we show the long-term
average energy consumption of all users, the AP, the ES, and
the overall energy consumption (the sum of the three), all as a
function of the Lyapunov tradeoff parameter V (cf. (21)), with
the same value of V as for Fig. 2a. Some comments follow:

(a) UE-centric setting (N). In this setting, the energy con-
sumption of the UE (Fig. 2b) reaches its lowest level,

while the energy consumption of the ES (Fig. 2d) is not
optimized. Instead, the AP’s energy consumption (Fig.
2c) reaches a level very close to its lowest, obtained with
the AP-centric setting (�). This is due to the fact that the
AP tends to operate in sleep mode when no UE transmits
or requests results back, which happens often in the user-
centric setting.

(b) AP-centric setting (�). In this case, the energy consump-
tion of both the AP and the UE approach lower values,
for similar reasons as the previous case. This suggests
that there exists a strong link between the two entities,
since they must be active at the same time when they
need to communicate. We can interpret (a) and (b) as
“radio-centric” solutions.

(c) ES-centric setting (•). This solution, yields the lowest
possible energy consumption for the ES as expected, but
it is detrimental for the radio part, incurring additional
energy consumption for the AP and the users.

(d) Holistic solution (F). This solution aims at minimizing
the overall system energy consumption, This is the most
interesting and promising strategy, since it is globally
“green” and it reaches very close-to-optimal energy con-
sumption for each agent (UE, AP, ES). This suggests
that the three sources of energy consumption can be
minimized jointly without detrimental effects on the
single agents. Practically, the choice of the αi is based
on the particular needs of the telecom operator, the MEC
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operator, or the UE, but could be also based on a global
and holistic energy reduction policy. In this paper, we
do not tackle the problem of optimizing the αi for the
different needs and leave it for future investigation.

This first result motivates us to fix αi = 1/3, i = 1, 2, 3
(holistic solution) for the next simulations.
Reliability: Fig. 3a focuses on the out-of-service constraint,

i.e. constraint (b) of (16), and shows the effectiveness of
the adaptive parameter δk in (14). The scenario is composed
of 4 UE, Poisson arrivals with Aavg

k = 5, Sik = 1000 and
Sok = 100 bits, Jk = 10−4 data/CPU cycle, Davg

k = 100 ms,
Dmax
k = [250, 200, 150, 120] and a reliability requirement

εk = 10−3, with µk = 20. The adaptation of δk is obtained
with starting point δk(0) = 1 ∀k, νk(0) = [15, 5, 4, 3],
k = 1, 2, 3, 4, and the diminishing rule in (35) uses βk = 1/2,
∀k. The probability of exceeding the desired maximum delay
(Pk(Dmax

k ,W t
k) in (34)) is estimated over the most recent

104 data result arrivals (i.e. |Wk(t)| = 104). The target PER
is 10−4, and the trade-off parameter is V = 5 × 106. The
simulation is run for 105 slots. Then, Fig. 3a shows the
reliability function (also known as survivor function), defined
as 1 − CDF(Dk), with CDF(Dk) being the cumulative
distribution function of the end-to-end delay experienced by
all data of user k. The delay is measured by timestamping
each data unit. Thus, each curve in Fig. (3a) shows the
probability that the end-to-end delay of each data unit
exceeds the value on the abscissa. The black dotted horizontal
line represents the requirement εk on the out-of-service
probability (cf. (14)). For each UE, the points corresponding
to Dmax

k , k = 1, 2, 3, 4 are circled; they all lie below the
horizontal black dotted line and the reliability constraint
is met. We also show, for each UE, the average energy
consumption Eavg

k = 1
T

∑T
t=1 E{Ek(t)}. In particular, the

average system energy consumption resulting from the
minimum delay strategy (i.e., always transmit) is 245 mJ,
while the average system energy consumption necessary
to achieve the result of Fig. 3a is much lower (160 mJ).
The evolution of δk(t) over time and its convergence are
illustrated in Fig. 3b. As expected, a lower Dmax

k requires
a lower δk. Finally, Fig. 3c illustrates the instantaneous
out-of-service probability obtained via the adaptive strategy,
which flattens around εk after a transient interval. Note that
the choice δk(0) = 1 is conservative and helps limiting
the out-of-service probability when the convergence of the
algorithm is not reached yet. Then, over time, the constraint
is relaxed thanks to the adaptation rule of δk, which helps
reducing the energy consumption.
Comparison of different sleep modes strategies: We now
compare DisCO with four different resource strategies, which
correspond to specific customization of other works to our
setting. i) Equal fk’s: resources are optimized (including fc)
but the CPU frequencies are equally allocated to each user
by the ES (i.e. without Algorithm 2 for CPU scheduling). ii)
No sleep: resources are optimized but the network elements
cannot be turned to sleep states. This could be possibly
related to our previous work [27], where we jointly optimize
radio and computation resources in a user-centric fashion,

not exploiting sleep modes. iii) Radio sleep: resources are
optimized but the sleep state of the ES is not available.
This is analogous to the approach of [38], once customized
to our system model (i.e. single AP), where the authors
only exploit AP sleep states. iv) ES sleep: resources are
optimized but the AP and the users cannot enter the sleep
states. This is coherent with the results of [34], where a
sleep state at the ES is considered, but no sleep is exploited
for UE and AP. Also, we propose a different strategy for
bandwidth allocation, based on the following heuristic: let
Q̃uk = 4Qmk −2Qlk+(Zk+µkYk)Qlk and K+

u = {k : Q̃uk > 0}
for the uplink; similarly, let Q̃dk = 4Qak + (Zk + µkYk)Qak
and K+

d = {k : Q̃dk > 0} for the downlink. We define the
below uplink (downlink) bandwidth allocation rule:

Buk =


Q̃uk∑

i∈K+
u
Q̃ui

Bu, if k ∈ K+
u ,

0, otherwise,

Bdk =


Q̃dk∑

i∈K+
d
Q̃di

Bd, if k ∈ K+
d ,

0, otherwise,

(36)

where Bu and Bd are the total available uplink and downlink
bandwidths, respectively. This heuristic for the allocation of
spectral resources is based on the fact that all the information
about the status of a certain UE’s quality of service lies in the
physical and virtual queues. Thus, a UE with a higher Q̃uk (Q̃dk
for the downlink part), which is defined based on the objective
function of (25), needs more resources to drain its queues.

We run our simulations with random configurations of
the following parameters: Sik = 10x, Sok = 10y bits,
with x and y u.r.g. in [1, 3]. We assume Poisson arrivals
with Aavg

k u.r.g. in [1, 20] data units. Finally, Jk = 10−z

data/CPU cycle, with z u.r.g. in [2, 5]. We consider a sce-
nario with 10 users, all with an average delay requirement
Davg
k = [80, 85, 90, 95, 100, 105, 110, 115, 120, 125] ms, and

δk = [1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4]. The simula-
tion is run for 104 slots and the results are averaged over
100 independent realizations of the above parameters and
UE’ positions. In Fig. 4a, we observe the non-negligible gain
of DisCO in terms of average system energy consumption,
when compared to all the proposed alternative strategies. The
heuristic for bandwidth allocation described in (36) and termed
as “DisCO (BW Heur.)” in Fig. 4a achieves an additional
gain around 10% with respect to DisCO with equal bandwidth
allocation. Of course, other heuristics can be investigated and
integrated with our strategy. For instance, at each t (or a longer
time scale), it is possible to compare the solutions obtained
with different bandwidth allocation strategies and select the
best one, if this is compatible with a practical implementation.
A recent contribution suggests this possibility, with a parallel
GPU based implementation [59].
The effect of the arrival rate: In Fig. 4b, we compare the
average system energy consumption of DisCO with other
strategies, considering different values of the parameter Aavg

k ,
∀k. The scenario involves 15 UE; Sik = 10x, Sok = 10y bits,
with x and y u.r.g. in [2, 3] and [1, 3], respectively; Jk = 10−z
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Fig. 4: Comparison of DisCO with other strategies

data/CPU cycle, with z u.r.g. in [2, 5]; the average delay
constraint is Davg

k = 100 ms, δk = 2, εk = 10−2, µk = 10,
∀k. The Lyapunov trade-off parameter is V = 5 × 107. The
simulation is run for 104 slots and the results are averaged over
100 independent realizations of the above parameters and UE
positions. Fig. 4b shows how DisCO is able to yield a large
gain compared to the other strategies, except for high arrival
rates, where there are less degrees of freedom to exploit the
sleep mode operations. In particular, the duty cycles (fraction
of activity time) obtained with DisCO are shown in Fig. 4c,
as a function of Aavg

k . We considered the same setting used
for Fig. 4b, using DisCO with equal bandwidth allocation,
and with the heuristic described in (36). Fig. 4c shows that,
for high Aavg

k , the duty cycles of DisCO are close to 1 (i.e.,
always active), thus explaining the similar energy consumption
as the strategies without sleep control. However, with our
proposed heuristic for bandwidth allocation, we achieve a
non-negligible gain in terms of activity time with respect to
the equal bandwidth allocation strategy. This result further
motivates taking into account the physical and virtual queues
in prioritizing the scheduling of the users.

VII. CONCLUSIONS

In this paper, we proposed a dynamic resource allocation
algorithm for computation offloading that jointly exploits low-
power sleep modes of UE, AP, and ES to reduce the system

energy consumption with guaranteed E2E average delay and
reliability. Via Lyapunov stochastic optimization, we solved
a long-term problem, using a dynamic algorithm that works
on a per-slot basis, without assuming any prior knowledge
on the statistics of data arrivals and radio channels, and with
theoretical guarantees. Several numerical results show the
performance gain offered by our proposed online strategy, and
how a holistic view of the system can be beneficial for all
agents and for the global energy consumption. In this paper,
we focused on a multiuser setting with a single AP and single
ES. Future investigations should include optimized scheduling
of spectral and time radio resources in a multi-cell multi-server
scenario, where the cooperation among multiple APs and
ESs can help reducing the overall energy consumption. Fur-
thermore, non-cooperative methods, including purely game-
theoretic approaches or incentive-based mechanisms (see e.g.,
[29], [42]), are worth of being investigated, as a way to
achieve distributed and efficient solutions, while minimizing
signaling overhead. Finally, due to the partial knowledge of
the communication and computation models involved, it is
worth investigating both (partial) data-driven approaches, e.g.
DRL methods, and (partial) model-based approaches, where
whichever information, albeit limited, is incorporated and
exploited to find efficient solutions.
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APPENDIX

Here, we present the derivation of the upper bound of the
Lyapunov drift-plus-penalty that leads to the per-slot optimiza-
tion strategy in (22). First of all, note that, given a generic
virtual queue X(t) evolving as X(t + 1) = max(0, X(t) +

x(t+ 1)− x̄), and defining ∆X(t) = X2(t+1)−X2(t)
2 , we can

always write ∆X(t) ≤ (x(t+1)−x̄)2

2 + X(t)x(t + 1) −X(t)x̄
[55, p. 59]. Then, for the virtual queue Zk(t) defined in (17),
we can write

∆Z(t) ≤
(Qtot

k (t+ 1)−Qavg
k )

2

2
+ Zk(t)Qtot

k (t+ 1)

− Zk(t)Qavg
k =

1

2

(
Qtot
k (t+ 1)

)2
+

1

2
(Qavg

k )
2

−Qtot
k (t+ 1)Qavg

k + Zk(t)Qtot
k (t+ 1)−Zk(t)Qavg

k

≤
(
Qlk(t+ 1)

)2
+ (Qmk (t+ 1) +Qak(t+ 1))

2
+

1

2
(Qavg

k )
2

+ Zk(t)Qtot
k (t+ 1)− Zk(t)Qavg

k ≤
(
Qlk(t+ 1)

)2
+ 2 (Qmk (t+ 1))

2
+ 2 (Qak(t+ 1))

2
+

1

2
(Qavg

k )2

+ Zk(t)Qtot
k (t+ 1)− Zk(t)Qavg

k . (37)

Now, for A, b ≥ 0 we have (max(0, Q − b) + A)2 ≤ Q2 +
A2 + b2 + 2Q(A − b) [55, p. 33]; recalling (7), (9) and (10)
and applying the upper bound to all queues, we can write

∆Z(t) ≤
(
Qlk(t)

)2
+ (Ak,max)2 + (Nu

k,max)2 + 2 (Qmk (t))
2

+ 2Qlk(t) (Ak(t)−Nu
k (t)) + 2(Nu

k,max)2 + 2(N c
k,max)2

+ 4Qmk (t) (Nu
k (t)−N c

k(t)) + 2 (Qak(t))
2

+ 2(N c
k,max)2

+ 2(Nd
k,max)2 + 4Qak(t)

(
N c
k(t)−Nd

k (t)
)

+
1

2

(
Qavg
k

)2
+ Zk(t)

(
max

(
0, Qlk(t)−Nu

k (t)
)

+Ak(t)

+ max (0, Qmk (t)−N c
k(t)) + min

(
Qlk(t), Nu

k,max

)
+ max

(
0, Qak(t)−Nd

k (t)
)

+ min
(
Qmk (t), N c

k,max

)
−Qavg

k

)
, (38)

where we used the fact that min(Qmk (t), N c
k(t)) ≤

min(Qmk (t), N c
k,max), and min

(
Qlk(t), Nu

k

)
≤

min
(
Qlk(t), Nu

k,max

)
, where Nu

k,max is the maximum
number of uplink transmitted data units, and N c

k,max is the
maximum number of computable data units, given (8). For
the virtual queue Yk(t) (cf. (18)), we can write

∆Y (t) ≤
µ2
k (u{Qtot

k (t+ 1)− δkQavg
k } − εk)

2

2
+ µkYk(t)

(
u{Qtot

k (t+ 1)− δkQavg
k } − εk

)
≤ µ2

k(1− εk)2

2
+ µkYk(t)

(
u{Qtot

k (t+ 1)− δkQavg
k } − εk

)
,

(39)

where we used the fact that u{·} ≤ 1. Finally, plugging (38)
and (39) into (21), we can write

∆p(Θ(t)) ≤ ζ + E
{ K∑
k=1

[
χk(t)− 2Qlk(t)Nu

k (t)

+ 4Qmk (t) (Nu
k (t)−N c

k(t)) + 4Qak(t)
(
N c
k(t)−Nd

k (t)
)

+ Zk(t)
(

max
(
0, Qlk(t)−Nu

k (t)
)

+ max (0, Qmk (t)−N c
k(t)) + max

(
0, Qak(t)−Nd

k (t)
) )

+ µkYk(t)u

{
max

(
0, Qlk(t)−Nu

k (t)
)

+Ak(t)

+ max (0, Qmk (t)−N c
k(t)) + min(Qlk(t), Nu

k,max(t))

+ max
(
0, Qak(t)−Nd

k (t)
)

+ min(Qmk (t), N c
k,max(t))

− δkQavg
k

}]
+ V Ewtot(t)

∣∣∣∣Θ(t)

}
, (40)

where ζ is a positive constant given by

ζ =

K∑
k=1

[
(Ak,max)

2
+ 3

(
Nu
k,max

)2
+ 4

(
N c
k,max

)2
+ 2

(
Nd
k,max

)2
+

(
Qavg
k

)2
2

+
µ2
k(1− εk)2

2

]
, (41)

and χk(t) is a constant at time slot t (i.e. it does not depend
on the optimization variables), which reads as follows:

χk(t) = (2Qlk(t) + Zk(t))Ak(t) + (Qlk(t))2 + 2(Qmk (t))2

+ 2 (Qak(t))
2

+ Zk(t)(min(Qlk(t), Nu
k,max(t))

+ min(Qmk (t), N c
k,max(t))−Qavg

k )− µkYk(t)εk. (42)

Then, the Min-Drift-plus penalty algorithm proceeds by op-
portunistically minimizing (40) in each time slot, leading to
the problem in (22), where all the constant terms (with respect
to the variables) are omitted.
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